US20010031254A1 - Assembled implant - Google Patents

Assembled implant Download PDF

Info

Publication number
US20010031254A1
US20010031254A1 US09/782,594 US78259401A US2001031254A1 US 20010031254 A1 US20010031254 A1 US 20010031254A1 US 78259401 A US78259401 A US 78259401A US 2001031254 A1 US2001031254 A1 US 2001031254A1
Authority
US
United States
Prior art keywords
bone
graft
unit
implant
portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/782,594
Inventor
John Bianchi
C. Mills
P. Gorham
Michael Esch
Kevin Carter
Pat Coleman
Kevin Ross
Harry Rambo
Darren Jones
Dayna Buskirk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTI Biologics Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/191,232 external-priority patent/US6482584B1/en
Priority claimed from US09/378,527 external-priority patent/US6652818B1/en
Priority claimed from US09/390,174 external-priority patent/US6613278B1/en
Application filed by Individual filed Critical Individual
Priority to PCT/US2001/004510 priority Critical patent/WO2001078798A1/en
Priority to US09/782,594 priority patent/US20010031254A1/en
Assigned to REGENERATION TECHNOLOGIES, INC. reassignment REGENERATION TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RAMBO, HARRY W., BIANCHI, JOHN R., ESCH, MICHAEL, ROSS, KEVIN, BUSKIRK, DAYNA, MILLS, C. RANDAL, CARTER, KEVIN C., COLEMAN, PAT, GORHAM, P.J., JONES, DARREN G.
Priority to US09/941,154 priority patent/US20020106393A1/en
Priority to US09/942,537 priority patent/US6893462B2/en
Priority to JP2002563972A priority patent/JP2005510258A/en
Priority to CA2437763A priority patent/CA2437763C/en
Priority to EP01968600A priority patent/EP1359950A1/en
Priority to AU2001288840A priority patent/AU2001288840B2/en
Priority to PCT/US2001/027683 priority patent/WO2002064180A1/en
Publication of US20010031254A1 publication Critical patent/US20010031254A1/en
Priority to US10/387,322 priority patent/US20040115172A1/en
Assigned to MERRILL LYNCH BUSINESS FINANCIAL SERVICES, INC., THROUGH ITS DIVISION MERRILL LYNCH CAPITAL reassignment MERRILL LYNCH BUSINESS FINANCIAL SERVICES, INC., THROUGH ITS DIVISION MERRILL LYNCH CAPITAL SECURITY AGREEMENT Assignors: ALABAMA TISSUE CENTER, INC., BIOLOGICAL RECOVERY GROUP, INC., REGENERATION TECHNOLOGIES, INC., RTI SERVICES, INC.
Priority to US11/007,679 priority patent/US20050119744A1/en
Priority to US11/007,525 priority patent/US7513910B2/en
Assigned to REGENERATION TECHNOLOGIES, INC. reassignment REGENERATION TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SOUTHEAST TISSUE ALLIANCE, INC., UNIVERSITY OF FLORIDA ORTHOPAEDIC TISSUE BANK, INC., UNIVERSITY OF FLORIDA TISSUE BANK, INC.
Assigned to REGENERATION TECHNOLOGIES, INC. reassignment REGENERATION TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: REGENERATION TECHNOLOGIES, INC.
Assigned to RTI BIOLOGICS, INC. reassignment RTI BIOLOGICS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: REGENERATION TECHNOLOGIES, INC.
Priority to US12/260,898 priority patent/US20110301707A1/en
Assigned to RTI SERVICES, INC., RTI BIOLOGICS, INC. (F/K/A) REGENERATION TECHNOLOGIES, INC., BIOLOGICAL RECOVERY GROUP, INC., REGENERATION TECHNOLOGIES, INC.-CARDIOVASCULAR (F/K/A) ALABAMA TISSUE CENTER, INC. reassignment RTI SERVICES, INC. RECORD OF RELEASE OF SECURITY INTEREST Assignors: GE BUSINESS FINANCIAL SERVICES INC.
Priority to US12/690,074 priority patent/US9763787B2/en
Priority to US13/593,218 priority patent/US20120323324A1/en
Priority to US15/709,456 priority patent/US20180071102A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • A61F2/446Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages having a circular or elliptical cross-section substantially parallel to the axis of the spine, e.g. cylinders or frustocones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • A61F2/447Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages substantially parallelepipedal, e.g. having a rectangular or trapezoidal cross-section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0082Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using chemical substances
    • A61L2/0088Liquid substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/025Ultrasonics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4644Preparation of bone graft, bone plugs or bone dowels, e.g. grinding or milling bone material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2817Bone stimulation by chemical reactions or by osteogenic or biological products for enhancing ossification, e.g. by bone morphogenetic or morphogenic proteins [BMP] or by transforming growth factors [TGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • A61F2002/2839Bone plugs or bone graft dowels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30057Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis made from both cortical and cancellous adjacent parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30059Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in bone mineralization, e.g. made from both mineralized and demineralized adjacent parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30062(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • A61F2002/30113Rounded shapes, e.g. with rounded corners circular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30153Convex polygonal shapes rectangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30159Concave polygonal shapes
    • A61F2002/30179X-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • A61F2002/30225Flat cylinders, i.e. discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • A61F2002/30235Three-dimensional shapes cylindrical tubular, e.g. sleeves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30261Three-dimensional shapes parallelepipedal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30261Three-dimensional shapes parallelepipedal
    • A61F2002/30266Three-dimensional shapes parallelepipedal wedge-shaped parallelepipeds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/3028Three-dimensional shapes polyhedral different from parallelepipedal and pyramidal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • A61F2002/30354Cylindrically-shaped protrusion and recess, e.g. cylinder of circular basis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30383Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30383Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
    • A61F2002/30387Dovetail connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30448Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/30492Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using a locking pin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30563Special structural features of bone or joint prostheses not otherwise provided for having elastic means or damping means, different from springs, e.g. including an elastomeric core or shock absorbers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30599Special structural features of bone or joint prostheses not otherwise provided for stackable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30677Means for introducing or releasing pharmaceutical products, e.g. antibiotics, into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30784Plurality of holes
    • A61F2002/30785Plurality of holes parallel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30795Blind bores, e.g. of circular cross-section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/3085Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with a threaded, e.g. self-tapping, bone-engaging surface, e.g. external surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30904Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves serrated profile, i.e. saw-toothed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30957Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using a positive or a negative model, e.g. moulds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30975Designing or manufacturing processes made of two halves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4644Preparation of bone graft, bone plugs or bone dowels, e.g. grinding or milling bone material
    • A61F2002/4649Bone graft or bone dowel harvest sites
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0033Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementary-shaped recess, e.g. held by friction fit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/005Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0006Rounded shapes, e.g. with rounded corners circular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • A61F2230/0019Angular shapes rectangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0058X-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0082Three-dimensional shapes parallelepipedal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular
    • A61F2250/0063Nested prosthetic parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00365Proteins; Polypeptides; Degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00365Proteins; Polypeptides; Degradation products thereof
    • A61F2310/00383Gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/0097Coating or prosthesis-covering structure made of pharmaceutical products, e.g. antibiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00976Coating or prosthesis-covering structure made of proteins or of polypeptides, e.g. of bone morphogenic proteins BMP or of transforming growth factors TGF

