US20010006775A1 - Analytical method, kit, and apparatus - Google Patents

Analytical method, kit, and apparatus Download PDF

Info

Publication number
US20010006775A1
US20010006775A1 US09/171,617 US17161798A US2001006775A1 US 20010006775 A1 US20010006775 A1 US 20010006775A1 US 17161798 A US17161798 A US 17161798A US 2001006775 A1 US2001006775 A1 US 2001006775A1
Authority
US
United States
Prior art keywords
species
ligand
bond
nucleic acid
binding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/171,617
Other versions
US6448001B2 (en
Inventor
Yuichi Oku
Yoshitatsu Tanaka
Yoko Otsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissui Pharmacetuical Co Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to NISSUI PHARMACEUTICAL CO., LTD. reassignment NISSUI PHARMACEUTICAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OKU, YUICHI, OTSUKA, YOKO, TANAKA, YOSHITATSU
Publication of US20010006775A1 publication Critical patent/US20010006775A1/en
Application granted granted Critical
Publication of US6448001B2 publication Critical patent/US6448001B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54353Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals with ligand attached to the carrier via a chemical coupling agent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements

Definitions

  • the present invention relates to an assay method for assaying an analyte as a biological assay subject or for detecting the presence or absence thereof, which is useful for simple clinical diagnosis, and a kit and an assay device to be used for the method; more specifically, the present invention relates to an assay method for assaying a great number of combinations of one or more species of analytes contained in a fluid sample or the presence or absence thereof, and a kit and an assay device therefor.
  • immunochromatography a method comprising a combination of immune reaction and chromatography (abbreviated as “immunochromatography” herein below) has been developed in recent years.
  • immunochromatography a method comprising a combination of immune reaction and chromatography
  • the following zones are arranged; a loading zone for loading a fluid sample containing an analyte, to be arranged at one end of a developing element in the form of porous sheet such as nitrocellulose film, a water absorption zone for receiving the fluid transferred through capillary phenomenon in the developing element, to be arranged at the other end, a sealing zone containing a marker-labeled immune substance, to be arranged on a side close to the loading zone between the water absorption zone and the loading zone, and a detection zone where an immune substance to bind a complex composed of the analyte and the labeled substance is immobilized, the zone being arranged on a side apart from the loading zone.
  • a fluid sample containing an analyte to be assayed is firstly loaded on the loading zone, and the fluid sample is then transferred through capillary phenomenon to the sealing zone containing a marker-labeled immune substance.
  • the marker-labeled immune substance and the analyte are bound together through immunological affinity, to form a marker-labeled immunocomplex.
  • the marker-labeled immunocomplex is developed and transferred, through capillary phenomenon and/or diffusion in the developing element, to the detection zone, where an immune substance immobilized in the detection zone captures the complex.
  • the marker in the marker-labeled immunocomplex captured in the detection zone is assayed or detected, whereby the amount or presence of the analyte contained in the fluid sample can be assayed.
  • the method is characteristic in that no rinsing procedure is required during an intermediate stage of assaying and the assay can be done under naked eyes, never essentially requiring any device to detect the marker, and in that the reagent contained in the assay device is kept at dry state so they can be stored at ambient temperature for a long term.
  • a doctor can instantly examine a sample collected by himself, and hence, the doctor can inclusively take account of clinical conditions of a patient and the immunological test results of the patient, to diagnose the patient in a short time. Accordingly, the loss of timing in the treatment will be less, advantageously.
  • the Japanese Patent No. 2504923 describes an immunochromatography essentially the same as the prior art immunochromatography, suggesting an analysis by a sandwich method wherein a complex captured in a detection zone is a marker-labeled receptor-analyte-receptor as well as simultaneous detection of a first analyte and a second analyte, having different biological affinities from each other.
  • the publication does not suggest that the marker-labeled immunocomplex is captured through the complementary binding between the bases of nucleic acids in a detection zone or the applicability of the method to two or more analytes or the assay sensitivity thereof.
  • immunoassay methods can yield higher sensitivity when a large amount of immunochemically active substances can be immobilized, and in that case, the methods can detect the same levels of immunochemically active substances for a shorter time.
  • a more highly sensitive assay technique in the field of immunochromatography has been desired.
  • a first aspect of the assay method of the present invention is an assay method by means of a kit, wherein a reagent and an assay device are separately arranged.
  • the assay method is an assay method for assaying the amounts of one or more species of analytes present in a fluid sample or detecting the presence or absence thereof, comprising:
  • Another embodiment of the assay method of the present invention is a method by means of an assay device integrally containing a reagent.
  • the assay method is an assay method for assaying the amounts of one or more species of analytes present in a fluid sample or detecting the presence or absence thereof, comprising:
  • reagent components including one or more species of marker-labeled ligands each produced by binding a marker to a first ligand specifically reactive to a specific analyte species, and one or more species of bond element-labeled ligands each produced by binding a bond element consisting of nucleic acids with a predetermined base sequence depending on the analyte species, to a second ligand specifically reactive to the specific analyte species;
  • the assay kit of the present invention is an assay kit for assaying one or more species of analytes in a sample or detecting the presence or absence thereof in a sample, the assay kit comprising a reagent and an assay device of a separate type from the reagent, wherein the reagent includes one or more species of marker-labeled ligands each produced by binding a marker to a first ligand specifically reactive to a specific analyte species, and one or more species of bond element-labeled ligands each produced by binding a bond element consisting of nucleic acids with a predetermined base sequence depending on the specific analyte species, to a second ligand specifically reactive to the specific analyte species; and
  • the assay device includes a developing element in a sheet form
  • the developing element can develop analytes, reagent and analytes bound to the reagent through capillary phenomenon, and one or more species of anti-bond elements comprising a nucleic acid with a base sequence complementary to a bond element contained in the separate reagent are independently each kind immobilized in the detection zone of the developing element, whereby a complex of each analyte species is captured through the complementary binding between the bond element and an anti-bond element in the detection zone, thereby forming an independent band.
  • the assay device of the present invention characteristically is an assay device contained in the assay kit.
  • the assay device of the present invention is an assay device for assaying one or more species of analytes present in a sample or detecting the presence or absence thereof in the sample, wherein the assay device includes
  • a developing element in a sheet form being capable of developing analytes, reagent and analytes bound to the reagent;
  • a loading zone to receive a fluid sample from outside, the loading zone being positioned at one end of the developing element in a sheet form and capable of receiving a fluid sample from outside and having a sufficient feeding potency to transfer the received fluid sample to the other end to supply the fluid sample to be analyzed to a sealing zone sealing therein the reagent components;
  • a sealing zone sealing therein reagent components including one or more species of marker-labeled ligands each produced by binding a marker to a first ligand specifically reactive to a specific analyte species, and one or more species of bond element-labeled ligands each produced by binding a bond element consisting of nucleic acids with a predetermined base sequence depending on the analyte species, to a second ligand specifically reactive to the specific analyte species, the sealing zone being arranged at a position close to the loading zone;
  • a detection zone positioned between the sealing zone and the water absorption zone, where one or more species of anti-bond elements each with a base sequence complementary to one bond element are immobilized, whereby a complex formed from a marker-labeled ligand, an analyte species and a bond element-labeled ligand, depending on the analyte species, can be captured and detected.
  • one or more species of analytes can be assayed with a single kit or assay device at a high sensitivity.
  • the term “ligand” means a molecule having a biological affinity with an analyte and being capable of specifically reacting with a specific analyte species, to form a pair.
  • first ligand and second ligand may have the same properties or may not have the same properties. If an analyte is an antigen, the first ligand and the second ligand may be antibodies; if an analyte is an antibody, the first ligand and the second ligand may be antigens.
  • Another example of the combination of the analyte and ligands includes a combination of a receptor and ligands capable of binding to the receptor, a combination of a nucleic acid and complementary nucleic acids capable of binding to nucleic acids, a combination of lectin and specific sugars capable of binding to lectin.
  • the term “bond element” means a nucleic acid which does not bind to an analyte but has a reactivity different from those ligands.
  • the term “anti-bond element” means a nucleic acid with a base sequence at least partially complementary to the base sequence of the “bond element”, and the anti-bond element binds to the bond element in a complementary fashion.
  • the combination of the “bond element” and the “anti-bond element” includes nearly infinite numbers of combinations, depending on the base sequences of nucleic acid molecules composing the bond element and the anti-bond element.
  • nucleic acids functioning as the bond element and anti-bond element use may be made of DNA, RNA, oligonucleotide, and polynucleotide, preferably including an oligonucleotide of a length of 10 mer or more to 100 mer or less.
  • the anti-bond elements are bound and immobilized on the developing element in a detection zone.
  • the anti-bond elements are directly immobilized on the developing element, by covalently bonding a nucleic acid as the anti-bond element, through a functional group introduced into 5′ or 3′ terminus of a nucleic acid or introduced into a base of a nucleic acid, to a functional group contained in an insoluble support as the developing element.
  • individually different base sequences are predetermined for the anti-bond elements and are immobilized separately from each other, in the form of zones in the detection zone.
  • nucleic acids as anti-bond elements are bound to avidins or streptoavidins preliminarily bound to an insoluble support as the developing element, whereby nucleic acids can be immobilized on the developing element indirectly.
  • nucleic acids By binding a nucleic acid, through a functional group introduced into 5′ or 3′ terminus of nucleic acid or introduced into a base of the nucleic acid, to a protein and then binding the nucleic acid-bound protein to an insoluble support as the developing element, nucleic acids as an anti-bond element can indirectly be immobilized on the developing element.
  • a reagent component to be used in accordance with the present invention use may be made of “marker-labeled ligand” produced by binding a marker to a first ligand, and “bond element-labeled ligand” produced by binding a bond element consisting of nucleic acids with a predetermined base sequence, depending on the analyte species, to a second ligand.
  • the reagent component can compose a kit to be used in combination with the developing element. Additionally, the reagent component may satisfactorily be retained at a dry state in the sealing zone of the developing element.
  • marker contained in the marker-labeled ligand specifically, use may be made of enzymatically active molecules, digoxigenin, metal colloid, colored latex, colored liposome, nucleic acid, biotin, avidin, fluorescent substance, luminescent substance, radioisotope and the like.
  • coloring is not limited to the deposition of a color which can be discriminated visually, but includes the deposition of fluorescent substances and luminescent substances.
  • the “developing element” is in the form of sheet, and can develop analytes, reagent and analytes bound to the reagent in a chromatographic fashion.
  • the developing element use may be made of porous insoluble supports, more specifically including plastic porous supports, cellulose porous supports and inorganic porous supports; still more specifically, use may be made of cellulose, nitrocellulose, cellulose acetate, nylon, silica or derivatives thereof, all being porous.
  • different materials may be used or used in combination.
  • one face of each of plural zones may be reinforced with the same material as the material on the other face or with a different material from the material on the other face. Additionally, these zones may generally be dry if not used for assay.
  • FIG. 1 schematically depicts one example of the reagent as one component of the assay kit for one or more species of subjective analytes in accordance with the present invention
  • FIG. 2 schematically depicts one example of the assay device as one component of the assay kit in accordance with the present invention
  • FIG. 3 schematically depicts the state of the marker-labeled immunocomplexes captured, depending on the analyte species, by a simple clinical diagnostic method using the assay kit shown in FIGS. 1 and 2;
  • FIG. 4 depicts another embodiment of the assay device of the present invention, which is an assay device integrally including reagent at their dry state;
  • FIG. 5 depicts one example as to how to use the assay device of FIG. 4, wherein the composition of the reagent contained at dry state in sealing zone 18 of the assay device is shown provided that the subjective analytes are antigens A, B and C;
  • FIG. 6 schematically depicts the state of the marker-labeled immunocomplexes captured, depending on the analyte species, by a simple clinical diagnostic method using the assay device shown in FIG. 4;
  • FIG. 7 depicts the principle as to how to capture a nucleic acid as the analyte in the detection zone according to the present invention, wherein the analyte is the nucleic acid containing the oligonucleotides ON 3 and ON 2 in the sequence thereof;
  • FIG. 8 depicts nucleic acids-labeled IgG antibody containing an anti-bond element consisting of nucleic acids introduced into the IgG antibody on an insoluble support in the detection zone as an assay device for detecting an analyte antigen;
  • FIG. 9 depicts the state of sandwich immunocomplexes captured on the detection zone shown in FIG. 8;
  • FIG. 10 depicts nucleic acids 27 immobilized through biotin-avidin reaction, by binding biotinylated nucleic acids produced by introducing a biotin into a nucleic acid onto immobilized avidins produced by immobilizing avidins through physical adsorption onto a detection zone;
  • FIG. 11 depicts immobilized nucleic acids as an embodiment different from the nucleic acids immobilized through the biotin-avidin reaction as shown in FIG. 10, wherein nucleic acids-biotin-avidin complex is bound, through complementary binding of nucleic acids, to the nucleic acids-biotins-avidins complex shown in FIG. 10;
  • FIG. 12 depicts a means for placing a test strip as the assay device of the present invention into a case
  • FIG. 13 depicts an assay device in a strip, as used in Example 5;
  • FIG. 14 depicts an assay device used in Example 8, wherein the cross section of the assay device is shown along the longitudinal direction;
  • FIG. 15 is a side view of the assay device used in Example 8.
  • FIG. 16 depicts an assay device used in Example 8, wherein the upper face view of the assay device is shown.
  • FIG. 1 schematically depicts one example of the reagent as one component of the assay kit for one or more species of subjective analytes in accordance with the present invention, wherein the objective analytes are three species of antigens, namely antigens A, B and C.
  • the objective analytes are three species of antigens, namely antigens A, B and C.
  • all components in the frame are contained in one reagent, and the reagent may be present at dry state or present in a liquid.
  • ⁇ A, ⁇ B and ⁇ C represent antibodies individually against antigens A, B and C, respectively.
  • the antibodies ⁇ A, ⁇ B and ⁇ C are bound with individual markers, so these antibodies serve as marker-labeled antibodies.
  • the markers introduced into the individual antibodies may be the same or different.
  • the reagent composing the assay kit may be at a state of liquid or at dry state.
  • FIG. 2 schematically depicts one example of the assay device as one component of the assay kit in accordance with the present invention, which may be used in combination with the reagent of FIG. 1.
  • 1 represents a developing element comprising a strip piece of porous sheet
  • 2 represents a loading zone arranged at one end of the developing element 1 to absorb a loaded liquid sample and a reagent mixture to supply them to the developing element 1
  • 3 represents an absorption zone capable of receiving analytes, reagent and analytes bound to the reagent, after transferred and diffused in the developing element.
  • detection zone 4 Between the loading zone 2 and the absorption zone 3 is arranged detection zone 4 , wherein first detection zone 5 with immobilized oligonucleotide ON 1 ′ with a complementary base sequence to oligonucleotide ON 1 , second detection zone 6 with immobilized oligonucleotide ON 2 ′ with a complementary sequence to oligonucleotide ON 2 and third detection zone 7 with immobilized oligonucleotide ON 3 ′ with a complementary sequence to oligonucleotide ON 3 are individually formed separately in a stripe pattern.
  • a simple clinical diagnostic method by using the assay kit comprising a combination of the reagent of FIG. 1 and the developing element of FIG. 2 is shown below.
  • the sample is mixed with the reagent in a container, for effecting an immunological affinity reaction.
  • the resulting reaction solution is loaded on the loading zone 2 of the developing element 1 .
  • the reaction solution may satisfactorily be loaded in such a manner that the loading zone 2 is immersed with the reaction solution or the reaction solution is dropwise added into the loading zone 2 or the reaction solution is coated on the zone 2 .
  • the reaction solution contains analytes, reagent and marker-labeled immunocomplexes of the analytes complexed with the reagent.
  • the reaction solution is transferred or diffused through capillary phenomenon in the developing element 1 to the detection zone 4 , where the marker-labeled immunocomplexes are captured through the complementary binding between an immobilized oligonucleotide with a base sequence preliminarily determined on the basis of each analyte species, and an oligonucleotide contained the marker-labeled immunocomplexes.
  • FIG. 3 schematically depicts the state of the marker-labeled immunocomplexes captured, depending on the analyte species, by a simple clinical diagnostic method using the assay kit shown in FIGS. 1 and 2.
  • the first ligand contained in the marker-labeled ligand and the second ligand contained in a nucleic acid-labeled ligand may have the same reactivity or a different reactivity from each other.
  • the combination of the first ligand with the second ligand may be a combination of a monoclonal antibody and a polyclonal antibody, both against the same antigen, a combination of polyclonal antibodies, and a combination of monoclonal antibodies with different binding sites.
  • a mixture of analytes contained in a liquid sample as assay subjects can be assayed, the analyses being independent compounds never belonging to the same category.
  • antigen, antibody and nucleic acid may simultaneously be assayed.
  • antagonistic or nonantagonistic assay methods of a variety of patterns may be applicable, with no specific limitation to the sandwich mode as described above.
  • FIG. 4 depicts another embodiment of the assay device of the present invention, which is an assay device integrally including a reagent at dry state.
  • 11 represents a developing element principally comprising a band piece sheet of a band-like porous sheet and being bonded with a reinforcing sheet if needed;
  • 12 represents a loading zone arranged at one end of the developing element 11 , to absorb a loaded liquid sample, to feed the liquid sample to the sealing zone 18 and the developing element 11 containing the reagent;
  • 13 represents an absorption zone capable of receiving analytes, the reagent and analytes bound with the reagent, after transferred and diffused in the developing element 11 .
  • the difference from the assay device shown in FIG. 2 is that the sealing zone 18 sealing therein reagent components is arranged in close contact between the developing element 11 and the loading zone 12 , so that the liquid sample fed from the loading zone 12 to the sealing zone 18 might be transferred to the developing element 11 .
  • Detection zone 14 is arranged in the developing element 11 between the sealing zone 18 and the absorption zone 13 , wherein first detection zone 15 with immobilized oligonucleotide ON 1 ′ with a complementary base sequence to oligonucleotide ON 1 , second detection zone 16 with immobilized oligonucleotide ON 2 ′ with a complementary sequence to oligonucleotide ON 2 and third detection zone 17 with immobilized oligonucleotide ON 3 ′ with a complementary sequence to oligonucleotide ON 3 are individually formed separately in a stripe pattern.
  • FIG. 5 depicts the composition of the reagent contained at dry state in the sealing zone 18 in that case.
  • the reagent composition of the present embodiment is simply modified as follows; the marker-labeled antibody ⁇ C is marker-labeled antigen C; and oligonucleotide ON 3 -labeled antibody ⁇ C is oligonucleotide ON 3 -labeled antigen C.
  • the antigen A forms a sandwich immunocomplex with the marker-labeled antibody ⁇ A and oligonucleotide ON 1 -labeled antibody ⁇ A, while the analytes are transferred together with the reagent component through capillary phenomenon, to reach the first detection zone 15 for antigen A assay, where the antigen A is captured through the complementary base sequences of oligonucleotides to each other.
  • the antibody C forms a sandwich immunocomplex with the marker-labeled antigen C and oligonucleotide ON 3 -labeled antigen C, to reach the third detection zone 17 , where the antibody C is captured through the complementary base sequences of oligonucleotides to each other. Because antigen B is not present in the liquid sample, no sandwich immunocomplex is formed, and therefore, oligonucleotide ON 2 -labeled antibody ⁇ B is captured, in the second detection zone 16 for antigen B assay. The antigens A and C are assayed or the presence thereof is detected in the markers contained in the sandwich immunocomplexes thus captured on the individual detection zones 15 , 16 and 17 , so that the absence of antigen B is indicated.
  • FIG. 6 schematically depicts the appearance of the marker-labeled immunocomplexes each captured depending on each species of analytes.
  • FIG. 7 depicts the principle as to how to capture nucleic acids in the detection zones in accordance with the present invention.
  • the analyte 43 is a nucleic acid containing oligonucleotides ON 3 and ON 2 in the sequence.
  • the principle may satisfactorily be applicable to the analyte which is a single-stranded nucleic acid or a double-stranded nucleic acid.
  • the anti-bond element 41 immobilized in the detection zone 40 is a nucleic acid containing oligonucleotide ON 1 .
  • the reagent components comprise the marker-labeled ligand 44 and nucleic acid-labeled ligand 42 ;
  • the marker-labeled ligand 44 is a marker-bound nucleic acid with oligonucleotide ON 3 ′ having a complementary base sequence to the base sequence of oligonucleotide ON 3 in the analyte 43 ;
  • a nucleic acid-labeled ligand 42 is a nucleic acid, containing oligonucleotide ON 2 ′ having a complementary base sequence to the base sequence of oligonucleotide ON 2 in the analyte 43 and a bond element oligonucleotide ON 1 ′ having a complementary base sequence to the base sequence of the oligonucleotide ON 1 in the anti-bond element 41 immobilized on the detection zone 40 .
  • an objective nucleic acid analyte is captured, and its binding model is shown in FIG. 7. While the reagent and a liquid sample are developed in the developing element of the assay device of the present invention, the following reactions occur through the interactive reactions of the analyte, the reagent and the immobilized anti-bond element; the complementary binding between oligonucleotide ON 1 in the anti-bond element 41 and oligonucleotide ON 2 ′ in the nucleic acid-labeled ligand 42 , the complementary binding between oligonucleotide ON 2 ′ in the nucleic acid-labeled ligand 42 and oligonucleotide ON 2 in the analyte 43 , and the complementary binding between oligonucleotide ON 3 in the analyte 43 and oligonucleotide ON 3 ′ in the marker-labeled ligand