Definitions

  • This invention relates to implants and methods for their preparation wherein components of the implant are assembled from constituent pieces to produce a complete implant.
  • This invention provides a method for manufacture of autograft, allograft and xenograft implants which comprises assembling such implants from smaller pieces of graft materials to form a larger graft implant product.
  • Another object of this invention is to provide assembled bone implants.
  • Another object of this invention is to provide a method whereby otherwise wasted tissue may be used in the production of useful orthopedic implants.
  • FIG. 1 is a flow chart showing the formation of various sub-component parts of an assembled implant according to this invention, from which assembled implants and a kit comprising these parts may be formed according to the disclosure of this invention.
  • FIG. 2 provides a schematic of an assembled implant according to this invention.
  • FIG. 3 provides a schematic of an assembled implant according to this invention.
  • FIGS. 4 - 7 provides a schematic of an assembled implant according to this invention.
  • FIGS. 8 - 9 provides a schematic of an assembled implant according to this invention.
  • FIGS. 10 - 14 provides a schematic of an assembled implant according to this invention.
  • FIGS. 15 - 18 provides a schematic of an assembled implant according to this invention.
  • FIG. 19 provides a schematic of an assembled implant according to this invention.
  • FIG. 20 provides a schematic of an assembled implant according to this invention.
  • FIG. 21 provides a schematic of an assembled implant according to this invention.
  • FIG. 22 provides a schematic of an assembled implant according to this invention.
  • FIG. 23 shows the assembly of a dowel from component pieces.
  • FIG. 24 shows the reinforcement of an implant using a cortical bone pin.
  • FIG. 25 shows the reinforcement of an implant using a cortical bone pin and a cortical bone disk.
  • FIG. 26 shows the reinforcement of cancellous bone implants using a plurality of cortical bone pins.
  • FIG. 27 shows the formation of an assembled implant comprising soft and hard tissues.
  • autograft, allograft and xenograft products are produced as solid, continuous materials.
  • bone dowels see U.S. Pat. No. 5,814,084, hereby incorporated by reference
  • Smith-Robinson cervical spine implants, iliac crest grafts, and the like are harvested and machined from single, continuous pieces of bone.
  • the present invention provides methods for manufacture of autograft, allograft and xenograft implants by assembling such implants from smaller pieces of graft materials to form a larger graft implant product. As a result, increased utilization of valuable implant materials is achieved, thereby more effectively meeting the ever-increasing demands for graft implant materials.
  • any implant piece that may be required may be formed according to the present invention, and orthopedic surgeons may be provided with kits of assemblable parts which may be formed in the course of a surgical procedure to precisely meet the needs of a given patient or procedure.
  • existing graft products may be strengthened or reinforced by assembly of different types of graft materials into an assembled product.
  • a reinforced product is a cancellous wedge, block, dowel or the like into which is inserted reinforcing pins of cortical bone.
  • this invention provides for the product of assembled implants comprising any one or combinations of allograft materials, autograft materials, xenograft materials, synthetic materials, metallic materials and the like.
  • the assembled implants or the component pieces which are combined to form the assembled implant may be pretreated or treated after assembly to incorporate any desired biologically active or inert materials.
  • the assembled bone dowel comprises segments of cortical bone pinned to each other by means of cortical bone pins.
  • the graft materials Prior to assembly or after assembly, the graft materials are soaked, infused, impregnated, coated or otherwise treated with bone morphogenetic proteins (BMP's), antibiotics, growth factors, nucleic acids, peptides, and the like.
  • BMP's bone morphogenetic proteins
  • variously shaped wafers, blocks, rings, washer-shaped bone pieces and the like may be affixed to each other in any secure and biologically acceptable manner.
  • the assembled pieces of bone are affixed to each other by means of pins, screws, rods, interference fit, threaded fits, key-way fit, and the like made from cortical bone.
  • fixation pieces are machined in a CNC lathe or the like to appropriate dimensions and are then threaded into mating holes tapped in the pieces to be assembled, or are pressed into drilled holes through adjacent pieces to be assembled by a pneumatic press or the like. In this fashion, very strong and tightly fitted pieces of implant materials may be joined and implanted.
  • the assembled pieces may first be machined to desired dimensions and shapes, prior to assembly, the assembled implant may be machined, or both.
  • the implant according to this invention may comprise an assembled cancellous block, dowel or the like, harvested from the iliac crest or another suitable site.
  • cancellous block As is known in the art, due to the wafer-like structure of cancellous bone, such grafts have low load-bearing characteristics.
  • a Cloward Dowel, iliac crest wedge, or cancellous bone block, dowel or the like is reinforced by insertion therein of cortical bone pins.
  • cortical implants may also be reinforced by insertion therein of cortical bone pins, including when an assembled implant is prepared comprising different segments of cortical bone, cancerous bone or both. Insertion of the reinforcing pins provides an implant with multiple load-bearing pillars. The pins may be made to protrude from the surface of the implant to engage with inferior, superior or both surfaces of bone between which the implant is inserted.
  • pin protrusions may be employed to created contact between the implant and the vertebral bodies, thus preventing extrusion and reinforcing a secure fit of the implant between adjacent vertebrae.
  • cortical pins of about 4.5 mm in diameter may each support a load of up about 2700 newtons (160 Mpa).
  • multiple pins may be inserted into an implant to produce a load-bearing capacity of known proportions (e.g. 10,000 newtons by insertion of five pins).
  • a further advantage of this invention is that it permits use of tissues that are not currently amenable to standard autograft, allograft or xenograft harvesting and processing procedures, such as ribs, metatarsal bone and the like.
  • usefull implant materials may be harvested and produced from otherwise un-useable donor tissues.
  • various shaping methods aside from CNC lathe or other known procedures may be applied to different segments of the implant.
  • a cancellous portion of bone implant may be compression molded, and then affixed to other portions of cortical or cancellous bone machined according to different or similar principles.
  • implants of unusual sizes and dimensions may be prepared and machined.
  • implants of 100 mm in size could be machined, for example, for corpectomies, when otherwise bone stock for manufacture of such implant dimensions would not be available.
  • dowel shaped implants comprising assembled dowel segments, between about two to about ten segments, pinned together by one or more cortical bone pins.
  • the assembled segments may closely abut each other or may be spread apart from each other.
  • Such implants may be prepared by harvesting disks of cortical bone, drilling and optionally tapping holes therein, and inserting shafts of cortical pins therethrough, or therein, optionally by threading portions thereof for torquing into optionally tapped holes.
  • the thus produced dowels may be tapered or have parallel sides.
  • dowels which are harvested as a cross-section across the intramedullary canal of a long bone may be completed by insertion therein of a cortical pin.
  • a “doughnut” of bone may be affixed to the sidewall by means of a cortical pin.
  • a longer dowel may be prepared by affixing two dowels to each other.
  • a posterior longitudinal interbody fusion implant may be machined from a single piece of cortical bone, or be assembled from two pieces of bone which are affixed to each other by means of a cortical pin.
  • a bone screw may also be prepared according to the method of this invention by affixing multiple pieces of cortical bone to each other with a cortical bone pin, and then machining a thread on the exterior of the assembled bone pieces. It will further be appreciated from this disclosure that different portions of the assembled implant may be demineralized, to achieve a level of elasticity or compressibility not otherwise present in cortical or cancellous bone. Different portions of bone may also be retained on a shaft by means of a cotter-pin type device.
  • instruments may be conveniently prepared according to the methods of this invention which may be utilized for insertion of other implants.
  • an implant driver is produced wherein the driving mechanism itself is formed from assembled cortical pins which protrude into mating recesses in an implant device.
  • the instrument may be torqued to adequate loads to induce implantation of spinal implants and the like.
  • one technical issue of merit is the need to develop a process whereby donor tissue, whether hard or soft tissue, allograft or xenograft tissue, may be treated in such a fashion as to eliminate the possibility of cross contamination between tissue segments obtained from different sources. While it is possible to practice the present invention to advantage using tissue obtained from a single screened donor, the real economies of scale and commercially viable application of the present technology is best realized by implementation of an efficient and reliable tissue decontamination process. Ideally, the process is one which permits multiple segments of soft or hard tissue to be treated simultaneously so that a stock of materials for assemblage of implants according to the present invention is facilitated.
  • an assembled allograft or xenograft tissue implant is prepared by treating the tissue in a closed container in which different cleaning solutions are contacted with the implant segments, either before or after assembly and machining into the final implant form, either in the presence or absence of sonication, with rapid oscillation of pressure in the closed container, to achieve deep cleaning and interpenetration of cleaning solvents into the interstices of porous implants or tissues.
  • Solutions including, but not limited to detergent solutions, peroxide solutions and the like are used in such procedure, and terminal sterilization with gamma irradiation, gaseous sterilants known in the art or other terminal sterilization procedures known in the art are employed to ensure safe implantation of the assembled implants according to this invention.
  • Cortical bone pins 100 are used to assemble a series of bone disks 101 into a pre-part 102 which is then machined into a series of final products: Threaded dowels, 103 ; small blocks 104 ; unique shapes, 105 such as a “wedding-cake” like shape wherein disks bearing threads are spaced apart from each other leaving voids 105 ′ into which additional materials may be inserted, with the disks retained in fixed relation to each other by means of the through pins 100 ; tapered dowels 106 ; screws 107 ; smooth cylinders 108 ; or large blocks 109 .
  • a central concept relevant to the present invention is the ability to machine smaller parts of tissue, specifically bone tissue, such as cortical bone, cancellous bone, cortical-cancellous bone, portions of which may be demineralized (see, for example, U.S. Pat. No. 6,090,998, hereby incorporated herein by reference for this purpose), and assemble these portions of tissue using, preferably, cortical bone pins.
  • the assembled tissue pieces may be machined prior to assembly, and then, upon assembly, a complete implant is ready for implantation. Alternatively, the tissue pieces may first be assembled, and the assembled pieces may then be machined into any desired final form. The order of assembly and machining will be determined by the specific forms of implant required for a particular application.
  • FIG. 1 a series of pre-machined tissue forms are disclosed, which may conveniently be included in a kit for use as needed by an orthopedic surgeon.
  • a kit for use for example, where a particular implant of specific dimensions is required, the surgeon is able to select pre-shaped implant segments to fill a particular geometric space and shape in the spine of an implant recipient.
  • Numerous permutations and combinations of implant pieces for assembly are possible, based on the pre-machined assemblable implant pieces included in such a kit, and those skilled in the art will appreciate that the skilled orthopedic surgeon will be able to create implants as needed when supplied with such a kit.
  • a preferred kit includes disks of bone, cortical bone, cancellous bone, allograft or xenograft, also referred to herein as “washers” or “doughnuts” such that a center hole is provided for press-fitting or screwing on of the disks to a cortical bone or synthetic or metallic shaft or pin.
  • the disks may be demineralized, mineralized, or partially demineralized.
  • plugs of cortical bone, cancellous bone, or cortical-cancellous bone including at least one through hole, and optionally more than one such through hole, for insertion of pins therethrough. Ovals, squares, rectangles and irregular shapes may also be provided in certain kits for specific applications.
  • a bone paste such as that disclosed in WO99/38543, hereby incorporated by reference, may be beneficial for filling any voids that remain, and to implant with the assembled implant, osteogenic material, (i.e. osteoconductive material, Osteoinductive material, or both, as well as material that assists in adhering the implant to the site of implantation).
  • osteogenic material i.e. osteoconductive material, Osteoinductive material, or both
  • a molded implant may be combined with the assembled implant of this invention.
  • a preferred molded implant for orthopedic applications is disclosed in PCT publication WO 00/54821, the disclosure of which is hereby incorporated by reference.
  • the assembled graft 200 comprises a void, 201 into which osteogenic material may be inserted prior to or after implantation.
  • the pins Y may be metal pins, but preferably are pins machined from cortical bone. This enables the entire implant to remodel into autogenous tissue over time, such as vertebral bone, when the implant 200 is inserted into the intervertebral space.
  • the graft 201 is also shown with a groove, 202 in which a driver may be inserted to provide rotational torque for insertion of the implant.
  • An instrument attachment hole, 203 is also provided, to ensure that the implant remains securely on the head of the driver means in the process of surgical implantation.
  • the segments Z and T may be brought into close abutment with each other, thereby eliminating the space 201 .
  • the length of the pins A would be modified to prevent unnecessary protrusion, although in some applications, protrusion may be useful when driving the implant 200 into place.
  • the number of pins used while represented as two in this figure, may be fewer or more in number, depending on the particular application, the extent of torsional or compressive loads, and the like anticipated to be experienced by the implant once in situ.
  • FIG. 3 shows an implant assembled from three principal segments F, D, and E, which are held together by pins 300 .
  • the waffle-shaped structure of implant segment D is intended to represent the use of cancellous bone, which is abutted on either side by cortical bone, which forms segments F and E.
  • the fully assembled implant is shown in FIG. 4, while FIGS. 5, 6 and 7 show end-on views, and cross sectional views A-A and B-B, respectively.
  • segment F, segment D, or segment E may be demineralized according to methods known in the art. Likewise, all of these segments may be demineralized. Where a flexible implant is required, the implant may be assembled, and the entire implant may be demineralized.
  • FIG. 8 shows an embodiment of this invention wherein rectangular bone segments N and G are assembled into implant 900 , shown in FIG. 9.
  • Features 901 and 902 which comprises ridges, teeth, or other external features are machined into the superior and inferior faces of the implants in order to assist in retention of the implants once placed in situ.
  • FIGS. 10 - 14 show the assembly of elements J, H, and I into implant 1100 , shown end-on, in cross-section A-A and B-B, in FIGS. 12 - 14 , respectively.
  • bone element H is shown with a waffle-like structure, to represent that this element may be cancellous bone, demineralized bone, a polymer composite, such as poly-L-Lactic acid, polyglycolic acid, or the like.
  • Features 1101 and 1102 represent external grooves or teeth machined into the superior and inferior surfaces of the implant to assist in retention of the implant once placed in situ.
  • FIGS. 15 - 18 show the assembly of elements M, K, and L, each of which is a substantially cubic bone element, using pins 1500 .
  • FIG. 17 is a top view, showing cross section A-A, represented in FIG. 18, with the final assembled implant 1600 shown in FIG. 16.
  • FIG. 19 shows a “Wedding-Cake” design of an implant 1900 assembled from units A-C, pinned together by pins a-c. Void area 1901 is available for filling with osteogenic materials.
  • FIG. 20 shows implant 2000 which is an assembled Cervical Smith Robinson implant similar to that shown in PCT publication WO99/09914, hereby incorporated by reference, except that this implant is fashioned from a series of assembled bone pieces 2001 and machined into the desired final shape.
  • FIG. 21 shows implant 2100 assembled from two cortical bone pieces and one cancellous bone piece, and pinned together.
  • the implant has an anterior height H 1 which is smaller than posterior height H 2 , which permits retention of correct spinal lordosis upon implantation, for example, in a posterior lumbar intervertebral implant fixation procedure.
  • Superior and inferior features 2101 , 2102 prevent expulsion of the implant once place in situ.
  • FIG. 22 shows an implant 2200 assembled from a series of sub-implant pieces 2201 .
  • the implant may contain cancellous bone 2202 segments, as well as cortical bone 2203 segments and cortical bone pins 2204 .
  • FIG. 23 shows the formation of a tapered dowel 2300 by assembling “doughnut” or “disk” or “washer” shaped bone pieces 2301 on a cortical bone shaft 2302 by using washer pieces of differing diameter.
  • This figure only shows two disks, but a continuous dowel is formed by using disks of a graded diameter between each end of the cortical bone shaft 2302 .
  • FIG. 24A shows a bone dowel in which one sidewall of a bone dowel 2400 such as that disclosed and claimed in U.S. Pat. No. 5,814,084, hereby incorporated by reference, is “out of specifications” due to being too narrow or absent. This is repaired in FIG.
  • FIG. 25 a similar procedure for salvaging a dowel 2500 is shown whereby a pin 2501 is driven through the center of the dowel 2500 to reinforce the dowel longitudinally. Furthermore, where an endcap 2503 of the dowel is “out of spec” for being too narrow, the endcap is reinforced by press-fitting a cortical bone disk 2502 onto the end of the pin 2501 .
  • a series of cancellous bone implants 2600 are reinforced by inclusion therein of a series of cortical pins 100 .
  • Each cortical pin of a 2 mm diameter has been found to support approximately 2000 newtons of axial compressive load. Accordingly, cancellous bone implants of essentially any desired height and compressive strength may be assembled in this manner by affixing several layers of cancellous bone with cortical bone pins.
  • other materials may be included in such a “sandwich” of bone materials.
  • the cancellous bone may be soaked in a solution containing growth factors, such as, but not limited to, bone morphogenetic proteins, fibroblast growth factors, platelet derived growth factor, cartilage derived morphogenetic proteins, stem cells, such as mesenchymal stem cells, osteoprogenitor cells, antibiotics, antuinflammatory compounds, anti-neoplastic compounds, nucleic acids, peptides, and the like.
  • growth factors such as, but not limited to, bone morphogenetic proteins, fibroblast growth factors, platelet derived growth factor, cartilage derived morphogenetic proteins, stem cells, such as mesenchymal stem cells, osteoprogenitor cells, antibiotics, antuinflammatory compounds, anti-neoplastic compounds, nucleic acids, peptides, and the like.
  • growth factors such as, but not limited to, bone morphogenetic proteins, fibroblast growth factors, platelet derived growth factor, cartilage derived morphogenetic proteins, stem cells, such as mesenchymal stem cells
  • the assembled implant is driven by cortical pins to seat in an implant site, using a driver that engages cortical bone pins with purchase sites on the implant.
  • the driver may comprise a handle with projecting cortical pins which engage with holes in the assembled allograft, thereby providing a site for torquing the implant into position.
  • assembled cortical bone blocks, or cortical cancellous bone blocks are assembled in combination with wedged or pinned soft tissue, such as tendon, ligament, skin, collagen sheets, or the like, to create grafts similar to naturally occurring tissue sites, such as the bone-tendon interface found at the patella.
  • wedged or pinned soft tissue such as tendon, ligament, skin, collagen sheets, or the like
  • Such combination implants permit reconstruction of sites such as the Anterior Cruciate Ligament (ACL) or Posterior Cruciate Ligament (PCL).
  • ACL Anterior Cruciate Ligament
  • PCL Posterior Cruciate Ligament
  • a ligament or tendon or skin or collagen sheet membrane is pinned between adjacent blocks of cortical bone.
  • an implant 2700 is assembled from a superior bone block 2701 , an inferior bone block 2702 and a wedged flexible tissue, such as a ligament or tendon or portion of demineralized bone 2704 , all of which are pinned together with cortical bone pins 2703 or other fixation means.
  • the cortical bone pins disclosed herein may have features defined thereon for various applications.
  • the shafts may contain stops, such that other pieces of bone inserted thereon can only travel a certain distance down the shaft before encountering the stop.
  • the shaft may also contain through holes, to permit insertion of cotter pins or the like.
  • the cortical bone shaft may be demineralized, mineralized, or partially demineralized.
  • the end of the cortical shaft contains a tapped cannulation a short distance into the longitudinal end of the shaft. In this way, a screw may be driven into the cannulation to retain elements inserted over the shaft in association with the shaft.
  • the screw end bearing the cannulation may be partially demineralized, such that upon insertion of the retention screw, the shaft end does not shatter, but expands to accommodate the increasing diameter of the screw as it is driven into the shaft.
  • the cortical pins may be cannulated throughout the longitudinal length thereof. However, care should be taken that this does not unduly weaken the overall compressive or torsional strength of the assembled implant. This may be addressed by including pins that are not cannulated, along with pins that are cannulated.
  • the cannulated pins may be used in combination with sutures or the like, in order to hold an implant in a specific orientation, until fusion with adjacent bone has proceeded to a sufficient extent for the implant to become stable without the sutures.
  • implants that have classically been fabricated from metals may be fabricated by assembling bone pieces.
  • a benefit of the assembled graft according to this invention is that the components of the assembled graft can be derived from various anatomical structures, thus circumventing limitations normally resulting from having to obtain a graft from a particular anatomical source of a particular donor. Not only can the components be sourced from different anatomies, but also different donors may yield various components for assembly into a unitary implant. The end result is maximization of the gift of donation and the preservation of precious tissue resources.
  • a further benefit of the present invention is that different implants with height or width limitations due to the anatomical structures from which the implant has been derived may be pinned together to form implants of essentially any desired dimensions. In this fashion, an inventory of building blocks in combination with the appropriate assembly pins, threaded or unthreaded, is useful to provide implants of essentially any dimensions in the course of given surgical procedure.
  • a cervical Smith-Robinson (CSR) t of any desired height may be produced by attaching two or more existing CSR implants together with cortical bone pins. This is accomplished preferably using two machined CSR's of known height such that when added together, the desired overall height is achieved.
  • the two CSR's are stacked and drill holes are machined through the CSR bodies, following which the cortical bone pins are press-fit through the thus machined holes.
  • the diameter of the pins is slightly greater than the diameter of the drilled holes, such that a tight press-fit is achieved.
  • implants according to this invention may be assembled in the operating room by a surgeon, using pre-formed implant pieces, from a kit. It will further be appreciated that the assembled implant pieces may be adhered to each other using any of a number of biologically acceptable glues, pastes and the like. In one such embodiment, the assembled implant pieces are assembled using a polymethyl-methacrylate glue, a cyanoacrylate glue, or any other adhesive known in the art, so long as the use of such an adhesive is confirmed to be nontoxic. It will further be appreciated that in forming the assembled grafts according to the present invention, it is acceptable, although not required, for interlocking features to be included on abutting faces of implant segments to be assembled together.
  • the adjacent features are complementary, such that a protrusion on a first surface is met by a compatible indentation in the abutting surface.
  • abutting features assist to provide torsional and structural strength to the assembled implant, and to relieve a measure of stress on the cortical bone pins used to assemble the implant.

Abstract

This invention provides a method for manufacture of autograft, allograft and xenograft implants which comprises assembling such implants from smaller pieces of graft materials to form a larger graft implant product.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is a continuation-in-part of pending provisional application serial No. 60/181,622, filed Feb. 10, 2000, pending, and of application serial Nos. 09/191,132, filed on Nov. 13, 1998, pending; and of 09/378,527, filed on Aug. 20, 1999, pending; and of 09/370,194, filed on Sep. 7, 1999, pending; 29/123,227, filed May 12, 2000, pending; the priority of all of which is claimed herein under 35 U.S.C. Section 120.[0001]
  • FIELD OF THE INVENTION
  • This invention relates to implants and methods for their preparation wherein components of the implant are assembled from constituent pieces to produce a complete implant. [0002]
  • BACKGROUND OF THE INVENTION
  • In the field of medicine, there has been an increasing need to develop implant materials for correction of biological defects. Particularly in the field of orthopedic medicine, there has been the need to replace or correct bone, ligament and tendon defects or injuries. As a result, there have emerged a number of synthetic implant materials, including but not limited to metallic implant materials and devices, devices composed in whole or in part from polymeric substances, as well as allograft, autograft, and xenograft implants. It is generally recognized that for implant materials to be acceptable, they must be pathogenfree, and must be biologically acceptable. Generally, it is preferable if the implant materials may be remodeled over time such that autogenous bone replaces the implant materials. This goal is best achieved by utilizing autograft bone from a first site for implantation into a second site. However, use of autograft materials is attended by the significant disadvantage that a second site of morbidity must be created to harvest autograft for implantation into a first diseased or injured site. As a result, allograft and xenograft implants have been given increasing attention in recent years. However, use of such materials has the disadvantage that human allograft materials are frequently low in availability and are high in cost of recovery, treatment and preparation for implantation. By contrast, while xenograft implant materials, such as bovine bone, may be of ready availability, immunological and disease transmission considerations imply significant constraints on the ready use of such materials. [0003]
  • In view of the foregoing considerations, it remains the case that there has been a long felt need for unlimited supplies of biologically acceptable implant materials for repair of bone and other defects or injuries. This invention provides a significant advance in the art, and largely meets this need, by providing materials and methods for production of essentially any form of implant from component parts to produce assembled implants. [0004]
  • In recent months, there have appeared several patents and patent publications which address similar or identical considerations to those to which the present invention disclosure is directed. Specifically, reference is made to PCT publication WO00/40177, which published on Jul. 13, 2000, the disclosure of which is hereby incorporated by reference as if fully set forth herein. [0005]
  • In addition, reference is made herein to U.S. Pat. No. 5,899,939 to Boyce, which issued on May 4, 1999, the disclosure of which is hereby incorporated by reference as if fully set forth herein. [0006]
  • Finally, reference is made herein to U.S. Pat. No. 6,025,538 to Yaccarino, which issued on Feb. 15, 2000, the disclosure of which is hereby incorporated by reference as if fully set forth herein. [0007]
  • SUMMARY OF THE INVENTION
  • This invention provides a method for manufacture of autograft, allograft and xenograft implants which comprises assembling such implants from smaller pieces of graft materials to form a larger graft implant product. [0008]
  • Accordingly, it is one object of this invention to provide a method for assembly of multiple bone implant shapes from smaller bone implant pieces. [0009]
  • Another object of this invention is to provide assembled bone implants. [0010]
  • Another object of this invention is to provide a method whereby otherwise wasted tissue may be used in the production of useful orthopedic implants. [0011]
  • Further objects and advantages of this invention will be appreciated from a review of the complete disclosure and the appended claims.[0012]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Attached to this invention disclosure are a large number of sketches which demonstrate a wide variety of assembled implants which may be prepared and used according to this invention. [0013]
  • FIG. 1 is a flow chart showing the formation of various sub-component parts of an assembled implant according to this invention, from which assembled implants and a kit comprising these parts may be formed according to the disclosure of this invention. [0014]
  • FIG. 2 provides a schematic of an assembled implant according to this invention. [0015]
  • FIG. 3 provides a schematic of an assembled implant according to this invention. [0016]
  • FIGS. [0017] 4-7 provides a schematic of an assembled implant according to this invention.
  • FIGS. [0018] 8-9 provides a schematic of an assembled implant according to this invention.
  • FIGS. [0019] 10-14 provides a schematic of an assembled implant according to this invention.
  • FIGS. [0020] 15-18 provides a schematic of an assembled implant according to this invention.
  • FIG. 19 provides a schematic of an assembled implant according to this invention. [0021]
  • FIG. 20 provides a schematic of an assembled implant according to this invention. [0022]
  • FIG. 21 provides a schematic of an assembled implant according to this invention. [0023]
  • FIG. 22 provides a schematic of an assembled implant according to this invention. [0024]
  • FIG. 23 shows the assembly of a dowel from component pieces. [0025]
  • FIG. 24 shows the reinforcement of an implant using a cortical bone pin. [0026]
  • FIG. 25 shows the reinforcement of an implant using a cortical bone pin and a cortical bone disk. [0027]
  • FIG. 26 shows the reinforcement of cancellous bone implants using a plurality of cortical bone pins. [0028]
  • FIG. 27 shows the formation of an assembled implant comprising soft and hard tissues.[0029]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Currently, autograft, allograft and xenograft products are produced as solid, continuous materials. For example, bone dowels (see U.S. Pat. No. 5,814,084, hereby incorporated by reference), Smith-Robinson cervical spine implants, iliac crest grafts, and the like are harvested and machined from single, continuous pieces of bone. The present invention provides methods for manufacture of autograft, allograft and xenograft implants by assembling such implants from smaller pieces of graft materials to form a larger graft implant product. As a result, increased utilization of valuable implant materials is achieved, thereby more effectively meeting the ever-increasing demands for graft implant materials. In addition, greater flexibility is achieved in the types and shapes of implant materials is achieved. Essentially, any implant piece that may be required may be formed according to the present invention, and orthopedic surgeons may be provided with kits of assemblable parts which may be formed in the course of a surgical procedure to precisely meet the needs of a given patient or procedure. In yet another aspect of this invention, existing graft products may be strengthened or reinforced by assembly of different types of graft materials into an assembled product. One example of such a reinforced product is a cancellous wedge, block, dowel or the like into which is inserted reinforcing pins of cortical bone. As a result, those skilled in the art will understand from this disclosure that different sections of tissue may be assembled to make a complete graft implant. Furthermore, this invention provides for the product of assembled implants comprising any one or combinations of allograft materials, autograft materials, xenograft materials, synthetic materials, metallic materials and the like. Furthermore, the assembled implants or the component pieces which are combined to form the assembled implant may be pretreated or treated after assembly to incorporate any desired biologically active or inert materials. Thus, for example, in an assembled bone dowel implant according to this invention, the assembled bone dowel comprises segments of cortical bone pinned to each other by means of cortical bone pins. Prior to assembly or after assembly, the graft materials are soaked, infused, impregnated, coated or otherwise treated with bone morphogenetic proteins (BMP's), antibiotics, growth factors, nucleic acids, peptides, and the like. [0030]
  • It will be appreciated that variously shaped wafers, blocks, rings, washer-shaped bone pieces and the like may be affixed to each other in any secure and biologically acceptable manner. Preferably, the assembled pieces of bone are affixed to each other by means of pins, screws, rods, interference fit, threaded fits, key-way fit, and the like made from cortical bone. These fixation pieces are machined in a CNC lathe or the like to appropriate dimensions and are then threaded into mating holes tapped in the pieces to be assembled, or are pressed into drilled holes through adjacent pieces to be assembled by a pneumatic press or the like. In this fashion, very strong and tightly fitted pieces of implant materials may be joined and implanted. The assembled pieces may first be machined to desired dimensions and shapes, prior to assembly, the assembled implant may be machined, or both. [0031]
  • As noted above, the implant according to this invention may comprise an assembled cancellous block, dowel or the like, harvested from the iliac crest or another suitable site. As is known in the art, due to the wafer-like structure of cancellous bone, such grafts have low load-bearing characteristics. There exist reports in the literature of instances of extrusion, expulsion or collapse of iliac crest wedges, Cloward Dowels, and the like when utilized, for example, in spinal fusions. Nonetheless, use of cancellous bone is preferable over use of cortical bone implants, since cancellous bone is more osteoconductive than cortical bone. According to this invention, a Cloward Dowel, iliac crest wedge, or cancellous bone block, dowel or the like is reinforced by insertion therein of cortical bone pins. According to the method of this invention, cortical implants may also be reinforced by insertion therein of cortical bone pins, including when an assembled implant is prepared comprising different segments of cortical bone, cancerous bone or both. Insertion of the reinforcing pins provides an implant with multiple load-bearing pillars. The pins may be made to protrude from the surface of the implant to engage with inferior, superior or both surfaces of bone between which the implant is inserted. Thus, in a spinal implant, pin protrusions may be employed to created contact between the implant and the vertebral bodies, thus preventing extrusion and reinforcing a secure fit of the implant between adjacent vertebrae. We have, surprisingly, found that cortical pins of about 4.5 mm in diameter may each support a load of up about 2700 newtons (160 Mpa). Thus, according to the method of this invention, multiple pins may be inserted into an implant to produce a load-bearing capacity of known proportions (e.g. 10,000 newtons by insertion of five pins). [0032]
  • A further advantage of this invention is that it permits use of tissues that are not currently amenable to standard autograft, allograft or xenograft harvesting and processing procedures, such as ribs, metatarsal bone and the like. In addition, usefull implant materials may be harvested and produced from otherwise un-useable donor tissues. In addition, due to the different nature of various segments of bone that are incorporated into the assembled, reinforced implants of this invention, various shaping methods aside from CNC lathe or other known procedures may be applied to different segments of the implant. Thus, a cancellous portion of bone implant may be compression molded, and then affixed to other portions of cortical or cancellous bone machined according to different or similar principles. In addition, due to the ability provided by this invention to assemble implant pieces, implants of unusual sizes and dimensions may be prepared and machined. Thus, implants of 100 mm in size could be machined, for example, for corpectomies, when otherwise bone stock for manufacture of such implant dimensions would not be available. [0033]
  • In view of the present disclosure, it will be appreciated that this invention provides a wide variety of assembled implants and implant parts: dowel shaped implants comprising assembled dowel segments, between about two to about ten segments, pinned together by one or more cortical bone pins. The assembled segments may closely abut each other or may be spread apart from each other. Such implants may be prepared by harvesting disks of cortical bone, drilling and optionally tapping holes therein, and inserting shafts of cortical pins therethrough, or therein, optionally by threading portions thereof for torquing into optionally tapped holes. The thus produced dowels may be tapered or have parallel sides. In addition, dowels which are harvested as a cross-section across the intramedullary canal of a long bone, as in U.S. Pat. No. 5,814,084, which might otherwise not pass production specifications, due to penetration of one outside wall into the intramedullary canal, may be completed by insertion therein of a cortical pin. Likewise, where a sidewall is otherwise considered to be too narrow, a “doughnut” of bone may be affixed to the sidewall by means of a cortical pin. A longer dowel may be prepared by affixing two dowels to each other. A posterior longitudinal interbody fusion implant (PLIF) may be machined from a single piece of cortical bone, or be assembled from two pieces of bone which are affixed to each other by means of a cortical pin. A bone screw may also be prepared according to the method of this invention by affixing multiple pieces of cortical bone to each other with a cortical bone pin, and then machining a thread on the exterior of the assembled bone pieces. It will further be appreciated from this disclosure that different portions of the assembled implant may be demineralized, to achieve a level of elasticity or compressibility not otherwise present in cortical or cancellous bone. Different portions of bone may also be retained on a shaft by means of a cotter-pin type device. [0034]
  • In addition to assembled implants, instruments may be conveniently prepared according to the methods of this invention which may be utilized for insertion of other implants. In one embodiment of this invention, therefore, an implant driver is produced wherein the driving mechanism itself is formed from assembled cortical pins which protrude into mating recesses in an implant device. The instrument may be torqued to adequate loads to induce implantation of spinal implants and the like. [0035]
  • In developing the various embodiments of the present invention, one technical issue of merit is the need to develop a process whereby donor tissue, whether hard or soft tissue, allograft or xenograft tissue, may be treated in such a fashion as to eliminate the possibility of cross contamination between tissue segments obtained from different sources. While it is possible to practice the present invention to advantage using tissue obtained from a single screened donor, the real economies of scale and commercially viable application of the present technology is best realized by implementation of an efficient and reliable tissue decontamination process. Ideally, the process is one which permits multiple segments of soft or hard tissue to be treated simultaneously so that a stock of materials for assemblage of implants according to the present invention is facilitated. Accordingly, on preferred method for treatment of tissue, disclosed in PCT publication WO 00/29037, the disclosure of which is hereby incorporated herein by reference as if fully set forth herein (and priority of the US Patent filings which gave rise to this application is hereby claimed for that purpose). Accordingly, in this aspect of the invention, a process is claimed whereby an assembled allograft or xenograft tissue implant is prepared by treating the tissue in a closed container in which different cleaning solutions are contacted with the implant segments, either before or after assembly and machining into the final implant form, either in the presence or absence of sonication, with rapid oscillation of pressure in the closed container, to achieve deep cleaning and interpenetration of cleaning solvents into the interstices of porous implants or tissues. Solutions including, but not limited to detergent solutions, peroxide solutions and the like are used in such procedure, and terminal sterilization with gamma irradiation, gaseous sterilants known in the art or other terminal sterilization procedures known in the art are employed to ensure safe implantation of the assembled implants according to this invention. [0036]