  • complexes of substances with biological affinity such as immunocomplexes
  • the assay device of the present invention the complementary binding between nucleic acids as bond elements and anti-bond elements to be used for capturing the complexes of substances with biological affinity has a higher degree of agreement at a high stability, which is promoted more strongly than immune reaction.
  • complexes of substances with biological affinity can be bound efficiently to the solid phase.
  • the assay by means of the assay device is more highly sensitive than by conventional immunochromatography.
  • the detection sensitivity can be controlled by means of the sequence of nucleic acid, without any need of the reduction of the amount of an antibody with too low sensitivity which eventually occurs when using an antibody at a high titer, because the reaction of a nucleic acid at a low stability is weaker than immune reaction.
  • Such control can never be realized by conventional immunochromatography.
  • the present invention characteristically can firstly realize the control. When a plurality of items should be determined simultaneously, in particular, individual items have different normal and abnormal ranges, which sometimes demands the modification of the concentration and amount of an antibody. In accordance with the present invention, however, the adjustment can be simplified prominently.
  • nucleic acids serving as anti-bond elements immobilized on the detection zone of the developing element in accordance with the present invention.
  • nucleic acids may satisfactorily be covalently bonded, directly or through an introduced functional group, to a water-insoluble support in the detection zone.
  • Nucleic acids may satisfactorily be bonded covalently, through a nucleic acid actively introduced with a function group or directly or through an introduced functional group, to the water-insoluble support in the detection zone.
  • binding may satisfactorily be done, by interposing a different substance between them.
  • a nucleic acid for example through bonding due to biological affinity or covalent bonding to a substance immobilizable through physical adsorption on the detection zone, for example, the resulting bound product may then be immobilized through physical adsorption on the detection zone.
  • a different substance physically adsorbable onto the detection zone is bonded through the functional group, which is then adsorbed onto the detection zone.
  • protein is a substance physically adsorbable on an insoluble support; for example, SH group is introduced into amino group of the protein, and through the reaction of SH group with maleimide group introduced into 5′ terminus of oligonucleotide, the protein is covalently bonded together, which can be immobilized on the detection zone through such physical adsorption.
  • SH group is introduced into amino group of the protein, and through the reaction of SH group with maleimide group introduced into 5′ terminus of oligonucleotide, the protein is covalently bonded together, which can be immobilized on the detection zone through such physical adsorption.
  • the binding of a different substance to a nucleic acid may be derived from biological affinity other than the covalent bonding described above.
  • Such different substance includes for example protein.
  • the protein include avidin, bovine serum albumin, immunoglobulin and the like.
  • immunoglobulin may have immunological affinity to an analyte, the assay sensitivity can further be enhanced by utilizing the immunological binding with the analyte.
  • FIG. 8 depicts nucleic acid-labeled IgG antibody 19 with an anti-bond element consisting of nucleic acids 20 introduced into the IgG antibody, at an immobilized state on an insoluble support in the detection zone, as an assay device for detecting an antigen which is the analyte.
  • Two nucleic acids 20 , 20 are preliminarily introduced into the nucleic acid-labeled IgG antibody 19 with immunochemical activity, and such nucleic acid-labeled IgG antibody 19 is adsorbed onto the detection zone 14 , where the nucleic acid 20 is at a state immobilized through the IgG antibody.
  • FIG. 9 depicts the state of a sandwich immunocomplex captured on the detection zone 14 shown in FIG. 8.
  • two species of immunocomplexes are captured on the nucleic acid-labeled IgG antibody 19 .
  • One of the complexes is a sandwich immunocomplex formed from antigen 22 as the analyte, nucleic acid-labeled antibody 21 and marker-labeled antibody 23 .
  • the other complex is an immunocomplex formed from the marker-labeled antibody 23 and antigen 22 .
  • the antigen 22 is detected due to the complementary binding between the nucleic acid 24 in the nucleic acid-labeled antibody 21 as a reagent component and the nucleic acid 20 in the nucleic acid-labeled IgG antibody 19 , but additionally, antigen 22 bound through the immunochemically active action of the IgG antibody of itself is also detected.
  • the assay method of the present invention has a higher detection sensitivity.
  • FIG. 10 depicts nucleic acid 27 immobilized through biotin-avidin reaction, by binding a biotinylated nucleic acid produced by introducing biotin 26 into the nucleic acid 27 , onto an immobilized avidin produced by immobilizing avidin through physical adsorption onto detection zone 14 .
  • FIG. 11 depicts an immobilized nucleic acid as an embodiment different from the nucleic acid immobilized through the biotin-avidin reaction as shown in FIG. 10, wherein a nucleic acid-biotin-avidin complex is bound, through complementary nucleic acid binding to the nucleic acid-biotin-avidin complex shown in FIG. 10, to immobilize the nucleic acid. More specifically, the nucleic acid-biotin-avidin complex prepared by the means shown in FIG.
  • a biotinylated nucleic acid produced by introducing biotin 26 into nucleic acid 28 with a complementary base sequence to the sequence of preliminarily immobilized nucleic acid 27 forms a complex together with avidin 25 , to which is then bound a complex containing the nucleic acid 28 , through the complementary binding with the nucleic acid 27 in the aforementioned nucleic acid-biotin-avidin complex, to immobilize the nucleic acid 28 .
  • the nucleic acid-immobilized detection zone recovered by the means shown in FIG. 11 is grown three-dimensionally in the detection zone and can therefore contain more nucleic acids as bond elements than the nucleic acid-immobilizing means shown in the embodiment of FIG. 10, so the zone can capture more immunocomplexes, at the resultant high detection sensitivity.
  • nucleic acid-bound insoluble support can be prepared similarly.
  • the assay device of the present invention may be used singly at a test strip. Also, the test strip can be placed in a case for use. Because blood, serum and plasma collected from patients are highly possibly contaminated with infectious microorganisms, the possibility of infection should be taken into account, when the assay device of the present invention is used singly as a test strip. So as to reduce the problematic infection and handle directly the test strip with hands, the placing and handling of the test strip in a plastic case and the like is a preferable embodiment.
  • a means shown in FIG. 12 may satisfactorily be used. More specifically, the test strip is preliminarily sealed in a plastic case 29 with two holes, wherein one hole is sample loading hole 30 matched with the loading zone of the test strip while the other hole is detection window 31 in the detection zone where a capturing nucleic acid is bound on the test strip, through which the appearance of the analyte captured can be observed in the detection zone.
  • the test strip placed in the plastic case 29 the possibility of infection through samples over individuals performing microbial laboratory tests can prominently be lowered.
  • preferable plastics as the material of the plastic case 29 include polyethylene, polystyrene, polypropylene, acrylic resin, ethylene vinyl chloride, polyvinylidene fluoride and the like.
  • oligonucleotides each having amino acid at 5′ terminus were individually generated synthetically by using a DNA synthesizer, 391 A, manufactured by Perkin Elmer, Co.
  • oligonucleotides each of 300 nmol were dissolved in 0.1 M MOPS buffer, pH 7.0 containing 1 mM EDTA, to which was added N-hydroxysuccinimide-biotin (30 ⁇ mol; NHS-Biotin manufactured by Pierce, Co.) dissolved in N′,N′-dimethylformamide (referred to as DMF hereinbelow), for reaction at 37°C. for one hour. After the reaction, biotinylated oligonucleotides were separated by ethanol precipitation. Through the procedure, oligonucleotides each with a sequence biotinylated at almost 80 to 90% were recovered.
  • Process 2 Preparation of anti-HBs antibody and anti-CRP antibody
  • Antibody against Type B hepatitis surface antigen (referred to as HBs hereinbelow) was prepared, by immunizing a rabbit or mouse with HBs purchased from Meiji Milk Products Industry K.K. in a routine manner and preparing a polyclonal antibody from the rabbit or a monoclonal antibody through cloning from the mouse.
  • Antibody against C reactive protein (referred to as CRP hereinbelow) was prepared, by immunizing a rabbit or mouse with CRP purchased from Sapporo Laboratory Test Center in a routine manner and preparing a polyclonal antibody from the rabbit or a monoclonal antibody through cloning from the mouse.
  • the individual antibodies were purified into the state of IgG, which was then subjected to the following experiments.
  • Process 3 Preparation of colloidal gold-labeled anti-HBs antibody and colloidal gold-labeled anti-CRP antibody
  • Rabbit polyclonal anti-HBs antibody prepared at the process 2 was labeled with colloidal gold. More specifically, a colloidal gold-labeled rabbit polyclonal anti-HBs antibody was prepared by using colloidal gold of a particle diameter of 10 nm, manufactured by Zaimed, Co. according to the Immunogold method, edited by Yokota et al., Soft Science, 1992. Similarly, the mouse monoclonal anti-CRP antibody was also labeled with colloidal gold.
  • Process 4 Preparation of oligonucleotide-labeled antibody (anti-CRP-IgG labeled with pair 8+, BSA labeled with pair 1 ⁇ , anti-HBs-IgG labeled with pair 1+)
  • the rabbit polyclonal anti-HBs-IgG (10 mg) recovered at the process 2 was dissolved in 0.2M sodium borate buffer, pH 8.5 (2.3 ml), followed by addition of DMF (0.25 ml) with S-acetylmercaptosuccinic anhydride (1.33 mg) dissolved therein, and the resulting mixture was subjected to reaction at 37°C. for one hour. After the reaction, 1M Tris-HCl buffer, pH 7.0 and 1M hydroxylamine, pH 7.0 were individually added at an amount of 0.5 ml each to the resulting reaction mixture, for further reaction at 37°C. for 30 minutes.
  • the absorbance of the resulting fractions was measured at 280 nm and 260 nm, to collect a fraction corresponding to the oligonucleotide-labeled anti-HBs-IgG, which was then concentrated through an ultrafiltration membrane YM-30, manufactured by Millipore, Co.
  • the protein concentration of the collected fractions was assayed by using a protein assay kit (BCA protein assay kit manufactured by Pierce, Co.). It was indicated that the concentration was 2.12 mg/ml.
  • the complex is now abbreviated as “anti-HBs-IgG labeled with pair 1 ⁇ ” hereinbelow.
  • anti-CRP-IgG labeled with pair 8+ produced by introducing the pair 8+ into the mouse monoclonal anti-CRP-IgG recovered at the process 2
  • BSA labeled with pair 1 ⁇ produced by introducing the pair 1 ⁇ into bovine serum albumin (referred to as BSA hereinbelow)
  • anti-HBs-IgG labeled with pair 1+ produced by introducing the pair 1+ into anti-HBs-IgG.
  • the rabbit polyclonal anti-HBs-IgG (12.72 mg) recovered at the process 2 was dissolved in 0.1M sodium acetate buffer, pH 4.5, into which was added pepsin (0.25 mg; Boehringer-Mannheim, Co.) for reaction at 37°C. for 15 hours. After the reaction, the reaction mixture was then loaded to a column of a 1.5-cm diameter and a 45-cm length, preliminarily filled with Ultrogel AcA44 resin manufactured by IBF biotechniqes Co. and equilibrated with 0.1M sodium phosphate buffer, pH 6.0. A fraction corresponding to F(ab′) 2 was collected and concentrated.
  • the pair 1+ oligonucleotide (250 nmol) was dissolved in 0.1M MOPS buffer, pH 7.0 containing 1 mM EDTA, into which was added DMF containing EMCS (7.7 mg), for reaction at 37°C. for one hour.
  • the maleimide group-introduced oligonucleotide was purified through ethanol precipitation and was then dissolved in 0.1M sodium phosphate buffer, pH 6.0 containing 5 mM EDTA.
  • the recovered maleimide group-introduced oligonucleotide was 231 nmol, and it was indicated that 0.73 molecule of maleimide group was introduced per one molecule of the oligonucleotide.
  • the absorbance of the resulting fractions was measured at 280 nm and 260 nm, to collect a fraction corresponding to the oligonucleotide-labeled anti-HBs-Fab′, which was then concentrated through an ultrafiltration membrane YM-30, manufactured by Millipore, Co.
  • the protein concentration of the collected fraction was assayed by using a protein assay kit (BCA protein assay kit manufactured by Pierce, Co.). It was indicated that the concentration was 5.72 mg/ml.
  • the membrane was cut into a piece of a 0.5-cm width and a 5-cm length, and at one end of the piece was fixed a glass filter (manufactured by Whatman, Co.; referred to as GF hereinbelow) with a staple, and storage under dry conditions.
  • GF glass filter
  • HBs antigen was then added to the resulting individual labeled products to a final concentration of 100 ng/ml, 50 ng/ml or 0 ng/ml, and 100 ⁇ l of each of the solutions was divided to a test tube.
  • the (pair ⁇ 1)-bound membrane prepared at the process 6 was rapidly placed into the test tube while keeping the GF upward, to examine the reactivity.
  • the reactivity was verified at the HBs final concentrations of 100 ng/ml and 50 ng/ml. No reactivity was confirmed concerning the control solution with no HBs contained therein (0 ng/ml).
  • a sandwich immunocomplex was formed from (pair 1+)-labeled anti-HBs-IgG, the HBs antigen and colloidal gold-labeled anti-HBs antibody, wherein the pair 1+ in the sandwich immunocomplex and the pair-in the (pair 1 ⁇ )-bound membrane were bound together in a complementary manner, whereby the sandwich immunocomplex was captured on the membrane.
  • Process 1 Preparation of (pair 1+)-labeled avidin and (pair 1 ⁇ )-labeled avidin
  • biotin-labeled pair 1+ (112 nmol) prepared at the process 1 in Example 1 was reacted with avidin (1.52 mg) in MPBS (0.7 ml) at 37°C. for 3 hours, and subsequently, the mixture was loaded to Ultrogel AcA44 resin manufactured by IBF biotechniqes, preliminarily equilibrated with PBS, to recover pair 1+ labeled avidin. By the same method, additionally, pair 1+ labeled avidin was recovered.
  • Process 2 Preparation of oligonucleotide-avidin matrix-bound membrane
  • the (pair 1 ⁇ )-bound SPHF membrane reacted in MPBS containing pair 1+ labeled avidin (1 ⁇ g/ml) and pair 1 ⁇ labeled avidin (2 ⁇ g/ml),at ambient temperature for one hour, to prepare an oligonucleotide-avidin matrix-bound membrane.
  • the membrane was rinsed with distilled water and dried in air. Subsequently, the membrane was cut into a piece of a 0.5-cm width and a 5-cm length, and at one end of the piece was fixed GF with a staple, and storage under dry conditions.
  • the oligonucleotide-avidin matrix-bound membrane prepared at the process 2 in Example 2 was rapidly placed into the test tube while keeping the GF upward, to examine the reactivity. Consequently, the reactivity was verified at the HBs final concentrations of 100 ng/ml, 80 ng/ml, and 60 ng/ml. No reactivity was confirmed at concentrations below 40 ng/ml.
  • Process 1 Preparation of (pair 1 ⁇ )-bound SPHF membrane
  • Process 1 Preparation of [(pair 1 ⁇ )+(anti-HBs-IgG)]-bound SPHF membrane
  • a blocking agent (Block Ace; manufactured by Snow Brand Milk Products, Co.) was effected at ambient temperature for 30 minutes, and subsequently, the resulting membrane was rinced with distilled water and dried in air, to prepare the [(pair 1 ⁇ )+(anti-HBs-IgG)]-bound SPHF membrane.
  • the membrane was cut into a piece of a 0.5-cm width and a 5-cm length, and at one end of the piece was fixed GF with a staple, and storage under dry conditions.
  • Process 2 Capture of sandwich immunocomplex on membrane
  • the [(pair 1 ⁇ )+(anti-HBs-IgG)]-bound SPHF membrane prepared in Example 4 was rapidly placed into the test tube, while keeping the GF upward, to examine the reactivity. Consequently, the reactivity was verified at the HBs final concentrations of 100 ng/ml, 50 ng/ml, 25 ng/ml, 10 ng/ml, 5 ng/ml, and 2.5 ng/ml. No reactivity was confirmed at the concentration 0 ng/ml.
  • FIG. 13 depicts an assay device in a strip shape as used in the Example 5.
  • 109 represents overhead projector film manufactured by Highland, Co. for use as the reinforcing support film in the assay device of the Example 5.
  • SPHF membrane strip 102 adheres, through the whole surface of double-sided tape 107 (manufactured by Nichiban, Co.) except both the ends of the double-sided tape 107 , to the support film 109 , to compose a developing element.
  • the SPHF membrane 102 is prepared at the same process as the process 6 of the Example 1, wherein pair 1 ⁇ is bound at an intermediate position of detection zone 106 .
  • loading zone 101 comprising a filter preliminarily processed with a blocking agent (Block Ace; manufactured by Snow Brand Milk Products, Co.) for blocking, and additionally, sealing zone 105 sealing reagent components is arranged between the loading zone 101 and the developing element and in close contact to the zone and the element, so that a fluid sample loaded might transfer thereon.
  • a blocking agent Block Ace; manufactured by Snow Brand Milk Products, Co.
  • the sealing zone 105 is made of a glass paper sheet (manufactured by Millipore, Co.) preliminarily processed with a blocking agent (Block Ace; manufactured by Snow Brand Milk Products, Co.) for blocking, and the sealing zone 105 sealing therein colloidal gold-labeled rabbit anti-HBs-IgG 103 (0.15 ⁇ g) and (pair 1+)-labeled anti-HBs-IgG 104 at a given amount.
  • the colloidal gold-labeled rabbit anti-HBs-IgG 103 is prepared at the process 3 in the Example 1
  • the (pair 1+)-labeled anti-HBs-IgG 104 is prepared at the process 4 in the Example 1.
  • absorption zone 108 comprising GF.
  • the strip for detecting HBs antigen thus prepared, has a width of 5 mm and a length of 60 mm, and is stored under drying conditions.
  • Nylon membrane (Biodyne C; manufactured by Pall, Co.) was cut into a piece of 5 ⁇ 10 cm, which was then immersed in an EDC solution for 15 minutes and rinsed with distilled water and dried in air, to prepare an activated Biodyne C.
  • EDC solution for 15 minutes and rinsed with distilled water and dried in air.
  • On the activated Biodyne C was drawn a line vertically to the 5-cm side to divide the side in halves, by using a soft pen (manufactured by Platinum Fountain Pen, Co.) impregnated with 20 ⁇ g/ml amino group introduced the pair 1 ⁇ prepared at the process 1 of the Example 1, to bind the pair 1 ⁇ to the Biodyne C.
  • the Biodyne C was rinced with distilled water and blocked with a blocking agent (Block Ace; manufactured by Snow Brand Milk Products, Co.), followed by another rinsing and drying in air. After drying in air, the Biodyne C was cut into a piece of a 0.5-cm width and a 5-cm length with a paper cutter, and GF was fixed on one end. Then, the resulting Biodyne C was stored under drying conditions.
  • a blocking agent Block Ace; manufactured by Snow Brand Milk Products, Co.
  • the (pair 1+)-labeled anti-HBs-IgG prepared at the process 4 of the Example 1 was adjusted to a final concentration of 1.54 ⁇ g/ml and colloidal gold prepared at the process 3 of the Example 1 was adjusted to an absorbance at 520 nm of 0.5, by using MPBS.
  • HBs antigen To the loading zone of the assay device for detecting HBs antigen, as constructed at the process of the present Example 6, was added HBs antigen to a final concentration of 20 ⁇ g/ml or 0 ng/ml. 100 ⁇ l thereof was divided in a test tube. The (pair 1 ⁇ )-bound Biodyne C prepared at the process of the Example 6 was rapidly placed while keeping the GF upward, to examine the reactivity. Consequently, the reactivity was confirmed at the HBs final concentration of 20 ⁇ g/ml. No reactivity was confirmed at zero concentration.
  • a line was vertically drawn at a position of 2 cm apart from the other end by using a soft pen (manufactured by Platinum Fountain Pen, Co.) impregnated with the biotin-labeled pair 8 ⁇ , to bind the biotin-labeled pair 8 ⁇ to the avidin-bound SPHF membrane.
  • a soft pen manufactured by Platinum Fountain Pen, Co.
  • the membrane was blocking processed with a blocking agent (Block Ace; manufactured by Snow Brand Milk Products, Co.) at ambient temperature for 30 minutes, and was then rinced with distilled water and subsequently dried in air.
  • the membrane was cut into a piece of a 0.5-cm width and a 5-cm length, and then, GF manufactured by Whatman, Co. was fixed on one end with a staple. The resulting membrane was stored under drying conditions for use as the assay device in Example 7.
  • the sample containing only the HBs antigen was colored only at the binding region of pair 1 ⁇ .
  • the sample containing only the CRP antigen was colored only at the binding region of pair 8+. Additionally, the sample never containing any of the antigens was never colored at any of the binding regions of pair 1 ⁇ and pair 8+.
  • FIGS. 14 to 16 depict the assay device used in the present Example 8; FIG. 14 depicts the cross sectional view along the longitudinal direction of the assay device; FIG. 15 depicts the side view; and FIG. 16 depicts the upper face view.
  • 201 represents plastic case, composed of upper case 202 and lower case 203 .
  • the strip assay device constructed in the Example 5 was arranged in the lower case 203 , over which the upper case 202 was placed integrally.
  • Sample loading opening 204 and detection window 205 are opened at the positions of the upper cases 202 , corresponding to the loading zone and detection zone of the strip assay device.
  • the present Comparative Example 1 is for comparing the detection sensitivity of the conventional method wherein antibodies are immobilized as bond elements on a detection zone, with the detection sensitivity of the present invention.
  • the membrane After drying in air, the membrane was cut into a piece of a 0.5-cm width and a 5-cm length, and at one end of the piece was fixed GF with a staple, for storage under dry conditions.
  • the resulting piece was defined as the assay device of the Comparative Example 1.
  • a rabbit anti-HBs-IgG was at a concentration above 0.2 mg/ml, nonspecific reaction was enhanced. Hence, rabbit anti-HBs-IgG at 0.2 mg/ml was used.
  • the detection sensitivity of the conventional method was assessed at the following experiments. More specifically, a test solution was prepared so that colloidal gold prepared at the process 3 in the Example 1 might be at absorbance of 0.5 at 520 nm. To the resulting solution was added HBs antigen to a final concentration of 100 ng/ml, 50 ng/ml, 25 ng/ml, 10 ng/ml, 5 ng/ml, 2.5 ng/ml or 0 ng/ml.
  • the detection sensitivity of the method in accordance with the present invention was alternatively assessed at the following experiments. More specifically, a test solution was prepared by using MPBS, so that the (pair 1+)-labeled anti-HBs-Fab′ might be at a concentration of 1.54 ⁇ g/ml and colloidal gold prepared at the process 3 of the Example 1 might be at absorbance at 520 nm of 0.5. To the resulting solution was added HBs antigen to a final concentration of 100 ng/ml, 50 ng/ml, 25 ng/ml, 10 ng/ml, 5 ng/ml, 2.5 ng/ml or 0 ng/ml.
  • the assay device comprising nucleic acids as the bond element and anti-bond element in accordance with the present invention has a detection sensitivity 4-fold that of the conventional immunochemically active substances as a bond element and an anti-bond element.
  • the complementary binding between nucleic acids as an immobilized anti-bond element and nucleic acids as a bond element contained in a generated complex is a highly stable reaction with a high base agreement ratio and can be promoted more strongly than immune reaction, so that biological substance complexes with high affinity can effectively be bound to the solid phase.
  • nucleic acids as the anti-bond elements through high molecular substances such as protein, nucleic acids of smaller molecules than that of protein can be bound to protein and nucleic acids molecules (anti-bond elements) of a larger number than the number of protein molecules can be bound. Therefore, a larger number of biological substance complexes with high affinity, including analytes, can be captured, which realizes high sensitivity than that of conventional immunochromatography.
  • a complex generated through the reaction of an analyte with a marker-labeled first ligand and nucleic acids-labeled ligand is transferred by chromatography and captured in the detection zone to assay the amount thereof or detect the presence thereof, wherein one or more species of analytes to an almost infinite number of analytes can be assayed or detected by forming individual zones corresponding to individual species of analytes because the analytes can be captured through the complementary binding between the immobilized nucleic acids and the nucleic acids contained in the generated complex.
  • the detection sensitivity of analytes to be assayed or to be detected can be controlled in a simple manner, by modifying the agreement ratio of the complementary bases between the individual nucleic acids in the complementary binding of the immobilized nucleic acids and the nucleic acids contained in the generated complex.
  • Such feature is specifically advantageous for simultaneous determination of a plurality of items requiring that the normal ranges and abnormal ranges of individual items differ from each other, which essentially requires the modification of the concentrations and amounts of antibodies.