  • Referring now to FIG. 1, there is shown a flow-chart representing various elements that may be processed and assembled according to this invention. Cortical bone pins [0037] 100 are used to assemble a series of bone disks 101 into a pre-part 102 which is then machined into a series of final products: Threaded dowels, 103; small blocks 104; unique shapes, 105 such as a “wedding-cake” like shape wherein disks bearing threads are spaced apart from each other leaving voids 105′ into which additional materials may be inserted, with the disks retained in fixed relation to each other by means of the through pins 100; tapered dowels 106; screws 107; smooth cylinders 108; or large blocks 109. From this figure, it will be appreciated that a central concept relevant to the present invention is the ability to machine smaller parts of tissue, specifically bone tissue, such as cortical bone, cancellous bone, cortical-cancellous bone, portions of which may be demineralized (see, for example, U.S. Pat. No. 6,090,998, hereby incorporated herein by reference for this purpose), and assemble these portions of tissue using, preferably, cortical bone pins. The assembled tissue pieces may be machined prior to assembly, and then, upon assembly, a complete implant is ready for implantation. Alternatively, the tissue pieces may first be assembled, and the assembled pieces may then be machined into any desired final form. The order of assembly and machining will be determined by the specific forms of implant required for a particular application. In FIG. 1, a series of pre-machined tissue forms are disclosed, which may conveniently be included in a kit for use as needed by an orthopedic surgeon. Thus, for example, where a particular implant of specific dimensions is required, the surgeon is able to select pre-shaped implant segments to fill a particular geometric space and shape in the spine of an implant recipient. Numerous permutations and combinations of implant pieces for assembly are possible, based on the pre-machined assemblable implant pieces included in such a kit, and those skilled in the art will appreciate that the skilled orthopedic surgeon will be able to create implants as needed when supplied with such a kit. Thus, a preferred kit includes disks of bone, cortical bone, cancellous bone, allograft or xenograft, also referred to herein as “washers” or “doughnuts” such that a center hole is provided for press-fitting or screwing on of the disks to a cortical bone or synthetic or metallic shaft or pin. The disks may be demineralized, mineralized, or partially demineralized. Also desirable in such a kit are plugs of cortical bone, cancellous bone, or cortical-cancellous bone, including at least one through hole, and optionally more than one such through hole, for insertion of pins therethrough. Ovals, squares, rectangles and irregular shapes may also be provided in certain kits for specific applications. It will further be appreciated, based on the present disclosure, that inclusion of a bone paste, such as that disclosed in WO99/38543, hereby incorporated by reference, may be beneficial for filling any voids that remain, and to implant with the assembled implant, osteogenic material, (i.e. osteoconductive material, Osteoinductive material, or both, as well as material that assists in adhering the implant to the site of implantation). Further, a molded implant may be combined with the assembled implant of this invention. A preferred molded implant for orthopedic applications is disclosed in PCT publication WO 00/54821, the disclosure of which is hereby incorporated by reference.
  • With reference to FIG. 2, there is shown two machined bone pieces, T and Z each of which bear external threading X and holes Y into which pins A are inserted to form the assembled [0038] graft 200. As can be seen, the assembled graft 200 comprises a void, 201 into which osteogenic material may be inserted prior to or after implantation. The pins Y may be metal pins, but preferably are pins machined from cortical bone. This enables the entire implant to remodel into autogenous tissue over time, such as vertebral bone, when the implant 200 is inserted into the intervertebral space. The graft 201 is also shown with a groove, 202 in which a driver may be inserted to provide rotational torque for insertion of the implant. An instrument attachment hole, 203, is also provided, to ensure that the implant remains securely on the head of the driver means in the process of surgical implantation. Naturally, those skilled in the art will appreciate that the segments Z and T may be brought into close abutment with each other, thereby eliminating the space 201. In that event, the length of the pins A would be modified to prevent unnecessary protrusion, although in some applications, protrusion may be useful when driving the implant 200 into place. It will also be appreciated that the number of pins used, while represented as two in this figure, may be fewer or more in number, depending on the particular application, the extent of torsional or compressive loads, and the like anticipated to be experienced by the implant once in situ.
  • FIG. 3 shows an implant assembled from three principal segments F, D, and E, which are held together by [0039] pins 300. In this implant, the waffle-shaped structure of implant segment D is intended to represent the use of cancellous bone, which is abutted on either side by cortical bone, which forms segments F and E. The fully assembled implant is shown in FIG. 4, while FIGS. 5, 6 and 7 show end-on views, and cross sectional views A-A and B-B, respectively. Those skilled in the art will appreciate from this disclosure that segment F, segment D, or segment E may be demineralized according to methods known in the art. Likewise, all of these segments may be demineralized. Where a flexible implant is required, the implant may be assembled, and the entire implant may be demineralized.
  • FIG. 8 shows an embodiment of this invention wherein rectangular bone segments N and G are assembled into [0040] implant 900, shown in FIG. 9. Features 901 and 902 which comprises ridges, teeth, or other external features are machined into the superior and inferior faces of the implants in order to assist in retention of the implants once placed in situ.
  • FIGS. [0041] 10-14 show the assembly of elements J, H, and I into implant 1100, shown end-on, in cross-section A-A and B-B, in FIGS. 12-14, respectively. As can be seen, bone element H is shown with a waffle-like structure, to represent that this element may be cancellous bone, demineralized bone, a polymer composite, such as poly-L-Lactic acid, polyglycolic acid, or the like. Features 1101 and 1102 represent external grooves or teeth machined into the superior and inferior surfaces of the implant to assist in retention of the implant once placed in situ.
  • FIGS. [0042] 15-18 show the assembly of elements M, K, and L, each of which is a substantially cubic bone element, using pins 1500. FIG. 17 is a top view, showing cross section A-A, represented in FIG. 18, with the final assembled implant 1600 shown in FIG. 16.
  • FIG. 19 shows a “Wedding-Cake” design of an [0043] implant 1900 assembled from units A-C, pinned together by pins a-c. Void area 1901 is available for filling with osteogenic materials.
  • FIG. 20 shows implant [0044] 2000 which is an assembled Cervical Smith Robinson implant similar to that shown in PCT publication WO99/09914, hereby incorporated by reference, except that this implant is fashioned from a series of assembled bone pieces 2001 and machined into the desired final shape.
  • FIG. 21 shows implant [0045] 2100 assembled from two cortical bone pieces and one cancellous bone piece, and pinned together. The implant has an anterior height H1 which is smaller than posterior height H2, which permits retention of correct spinal lordosis upon implantation, for example, in a posterior lumbar intervertebral implant fixation procedure. Superior and inferior features 2101, 2102 prevent expulsion of the implant once place in situ.
  • FIG. 22 shows an [0046] implant 2200 assembled from a series of sub-implant pieces 2201. The implant may contain cancellous bone 2202 segments, as well as cortical bone 2203 segments and cortical bone pins 2204.
  • FIG. 23 shows the formation of a tapered [0047] dowel 2300 by assembling “doughnut” or “disk” or “washer” shaped bone pieces 2301 on a cortical bone shaft 2302 by using washer pieces of differing diameter. This figure only shows two disks, but a continuous dowel is formed by using disks of a graded diameter between each end of the cortical bone shaft 2302. In FIG. 24, FIG. 24A shows a bone dowel in which one sidewall of a bone dowel 2400 such as that disclosed and claimed in U.S. Pat. No. 5,814,084, hereby incorporated by reference, is “out of specifications” due to being too narrow or absent. This is repaired in FIG. 24B according to this embodiment of the invention by incorporation of an allograft or xenograft cortical bone pin 2401, to form a complete bone dowel. In this manner, valuable biological material which might otherwise be unusable for a particular application may be salvaged for use by employing the methodology of this invention.
  • In FIG. 25, a similar procedure for salvaging a [0048] dowel 2500 is shown whereby a pin 2501 is driven through the center of the dowel 2500 to reinforce the dowel longitudinally. Furthermore, where an endcap 2503 of the dowel is “out of spec” for being too narrow, the endcap is reinforced by press-fitting a cortical bone disk 2502 onto the end of the pin 2501.
  • In FIG. 26, a series of cancellous bone implants [0049] 2600 are reinforced by inclusion therein of a series of cortical pins 100. Each cortical pin of a 2 mm diameter has been found to support approximately 2000 newtons of axial compressive load. Accordingly, cancellous bone implants of essentially any desired height and compressive strength may be assembled in this manner by affixing several layers of cancellous bone with cortical bone pins. Naturally, based on this disclosure, those skilled in the art will appreciate that other materials may be included in such a “sandwich” of bone materials. The cancellous bone may be soaked in a solution containing growth factors, such as, but not limited to, bone morphogenetic proteins, fibroblast growth factors, platelet derived growth factor, cartilage derived morphogenetic proteins, stem cells, such as mesenchymal stem cells, osteoprogenitor cells, antibiotics, antuinflammatory compounds, anti-neoplastic compounds, nucleic acids, peptides, and the like. Those skilled in the art will also appreciate that layers of cortical bone may be included, layers of biocompatible synthetic polymers and the like may also be included in the stacked bone implant. Various shapes may also be built upon, using for example, circles, ellipses, squares, and the like, as necessary for a given application.
  • In a further aspect of the present invention, the assembled implant is driven by cortical pins to seat in an implant site, using a driver that engages cortical bone pins with purchase sites on the implant. Thus, for example, not meant to be limiting, the driver may comprise a handle with projecting cortical pins which engage with holes in the assembled allograft, thereby providing a site for torquing the implant into position. [0050]
  • In a further embodiment according to this invention, assembled cortical bone blocks, or cortical cancellous bone blocks are assembled in combination with wedged or pinned soft tissue, such as tendon, ligament, skin, collagen sheets, or the like, to create grafts similar to naturally occurring tissue sites, such as the bone-tendon interface found at the patella. Such combination implants permit reconstruction of sites such as the Anterior Cruciate Ligament (ACL) or Posterior Cruciate Ligament (PCL). According to this embodiment of the invention, a ligament or tendon or skin or collagen sheet membrane is pinned between adjacent blocks of cortical bone. Accordingly, various implants, such as known bone-tendon-bone implants which are in short supply may be supplanted by assemblage of an implant comprising assembled bone blocks, between which is fixed a ligamentous tissue, including but not limited to ligament, tendon, demineralized bone, and the like. Referring to FIG. 27, there is shown one example of this embodiment of the present invention in which an [0051] implant 2700 is assembled from a superior bone block 2701, an inferior bone block 2702 and a wedged flexible tissue, such as a ligament or tendon or portion of demineralized bone 2704, all of which are pinned together with cortical bone pins 2703 or other fixation means. Naturally, those skilled in the art will appreciate, based on this disclosure, that other shapes of bone blocks, such as rounded bone blocks, and other types of combinations of soft and hard tissues may be assembled according to this disclosure. However, the example of such an implant 2700 may be used instead of having to harvest a bone-tendon-bone implant from cadaveric knees, which tissue is in short supply.
  • Based on the present disclosure, those skilled in the art will further appreciate that the cortical bone pins disclosed herein may have features defined thereon for various applications. For example, not meant to be limiting, the shafts may contain stops, such that other pieces of bone inserted thereon can only travel a certain distance down the shaft before encountering the stop. The shaft may also contain through holes, to permit insertion of cotter pins or the like. Furthermore, the cortical bone shaft may be demineralized, mineralized, or partially demineralized. In one specific embodiment, the end of the cortical shaft contains a tapped cannulation a short distance into the longitudinal end of the shaft. In this way, a screw may be driven into the cannulation to retain elements inserted over the shaft in association with the shaft. To accommodate the screw, the screw end bearing the cannulation may be partially demineralized, such that upon insertion of the retention screw, the shaft end does not shatter, but expands to accommodate the increasing diameter of the screw as it is driven into the shaft. Naturally, in certain applications, it may be desirable for the cortical pins to be cannulated throughout the longitudinal length thereof. However, care should be taken that this does not unduly weaken the overall compressive or torsional strength of the assembled implant. This may be addressed by including pins that are not cannulated, along with pins that are cannulated. The cannulated pins may be used in combination with sutures or the like, in order to hold an implant in a specific orientation, until fusion with adjacent bone has proceeded to a sufficient extent for the implant to become stable without the sutures. [0052]
  • It will be appreciated from the present disclosure that implants that have classically been fabricated from metals may be fabricated by assembling bone pieces. In addition, a benefit of the assembled graft according to this invention is that the components of the assembled graft can be derived from various anatomical structures, thus circumventing limitations normally resulting from having to obtain a graft from a particular anatomical source of a particular donor. Not only can the components be sourced from different anatomies, but also different donors may yield various components for assembly into a unitary implant. The end result is maximization of the gift of donation and the preservation of precious tissue resources. As noted above, being able to pool tissues from different sources depends, to some significant extent, on the ability to treat portions of tissue harvested from different anatomies or donors so as to prevent any contamination of a recipient with pathological or antigenic agents. A further benefit of the present invention is that different implants with height or width limitations due to the anatomical structures from which the implant has been derived may be pinned together to form implants of essentially any desired dimensions. In this fashion, an inventory of building blocks in combination with the appropriate assembly pins, threaded or unthreaded, is useful to provide implants of essentially any dimensions in the course of given surgical procedure. According to this embodiment of the invention, for example, a cervical Smith-Robinson (CSR) t of any desired height may be produced by attaching two or more existing CSR implants together with cortical bone pins. This is accomplished preferably using two machined CSR's of known height such that when added together, the desired overall height is achieved. The two CSR's are stacked and drill holes are machined through the CSR bodies, following which the cortical bone pins are press-fit through the thus machined holes. Preferably, the diameter of the pins is slightly greater than the diameter of the drilled holes, such that a tight press-fit is achieved. [0053]
  • From the present disclosure, it will further be appreciated that implants according to this invention may be assembled in the operating room by a surgeon, using pre-formed implant pieces, from a kit. It will further be appreciated that the assembled implant pieces may be adhered to each other using any of a number of biologically acceptable glues, pastes and the like. In one such embodiment, the assembled implant pieces are assembled using a polymethyl-methacrylate glue, a cyanoacrylate glue, or any other adhesive known in the art, so long as the use of such an adhesive is confirmed to be nontoxic. It will further be appreciated that in forming the assembled grafts according to the present invention, it is acceptable, although not required, for interlocking features to be included on abutting faces of implant segments to be assembled together. Where such features are included, it is preferred for the adjacent features to be complementary, such that a protrusion on a first surface is met by a compatible indentation in the abutting surface. Such abutting features assist to provide torsional and structural strength to the assembled implant, and to relieve a measure of stress on the cortical bone pins used to assemble the implant. [0054]
  • According to U.S. Pat. No. 6,025,538, an elaborate system is disclosed for ensuring that a bore is provided in mating surfaces of a composite implant such that the bore is angularly aligned with respect to mating surfaces so as to be oblique to the plane of each mating surface. This is not required according to the present invention. [0055]
  • According to U.S. Pat. No. 5,899,939, layers of bone are juxtaposed, but no mechanical fixation of the various layers to each other is provided for, such as the cortical bone pins disclosed herein. [0056]
  • With respect to PCT Publication WO 00/40177 and the priority US Patent filings, Ser. Nos. 09/225,299, filed Jan. 5, 1999, 09/286,975, filed Apr. 6, 1999, and 09/368,263, filed Aug. 3, 1999, it is believed that there exists interfering subject matter claimed in the present and in those applications. As to the interfering subject matter, claims are presented herein which are believed to constitute the basis for initiation of an interference proceeding in the United States, and initiation of such a proceeding is hereby specifically elicited, in which it is believed that the present applicants are entitled to priority. As to the non-interfering subject matter disclosed and claimed herein, the right to file one or more continuation or divisional applications free of interfering subject matter is reserved. [0057]
  • Having generally described this invention, including the methods of manufacture and use thereof, including the best mode thereof, those skilled in the art will appreciate that a large number of variations on the principles described herein may be accomplished. Thus, the specifics of this description and the attached drawings should not be interpreted to limit the scope of this invention to the specifics thereof. Rather, the scope of this invention should be evaluated with reference to the claims appended hereto. [0058]

Claims (60)

What is claimed is:
1. A method for manufacture of autograft, allograft and xenograft implants which comprises assembling such implants from smaller pieces of graft materials to form a larger graft implant product.
2. A kit comprising assemblable parts of autograft, allograft and xenograft implants for assembling such implants from smaller pieces of graft materials to form a larger graft implant product which may be formed in the course of a surgical procedure to precisely meet the needs of a given patient or procedure.
3. A method of strengthening or reinforcing autograft, allograft and xenograft implants which comprises assembling such implants from smaller pieces of graft materials to form a larger graft implant product.
4. The method of
claim 3
wherein the reinforced product is cancellous bone into which is inserted reinforcing material.
5. The method according to
claim 4
wherein said reinforcing material comprises cortical bone.
6. A graft implant comprising any one or combinations of allograft materials, autograft materials, xenograft materials, synthetic materials, metallic materials assembled into a an assembled implant which is assembled into a single graft by use of reinforcing material to hold the constituent pieces of graft materials together.
7. The graft implant according to
claim 6
wherein said reinforcing material comprises cortical bone.
8. The graft implant according to
claim 6
wherein the assembled implant is pretreated or treated after assembly to incorporate biologically active or inert materials.
9. An implant comprising segments of cortical bone, cancellous bone, corticalcancellous bone, or combinations thereof pinned to each other by means of cortical bone pins, wherein, prior to assembly or after assembly, the graft materials are soaked, infused, impregnated, coated or otherwise treated with bone morphogenetic proteins (BMP's), antibiotics, growth factors, nucleic acids, peptides, or combinations thereof.
10. The implant according to
claim 6
comprising an assembled cancellous block, or dowel, harvested from the iliac crest or another suitable site to form a Cloward Dowel, iliac crest wedge, or cancellous bone block, dowel, reinforced by insertion therein of cortical bone pins.
11. The implant according to
claim 6
comprising a cortical bone implant reinforced by insertion therein of at least one cortical bone pin.
12. The implant according to
claim 6
comprising an assembled implant comprising different segments of cortical bone, cancellous bone or both.
13. The implant according to
claim 6
comprising an assembled implant comprising different segments of cortical bone, cancellous bone, demineralized cortical or cancellous bone, synthetic material, and combinations thereof.
14. The implant according to
claim 13
wherein insertion of reinforcing pins provides an implant with multiple load-bearing pillars.
15. The implant according to
claim 14
wherein said pins protrude from the surface of the implant to engage with inferior, superior or both surfaces of bone between which the implant is inserted.
16. The implant according to
claim 15
which is a spinal implant.
17. The implant according to
claim 15
comprising a cancellous portion of bone implant that has been compression molded, and then affixed to other portions of cortical or cancellous bone machined according to different or similar principles.
18. The implant according to
claim 6
in the form of a tapered dowel.
19. A method of repairing a bone implant which comprises insertion therein of at least one cortical bone pin.
20. The method according to
claim 19
which further comprises affixing a piece of bone to an existing bone implant by affixing said piece of bone to said cortical bone pin.
21. The method according to
claim 1
for making an instrument for insertion of other implants.
22. The method according to
claim 21
which is an implant driver.
23. A method for salvaging an implant that does not manufacturing specifications which comprises insertion of at least one cortical bone pin at a site to reinforce said site such that in combination with said at least one cortical bone pin, said implant meets manufacturing specifications.
24. An assembled implant comprising a first bone segment pinned to a second bone segment with a flexible tissue affixed between said first bone segment and said second bone segment.
25. The assembled implant according to
claim 24
wherein said first and second bone segments are affixed to each other by means of at least one cortical bone pin.
26. A composite bone graft, comprising: a plurality of bone portions layered to form a graft unit, and one or more biocompatible connectors for holding together said graft unit, said biocompatible connectors do not comprise an adhesive.
27. A composite bone graft comprising:
two or more distinct bone portions, and one or more biocompatible connectors,
wherein said biocompatible connectors hold together said two or more bone portions to form said composite bone graft, said biocompatible connectors do not comprise an adhesive.
28. A composite bone graft comprising two or more connected, distinct, bone portions, said connected, distinct, bone portions do not comprise an adhesive.
29. A composite bone graft comprising three or more connected, distinct, bone portions, said connected, distinct, bone portions are not connected with an adhesive.
30. The composite bone graft of any one of
claim 26
, wherein said bone portions are selected from the group consisting of: cortical bone and cancellous bone.
31. A composite bone graft, comprising:
a first bone portion;
a second bone portion;
a third bone portion, said first, second and third bone portions are layered to form
a graft unit; and
one or more biocompatible connectors for holding together said graft unit, said biocompatible connectors do not comprise an adhesive.
32. A composite bone graft, comprising:
a first cortical bone portion;
a second cortical bone portion;
a cancellous bone portion disposed between said first cortical bone portion and
said second cortical bone portion to form a graft unit; and
one or more biocompatible connectors for holding together said graft unit, said
biocompatible connectors do not comprise an adhesive.
33. A composite bone graft, comprising:
a first cortical bone portion;
a second cortical bone portion provided on said first cortical bone to form a graft unit; and one or more biocompatible connectors, connecting said graft unit, said biocompatible connectors do not comprise an adhesive.
34. A composite bone graft, comprising:
a first bone portion;
a second bone portion provided on said first bone portion to form a graft unit; and
one or more biocompatible connectors for holding together said graft unit, said biocompatible connectors do not comprise an adhesive.
35. A composite bone graft, comprising: a plurality of cortical bone portions layered to form a graft unit, and one or more biocompatible connectors for holding together said graft unit, said biocompatible connectors do not comprise an adhesive.
36. A composite bone graft, comprising:
one or more cortical bone portions layered to form a first unit;
one or more cortical bone portions layered to form a second unit;
one or more cancellous bone portions layered to form a third unit; said
third unit disposed between said first unit and said second unit to form a graft unit; and
one or more biocompatible connectors for holding together said graft unit, said biocompatible connectors do not comprise an adhesive.
37. A composite bone graft, comprising:
a graft unit having one or more through-holes configured to accommodate one or more pins, said graft unit comprising:
two or more bone portions layered to form said graft unit, and
one or more pins connecting bone portions of said graft unit, said composite bone graft does not comprise an adhesive.
38. The composite bone graft of
claim 37
, said one or more pins comprising one or more biocompatible materials selected from the group consisting of: cortical bone; stainless steel; titanium; cobalt-chromium-molybdenum alloy; a plastic of one or more members selected from the group consisting of: nylon, polycarbonate, polypropylene, polyacetal, polyethylene, and polysulfone; and one or more bioabsorbable polymers.
39. The composite bone graft of
claim 38
, said two or more bone portions comprising:
a first bone portion comprising one or more cortical bone portions;
a second bone portion comprising one or more cortical bone portions; and
a third bone portion comprising one or more cancellous bone portions disposed between said first bone portion and said second bone portion to form said graft unit.
40. The composite bone graft of
claim 38
, said one or more pins comprise one or more cortical bone pins.
41. A composite bone graft, comprising:
a graft unit having one or more through-holes configured to accommodate one or more pins, said graft unit comprising:
a first plate-like cortical bone portion;
a second plate-like cortical bone portion;
a plate-like cancellous bone portion disposed between said first plate-like cortical bone portion and said second plate-like cortical bone portion to form said graft unit, and
one or more cortical bone pins connecting bone portions of said graft unit, said composite bone graft does not comprise an adhesive.
42. A composite bone graft, comprising:
a graft unit having one or more through-holes configured to accommodate one or more pins, said graft unit comprising:
a first plate-like bone portion;
a second plate-like bone portion provided on said first plate-like bone to form said graft unit, and
one or more bone pins for holding together said graft unit, said composite bone graft does not comprise an adhesive.
43. A method for restoring vertical support of the posterior column, comprising implanting a composite bone graft comprising two or more distinct bone portions held together by one or more biocompatible connectors, at a site in a patient.
44. A composite bone graft, comprising:
a graft unit having one or more through-holes configured to accommodate one or more pins, said graft unit comprising:
two or more bone portions layered to form said graft unit,
one or more pins connecting said bone portions of said graft unit, and
a centrally located through-hole disposed perpendicular to interfaces of layered bone portions of said graft unit, said composite bone graft does not comprise an adhesive.
45. A method for making a composite bone graft for implantation into a patient, comprising:
stacking two or more parallel bone planks to form a graft unit;
providing one or more through-holes in said graft unit perpendicular to I interfaces of bone planks;
connecting said two or more parallel bone planks of said graft unit with one or more pins disposed in said one or more through-holes to form a pinned graft unit; and
shaping said pinned graft unit to form said composite bone graft.
46. A composite bone graft, comprising:
one or more cortical bone portions layered to form a first unit;
one or more cortical bone portions layered to form a second unit;
one or more demineralized cancellous bone portions layered to form a third unit; said third unit disposed between said first unit and said second unit to form a graft unit; and
one or more biocompatible connectors for holding together said graft unit, said biocompatible connectors do not comprise an adhesive.
47. A composite bone graft, comprising:
one or more cortical bone portions 1 ayered to form a first unit;
one or more cortical bone portions layered to form a second unit;
one or more demineralized cortical bone portions layered to form a third unit; said third unit disposed between said first unit and said second unit to form a graft unit; and
one or more biocompatible connectors for holding together said graft unit, said biocompatible connectors do not comprise an adhesive.
49. A composite bone graft, comprising:
a first unit comprising one or more bone portions;
a second unit connected to said first unit, comprising one or more bone portions; and
one or more biocompatible connectors for connecting said first unit and said second unit, wherein said first unit and said second unit are not in physical contact and define a void therebetween, said biocompatible connectors do not comprise an adhesive.
50. A composite bone graft, comprising: two or more distinct interlocking cortical bone portions.
51. A composite bone graft, comprising: two or more distinct adjacent bone portions where adjacent bone portions are configured to interlock with each other.
52. A composite bone graft, comprising: two or more distinct adjacent bone portions where adjacent bone portions are configured to interlock with each other, and one or more locking pins partially or entirely traversing a dimension of said composite bone graft.
53. A composite bone graft, comprising: two or more distinct adjacent bone portions where adjacent bone portions are configured to interlock with each other to form an interlocked graft unit, said interlocked graft unit is self-locking.
54. A composite bone graft, comprising: two or more distinct adjacent bone portions, said distinct adjacent bone portions comprising complementary peg-like protrusions and corresponding depressions, said protrusions and depressions interlock to provide an interlocking fit between said adjacent bone portions.
55. A composite bone graft, consisting essentially of: two or more distinct adjacent bone portions where adjacent bone portions are configured to interlock with each other.
56. A composite bone graft, consisting essentially of: two or more distinct adjacent bone portions, said distinct adjacent bone portions comprising complementary peg-like protrusions and corresponding depressions, said protrusions and depressions interlock to provide an interlocking fit between said adjacent bone portions.
57. A composite bone graft, consisting essentially of: two or more distinct adjacent bone portions, said distinct adjacent bone portions comprising complementary peg-like protrusions and corresponding depressions, said protrusions and depressions interlock to provide an interlocking fit between said adjacent bone portions; and one or more locking pins partially or entirely traversing a dimension of said composite bone graft.
58. A composite bone graft, consisting essentially of: two or more distinct adjacent bone portions where adjacent bone portions are configured to interlock with each other, and one or more locking pins partially or entirely traversing a dimension of said composite bone graft.
59. A composite bone graft, comprising: two or more distinct adjacent bone portions where adjacent bone portions are configured to interlock with each other to form an interlocked graft unit, and one or more locking pins traversing a dimension of said composite bone graft, to lock said interlocked graft unit.
60. A composite bone graft, comprising: two or more distinct interlocking bone portions, said interlocking bone portions are self-locking.
61. A composite bone graft, comprising: two or more distinct interlocking bone portions, and one or more locking pins to lock said interlocking bone portions.
US09/782,594 1997-08-27 2001-02-12 Assembled implant Abandoned US20010031254A1 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
PCT/US2001/004510 WO2001078798A1 (en) 2000-02-10 2001-02-12 Assembled implant
US09/782,594 US20010031254A1 (en) 1998-11-13 2001-02-12 Assembled implant
US09/941,154 US20020106393A1 (en) 2000-02-10 2001-08-27 Assembled implant, including mixed-composition segment
US09/942,537 US6893462B2 (en) 2000-01-11 2001-08-29 Soft and calcified tissue implants
PCT/US2001/027683 WO2002064180A1 (en) 2000-02-10 2001-09-07 Assembled implant, including mixed-composition segment
JP2002563972A JP2005510258A (en) 2001-02-12 2001-09-07 An assembled implant comprising a mixed composition segment
AU2001288840A AU2001288840B2 (en) 2000-02-10 2001-09-07 Assembled implant, including mixed-composition segment
EP01968600A EP1359950A1 (en) 2000-02-10 2001-09-07 Assembled implant, including mixed-composition segment
CA2437763A CA2437763C (en) 2001-02-12 2001-09-07 Assembled implant, including mixed-composition segment
US10/387,322 US20040115172A1 (en) 1998-11-13 2002-12-23 Assembled implant, including mixed-composition segment
US11/007,525 US7513910B2 (en) 2000-01-11 2004-12-08 Soft and calcified tissue implants
US11/007,679 US20050119744A1 (en) 2000-01-11 2004-12-08 Soft and calcified tissue implants
US12/260,898 US20110301707A1 (en) 2000-01-11 2008-10-29 Soft and Calcified Tissue Implants
US12/690,074 US9763787B2 (en) 1997-08-27 2010-01-19 Assembled implant
US13/593,218 US20120323324A1 (en) 2000-01-11 2012-08-23 Soft and calcified tissue implants
US15/709,456 US20180071102A1 (en) 1998-11-13 2017-09-19 Assembled implant

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US09/191,232 US6482584B1 (en) 1998-11-13 1998-11-13 Cyclic implant perfusion cleaning and passivation process
US09/378,527 US6652818B1 (en) 1998-11-13 1999-08-20 Implant sterilization apparatus
US09/390,174 US6613278B1 (en) 1998-11-13 1999-09-07 Tissue pooling process
US18162200P 2000-02-10 2000-02-10
US09/782,594 US20010031254A1 (en) 1998-11-13 2001-02-12 Assembled implant

Related Parent Applications (7)

Application Number Title Priority Date Filing Date
US09/191,132 Continuation-In-Part US6947398B1 (en) 1998-11-13 1998-11-13 Addressing scheme for a multimedia mobile network
US09/191,232 Continuation-In-Part US6482584B1 (en) 1997-08-27 1998-11-13 Cyclic implant perfusion cleaning and passivation process
US09/370,194 Continuation-In-Part US6223534B1 (en) 1998-08-13 1999-08-09 Engine-braking arrangement for an internal combustion engine with an exhaust-gas turbocharger
US09/378,527 Continuation-In-Part US6652818B1 (en) 1997-08-27 1999-08-20 Implant sterilization apparatus
US09/390,174 Continuation-In-Part US6613278B1 (en) 1997-08-27 1999-09-07 Tissue pooling process
US09/750,192 Continuation-In-Part US20010018614A1 (en) 1999-03-16 2000-12-28 Implants for orthopedic applications
US09/750,192 Continuation US20010018614A1 (en) 1999-03-16 2000-12-28 Implants for orthopedic applications

Related Child Applications (7)

Application Number Title Priority Date Filing Date
US09/481,319 Continuation-In-Part US6497726B1 (en) 1998-11-13 2000-01-11 Materials and methods for improved bone tendon bone transplantation
US09/941,154 Continuation US20020106393A1 (en) 1998-11-13 2001-08-27 Assembled implant, including mixed-composition segment
US09/941,154 Continuation-In-Part US20020106393A1 (en) 1998-11-13 2001-08-27 Assembled implant, including mixed-composition segment
US09/942,537 Continuation-In-Part US6893462B2 (en) 2000-01-11 2001-08-29 Soft and calcified tissue implants
US09/942,537 Continuation US6893462B2 (en) 2000-01-11 2001-08-29 Soft and calcified tissue implants
US11/007,525 Continuation US7513910B2 (en) 2000-01-11 2004-12-08 Soft and calcified tissue implants
US12/690,074 Continuation US9763787B2 (en) 1997-08-27 2010-01-19 Assembled implant

Publications (1)

Publication Number Publication Date
US20010031254A1 true US20010031254A1 (en) 2001-10-18

Family

ID=46257505

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/782,594 Abandoned US20010031254A1 (en) 1997-08-27 2001-02-12 Assembled implant
US12/690,074 Expired - Fee Related US9763787B2 (en) 1997-08-27 2010-01-19 Assembled implant
US15/709,456 Abandoned US20180071102A1 (en) 1998-11-13 2017-09-19 Assembled implant

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/690,074 Expired - Fee Related US9763787B2 (en) 1997-08-27 2010-01-19 Assembled implant
US15/709,456 Abandoned US20180071102A1 (en) 1998-11-13 2017-09-19 Assembled implant

Country Status (1)

Country Link
US (3) US20010031254A1 (en)