Abstract

Providing an assay method capable of simultaneously determining the presence or absence of one or more species of biological substances or assaying the amounts thereof with a single assay device, a kit therefor and an assay device thereof. The amount thereof or the presence thereof is detected, by putting a liquid sample containing one or more species of analytes in contact to a reagent including one or more species of marker-labeled ligands and one or more species of nucleic acid-labeled ligands, to generate one or more species of complexes, developing the generated one or more species of complexes through capillary phenomenon in developing element 11 in a sheet form, capturing the complexes through complementary nucleic acid binding onto anti-bond elements consisting of nucleic acids on detection zones 15, 16 and 17 formed depending on each of one or more species of nucleic acids immobilized on the detection zone 14, thereby capturing a complex depending on the analyte species, through the complementary binding between the anti-bond element and the bond element, to form an independent band and to assay the amount or the presence on the detection part.

Description

    TECHNICAL FIELD
  • The present invention relates to an assay method for assaying an analyte as a biological assay subject or for detecting the presence or absence thereof, which is useful for simple clinical diagnosis, and a kit and an assay device to be used for the method; more specifically, the present invention relates to an assay method for assaying a great number of combinations of one or more species of analytes contained in a fluid sample or the presence or absence thereof, and a kit and an assay device therefor. [0001]
  • BACKGROUND ART
  • For determining the disease affecting a patient at a laboratory test, several types of laboratory test results should collectively be examined. In general, patients should undergo several types of such tests for appropriate diagnosis and therapeutic treatment. However, one laboratory reagent can assay or detect one item in most cases in the prior art, so the sample volume drawn from a patient is increased in proportion to the number of tests, which works as one of physical burdens over the patient. [0002]
  • Alternatively, it is required to carry out conventional immunological tests by using automatic assay devices, so the sample drawn from a patient is delivered to an institute equipped with such automatic assay devices, where the tests are conducted, and then, the test results are reported to the doctor. In such manner, the doctor can make diagnosis based on the results and the clinical conditions of the patient. Therefore, such device works as one cause to lose the timing for treatment because the doctor cannot make a decision instantly. [0003]
  • So as to overcome such problem, a method comprising a combination of immune reaction and chromatography (abbreviated as “immunochromatography” herein below) has been developed in recent years. The standard principle of conventional immunochromatography will now be described below. [0004]
  • In the assay device to be used for the conventional immunochromatography, the following zones are arranged; a loading zone for loading a fluid sample containing an analyte, to be arranged at one end of a developing element in the form of porous sheet such as nitrocellulose film, a water absorption zone for receiving the fluid transferred through capillary phenomenon in the developing element, to be arranged at the other end, a sealing zone containing a marker-labeled immune substance, to be arranged on a side close to the loading zone between the water absorption zone and the loading zone, and a detection zone where an immune substance to bind a complex composed of the analyte and the labeled substance is immobilized, the zone being arranged on a side apart from the loading zone. [0005]
  • By the assay method by using such assay device, a fluid sample containing an analyte to be assayed is firstly loaded on the loading zone, and the fluid sample is then transferred through capillary phenomenon to the sealing zone containing a marker-labeled immune substance. In the sealing zone, the marker-labeled immune substance and the analyte are bound together through immunological affinity, to form a marker-labeled immunocomplex. The marker-labeled immunocomplex is developed and transferred, through capillary phenomenon and/or diffusion in the developing element, to the detection zone, where an immune substance immobilized in the detection zone captures the complex. The marker in the marker-labeled immunocomplex captured in the detection zone is assayed or detected, whereby the amount or presence of the analyte contained in the fluid sample can be assayed. [0006]
  • Compared with enzyme immunoassay as one of assay methods of immunochemical active substances, the method is characteristic in that no rinsing procedure is required during an intermediate stage of assaying and the assay can be done under naked eyes, never essentially requiring any device to detect the marker, and in that the reagent contained in the assay device is kept at dry state so they can be stored at ambient temperature for a long term. According to the conventional immunochromatography, a doctor can instantly examine a sample collected by himself, and hence, the doctor can inclusively take account of clinical conditions of a patient and the immunological test results of the patient, to diagnose the patient in a short time. Accordingly, the loss of timing in the treatment will be less, advantageously. [0007]
  • A number of patents have been laid open concerning immunochromatography. For example, the immunochromatography described in Japanese Patent Publication No. Hei 7-13640 is essentially the same as the prior art immunochromatography described above, characterized in that a ligand bound to an insoluble vesicle marker is used and the insoluble vesicle marker is colored liposome, colored polymer bead, or metal or polymer dye particle. However, the publication does not include any description about the simultaneous assay or detection of one or more species of biological substances such as antigen or antibody. [0008]
  • The Japanese Patent No. 2504923 describes an immunochromatography essentially the same as the prior art immunochromatography, suggesting an analysis by a sandwich method wherein a complex captured in a detection zone is a marker-labeled receptor-analyte-receptor as well as simultaneous detection of a first analyte and a second analyte, having different biological affinities from each other. However, the publication does not suggest that the marker-labeled immunocomplex is captured through the complementary binding between the bases of nucleic acids in a detection zone or the applicability of the method to two or more analytes or the assay sensitivity thereof. [0009]
  • Alternatively, immunoassay methods can yield higher sensitivity when a large amount of immunochemically active substances can be immobilized, and in that case, the methods can detect the same levels of immunochemically active substances for a shorter time. Hence, a more highly sensitive assay technique in the field of immunochromatography has been desired. [0010]
  • It is thus an object of the present invention to provide an assay method useful for clinical diagnosis, which can simultaneously assay one or more species of biological substances or detect the presence or absence thereof, at a higher sensitivity, by means of a single assay device in a simple fashion, and a kit and an assay device for the assay. [0011]
  • DISCLOSURE OF INVENTION
  • A first aspect of the assay method of the present invention is an assay method by means of a kit, wherein a reagent and an assay device are separately arranged. The assay method is an assay method for assaying the amounts of one or more species of analytes present in a fluid sample or detecting the presence or absence thereof, comprising: [0012]
  • (1) putting a fluid sample containing one or more species of analytes in contact to a reagent containing one or more species of marker-labeled ligands each produced by binding a marker to a first ligand, and one or more species of bond element-labeled ligands each produced by binding a bond element consisting of nucleic acids with a predetermined base sequence depending on the analyte species, to a second ligand, to generate one or more species of specific complexes each composed of a specific analyte species, a specific marker-labeled ligand species specifically binding to the specific analyte species, and a specific bond element-labeled ligand species specifically binding to the specific analyte species; [0013]
  • (2) developing one or more species of generated complexes through capillary phenomenon in a developing element in a sheet form; [0014]
  • (3) capturing a complex depending on the analyte species, through the complementary binding between the bond element and an anti-bond element, in the detection zone produced by immobilizing independently anti-bond elements consisting of nucleic acids each having a complementary sequence to the base sequence of one bond element species in the complexes, thereby forming an independent band; and [0015]
  • (4) assaying or detecting the marker formed in the band in the detection zone. [0016]
  • Another embodiment of the assay method of the present invention is a method by means of an assay device integrally containing a reagent. The assay method is an assay method for assaying the amounts of one or more species of analytes present in a fluid sample or detecting the presence or absence thereof, comprising: [0017]
  • (1) loading a fluid sample containing one or more species of analytes on a developing element in a sheet form, thereby developing the fluid sample through capillary phenomenon in the developing element; [0018]
  • (2) transferring the fluid sample to put the sample in contact to a sealing zone sealing therein reagent components including one or more species of marker-labeled ligands each produced by binding a marker to a first ligand specifically reactive to a specific analyte species, and one or more species of bond element-labeled ligands each produced by binding a bond element consisting of nucleic acids with a predetermined base sequence depending on the analyte species, to a second ligand specifically reactive to the specific analyte species; [0019]
  • (3) developing one or more species of specific complexes each composed of a specific analyte species, a specific marker-labeled ligand species specifically binding to the specific analyte species, and a specific bond element-labeled ligand species specifically binding to the specific analyte species, or developing a reaction product under way of formation, through capillary phenomenon in the developing element; [0020]
  • (4) capturing complex depending on the analyte species through complementary binding between the bond element and an anti-bond element and forming an independent band therefor in a detection zone where each anti-bond element species having the complementary base sequence to the sequence of one bond element species in the complex is immobilized; and [0021]
  • (5) assaying or detecting the marker contained in the band formed in the detection zone. [0022]
  • The assay kit of the present invention is an assay kit for assaying one or more species of analytes in a sample or detecting the presence or absence thereof in a sample, the assay kit comprising a reagent and an assay device of a separate type from the reagent, wherein the reagent includes one or more species of marker-labeled ligands each produced by binding a marker to a first ligand specifically reactive to a specific analyte species, and one or more species of bond element-labeled ligands each produced by binding a bond element consisting of nucleic acids with a predetermined base sequence depending on the specific analyte species, to a second ligand specifically reactive to the specific analyte species; and [0023]
  • wherein the assay device includes a developing element in a sheet form, the developing element can develop analytes, reagent and analytes bound to the reagent through capillary phenomenon, and one or more species of anti-bond elements comprising a nucleic acid with a base sequence complementary to a bond element contained in the separate reagent are independently each kind immobilized in the detection zone of the developing element, whereby a complex of each analyte species is captured through the complementary binding between the bond element and an anti-bond element in the detection zone, thereby forming an independent band. [0024]
  • The assay device of the present invention characteristically is an assay device contained in the assay kit. [0025]
  • Furthermore, the assay device of the present invention is an assay device for assaying one or more species of analytes present in a sample or detecting the presence or absence thereof in the sample, wherein the assay device includes [0026]
  • (1) a developing element in a sheet form, being capable of developing analytes, reagent and analytes bound to the reagent; [0027]
  • (2) a loading zone to receive a fluid sample from outside, the loading zone being positioned at one end of the developing element in a sheet form and capable of receiving a fluid sample from outside and having a sufficient feeding potency to transfer the received fluid sample to the other end to supply the fluid sample to be analyzed to a sealing zone sealing therein the reagent components; [0028]
  • (3) a sealing zone sealing therein reagent components including one or more species of marker-labeled ligands each produced by binding a marker to a first ligand specifically reactive to a specific analyte species, and one or more species of bond element-labeled ligands each produced by binding a bond element consisting of nucleic acids with a predetermined base sequence depending on the analyte species, to a second ligand specifically reactive to the specific analyte species, the sealing zone being arranged at a position close to the loading zone; [0029]
  • (4) a water absorption zone arranged at a position apart from the loading zone, the zone being capable of receiving the analytes, reagent and analytes bound to the reagent, after diffusion in the developing element; and [0030]
  • (5) a detection zone positioned between the sealing zone and the water absorption zone, where one or more species of anti-bond elements each with a base sequence complementary to one bond element are immobilized, whereby a complex formed from a marker-labeled ligand, an analyte species and a bond element-labeled ligand, depending on the analyte species, can be captured and detected. [0031]
  • In accordance with the present invention, one or more species of analytes can be assayed with a single kit or assay device at a high sensitivity. [0032]
  • In accordance with the present invention, the term “ligand” means a molecule having a biological affinity with an analyte and being capable of specifically reacting with a specific analyte species, to form a pair. In accordance with the present invention, the term “first ligand” and “second ligand” may have the same properties or may not have the same properties. If an analyte is an antigen, the first ligand and the second ligand may be antibodies; if an analyte is an antibody, the first ligand and the second ligand may be antigens. Another example of the combination of the analyte and ligands includes a combination of a receptor and ligands capable of binding to the receptor, a combination of a nucleic acid and complementary nucleic acids capable of binding to nucleic acids, a combination of lectin and specific sugars capable of binding to lectin. [0033]
  • In accordance with the present invention, the term “bond element” means a nucleic acid which does not bind to an analyte but has a reactivity different from those ligands. In accordance with the present invention, the term “anti-bond element” means a nucleic acid with a base sequence at least partially complementary to the base sequence of the “bond element”, and the anti-bond element binds to the bond element in a complementary fashion. The combination of the “bond element” and the “anti-bond element” includes nearly infinite numbers of combinations, depending on the base sequences of nucleic acid molecules composing the bond element and the anti-bond element. From the respect of the complementary binding between the bond element and the anti-bond element, individual base sequences may satisfactorily be partially complementary or completely complementary to each other. As the nucleic acids functioning as the bond element and anti-bond element, use may be made of DNA, RNA, oligonucleotide, and polynucleotide, preferably including an oligonucleotide of a length of 10 mer or more to 100 mer or less. [0034]
  • Directly or indirectly through a substance, the anti-bond elements are bound and immobilized on the developing element in a detection zone. For example, the anti-bond elements are directly immobilized on the developing element, by covalently bonding a nucleic acid as the anti-bond element, through a functional group introduced into 5′ or 3′ terminus of a nucleic acid or introduced into a base of a nucleic acid, to a functional group contained in an insoluble support as the developing element. Depending on the one or more species of analytes to be assayed, individually different base sequences are predetermined for the anti-bond elements and are immobilized separately from each other, in the form of zones in the detection zone. [0035]
  • Through biotin introduced into 5′ or 3′ terminus of a nucleic acid or through biotin introduced into a nucleotide composing a nucleic acid, nucleic acids as anti-bond elements are bound to avidins or streptoavidins preliminarily bound to an insoluble support as the developing element, whereby nucleic acids can be immobilized on the developing element indirectly. By binding a nucleic acid, through a functional group introduced into 5′ or 3′ terminus of nucleic acid or introduced into a base of the nucleic acid, to a protein and then binding the nucleic acid-bound protein to an insoluble support as the developing element, nucleic acids as an anti-bond element can indirectly be immobilized on the developing element. [0036]
  • As a reagent component to be used in accordance with the present invention, use may be made of “marker-labeled ligand” produced by binding a marker to a first ligand, and “bond element-labeled ligand” produced by binding a bond element consisting of nucleic acids with a predetermined base sequence, depending on the analyte species, to a second ligand. Separately from the developing element, the reagent component can compose a kit to be used in combination with the developing element. Additionally, the reagent component may satisfactorily be retained at a dry state in the sealing zone of the developing element. [0037]
  • As a marker contained in the marker-labeled ligand, specifically, use may be made of enzymatically active molecules, digoxigenin, metal colloid, colored latex, colored liposome, nucleic acid, biotin, avidin, fluorescent substance, luminescent substance, radioisotope and the like. Herein, the meaning of the term “coloring” is not limited to the deposition of a color which can be discriminated visually, but includes the deposition of fluorescent substances and luminescent substances. [0038]
  • In accordance with the present invention, the “developing element” is in the form of sheet, and can develop analytes, reagent and analytes bound to the reagent in a chromatographic fashion. Preferably as the developing element, use may be made of porous insoluble supports, more specifically including plastic porous supports, cellulose porous supports and inorganic porous supports; still more specifically, use may be made of cellulose, nitrocellulose, cellulose acetate, nylon, silica or derivatives thereof, all being porous. In the individual multiple zones formed on the developing element, different materials may be used or used in combination. In some case, one face of each of plural zones may be reinforced with the same material as the material on the other face or with a different material from the material on the other face. Additionally, these zones may generally be dry if not used for assay. [0039]
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 schematically depicts one example of the reagent as one component of the assay kit for one or more species of subjective analytes in accordance with the present invention; [0040]
  • FIG. 2 schematically depicts one example of the assay device as one component of the assay kit in accordance with the present invention; [0041]
  • FIG. 3 schematically depicts the state of the marker-labeled immunocomplexes captured, depending on the analyte species, by a simple clinical diagnostic method using the assay kit shown in FIGS. 1 and 2; [0042]
  • FIG. 4 depicts another embodiment of the assay device of the present invention, which is an assay device integrally including reagent at their dry state; [0043]
  • FIG. 5 depicts one example as to how to use the assay device of FIG. 4, wherein the composition of the reagent contained at dry state in sealing [0044] zone 18 of the assay device is shown provided that the subjective analytes are antigens A, B and C;
  • FIG. 6 schematically depicts the state of the marker-labeled immunocomplexes captured, depending on the analyte species, by a simple clinical diagnostic method using the assay device shown in FIG. 4; [0045]
  • FIG. 7 depicts the principle as to how to capture a nucleic acid as the analyte in the detection zone according to the present invention, wherein the analyte is the nucleic acid containing the oligonucleotides ON[0046] 3 and ON2 in the sequence thereof;
  • FIG. 8 depicts nucleic acids-labeled IgG antibody containing an anti-bond element consisting of nucleic acids introduced into the IgG antibody on an insoluble support in the detection zone as an assay device for detecting an analyte antigen; [0047]
  • FIG. 9 depicts the state of sandwich immunocomplexes captured on the detection zone shown in FIG. 8; [0048]
  • FIG. 10 depicts [0049] nucleic acids 27 immobilized through biotin-avidin reaction, by binding biotinylated nucleic acids produced by introducing a biotin into a nucleic acid onto immobilized avidins produced by immobilizing avidins through physical adsorption onto a detection zone;
  • FIG. 11 depicts immobilized nucleic acids as an embodiment different from the nucleic acids immobilized through the biotin-avidin reaction as shown in FIG. 10, wherein nucleic acids-biotin-avidin complex is bound, through complementary binding of nucleic acids, to the nucleic acids-biotins-avidins complex shown in FIG. 10; [0050]
  • FIG. 12 depicts a means for placing a test strip as the assay device of the present invention into a case; [0051]
  • FIG. 13 depicts an assay device in a strip, as used in Example 5; [0052]
  • FIG. 14 depicts an assay device used in Example 8, wherein the cross section of the assay device is shown along the longitudinal direction; [0053]
  • FIG. 15 is a side view of the assay device used in Example 8; and [0054]
  • FIG. 16 depicts an assay device used in Example 8, wherein the upper face view of the assay device is shown. [0055]
  • BEST MODE OF CARRYING OUT THE INVENTION
  • FIG. 1 schematically depicts one example of the reagent as one component of the assay kit for one or more species of subjective analytes in accordance with the present invention, wherein the objective analytes are three species of antigens, namely antigens A, B and C. In FIG. 1, all components in the frame are contained in one reagent, and the reagent may be present at dry state or present in a liquid. In FIG. 1, αA, αB and αC represent antibodies individually against antigens A, B and C, respectively. The antibodies αA, αB and αC are bound with individual markers, so these antibodies serve as marker-labeled antibodies. The markers introduced into the individual antibodies may be the same or different. Three species of antibodies, namely αA, αB and αC, bound with oligonucleotides ON[0056] 1, ON2 and ON3, having different sequences from each other, are contained in the reagent, and these three are defined as antibodies-oligonucleotides-bound products. The reagent composing the assay kit may be at a state of liquid or at dry state.
  • FIG. 2 schematically depicts one example of the assay device as one component of the assay kit in accordance with the present invention, which may be used in combination with the reagent of FIG. 1. In FIG. 2, 1 represents a developing element comprising a strip piece of porous sheet; [0057] 2 represents a loading zone arranged at one end of the developing element 1 to absorb a loaded liquid sample and a reagent mixture to supply them to the developing element 1; 3 represents an absorption zone capable of receiving analytes, reagent and analytes bound to the reagent, after transferred and diffused in the developing element. Between the loading zone 2 and the absorption zone 3 is arranged detection zone 4, wherein first detection zone 5 with immobilized oligonucleotide ON1′ with a complementary base sequence to oligonucleotide ON1, second detection zone 6 with immobilized oligonucleotide ON2′ with a complementary sequence to oligonucleotide ON2 and third detection zone 7 with immobilized oligonucleotide ON3′ with a complementary sequence to oligonucleotide ON3 are individually formed separately in a stripe pattern.
  • A simple clinical diagnostic method by using the assay kit comprising a combination of the reagent of FIG. 1 and the developing element of FIG. 2 is shown below. By using a liquid sample containing antigens A, B and C as analytes, the sample is mixed with the reagent in a container, for effecting an immunological affinity reaction. The resulting reaction solution is loaded on the [0058] loading zone 2 of the developing element 1. The reaction solution may satisfactorily be loaded in such a manner that the loading zone 2 is immersed with the reaction solution or the reaction solution is dropwise added into the loading zone 2 or the reaction solution is coated on the zone 2. The reaction solution contains analytes, reagent and marker-labeled immunocomplexes of the analytes complexed with the reagent. The reaction solution is transferred or diffused through capillary phenomenon in the developing element 1 to the detection zone 4, where the marker-labeled immunocomplexes are captured through the complementary binding between an immobilized oligonucleotide with a base sequence preliminarily determined on the basis of each analyte species, and an oligonucleotide contained the marker-labeled immunocomplexes.
  • FIG. 3 schematically depicts the state of the marker-labeled immunocomplexes captured, depending on the analyte species, by a simple clinical diagnostic method using the assay kit shown in FIGS. 1 and 2. [0059]
  • As the reagent components of the present invention, the first ligand contained in the marker-labeled ligand and the second ligand contained in a nucleic acid-labeled ligand may have the same reactivity or a different reactivity from each other. Additionally, the combination of the first ligand with the second ligand may be a combination of a monoclonal antibody and a polyclonal antibody, both against the same antigen, a combination of polyclonal antibodies, and a combination of monoclonal antibodies with different binding sites. [0060]
  • In accordance with the present invention, a mixture of analytes contained in a liquid sample as assay subjects can be assayed, the analyses being independent compounds never belonging to the same category. For example, antigen, antibody and nucleic acid may simultaneously be assayed. In accordance with the present invention, additionally, antagonistic or nonantagonistic assay methods of a variety of patterns may be applicable, with no specific limitation to the sandwich mode as described above. [0061]
  • Because a nearly infinite number of base sequences may be available as the base sequence composing nucleic acid, an infinite number of analytes are detectable in the detection zone. [0062]
  • FIG. 4 depicts another embodiment of the assay device of the present invention, which is an assay device integrally including a reagent at dry state. In the assay device of FIG. 4, 11 represents a developing element principally comprising a band piece sheet of a band-like porous sheet and being bonded with a reinforcing sheet if needed; [0063] 12 represents a loading zone arranged at one end of the developing element 11, to absorb a loaded liquid sample, to feed the liquid sample to the sealing zone 18 and the developing element 11 containing the reagent; 13 represents an absorption zone capable of receiving analytes, the reagent and analytes bound with the reagent, after transferred and diffused in the developing element 11. The difference from the assay device shown in FIG. 2 is that the sealing zone 18 sealing therein reagent components is arranged in close contact between the developing element 11 and the loading zone 12, so that the liquid sample fed from the loading zone 12 to the sealing zone 18 might be transferred to the developing element 11.
  • [0064] Detection zone 14 is arranged in the developing element 11 between the sealing zone 18 and the absorption zone 13, wherein first detection zone 15 with immobilized oligonucleotide ON1′ with a complementary base sequence to oligonucleotide ON1, second detection zone 16 with immobilized oligonucleotide ON2′ with a complementary sequence to oligonucleotide ON2 and third detection zone 17 with immobilized oligonucleotide ON3′ with a complementary sequence to oligonucleotide ON3 are individually formed separately in a stripe pattern.
  • As an example as to how to use the assay device of FIG. 4, a case is described wherein a liquid sample to be assayed actually contains only antigen A and antibody C, provided that the subjective analytes are antigens A and B and antibody C. FIG. 5 depicts the composition of the reagent contained at dry state in the sealing [0065] zone 18 in that case. Compared with the reagent composition of FIG. 1, the reagent composition of the present embodiment is simply modified as follows; the marker-labeled antibody αC is marker-labeled antigen C; and oligonucleotide ON3-labeled antibody αC is oligonucleotide ON3-labeled antigen C.
  • When a liquid sample containing the analytes antigens A and C is loaded on the [0066] loading zone 12, the antigen A forms a sandwich immunocomplex with the marker-labeled antibody αA and oligonucleotide ON1-labeled antibody αA, while the analytes are transferred together with the reagent component through capillary phenomenon, to reach the first detection zone 15 for antigen A assay, where the antigen A is captured through the complementary base sequences of oligonucleotides to each other. The antibody C forms a sandwich immunocomplex with the marker-labeled antigen C and oligonucleotide ON3-labeled antigen C, to reach the third detection zone 17, where the antibody C is captured through the complementary base sequences of oligonucleotides to each other. Because antigen B is not present in the liquid sample, no sandwich immunocomplex is formed, and therefore, oligonucleotide ON2-labeled antibody αB is captured, in the second detection zone 16 for antigen B assay. The antigens A and C are assayed or the presence thereof is detected in the markers contained in the sandwich immunocomplexes thus captured on the individual detection zones 15, 16 and 17, so that the absence of antigen B is indicated. FIG. 6 schematically depicts the appearance of the marker-labeled immunocomplexes each captured depending on each species of analytes.
  • FIG. 7 depicts the principle as to how to capture nucleic acids in the detection zones in accordance with the present invention. In FIG. 7, the [0067] analyte 43 is a nucleic acid containing oligonucleotides ON3 and ON2 in the sequence. The principle may satisfactorily be applicable to the analyte which is a single-stranded nucleic acid or a double-stranded nucleic acid. The anti-bond element 41 immobilized in the detection zone 40 is a nucleic acid containing oligonucleotide ON1. The reagent components comprise the marker-labeled ligand 44 and nucleic acid-labeled ligand 42; the marker-labeled ligand 44 is a marker-bound nucleic acid with oligonucleotide ON3′ having a complementary base sequence to the base sequence of oligonucleotide ON3 in the analyte 43; A nucleic acid-labeled ligand 42 is a nucleic acid, containing oligonucleotide ON2′ having a complementary base sequence to the base sequence of oligonucleotide ON2 in the analyte 43 and a bond element oligonucleotide ON1′ having a complementary base sequence to the base sequence of the oligonucleotide ON1 in the anti-bond element 41 immobilized on the detection zone 40.
  • By using the assay kit or assay device containing such reagent in accordance with the present invention, an objective nucleic acid analyte is captured, and its binding model is shown in FIG. 7. While the reagent and a liquid sample are developed in the developing element of the assay device of the present invention, the following reactions occur through the interactive reactions of the analyte, the reagent and the immobilized anti-bond element; the complementary binding between oligonucleotide ON[0068] 1 in the anti-bond element 41 and oligonucleotide ON2′ in the nucleic acid-labeled ligand 42, the complementary binding between oligonucleotide ON2′ in the nucleic acid-labeled ligand 42 and oligonucleotide ON2 in the analyte 43, and the complementary binding between oligonucleotide ON3 in the analyte 43 and oligonucleotide ON3′ in the marker-labeled ligand 44. Then, a complex containing the maker and analyte 43 is captured on the anti-bond element to 41.
  • According to the assay method of the present invention, complexes of substances with biological affinity, such as immunocomplexes, are generated, prior to loading on the assay device or at an early stage after loading. By the assay device of the present invention, the complementary binding between nucleic acids as bond elements and anti-bond elements to be used for capturing the complexes of substances with biological affinity has a higher degree of agreement at a high stability, which is promoted more strongly than immune reaction. Hence, such complexes of substances with biological affinity can be bound efficiently to the solid phase. Thus, the assay by means of the assay device is more highly sensitive than by conventional immunochromatography. [0069]
  • When a combination between a nucleic acid and a nucleic acid with a low agreement of complementary binding is selected, on contrast, the detection sensitivity can be controlled by means of the sequence of nucleic acid, without any need of the reduction of the amount of an antibody with too low sensitivity which eventually occurs when using an antibody at a high titer, because the reaction of a nucleic acid at a low stability is weaker than immune reaction. Such control can never be realized by conventional immunochromatography. The present invention characteristically can firstly realize the control. When a plurality of items should be determined simultaneously, in particular, individual items have different normal and abnormal ranges, which sometimes demands the modification of the concentration and amount of an antibody. In accordance with the present invention, however, the adjustment can be simplified prominently. [0070]
  • Various methods may be applicable as the immobilizing means of nucleic acids serving as anti-bond elements immobilized on the detection zone of the developing element in accordance with the present invention. At 5′ or 3′ terminus of a nucleic acid as an anti-bond element, or at the position of an appropriate functional group in nucleic acids except the termini, nucleic acids may satisfactorily be covalently bonded, directly or through an introduced functional group, to a water-insoluble support in the detection zone. Nucleic acids may satisfactorily be bonded covalently, through a nucleic acid actively introduced with a function group or directly or through an introduced functional group, to the water-insoluble support in the detection zone. [0071]
  • As another immobilizing means of nucleic acids in the detection zone, binding may satisfactorily be done, by interposing a different substance between them. By preliminarily binding a nucleic acid, for example through bonding due to biological affinity or covalent bonding to a substance immobilizable through physical adsorption on the detection zone, for example, the resulting bound product may then be immobilized through physical adsorption on the detection zone. At 5′ or 3′ terminus of nucleotide or at the position of an appropriate functional group introduced into an appropriate position of nucleotide, for example, a different substance physically adsorbable onto the detection zone is bonded through the functional group, which is then adsorbed onto the detection zone. For example, protein is a substance physically adsorbable on an insoluble support; for example, SH group is introduced into amino group of the protein, and through the reaction of SH group with maleimide group introduced into 5′ terminus of oligonucleotide, the protein is covalently bonded together, which can be immobilized on the detection zone through such physical adsorption. [0072]
  • The binding of a different substance to a nucleic acid may be derived from biological affinity other than the covalent bonding described above. Such different substance includes for example protein. Examples of the protein include avidin, bovine serum albumin, immunoglobulin and the like. When immunoglobulin may have immunological affinity to an analyte, the assay sensitivity can further be enhanced by utilizing the immunological binding with the analyte. [0073]
  • FIG. 8 depicts nucleic acid-labeled [0074] IgG antibody 19 with an anti-bond element consisting of nucleic acids 20 introduced into the IgG antibody, at an immobilized state on an insoluble support in the detection zone, as an assay device for detecting an antigen which is the analyte. Two nucleic acids 20, 20 are preliminarily introduced into the nucleic acid-labeled IgG antibody 19 with immunochemical activity, and such nucleic acid-labeled IgG antibody 19 is adsorbed onto the detection zone 14, where the nucleic acid 20 is at a state immobilized through the IgG antibody.
  • FIG. 9 depicts the state of a sandwich immunocomplex captured on the [0075] detection zone 14 shown in FIG. 8. In FIG. 9, two species of immunocomplexes are captured on the nucleic acid-labeled IgG antibody 19. One of the complexes is a sandwich immunocomplex formed from antigen 22 as the analyte, nucleic acid-labeled antibody 21 and marker-labeled antibody 23. The other complex is an immunocomplex formed from the marker-labeled antibody 23 and antigen 22.
  • More specifically, by immobilizing the nucleic acid-labeled [0076] IgG antibody 19 introduced with nucleic acid 20 into the detection zone 14 in FIG. 9, the antigen 22 is detected due to the complementary binding between the nucleic acid 24 in the nucleic acid-labeled antibody 21 as a reagent component and the nucleic acid 20 in the nucleic acid-labeled IgG antibody 19, but additionally, antigen 22 bound through the immunochemically active action of the IgG antibody of itself is also detected.
  • According to the conventional method, only two molecules of an assay subject can be bound to one molecule of an immobilized immunochemically active substance; in various embodiments of the present invention, however, more molecules of an antigen as an assay subject can be bound than by the assay by the conventional method, so that more labeling markers can be bound. Than the detection sensitivity by the conventional assay method, therefore, the assay method of the present invention has a higher detection sensitivity. [0077]
  • FIG. 10 depicts [0078] nucleic acid 27 immobilized through biotin-avidin reaction, by binding a biotinylated nucleic acid produced by introducing biotin 26 into the nucleic acid 27, onto an immobilized avidin produced by immobilizing avidin through physical adsorption onto detection zone 14.
  • FIG. 11 depicts an immobilized nucleic acid as an embodiment different from the nucleic acid immobilized through the biotin-avidin reaction as shown in FIG. 10, wherein a nucleic acid-biotin-avidin complex is bound, through complementary nucleic acid binding to the nucleic acid-biotin-avidin complex shown in FIG. 10, to immobilize the nucleic acid. More specifically, the nucleic acid-biotin-avidin complex prepared by the means shown in FIG. 10 is preliminarily bound to the detection zone, and then, a biotinylated nucleic acid produced by introducing [0079] biotin 26 into nucleic acid 28 with a complementary base sequence to the sequence of preliminarily immobilized nucleic acid 27 forms a complex together with avidin 25, to which is then bound a complex containing the nucleic acid 28, through the complementary binding with the nucleic acid 27 in the aforementioned nucleic acid-biotin-avidin complex, to immobilize the nucleic acid 28.
  • The nucleic acid-immobilized detection zone recovered by the means shown in FIG. 11 is grown three-dimensionally in the detection zone and can therefore contain more nucleic acids as bond elements than the nucleic acid-immobilizing means shown in the embodiment of FIG. 10, so the zone can capture more immunocomplexes, at the resultant high detection sensitivity. [0080]
  • By using streptoavidin in place of avidin used in the two types of embodiments, a nucleic acid-bound insoluble support can be prepared similarly. By the above manner, the assay device of the present invention can be recovered. [0081]
  • The assay device of the present invention may be used singly at a test strip. Also, the test strip can be placed in a case for use. Because blood, serum and plasma collected from patients are highly possibly contaminated with infectious microorganisms, the possibility of infection should be taken into account, when the assay device of the present invention is used singly as a test strip. So as to reduce the problematic infection and handle directly the test strip with hands, the placing and handling of the test strip in a plastic case and the like is a preferable embodiment. [0082]
  • As a means for placing the test strip in a case, for example, a means shown in FIG. 12 may satisfactorily be used. More specifically, the test strip is preliminarily sealed in a [0083] plastic case 29 with two holes, wherein one hole is sample loading hole 30 matched with the loading zone of the test strip while the other hole is detection window 31 in the detection zone where a capturing nucleic acid is bound on the test strip, through which the appearance of the analyte captured can be observed in the detection zone. By means of the test strip placed in the plastic case 29, the possibility of infection through samples over individuals performing microbial laboratory tests can prominently be lowered. Examples of preferable plastics as the material of the plastic case 29 include polyethylene, polystyrene, polypropylene, acrylic resin, ethylene vinyl chloride, polyvinylidene fluoride and the like.
  • The present invention will now be described in detail in the following examples. [0084]
  • EXAMPLE 1
  • Process 1: Preparation of biotinylated oligonucleotide [0085]
  • As shown below, oligonucleotides each having amino acid at 5′ terminus were individually generated synthetically by using a DNA synthesizer, 391 A, manufactured by Perkin Elmer, Co. [0086]
  • Amino group—GAA TTC CCG GGG ATC CGT CG [0087]
  • (referred to as [0088] pair 1+ hereinafter)
  • Amino group—CGA CGG ATC CCC GGG AAT TTC [0089]
  • (referred to as [0090] pair 1− hereinafter)
  • Amino group—AAC GGA ATC TAA TCA GGA GG [0091]
  • (referred to as pair 8+ hereinafter) [0092]
  • Amino group—CCT CCT GAT TAG ATT CCG TT [0093]
  • (referred to as pair 8− hereinafter). [0094]
  • These oligonucleotides each of 300 nmol were dissolved in 0.1 M MOPS buffer, pH 7.0 containing 1 mM EDTA, to which was added N-hydroxysuccinimide-biotin (30 μmol; NHS-Biotin manufactured by Pierce, Co.) dissolved in N′,N′-dimethylformamide (referred to as DMF hereinbelow), for reaction at 37°C. for one hour. After the reaction, biotinylated oligonucleotides were separated by ethanol precipitation. Through the procedure, oligonucleotides each with a sequence biotinylated at almost 80 to 90% were recovered. [0095]
  • Process 2: Preparation of anti-HBs antibody and anti-CRP antibody [0096]
  • Antibody against Type B hepatitis surface antigen (referred to as HBs hereinbelow) was prepared, by immunizing a rabbit or mouse with HBs purchased from Meiji Milk Products Industry K.K. in a routine manner and preparing a polyclonal antibody from the rabbit or a monoclonal antibody through cloning from the mouse. Antibody against C reactive protein (referred to as CRP hereinbelow) was prepared, by immunizing a rabbit or mouse with CRP purchased from Sapporo Laboratory Test Center in a routine manner and preparing a polyclonal antibody from the rabbit or a monoclonal antibody through cloning from the mouse. The individual antibodies were purified into the state of IgG, which was then subjected to the following experiments. [0097]
  • Process 3: Preparation of colloidal gold-labeled anti-HBs antibody and colloidal gold-labeled anti-CRP antibody [0098]
  • Rabbit polyclonal anti-HBs antibody prepared at the [0099] process 2 was labeled with colloidal gold. More specifically, a colloidal gold-labeled rabbit polyclonal anti-HBs antibody was prepared by using colloidal gold of a particle diameter of 10 nm, manufactured by Zaimed, Co. according to the Immunogold method, edited by Yokota et al., Soft Science, 1992. Similarly, the mouse monoclonal anti-CRP antibody was also labeled with colloidal gold.
  • Process 4: Preparation of oligonucleotide-labeled antibody (anti-CRP-IgG labeled with pair 8+, BSA labeled with [0100] pair 1−, anti-HBs-IgG labeled with pair 1+)
  • The rabbit polyclonal anti-HBs-IgG (10 mg) recovered at the [0101] process 2 was dissolved in 0.2M sodium borate buffer, pH 8.5 (2.3 ml), followed by addition of DMF (0.25 ml) with S-acetylmercaptosuccinic anhydride (1.33 mg) dissolved therein, and the resulting mixture was subjected to reaction at 37°C. for one hour. After the reaction, 1M Tris-HCl buffer, pH 7.0 and 1M hydroxylamine, pH 7.0 were individually added at an amount of 0.5 ml each to the resulting reaction mixture, for further reaction at 37°C. for 30 minutes.
  • Subsequently, the resulting solution was loaded to a column of a 1-cm diameter and a 45-cm length, preliminarily filled with Sephadex G-25 manufactured by Pharmacia, Co. and equilibrated with 0.1M sodium phosphate buffer, pH 6.0 containing 5 mM EDTA, to recover sulfhydryl group introduced anti-HBs-IgG. Yield of sulfhydryl group introduced anti-HBs-IgG was 9.74 mg. According to the method by Y. Oku et al. (Microbiol. Immunol., 32, 807-816, 1988), the sulfhydryl group was determined. It was confirmed that 2.84 molecules of sulfhydryl group were introduced per one molecule of IgG. [0102]
  • Alternatively, DMF (300 μl) with N-(ε-maleimidecaproyloxy)succinimide (referred to EMCS hereinbelow; 10 mg) dissolved therein was added to 0.1M 3-morpholinopropane sulfonic acid (referred to as MOPS hereinbelow) buffer containing 303 [0103] nmol pair 1−, pH 7.0 (0.8 ml), for reaction at 37°C. for 30 minutes. After the reaction, a maleimide group-introduced oligonucleotide was purified by ethanol precipitation. The oligonucleotide was recovered at a yield of 225 nmol. It was confirmed by the determination of the maleimide group that 1.2 molecules of maleimide group was introduced into one molecule of the oligonucleotide.
  • By subsequently mixing the recovered sulfhydryl group-introduced anti-HBs-IgG with the maleimide group—introduced oligonucleotide and reacting them together at 37°C. for one hour, the resulting mixture was loaded to a column of a 1.5-cm diameter and a 45-cm length, preliminarily equilibrated with 0.1M sodium phosphate buffer, pH 6.0 containing 5 mM EDTA. The absorbance of the resulting fractions was measured at 280 nm and 260 nm, to collect a fraction corresponding to the oligonucleotide-labeled anti-HBs-IgG, which was then concentrated through an ultrafiltration membrane YM-30, manufactured by Millipore, Co. [0104]
  • The protein concentration of the collected fractions was assayed by using a protein assay kit (BCA protein assay kit manufactured by Pierce, Co.). It was indicated that the concentration was 2.12 mg/ml. The complex is now abbreviated as “anti-HBs-IgG labeled with [0105] pair 1−” hereinbelow.
  • By the same method as described above, the following labeled products were prepared; anti-CRP-IgG labeled with pair 8+, produced by introducing the pair 8+ into the mouse monoclonal anti-CRP-IgG recovered at the [0106] process 2; BSA labeled with pair 1−, produced by introducing the pair 1− into bovine serum albumin (referred to as BSA hereinbelow); and anti-HBs-IgG labeled with pair 1+, produced by introducing the pair 1+ into anti-HBs-IgG.
  • Process 5: Preparation of oligonucleotide-labeled anti-HBs-Fab′ [0107]
  • The rabbit polyclonal anti-HBs-IgG (12.72 mg) recovered at the [0108] process 2 was dissolved in 0.1M sodium acetate buffer, pH 4.5, into which was added pepsin (0.25 mg; Boehringer-Mannheim, Co.) for reaction at 37°C. for 15 hours. After the reaction, the reaction mixture was then loaded to a column of a 1.5-cm diameter and a 45-cm length, preliminarily filled with Ultrogel AcA44 resin manufactured by IBF biotechniqes Co. and equilibrated with 0.1M sodium phosphate buffer, pH 6.0. A fraction corresponding to F(ab′)2 was collected and concentrated. Into 4.94 mg of the resulting F(ab′)2 was added mercaptoethylamine to a final concentration of 10 mM, for reaction at 37° C. for 90 minutes. After the reaction, the mixture was loaded to a column of a 1.0-cm diameter and a 45-cm length, preliminarily filled with Sephadex G-25 and equilibrated with 0.1M sodium phosphate buffer, pH 6.0. A fraction corresponding to the Fab′ with exposed sulfhydryl group at the hinge part was collected and then concentrated with YM-30, to recover sulfhydryl group-introduced Fab′. Fab′ (3.3 mg) was recovered. Furthermore, the sulfhydryl group was determined. It was indicated that 1.12 molecules of the sulfhydryl group was introduced per one molecule of Fab′.
  • Alternatively, the [0109] pair 1+ oligonucleotide (250 nmol) was dissolved in 0.1M MOPS buffer, pH 7.0 containing 1 mM EDTA, into which was added DMF containing EMCS (7.7 mg), for reaction at 37°C. for one hour. The maleimide group-introduced oligonucleotide was purified through ethanol precipitation and was then dissolved in 0.1M sodium phosphate buffer, pH 6.0 containing 5 mM EDTA. The recovered maleimide group-introduced oligonucleotide was 231 nmol, and it was indicated that 0.73 molecule of maleimide group was introduced per one molecule of the oligonucleotide.
  • The resulting sulfhydryl group-introduced Fab′ and maleimide group-introduced oligonucleotide were mixed together, for reaction at 37°C. for one hour, and after the reaction, the mixture was loaded to a column of a 1.5-cm diameter and a 45-cm length, preliminarily filled with Ultrogel ACA44 and equilibrated with 0.1M sodium phosphate buffer, pH 6.0 containing 5 mM EDTA. The absorbance of the resulting fractions was measured at 280 nm and 260 nm, to collect a fraction corresponding to the oligonucleotide-labeled anti-HBs-Fab′, which was then concentrated through an ultrafiltration membrane YM-30, manufactured by Millipore, Co. The protein concentration of the collected fraction was assayed by using a protein assay kit (BCA protein assay kit manufactured by Pierce, Co.). It was indicated that the concentration was 5.72 mg/ml. [0110]
  • Process 6: Preparation of ([0111] pair 1−)-bound membrane
  • 10 mg of Avidin was dissolved in phosphate buffered physiological saline (20 ml; PBS(−) manufactured by Nissui Pharmaceuticals, Co. Ltd.), and then, a membrane cut into a piece of 5×10 cm (SPHF membrane, manufactured by Millipore, Co.) was immersed in the solution at ambient temperature for one hour and was then rinced with distilled water. After rinsing, the membrane piece was dried in air. By using a soft pen (manufactured by Platinum Fountain Pen Co.) impregnated with 258 nmol/ml biotin-labeled [0112] pair 1− prepared at the process 1, a line was drawn vertically to the 5-cm side to divide the side in halves, to bind the biotin-labeled pair 1− to the avidin-bound SPHF membrane. After drying in air, blocking by means of a blocking agent (Block Ace manufactured by Snow Brand Milk Products, Co.) was effected at ambient temperature for 30 minutes, and subsequently, the resulting membrane was rinced with distilled water and dried in air, to prepare the (pair 1−)-bound membrane. Subsequently, the membrane was cut into a piece of a 0.5-cm width and a 5-cm length, and at one end of the piece was fixed a glass filter (manufactured by Whatman, Co.; referred to as GF hereinbelow) with a staple, and storage under dry conditions.
  • Process 7: Capture of sandwich immunocomplex on membrane [0113]
  • By using a solution of phosphate buffered physiological saline (manufactured by Nissui Pharmaceuticals Co.; PBS(−)) with addition of 0.1% BSA and 0.35 M sodium chloride (referred to as MPBS hereinbelow), ([0114] pair 1+)-labeled anti-HBs-IgG as prepared at the process 4 was adjusted to a final concentration of 1.54 μg/ml; and colloidal gold prepared at the process 3 (colloidal gold-labeled anti-HBs antibody) was adjusted to an absorbance at 520 nm of 0.5. HBs antigen was then added to the resulting individual labeled products to a final concentration of 100 ng/ml, 50 ng/ml or 0 ng/ml, and 100 μl of each of the solutions was divided to a test tube. The (pair −1)-bound membrane prepared at the process 6 was rapidly placed into the test tube while keeping the GF upward, to examine the reactivity. The reactivity was verified at the HBs final concentrations of 100 ng/ml and 50 ng/ml. No reactivity was confirmed concerning the control solution with no HBs contained therein (0 ng/ml). The results indicate that a sandwich immunocomplex was formed from (pair 1+)-labeled anti-HBs-IgG, the HBs antigen and colloidal gold-labeled anti-HBs antibody, wherein the pair 1+ in the sandwich immunocomplex and the pair-in the (pair 1−)-bound membrane were bound together in a complementary manner, whereby the sandwich immunocomplex was captured on the membrane.
  • EXAMPLE 2
  • Process 1: Preparation of ([0115] pair 1+)-labeled avidin and (pair 1−)-labeled avidin
  • The biotin-labeled [0116] pair 1+ (112 nmol) prepared at the process 1 in Example 1 was reacted with avidin (1.52 mg) in MPBS (0.7 ml) at 37°C. for 3 hours, and subsequently, the mixture was loaded to Ultrogel AcA44 resin manufactured by IBF biotechniqes, preliminarily equilibrated with PBS, to recover pair 1+ labeled avidin. By the same method, additionally, pair 1+ labeled avidin was recovered.
  • Process 2: Preparation of oligonucleotide-avidin matrix-bound membrane [0117]
  • Avidin (10 mg) was dissolved in phosphate buffered physiological saline (manufactured by Nissui Pharmaceuticals, Co. PBS (−)),and then, membrane cut into a piece of 5×10 cm (SPHF membrane, manufactured by Millipore, Co.) was immersed in the solution at ambient temperature for one hour and was then rinsed with distilled water. After rinsing, the membrane piece was dried in air. By using a soft pen (manufactured by Platinum Fountain Pen Co.) impregnated with 258 nmol/ml biotin-labeled [0118] pair 1− prepared at the process 1, a line was drawn vertically to the 5-cm side to divide the side in halves, to bind the biotin-labeled pair 1− to the avidin-bound SPHF membrane. After drying in air, blocking by means of a blocking agent (Block Ace manufactured by Snow Brand Milk Products, Co.) was effected at ambient temperature for 30 minutes, and subsequently, the resulting membrane was rinsed with distilled water and dried in air, to prepare the (pair 1−)-bound SPHF membrane. The (pair 1−)-bound SPHF membrane reacted in MPBS containing pair 1+ labeled avidin (1 μg/ml) and pair 1−labeled avidin (2 μg/ml),at ambient temperature for one hour, to prepare an oligonucleotide-avidin matrix-bound membrane. The membrane was rinsed with distilled water and dried in air. Subsequently, the membrane was cut into a piece of a 0.5-cm width and a 5-cm length, and at one end of the piece was fixed GF with a staple, and storage under dry conditions.
  • Process 3: Capture of sandwich immunocomplex on membrane [0119]
  • By using MPBS, ([0120] pair 1+)-labeled anti-HBs-IgG as prepared at the process 4 in Example 1 was adjusted to a final concentration of 1.54 μg/ml and colloidal gold-labeled anti-HBs antibody as prepared at the process 3 in Example 1 was adjusted to an absorbance at 520 nm of 0.5. HBs antigen was then added to the resulting individual labeled products to a final concentration of 100 ng/ml, 80 ng/ml, 60 ng/ml, 40 ng/ml, 20 ng/ml, 0 ng/ml, and 100 μl of each of the solutions was divided to a test tube. The oligonucleotide-avidin matrix-bound membrane prepared at the process 2 in Example 2 was rapidly placed into the test tube while keeping the GF upward, to examine the reactivity. Consequently, the reactivity was verified at the HBs final concentrations of 100 ng/ml, 80 ng/ml, and 60 ng/ml. No reactivity was confirmed at concentrations below 40 ng/ml.
  • EXAMPLE 3
  • Process 1: Preparation of ([0121] pair 1−)-bound SPHF membrane
  • By using a soft pen (manufactured by Platinum Fountain Pen Co.) impregnated with 2 mg/ml ([0122] pair 1−)-labeled BSA as prepared at the process 4 in Example 1, a line was drawn vertically to the 5-cm side of a membrane cut into a size of 5×10 cm (SPHF membrane; manufactured by Millipore, Co.), to divide the side in halves, to bind the BSA through physical adsorption to the membrane. After drying in air, blocking by means of a blocking agent (Block Ace; manufactured by Snow Brand Milk Products, Co.) was effected at ambient temperature for 30 minutes, and subsequently, the resulting membrane was rinsed with distilled water and dried in air, to prepare (pair 1−)-bound SPHF membrane. After drying the membrane in air, the membrane was cut into a piece of a 0.5-cm width and a 5-cm length, and at one end of the piece was fixed GF with a staple, and storage under dry conditions.
  • Process 2: Capture of sandwich immunocomplex on membrane [0123]
  • By using MPBS, ([0124] pair 1+)-labeled anti-HBs-IgG as prepared at the process 4 in Example 1 was adjusted to a final concentration of 1.54 μg/ml and colloidal gold-labeled anti-HBs antibody as prepared at the process 3 in Example 1 was adjusted to an absorbance at 520 nm of 0.5. HBs antigen was then added to the resulting individual labeled products to a final concentration of 100 ng/ml, 50 ng/ml, 25 ng/ml, 10 ng/ml, 5 ng/ml or 0 ng/ml, and 100 μl of each of the solutions was divided to a test tube. (Pair 1−)-bound SPHF membrane prepared at the process 1 in Example 3 was rapidly placed into the test tube, while keeping the GF upward, to examine the reactivity. Consequently, the reactivity was verified at the HBs final concentrations of 100 ng/ml, 50 ng/ml, 25 ng/ml, 10 ng/ml and 5 ng/ml. No reactivity was confirmed at concentrations at 0 ng/ml.
  • EXAMPLE 4
  • Process 1: Preparation of [([0125] pair 1−)+(anti-HBs-IgG)]-bound SPHF membrane
  • By using a soft pen (manufactured by Platinum Fountain Pen Co.) impregnated with 0.5 mg/ml ([0126] pair 1−)-labeled anti-HBs-IgG as prepared at the process 4 in Example 1, a line was drawn vertically to the 5-cm side of a membrane cut into a size of 5×10 cm (SPHF membrane; manufactured by Millipore, Co.), to divide the side in halves, to bind (pair 1−)-labeled anti-HBs-IgG through physical adsorption to the membrane. After drying in air, blocking by means of a blocking agent (Block Ace; manufactured by Snow Brand Milk Products, Co.) was effected at ambient temperature for 30 minutes, and subsequently, the resulting membrane was rinced with distilled water and dried in air, to prepare the [(pair 1−)+(anti-HBs-IgG)]-bound SPHF membrane. After drying the membrane in air, the membrane was cut into a piece of a 0.5-cm width and a 5-cm length, and at one end of the piece was fixed GF with a staple, and storage under dry conditions.
  • Process 2: Capture of sandwich immunocomplex on membrane [0127]
  • By using MPBS, ([0128] pair 1+)-labeled anti-HBs-Fab′ as prepared at the process 5 in Example 1 was adjusted to a final concentration of 1.54 μg/ml and the colloidal gold prepared at the process 3 in Example 1 was adjusted to an absorbance at 520 nm of 0.5. HBs antigen was then added to the resulting individual products to a final concentration of 100 ng/ml, 50 ng/ml, 25 ng/ml, 10 ng/ml, 5 ng/ml, 2.5 ng/ml or 0 ng/ml, and 100 μl of each of the solutions was divided to a test tube. The [(pair 1−)+(anti-HBs-IgG)]-bound SPHF membrane prepared in Example 4 was rapidly placed into the test tube, while keeping the GF upward, to examine the reactivity. Consequently, the reactivity was verified at the HBs final concentrations of 100 ng/ml, 50 ng/ml, 25 ng/ml, 10 ng/ml, 5 ng/ml, and 2.5 ng/ml. No reactivity was confirmed at the concentration 0 ng/ml.
  • EXAMPLE 5
  • Construction of assay device [0129]
  • FIG. 13 depicts an assay device in a strip shape as used in the Example 5. In the strip of FIG. 13, 109 represents overhead projector film manufactured by Highland, Co. for use as the reinforcing support film in the assay device of the Example 5. [0130] SPHF membrane strip 102 adheres, through the whole surface of double-sided tape 107 (manufactured by Nichiban, Co.) except both the ends of the double-sided tape 107, to the support film 109, to compose a developing element. The SPHF membrane 102 is prepared at the same process as the process 6 of the Example 1, wherein pair 1− is bound at an intermediate position of detection zone 106.
  • At one end of the developing element is arranged [0131] loading zone 101 comprising a filter preliminarily processed with a blocking agent (Block Ace; manufactured by Snow Brand Milk Products, Co.) for blocking, and additionally, sealing zone 105 sealing reagent components is arranged between the loading zone 101 and the developing element and in close contact to the zone and the element, so that a fluid sample loaded might transfer thereon. The sealing zone 105 is made of a glass paper sheet (manufactured by Millipore, Co.) preliminarily processed with a blocking agent (Block Ace; manufactured by Snow Brand Milk Products, Co.) for blocking, and the sealing zone 105 sealing therein colloidal gold-labeled rabbit anti-HBs-IgG 103 (0.15 μg) and (pair 1+)-labeled anti-HBs-IgG 104 at a given amount. The colloidal gold-labeled rabbit anti-HBs-IgG 103 is prepared at the process 3 in the Example 1, and the (pair 1+)-labeled anti-HBs-IgG 104 is prepared at the process 4 in the Example 1. On the other end of the developing element is arranged absorption zone 108 comprising GF. The strip for detecting HBs antigen, thus prepared, has a width of 5 mm and a length of 60 mm, and is stored under drying conditions.
  • ANALYSIS EXAMPLE
  • To the [0132] loading zone 101 of the assay device for detecting HBs antigen, as constructed at the process of the present Example 5, was added MPBS (100 μl) adjusted to 100 ng/ml HBs antigen, while to the loading zone 101 of another such assay device for detecting HBs antigen was added MPBS (100 μl) never containing any. Thirty minutes later, the reactivity was assessed on the individual assay devices. Coloring of colloidal gold was observed in the detection zone of the strip with addition of 100 ng/ml HBs antigen, but no coloring was observed on the strip with simple addition of MPBS.
  • EXAMPLE 6
  • Construction of assay device [0133]
  • Nylon membrane (Biodyne C; manufactured by Pall, Co.) was cut into a piece of 5×10 cm, which was then immersed in an EDC solution for 15 minutes and rinsed with distilled water and dried in air, to prepare an activated Biodyne C. On the activated Biodyne C was drawn a line vertically to the 5-cm side to divide the side in halves, by using a soft pen (manufactured by Platinum Fountain Pen, Co.) impregnated with 20 μg/ml amino group introduced the [0134] pair 1− prepared at the process 1 of the Example 1, to bind the pair 1− to the Biodyne C. The Biodyne C was rinced with distilled water and blocked with a blocking agent (Block Ace; manufactured by Snow Brand Milk Products, Co.), followed by another rinsing and drying in air. After drying in air, the Biodyne C was cut into a piece of a 0.5-cm width and a 5-cm length with a paper cutter, and GF was fixed on one end. Then, the resulting Biodyne C was stored under drying conditions.
  • For the assay device for detecting HBs antigen, thus constructed, the ([0135] pair 1+)-labeled anti-HBs-IgG prepared at the process 4 of the Example 1 was adjusted to a final concentration of 1.54 μg/ml and colloidal gold prepared at the process 3 of the Example 1 was adjusted to an absorbance at 520 nm of 0.5, by using MPBS.
  • ANALYSIS EXAMPLE
  • To the loading zone of the assay device for detecting HBs antigen, as constructed at the process of the present Example 6, was added HBs antigen to a final concentration of 20 μg/ml or 0 ng/ml. 100 μl thereof was divided in a test tube. The ([0136] pair 1−)-bound Biodyne C prepared at the process of the Example 6 was rapidly placed while keeping the GF upward, to examine the reactivity. Consequently, the reactivity was confirmed at the HBs final concentration of 20 μg/ml. No reactivity was confirmed at zero concentration.
  • EXAMPLE 7
  • Construction of assay device [0137]
  • SPHF membrane cut into a piece of 5×10 cm was immersed in phosphate buffered physiological saline (20 ml; PBS (−); manufactured by Nissui Pharmaceuticals, Co.) dissolving avidin (10 mg) therein, and the membrane was then rinsed with distilled water. On the membrane rinsed and dried in air was drawn a line at a position of 2 cm apart from one end and vertically to the 5-cm side by using a soft pen (manufactured by Platinum Fountain Pen, Co.) impregnated with the biotin-labeled [0138] pair 1− at a concentration of 258 nmol/l, as prepared at the process 1 of the Example 1, to bind the biotin-labeled pair 1− to the avidin-bound SPHF membrane. Similarly, a line was vertically drawn at a position of 2 cm apart from the other end by using a soft pen (manufactured by Platinum Fountain Pen, Co.) impregnated with the biotin-labeled pair 8−, to bind the biotin-labeled pair 8− to the avidin-bound SPHF membrane. After drying the (pair 8−)-immobilized SPHF membrane generated through biotin-avidin binding in air, the membrane was blocking processed with a blocking agent (Block Ace; manufactured by Snow Brand Milk Products, Co.) at ambient temperature for 30 minutes, and was then rinced with distilled water and subsequently dried in air. After drying in air, the membrane was cut into a piece of a 0.5-cm width and a 5-cm length, and then, GF manufactured by Whatman, Co. was fixed on one end with a staple. The resulting membrane was stored under drying conditions for use as the assay device in Example 7.
  • ANALYSIS EXAMPLE
  • By using MPBS produced by adding 0.1% BSA and 0.35M sodium chloride into phosphate buffered physiological saline (PBS (−); manufactured by Nissui Pharmaceuticals Co.), a test solution was prepared so that the ([0139] pair 1+)-labeled anti-HBs-IgG and (pair 8+)-labeled anti-CRP-IgG, as prepared at the process 4 of the Example 1, might individually be at a final concentration of 1.54 μg/ml; and colloidal gold-labeled anti-HBs-IgG and colloidal gold-labeled anti-CRP-IgG, as prepared at the process 3 of the Example 1, might be at an absorbance at 520 nm of 0.5. Four different samples were prepared, by adding HBs antigen and CRP antigen both at a final concentration of 100 ng/ml into the test solution, adding only HBs antigen at a final concentration of 100 ng/ml into the solution, adding only CRP antigen at a final concentration of 100 ng/ml, and never adding any of the antigens into the test solution. 100 μl each was divided into individual test tubes. The assay device comprising the (pair 8−)-immobilized SPHF membrane prepared at the process of the Example 7 was placed rapidly into the test tubes, while keeping the GF upward, to assess the reactivity. Consequently, the sample containing both the antigens was colored at the binding regions of pair 1− and pair 8+. The sample containing only the HBs antigen was colored only at the binding region of pair 1−. The sample containing only the CRP antigen was colored only at the binding region of pair 8+. Additionally, the sample never containing any of the antigens was never colored at any of the binding regions of pair 1− and pair 8+.
  • EXAMPLE 8
  • Construction of assay device [0140]
  • FIGS. [0141] 14 to 16 depict the assay device used in the present Example 8; FIG. 14 depicts the cross sectional view along the longitudinal direction of the assay device; FIG. 15 depicts the side view; and FIG. 16 depicts the upper face view. In FIGS. 14 to 16, 201 represents plastic case, composed of upper case 202 and lower case 203. The strip assay device constructed in the Example 5 was arranged in the lower case 203, over which the upper case 202 was placed integrally.
  • [0142] Sample loading opening 204 and detection window 205 are opened at the positions of the upper cases 202, corresponding to the loading zone and detection zone of the strip assay device. By arranging the strip assay device constructed in the Example 5 in the case 201, the HBs antigen detecting assay device of the Example 8 was constructed. The device was stored under drying conditions.
  • ANALYSIS EXAMPLE
  • Through the sample loading opening [0143] 204 of the HBs antigen detecting assay device constructed at the process of the Example 8 was added MPBS (100 μl) adjusted to 100 ng/ml HBs antigen, while MPBS (100 μl) never containing any was added into another such HBs, antigen detecting assay device prepared additionally, and 30 minutes later, the reactivity in the detection zone 106 bound with pair 1− was individually observed through the detection window 205. The coloring of colloidal gold was observed in the assay device with addition of 100 ng/ml HBs antigen, but no coloring thereof was observed in the assay device with addition of only MPBS.
  • COMPARATIVE EXAMPLE 1
  • The present Comparative Example 1 is for comparing the detection sensitivity of the conventional method wherein antibodies are immobilized as bond elements on a detection zone, with the detection sensitivity of the present invention. [0144]
  • Construction of assay device [0145]
  • By using a soft pen (manufactured by Platinum Fountain Pen Co.) impregnated with 0.2 mg/ml rabbit anti-HBs-IgG, a line was drawn vertically to the 5-cm side of a membrane cut into a size of 5×10 cm (SPHF membrane; manufactured by Millipore, Co.), to divide the side in halves, to bind the rabbit anti-HBs-IgG through physical adsorption to the SPHF membrane. After drying in air, the membrane was blocked with a blocking agent (Block Ace manufactured by Snow Brand Milk Products, Co.) at ambient temperature for 30 minutes, and subsequently, the resulting membrane was rinced with distilled water, to recover the rabbit anti-HBs-IgG -bound SPHF membrane. After drying in air, the membrane was cut into a piece of a 0.5-cm width and a 5-cm length, and at one end of the piece was fixed GF with a staple, for storage under dry conditions. The resulting piece was defined as the assay device of the Comparative Example 1. When a rabbit anti-HBs-IgG was at a concentration above 0.2 mg/ml, nonspecific reaction was enhanced. Hence, rabbit anti-HBs-IgG at 0.2 mg/ml was used. [0146]
  • ANALYSIS EXAMPLE
  • The detection sensitivity of the conventional method was assessed at the following experiments. More specifically, a test solution was prepared so that colloidal gold prepared at the [0147] process 3 in the Example 1 might be at absorbance of 0.5 at 520 nm. To the resulting solution was added HBs antigen to a final concentration of 100 ng/ml, 50 ng/ml, 25 ng/ml, 10 ng/ml, 5 ng/ml, 2.5 ng/ml or 0 ng/ml.
  • 100 μl of the resulting each reagent-antigen mixture was divided into a test tube. The assay device of the Comparative Example 1, comprising the anti-HBs-IgG-bound SPHF membrane prepared at the process of the Comparative Example 1, was rapidly placed in the test tubes placing therein the mixture solution of the antigen solution and the reagent, as prepared at the process of the Comparative Example 1, while keeping the GF upward. The reactivity was then assessed. Consequently, the reactivity was confirmed at the final HBs concentrations of 100 ng/ml, 50 ng/ml, 25 ng/ml and 10 ng/ml, but no reactivity was confirmed at a concentration below 10 ng/ml. [0148]
  • The detection sensitivity of the method in accordance with the present invention was alternatively assessed at the following experiments. More specifically, a test solution was prepared by using MPBS, so that the ([0149] pair 1+)-labeled anti-HBs-Fab′ might be at a concentration of 1.54 μg/ml and colloidal gold prepared at the process 3 of the Example 1 might be at absorbance at 520 nm of 0.5. To the resulting solution was added HBs antigen to a final concentration of 100 ng/ml, 50 ng/ml, 25 ng/ml, 10 ng/ml, 5 ng/ml, 2.5 ng/ml or 0 ng/ml.
  • 100 μl of the resulting each reagent-antigen mixture was divided into a test tube. The [([0150] pair 1−)+(anti-HBs-IgG)]-bound SPHF membrane prepared in the Example 4, was rapidly placed in the test tubes, while keeping the GF upward. The reactivity was then assessed. Consequently, the reactivity was confirmed at the HBs final concentrations of 100 ng/ml, 50 ng/ml, 25 ng/ml, 10 ng/ml, 5 ng/ml and 2.5 ng/ml, but no reactivity was confirmed at a concentration below 10 ng/ml.
  • The results described above indicate that the assay device comprising nucleic acids as the bond element and anti-bond element in accordance with the present invention has a detection sensitivity 4-fold that of the conventional immunochemically active substances as a bond element and an anti-bond element. [0151]
  • Industrial Applicability
  • In accordance with the present invention, the complementary binding between nucleic acids as an immobilized anti-bond element and nucleic acids as a bond element contained in a generated complex is a highly stable reaction with a high base agreement ratio and can be promoted more strongly than immune reaction, so that biological substance complexes with high affinity can effectively be bound to the solid phase. For immobilization of nucleic acids as the anti-bond elements, through high molecular substances such as protein, nucleic acids of smaller molecules than that of protein can be bound to protein and nucleic acids molecules (anti-bond elements) of a larger number than the number of protein molecules can be bound. Therefore, a larger number of biological substance complexes with high affinity, including analytes, can be captured, which realizes high sensitivity than that of conventional immunochromatography. [0152]
  • In accordance with the present invention, a complex generated through the reaction of an analyte with a marker-labeled first ligand and nucleic acids-labeled ligand is transferred by chromatography and captured in the detection zone to assay the amount thereof or detect the presence thereof, wherein one or more species of analytes to an almost infinite number of analytes can be assayed or detected by forming individual zones corresponding to individual species of analytes because the analytes can be captured through the complementary binding between the immobilized nucleic acids and the nucleic acids contained in the generated complex. [0153]
  • According to the simple clinical laboratory method of the present invention, the detection sensitivity of analytes to be assayed or to be detected can be controlled in a simple manner, by modifying the agreement ratio of the complementary bases between the individual nucleic acids in the complementary binding of the immobilized nucleic acids and the nucleic acids contained in the generated complex. Such feature is specifically advantageous for simultaneous determination of a plurality of items requiring that the normal ranges and abnormal ranges of individual items differ from each other, which essentially requires the modification of the concentrations and amounts of antibodies. [0154]

Claims (29)

1. An assay method for assaying the amounts of one or more species of analytes present in a fluid sample or detecting the presence or absence thereof, comprising:
(1) putting a fluid sample containing one or more species of analytes in contact to a reagent containing one or more species of marker-labeled ligands each produced by binding a marker to a first ligand, and one or more species of bond element-labeled ligands each produced by binding a bond element consisting of nucleic acids with a predetermined base sequence depending on the analyte species, to a second ligand, to generate one or more species of specific complexes each composed of a specific analyte species, a specific marker-labeled ligand species specifically binding to the specific analyte species, and a specific bond element-labeled ligand species specifically binding to the specific analyte species;
(2) developing one or more species of generated complexes through capillary phenomenon in a developing element in a sheet form;
(3) capturing a complex depending on the analyte species, through the complementary binding between the bond element and an anti-bond element, in the detection zone produced by immobilizing independently anti-bond elements consisting of nucleic acids each having a complementary sequence to the base sequence of one bond element species in the complexes, thereby forming an independent band; and
(4) assaying or detecting the marker formed in the band in the detection zone.
2. An assay method for assaying the amounts of one or more species of analytes present in a fluid sample or detecting the presence or absence thereof, comprising:
(1) loading a fluid sample containing one or more species of analytes on a developing element in a sheet form, thereby developing the fluid sample through capillary phenomenon in the developing element;
(2) transferring the fluid sample to put the sample in contact to a sealing zone sealing therein reagent components including one or more species of marker-labeled ligands each produced by binding a marker to a first ligand specifically reactive to a specific analyte species, and one or more species of bond element-labeled ligands, each produced by binding a bond element consisting of nucleic acids with a predetermined base sequence depending on the analyte species, to a second ligand specifically reactive to the specific analyte species;
(3) developing one or more species of specific complexes each composed of a specific analyte species, a specific marker-labeled ligand species specifically binding to the specific analyte species, and a specific bond element-labeled ligand species specifically binding to the specific analyte species, or developing a reaction product under way of formation, through capillary phenomenon in the developing element;
(4) capturing a complex depending on the analyte species through complementary binding between the bond element and an anti-bond element and forming an independent band therefor in a detection zone where each anti-bond element species having the complementary base sequence to the sequence of one bond element species in the complex is immobilized; and
(5) assaying or detecting the marker contained in the band formed in the detection zone.
3. An assay method according to
claim 1
or
2
, wherein the detection sensitivity for detecting analytes is adjusted by controlling the complimentary base agreement ratio of nucleic acids composing bond elements and anti-bond elements.
4. An assay method according to
claim 1
or
2
, wherein the first ligand and second ligand are immunochemically active substances.
5. An assay method according to
claim 1
or
2
, wherein the first ligand and second ligand have the same reactivity to each other.
6. An assay method according to
claim 1
or
2
, wherein the first ligand and second ligand have a different reactivity from each other.
7. An assay method according to
claim 1
or
2
, wherein the first ligand and second ligand are nucleic acids; the first ligand has a base sequence capable of binding to analyte nucleic acid in a complementary manner; and the second ligand has a base sequence capable of binding to analyte nucleic acid in a complementary manner.
8. An assay method according to
claim 1
or
2
, wherein the immobilizing means of an anti-bond element immobilized on the developing element is covalent bonding thereof, through a functional group introduced into the 5′ terminus or 3′ terminus of the anti-bond element or introduced into a base of the nucleic acid composing the anti-bond element, to a functional group of an insoluble support as the developing element.
9. An assay method according to
claim 1
or
2
, wherein the immobilizing means of an anti-bond element immobilized on the developing element is bonding thereof, through the biotin introduced into the 5′ terminus or 3′ terminus of the anti-bond element or the biotin introduced into a base of the nucleic acid composing the anti-bond element, to avidin or streptoavidin preliminarily introduced into an insoluble support as the developing element.
10. An assay method according to
claim 1
or
2
, wherein the immobilizing means of an anti-bond element immobilized on the developing element is covalent bonding thereof, through a functional group introduced into the 5′ terminus or 3′ terminus of the anti-bond element or infroduced into a base of the nucleic acid composing the anti-bond element, to a protein, being followed by bonding the obtained nucleic acid-bound protein to an insoluble support as the developing element.
11. An assay method according to
claim 10
, wherein the nucleic acid-bound protein is prepared by binding a nucleic acid to bovine serum albumin.
12. An assay method according to
claim 10
, wherein the nucleic acid-bound protein is prepared by binding a nucleic acid to immunoglobulin.
13. An assay method according to
claim 10
or
12
, wherein the protein has an immunochemical activity to an analyte.
14. An assay method according to
claim 1
or
2
, wherein the marker is metal colloid, colored latex and colored liposome.
15. An assay kit for assaying one or more species of analytes in a sample or detecting the presence or absence thereof in a sample, the assay kit comprising a reagent and an assay device of a separate type from the reagent, wherein the reagent includes one or more species of marker-labeled ligands each produced by binding a marker to a first ligand specifically reactive to a specific analyte species, and one or more species of bond element-labeled ligands each produced by binding a bond element consisting of nucleic acids with a predetermined base sequence depending on the specific analyte species, to a second ligand specifically reactive to the specific analyte species; and
wherein the assay device includes a developing element in a sheet form, the developing element can develop analytes, reagent and analytes bound to the reagent, through capillary phenomenon, and one or more species of anti-bond elements comprising a nucleic acid with a base sequence complementary to a bond element contained in the separate reagent are independently each kind immobilized in the detection zone of the developing element, whereby a complex of each analyte species is captured through the complementary binding between the bond element and an anti-bond element in the detection zone, thereby forming an independent band.
16. An assay device for use in a diagnostic kit according to
claim 15
.
17. An assay device for assaying one or more species of analytes present in a sample or detecting the presence or absence thereof in -the sample, wherein the assay device includes:
(1) a developing element in a sheet form, capable of developing analytes, reagent and analytes bound to the reagent, through capillary phenomenon;
(2) a loading zone to receive a fluid sample from outside, the loading zone being positioned at one end of the developing element in the sheet form and capable of receiving a fluid sample from outside and having a sufficient supplying potency to transfer the received fluid sample to the other end to supply the fluid sample to be analyzed to a sealing zone sealing therein the reagent components;
(3) a sealing zone sealing therein reagent components including one or more species of marker-labeled ligands each produced by binding a marker to a first ligand specifically reactive to a specific analyte species, and one or more species of bond element-labeled ligands each produced by binding a bond element consisting of nucleic acids with a predetermined base sequence depending on the specific analyte species, to a second ligand specifically reactive to the specific analyte species, the sealing zone being arranged at a position close to the loading zone;
(4) a water absorption zone arranged at a position apart from the loading zone, the zone being capable of receiving the analytes, reagent and analytes bound to the reagent, after diffusion in the developing element; and
(5) a detection zone positioned between the sealing zone and the water absorption zone, where one or more species of anti-bond elements each with a base sequence complementary to one bond element species are independently immobilized, whereby a complex formed from a marker-labeled ligand, each analyte species and a bond element-labeled ligand, depending on the analyte species, can be captured and detected.
18. An assay device according to
claim 16
or
17
, wherein the first ligand and second ligand are immunochemically active substances.
19. An assay device according to
claim 16
or
17
, wherein the first ligand and second ligand have the same reactivity to each other.
20. An assay device according to
claim 16
or
17
, wherein the first ligand and second ligand have a different reactivity from each other.
21. An assay device according to
claim 16
or
17
, wherein the first ligand and second ligand are nucleic acids;
the first ligand has a base sequence capable of binding to an analyte nucleic acid in a complementary manner; and
the second ligand has a base sequence capable of binding to an analyte nucleic acid in a complementary manner.
22. An assay device according to
claim 16
or
17
, wherein the immobilizing means of an anti-bond element immobilized on the developing element is covalent bonding thereof, through a functional group introduced into the 5′ terminus or 3′ terminus of the anti-bond element or introduced into a base of the nucleic acid composing the anti-bond element, to a functional group of an insoluble support as the developing element.
23. An assay device according to
claim 16
or
17
, wherein the immobilizing means of an anti-bond element immobilized on the developing element is bonding thereof, through the biotin introduced into the 5′ terminus or 3′ terminus of the anti-bond element or the biotin introduced into a base of the nucleic acid composing the anti-bond element, to avidin or streptoavidin preliminarily introduced into an insoluble support as the developing element.
24. An assay device according to
claim 16
or
17
, wherein the immobilizing means of an anti-bond element immobilized on the developing element is covalent bonding thereof, through a functional group introduced into the 5′ terminus or 3′ terminus of the anti-bond element or introduced into a base of the nucleic acid composing the anti-bond element, to a protein, being followed by bonding the obtained nucleic acid-bound protein to an insoluble support as the developing element.
25. An assay device according to
claim 24
, wherein the nucleic acid-bound protein is prepared by binding a nucleic acid to bovine serum albumin.
26. An assay device according to
claim 24
, wherein the nucleic acid-bound protein is prepared by binding a nucleic acid to immunoglobulin.
27. An assay device according to
claim 24
or
26
, wherein the protein has an immunochemical activity to an analyte.
28. An assay device according to
claim 16
or
17
, wherein the marker is selected from metal colloid, colored latex and colored liposome.
29. An assay device according to
claim 16
or
17
, the assay device being placed in a case made of a moisture-proof solid material.
US09/171,617 1997-03-10 1998-03-02 Analytical method, kit, and apparatus Expired - Lifetime US6448001B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP09-72649 1997-03-10
JP9072649A JPH10253632A (en) 1997-03-10 1997-03-10 Method, kit and device for analysis
JP9-72649 1997-03-10
PCT/JP1998/000857 WO1998040740A1 (en) 1997-03-10 1998-03-02 Analytical method, kit, and apparatus

Publications (2)

Publication Number Publication Date
US20010006775A1 true US20010006775A1 (en) 2001-07-05
US6448001B2 US6448001B2 (en) 2002-09-10

Family

ID=13495450

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/171,617 Expired - Lifetime US6448001B2 (en) 1997-03-10 1998-03-02 Analytical method, kit, and apparatus

Country Status (6)

Country Link
US (1) US6448001B2 (en)
EP (1) EP0905517B1 (en)
JP (1) JPH10253632A (en)
CA (1) CA2252912C (en)
DE (1) DE69824099T2 (en)
WO (1) WO1998040740A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030013160A1 (en) * 1999-08-27 2003-01-16 Kuimelis Robert G. Methods for encoding and sorting in vitro translated proteins
US20040241876A1 (en) * 2000-12-22 2004-12-02 France Fannes Flow through assay device, diagnostic kit comprising said assay device and use of said assay device in the detection of an analyte present in a sample
US20060222696A1 (en) * 2005-03-10 2006-10-05 Kazushi Okada Novel liposome compositions
US20080020391A1 (en) * 2005-07-14 2008-01-24 Nilsen Thor W Lateral flow methods and devices for detection of nucleic acid binding proteins
US20100120033A1 (en) * 2007-03-26 2010-05-13 Sumitomo Chemical Company, Limited Method for measuring dna methylation
US9891214B2 (en) 2010-12-28 2018-02-13 Tosoh Corporation Immunological assay method

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP103497A0 (en) 1997-12-19 1998-01-15 Panbio Pty Ltd Assay apparatus
AU4669100A (en) * 1999-04-27 2000-11-10 University Of Chicago, The Nucleotide extension on a microarray of gel-immobilized primers
US6294392B1 (en) * 1999-07-21 2001-09-25 The Regents Of The University Of California Spatially-encoded analyte detection
WO2001020328A1 (en) * 1999-09-13 2001-03-22 Nissui Pharmaceutical Co., Ltd. Kit for detecting or assaying subject substance and detection or assay method
JP4873812B2 (en) * 1999-11-15 2012-02-08 キアジェン ゲイサーズバーグ インコーポレイテッド Immunodetection of RNA: DNA hybrids on microarrays
JP4545869B2 (en) * 2000-02-23 2010-09-15 日本ケミファ株式会社 Method for measuring physiologically active sample substance using porous filter
CA2469524A1 (en) 2001-12-07 2003-06-12 Nissui Pharmaceutical Co., Ltd. Adipocyte differentiation-related gene and protein
WO2005090972A1 (en) * 2004-03-18 2005-09-29 Nissui Pharmaceutical Co., Ltd. Biological substance analyzing kit, analyzer and analyzing method
US20070231794A1 (en) * 2005-09-21 2007-10-04 Combimatrix Corporation Process to detect binding events on an electrode microarray using enzymes
CA2659773A1 (en) * 2006-02-21 2007-08-30 Nanogen, Inc. Methods and compositions for analyte detection
GB0612825D0 (en) * 2006-06-28 2006-08-09 Iti Scotland Ltd Analyte detection
DE602006016457D1 (en) 2006-12-11 2010-10-07 Aragen Biotechnology Co Ltd Vessel for immunochromatographic detection of several parameters in urine
CN103254308B (en) 2007-06-15 2015-01-21 厦门大学 Monoclonal antibody of haemagglutinin protein of H5 subtype of avian influenza virus, or binding activity segment thereof and application of monoclonal antibody or binding activity segment
WO2009128960A2 (en) * 2008-01-14 2009-10-22 Ultrapid Nanodiagnostics, Inc. Rapid test including genetic sequence probe
JP5476376B2 (en) 2008-07-16 2014-04-23 ラジオメーター・メディカル・アー・ペー・エス High performance solid phase
JP5694726B2 (en) * 2010-09-30 2015-04-01 富士フイルム株式会社 Inspection method and apparatus
CA2874407A1 (en) 2012-05-24 2013-11-28 Fundacio Institut D'investigacio Biomedica De Bellvitge (Idibell) Method for the identification of the origin of a cancer of unknown primary origin by methylation analysis
JP6048650B2 (en) * 2012-10-31 2016-12-21 住友ベークライト株式会社 Membrane support for detecting sugar chain recognition molecules
CA2938817A1 (en) 2014-02-05 2015-08-13 Fuso Pharmaceutical Industries, Ltd. Nucleic acid detection or quantification method using mask oligonucleotide, and device for same
WO2015151883A1 (en) * 2014-03-31 2015-10-08 日本碍子株式会社 Method for detecting target substance
JP6734011B2 (en) * 2014-06-06 2020-08-05 古河電気工業株式会社 Biomolecule detection test kit, biomolecule detection method using the same, biomolecule detection test piece and biomolecule detection labeling reagent used therein
US9984201B2 (en) 2015-01-18 2018-05-29 Youhealth Biotech, Limited Method and system for determining cancer status
WO2017210341A1 (en) 2016-05-31 2017-12-07 The Regents Of The University Of California Methods for evaluating, monitoring, and modulating aging process
CN113151458A (en) 2016-07-06 2021-07-23 优美佳肿瘤技术有限公司 Solid tumor methylation marker and application thereof
US10093986B2 (en) 2016-07-06 2018-10-09 Youhealth Biotech, Limited Leukemia methylation markers and uses thereof
US11396678B2 (en) 2016-07-06 2022-07-26 The Regent Of The University Of California Breast and ovarian cancer methylation markers and uses thereof
EP3589371A4 (en) 2017-03-02 2020-11-25 Youhealth Oncotech, Limited Methylation markers for diagnosing hepatocellular carcinoma and lung cancer
WO2019243391A1 (en) 2018-06-21 2019-12-26 F. Hoffmann-La Roche Ag Hybridizing all-lna oligonucleotides
EP3880837A1 (en) 2018-11-16 2021-09-22 F. Hoffmann-La Roche AG Streptavidin-coated solid phases with a member of a binding pair
JP2022535580A (en) 2019-06-07 2022-08-09 エフ.ホフマン-ラ ロシュ アーゲー Hybridization of all LNA oligonucleotides

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3445816C1 (en) * 1984-12-15 1986-06-12 Behringwerke Ag, 3550 Marburg Flat diagnostic agent
US4868105A (en) * 1985-12-11 1989-09-19 Chiron Corporation Solution phase nucleic acid sandwich assay
AU7385387A (en) * 1986-06-09 1987-12-10 Ortho Diagnostic Systems Inc. Immunoassay using detection of colloidal gold
CA1303983C (en) * 1987-03-27 1992-06-23 Robert W. Rosenstein Solid phase assay
US4921788A (en) * 1988-04-12 1990-05-01 The Research Foundation Of State University Of New York Competitive nucleic acid immunoassay for the detection of analytes
US5141850A (en) * 1990-02-07 1992-08-25 Hygeia Sciences, Inc. Porous strip form assay device method
US5569582A (en) * 1991-07-15 1996-10-29 Institute Of Molecular Biology & Technology Rapid amplification and detection of nucleic acids
JP2509840B2 (en) 1992-03-03 1996-06-26 三洋化成工業株式会社 Immunoassay method and immunoassay reagent kit
US5795714A (en) * 1992-11-06 1998-08-18 Trustees Of Boston University Method for replicating an array of nucleic acid probes
ATE244406T1 (en) 1993-05-10 2003-07-15 Nissui Pharm Co Ltd METHOD FOR DETERMINING MORE THAN ONE IMMUNOLOGICAL LIGAND AND DETERMINATION REAGENT AND SET THEREOF
JP3304214B2 (en) 1994-09-27 2002-07-22 わかもと製薬株式会社 Simple measuring method and simple measuring device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030013160A1 (en) * 1999-08-27 2003-01-16 Kuimelis Robert G. Methods for encoding and sorting in vitro translated proteins
US7892785B2 (en) 1999-08-27 2011-02-22 Bristol-Myers Squibb Company Methods for encoding and sorting in vitro translated proteins
US20040241876A1 (en) * 2000-12-22 2004-12-02 France Fannes Flow through assay device, diagnostic kit comprising said assay device and use of said assay device in the detection of an analyte present in a sample
US20060222696A1 (en) * 2005-03-10 2006-10-05 Kazushi Okada Novel liposome compositions
US7829113B2 (en) 2005-03-10 2010-11-09 Mebiopharm Co., Ltd. Liposome compositions
US20110081404A1 (en) * 2005-03-10 2011-04-07 Mebiopharm Co., Ltd. Novel liposome compositions
US8758810B2 (en) 2005-03-10 2014-06-24 Mebiopharm Co., Ltd. Liposome compositions
US20080020391A1 (en) * 2005-07-14 2008-01-24 Nilsen Thor W Lateral flow methods and devices for detection of nucleic acid binding proteins
US20100190179A1 (en) * 2005-07-14 2010-07-29 Genisphere, Llc Lateral Flow Methods and Devices for Detection of Nucleic Acid Binding Proteins
US20100120033A1 (en) * 2007-03-26 2010-05-13 Sumitomo Chemical Company, Limited Method for measuring dna methylation
US9891214B2 (en) 2010-12-28 2018-02-13 Tosoh Corporation Immunological assay method

Also Published As

Publication number Publication date
CA2252912C (en) 2005-07-26
DE69824099T2 (en) 2004-09-16
EP0905517A4 (en) 2000-07-19
DE69824099D1 (en) 2004-07-01
EP0905517A1 (en) 1999-03-31
US6448001B2 (en) 2002-09-10
JPH10253632A (en) 1998-09-25
WO1998040740A1 (en) 1998-09-17
EP0905517B1 (en) 2004-05-26
CA2252912A1 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
US6448001B2 (en) Analytical method, kit, and apparatus
JP2999238B2 (en) Chromatography strip binding assay device
US5985579A (en) Antibodies to complexes of ligand receptors and ligands and their utility in ligand-receptor assays
EP0941468B1 (en) Hybrid one-step immunochromatographic device and method of use
JP2930426B2 (en) Apparatus for performing one or more competitive immunoassays
US5780308A (en) Calibration reagents for semiquanitative binding assays and devices
EP0462376B1 (en) Conjugate recovery binding assays
US5028535A (en) Threshold ligand-receptor assay
US5308775A (en) Assay devices for concurrently detecting an analyte and confirming the test result
CA2162568C (en) Method and reagent for simultaneously assaying one or more ligands in a group of preselected ligands
US4945042A (en) Process and reagent for the determination of an antibody
JP3358737B2 (en) Assays with improved dose response curves
US7267992B2 (en) Method for the determination of an analyte in a liquid
US4960692A (en) Assay employing binding pair members on particles and on a filter or membrane
EP1917529B1 (en) Analyte assaying by means of immunochromatography with lateral migration
JPH01244370A (en) Chromatographic coupling assay apparatus and method
IE914536A1 (en) "Test method and reagent kit therefor"
US20060134802A1 (en) Solid-phase immunochromatographic methods
JP2579972B2 (en) Membrane affinity concentrated immunoassay
JP3718510B2 (en) Detection apparatus and detection method
JPH06505803A (en) Multitest immunochemical reagents and methods for their use
CA1336163C (en) Enzyme quantitation wicking assay
JPH05209879A (en) Immunological method for detecting hemoglobin
EP3978619A1 (en) Automated silver enhancement system
US20040005627A1 (en) Microvolume detecting method and device

Legal Events

Date Code Title Description
AS Assignment

Owner name: NISSUI PHARMACEUTICAL CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OKU, YUICHI;TANAKA, YOSHITATSU;OTSUKA, YOKO;REEL/FRAME:009729/0254

Effective date: 19980930

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12