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010041941A1 (en) * 2000-03-22 2001-11-15 Boyer Michael L. Multipiece implants formed of bone material
US20030004575A1 (en) * 1999-06-23 2003-01-02 Sulzer Spine-Tech Inc. Expandable fusion device and method
US20030028197A1 (en) * 2000-07-06 2003-02-06 Hanson David A. Bone implants and methods
US20030078661A1 (en) * 2001-09-27 2003-04-24 Houfburg Rodney L. Modular spinal fusion device
US20030093153A1 (en) * 2001-09-28 2003-05-15 Banick Christopher M. Skeletal stabilization implant
US20040088055A1 (en) * 2001-02-16 2004-05-06 Hanson David A Bone implants and methods
US6740091B2 (en) 1997-03-06 2004-05-25 Sulzer Spine-Tech Inc. Lordotic spinal implant
US6749636B2 (en) 2001-04-02 2004-06-15 Gary K. Michelson Contoured spinal fusion implants made of bone or a bone composite material
US20040249471A1 (en) * 2003-06-05 2004-12-09 Bindseil James J. Fusion implant and method of making same
US20040249464A1 (en) * 2003-06-05 2004-12-09 Bindseil James J. Bone implants and methods of making same
US20040249463A1 (en) * 2003-06-05 2004-12-09 Bindseil James J. Bone strip implants and method of making same
US20040258732A1 (en) * 2001-11-27 2004-12-23 Yasuo Shikinami Implant material and process for producing the same
US20050065607A1 (en) * 2003-09-24 2005-03-24 Gross Jeffrey M. Assembled fusion implant
US20050065613A1 (en) * 2003-09-24 2005-03-24 Gross Jeffrey M. Reinforced fusion implant
US6890355B2 (en) 2001-04-02 2005-05-10 Gary K. Michelson Artificial contoured spinal fusion implants made of a material other than bone
US20050229323A1 (en) * 2004-04-20 2005-10-20 Mills C R Process and apparatus for treating implants comprising soft tissue
US20050234460A1 (en) * 2004-02-13 2005-10-20 Drew Miller Soft tissue repair apparatus and method
US6989031B2 (en) 2001-04-02 2006-01-24 Sdgi Holdings, Inc. Hemi-interbody spinal implant manufactured from a major long bone ring or a bone composite
US20060200235A1 (en) * 2005-03-04 2006-09-07 Regeneration Technologies, Inc. Assembled bone-tendon-bone grafts
US20060212036A1 (en) * 2005-03-04 2006-09-21 Regeneration Technologies, Inc. Bone block assemblies and their use in assembled bone-tendon-bone grafts
US20060228252A1 (en) * 2004-04-20 2006-10-12 Mills C R Process and apparatus for treating implants comprising soft tissue
US20060229722A1 (en) * 2005-03-04 2006-10-12 Bianchi John R Adjustable and fixed assembled bone-tendon-bone graft
US20060271192A1 (en) * 2005-03-04 2006-11-30 Olsen Raymond E Self Fixing Assembled Bone-Tendon-Bone Graft
US20070208424A1 (en) * 2003-09-02 2007-09-06 Dominique Messerli Multipiece allograft implant
US20080058953A1 (en) * 2006-08-31 2008-03-06 Scarborough Nelson L Demineralized cancellous strip DBM graft
US20090075005A1 (en) * 2005-02-10 2009-03-19 Hideki Nagareo Transfer-Type Pressure Sensitive Adhesive Tape
WO2009048314A1 (en) * 2007-10-08 2009-04-16 Sureshan Sivananthan A scalable matrix for the in vivo cultivation of bone and cartilage
US20090312842A1 (en) * 2008-06-16 2009-12-17 Predrag Bursac Assembled Cartilage Repair Graft
US7682392B2 (en) 2002-10-30 2010-03-23 Depuy Spine, Inc. Regenerative implants for stabilizing the spine and devices for attachment of said implants
US20100172954A1 (en) * 2004-04-28 2010-07-08 Biomet Manufacturing Corp. Irradiated implantable bone material
WO2010093955A1 (en) * 2009-02-12 2010-08-19 Osteotech,Inc. Segmented delivery system
US7815926B2 (en) 2005-07-11 2010-10-19 Musculoskeletal Transplant Foundation Implant for articular cartilage repair
US7837740B2 (en) 2007-01-24 2010-11-23 Musculoskeletal Transplant Foundation Two piece cancellous construct for cartilage repair
US7846207B2 (en) 2003-02-06 2010-12-07 Synthes Usa, Llc Intervertebral implant
US7879103B2 (en) 2005-04-15 2011-02-01 Musculoskeletal Transplant Foundation Vertebral disc repair
US7901457B2 (en) * 2003-05-16 2011-03-08 Musculoskeletal Transplant Foundation Cartilage allograft plug
USRE42208E1 (en) 2003-04-29 2011-03-08 Musculoskeletal Transplant Foundation Glue for cartilage repair
US7959683B2 (en) 2006-07-25 2011-06-14 Musculoskeletal Transplant Foundation Packed demineralized cancellous tissue forms for disc nucleus augmentation, restoration, or replacement and methods of implantation
US8202539B2 (en) 2007-10-19 2012-06-19 Warsaw Orthopedic, Inc. Demineralized bone matrix compositions and methods
US8292957B2 (en) 2000-04-19 2012-10-23 Warsaw Orthopedic, Inc. Bone hemi-lumbar arcuate interbody spinal fusion implant having an asymmetrical leading end
US8292968B2 (en) 2004-10-12 2012-10-23 Musculoskeletal Transplant Foundation Cancellous constructs, cartilage particles and combinations of cancellous constructs and cartilage particles
US8323340B2 (en) 2000-04-19 2012-12-04 Warsaw Orthopedic, Inc. Artificial hemi-lumbar interbody spinal implant having an asymmetrical leading end
US8328876B2 (en) 2003-12-31 2012-12-11 Warsaw Orthopedic, Inc. Bone matrix compositions and methods
US8337537B2 (en) * 2001-07-16 2012-12-25 Depuy Products, Inc. Device from naturally occurring biologically derived materials
US8343220B2 (en) 1999-05-05 2013-01-01 Warsaw Orthopedic, Inc. Nested interbody spinal fusion implants
US8343219B2 (en) 2007-06-08 2013-01-01 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US8357384B2 (en) 2007-06-15 2013-01-22 Warsaw Orthopedic, Inc. Bone matrix compositions and methods
US8409288B2 (en) 2006-02-15 2013-04-02 Ldr Medical Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US8435551B2 (en) 2007-03-06 2013-05-07 Musculoskeletal Transplant Foundation Cancellous construct with support ring for repair of osteochondral defects
US20130173013A1 (en) * 1999-01-05 2013-07-04 Lifenet Health Composite Bone Graft, Method of Making and Using the Same
US8540774B2 (en) 2007-11-16 2013-09-24 DePuy Synthes Products, LLC Low profile intervertebral implant
US8642061B2 (en) 2007-06-15 2014-02-04 Warsaw Orthopedic, Inc. Method of treating bone tissue
US8697139B2 (en) 2004-09-21 2014-04-15 Frank M. Phillips Method of intervertebral disc treatment using articular chondrocyte cells
US8734525B2 (en) 2003-12-31 2014-05-27 Warsaw Orthopedic, Inc. Osteoinductive demineralized cancellous bone
US8901078B2 (en) 2011-07-28 2014-12-02 Harbor Medtech, Inc. Crosslinked human or animal tissue products and their methods of manufacture and use
US8911759B2 (en) 2005-11-01 2014-12-16 Warsaw Orthopedic, Inc. Bone matrix compositions and methods
KR101479812B1 (en) * 2011-12-30 2015-01-08 고려대학교 산학협력단 Washer type connector for spinal fusion and pedicle screw using the same
US9039774B2 (en) 2012-02-24 2015-05-26 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US9039775B2 (en) 2003-03-31 2015-05-26 DePuy Synthes Products, Inc. Spinal fixation plates
US9044337B2 (en) 2009-12-31 2015-06-02 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US9078765B2 (en) 2001-07-13 2015-07-14 Ldr Medical Vertebral cage device with modular fixation
US9192419B2 (en) 2008-11-07 2015-11-24 DePuy Synthes Products, Inc. Zero-profile interbody spacer and coupled plate assembly
US9220604B2 (en) 2010-12-21 2015-12-29 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US9241809B2 (en) 2010-12-21 2016-01-26 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
CN105266929A (en) * 2015-11-05 2016-01-27 同济大学 Mountable allogenous cortical bone axial fusion device
US9333082B2 (en) 2007-07-10 2016-05-10 Warsaw Orthopedic, Inc. Delivery system attachment
US9463091B2 (en) 2009-09-17 2016-10-11 Ldr Medical Intervertebral implant having extendable bone fixation members
US9554920B2 (en) 2007-06-15 2017-01-31 Warsaw Orthopedic, Inc. Bone matrix compositions having nanoscale textured surfaces
US9572681B2 (en) 2002-02-19 2017-02-21 DePuy Synthes Products, Inc. Intervertebral implant
US9597194B2 (en) 2005-09-23 2017-03-21 Ldr Medical Intervertebral disc prosthesis
US9701940B2 (en) 2005-09-19 2017-07-11 Histogenics Corporation Cell-support matrix having narrowly defined uniformly vertically and non-randomly organized porosity and pore density and a method for preparation thereof
US9867718B2 (en) 2014-10-22 2018-01-16 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US10077420B2 (en) 2014-12-02 2018-09-18 Histogenics Corporation Cell and tissue culture container
US10512548B2 (en) 2006-02-27 2019-12-24 DePuy Synthes Products, Inc. Intervertebral implant with fixation geometry

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3733099B1 (en) * 2011-02-28 2022-08-31 DePuy Synthes Products, Inc. Modular tissue scaffolds
US9468536B1 (en) 2011-11-02 2016-10-18 Nuvasive, Inc. Spinal fusion implants and related methods
EP2869779B1 (en) 2012-07-03 2019-02-27 KUKA Deutschland GmbH Surgical instrument arrangement
US10660685B2 (en) * 2014-11-14 2020-05-26 Warsaw Orthopedic, Inc. Bone graft materials, devices and methods of use
US11052175B2 (en) 2015-08-19 2021-07-06 Musculoskeletal Transplant Foundation Cartilage-derived implants and methods of making and using same
US10751196B1 (en) 2017-10-24 2020-08-25 Omnia Medical, LLC Multi-material multi-component spinal implant
US11766339B1 (en) 2017-10-24 2023-09-26 Omnia Medical, LLC Multi-material multi-component spinal implant
WO2021035005A1 (en) * 2019-08-21 2021-02-25 Lifenet Health Transforaminal posterior atraumatic lumbar bio-implant
KR102370651B1 (en) * 2020-02-06 2022-03-04 주식회사 지비에스커먼웰스 Structure of porous spinal implant
EP4193967A1 (en) * 2021-12-08 2023-06-14 PR Spine GbR Modular support cage

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950296A (en) * 1988-04-07 1990-08-21 Mcintyre Jonathan L Bone grafting units
US4969909A (en) * 1987-10-27 1990-11-13 Barouk Louis S Articular prosthetic implant with temporary fixing means
US5084051A (en) * 1986-11-03 1992-01-28 Toermaelae Pertti Layered surgical biocomposite material
US5112354A (en) * 1989-11-16 1992-05-12 Northwestern University Bone allograft material and method
US5147367A (en) * 1991-02-22 1992-09-15 Ellis Alfred B Drill pin guide and method for orthopedic surgery
US5180388A (en) * 1990-06-28 1993-01-19 American Cyanamid Company Bone pinning system
US5192327A (en) * 1991-03-22 1993-03-09 Brantigan John W Surgical prosthetic implant for vertebrae
US5571190A (en) * 1993-08-20 1996-11-05 Heinrich Ulrich Implant for the replacement of vertebrae and/or stabilization and fixing of the spinal column
US5676700A (en) * 1994-10-25 1997-10-14 Osteonics Corp. Interlocking structural elements and method for bone repair, augmentation and replacement
US5716358A (en) * 1994-12-02 1998-02-10 Johnson & Johnson Professional, Inc. Directional bone fixation device
US5814084A (en) * 1996-01-16 1998-09-29 University Of Florida Tissue Bank, Inc. Diaphysial cortical dowel
US5865848A (en) * 1997-09-12 1999-02-02 Artifex, Ltd. Dynamic intervertebral spacer and method of use
US5899939A (en) * 1998-01-21 1999-05-04 Osteotech, Inc. Bone-derived implant for load-supporting applications
US5989289A (en) * 1995-10-16 1999-11-23 Sdgi Holdings, Inc. Bone grafts
US6025538A (en) * 1998-11-20 2000-02-15 Musculoskeletal Transplant Foundation Compound bone structure fabricated from allograft tissue
US6090998A (en) * 1997-10-27 2000-07-18 University Of Florida Segmentally demineralized bone implant
US6146420A (en) * 1997-12-10 2000-11-14 Sdgi Holdings, Inc. Osteogenic fusion device
US6200347B1 (en) * 1999-01-05 2001-03-13 Lifenet Composite bone graft, method of making and using same
US20010039458A1 (en) * 2000-03-22 2001-11-08 Boyer Michael L. Implants formed of coupled bone
US6398786B1 (en) * 1997-10-09 2002-06-04 Nenad Sesic Strain-inducing conical screw for stimulating bone transplant growth
US6494883B1 (en) * 2000-05-26 2002-12-17 Bret A. Ferree Bone reinforcers
US20030036800A1 (en) * 2000-07-13 2003-02-20 Meredith Thomas L. Composite bone material implant and method
US20030077825A1 (en) * 1994-07-22 2003-04-24 Bhatnagar Rajendra S. Structures useful for bone engineering and methods
US6554863B2 (en) * 1998-08-03 2003-04-29 Synthes Intervertebral allograft spacer
US6986788B2 (en) * 1998-01-30 2006-01-17 Synthes (U.S.A.) Intervertebral allograft spacer
US20060106460A1 (en) * 2001-05-03 2006-05-18 Synthes (Usa) Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US20060241763A1 (en) * 1998-08-03 2006-10-26 Synthes (Usa) Multipiece bone implant
US20070016295A1 (en) * 2000-09-19 2007-01-18 Boyd Lawrence M Reinforced molded implant formed of cortical bone

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3291640A (en) 1963-05-27 1966-12-13 Chemclean Corp Ultrasonic cleaning process
US4193818A (en) 1978-05-05 1980-03-18 American Sterilizer Company Combined ultrasonic cleaning and biocidal treatment in a single pressure vessel
US4294753A (en) 1980-08-04 1981-10-13 The Regents Of The University Of California Bone morphogenetic protein process
DE3521684A1 (en) 1985-06-18 1986-12-18 Dr. Müller-Lierheim KG, Biologische Laboratorien, 8033 Planegg METHOD FOR COATING POLYMERS
US4872840A (en) * 1987-07-15 1989-10-10 Team Incorporated Dental implant and method
WO1991001367A1 (en) 1989-07-20 1991-02-07 Bioeng, Inc. Supercritical fluid disruption of and extraction from microbial cells
US5298222A (en) 1989-08-09 1994-03-29 Osteotech, Inc. Process for disinfecting musculoskeletal tissue and tissues prepared thereby
US5213619A (en) 1989-11-30 1993-05-25 Jackson David P Processes for cleaning, sterilizing, and implanting materials using high energy dense fluids
US5037437B1 (en) 1990-01-18 1998-04-14 Univ Washington Method of bone preparation for prosthetic fixation
CA2060635A1 (en) 1991-02-12 1992-08-13 Keith D'alessio Bioabsorbable medical implants
DE4215137A1 (en) 1991-06-04 1992-12-10 Man Ceramics Gmbh IMPLANT FOR SPINE PILLARS
US6503277B2 (en) 1991-08-12 2003-01-07 Peter M. Bonutti Method of transplanting human body tissue
US5329846A (en) 1991-08-12 1994-07-19 Bonutti Peter M Tissue press and system
US5281422A (en) 1991-09-24 1994-01-25 Purdue Research Foundation Graft for promoting autogenous tissue growth
US5333626A (en) 1991-12-31 1994-08-02 Cryolife, Inc. Preparation of bone for transplantation
US5513662A (en) 1991-12-31 1996-05-07 Osteotech, Inc. Preparation of bone for transplantation
US5288462A (en) 1992-05-18 1994-02-22 Stephen D. Carter Sterilization apparatus and method
US5437287A (en) 1992-08-17 1995-08-01 Carbomedics, Inc. Sterilization of tissue implants using iodine
DE4227830C1 (en) 1992-08-21 1994-03-31 Tulaszewski Olaf Method and device for disinfecting a bone graft, in particular a human cancellous bone graft
FR2699408B1 (en) 1992-12-21 1995-03-24 Bioland Method for treating bone tissue and corresponding implantable biomaterials.
JP3717930B2 (en) 1993-12-07 2005-11-16 ジェネティックス・インスチチュート・リミテッド・ライアビリティ・カンパニー BMP-12, BMP-13 and their tendon-derived compositions
US5723012A (en) 1993-12-09 1998-03-03 Bioland Uses for a current of supercritical carbon dioxide as an antiviral agent
US5507813A (en) 1993-12-09 1996-04-16 Osteotech, Inc. Shaped materials derived from elongate bone particles
US5460962A (en) 1994-01-04 1995-10-24 Organogenesis Inc. Peracetic acid sterilization of collagen or collagenous tissue
US5716454A (en) 1994-02-03 1998-02-10 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Decontamination of devices and instruments contacted with body tissues
US5509968A (en) 1994-02-03 1996-04-23 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Decontamination of orthopaedic implants
US5626861A (en) 1994-04-01 1997-05-06 Massachusetts Institute Of Technology Polymeric-hydroxyapatite bone composite
US5906827A (en) 1994-06-03 1999-05-25 Creative Biomolecules, Inc. Matrix for the manufacture of autogenous replacement body parts
US5785966A (en) 1994-06-15 1998-07-28 Coles; John G. Inhibition of human xenogenic or allogenic antibodies to reduce xenograft or allograft rejection in human recipients
US5797871A (en) 1994-08-19 1998-08-25 Lifenet Research Foundation Ultrasonic cleaning of allograft bone
US5556379A (en) 1994-08-19 1996-09-17 Lifenet Research Foundation Process for cleaning large bone grafts and bone grafts produced thereby
US5674292A (en) 1995-06-07 1997-10-07 Stryker Corporation Terminally sterilized osteogenic devices and preparation thereof
US5944755A (en) 1995-09-15 1999-08-31 Crosscart, Inc. Articular cartilage xenografts
US6110206A (en) 1995-09-15 2000-08-29 Crosscart, Inc. Anterior cruciate ligament xenografts
US6423095B1 (en) * 1995-10-16 2002-07-23 Sdgi Holdings, Inc. Intervertebral spacers
US5753195A (en) 1996-01-02 1998-05-19 Kew Import/Export Inc. Cleaning and sterilizing mechanism
US5711921A (en) 1996-01-02 1998-01-27 Kew Import/Export Inc. Medical cleaning and sterilizing apparatus
US6024735A (en) 1996-03-20 2000-02-15 Lifenet Research Foundation Process and composition for cleaning soft tissue grafts optionally attached to bone and soft tissue and bone grafts produced thereby
CA2263421C (en) 1996-08-23 2012-04-17 William A. Cook Graft prosthesis, materials and methods
WO1998017209A2 (en) * 1996-10-23 1998-04-30 Sdgi Holdings, Inc. Spinal spacer
US5846484A (en) 1997-03-20 1998-12-08 Osteotech, Inc. Pressure flow system and method for treating a fluid permeable workpiece such as a bone
US5861041A (en) 1997-04-07 1999-01-19 Arthit Sitiso Intervertebral disk prosthesis and method of making the same
US5993844A (en) 1997-05-08 1999-11-30 Organogenesis, Inc. Chemical treatment, without detergents or enzymes, of tissue to form an acellular, collagenous matrix
US6613278B1 (en) 1998-11-13 2003-09-02 Regeneration Technologies, Inc. Tissue pooling process
US6482584B1 (en) 1998-11-13 2002-11-19 Regeneration Technologies, Inc. Cyclic implant perfusion cleaning and passivation process
WO1999009914A1 (en) 1997-08-27 1999-03-04 University Of Florida Tissue Bank, Inc. Cortical bone cervical smith-robinson fusion implant
US6652818B1 (en) 1998-11-13 2003-11-25 Regeneration Technologies, Inc. Implant sterilization apparatus
US20020076429A1 (en) 1998-01-28 2002-06-20 John F. Wironen Bone paste subjected to irradiative and thermal treatment
US6123731A (en) 1998-02-06 2000-09-26 Osteotech, Inc. Osteoimplant and method for its manufacture
US6641593B1 (en) 1998-06-03 2003-11-04 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US6149864A (en) 1998-06-25 2000-11-21 Massachusetts Institute Of Technology Supercritical fluid sterilization method
US6102056A (en) 1998-08-18 2000-08-15 Kotsopey; Omelan Cleaning apparatus
US6497726B1 (en) 2000-01-11 2002-12-24 Regeneration Technologies, Inc. Materials and methods for improved bone tendon bone transplantation
WO2000054821A1 (en) 1999-03-16 2000-09-21 Regeneration Technologies, Inc. Molded implants for orthopedic applications
WO2001008715A1 (en) 1999-07-28 2001-02-08 Regeneration Technologies, Inc. Reduced antigenicity tissue (rat) implants
US6379385B1 (en) 2000-01-06 2002-04-30 Tutogen Medical Gmbh Implant of bone matter
US20030097179A1 (en) 2000-01-11 2003-05-22 Carter Kevin C. Materials and methods for improved bone tendon bone transplantation
US20030023304A1 (en) 2000-01-11 2003-01-30 Carter Kevin C. Materials and methods for improved bone tendon bone transplantation
US6893462B2 (en) 2000-01-11 2005-05-17 Regeneration Technologies, Inc. Soft and calcified tissue implants
WO2001078798A1 (en) 2000-02-10 2001-10-25 Regeneration Technologies, Inc. Assembled implant
US6719794B2 (en) * 2001-05-03 2004-04-13 Synthes (U.S.A.) Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US6855167B2 (en) 2001-12-05 2005-02-15 Osteotech, Inc. Spinal intervertebral implant, interconnections for such implant and processes for making
US6730124B2 (en) 2002-03-08 2004-05-04 Musculoskeletal Transplant Foundation Bone-tendon-bone assembly with cancellous allograft bone block
US6761739B2 (en) 2002-11-25 2004-07-13 Musculoskeletal Transplant Foundation Cortical and cancellous allograft spacer
WO2005000364A2 (en) 2003-06-23 2005-01-06 Novasterilis Inc. Sterilization methods and apparatus which employ additive-containing supercritical carbon dioxide sterilant
US20050065607A1 (en) 2003-09-24 2005-03-24 Gross Jeffrey M. Assembled fusion implant
US7300464B2 (en) 2004-09-30 2007-11-27 Alcon, Inc. Intraocular lens
US7763071B2 (en) 2005-03-04 2010-07-27 Rti Biologics, Inc. Bone block assemblies and their use in assembled bone-tendon-bone grafts
US7776089B2 (en) 2005-03-04 2010-08-17 Rti Biologics, Inc. Assembled bone-tendon-bone grafts

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5084051A (en) * 1986-11-03 1992-01-28 Toermaelae Pertti Layered surgical biocomposite material
US4969909A (en) * 1987-10-27 1990-11-13 Barouk Louis S Articular prosthetic implant with temporary fixing means
US4950296A (en) * 1988-04-07 1990-08-21 Mcintyre Jonathan L Bone grafting units
US5112354A (en) * 1989-11-16 1992-05-12 Northwestern University Bone allograft material and method
US5180388A (en) * 1990-06-28 1993-01-19 American Cyanamid Company Bone pinning system
US5147367A (en) * 1991-02-22 1992-09-15 Ellis Alfred B Drill pin guide and method for orthopedic surgery
US5192327A (en) * 1991-03-22 1993-03-09 Brantigan John W Surgical prosthetic implant for vertebrae
US5571190A (en) * 1993-08-20 1996-11-05 Heinrich Ulrich Implant for the replacement of vertebrae and/or stabilization and fixing of the spinal column
US20030077825A1 (en) * 1994-07-22 2003-04-24 Bhatnagar Rajendra S. Structures useful for bone engineering and methods
US5676700A (en) * 1994-10-25 1997-10-14 Osteonics Corp. Interlocking structural elements and method for bone repair, augmentation and replacement
US5716358A (en) * 1994-12-02 1998-02-10 Johnson & Johnson Professional, Inc. Directional bone fixation device
US5989289A (en) * 1995-10-16 1999-11-23 Sdgi Holdings, Inc. Bone grafts
US5814084A (en) * 1996-01-16 1998-09-29 University Of Florida Tissue Bank, Inc. Diaphysial cortical dowel
US5865848A (en) * 1997-09-12 1999-02-02 Artifex, Ltd. Dynamic intervertebral spacer and method of use
US6398786B1 (en) * 1997-10-09 2002-06-04 Nenad Sesic Strain-inducing conical screw for stimulating bone transplant growth
US6090998A (en) * 1997-10-27 2000-07-18 University Of Florida Segmentally demineralized bone implant
US6146420A (en) * 1997-12-10 2000-11-14 Sdgi Holdings, Inc. Osteogenic fusion device
US5899939A (en) * 1998-01-21 1999-05-04 Osteotech, Inc. Bone-derived implant for load-supporting applications
US7347873B2 (en) * 1998-01-30 2008-03-25 Synthes (U.S.A.) Intervertebral allograft spacer
US7300465B2 (en) * 1998-01-30 2007-11-27 Synthes (U.S.A.) Intervertebral allograft spacer
US6986788B2 (en) * 1998-01-30 2006-01-17 Synthes (U.S.A.) Intervertebral allograft spacer
US20060241763A1 (en) * 1998-08-03 2006-10-26 Synthes (Usa) Multipiece bone implant
US6554863B2 (en) * 1998-08-03 2003-04-29 Synthes Intervertebral allograft spacer
US6025538A (en) * 1998-11-20 2000-02-15 Musculoskeletal Transplant Foundation Compound bone structure fabricated from allograft tissue
US6200347B1 (en) * 1999-01-05 2001-03-13 Lifenet Composite bone graft, method of making and using same
US20010039458A1 (en) * 2000-03-22 2001-11-08 Boyer Michael L. Implants formed of coupled bone
US6494883B1 (en) * 2000-05-26 2002-12-17 Bret A. Ferree Bone reinforcers
US20030036800A1 (en) * 2000-07-13 2003-02-20 Meredith Thomas L. Composite bone material implant and method
US20070016295A1 (en) * 2000-09-19 2007-01-18 Boyd Lawrence M Reinforced molded implant formed of cortical bone
US20060106460A1 (en) * 2001-05-03 2006-05-18 Synthes (Usa) Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure

Cited By (169)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7267689B2 (en) 1997-03-06 2007-09-11 Zimmer Spine, Inc. Lordotic spinal implant
US6740091B2 (en) 1997-03-06 2004-05-25 Sulzer Spine-Tech Inc. Lordotic spinal implant
US20040249460A1 (en) * 1997-03-06 2004-12-09 Sulzer Spine-Tech Inc. Lordotic spinal implant
US20130173013A1 (en) * 1999-01-05 2013-07-04 Lifenet Health Composite Bone Graft, Method of Making and Using the Same
US8343220B2 (en) 1999-05-05 2013-01-01 Warsaw Orthopedic, Inc. Nested interbody spinal fusion implants
US20030004575A1 (en) * 1999-06-23 2003-01-02 Sulzer Spine-Tech Inc. Expandable fusion device and method
US6830589B2 (en) 1999-06-23 2004-12-14 Zimmer Spine, Inc. Expandable fusion device and method
US20010041941A1 (en) * 2000-03-22 2001-11-15 Boyer Michael L. Multipiece implants formed of bone material
US7115146B2 (en) * 2000-03-22 2006-10-03 Boyer Ii Michael L Multipiece implants formed of bone material
US8292957B2 (en) 2000-04-19 2012-10-23 Warsaw Orthopedic, Inc. Bone hemi-lumbar arcuate interbody spinal fusion implant having an asymmetrical leading end
US8323340B2 (en) 2000-04-19 2012-12-04 Warsaw Orthopedic, Inc. Artificial hemi-lumbar interbody spinal implant having an asymmetrical leading end
US8834569B2 (en) 2000-04-19 2014-09-16 Warsaw Orthopedic, Inc. Artificial hemi-lumbar interbody spinal fusion cage having an asymmetrical leading end
US20030028197A1 (en) * 2000-07-06 2003-02-06 Hanson David A. Bone implants and methods
US7018416B2 (en) 2000-07-06 2006-03-28 Zimmer Spine, Inc. Bone implants and methods
US20040088055A1 (en) * 2001-02-16 2004-05-06 Hanson David A Bone implants and methods
US20070055377A1 (en) * 2001-02-16 2007-03-08 Zimmer Spine, Inc. Bone implants and methods
US6749636B2 (en) 2001-04-02 2004-06-15 Gary K. Michelson Contoured spinal fusion implants made of bone or a bone composite material
US6890355B2 (en) 2001-04-02 2005-05-10 Gary K. Michelson Artificial contoured spinal fusion implants made of a material other than bone
US9463098B2 (en) 2001-04-02 2016-10-11 Warsaw Orthopedic, Inc. Spinal fusion implant with bone screws and a bone screw lock
US6989031B2 (en) 2001-04-02 2006-01-24 Sdgi Holdings, Inc. Hemi-interbody spinal implant manufactured from a major long bone ring or a bone composite
US7935149B2 (en) 2001-04-02 2011-05-03 Warsaw Orthopedic, Inc. Spinal fusion implant with bone screws
US8137403B2 (en) 2001-04-02 2012-03-20 Warsaw Orthopedic, Inc. Hemi-interbody spinal fusion implants manufactured from a major long bone ring
US8926703B2 (en) 2001-04-02 2015-01-06 Warsaw Orthopedic, Inc. Spinal fusion implant with bone screws and a bone screw lock
US9078765B2 (en) 2001-07-13 2015-07-14 Ldr Medical Vertebral cage device with modular fixation
US8337537B2 (en) * 2001-07-16 2012-12-25 Depuy Products, Inc. Device from naturally occurring biologically derived materials
US7037339B2 (en) 2001-09-27 2006-05-02 Zimmer Spine, Inc. Modular spinal fusion device
US20030078661A1 (en) * 2001-09-27 2003-04-24 Houfburg Rodney L. Modular spinal fusion device
US20070010886A1 (en) * 2001-09-28 2007-01-11 Zimmer Spine, Inc. Skeletal Stabilization Implant
US7125424B2 (en) 2001-09-28 2006-10-24 Zimmer Spine, Inc. Skeletal stabilization implant
US20030093153A1 (en) * 2001-09-28 2003-05-15 Banick Christopher M. Skeletal stabilization implant
US8119152B2 (en) 2001-11-27 2012-02-21 Takiron Co., Ltd. Implant material and process for producing the same
US20040258732A1 (en) * 2001-11-27 2004-12-23 Yasuo Shikinami Implant material and process for producing the same
US10492922B2 (en) 2002-02-19 2019-12-03 DePuy Synthes Products, Inc. Intervertebral implant
US9572681B2 (en) 2002-02-19 2017-02-21 DePuy Synthes Products, Inc. Intervertebral implant
US7682392B2 (en) 2002-10-30 2010-03-23 Depuy Spine, Inc. Regenerative implants for stabilizing the spine and devices for attachment of said implants
US7862616B2 (en) 2003-02-06 2011-01-04 Synthes Usa, Llc Intervertebral implant
US10064740B2 (en) 2003-02-06 2018-09-04 DePuy Synthes Products, LLC Intervertebral implant
US8715354B2 (en) 2003-02-06 2014-05-06 DePuy Synthes Products, LLC Intervertebral implant
US8709085B2 (en) 2003-02-06 2014-04-29 DePuy Synthes Products, LLC Intervertebral implant
US7846207B2 (en) 2003-02-06 2010-12-07 Synthes Usa, Llc Intervertebral implant
US9463097B2 (en) 2003-02-06 2016-10-11 DePuy Synthes Products, Inc. Intervertebral implant
US10660765B2 (en) 2003-02-06 2020-05-26 DePuy Synthes Products, Inc. Intervertebral implant
US8764831B2 (en) 2003-02-06 2014-07-01 DePuy Synthes Products, LLC Intervertebral implant
US9039775B2 (en) 2003-03-31 2015-05-26 DePuy Synthes Products, Inc. Spinal fixation plates
US9320549B2 (en) 2003-03-31 2016-04-26 DePuy Synthes Products, Inc. Spinal fixation plates
USRE42208E1 (en) 2003-04-29 2011-03-08 Musculoskeletal Transplant Foundation Glue for cartilage repair
USRE43258E1 (en) 2003-04-29 2012-03-20 Musculoskeletal Transplant Foundation Glue for cartilage repair
US8221500B2 (en) 2003-05-16 2012-07-17 Musculoskeletal Transplant Foundation Cartilage allograft plug
US7901457B2 (en) * 2003-05-16 2011-03-08 Musculoskeletal Transplant Foundation Cartilage allograft plug
US7252685B2 (en) 2003-06-05 2007-08-07 Sdgi Holdings, Inc. Fusion implant and method of making same
US7351262B2 (en) * 2003-06-05 2008-04-01 Warsaw Orthopedic, Inc. Bone implants and methods of making same
US7537617B2 (en) 2003-06-05 2009-05-26 Warsaw Orthopedic, Inc. Bone strip implants and method of making same
US20040249471A1 (en) * 2003-06-05 2004-12-09 Bindseil James J. Fusion implant and method of making same
US20040249463A1 (en) * 2003-06-05 2004-12-09 Bindseil James J. Bone strip implants and method of making same
US20040249464A1 (en) * 2003-06-05 2004-12-09 Bindseil James J. Bone implants and methods of making same
US20070208424A1 (en) * 2003-09-02 2007-09-06 Dominique Messerli Multipiece allograft implant
US20050065607A1 (en) * 2003-09-24 2005-03-24 Gross Jeffrey M. Assembled fusion implant
US20050065613A1 (en) * 2003-09-24 2005-03-24 Gross Jeffrey M. Reinforced fusion implant
US9415136B2 (en) 2003-12-31 2016-08-16 Warsaw Orthopedic, Inc. Osteoinductive demineralized cancellous bone
US8734525B2 (en) 2003-12-31 2014-05-27 Warsaw Orthopedic, Inc. Osteoinductive demineralized cancellous bone
US8328876B2 (en) 2003-12-31 2012-12-11 Warsaw Orthopedic, Inc. Bone matrix compositions and methods
US9034358B2 (en) 2003-12-31 2015-05-19 Warsaw Orthopedic, Inc. Bone matrix compositions and methods
US20050234460A1 (en) * 2004-02-13 2005-10-20 Drew Miller Soft tissue repair apparatus and method
US20050229323A1 (en) * 2004-04-20 2005-10-20 Mills C R Process and apparatus for treating implants comprising soft tissue
US20060228252A1 (en) * 2004-04-20 2006-10-12 Mills C R Process and apparatus for treating implants comprising soft tissue
US7648676B2 (en) 2004-04-20 2010-01-19 Rti Biologics, Inc. Process and apparatus for treating implants comprising soft tissue
US20100172954A1 (en) * 2004-04-28 2010-07-08 Biomet Manufacturing Corp. Irradiated implantable bone material
US7976861B2 (en) 2004-04-28 2011-07-12 Biomet Manufacturing Corp. Irradiated implantable bone material
US8697139B2 (en) 2004-09-21 2014-04-15 Frank M. Phillips Method of intervertebral disc treatment using articular chondrocyte cells
US8292968B2 (en) 2004-10-12 2012-10-23 Musculoskeletal Transplant Foundation Cancellous constructs, cartilage particles and combinations of cancellous constructs and cartilage particles
US20090075005A1 (en) * 2005-02-10 2009-03-19 Hideki Nagareo Transfer-Type Pressure Sensitive Adhesive Tape
WO2006096513A3 (en) * 2005-03-04 2007-10-25 Regeneration Tech Inc Assembled bone-tendon-bone grafts
US20060271192A1 (en) * 2005-03-04 2006-11-30 Olsen Raymond E Self Fixing Assembled Bone-Tendon-Bone Graft
US20060200235A1 (en) * 2005-03-04 2006-09-07 Regeneration Technologies, Inc. Assembled bone-tendon-bone grafts
WO2006096511A2 (en) * 2005-03-04 2006-09-14 Regeneration Technologies, Inc. Intermediate bone block and its use in bone block assemblies and assembled bone-tendon-bone grafts
WO2006096513A2 (en) * 2005-03-04 2006-09-14 Regeneration Technologies, Inc. Assembled bone-tendon-bone grafts
US7776089B2 (en) * 2005-03-04 2010-08-17 Rti Biologics, Inc. Assembled bone-tendon-bone grafts
US7763072B2 (en) 2005-03-04 2010-07-27 Rti Biologics, Inc. Intermediate bone block and its use in bone block assemblies and assembled bone-tendon-bone grafts
US7763071B2 (en) * 2005-03-04 2010-07-27 Rti Biologics, Inc. Bone block assemblies and their use in assembled bone-tendon-bone grafts
US8470038B2 (en) * 2005-03-04 2013-06-25 Rti Biologics, Inc. Adjustable and fixed assembled bone-tendon-bone graft
US20060212036A1 (en) * 2005-03-04 2006-09-21 Regeneration Technologies, Inc. Bone block assemblies and their use in assembled bone-tendon-bone grafts
US7727278B2 (en) * 2005-03-04 2010-06-01 Rti Biologics, Inc. Self fixing assembled bone-tendon-bone graft
US20060229722A1 (en) * 2005-03-04 2006-10-12 Bianchi John R Adjustable and fixed assembled bone-tendon-bone graft
WO2006096511A3 (en) * 2005-03-04 2007-10-18 Regeneration Tech Inc Intermediate bone block and its use in bone block assemblies and assembled bone-tendon-bone grafts
US9717586B2 (en) 2005-03-04 2017-08-01 Rti Surgical, Inc. Adjustable and fixed assembled bone-tendon-bone graft
US7879103B2 (en) 2005-04-15 2011-02-01 Musculoskeletal Transplant Foundation Vertebral disc repair
US7815926B2 (en) 2005-07-11 2010-10-19 Musculoskeletal Transplant Foundation Implant for articular cartilage repair
US9701940B2 (en) 2005-09-19 2017-07-11 Histogenics Corporation Cell-support matrix having narrowly defined uniformly vertically and non-randomly organized porosity and pore density and a method for preparation thereof
US11872138B2 (en) 2005-09-23 2024-01-16 Ldr Medical Intervertebral disc prosthesis
US9597194B2 (en) 2005-09-23 2017-03-21 Ldr Medical Intervertebral disc prosthesis
US10492919B2 (en) 2005-09-23 2019-12-03 Ldr Medical Intervertebral disc prosthesis
US10328179B2 (en) 2005-11-01 2019-06-25 Warsaw Orthopedic, Inc. Bone matrix compositions and methods
US8992965B2 (en) 2005-11-01 2015-03-31 Warsaw Orthopedic, Inc. Bone matrix compositions and methods
US8911759B2 (en) 2005-11-01 2014-12-16 Warsaw Orthopedic, Inc. Bone matrix compositions and methods
US9713535B2 (en) 2006-02-15 2017-07-25 Ldr Medical Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US8409288B2 (en) 2006-02-15 2013-04-02 Ldr Medical Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US10758363B2 (en) 2006-02-15 2020-09-01 Ldr Medical Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US11696837B2 (en) 2006-02-27 2023-07-11 DePuy Synthes Products, Inc. Intervertebral implant with fixation geometry
US10512548B2 (en) 2006-02-27 2019-12-24 DePuy Synthes Products, Inc. Intervertebral implant with fixation geometry
US7959683B2 (en) 2006-07-25 2011-06-14 Musculoskeletal Transplant Foundation Packed demineralized cancellous tissue forms for disc nucleus augmentation, restoration, or replacement and methods of implantation
US20080058953A1 (en) * 2006-08-31 2008-03-06 Scarborough Nelson L Demineralized cancellous strip DBM graft
US9066994B2 (en) * 2006-08-31 2015-06-30 Warsaw Orthopedic, Inc. Demineralized cancellous strip DBM graft
US8906110B2 (en) 2007-01-24 2014-12-09 Musculoskeletal Transplant Foundation Two piece cancellous construct for cartilage repair
US7837740B2 (en) 2007-01-24 2010-11-23 Musculoskeletal Transplant Foundation Two piece cancellous construct for cartilage repair
US8435551B2 (en) 2007-03-06 2013-05-07 Musculoskeletal Transplant Foundation Cancellous construct with support ring for repair of osteochondral defects
US8343219B2 (en) 2007-06-08 2013-01-01 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US10751187B2 (en) 2007-06-08 2020-08-25 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US8642061B2 (en) 2007-06-15 2014-02-04 Warsaw Orthopedic, Inc. Method of treating bone tissue
US8357384B2 (en) 2007-06-15 2013-01-22 Warsaw Orthopedic, Inc. Bone matrix compositions and methods
US9717822B2 (en) 2007-06-15 2017-08-01 Warsaw Orthopedic, Inc. Bone matrix compositions and methods
US10357511B2 (en) 2007-06-15 2019-07-23 Warsaw Orthopedic, Inc. Bone matrix compositions and methods
US10220115B2 (en) 2007-06-15 2019-03-05 Warsaw Orthopedic, Inc. Bone matrix compositions having nanoscale textured surfaces
US9554920B2 (en) 2007-06-15 2017-01-31 Warsaw Orthopedic, Inc. Bone matrix compositions having nanoscale textured surfaces
US10028837B2 (en) 2007-07-10 2018-07-24 Warsaw Orthopedic, Inc. Delivery system attachment
US9333082B2 (en) 2007-07-10 2016-05-10 Warsaw Orthopedic, Inc. Delivery system attachment
US9358113B2 (en) 2007-07-10 2016-06-07 Warsaw Orthopedic, Inc. Delivery system
US9492278B2 (en) 2007-07-10 2016-11-15 Warsaw Orthopedic, Inc. Delivery system
WO2009048314A1 (en) * 2007-10-08 2009-04-16 Sureshan Sivananthan A scalable matrix for the in vivo cultivation of bone and cartilage
US20110076316A1 (en) * 2007-10-08 2011-03-31 Sureshan Sivananthan Scalable matrix for the in vivo cultivation of bone and cartilage
US8202539B2 (en) 2007-10-19 2012-06-19 Warsaw Orthopedic, Inc. Demineralized bone matrix compositions and methods
US8435566B2 (en) 2007-10-19 2013-05-07 Warsaw Orthopedic, Inc. Demineralized bone matrix compositions and methods
US8540774B2 (en) 2007-11-16 2013-09-24 DePuy Synthes Products, LLC Low profile intervertebral implant
US10137003B2 (en) 2007-11-16 2018-11-27 DePuy Synthes Products, Inc. Low profile intervertebral implant
US9005295B2 (en) 2007-11-16 2015-04-14 DePuy Synthes Products, LLC Low profile intervertebral implant
US9744049B2 (en) 2007-11-16 2017-08-29 DePuy Synthes Products, Inc. Low profile intervertebral implant
US10543102B2 (en) 2007-11-16 2020-01-28 DePuy Synthes Products, Inc. Low profile intervertebral implant
US9707082B2 (en) 2008-06-16 2017-07-18 Rti Surgical, Inc. Assembled cartilage repair graft
US20090312842A1 (en) * 2008-06-16 2009-12-17 Predrag Bursac Assembled Cartilage Repair Graft
US10433976B2 (en) 2008-11-07 2019-10-08 DePuy Synthes Products, Inc. Zero-profile interbody spacer and coupled plate assembly
US10531960B2 (en) 2008-11-07 2020-01-14 DePuy Synthes Products, Inc. Zero-profile interbody spacer and coupled plate assembly
US9192419B2 (en) 2008-11-07 2015-11-24 DePuy Synthes Products, Inc. Zero-profile interbody spacer and coupled plate assembly
US11517444B2 (en) 2008-11-07 2022-12-06 DePuy Synthes Products, Inc. Zero-profile interbody spacer and coupled plate assembly
US11612492B2 (en) 2008-11-07 2023-03-28 DePuy Synthes Products, Inc. Zero-profile interbody spacer and coupled plate assembly
US9402735B2 (en) 2008-11-07 2016-08-02 DePuy Synthes Products, Inc. Zero-profile interbody spacer and coupled plate assembly
US9414935B2 (en) 2008-11-07 2016-08-16 DePuy Synthes Products, Inc. Zero-profile interbody spacer and coupled plate assembly
WO2010093955A1 (en) * 2009-02-12 2010-08-19 Osteotech,Inc. Segmented delivery system
US9011537B2 (en) 2009-02-12 2015-04-21 Warsaw Orthopedic, Inc. Delivery system cartridge
US10098681B2 (en) 2009-02-12 2018-10-16 Warsaw Orthopedic, Inc. Segmented delivery system
US9101475B2 (en) 2009-02-12 2015-08-11 Warsaw Orthopedic, Inc. Segmented delivery system
US9220598B2 (en) 2009-02-12 2015-12-29 Warsaw Orthopedic, Inc. Delivery systems, tools, and methods of use
US9463091B2 (en) 2009-09-17 2016-10-11 Ldr Medical Intervertebral implant having extendable bone fixation members
US9833331B2 (en) 2009-12-31 2017-12-05 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US9044337B2 (en) 2009-12-31 2015-06-02 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US11246715B2 (en) 2009-12-31 2022-02-15 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US10195046B2 (en) 2009-12-31 2019-02-05 Ldr Medical Instruments and methods for removing fixation devices from intervertebral implants
US10531961B2 (en) 2009-12-31 2020-01-14 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US9241809B2 (en) 2010-12-21 2016-01-26 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US11458027B2 (en) 2010-12-21 2022-10-04 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US9220604B2 (en) 2010-12-21 2015-12-29 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US9848992B2 (en) 2010-12-21 2017-12-26 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US10507117B2 (en) 2010-12-21 2019-12-17 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US9399084B2 (en) 2011-07-28 2016-07-26 Harbor Medtech, Inc. Crosslinked human or animal tissue products and their methods of manufacture and use
US8901078B2 (en) 2011-07-28 2014-12-02 Harbor Medtech, Inc. Crosslinked human or animal tissue products and their methods of manufacture and use
US9220808B2 (en) 2011-07-28 2015-12-29 Harbor Medtech, Inc. Crosslinked human or animal tissue products and their methods of manufacture and use
US10611822B2 (en) 2011-07-28 2020-04-07 Harbor Medtech, Inc. Crosslinked human or animal tissue products and their methods of manufacture and use
US9592320B2 (en) 2011-07-28 2017-03-14 Harbor Medtech, Inc. Crosslinked human or animal tissue products and their methods of manufacture and use
KR101479812B1 (en) * 2011-12-30 2015-01-08 고려대학교 산학협력단 Washer type connector for spinal fusion and pedicle screw using the same
US10350083B2 (en) 2012-02-24 2019-07-16 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US11273056B2 (en) 2012-02-24 2022-03-15 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US10245156B2 (en) 2012-02-24 2019-04-02 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US9039774B2 (en) 2012-02-24 2015-05-26 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US10130492B2 (en) 2014-10-22 2018-11-20 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US10702394B2 (en) 2014-10-22 2020-07-07 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US9867718B2 (en) 2014-10-22 2018-01-16 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US10010432B2 (en) 2014-10-22 2018-07-03 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US11540927B2 (en) 2014-10-22 2023-01-03 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US11555172B2 (en) 2014-12-02 2023-01-17 Ocugen, Inc. Cell and tissue culture container
US10077420B2 (en) 2014-12-02 2018-09-18 Histogenics Corporation Cell and tissue culture container
CN105266929A (en) * 2015-11-05 2016-01-27 同济大学 Mountable allogenous cortical bone axial fusion device

Also Published As

Publication number Publication date
US20180071102A1 (en) 2018-03-15
US9763787B2 (en) 2017-09-19
US20100268349A1 (en) 2010-10-21

Similar Documents

Publication Publication Date Title
US20180071102A1 (en) Assembled implant
WO2001078798A1 (en) Assembled implant
EP2431007B1 (en) Composite bone graft, method of making and using same
US7323011B2 (en) Cortical and cancellous allograft cervical fusion block
US6761739B2 (en) Cortical and cancellous allograft spacer
CA2399762C (en) Assembled implant
US20080154379A1 (en) Interbody fusion hybrid graft
EP1883377B1 (en) Synthetic loadbearing collagen-mineral composites for spinal implants
US20010020186A1 (en) Keyed intervertebral dowel
US20040107003A1 (en) Demineralized bone implants
CA2437763C (en) Assembled implant, including mixed-composition segment
AU2001288840B2 (en) Assembled implant, including mixed-composition segment
AU2008202235A1 (en) Assembled implant, including mixed-composition segment
AU2001288840A1 (en) Assembled implant, including mixed-composition segment
WO2005063151A1 (en) Hybrid surgical implants
AU2007203182A1 (en) Cortical and cancellous allograft cervical fusion block implant

Legal Events

Date Code Title Description
AS Assignment

Owner name: REGENERATION TECHNOLOGIES, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BIANCHI, JOHN R.;MILLS, C. RANDAL;GORHAM, P.J.;AND OTHERS;REEL/FRAME:011814/0455;SIGNING DATES FROM 20010220 TO 20010313

AS Assignment

Owner name: MERRILL LYNCH BUSINESS FINANCIAL SERVICES, INC., T

Free format text: SECURITY AGREEMENT;ASSIGNORS:REGENERATION TECHNOLOGIES, INC.;ALABAMA TISSUE CENTER, INC.;RTI SERVICES, INC.;AND OTHERS;REEL/FRAME:015116/0841

Effective date: 20040323

AS Assignment

Owner name: REGENERATION TECHNOLOGIES, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SOUTHEAST TISSUE ALLIANCE, INC.;UNIVERSITY OF FLORIDA ORTHOPAEDIC TISSUE BANK, INC.;UNIVERSITY OF FLORIDA TISSUE BANK, INC.;REEL/FRAME:015796/0186

Effective date: 20050121

Owner name: REGENERATION TECHNOLOGIES, INC.,FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SOUTHEAST TISSUE ALLIANCE, INC.;UNIVERSITY OF FLORIDA ORTHOPAEDIC TISSUE BANK, INC.;UNIVERSITY OF FLORIDA TISSUE BANK, INC.;REEL/FRAME:015796/0186

Effective date: 20050121

AS Assignment

Owner name: REGENERATION TECHNOLOGIES, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:REGENERATION TECHNOLOGIES, INC.;REEL/FRAME:016646/0918

Effective date: 20050805

AS Assignment

Owner name: RTI BIOLOGICS, INC., FLORIDA

Free format text: CHANGE OF NAME;ASSIGNOR:REGENERATION TECHNOLOGIES, INC.;REEL/FRAME:020690/0942

Effective date: 20080227

Owner name: RTI BIOLOGICS, INC.,FLORIDA

Free format text: CHANGE OF NAME;ASSIGNOR:REGENERATION TECHNOLOGIES, INC.;REEL/FRAME:020690/0942

Effective date: 20080227

AS Assignment

Owner name: REGENERATION TECHNOLOGIES, INC.-CARDIOVASCULAR (F/

Free format text: RECORD OF RELEASE OF SECURITY INTEREST;ASSIGNOR:GE BUSINESS FINANCIAL SERVICES INC.;REEL/FRAME:022151/0633

Effective date: 20081230

Owner name: BIOLOGICAL RECOVERY GROUP, INC., FLORIDA

Free format text: RECORD OF RELEASE OF SECURITY INTEREST;ASSIGNOR:GE BUSINESS FINANCIAL SERVICES INC.;REEL/FRAME:022151/0633

Effective date: 20081230

Owner name: RTI SERVICES, INC., FLORIDA

Free format text: RECORD OF RELEASE OF SECURITY INTEREST;ASSIGNOR:GE BUSINESS FINANCIAL SERVICES INC.;REEL/FRAME:022151/0633

Effective date: 20081230

Owner name: RTI BIOLOGICS, INC. (F/K/A) REGENERATION TECHNOLOG

Free format text: RECORD OF RELEASE OF SECURITY INTEREST;ASSIGNOR:GE BUSINESS FINANCIAL SERVICES INC.;REEL/FRAME:022151/0633

Effective date: 20081230

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION