US20030027125A1 - Cyclic implant perfusion, cleaning and passivation process and implant produced thereby - Google Patents

Cyclic implant perfusion, cleaning and passivation process and implant produced thereby Download PDF

Info

Publication number
US20030027125A1
US20030027125A1 US10/192,180 US19218002A US2003027125A1 US 20030027125 A1 US20030027125 A1 US 20030027125A1 US 19218002 A US19218002 A US 19218002A US 2003027125 A1 US2003027125 A1 US 2003027125A1
Authority
US
United States
Prior art keywords
implant
process according
tissue
cleaning
bone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/192,180
Inventor
C. Mills
John Wironen
Sean Hanstke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTI Biologics Inc
Original Assignee
Regeneration Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Regeneration Technologies Inc filed Critical Regeneration Technologies Inc
Priority to US10/192,180 priority Critical patent/US20030027125A1/en
Publication of US20030027125A1 publication Critical patent/US20030027125A1/en
Assigned to MERRILL LYNCH BUSINESS FINANCIAL SERVICES, INC., THROUGH ITS DIVISION MERRILL LYNCH CAPITAL reassignment MERRILL LYNCH BUSINESS FINANCIAL SERVICES, INC., THROUGH ITS DIVISION MERRILL LYNCH CAPITAL SECURITY AGREEMENT Assignors: ALABAMA TISSUE CENTER, INC., BIOLOGICAL RECOVERY GROUP, INC., REGENERATION TECHNOLOGIES, INC., RTI SERVICES, INC.
Priority to US10/980,661 priority patent/US20050096742A1/en
Priority to US11/006,017 priority patent/US20050100862A1/en
Assigned to REGENERATION TECHNOLOGIES, INC. reassignment REGENERATION TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HANSTKE, SEAN, MILLS, C. RANDAL, WIRONEN, JOHN F.
Assigned to REGENERATION TECHNOLOGIES, INC. reassignment REGENERATION TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: REGENERATION TECHNOLOGIES, INC.
Assigned to RTI BIOLOGICS, INC. reassignment RTI BIOLOGICS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: REGENERATION TECHNOLOGIES, INC.
Assigned to RTI SERVICES, INC., BIOLOGICAL RECOVERY GROUP, INC., RTI BIOLOGICS, INC. (F/K/A) REGENERATION TECHNOLOGIES, INC., REGENERATION TECHNOLOGIES, INC.-CARDIOVASCULAR (F/K/A) ALABAMA TISSUE CENTER, INC. reassignment RTI SERVICES, INC. RECORD OF RELEASE OF SECURITY INTEREST Assignors: GE BUSINESS FINANCIAL SERVICES INC.
Priority to US12/389,124 priority patent/US8142991B2/en
Priority to US13/399,734 priority patent/US8669043B2/en
Priority to US14/203,925 priority patent/US9332750B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0278Physical preservation processes
    • A01N1/0289Pressure processes, i.e. using a designated change in pressure over time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0082Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using chemical substances
    • A61L2/0088Liquid substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/025Ultrasonics

Definitions

  • This invention is a novel method for perfusion of a porous implant which achieves efficient interpenetration of desired factors into the pores or channels of the implant, cleaning of the implant, efficient passivation of the implant (inactivation of pathogens, microorganisms, cells, viruses and the like and reduction in antigenicity thereof), and the novel implant produced by such treatment.
  • the term “implant” refers to any material the implantation of which into a human or an animal is considered to be beneficial.
  • the implant may be tissue-derived material, such as bone, skin, and the like, or it may be a metallic or synthetic material having an internal structure that may require cleaning or sterilization.
  • tissue-derived material such as bone, skin, and the like
  • metallic or synthetic material having an internal structure that may require cleaning or sterilization.
  • European Patent Application No. EP 0 424 159 (Osteotech)—“Aseptic Processing of Allograft Bone and Tissue,” (published Apr. 24, 1991, based on a U.S. Priority application filed Oct. 19, 1989), is an extremely general disclosure relating to aseptic processing of allograft bone and tissue. It appears that the intent of this application was to establish an early priority date in an effort to foreclose the entire field of aseptic processing of allograft bone and tissue. However, the disclosure is so general that it does not appear to contain an enabling disclosure of any protectible allograft sterilization method. No U.S. or European patent related to this extremely general published application appears to have ever issued.
  • Such high pressure washing conditions include, for example, vigorous agitation, such as with a paint can shaker, or high pressure lavage such as with a high pressure liquid jet stream . . . .
  • the pressure of the liquid jet stream is preferably 100 to 3,000 psi and most preferably 500 to 1,500 psi.”
  • the patent does not disclose or suggest exposure of an implant to an oscillating atmospheric pressure, the referenced patent requires pressures significantly higher than those required according to the present invention, and it is only applicable to bone, while the present invention is applicable to bone or soft tissue.
  • the claimed process requires approximately 1-2 days to complete.
  • the stated intent in applying the process to essentially whole bone grafts is to reduce the load of potentially virus carrying bone marrow to facilitate preparation of smaller bone grafts therefrom.
  • the process involves applying a vacuum to the bone graft to draw solution capable of solubilizing bone marrow through articulating cartilaginous surfaces and through the intact bone's intramedullary canal or other bone cavity.
  • the patent neither discloses nor suggests a method in which oscillating pressures are used to clean a bone graft.
  • U.S. Pat. No. 5,380,826 (Aphios Corporation)—“Supercritical Fluid Disruption of and Extraction from Microbial Cells, (issued on Jan. 10, 1995, based on an application filed on Sep. 29, 1992), relates to a method for harvesting intracellular components by exposing cells to an elevated pressure in the presence of a solvent, and then rapidly and suddenly releasing the pressure to effect disruption of the cells.
  • the patent also discloses an apparatus for carrying out this process continuously.
  • this patent neither discloses nor suggests applying the cell disruption method to allograft bone.
  • U.S. Pat. No. 5,725,579 “Process for Treating Bone Tissue and corresponding Implantable Biomaterials”, (issued Mar. 10, 1998, based on a priority French application filed Dec. 21, 1992 and an earlier U.S. priority filing of Dec. 9, 1993), is directed to a method of cleaning bone by exposing the bone to a supercritical fluid. As best as can be understood from this patent, this involves exposing bone to carbon dioxide at elevated pressures, in order to solubilize lipids.
  • Tissue sterilization methods known in the art have undesirable attributes.
  • Gamma irradiation in order to ensure destruction of pathogens, such as the human immunodeficiency virus (HIV), has to be used at doses that result in tissue destruction (e.g. 3.5 Mrad; see, for example, Rasmussen, et al., J. Arthroscopic and Related Surgery, 10(2):188-197, (1994); Goertzen, et al., British Soc. of Bone and Joint Surg., 77:204-211 (1005); Loty, et al., International Orthopaedics, 14:237-242, (1990)).
  • the present invention provides a long needed improvement in that no absolute temperatures or pressures are required to achieve efficient implant cleaning, perfusion, or passivation.
  • the instant method does not require drilling of holes in implant materials or any other manipulation or modification in order to achieve efficient implant cleaning and sterilization.
  • the present method permits safe pooling of donor tissue for implant production at economies of scale, without at the same time diminishing the desirable biological properties of the pooled implant materials.
  • the instant process includes a number of methodologies, the additive effect of which is the production of highly cleansed, sterilized (passivated) tissues, which may be implanted, without causing toxicity to the recipient.
  • Various embodiments of the method of this invention includes all of the above listed features, namely: effective removal or inactivation of a wide range of bacterial and viral pathogens; absence of graft toxicity; retention of desirable tissue characteristics, such as biomechanical strength or growth-inducing properties; effectiveness across a wide range of operating modifications and for a wide variety of tissue types; ability to conclude the process in a final implant tissue container, to ensure sterile packaging and delivery for implantation.
  • This invention provides a process wherein an oscillation of pressure is created in a chamber containing an implant material in the presence of various cleaning solutions (0.5% tri(n-butyl)phosphate, TNBP; hydrogen peroxide and the like).
  • the process essentially comprises the following steps, assuming a metallic or synthetic material having an internal matrix or space, or manually cleaned (debrided) graft material, which may or may not have undergone initial machining, is used as the starting material:
  • the absolute pressures of the system do not appear to be extremely critical to achieving deep, penetrating cleaning of the implant or graft materials. Rather, it is the rate of pressure cycling, the fact of cycling, and possibly the amplitude of pressure cycling, that appears to be critical to the success of this method. Accordingly, the entire process may be successfully conducted at pressures above or below one atmosphere. Evacuation pressures of 25 inches of mercury to the vapor pressure of the solutions in the chamber are adequate. Backfill pressures of between about 40 and 100 PSI are also adequate. Preferably, the entire process is conducted in a chamber which permits for sonication of the contents throughout or at particular stages of the process.
  • the entire process is conducted in a programmable system under computer or programmable logic circuit control, so that manual processing is minimized and reproducibility of the process is maximized.
  • the processed tissue is a bone implant or any form of allograft or xenograft tissue
  • election of appropriate solvents such as urea (preferably about 6 M), or other chaotropic reagents, (e.g. 4 M guanidine hydrochloride, or the like)
  • urea preferably about 6 M
  • other chaotropic reagents e.g. 4 M guanidine hydrochloride, or the like
  • Another object of this invention is to provide a method for cleaning, perfusing or passivating implant materials without at the same time compromising the desirable biological properties of the starting implant materials.
  • a further object of this invention is to produce implant materials of reduced antigenicity.
  • FIG. 1A provides a schematic in which the cyclic perfusion passivation process of the invention through seven cycles is shown, while FIG. 1B shows the cyclic pressure and fluid exposure to implant materials treated according to the method of this invention.
  • FIG. 2 shows a schematic of one embodiment of an apparatus that may be employed to effect the method according to this invention.
  • FIG. 3 shows a schematic representation of a further embodiment of an apparatus layout for conducting the method according to this invention.
  • FIG. 4 provides an overall flow-chart of the various stages of processing an implant according to the cyclic perfusion passivation process of this invention from donor tissue acquisition through final sterile product packaging.
  • FIG. 5 provides one embodiment of a detailed processing containment layout for conducting the method according to this invention.
  • FIG. 6 is a photograph of a whole humerus after being treated according to the method of this invention; a post-cleaning coronal section through the head of the humerus reveals the cleanliness of the inner bone matrix.
  • FIG. 7 is a photograph of an intact knee, including proximal tibia, distal femur and patella, along with articulating tendons and ligaments, before treatment according to the method of this invention.
  • FIG. 8 is a photograph of the intact knee shown in FIG. 7, after treatment according to the method of this invention, showing cleanliness of the implant, and preservation of the articulating tendons and ligaments.
  • FIG. 9 is a photograph of an anterior aspect of a coronal section through the proximal femur prior to treatment according to the method of this invention.
  • FIG. 10 is a photograph of the posterior aspect of the coronal section through the proximal femur shown in FIG. 9, after treatment according to the method of this invention.
  • FIG. 11 is a photograph of the sections shown in FIGS. 9 and 10, side-by-side, demonstrating the effectiveness of the treatment according to this invention for removal of endogenous substances.
  • FIG. 12 is a photomicrograph of an osteon from cortical bone without fluoroisothiocyanate (FITC) fluorescent dye treatment (400 ⁇ magnification).
  • FITC fluoroisothiocyanate
  • FIG. 13 is a photomicrograph of an osteon from cortical bone after inclusion of FITC in one of the cleaning solutions of this invention, demonstrating deep interpenetration of the dye into the smallest of bone interstices—bright green areas indicating structures containing FITC, including the large haversian canal (right margin) and smaller satellite lacunae (central area; 400 ⁇ magnification).
  • the term “passivate” is intended to refer to the elimination of potentially pathogenic organisms and immunogenic substances from an implant. Thus, both sterility and reduced antigenicity is intended by this term, although elimination of beneficial biological properties of the implant, such as osteogenic properties (osteoconduction or osteoinduction; bone fusion), natural tissue functionality, and desirable structural strength of an implant are not intended by this term.
  • the term “passivation” is preferred to the term “sterilize” because, while sterilization is a goal, that term has an absolute connotation which can rarely, if ever, be completely achieved without attendant tissue destruction.
  • the implants produced according to the method of this invention may not be completely devoid of any antigenicity or pyrogenicity, these undesirable aspects are greatly reduced, and this too is intended by the term “passivation,” as used herein.
  • perfused or “perfusion,” as used herein, are intended to imply efficient interpenetration of cleaning solutions into and through the channels and crevices of materials intended for implantation into a recipient.
  • time frames on the order of seconds to minutes, rather than hours or days.
  • sonicate or “sonication” as used herein mean the application of sonic or ultrasonic energy via a container of an implant undergoing processing according to the method of this invention under conditions that permit efficient transfer of the sonic energy to the implant.
  • sonication or “sonication” as used herein mean the application of sonic or ultrasonic energy via a container of an implant undergoing processing according to the method of this invention under conditions that permit efficient transfer of the sonic energy to the implant.
  • Those skilled in the art are familiar with the process of sonication and conditions whereby sonic energy may be transferred through a fluid to a workpiece such that efficient cleaning and bacterial or cellular disruption is achieved, without resulting in gross, ultrastructural damage to the workpiece.
  • This invention provides a novel method for processing implant materials including, but not limited to, metallic implants, synthetic implants, ceramic implants, autograft, allograft or xenograft materials, including bone and soft tissue.
  • implant materials including, but not limited to, metallic implants, synthetic implants, ceramic implants, autograft, allograft or xenograft materials, including bone and soft tissue.
  • soft tissue or allograft bone materials treated according to the method of this invention permit soft tissue or debrided allograft, autograft or xenograft bone to be thoroughly cleaned, machined, sterilized, packaged and then implanted at economies of scale heretofore not possible.
  • tissue banks have attempted, as much as possible, to process tissue from single donors, without permitting contact between tissue derived from different donors. The concern has been that any given donor tissue may contaminate other donor tissue.
  • the risk of a large batch of donor tissues being found to be contaminated has been considered an unreasonable risk.
  • the resultant graft material available for implantation is safe for implantation.
  • donor qualification Methods for minimizing the risk that donor tissue will be harvested and processed by a tissue bank, referred to herein as “donor qualification”, are known in the art. Accordingly, thorough donor screening, and tissue testing by enzymatic, immunological, biochemical and molecular biological techniques are applied to minimize the risk that tissue carrying pathogens (viruses, bacteria, and the like) will be included in the materials processed and made available for implantation. Testing for contamination by human immunodeficiency virus, HIV, hepatitis B virus, HBV, hepatitis C virus, HCV, has now become routine in the art.
  • Known screening and qualification methods are desirably included as an initial step preceding processing of the implant material according to the present method.
  • allograft bone is referred to as an exemplary tissue that may be processed according to the present method.
  • tissues including but not limited to autograft bone, xenograft bone, other porous tissues, synthetic porous materials, and various soft tissues, may be processed according to the principles defined herein, without departing from the spirit of the invention exemplified herein by reference to allograft bone material.
  • allograft bone material from qualified donors is first treated by various known bioburden reducing methods, as in cleaning by debriding adventitious tissue according to methods known in the art.
  • Manual dissection may be employed for removal from the bone surfaces of ligaments, tendons, skin, fat, muscle, loose bone marrow, and any other non-bone tissue.
  • automated or semi-automated methods known in the art may be employed for initial cleaning of the donor bone material.
  • the cleaned allograft materials from individual donors may be pooled and further cleaned as described below.
  • the allograft bone may be machined to the final implant dimensions, followed by pooling with a batch of similarly processed, dimensioned implants for further cleaning as described below.
  • a batch number is defined for further tracking, with records being maintained of all of the donors that have contributed to the batch.
  • implant materials from individual donors may first be treated as described below, prior to pooling with implant materials from different donors. In this event, the implant material form individual donors may be further cleaned whole or first machined to desired final dimensions.
  • the method of this invention provides for further processing whereby bone marrow, blood, proteins, and particulate matter is efficiently removed, such that what remains is essentially a mineralized collagen matrix, in which about a 5 to 6 log reduction in any form of viable organisms (viruses, bacteria, amoebae, rickettsia, fungi) is achieved.
  • viable organisms viruses, bacteria, amoebae, rickettsia, fungi
  • this is achieved by a process of pressure cycling or oscillation, employing a variety of cleaning and sterilization solutions which are caused to efficiently interpenetrate the matrix.
  • the channels of essentially any porous matrix are unclogged, and cleansed.
  • a pre-defined, pre-programmed cycle of washes is employed, preferably with concurrent ultrasonic bombardment, to achieve penetrating sterilization of the implant.
  • oscillating fluid pressure and ultrasonic energy accelerates solution interpenetration and endogenous substance removal.
  • the invention is a method which comprises the following steps:
  • FIG. 1A This schematic shows an implant 100 comprising solid structural constituents 110 , channels 120 , and adventitious materials 130 embedded within the channels 120 .
  • the structural constituents 110 may be synthetic materials, as in man-made polymeric material, (e.g. poly-L-lactic acid, acrylic acids, and the like), metallic structural materials, or natural materials, such as a mineralized or demineralized collagen matrix.
  • the channels 120 may be man-made channels, defined by the polymerization, molding, melting or other manufacturing process, or may be natural channels, such as those found in mineralized or demineralized cancellous or cortical bone matrices.
  • the adventitious materials 130 may be cellular debris, bone marrow, cells, lipids, carbohydrates, proteins, viruses, bacteria, rickettsia, amoebae, fungi and the like.
  • panels (1) and (2) relate to the first step described above.
  • the channels 120 are primed for back-filling with cleaning solutions by exposing the tissue to decreased pressures.
  • the cleared channels 120 are shown to be substantially clear of adventitious materials 130 .
  • Panel (3) relates to steps 2 and 3, wherein molecules of cleaning solution 140 are introduced into a sealed chamber and are driven into the channels 120 by elevated pressures.
  • Panel (4) relates to the fourth step described above, wherein decreased pressure removes remaining cellular debris, cleaning solution 140 , and other remaining adventitious materials from the channels 120 , and again primes the matrix for deep penetration, now possible due to the clarity of the channels 120 .
  • panels (5)-(7) a one cycle repeat according to the fourth step described above is shown, whereby upon repressurizing with clean solvents, full interpenetration of the solvents into the implant matrix is achieved.
  • reduced pressure draws the remaining solution from the implant, which may then be dried, as shown in panel (7), prior to further processing (e.g. machining according to step 5 above, further cleaning, according to step 6 above), and final packaging of the cleaned tissue.
  • the cycle depicted in FIG. 1A may be repeated as many times as desired to ensure complete internal cleaning of the matrix interior.
  • FIG. 1B a representation of the pressure and fluid oscillation throughout the various steps of the above described process is represented.
  • donor tissue is cleaned of any extraneous or adventitious tissue.
  • the thus-cleaned tissue is loaded into a sealable reaction chamber.
  • a preferably pre-programmed tissue cleaning process is then initiated comprising a plurality of wash steps. Deep tissue interpenetration by cleaning solutions is achieved by oscillating the pressure in the chamber while adding and removing various cleaning solvents. Ultrasonic energy is applied at various stages of the cleaning process to accelerate solution penetration and removal of unwanted contaminants or endogenous substances, including blood, lipid, and non-structural or undesired proteins.
  • a steps (1-4) of the claimed process are carried out according to a protocol similar to that defined in the following table to remove blood, fat, bacterial, viral, fungal or other contamination: TABLE I Soni- Duration Step Pressure Fluids* cation (min) Purpose 0 Atmospheric None Off NA Load tissue into chamber 1 Negative None Off 2 Prime tissue matrix, remove included (60-100 torr) air and loose debris 2 Negative B, C, D, E, On 1 De-gas cleaning fluids (60-100 torr) mixtures 3 Positive (5-8 B, C, D, E, On 1 Force fluids into tissue matrix atmospheres) mixtures 4 Negative/ B, C, D, E, On (1 ⁇ n) Remove debris loosened by fluids, Positive mixtures pressure oscillation and sonication
  • a pressurizable chamber in which the process may be conducted is loaded with metallic, synthetic or other man-made implant materials, allograft bone or soft tissue, xenograft bone or soft tissue, from an individual qualified donor.
  • the implant is a tissue
  • the tissue is preferably first cleaned of surface adventitious tissue, prior to initiating the steps shown in table I.
  • step 1 under negative pressure (vacuum), for a period of about two minutes, the matrix of the implant or implants is primed (i.e. see FIG. 1, step 1, to remove trapped air, cellular and other loose debris by vacuum).
  • step 2 under negative pressure, cleaning fluid is introduced with sonication, to aid in penetration of the fluid and to ensure gas is removed from the introduced fluid.
  • the cleaning fluid is removed to waste under positive pressure, the tissue is dried under negative pressure, and is rinsed several times under oscillating positive and negative pressure using sterile water or physiological saline (e.g. phosphate buffered saline, PBS), with or without accompanying sonication.
  • physiological saline e.g. phosphate buffered saline, PBS
  • the number of rinse cycles may be from 1-150 times, and is preferably about 1-50 times.
  • the rinse solution is drained under positive pressure, and the tissue is again dried under negative pressure.
  • the tissue in-process may be machined into dimensionally finished grafts if such processing has not previously been accomplished, (step 5 of the instant process, as defined above), and then loaded into a reaction chamber, same or different than that used to carry out the steps according to Table I.
  • a deep-penetrating cleaning, passivation or sterilization cycle is then conducted according to a protocol similar to that defined in Table II (see step 6 defined above, which represent a repeat of steps 1-4 of Table I, optionally using different cleaning solvents; these steps are distinguished by indicating the steps as 0′-4′): TABLE II Soni- Duration Step Pressure Fluids* cation (min) Purpose 0′ Atmospheric None Off NA Load tissue into chamber 1′ Negative None Off 2 Prime tissue matrix, remove included (60-100 torr) air and loose debris 2′ Negative F, G, H, I, J, On 1 De-gas cleaning fluids (60-100 torr) mixtures 3′ Positive F, G, H, I, J, On 1 Force fluids into tissue matrix (8-10 mixtures atmospheres) 4′ Negative/ F, G, H, I, J, On (1 ⁇ n) Remove debris loosened by fluids, Positive mixtures pressure oscillation and sonication
  • the cleaning fluid is preferably retained in a positively pressurized reaction chamber for an extended period to ensure complete killing of any residual contaminating pathogens or other organisms. A period of from one to sixty minutes, and preferably about ten minutes, is sufficient for this purpose.
  • the cleaning fluid is then removed to waste under positive pressure, the tissue is dried under negative pressure, and is rinsed several times under oscillating positive and negative pressure using sterile water or physiological saline (e.g. phosphate buffered saline, PBS, or the like), with or without accompanying sonication.
  • physiological saline e.g. phosphate buffered saline, PBS, or the like
  • Tissues cleaned according to this procedure include, but are not limited to: cortical bone, cancellous bone, fascia, whole joints, tendons, ligaments, dura, pericardia, heart valves, veins, neural tissue, submucoal tissue, (e.g. intestinal tissue), and cartilage.
  • Bone treated according to this method and subsequently tested for retained biomechanical strength and ability to induce new bone formation (osteoconduction and osteoinduction, collectively referred to as osteogenic activity) retains good biomechanical strength and is expected to retain osteogenic activity.
  • bone treated according to one embodiment of this method and implanted as a xenograft was found to induce little or no adverse immunological reactivity, indicating reduction in antigenicity of the material. This is particularly true where urea or other chaotropic agents (e.g. guanidine hydrochloride), is used as one of the cleaning fluids or is included in a mixture of cleaning fluids.
  • urea or other chaotropic agents e.g. gu
  • a device such as that shown schematically in FIG. 2 may be employed for semi-manual implementation of the cyclic perfusion passivation process of this invention.
  • a chamber 200 comprising a lid 210 and a trough 220 is adapted for cyclic perfusion passivation of implants.
  • a series of posts 230 onto which a series of bolts 240 may be tightened are provided for securing the lid 210 to the trough 220 .
  • a grating 250 is provided inside the chamber 200 for receiving implant material to be treated.
  • Access port 260 is a sterile water input line.
  • Access port 261 is an input line for other fluids.
  • Access port 262 is a vacuum line.
  • Access port 263 is a line for pressure input.
  • a port 264 is provided for insertion of a temperature probe.
  • Port 265 is a port for supplying power to a sonicator built into the walls 225 of the chamber 200 .
  • Port 266 is a drain. Accordingly, a device such as that shown in FIG. 2 could be used carrying out the cyclic perfusion passivation process according to this invention.
  • an automated or semi-automated apparatus 300 may be defined for carrying out the instant process.
  • programmable logic controllers activate or deactivate valves or solenoids 301 a - h at pre-determined times in the cleaning cycle.
  • An implant is placed in a reaction chamber 310 which is sealed.
  • An atmospheric vent 320 is provided to permit entrance and removal of waste and filtered air.
  • Cleaning fluids are introduced into reaction chamber 310 from a chemical mixing tank 330 which has a filtered vent to atmosphere 325 , to avoid formation of a vacuum in the tank 330 .
  • Chemical feed lines 340 lead from fluid reservoirs 341 to the chemical mixing tank 330 via a common conduit 345 .
  • a programmably controlled pump 350 is operated to pump appropriately mixed fluids from the tank 330 into the reaction vessel 310 .
  • Vacuum or negative pressure is applied to the reaction vessel 310 by means of a vacuum receiver tank 360 , in which a source of negative pressure is created by vacuum pump 365 .
  • the inclusion of a vacuum reservoir 360 is desirable so that essentially instantaneous vacuum of known dimensions may be applied to the reaction chamber 310 , without the need for a vacuum pump such as 365 having to gradually develop the negative pressure.
  • Vacuum receiver tank 360 may be evacuated by pump 365 while reaction tank 310 is under positive pressure.
  • a source of sterile water, physiological saline, or like aqueous solution is provided in storage tank 370 , which has a filtered vent 375 to prevent formation of a vacuum in tank 370 .
  • Pump 376 provides for rapid infusion of aqueous solution into chemical mixing tank 330 for introduction into the reaction chamber 310 .
  • the water from tank 370 may also be directly introduced into reaction tank 310 , without having to first be introduced into chemical mixing tank 330 .
  • Positive pressure is stored in pressure tank 380 which is pressurized by a compressor of filtered gas, to retain sterility in the reaction tank 310 .
  • an appropriately programmed computer or programmable logic controllers permit venting of the reaction chamber 310 , to permit loading of tissue.
  • the chamber is then sealed, evacuated, pressurized, and fluid is introduced and removed, as outlined, for example, in Table I and Table II above, to complete the implant cleaning process.
  • the penetrating passivation process of this invention is so efficient that for certain types of implants in which the initial prospect of encountering a contaminated implant is sufficiently low, it may be possible to simply batch process implant materials according to Table I and Table II, rather than first cleaning implants from an individual donor according to the Table I program, prior to combining such implant materials from different donors and processing the pooled implants according to the Table II program.
  • an initial bioburden reducing step for implant materials derived from individual donors is considered prudent, individual donor tissues are processed according to the Table I program, and are then quarantined until all quality control criteria are passed. Only the individual donor tissues that pass such quality control after initial bioburden reduction are pooled for processing according to the Table II protocol.
  • a combination of TritonX-100 and TNBP may be used as a first solvent to remove debris and to inactivate bacteria and viruses.
  • a second solvent may be a 3% hydrogen peroxide solution to remove cellular debris and to further reduce bioburden.
  • a third solvent may be povidone iodine solution to yet further reduce bioburden.
  • ascorbic acid solution may be employed to decolorize the implant or remove any residual iodine.
  • solutions may be employed in a different order, and indeed, different solutions may be used to similar effect.
  • the particular solutions listed are preferred, however, due to their low toxicity, and our discovery that the defined combination of solutions results in efficient reduction in bioburden, implant cleaning, passivation and interpenetration.
  • the solutions of Table I are typically employed in a cycle such as that shown in Table I, steps 0-4.
  • cleaned allograft or xenograft tissue from individual donors or previously pooled donors is optionally pooled and further cleaned as described below.
  • the tissue is first dimensioned by machining, trimming and the like, to achieve the final implant dimensions.
  • the dimensioned tissue is further processed individually or is pooled with a batch of similarly or differently processed, dimensioned implants for further cleaning as described below.
  • a batch number is defined for further tracking, with records being maintained of all of the donors that have contributed to a given batch.
  • Table II a set of solutions is described for achieving penetrating sterilization of individual tissues or tissues pooled from different donors which have already been treated according to the program outlined in Table I.
  • a first solution of 6% hydrogen peroxide, followed by a second solution of 1% sodium hypochlorite, followed by a solution of 1 N sodium hydroxide may be used to achieve sterilization.
  • a 70% solution of isopropanol may be used as a broad spectrum germicide.
  • the solutions of Table I and Table II may be employed according to the program shown, or modified as needed.
  • penetrating sterilants may be employed or that mixtures of the described sterilants may be possible.
  • the individual or pooled batch of implants has been thoroughly cleaned, passivated (if not sterilized), and interpenetrated by cleaning solutions.
  • Reductions in enveloped virus, vegetative bacteria, and fungal contamination of up to twelve logs or higher and of non-enveloped viruses and spores of up to about five logs are achieved according to the process described herein.
  • about a two to ten-fold reduction in endotoxin levels is achieved, along with significant elimination of blood, lipid, nucleic acid, and non-structural protein.
  • this process retains the beneficial structural and other desirable biological properties of the implant material.
  • Significant enhancements in production yields, through the ability to batch process implant from pooled donors, are also achieved.
  • the implant materials are placed in their final packing. Preferably, this is achieved in a sterile environment to avoid introduction of any adventitious bioburden.
  • the implants are exposed to a vapor-phase hydrogen peroxide/peracetic acid or like vapor-phase sterilizing environment.
  • the packages are then closed to ensure that no contamination may occur upon removal of the implants from the sterile field for storage or shipment to surgeons.
  • the sealed packages may then, optionally, be subjected to levels of gamma or other types of irradiation known to not adversely affect tissue properties (e.g.
  • a solution containing desired antibiotics, anti-inflammatory drugs or other biologically active agents may be employed to infuse antibiotic or other desired bioactive substances into the cleaned, passivated tissues.
  • growth factors such as bone morphogenetic proteins, cartilage derived growth factors, tissue growth factors, natural or recombinant, and the like known in the art may be perfused into the implant.
  • the process of the present invention may be carried out at any stage of implant production, and it does not require special preparations such as removal of cartilage, or potentially implant damaging steps such as drilling of holes.
  • stage 1 donor materials are introduced into the donor tissue processing facility and are held in quarantine until the donor from which the tissue was derived is qualified.
  • stage 2 released donor materials are surface cleaned by debridement.
  • stage 3 surface cleaned tissue is machined to produce implants of the desired final dimensions, and are introduced into an automated cyclic perfusion passivation chamber according to the present invention.
  • stage 4 implants that have been passivated are introduced into their final packing containers and are terminally sterilized by gamma irradiation, vapor-phase exposure to decontaminants, and the like.
  • stage 5 the passivated and packaged grafts are stored and released after verification of the sterilization cycles.
  • a process layout similar to that shown schematically in FIG. 5 may be employed.
  • a processing facility 500 shows three parallel and identical tissue processing facilities A-C.
  • tissue to be treated according to this invention is cleaned and debrided of gross, adventitious and unwanted tissues.
  • the cleaned tissue is then introduced, via sealable port 515 A-C into a reaction chamber 310 A-C, to which are connected all of the process control and input/output devices shown in FIG. 3.
  • tissue is removed via sealable port 516 A-C.
  • the cleaned tissue is sorted and stored in quarantine freezers 520 A-C, until quality control demonstrates that the tissue is fit for further processing.
  • the released tissues are then transferred to graft-production rooms 530 A-C, where final implant dimensioning and machining is conducted.
  • the thus processed tissues are loaded into reaction chambers 310 ′A-C via sealable port 535 .
  • Not shown but connected to reaction chamber 310 ′A-C are all the process control and input/output devices shown in FIG. 3.
  • the deeply sterilized tissues are removed from sealable port 536 A-C, and are placed in final packaging. Terminal sterilization is conducted at stations 540 A-C, and the terminally sterilized tissues are sealed in the final packaging.
  • the sealed packages of terminally sterilized tissues are quarantined in freezers 545 until final quality control testing permits tissue release to surgeons.
  • an intact or machined bone implant is cleaned by treatment sequentially with povidone-I, water, ascorbic acid, TNBP/hydrogen peroxide, water, diethanolamine, water, 6 M urea, water.
  • the sequence of sonication, and pressure fluctuations is conducted according to the sequence defined in Table I or Table II. It will be appreciated from this disclosure, however, that a wide variety of different cleaning solutions and combinations thereof may be employed according to the method of this invention.
  • the cleaning solutions may include: sterile water, Triton X-100, TNBP, 3% hydrogen peroxide, a water-miscible alcohol, saline solution, povidone iodine, ascorbic acid solution, aromatic or aliphatic hydrocarbons, ethers, ketones, amines, urea, guanidine hydrochloride, esters, glycoproteins, proteins, saccharides, enzymes such as proteases (trypsin, pepsin, subtilisin), lipases, sachrases, and the like, gasseous acids or peroxides, and mixtures thereof.
  • the process is conducted at ambient temperatures, elevated temperatures (eighty degrees centigrade) or decreased temperatures. Thus, cleaning of implants in a liquid nitrogen phase (negative eighty degrees centigrade) is contemplated by this invention.
  • FIG. 6 is a photograph of a whole humerus after being treated according to the method of this invention; a coronal section through the head of the humerus reveals the cleanliness of the inner bone matrix.
  • FIG. 7 is a photograph of an intact knee, including proximal tibia, distal femur and patella, along with articulating tendons and ligaments, before treatment according to the method of this invention.
  • FIG. 8 is a photograph of the intact knee shown in FIG. 7, after treatment according to the method of this invention, showing cleanliness of the implant, and preservation of the articulating tendons and ligaments.
  • implant materials and tissues that may be effectively cleaned according to this procedure include, but are not limited to metallic implants, synthetic implants, ceramic implants, allograft, autograft or xenograft tissues.
  • Such tissues may be selected from tissues comprising: cortical bone, cancellous bone, fascia, whole joints, tendons, ligaments, dura, pericardia, heart valves, veins, neural tissue, submucoal tissue, (e.g. intestinal tissue), and cartilage.
  • any implantable material having an internal matrix that is required to be cleaned may be treated to advantage according to the method of this invention.
  • FIG. 9 is a photograph of an anterior aspect of a coronal section through the proximal femur prior to treatment according to the method of this invention.
  • FIG. 10 is a photograph of the posterior aspect of the coronal section through the proximal femur shown in FIG. 9, after treatment according to the method of this invention.
  • FIG. 11 is a photograph of the sections shown in FIGS. 9 and 10, side-by-side, demonstrating the effectiveness of the treatment according to this invention for removal of endogenous substances and deep, penetrating implant cleaning.
  • FIG. 12 is a photomicrograph of an osteon from cortical bone without fluoroisothiocyanate (FITC) fluorescent dye treatment (100 ⁇ magnification).
  • FITC fluoroisothiocyanate
  • FIG. 13 is a photomicrograph of an osteon from cortical bone after inclusion of FITC in one of the cleaning solutions of this invention, demonstrating deep interpenetration of the dye into the smallest of bone interstices—bright green areas indicating structures containing FITC, including the large haversian canal (right margin) and smaller satellite lacunae (central area; 100 ⁇ magnification).
  • photomicrographs demonstrate that the FITC dye is forced into the smallest implant interstices, thereby revealing the ability to achieve deep penetrating cleaning.
  • biologically active substances such as antibiotics, antiviral compounds, anti-inflammatory compounds, growth factors, osteo-inductive substances (e.g. bone morphogenetic protein, cartilage derived morphogenetic protein, natural or recombinant, and the like), when included in solutions employed according to the method of this invention, may be effectively imbedded deeply into implant materials.
  • biologically active substances for permeation into implants are selected from the group consisting of bone morphogenetic protein, tissue growth factor beta or member of the tissue growth factor beta family of growth factors, cartilage derived morphogenetic proteins I or II or both, and any related cartilage derived growth factors, angiogenic factors, platelet derived growth factor.
  • Any of the proteins selected for permeation into implants may be natural or recombinant proteins.

Abstract

This invention is a novel method for perfusion of a porous implant which achieves efficient interpenetration of desired factors into and removal of undesirable factors from the pores of the implant, cleaning of the implant, efficient passivation of the implant (inactivation of pathogens, microorganisms, cells, viruses and the like and reduction in antigenicity thereof), and the novel implant produced by such treatment. The process presents a system wherein the rate of pressure cycling, the fact of pressure cycling, and the amplitude of pressure cycling, results in highly cleaned tissues and other implants for implantation. Target decontamination goals for this process include between about a one (1) to twelve (12) log reduction in bacterial contamination, between about a one (1) to fifteen (15) log reduction in enveloped virus contamination, up to about a five (5) log reduction in non-enveloped virus contamination, between about a two (2) to ten (10) fold reduction in endotoxin, maintenance of implant or graft biologic and biomechanical properties, absence of tissue toxicity due to cleaning solutions used, and reduced implant antigenicity.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • This invention is a novel method for perfusion of a porous implant which achieves efficient interpenetration of desired factors into the pores or channels of the implant, cleaning of the implant, efficient passivation of the implant (inactivation of pathogens, microorganisms, cells, viruses and the like and reduction in antigenicity thereof), and the novel implant produced by such treatment. [0002]
  • 2. DESCRIPTION of Known Procdures for Implant Treatment [0003]
  • As used in this disclosure, the term “implant” refers to any material the implantation of which into a human or an animal is considered to be beneficial. Accordingly, the implant may be tissue-derived material, such as bone, skin, and the like, or it may be a metallic or synthetic material having an internal structure that may require cleaning or sterilization. Bearing this definition in mind, it will be apparent that many procedures have been described in the art for treatment of implants to either clean such implant, inactivate contaminating microorganisms or cells that may be present in or on such implant, or to infuse the implant with desirable factors. This section of the disclosure discusses several known methods for achieving one or more of these results, in order to more clearly and definitively set forth that which has been invented, and which is disclosed and claimed as novel and inventive, as defined by the claims appended hereto. [0004]
  • European Patent Application No. [0005] EP 0 424 159 (Osteotech)—“Aseptic Processing of Allograft Bone and Tissue,” (published Apr. 24, 1991, based on a U.S. Priority application filed Oct. 19, 1989), is an extremely general disclosure relating to aseptic processing of allograft bone and tissue. It appears that the intent of this application was to establish an early priority date in an effort to foreclose the entire field of aseptic processing of allograft bone and tissue. However, the disclosure is so general that it does not appear to contain an enabling disclosure of any protectible allograft sterilization method. No U.S. or European patent related to this extremely general published application appears to have ever issued.
  • In U.S. Pat. No. 5,333,626 (Cryolife)—“Preparation of Bone for Transplantation”, (issued on Aug. 2, 1994, based on an application filed on Dec. 31, 1991), relates to a method of preparing bone for transplantation by maintaining the internal matrix of the bone to be implanted, preferably at high pressure, in the presence of a decontaminating agent, preferably polyvinyl pyrrolidine-iodine (PVP-I) optionally in the presence of a detergent, in solution. The “high pressure” feature of this patent is described at [0006] column 5, lines 10-31: “High pressure washing conditions should provide a force sufficient to drive the cleaning solution into internal matrix of the bone. Such high pressure washing conditions include, for example, vigorous agitation, such as with a paint can shaker, or high pressure lavage such as with a high pressure liquid jet stream . . . . The pressure of the liquid jet stream is preferably 100 to 3,000 psi and most preferably 500 to 1,500 psi.” However, the patent does not disclose or suggest exposure of an implant to an oscillating atmospheric pressure, the referenced patent requires pressures significantly higher than those required according to the present invention, and it is only applicable to bone, while the present invention is applicable to bone or soft tissue. In addition, the claimed process requires approximately 1-2 days to complete.
  • In U.S. Pat. No. 5,513,662 (Osteotech)—“Preparation of Bone for Transplantation” (this patent issued on May 7, 1996 as a continuation-in-part of the application that issued as the U.S. Pat. No. 5,333,626, based on an application filed on Jan. 21, 1994, and claiming priority to the Dec. 31, 1991 filing date of the application on which the U.S. Pat. No. 5,333,626 is based), relates to a method of preparing bone for transplantation in which the internal matrix of the bone is maintained at a pressure below one atmosphere. It is disclosed ([0007] column 10, lines 13-19) that “optimum times for maintaining pressure below ambient are generally in the range of 30 to 60 minutes but can be determined for each application by monitoring progress of blood and lipid extraction (see Example 10).” It is further disclosed that generally use of gas pressure below ambient for less than two minutes will be ineffective and use for longer than five hours will confer no further benefit. Thus, the '662 patent requires that the bone be maintained for substantial periods of time at pressures below one atmosphere. There is no disclosure or suggestion of rapidly cycling between elevated and decreased pressures, even though it is suggested that the bone might first be treated at an elevated pressure, followed by a treatment step at a pressure below atmospheric pressure (see, for example, claim 3, column 15). The present invention discloses a process wherein transient and cyclical exposure of an implant material to a given pressure achieves the desired result of implant cleaning, perfusion or passivation.
  • In U.S. Pat. No. 5,556,379 (LifeNet Research Foundation)—“Process for Cleaning Large Bone Grafts and Bone Grafts Produced Thereby,” (issued on Sep. 17, 1996 based on an application filed on Feb. 27, 1995, and claiming priority of an earlier, abandoned application, filed Aug. 19, 1994), describes the “Allowash™” process. The patent is explicitly directed to the removal of “bone marrow from the luminal and cancellous bone spaces in large, essentially whole, bone grafts.” (See Summary of the Invention). Accordingly, the referenced patent is directed only to treatment of bone, which has to be largely intact. The stated intent in applying the process to essentially whole bone grafts is to reduce the load of potentially virus carrying bone marrow to facilitate preparation of smaller bone grafts therefrom. The process involves applying a vacuum to the bone graft to draw solution capable of solubilizing bone marrow through articulating cartilaginous surfaces and through the intact bone's intramedullary canal or other bone cavity. The patent neither discloses nor suggests a method in which oscillating pressures are used to clean a bone graft. [0008]
  • U.S. Pat. No. 5,380,826 (Aphios Corporation)—“Supercritical Fluid Disruption of and Extraction from Microbial Cells, (issued on Jan. 10, 1995, based on an application filed on Sep. 29, 1992), relates to a method for harvesting intracellular components by exposing cells to an elevated pressure in the presence of a solvent, and then rapidly and suddenly releasing the pressure to effect disruption of the cells. The patent also discloses an apparatus for carrying out this process continuously. However, this patent neither discloses nor suggests applying the cell disruption method to allograft bone. [0009]
  • U.S. Pat. No. 5,288,462 (Stephen D. Carter)—“Sterilization Apparatus and Method” (issued on Feb. 22, 1994, based on an application filed on May 18, 1992), describes a chamber for receiving a material to be sterilized by repeatedly subjecting the chamber to elevated pressures, followed by sudden release of the pressure, i.e. “explosive decompression.” The patent requires that the chamber be pressurized to at least 1000 psi. The patent neither discloses, suggests, nor claims application of this method or chamber to sterilization of bone materials. There is no disclosure of cleaning solutions used in connection with the described apparatus that would be effective in sterilizing the matrix of a bone. There is no disclosure that would allow one skilled in the art to determine, without undue experimentation, that bone could be sterilized in this apparatus. In addition, there is no disclosure nor suggestion that an implant could be sterilized without use of such highly elevated pressures, but merely by oscillation of lower absolute pressures. [0010]
  • U.S. Pat. No. 5,725,579 (Bioland)—“Process for Treating Bone Tissue and corresponding Implantable Biomaterials”, (issued Mar. 10, 1998, based on a priority French application filed Dec. 21, 1992 and an earlier U.S. priority filing of Dec. 9, 1993), is directed to a method of cleaning bone by exposing the bone to a supercritical fluid. As best as can be understood from this patent, this involves exposing bone to carbon dioxide at elevated pressures, in order to solubilize lipids. [0011]
  • Tissue sterilization methods known in the art have undesirable attributes. Gamma irradiation, in order to ensure destruction of pathogens, such as the human immunodeficiency virus (HIV), has to be used at doses that result in tissue destruction (e.g. 3.5 Mrad; see, for example, Rasmussen, et al., J. Arthroscopic and Related Surgery, 10(2):188-197, (1994); Goertzen, et al., British Soc. of Bone and Joint Surg., 77:204-211 (1005); Loty, et al., International Orthopaedics, 14:237-242, (1990)). Use of ethylene oxide has been found to result in implants that produce inflammatory responses (Kudryk, et al., J. Biomedical Materials, 26:1477-1488, (1992); Thoren, et al., Clin. Orthopaedics, 318:259-263, (1995); Simonian, et al., Clin. Orthopaedics, 302:290-296, (1994); Jackson, et al., Am. J. Sports Medicine, 18:1-9, (1990)). Standard chemical solution treatments, while effective in sterilizing surfaces with which the solutions are brought into contact, have the major disadvantage of being insufficiently penetrating to reach the interstices of tissues, where potentially pathogenic organisms may reside. In view of these shortcomings, there remains a long-felt-need for an optimized tissue sterilization process, which would incorporate some or all of the following features: Effective removal or inactivation of a wide range of bacterial and viral pathogens; absence of graft toxicity; retention of desirable tissue characteristics, such as biomechanical strength or growth-inducing properties; effectiveness across a wide range of operating modifications and for a wide variety of tissue types; ability to conclude the process in a final implant tissue container, to ensure sterile packaging and delivery for implantation. [0012]
  • In view of the foregoing review of the known art relating to implant treatment and sterilization methods, it is believed that the present invention provides a long needed improvement in that no absolute temperatures or pressures are required to achieve efficient implant cleaning, perfusion, or passivation. In addition, the instant method does not require drilling of holes in implant materials or any other manipulation or modification in order to achieve efficient implant cleaning and sterilization. Furthermore, the present method permits safe pooling of donor tissue for implant production at economies of scale, without at the same time diminishing the desirable biological properties of the pooled implant materials. The instant process includes a number of methodologies, the additive effect of which is the production of highly cleansed, sterilized (passivated) tissues, which may be implanted, without causing toxicity to the recipient. Various embodiments of the method of this invention includes all of the above listed features, namely: effective removal or inactivation of a wide range of bacterial and viral pathogens; absence of graft toxicity; retention of desirable tissue characteristics, such as biomechanical strength or growth-inducing properties; effectiveness across a wide range of operating modifications and for a wide variety of tissue types; ability to conclude the process in a final implant tissue container, to ensure sterile packaging and delivery for implantation. [0013]
  • SUMMARY OF THE INVENTION
  • This invention provides a process wherein an oscillation of pressure is created in a chamber containing an implant material in the presence of various cleaning solutions (0.5% tri(n-butyl)phosphate, TNBP; hydrogen peroxide and the like). The process essentially comprises the following steps, assuming a metallic or synthetic material having an internal matrix or space, or manually cleaned (debrided) graft material, which may or may not have undergone initial machining, is used as the starting material: [0014]
  • 1. Rapidly evacuate the chamber containing the implant, auto graft, allograft or xenograft material; [0015]
  • 2. Rapidly backfill the chamber with cleaning solutions—e.g. H[0016] 2O2/TritonX-100/TNBP/Betadine mixtures;
  • 3. Pressurize chamber; [0017]
  • 4. Rapidly cycle between steps (1) and (3), for between about 1-150 cycles, maintaining a temperature of between about 35-40 degrees centigrade, with optional application of ultrasonic energy; [0018]
  • 5. Machine the product as desired if not previously machined; [0019]
  • 6. Repeat steps (1)-(4) using the same or a different cleaning compositions, optionally under elevated or reduced temperature; and [0020]
  • 7. Optionally perform a surface decontamination step, preferably in the final packaging, as in exposure to vapor phase H[0021] 2O2 or like surface decontamination treatments known in the art.
  • The absolute pressures of the system do not appear to be extremely critical to achieving deep, penetrating cleaning of the implant or graft materials. Rather, it is the rate of pressure cycling, the fact of cycling, and possibly the amplitude of pressure cycling, that appears to be critical to the success of this method. Accordingly, the entire process may be successfully conducted at pressures above or below one atmosphere. Evacuation pressures of 25 inches of mercury to the vapor pressure of the solutions in the chamber are adequate. Backfill pressures of between about 40 and 100 PSI are also adequate. Preferably, the entire process is conducted in a chamber which permits for sonication of the contents throughout or at particular stages of the process. In addition, preferably, the entire process is conducted in a programmable system under computer or programmable logic circuit control, so that manual processing is minimized and reproducibility of the process is maximized. Where the processed tissue is a bone implant or any form of allograft or xenograft tissue, election of appropriate solvents, such as urea (preferably about 6 M), or other chaotropic reagents, (e.g. 4 M guanidine hydrochloride, or the like), has the additional advantage of producing a processed tissue of even lower antigenicity than if such treatment were not included. Target decontamination goals for this process include: [0022]
  • Between about a one (1) to twelve (12) log reduction in bacterial contamination [0023]
  • Between about a one (1) to fifteen (15) log reduction in enveloped virus contamination [0024]
  • Up to about a five (5) log reduction in non-enveloped virus contamination [0025]
  • Between about a two (2) to ten (10) fold reduction in endotoxin [0026]
  • Maintenance of implant or graft biologic and biomechanical properties [0027]
  • absence of tissue toxicity due to cleaning solutions used [0028]
  • reduced implant antigenicity [0029]
  • Accordingly, it is an object of this invention to provide a method for production of safe and effective allograft, autograft, xenograft, metallic or synthetic implants in an efficient, economical manner. [0030]
  • It is a further object of this invention to permit safe pooling of tissue donor sources for implant production, while minimizing the risk that any single contaminated donor will contaminate any other donor tissue or any recipients of the pooled tissue processed according to the method of this invention. [0031]
  • Another object of this invention is to provide a method for cleaning, perfusing or passivating implant materials without at the same time compromising the desirable biological properties of the starting implant materials. [0032]
  • A further object of this invention is to produce implant materials of reduced antigenicity. [0033]
  • Further objects and advantages of this invention will become apparent from a review of the complete disclosure, including the claims which follow.[0034]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A provides a schematic in which the cyclic perfusion passivation process of the invention through seven cycles is shown, while FIG. 1B shows the cyclic pressure and fluid exposure to implant materials treated according to the method of this invention. [0035]
  • FIG. 2 shows a schematic of one embodiment of an apparatus that may be employed to effect the method according to this invention. [0036]
  • FIG. 3 shows a schematic representation of a further embodiment of an apparatus layout for conducting the method according to this invention. [0037]
  • FIG. 4 provides an overall flow-chart of the various stages of processing an implant according to the cyclic perfusion passivation process of this invention from donor tissue acquisition through final sterile product packaging. [0038]
  • FIG. 5 provides one embodiment of a detailed processing containment layout for conducting the method according to this invention. [0039]
  • FIG. 6 is a photograph of a whole humerus after being treated according to the method of this invention; a post-cleaning coronal section through the head of the humerus reveals the cleanliness of the inner bone matrix. [0040]
  • FIG. 7 is a photograph of an intact knee, including proximal tibia, distal femur and patella, along with articulating tendons and ligaments, before treatment according to the method of this invention. [0041]
  • FIG. 8 is a photograph of the intact knee shown in FIG. 7, after treatment according to the method of this invention, showing cleanliness of the implant, and preservation of the articulating tendons and ligaments. [0042]
  • FIG. 9 is a photograph of an anterior aspect of a coronal section through the proximal femur prior to treatment according to the method of this invention. [0043]
  • FIG. 10 is a photograph of the posterior aspect of the coronal section through the proximal femur shown in FIG. 9, after treatment according to the method of this invention. [0044]
  • FIG. 11 is a photograph of the sections shown in FIGS. 9 and 10, side-by-side, demonstrating the effectiveness of the treatment according to this invention for removal of endogenous substances. [0045]
  • FIG. 12 is a photomicrograph of an osteon from cortical bone without fluoroisothiocyanate (FITC) fluorescent dye treatment (400× magnification). [0046]
  • FIG. 13 is a photomicrograph of an osteon from cortical bone after inclusion of FITC in one of the cleaning solutions of this invention, demonstrating deep interpenetration of the dye into the smallest of bone interstices—bright green areas indicating structures containing FITC, including the large haversian canal (right margin) and smaller satellite lacunae (central area; 400× magnification).[0047]
  • DETAILED DISCLOSURE OF THE PREFERRED EMBODIMENTS
  • As used herein, the term “passivate” is intended to refer to the elimination of potentially pathogenic organisms and immunogenic substances from an implant. Thus, both sterility and reduced antigenicity is intended by this term, although elimination of beneficial biological properties of the implant, such as osteogenic properties (osteoconduction or osteoinduction; bone fusion), natural tissue functionality, and desirable structural strength of an implant are not intended by this term. The term “passivation” is preferred to the term “sterilize” because, while sterilization is a goal, that term has an absolute connotation which can rarely, if ever, be completely achieved without attendant tissue destruction. In addition, while the implants produced according to the method of this invention may not be completely devoid of any antigenicity or pyrogenicity, these undesirable aspects are greatly reduced, and this too is intended by the term “passivation,” as used herein. [0048]
  • The terms “perfused” or “perfusion,” as used herein, are intended to imply efficient interpenetration of cleaning solutions into and through the channels and crevices of materials intended for implantation into a recipient. [0049]
  • As used herein, the terms “rapid” or “rapidly” as they are applied to the process of pressure cycling according to this invention mean time frames on the order of seconds to minutes, rather than hours or days. [0050]
  • The terms “sonicate” or “sonication” as used herein mean the application of sonic or ultrasonic energy via a container of an implant undergoing processing according to the method of this invention under conditions that permit efficient transfer of the sonic energy to the implant. Those skilled in the art are familiar with the process of sonication and conditions whereby sonic energy may be transferred through a fluid to a workpiece such that efficient cleaning and bacterial or cellular disruption is achieved, without resulting in gross, ultrastructural damage to the workpiece. [0051]
  • This invention provides a novel method for processing implant materials including, but not limited to, metallic implants, synthetic implants, ceramic implants, autograft, allograft or xenograft materials, including bone and soft tissue. In particular, soft tissue or allograft bone materials treated according to the method of this invention permit soft tissue or debrided allograft, autograft or xenograft bone to be thoroughly cleaned, machined, sterilized, packaged and then implanted at economies of scale heretofore not possible. In the past, tissue banks have attempted, as much as possible, to process tissue from single donors, without permitting contact between tissue derived from different donors. The concern has been that any given donor tissue may contaminate other donor tissue. Due to the extreme value of any donor's tissue, the risk of a large batch of donor tissues being found to be contaminated has been considered an unreasonable risk. However, according to the method of the present invention, even if heavily contaminated donor tissue is included in a batch of pooled donor tissue, the resultant graft material available for implantation is safe for implantation. [0052]
  • Methods for minimizing the risk that donor tissue will be harvested and processed by a tissue bank, referred to herein as “donor qualification”, are known in the art. Accordingly, thorough donor screening, and tissue testing by enzymatic, immunological, biochemical and molecular biological techniques are applied to minimize the risk that tissue carrying pathogens (viruses, bacteria, and the like) will be included in the materials processed and made available for implantation. Testing for contamination by human immunodeficiency virus, HIV, hepatitis B virus, HBV, hepatitis C virus, HCV, has now become routine in the art. Known screening and qualification methods are desirably included as an initial step preceding processing of the implant material according to the present method. Due to the highly efficient implant cleaning, permeation and passivation process encompassed by the instant invention, it is further expected that as yet unidentified potentially pathogenic organisms or organisms for which routine testing has yet to be developed will, in any event, be removed from implant materials by virtue of the instant implant treatment process. Redundancy in the level of implant cleaning that is built into the instant pressure cycling permeation and passivation process ensures inactivation of such organisms while at the same time permitting efficient implant processing. [0053]
  • For purposes of the following description, allograft bone is referred to as an exemplary tissue that may be processed according to the present method. However, those skilled in the art will recognize that other tissues, including but not limited to autograft bone, xenograft bone, other porous tissues, synthetic porous materials, and various soft tissues, may be processed according to the principles defined herein, without departing from the spirit of the invention exemplified herein by reference to allograft bone material. [0054]
  • According to this invention, allograft bone material from qualified donors is first treated by various known bioburden reducing methods, as in cleaning by debriding adventitious tissue according to methods known in the art. Manual dissection may be employed for removal from the bone surfaces of ligaments, tendons, skin, fat, muscle, loose bone marrow, and any other non-bone tissue. Alternatively, automated or semi-automated methods known in the art, (see, for example, the methods disclosed in U.S. Pat. Nos. 5,333,626; 5,513,662; 5,725,579, and the like, herein incorporated by reference for this purpose), may be employed for initial cleaning of the donor bone material. [0055]
  • At this stage of the process, the cleaned allograft materials from individual donors may be pooled and further cleaned as described below. Alternatively, the allograft bone may be machined to the final implant dimensions, followed by pooling with a batch of similarly processed, dimensioned implants for further cleaning as described below. For tracking purposes, while individual donors would have been tracked up to this stage, upon pooling, a batch number is defined for further tracking, with records being maintained of all of the donors that have contributed to the batch. In yet a further alternative, and to ensure redundancy in the level of cleaning and potentially pathogenic contaminant inactivation, implant materials from individual donors may first be treated as described below, prior to pooling with implant materials from different donors. In this event, the implant material form individual donors may be further cleaned whole or first machined to desired final dimensions. [0056]
  • When applied to bone, subsequent to initial bioburden reduction and surface cleaning, the method of this invention provides for further processing whereby bone marrow, blood, proteins, and particulate matter is efficiently removed, such that what remains is essentially a mineralized collagen matrix, in which about a 5 to 6 log reduction in any form of viable organisms (viruses, bacteria, amoebae, rickettsia, fungi) is achieved. As described in greater detail below, this is achieved by a process of pressure cycling or oscillation, employing a variety of cleaning and sterilization solutions which are caused to efficiently interpenetrate the matrix. By repeated cycling and changing of the cleaning solvents, the channels of essentially any porous matrix are unclogged, and cleansed. A pre-defined, pre-programmed cycle of washes is employed, preferably with concurrent ultrasonic bombardment, to achieve penetrating sterilization of the implant. We have found that the combination of oscillating fluid pressure and ultrasonic energy accelerates solution interpenetration and endogenous substance removal. [0057]
  • In view of the foregoing description, it will be appreciated that in one embodiment, the invention is a method which comprises the following steps: [0058]
  • 1. Rapidly evacuate a chamber containing the implant such as porous metallic or synthetic materials, autograft, allograft or xenograft; [0059]
  • 2. Rapidly backfill the chamber with cleaning solutions—e.g. H[0060] 2O2/TritonX-100/TNBP/Betadine mixtures;
  • 3. Pressurize chamber; [0061]
  • 4. Rapidly cycle between steps (1) and (3), for between about 1-150 cycles, maintaining a temperature of between about 35-40 degrees centigrade, with optional application of ultrasonic energy; [0062]
  • 5. Machine the product as desired if not previously machined; [0063]
  • 6. Repeat steps (1)-(4) using the same or a different cleaning compositions, optionally under elevated or reduced temperature; and [0064]
  • 7. Optionally perform a surface decontamination step, preferably in the final packaging, as in exposure to vapor phase H[0065] 2O2 or like surface decontamination treatments known in the art.
  • The process of perfusion passivation is further defined with reference to FIG. 1A. This schematic shows an [0066] implant 100 comprising solid structural constituents 110, channels 120, and adventitious materials 130 embedded within the channels 120. The structural constituents 110 may be synthetic materials, as in man-made polymeric material, (e.g. poly-L-lactic acid, acrylic acids, and the like), metallic structural materials, or natural materials, such as a mineralized or demineralized collagen matrix. The channels 120 may be man-made channels, defined by the polymerization, molding, melting or other manufacturing process, or may be natural channels, such as those found in mineralized or demineralized cancellous or cortical bone matrices. The adventitious materials 130 may be cellular debris, bone marrow, cells, lipids, carbohydrates, proteins, viruses, bacteria, rickettsia, amoebae, fungi and the like. In FIG. 1A, panels (1) and (2) relate to the first step described above. In panel (1), the channels 120 are primed for back-filling with cleaning solutions by exposing the tissue to decreased pressures. In panel (2), the cleared channels 120 are shown to be substantially clear of adventitious materials 130. Panel (3) relates to steps 2 and 3, wherein molecules of cleaning solution 140 are introduced into a sealed chamber and are driven into the channels 120 by elevated pressures. Panel (4) relates to the fourth step described above, wherein decreased pressure removes remaining cellular debris, cleaning solution 140, and other remaining adventitious materials from the channels 120, and again primes the matrix for deep penetration, now possible due to the clarity of the channels 120. In panels (5)-(7), a one cycle repeat according to the fourth step described above is shown, whereby upon repressurizing with clean solvents, full interpenetration of the solvents into the implant matrix is achieved. In panel (6), reduced pressure draws the remaining solution from the implant, which may then be dried, as shown in panel (7), prior to further processing (e.g. machining according to step 5 above, further cleaning, according to step 6 above), and final packaging of the cleaned tissue. The cycle depicted in FIG. 1A may be repeated as many times as desired to ensure complete internal cleaning of the matrix interior. In FIG. 1B, a representation of the pressure and fluid oscillation throughout the various steps of the above described process is represented.
  • After being medically released, (i.e. passing a battery of risk factor and biochemical assays, including, for example, HIV-specific PCR, and the like), donor tissue is cleaned of any extraneous or adventitious tissue. The thus-cleaned tissue is loaded into a sealable reaction chamber. A preferably pre-programmed tissue cleaning process is then initiated comprising a plurality of wash steps. Deep tissue interpenetration by cleaning solutions is achieved by oscillating the pressure in the chamber while adding and removing various cleaning solvents. Ultrasonic energy is applied at various stages of the cleaning process to accelerate solution penetration and removal of unwanted contaminants or endogenous substances, including blood, lipid, and non-structural or undesired proteins. In one preferred cleaning cycle according to this invention, a steps (1-4) of the claimed process are carried out according to a protocol similar to that defined in the following table to remove blood, fat, bacterial, viral, fungal or other contamination: [0067]
    TABLE I
    Soni- Duration
    Step Pressure Fluids* cation (min) Purpose
    0 Atmospheric None Off NA Load tissue into chamber
    1 Negative None Off 2 Prime tissue matrix, remove included
    (60-100 torr) air and loose debris
    2 Negative B, C, D, E, On 1 De-gas cleaning fluids
    (60-100 torr) mixtures
    3 Positive (5-8 B, C, D, E, On 1 Force fluids into tissue matrix
    atmospheres) mixtures
    4 Negative/ B, C, D, E, On (1 × n) Remove debris loosened by fluids,
    Positive mixtures pressure oscillation and sonication
  • According to Table I, in [0068] step 0, under atmospheric pressure, and no fluid or sonication, a pressurizable chamber in which the process may be conducted, is loaded with metallic, synthetic or other man-made implant materials, allograft bone or soft tissue, xenograft bone or soft tissue, from an individual qualified donor. Where the implant is a tissue, the tissue is preferably first cleaned of surface adventitious tissue, prior to initiating the steps shown in table I. In step 1, under negative pressure (vacuum), for a period of about two minutes, the matrix of the implant or implants is primed (i.e. see FIG. 1, step 1, to remove trapped air, cellular and other loose debris by vacuum). In step 2, under negative pressure, cleaning fluid is introduced with sonication, to aid in penetration of the fluid and to ensure gas is removed from the introduced fluid. In step 3, under positive pressure, and in the presence of an appropriate cleaning solvent and sonication, solvent is forced into the matrix of the implant. Thereafter follows a series of “n” cycles of positive and negative pressure in the presence of solvent and sonication, during which the matrix channels are backfilled and emptied of solution and debris. The number of times this step is cycled may be from once to about 150 times (i.e. n=1-150; preferably n is about 10-50 times).
  • After [0069] step 4 in Table I, the cleaning fluid is removed to waste under positive pressure, the tissue is dried under negative pressure, and is rinsed several times under oscillating positive and negative pressure using sterile water or physiological saline (e.g. phosphate buffered saline, PBS), with or without accompanying sonication. The number of rinse cycles may be from 1-150 times, and is preferably about 1-50 times. The rinse solution is drained under positive pressure, and the tissue is again dried under negative pressure.
  • After removal of the gross contamination according to the steps outlined above, the tissue in-process may be machined into dimensionally finished grafts if such processing has not previously been accomplished, (step 5 of the instant process, as defined above), and then loaded into a reaction chamber, same or different than that used to carry out the steps according to Table I. A deep-penetrating cleaning, passivation or sterilization cycle, preferably under programmable logic control, is then conducted according to a protocol similar to that defined in Table II (see step 6 defined above, which represent a repeat of steps 1-4 of Table I, optionally using different cleaning solvents; these steps are distinguished by indicating the steps as 0′-4′): [0070]
    TABLE II
    Soni- Duration
    Step Pressure Fluids* cation (min) Purpose
    0′ Atmospheric None Off NA Load tissue into chamber
    1′ Negative None Off 2 Prime tissue matrix, remove included
    (60-100 torr) air and loose debris
    2′ Negative F, G, H, I, J, On 1 De-gas cleaning fluids
    (60-100 torr) mixtures
    3′ Positive F, G, H, I, J, On 1 Force fluids into tissue matrix
    (8-10 mixtures
    atmospheres)
    4′ Negative/ F, G, H, I, J, On (1 × n) Remove debris loosened by fluids,
    Positive mixtures pressure oscillation and sonication
  • After [0071] step 4′ in Table II, the cleaning fluid is preferably retained in a positively pressurized reaction chamber for an extended period to ensure complete killing of any residual contaminating pathogens or other organisms. A period of from one to sixty minutes, and preferably about ten minutes, is sufficient for this purpose. The cleaning fluid is then removed to waste under positive pressure, the tissue is dried under negative pressure, and is rinsed several times under oscillating positive and negative pressure using sterile water or physiological saline (e.g. phosphate buffered saline, PBS, or the like), with or without accompanying sonication. The rinse solution is drained under positive pressure, and the implant is again dried under negative pressure.
  • Those skilled in the art will appreciate that the specifics of the process outlined according to Tables I and II above may be modified, without departing from the essence of the present invention. Essentially, other cleaning solvents or concentrations than those suggested herein may be used, the number of oscillations between elevated and reduced pressure, and the cycling times, pressurization and depressurization levels and periods may be altered, according to the requirements for a given tissue. However, the conditions specified in Tables I and II result in deeply penetrating cleaning, as evidenced by the ability to force dyes deep into tissue matrices, to remove dyes that have been allowed to soak deep into tissue matrices, and the ability to remove or kill endogenous or added biological contaminants, including a wide variety of bacteria, viruses and fungi. Tissues cleaned according to this procedure include, but are not limited to: cortical bone, cancellous bone, fascia, whole joints, tendons, ligaments, dura, pericardia, heart valves, veins, neural tissue, submucoal tissue, (e.g. intestinal tissue), and cartilage. Bone treated according to this method and subsequently tested for retained biomechanical strength and ability to induce new bone formation (osteoconduction and osteoinduction, collectively referred to as osteogenic activity) retains good biomechanical strength and is expected to retain osteogenic activity. Furthermore, bone treated according to one embodiment of this method and implanted as a xenograft was found to induce little or no adverse immunological reactivity, indicating reduction in antigenicity of the material. This is particularly true where urea or other chaotropic agents (e.g. guanidine hydrochloride), is used as one of the cleaning fluids or is included in a mixture of cleaning fluids. [0072]
  • The method disclosed herein will suggest to those skilled in the art a nunber of possible devices to achieve the programmed steps defined above. Thus, for example, in one embodiment according to this invention, a device such as that shown schematically in FIG. 2 may be employed for semi-manual implementation of the cyclic perfusion passivation process of this invention. According to this embodiment of the invention, a [0073] chamber 200 comprising a lid 210 and a trough 220 is adapted for cyclic perfusion passivation of implants. A series of posts 230, onto which a series of bolts 240 may be tightened are provided for securing the lid 210 to the trough 220. A grating 250 is provided inside the chamber 200 for receiving implant material to be treated. Through the lid 210 is provided a series of access ports 260, 261, 262, 263. Access port 260 is a sterile water input line. Access port 261 is an input line for other fluids. Access port 262 is a vacuum line. Access port 263 is a line for pressure input. In addition, a port 264 is provided for insertion of a temperature probe. Port 265 is a port for supplying power to a sonicator built into the walls 225 of the chamber 200. Port 266 is a drain. Accordingly, a device such as that shown in FIG. 2 could be used carrying out the cyclic perfusion passivation process according to this invention.
  • With reference to FIG. 3, an automated or [0074] semi-automated apparatus 300 may be defined for carrying out the instant process. Per this disclosure, programmable logic controllers activate or deactivate valves or solenoids 301 a-h at pre-determined times in the cleaning cycle. An implant is placed in a reaction chamber 310 which is sealed. An atmospheric vent 320 is provided to permit entrance and removal of waste and filtered air. Cleaning fluids are introduced into reaction chamber 310 from a chemical mixing tank 330 which has a filtered vent to atmosphere 325, to avoid formation of a vacuum in the tank 330. Chemical feed lines 340 lead from fluid reservoirs 341 to the chemical mixing tank 330 via a common conduit 345. A programmably controlled pump 350 is operated to pump appropriately mixed fluids from the tank 330 into the reaction vessel 310. Vacuum or negative pressure is applied to the reaction vessel 310 by means of a vacuum receiver tank 360, in which a source of negative pressure is created by vacuum pump 365. The inclusion of a vacuum reservoir 360 is desirable so that essentially instantaneous vacuum of known dimensions may be applied to the reaction chamber 310, without the need for a vacuum pump such as 365 having to gradually develop the negative pressure. Vacuum receiver tank 360 may be evacuated by pump 365 while reaction tank 310 is under positive pressure. A source of sterile water, physiological saline, or like aqueous solution is provided in storage tank 370, which has a filtered vent 375 to prevent formation of a vacuum in tank 370. Pump 376 provides for rapid infusion of aqueous solution into chemical mixing tank 330 for introduction into the reaction chamber 310. Those skilled in the art will appreciate that the water from tank 370 may also be directly introduced into reaction tank 310, without having to first be introduced into chemical mixing tank 330. Positive pressure is stored in pressure tank 380 which is pressurized by a compressor of filtered gas, to retain sterility in the reaction tank 310. In practice, an appropriately programmed computer or programmable logic controllers permit venting of the reaction chamber 310, to permit loading of tissue. The chamber is then sealed, evacuated, pressurized, and fluid is introduced and removed, as outlined, for example, in Table I and Table II above, to complete the implant cleaning process.
  • Manual or automated perfusion of cleaning and sterilizing fluids, as outlined above, results in reduction of the bioburden of implant material from individual donors, prior to pooling with implant materials from other donors for batch processing. Initial bioburden reduction may be achieved according to a protocol such as that outlined in Table I, to reduce the potential for contamination of an uncontaminated implant by contact with a contaminated implant. However, those skilled in the art will recognize that the penetrating passivation process of this invention is so efficient that for certain types of implants in which the initial prospect of encountering a contaminated implant is sufficiently low, it may be possible to simply batch process implant materials according to Table I and Table II, rather than first cleaning implants from an individual donor according to the Table I program, prior to combining such implant materials from different donors and processing the pooled implants according to the Table II program. [0075]
  • Where an initial bioburden reducing step for implant materials derived from individual donors is considered prudent, individual donor tissues are processed according to the Table I program, and are then quarantined until all quality control criteria are passed. Only the individual donor tissues that pass such quality control after initial bioburden reduction are pooled for processing according to the Table II protocol. As an initial bioburden reduction program, a combination of TritonX-100 and TNBP may be used as a first solvent to remove debris and to inactivate bacteria and viruses. A second solvent may be a 3% hydrogen peroxide solution to remove cellular debris and to further reduce bioburden. A third solvent may be povidone iodine solution to yet further reduce bioburden. Finally, ascorbic acid solution may be employed to decolorize the implant or remove any residual iodine. These solutions may be employed in a different order, and indeed, different solutions may be used to similar effect. The particular solutions listed are preferred, however, due to their low toxicity, and our discovery that the defined combination of solutions results in efficient reduction in bioburden, implant cleaning, passivation and interpenetration. The solutions of Table I are typically employed in a cycle such as that shown in Table I, steps 0-4. [0076]
  • At this stage of the process, cleaned allograft or xenograft tissue from individual donors or previously pooled donors is optionally pooled and further cleaned as described below. Alternatively, the tissue is first dimensioned by machining, trimming and the like, to achieve the final implant dimensions. The dimensioned tissue is further processed individually or is pooled with a batch of similarly or differently processed, dimensioned implants for further cleaning as described below. For tracking purposes, while individual donors would have been tracked up to this stage, upon pooling, a batch number is defined for further tracking, with records being maintained of all of the donors that have contributed to a given batch. [0077]
  • In Table II, a set of solutions is described for achieving penetrating sterilization of individual tissues or tissues pooled from different donors which have already been treated according to the program outlined in Table I. Thus, a first solution of 6% hydrogen peroxide, followed by a second solution of 1% sodium hypochlorite, followed by a solution of 1 N sodium hydroxide, may be used to achieve sterilization. A 70% solution of isopropanol may be used as a broad spectrum germicide. Thus, the solutions of Table I and Table II may be employed according to the program shown, or modified as needed. Those skilled in the art will appreciate that different penetrating sterilants may be employed or that mixtures of the described sterilants may be possible. In any event, at the conclusion of this stage of the process, the individual or pooled batch of implants has been thoroughly cleaned, passivated (if not sterilized), and interpenetrated by cleaning solutions. Reductions in enveloped virus, vegetative bacteria, and fungal contamination of up to twelve logs or higher and of non-enveloped viruses and spores of up to about five logs are achieved according to the process described herein. In addition, about a two to ten-fold reduction in endotoxin levels is achieved, along with significant elimination of blood, lipid, nucleic acid, and non-structural protein. Furthermore, this process retains the beneficial structural and other desirable biological properties of the implant material. Significant enhancements in production yields, through the ability to batch process implant from pooled donors, are also achieved. [0078]
  • Subsequent to penetrating passivation of the implant materials, the implant materials are placed in their final packing. Preferably, this is achieved in a sterile environment to avoid introduction of any adventitious bioburden. To ensure sterile packaging, with the final machined grafts in their final, unsealed packages, the implants are exposed to a vapor-phase hydrogen peroxide/peracetic acid or like vapor-phase sterilizing environment. The packages are then closed to ensure that no contamination may occur upon removal of the implants from the sterile field for storage or shipment to surgeons. The sealed packages may then, optionally, be subjected to levels of gamma or other types of irradiation known to not adversely affect tissue properties (e.g. below about 3.0 Mrad, or for short periods of time to effect surface sterilization, and to ensure internal destruction of any residual large-genome organisms; however, such internal treatment is generally not required, deep sterilization having been achieved according to the cleaning protocol described herein). Other surface and redundant internal sterilization methods, including exposure to electron beams, exposure to ethylene oxide, and the like, may also be conducted at this stage, so long as toxicity or diminishment of desirable biological activities is not thereby effected. [0079]
  • As a further enhancement to the process defined herein is the ability to produce implant materials with perfusion of desirable bioactivities. Accordingly, in the final rinse steps after steps 0-4 or Table I or [0080] steps 0′-4′ of Table II, a solution containing desired antibiotics, anti-inflammatory drugs or other biologically active agents may be employed to infuse antibiotic or other desired bioactive substances into the cleaned, passivated tissues. Alternatively or in addition, growth factors, such as bone morphogenetic proteins, cartilage derived growth factors, tissue growth factors, natural or recombinant, and the like known in the art may be perfused into the implant.
  • As can be appreciated from the foregoing detailed disclosure, the process of the present invention may be carried out at any stage of implant production, and it does not require special preparations such as removal of cartilage, or potentially implant damaging steps such as drilling of holes. [0081]
  • As a means of providing an overall concept of the flow of the method according to the present invention, the schematic provided according to FIG. 4 is described. In [0082] stage 1, donor materials are introduced into the donor tissue processing facility and are held in quarantine until the donor from which the tissue was derived is qualified. In stage 2, released donor materials are surface cleaned by debridement. In stage 3, surface cleaned tissue is machined to produce implants of the desired final dimensions, and are introduced into an automated cyclic perfusion passivation chamber according to the present invention. In stage 4, implants that have been passivated are introduced into their final packing containers and are terminally sterilized by gamma irradiation, vapor-phase exposure to decontaminants, and the like. Finally, in stage 5, the passivated and packaged grafts are stored and released after verification of the sterilization cycles.
  • In a further embodiment of this invention, a process layout similar to that shown schematically in FIG. 5 may be employed. According to this layout, a [0083] processing facility 500 shows three parallel and identical tissue processing facilities A-C. Starting in debridement chambers 510A-C, tissue to be treated according to this invention is cleaned and debrided of gross, adventitious and unwanted tissues. The cleaned tissue is then introduced, via sealable port 515A-C into a reaction chamber 310A-C, to which are connected all of the process control and input/output devices shown in FIG. 3. Upon completion of a cleaning cycle such as that defined according to Table I, tissue is removed via sealable port 516A-C. The cleaned tissue is sorted and stored in quarantine freezers 520A-C, until quality control demonstrates that the tissue is fit for further processing. The released tissues are then transferred to graft-production rooms 530A-C, where final implant dimensioning and machining is conducted. Following production of the finally dimensioned implants, the thus processed tissues are loaded into reaction chambers 310′A-C via sealable port 535. Not shown but connected to reaction chamber 310′A-C are all the process control and input/output devices shown in FIG. 3. Following further cleaning, such as that defined according to Table II, the deeply sterilized tissues are removed from sealable port 536A-C, and are placed in final packaging. Terminal sterilization is conducted at stations 540A-C, and the terminally sterilized tissues are sealed in the final packaging. The sealed packages of terminally sterilized tissues are quarantined in freezers 545 until final quality control testing permits tissue release to surgeons.
  • It will be appreciated that while the process layout provided in FIG. 5 is preferred, it is suggestive only, and the process according to the instant invention may be conducted in other layout formats. Further, it will be appreciated that according to the layout shown according to FIG. 5, it is desirable for the level of ambient particulates to be reduced as tissue is processed through the various stages shown. Thus, while it is adequate for the [0084] chamber 510 to be of class 100,000 (100,000 particles per billion), it is desirable for areas 520 and 530 to be class 10,000 or lower. The final packaging area 540 is preferably about a class 1000 area.
  • Having generally and in detail described this invention, including its best mode, the following specific examples are provided to further exemplify, but not to limit, the disclosed invention, the scope of which should be reviewed by reference to the claims appended hereto and the equivalents thereof. [0085]
  • EXAMPLES Example 1
  • Specific Cleaning Protocol for Bone: [0086]
  • In one preferred embodiment of this invention, an intact or machined bone implant is cleaned by treatment sequentially with povidone-I, water, ascorbic acid, TNBP/hydrogen peroxide, water, diethanolamine, water, 6 M urea, water. The sequence of sonication, and pressure fluctuations is conducted according to the sequence defined in Table I or Table II. It will be appreciated from this disclosure, however, that a wide variety of different cleaning solutions and combinations thereof may be employed according to the method of this invention. For example, the cleaning solutions may include: sterile water, Triton X-100, TNBP, 3% hydrogen peroxide, a water-miscible alcohol, saline solution, povidone iodine, ascorbic acid solution, aromatic or aliphatic hydrocarbons, ethers, ketones, amines, urea, guanidine hydrochloride, esters, glycoproteins, proteins, saccharides, enzymes such as proteases (trypsin, pepsin, subtilisin), lipases, sachrases, and the like, gasseous acids or peroxides, and mixtures thereof. The process is conducted at ambient temperatures, elevated temperatures (eighty degrees centigrade) or decreased temperatures. Thus, cleaning of implants in a liquid nitrogen phase (negative eighty degrees centigrade) is contemplated by this invention. [0087]
  • Example 2
  • Effectiveness of Process for Implant Cleaning [0088]
  • FIG. 6 is a photograph of a whole humerus after being treated according to the method of this invention; a coronal section through the head of the humerus reveals the cleanliness of the inner bone matrix. [0089]
  • Example 3
  • Effectiveness of Process for Cleaning of Hard Tissue and Soft Tissue Implants [0090]
  • FIG. 7 is a photograph of an intact knee, including proximal tibia, distal femur and patella, along with articulating tendons and ligaments, before treatment according to the method of this invention. [0091]
  • FIG. 8 is a photograph of the intact knee shown in FIG. 7, after treatment according to the method of this invention, showing cleanliness of the implant, and preservation of the articulating tendons and ligaments. [0092]
  • In light of these results, it will be apparent that implant materials and tissues that may be effectively cleaned according to this procedure include, but are not limited to metallic implants, synthetic implants, ceramic implants, allograft, autograft or xenograft tissues. Such tissues may be selected from tissues comprising: cortical bone, cancellous bone, fascia, whole joints, tendons, ligaments, dura, pericardia, heart valves, veins, neural tissue, submucoal tissue, (e.g. intestinal tissue), and cartilage. Essentially any implantable material having an internal matrix that is required to be cleaned may be treated to advantage according to the method of this invention. [0093]
  • Example 4
  • Effectiveness of the Process of this Invention for Deep Cleaning of Implants [0094]
  • FIG. 9 is a photograph of an anterior aspect of a coronal section through the proximal femur prior to treatment according to the method of this invention. [0095]
  • FIG. 10 is a photograph of the posterior aspect of the coronal section through the proximal femur shown in FIG. 9, after treatment according to the method of this invention. [0096]
  • FIG. 11 is a photograph of the sections shown in FIGS. 9 and 10, side-by-side, demonstrating the effectiveness of the treatment according to this invention for removal of endogenous substances and deep, penetrating implant cleaning. [0097]
  • Example 5
  • Demonstration of the Ability of the Process of this Invention to Achieve Deep Interpenetration of Cleaning Substances and Impregnation of Implants with Desirable Biologically Active Substances [0098]
  • FIG. 12 is a photomicrograph of an osteon from cortical bone without fluoroisothiocyanate (FITC) fluorescent dye treatment (100× magnification). [0099]
  • FIG. 13 is a photomicrograph of an osteon from cortical bone after inclusion of FITC in one of the cleaning solutions of this invention, demonstrating deep interpenetration of the dye into the smallest of bone interstices—bright green areas indicating structures containing FITC, including the large haversian canal (right margin) and smaller satellite lacunae (central area; 100× magnification). [0100]
  • These photomicrographs demonstrate that the FITC dye is forced into the smallest implant interstices, thereby revealing the ability to achieve deep penetrating cleaning. In addition, these photomicrographs demonstrate that biologically active substances, such as antibiotics, antiviral compounds, anti-inflammatory compounds, growth factors, osteo-inductive substances (e.g. bone morphogenetic protein, cartilage derived morphogenetic protein, natural or recombinant, and the like), when included in solutions employed according to the method of this invention, may be effectively imbedded deeply into implant materials. Thus, biologically active substances for permeation into implants, according to the method of this invention are selected from the group consisting of bone morphogenetic protein, tissue growth factor beta or member of the tissue growth factor beta family of growth factors, cartilage derived morphogenetic proteins I or II or both, and any related cartilage derived growth factors, angiogenic factors, platelet derived growth factor. Any of the proteins selected for permeation into implants may be natural or recombinant proteins. [0101]

Claims (35)

What is claimed is:
1. An implant cleaning, perfusion and passivation process which comprises cyclic exposure of said implant to increased and decreased positive or negative pressures, or both.
2. The process according to claim 1 wherein said cyclic exposure of said implant to increased and decreased pressures occurs in the presence of a cleaning solution.
3. The process according to claim 2 wherein said process occurs, at least in part, with concurrent exposure of said implant to sonication.
4. The process according to claim 3 wherein said cycling between increased and decreased pressures occurs rapidly according to a defined program.
5. The process according to claim 4 wherein said implant is selected from the group consisting of porous metallic, ceramic or synthetic materials, or allograft, autograft or xenograft tissue selected from: cortical bone, cancellous bone, fascia, whole joints, tendons, ligaments, dura, pericardia, heart valves, veins, neural tissue, submucoal tissue, and cartilage.
6. The process according to claim 5 wherein said cycling of increased and decreased pressures is achieved through an oscillation of pressure in a chamber containing said implant in the presence of a cleaning solution.
7. The process according to claim 6 comprising:
a. rapidly evacuating said chamber containing said implant;
b. rapidly backfilling said chamber with a cleaning solution or a mixture of cleaning solutions;
c. pressurizing said chamber; and
d. rapidly cycling between steps (a) and (c), for between about 1-150 cycles, maintaining a temperature of between about 35-40 degrees centigrade, with optional application of ultrasonic energy.
8. The process according to claim 7, further comprising the step of:
e. machining said implant to final dimensions if not previously so machined.
9. The process according to claim 8, further comprising the step of:
f. conducting steps (a)-(d) using the same or a different cleaning solutions.
10. The process according to claim 9, wherein step (f) is conducted under elevated or reduced temperatures.
11. The process according to claim 10 further comprising placing said implant into a sterile, sealable package, and performing a surface decontamination step prior to or after sealing said package.
12. The process according to claim 7 wherein said implant is a tissue derived from a single donor.
13. The process according to claim 7 wherein said implant is a tissue derived from a pool of donor tissues.
14. The process according to claim 7 wherein said cleaning solution is selected from the group consisting of: sterile water, Triton X-100, TNBP, 3% hydrogen peroxide, a water-miscible alcohol, saline solution povidone iodine, ascorbic acid solution, aromatic or aliphatic hydrocarbons, ethers, ketones, amines, urea, guanidine hydrochloride, esters, glycoproteins, proteins, saccharides, enzymes, gasseous acids or peroxides, and mixtures thereof.
15. The process according to claim 12 wherein said tissue is pooled with similarly treated tissue from at least one other donor, and is further cleaned by conducting steps (a)-(d) using the same or different cleaning solutions.
16. The process according to claim 15 wherein said cleaning solution is selected from the group consisting of 6% hydrogen peroxide, 1% sodium hypochlorite, 6M urea, 4M guanidine hydrochloride, 1 N sodium hydroxide, isopropanol, water, saline and mixtures thereof.
17. The process according to claim 16 wherein said process is conducted at a temperature between about thirty-seven (37) degrees centigrade and about eighty (80) degrees centigrade.
18. The process according to claim 17 wherein said process is conducted at about 50-60 degrees centigrade.
19. The process according to claim 13 wherein said tissue is pooled with similarly treated tissue from at least one other donor, and is cleaned by conducting steps (a)-(d) using the same or different cleaning solutions.
20. The process according to claim 19 wherein said cleaning solution is selected from the group consisting of 6% hydrogen peroxide, 1% sodium hypochlorite, 6M urea, 4 M guanidine hydrochloride, 1 N sodium hydroxide, isopropanol, water, saline and mixtures thereof.
21. The process according to claim 20 wherein said process is conducted at a temperature between about thirty-seven (37) degrees centigrade and about eighty (80) degrees centigrade.
22. The process according to claim 21 wherein said process is conducted at about 50-60 degrees centigrade.
23. The process according to claim 1 wherein the thus treated implant is packaged in a sterile environment upon performing a surface or terminal decontamination step, preferably with the implant in its final packaging.
24. The process according to claim 23 wherein said surface or terminal decontamination step comprises contacting the implant with vapor-phase H202, peracetic acid, exposure to gamma irradiation, electron beam irradiation, exposure to ethylene oxide, or a mixture of these.
25. The process according to claim 1 wherein the cycling of pressures is conducted at pressures above one atmosphere, below one atmosphere, or both.
26. The process according to claim 25 wherein vacuum pressures of between about 60 to 100 torr and the vapor pressure of the solutions in contact with the implant and backfill pressures of between about 6-10 atmospheres are employed, and wherein concurrent sonication occurs throughout or at specific stages in said cycling of pressures.
27. The process according to claim 1 wherein the implant is perfused or coated with a bioactive substance.
28. The process according to claim 27 wherein said bioactive substance is a drug or a growth factor.
29. The process according to claim 28 wherein said growth factor is selected from the group consisting of a bone morphogenetic protein, tissue growth factor beta or member of the tissue growth factor beta family of growth factors, cartilage derived morphogenetic proteins I or II or both, and any related cartilage derived growth factors, angiogenic factors, and platelet derived growth factor.
30. The process according to claim 1 which results in any one or all of:
(a) between about a one (1) to twelve (12) log reduction in bacterial contamination;
(b) between about a one (1) to fifteen (15) log reduction in enveloped virus contamination;
(c) up to about a five (5) log reduction in non-enveloped virus contamination;
(d) between about a two (2) to ten (10) fold reduction in endotoxin;
(e) maintenance of implant or graft biologic and biomechanical properties;
(f) absence of tissue toxicity due to cleaning solutions used; and
(g) reduced implant antigenicity.
31. An implant treated according to the process of claim 1.
32. The implant of claim 31 wherein said implant is composed of a porous metal, ceramic, synthetic polymer, allograft, autograft or xenograft.
33. The implant according to claim 31 which is composed of bone and which, as a result of being treated by said process of claim 1, has reduced antigenicity.
34. An apparatus for conducting the process according to claim 1 comprising: a programmable logic controller to activate or deactivate valves or solenoids 301 a-h at pre-determined times in the cleaning cycle; a sealable reaction chamber 310 into which a tissue to be cleaned is placed; a chemical mixing tank 330 from which cleaning fluids are introduced into said sealable reaction chamber 310; a vacuum receiver tank 360, linkable to said reaction chamber 310 so that essentially instantaneous vacuum of known dimensions may be applied to the reaction chamber 310, without the need for a vacuum pump to gradually develop negative pressure in said reaction chamber 310; a source of sterile water, physiological saline, or like aqueous solution; a pressure tank 380 which is pressurized by a compressor of filtered gas, to retain sterility in the reaction tank 310.
35. A process facility for conducting the process according to claim 1, comprising at least one tissue debridement chamber 510, wherein tissue to be cleaned is debrided of gross, adventitious and unwanted tissues; at least one sealable port 515 into a reaction chamber 310 for cyclic pressurization and depressurization of said tissue in the presence of at least one cleaning solvent; at least one graft-production room 530, wherein final implant dimensioning and machining is conducted; at least one reaction chamber 310′ into which dimensioned implant is inserted via at least one sealable port 535 for cyclic pressurization and depressurization of said dimensioned implant in the presence of at least one cleaning solution; at least one sealable port 536 for removal of cleaned implant; and at least one terminal sterilization and packaging station 540 for sterile packaging of cleaned implant.
US10/192,180 1998-11-13 2002-07-10 Cyclic implant perfusion, cleaning and passivation process and implant produced thereby Abandoned US20030027125A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/192,180 US20030027125A1 (en) 1998-11-13 2002-07-10 Cyclic implant perfusion, cleaning and passivation process and implant produced thereby
US10/980,661 US20050096742A1 (en) 1998-11-13 2004-11-02 Cyclic implant perfusion, cleaning and passivation process and implant produced thereby
US11/006,017 US20050100862A1 (en) 1998-11-13 2004-12-07 Cyclic implant perfusion, cleaning and passivation process and implant produced thereby
US12/389,124 US8142991B2 (en) 1998-11-13 2009-02-19 Cyclic implant perfusion, cleaning and passivation process and implant produced thereby
US13/399,734 US8669043B2 (en) 1998-11-13 2012-02-17 Cyclic implant perfusion, cleaning and passivation process and implant produced thereby
US14/203,925 US9332750B2 (en) 1998-11-13 2014-03-11 Cyclic implant perfusion, cleaning and passivation process and implant produced thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/191,232 US6482584B1 (en) 1998-11-13 1998-11-13 Cyclic implant perfusion cleaning and passivation process
US10/192,180 US20030027125A1 (en) 1998-11-13 2002-07-10 Cyclic implant perfusion, cleaning and passivation process and implant produced thereby

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US09/191,232 Division US6482584B1 (en) 1997-08-27 1998-11-13 Cyclic implant perfusion cleaning and passivation process
US10/052,586 Continuation US20020127584A1 (en) 1997-09-15 2002-01-15 Secreted and transmembrane polypeptides and nucleic acids encoding the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/980,661 Continuation US20050096742A1 (en) 1998-11-13 2004-11-02 Cyclic implant perfusion, cleaning and passivation process and implant produced thereby
US11/006,017 Continuation US20050100862A1 (en) 1998-11-13 2004-12-07 Cyclic implant perfusion, cleaning and passivation process and implant produced thereby

Publications (1)

Publication Number Publication Date
US20030027125A1 true US20030027125A1 (en) 2003-02-06

Family

ID=22704656

Family Applications (7)

Application Number Title Priority Date Filing Date
US09/191,232 Expired - Lifetime US6482584B1 (en) 1997-08-27 1998-11-13 Cyclic implant perfusion cleaning and passivation process
US10/192,180 Abandoned US20030027125A1 (en) 1998-11-13 2002-07-10 Cyclic implant perfusion, cleaning and passivation process and implant produced thereby
US10/980,661 Abandoned US20050096742A1 (en) 1998-11-13 2004-11-02 Cyclic implant perfusion, cleaning and passivation process and implant produced thereby
US11/006,017 Abandoned US20050100862A1 (en) 1998-11-13 2004-12-07 Cyclic implant perfusion, cleaning and passivation process and implant produced thereby
US12/389,124 Expired - Fee Related US8142991B2 (en) 1998-11-13 2009-02-19 Cyclic implant perfusion, cleaning and passivation process and implant produced thereby
US13/399,734 Expired - Fee Related US8669043B2 (en) 1998-11-13 2012-02-17 Cyclic implant perfusion, cleaning and passivation process and implant produced thereby
US14/203,925 Expired - Fee Related US9332750B2 (en) 1998-11-13 2014-03-11 Cyclic implant perfusion, cleaning and passivation process and implant produced thereby

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/191,232 Expired - Lifetime US6482584B1 (en) 1997-08-27 1998-11-13 Cyclic implant perfusion cleaning and passivation process

Family Applications After (5)

Application Number Title Priority Date Filing Date
US10/980,661 Abandoned US20050096742A1 (en) 1998-11-13 2004-11-02 Cyclic implant perfusion, cleaning and passivation process and implant produced thereby
US11/006,017 Abandoned US20050100862A1 (en) 1998-11-13 2004-12-07 Cyclic implant perfusion, cleaning and passivation process and implant produced thereby
US12/389,124 Expired - Fee Related US8142991B2 (en) 1998-11-13 2009-02-19 Cyclic implant perfusion, cleaning and passivation process and implant produced thereby
US13/399,734 Expired - Fee Related US8669043B2 (en) 1998-11-13 2012-02-17 Cyclic implant perfusion, cleaning and passivation process and implant produced thereby
US14/203,925 Expired - Fee Related US9332750B2 (en) 1998-11-13 2014-03-11 Cyclic implant perfusion, cleaning and passivation process and implant produced thereby

Country Status (1)

Country Link
US (7) US6482584B1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050006307A1 (en) * 2003-07-08 2005-01-13 Jones Nathan C. Sanitization of chromatographic media
US20060228252A1 (en) * 2004-04-20 2006-10-12 Mills C R Process and apparatus for treating implants comprising soft tissue
US20070260109A1 (en) * 2005-12-05 2007-11-08 Donna Squillace Vascular graft sterilization and decellularization
US20070270951A1 (en) * 2006-02-15 2007-11-22 Reginald James Davis Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US20080166266A1 (en) * 2003-06-23 2008-07-10 Burns David C Method and Apparatus for Cleaning of Viable Donor Soft Tissue
US20080294270A1 (en) * 2007-05-24 2008-11-27 Zimmer Orthobiologics, Inc. Differentially processed tissue and processing methods thereof
US20090246193A1 (en) * 2003-06-23 2009-10-01 Christensen Tim W Inactivating organisms using carbon dioxide at or near its supercritical pressure and temperature conditions
US20100268349A1 (en) * 1997-08-27 2010-10-21 Bianchi John R Assembled implant
US8158379B2 (en) 2003-10-28 2012-04-17 Allosource Methods for determining microbial contamination of allograft products
KR101163594B1 (en) * 2010-10-27 2012-07-06 이윤진 Method for producing tooth bone graft materials and tooth bone graft materials produced by thereof
US20120213821A1 (en) * 2002-12-09 2012-08-23 Universite Paris Sud Xi Novel method for isolating endotoxins
WO2012121463A1 (en) * 2011-03-08 2012-09-13 Park Chang Soo Bone-graft-substance production device
US8343219B2 (en) 2007-06-08 2013-01-01 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US8669043B2 (en) 1998-11-13 2014-03-11 Rti Surgical, Inc. Cyclic implant perfusion, cleaning and passivation process and implant produced thereby
US8753406B2 (en) 2010-08-31 2014-06-17 Zimmer Inc. Osteochondral graft delivery device and uses thereof
US8901078B2 (en) 2011-07-28 2014-12-02 Harbor Medtech, Inc. Crosslinked human or animal tissue products and their methods of manufacture and use
US8945219B1 (en) 2007-05-11 2015-02-03 SDCmaterials, Inc. System for and method of introducing additives to biological materials using supercritical fluids
US8974730B2 (en) 2003-06-23 2015-03-10 Novasterilis, Inc. Process for creating acellular viable donor soft tissue
US9039774B2 (en) 2012-02-24 2015-05-26 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US9044337B2 (en) 2009-12-31 2015-06-02 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US9078765B2 (en) 2001-07-13 2015-07-14 Ldr Medical Vertebral cage device with modular fixation
US9463091B2 (en) 2009-09-17 2016-10-11 Ldr Medical Intervertebral implant having extendable bone fixation members
US9597194B2 (en) 2005-09-23 2017-03-21 Ldr Medical Intervertebral disc prosthesis
US9992024B2 (en) 2012-01-25 2018-06-05 Fujitsu Limited Establishing a chain of trust within a virtual machine
US10322835B1 (en) * 2009-01-02 2019-06-18 Lifecell Corporation Method for preparing collagen-based materials

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563232B2 (en) 2000-09-12 2013-10-22 Lifenet Health Process for devitalizing soft-tissue engineered medical implants, and devitalized soft-tissue medical implants produced
US20080077251A1 (en) * 1999-06-07 2008-03-27 Chen Silvia S Cleaning and devitalization of cartilage
US6293970B1 (en) 1998-06-30 2001-09-25 Lifenet Plasticized bone and soft tissue grafts and methods of making and using same
US6241770B1 (en) * 1999-03-05 2001-06-05 Gary K. Michelson Interbody spinal fusion implant having an anatomically conformed trailing end
CA2363562C (en) 1999-05-05 2010-08-03 Gary Karlin Michelson Nested interbody spinal fusion implants
WO2001078798A1 (en) * 2000-02-10 2001-10-25 Regeneration Technologies, Inc. Assembled implant
US6350283B1 (en) 2000-04-19 2002-02-26 Gary K. Michelson Bone hemi-lumbar interbody spinal implant having an asymmetrical leading end and method of installation thereof
US7462195B1 (en) 2000-04-19 2008-12-09 Warsaw Orthopedic, Inc. Artificial lumbar interbody spinal implant having an asymmetrical leading end
DE10026442A1 (en) * 2000-05-29 2001-12-13 Augustinus Bader Method of making a recipient-specific tissue graft
DE10026482A1 (en) * 2000-05-29 2001-12-13 Augustinus Bader Process for the production of a bioartificial graft
US20020119437A1 (en) * 2000-09-20 2002-08-29 Grooms Jamie M. Method of preparing and processing transplant tissue
DE10064948C1 (en) * 2000-12-20 2002-07-11 Auto Tissue Gmbh Process for decellularizing foreign material for the production of bioprostheses and device for carrying out the process
US6837907B2 (en) * 2001-03-28 2005-01-04 Lifenet Method for debriding bone, and bone debrided thereby
US6989031B2 (en) 2001-04-02 2006-01-24 Sdgi Holdings, Inc. Hemi-interbody spinal implant manufactured from a major long bone ring or a bone composite
US6890355B2 (en) 2001-04-02 2005-05-10 Gary K. Michelson Artificial contoured spinal fusion implants made of a material other than bone
JP4092397B2 (en) * 2002-09-10 2008-05-28 国立循環器病センター総長 Treatment of living tissue for transplantation by applying ultrahigh hydrostatic pressure
US20040170950A1 (en) * 2002-09-12 2004-09-02 Prien Samuel D. Organ preservation apparatus and methods
FR2848856B1 (en) * 2002-12-24 2007-05-25 Cadorel Catherine MATERIAL FOR MEDICAL OR VETERINARY USE, PROCESS FOR OBTAINING SAME AND APPLICATIONS THEREOF
US20040161362A1 (en) * 2002-12-27 2004-08-19 Bogert David L. Audible range acoustic cleaning process for implants
EP1677703A4 (en) * 2003-10-02 2009-09-02 Depuy Spine Inc Chemical treatment for removing cellular and nuclear material from naturally occurring extracellular matrix-based biomaterials
US20050153271A1 (en) * 2004-01-13 2005-07-14 Wenrich Marshall S. Organ preservation apparatus and methods
US7648676B2 (en) * 2004-04-20 2010-01-19 Rti Biologics, Inc. Process and apparatus for treating implants comprising soft tissue
EP1755379B1 (en) * 2004-04-20 2013-03-27 RTI Biologics, Inc. Process and apparatus for treating implants
ATE524121T1 (en) 2004-11-24 2011-09-15 Abdou Samy DEVICES FOR PLACING AN ORTHOPEDIC INTERVERTEBRAL IMPLANT
US7776089B2 (en) * 2005-03-04 2010-08-17 Rti Biologics, Inc. Assembled bone-tendon-bone grafts
US8470038B2 (en) * 2005-03-04 2013-06-25 Rti Biologics, Inc. Adjustable and fixed assembled bone-tendon-bone graft
US7727278B2 (en) * 2005-03-04 2010-06-01 Rti Biologics, Inc. Self fixing assembled bone-tendon-bone graft
US7763071B2 (en) * 2005-03-04 2010-07-27 Rti Biologics, Inc. Bone block assemblies and their use in assembled bone-tendon-bone grafts
CN1903143A (en) * 2005-07-29 2007-01-31 广东冠昊生物科技有限公司 Biological type artificial blood vessel and method for preparing the same
CN100482178C (en) * 2005-08-04 2009-04-29 广东冠昊生物科技有限公司 Blood vessel tumor clip with biological film
CN1986006A (en) 2005-12-20 2007-06-27 广州知光生物科技有限公司 Biological nerve duct
CN1986007B (en) * 2005-12-20 2011-09-14 广东冠昊生物科技股份有限公司 Biological surgical patch
CN101332316B (en) * 2008-07-22 2012-12-26 广东冠昊生物科技股份有限公司 Biotype nose bridge implantation body
US20100023129A1 (en) * 2008-07-22 2010-01-28 Guo-Feng Xu Jawbone prosthesis and method of manufacture
CN101332314B (en) * 2008-07-22 2012-11-14 广东冠昊生物科技股份有限公司 Biotype articular cartilage repair piece
US20080063615A1 (en) * 2006-09-12 2008-03-13 Macdonald John Gavin Color changing skin sealant
US20080060550A1 (en) * 2006-09-12 2008-03-13 Macdonald Gavin Color changing skin sealant with co-acid trigger
KR100791502B1 (en) * 2006-09-29 2008-01-03 한스바이오메드 주식회사 Production methods of virus inactivated and cell-free body implant
US20080145316A1 (en) * 2006-12-14 2008-06-19 Macdonald John Gavin Skin coating with microbial indicator
US20080145919A1 (en) * 2006-12-18 2008-06-19 Franklin Thomas D Portable organ and tissue preservation apparatus, kit and methods
US8007533B2 (en) * 2007-02-12 2011-08-30 Rti Biologics, Inc. Progressive grip assembled bone-tendon-bone grafts, methods of making, and methods of use
US9744043B2 (en) 2007-07-16 2017-08-29 Lifenet Health Crafting of cartilage
US8043557B2 (en) * 2007-08-15 2011-10-25 American Air Liquide, Inc. Methods and systems for sanitizing or sterilizing a medical device using ultrasonic energy and liquid nitrogen
US9028553B2 (en) 2009-11-05 2015-05-12 DePuy Synthes Products, Inc. Self-pivoting spinal implant and associated instrumentation
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
CN102781487B (en) 2009-12-13 2016-11-16 阿米特·普拉卡什·戈维 Biological activity graft and complex
US8778378B2 (en) * 2009-12-21 2014-07-15 Orthovita, Inc. Bioactive antibacterial bone graft materials
US20110184468A1 (en) * 2010-01-28 2011-07-28 Warsaw Orthopedic, Inc., An Indiana Corporation Spinous process fusion plate with osteointegration insert
EP3545980A1 (en) 2010-02-26 2019-10-02 DeCell Technologies Inc. Methods for tissue decellularization
FR2966056B1 (en) * 2010-10-19 2016-03-18 Millipore Corp PROCESS FOR TREATING RESIDUAL NUCLEIC ACIDS ON THE SURFACE OF LABORATORY CONSUMABLES
US20120207718A1 (en) * 2011-02-16 2012-08-16 Stone Kevin R Thin shell graft for cartilage resurfacing
US8658088B1 (en) * 2011-06-07 2014-02-25 The United States Of America As Represented By The Secretary Of The Army Hand-held device with reagents and method for detection and diagnostics
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
KR20150035588A (en) 2012-05-11 2015-04-06 알티아이 서지칼, 인크. Xenograft soft tissue implants and methods of making and using
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
ZA201501696B (en) * 2012-08-30 2016-01-27 Merial Ltd Hyperbaric device and methods for producing inactivated vaccines and for refolding/solubilizing recombinant proteins
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US10022245B2 (en) 2012-12-17 2018-07-17 DePuy Synthes Products, Inc. Polyaxial articulating instrument
CN103418001B (en) 2013-08-26 2016-01-20 北京瑞健高科生物科技有限公司 The method for disinfection and sterilization of a kind of animal tissue material and corresponding animal tissue soaking solution
ES2846758T3 (en) 2013-11-04 2021-07-29 Lifecell Corp Methods to remove alpha-galactose
US10028841B2 (en) 2015-01-27 2018-07-24 K2M, Inc. Interbody spacer
US9987051B2 (en) 2015-01-27 2018-06-05 K2M, Inc. Interbody spacer
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
FR3047899A1 (en) 2016-02-18 2017-08-25 Tbf - Genie Tissulaire Et Par Abreviation Tbf PROCESS FOR PREPARING AN ALLOGRAFT MATERIAL, PRODUCT OBTAINED, AND USES THEREOF
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10966843B2 (en) 2017-07-18 2021-04-06 DePuy Synthes Products, Inc. Implant inserters and related methods
US11045331B2 (en) 2017-08-14 2021-06-29 DePuy Synthes Products, Inc. Intervertebral implant inserters and related methods
ES2913851T3 (en) * 2018-02-23 2022-06-06 Van Rijn Beheer B V Porous Embolization Microspheres Comprising Drugs
KR102064324B1 (en) * 2018-03-19 2020-01-10 건양대학교산학협력단 Bone Prosthesis With Internal Cleaning Tube
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation

Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3291640A (en) * 1963-05-27 1966-12-13 Chemclean Corp Ultrasonic cleaning process
US4193818A (en) * 1978-05-05 1980-03-18 American Sterilizer Company Combined ultrasonic cleaning and biocidal treatment in a single pressure vessel
US4294753A (en) * 1980-08-04 1981-10-13 The Regents Of The University Of California Bone morphogenetic protein process
US4950296A (en) * 1988-04-07 1990-08-21 Mcintyre Jonathan L Bone grafting units
US5037437A (en) * 1990-01-18 1991-08-06 University Of Washington Method of bone preparation for prosthetic fixation
US5213619A (en) * 1989-11-30 1993-05-25 Jackson David P Processes for cleaning, sterilizing, and implanting materials using high energy dense fluids
US5281422A (en) * 1991-09-24 1994-01-25 Purdue Research Foundation Graft for promoting autogenous tissue growth
US5288462A (en) * 1992-05-18 1994-02-22 Stephen D. Carter Sterilization apparatus and method
US5298222A (en) * 1989-08-09 1994-03-29 Osteotech, Inc. Process for disinfecting musculoskeletal tissue and tissues prepared thereby
US5333626A (en) * 1991-12-31 1994-08-02 Cryolife, Inc. Preparation of bone for transplantation
US5380826A (en) * 1989-07-20 1995-01-10 Aphios Corporation Supercritical fluid disruption of and extraction from microbial cells
US5429810A (en) * 1992-08-21 1995-07-04 Olaf Tulaszowski Apparatus for sterilizing bone grafts
US5437287A (en) * 1992-08-17 1995-08-01 Carbomedics, Inc. Sterilization of tissue implants using iodine
US5460962A (en) * 1994-01-04 1995-10-24 Organogenesis Inc. Peracetic acid sterilization of collagen or collagenous tissue
US5509968A (en) * 1994-02-03 1996-04-23 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Decontamination of orthopaedic implants
US5513662A (en) * 1991-12-31 1996-05-07 Osteotech, Inc. Preparation of bone for transplantation
US5556379A (en) * 1994-08-19 1996-09-17 Lifenet Research Foundation Process for cleaning large bone grafts and bone grafts produced thereby
US5674292A (en) * 1995-06-07 1997-10-07 Stryker Corporation Terminally sterilized osteogenic devices and preparation thereof
US5711921A (en) * 1996-01-02 1998-01-27 Kew Import/Export Inc. Medical cleaning and sterilizing apparatus
US5716454A (en) * 1994-02-03 1998-02-10 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Decontamination of devices and instruments contacted with body tissues
US5723012A (en) * 1993-12-09 1998-03-03 Bioland Uses for a current of supercritical carbon dioxide as an antiviral agent
US5725579A (en) * 1992-12-21 1998-03-10 Bioland Process for treating bone tissue and corresponding implantable biomaterials
US5753195A (en) * 1996-01-02 1998-05-19 Kew Import/Export Inc. Cleaning and sterilizing mechanism
US5785966A (en) * 1994-06-15 1998-07-28 Coles; John G. Inhibition of human xenogenic or allogenic antibodies to reduce xenograft or allograft rejection in human recipients
US5797871A (en) * 1994-08-19 1998-08-25 Lifenet Research Foundation Ultrasonic cleaning of allograft bone
US5846484A (en) * 1997-03-20 1998-12-08 Osteotech, Inc. Pressure flow system and method for treating a fluid permeable workpiece such as a bone
US5944755A (en) * 1995-09-15 1999-08-31 Crosscart, Inc. Articular cartilage xenografts
US5993844A (en) * 1997-05-08 1999-11-30 Organogenesis, Inc. Chemical treatment, without detergents or enzymes, of tissue to form an acellular, collagenous matrix
US6024735A (en) * 1996-03-20 2000-02-15 Lifenet Research Foundation Process and composition for cleaning soft tissue grafts optionally attached to bone and soft tissue and bone grafts produced thereby
US6027743A (en) * 1994-06-03 2000-02-22 Stryker Corporation Manufacture of autogenous replacement body parts
US6102056A (en) * 1998-08-18 2000-08-15 Kotsopey; Omelan Cleaning apparatus
US6149864A (en) * 1998-06-25 2000-11-21 Massachusetts Institute Of Technology Supercritical fluid sterilization method
US6206931B1 (en) * 1996-08-23 2001-03-27 Cook Incorporated Graft prosthesis materials
US20010008979A1 (en) * 1991-08-12 2001-07-19 Bonutti Peter M. Tissue press and system
US6402783B1 (en) * 1995-09-15 2002-06-11 Crosscart, Inc. Anterior cruciate ligament xenografts
US6482584B1 (en) * 1998-11-13 2002-11-19 Regeneration Technologies, Inc. Cyclic implant perfusion cleaning and passivation process
US20030023304A1 (en) * 2000-01-11 2003-01-30 Carter Kevin C. Materials and methods for improved bone tendon bone transplantation
US20030097179A1 (en) * 2000-01-11 2003-05-22 Carter Kevin C. Materials and methods for improved bone tendon bone transplantation
US20030125755A1 (en) * 1998-06-03 2003-07-03 Laurent Schaller Tissue connector apparatus and methods
US20050025667A1 (en) * 2003-06-23 2005-02-03 Novasterilis Inc. Sterilization methods and apparatus which employ additive-containing supercritical carbon dioxide sterilant
US20060200236A1 (en) * 2005-03-04 2006-09-07 Regeneration Technologies, Inc. Intermediate bone block and its use in bone block assemblies and assembled bone-tendon-bone grafts
US20060212036A1 (en) * 2005-03-04 2006-09-21 Regeneration Technologies, Inc. Bone block assemblies and their use in assembled bone-tendon-bone grafts
US7309356B2 (en) * 2002-03-08 2007-12-18 Musculoskeletal Transplant Foundation Bone-tendon- bone assembly with cancellous allograft bone block

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4801299A (en) * 1983-06-10 1989-01-31 University Patents, Inc. Body implants of extracellular matrix and means and methods of making and using such implants
DE3521684A1 (en) 1985-06-18 1986-12-18 Dr. Müller-Lierheim KG, Biologische Laboratorien, 8033 Planegg METHOD FOR COATING POLYMERS
FI80605C (en) 1986-11-03 1990-07-10 Biocon Oy Bone surgical biocomposite material
FR2622100B1 (en) 1987-10-27 1991-02-15 Barouk Louis JOINT PROSTHETIC IMPLANT WITH TEMPORARY FIXING
US20030077825A1 (en) 1994-07-22 2003-04-24 Bhatnagar Rajendra S. Structures useful for bone engineering and methods
EP0424159A3 (en) 1989-10-19 1991-11-06 Osteotech, Inc., Aseptic processing of allograft bone and tissue
US5112354A (en) 1989-11-16 1992-05-12 Northwestern University Bone allograft material and method
JPH03224570A (en) 1990-01-31 1991-10-03 Chiyoda Seisakusho:Kk Sterilizing method
US5180388A (en) 1990-06-28 1993-01-19 American Cyanamid Company Bone pinning system
DE4028683A1 (en) * 1990-09-10 1992-03-12 Merck Patent Gmbh IMPLANT MATERIAL
CA2060635A1 (en) 1991-02-12 1992-08-13 Keith D'alessio Bioabsorbable medical implants
US5147367A (en) 1991-02-22 1992-09-15 Ellis Alfred B Drill pin guide and method for orthopedic surgery
US5192327A (en) 1991-03-22 1993-03-09 Brantigan John W Surgical prosthetic implant for vertebrae
DE4215137A1 (en) 1991-06-04 1992-12-10 Man Ceramics Gmbh IMPLANT FOR SPINE PILLARS
US5329846A (en) 1991-08-12 1994-07-19 Bonutti Peter M Tissue press and system
US5527508A (en) 1992-11-12 1996-06-18 American Sterilizer Company Method of enhanced penetration of low vapor pressure chemical vapor sterilants during sterilization
DE4328062A1 (en) 1993-08-20 1995-02-23 Heinrich Ulrich Implant to replace vertebral bodies and / or to stabilize and fix the spine
JP3717930B2 (en) * 1993-12-07 2005-11-16 ジェネティックス・インスチチュート・リミテッド・ライアビリティ・カンパニー BMP-12, BMP-13 and their tendon-derived compositions
US5507813A (en) 1993-12-09 1996-04-16 Osteotech, Inc. Shaped materials derived from elongate bone particles
US5626861A (en) 1994-04-01 1997-05-06 Massachusetts Institute Of Technology Polymeric-hydroxyapatite bone composite
AU713540B2 (en) 1994-10-25 1999-12-02 Osteonics Corp. Interlocking structural elements and method for bone repair, augmentation and replacement
US5716358A (en) 1994-12-02 1998-02-10 Johnson & Johnson Professional, Inc. Directional bone fixation device
US5989289A (en) 1995-10-16 1999-11-23 Sdgi Holdings, Inc. Bone grafts
US5814084A (en) 1996-01-16 1998-09-29 University Of Florida Tissue Bank, Inc. Diaphysial cortical dowel
US5788941A (en) 1996-01-31 1998-08-04 Steris Corporation Method of sterilization of bone tussue
US5861041A (en) 1997-04-07 1999-01-19 Arthit Sitiso Intervertebral disk prosthesis and method of making the same
US6652818B1 (en) 1998-11-13 2003-11-25 Regeneration Technologies, Inc. Implant sterilization apparatus
WO1999009914A1 (en) 1997-08-27 1999-03-04 University Of Florida Tissue Bank, Inc. Cortical bone cervical smith-robinson fusion implant
US6613278B1 (en) * 1998-11-13 2003-09-02 Regeneration Technologies, Inc. Tissue pooling process
US5865848A (en) 1997-09-12 1999-02-02 Artifex, Ltd. Dynamic intervertebral spacer and method of use
GB2355051B (en) 1997-10-09 2002-02-27 Nenad Sesic Strain-inducing conical screw for stimulating bone transplant growth
US6090998A (en) 1997-10-27 2000-07-18 University Of Florida Segmentally demineralized bone implant
US6146420A (en) 1997-12-10 2000-11-14 Sdgi Holdings, Inc. Osteogenic fusion device
US5899939A (en) 1998-01-21 1999-05-04 Osteotech, Inc. Bone-derived implant for load-supporting applications
US20020076429A1 (en) 1998-01-28 2002-06-20 John F. Wironen Bone paste subjected to irradiative and thermal treatment
US6986788B2 (en) 1998-01-30 2006-01-17 Synthes (U.S.A.) Intervertebral allograft spacer
US6123731A (en) 1998-02-06 2000-09-26 Osteotech, Inc. Osteoimplant and method for its manufacture
JP2002506677A (en) 1998-03-16 2002-03-05 クロスカート インコーポレイテッド Bone xenograft
US20060241763A1 (en) 1998-08-03 2006-10-26 Synthes (Usa) Multipiece bone implant
WO2000007527A1 (en) 1998-08-03 2000-02-17 Synthes Ag Chur Intervertebral allograft spacer
US6497726B1 (en) 2000-01-11 2002-12-24 Regeneration Technologies, Inc. Materials and methods for improved bone tendon bone transplantation
US6025538A (en) 1998-11-20 2000-02-15 Musculoskeletal Transplant Foundation Compound bone structure fabricated from allograft tissue
US6200347B1 (en) 1999-01-05 2001-03-13 Lifenet Composite bone graft, method of making and using same
WO2000054821A1 (en) 1999-03-16 2000-09-21 Regeneration Technologies, Inc. Molded implants for orthopedic applications
WO2001008715A1 (en) 1999-07-28 2001-02-08 Regeneration Technologies, Inc. Reduced antigenicity tissue (rat) implants
US6494883B1 (en) 2000-05-26 2002-12-17 Bret A. Ferree Bone reinforcers
US6379385B1 (en) 2000-01-06 2002-04-30 Tutogen Medical Gmbh Implant of bone matter
US6893462B2 (en) 2000-01-11 2005-05-17 Regeneration Technologies, Inc. Soft and calcified tissue implants
WO2001078798A1 (en) 2000-02-10 2001-10-25 Regeneration Technologies, Inc. Assembled implant
AR027685A1 (en) 2000-03-22 2003-04-09 Synthes Ag METHOD AND METHOD FOR CARRYING OUT
US7001551B2 (en) 2000-07-13 2006-02-21 Allograft Research Technologies, Inc. Method of forming a composite bone material implant
US6761738B1 (en) 2000-09-19 2004-07-13 Sdgi Holdings, Inc. Reinforced molded implant formed of cortical bone
US6719794B2 (en) 2001-05-03 2004-04-13 Synthes (U.S.A.) Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US6974480B2 (en) 2001-05-03 2005-12-13 Synthes (Usa) Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US6855167B2 (en) 2001-12-05 2005-02-15 Osteotech, Inc. Spinal intervertebral implant, interconnections for such implant and processes for making
US6761739B2 (en) 2002-11-25 2004-07-13 Musculoskeletal Transplant Foundation Cortical and cancellous allograft spacer
US20050065607A1 (en) 2003-09-24 2005-03-24 Gross Jeffrey M. Assembled fusion implant
US7300464B2 (en) 2004-09-30 2007-11-27 Alcon, Inc. Intraocular lens

Patent Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3291640A (en) * 1963-05-27 1966-12-13 Chemclean Corp Ultrasonic cleaning process
US4193818A (en) * 1978-05-05 1980-03-18 American Sterilizer Company Combined ultrasonic cleaning and biocidal treatment in a single pressure vessel
US4294753A (en) * 1980-08-04 1981-10-13 The Regents Of The University Of California Bone morphogenetic protein process
US4950296A (en) * 1988-04-07 1990-08-21 Mcintyre Jonathan L Bone grafting units
US5380826A (en) * 1989-07-20 1995-01-10 Aphios Corporation Supercritical fluid disruption of and extraction from microbial cells
US5298222A (en) * 1989-08-09 1994-03-29 Osteotech, Inc. Process for disinfecting musculoskeletal tissue and tissues prepared thereby
US5213619A (en) * 1989-11-30 1993-05-25 Jackson David P Processes for cleaning, sterilizing, and implanting materials using high energy dense fluids
US5037437A (en) * 1990-01-18 1991-08-06 University Of Washington Method of bone preparation for prosthetic fixation
US5037437B1 (en) * 1990-01-18 1998-04-14 Univ Washington Method of bone preparation for prosthetic fixation
US20010008979A1 (en) * 1991-08-12 2001-07-19 Bonutti Peter M. Tissue press and system
US5281422A (en) * 1991-09-24 1994-01-25 Purdue Research Foundation Graft for promoting autogenous tissue growth
US5333626A (en) * 1991-12-31 1994-08-02 Cryolife, Inc. Preparation of bone for transplantation
US5513662A (en) * 1991-12-31 1996-05-07 Osteotech, Inc. Preparation of bone for transplantation
US5288462A (en) * 1992-05-18 1994-02-22 Stephen D. Carter Sterilization apparatus and method
US5437287A (en) * 1992-08-17 1995-08-01 Carbomedics, Inc. Sterilization of tissue implants using iodine
US5429810A (en) * 1992-08-21 1995-07-04 Olaf Tulaszowski Apparatus for sterilizing bone grafts
US5725579A (en) * 1992-12-21 1998-03-10 Bioland Process for treating bone tissue and corresponding implantable biomaterials
US5723012A (en) * 1993-12-09 1998-03-03 Bioland Uses for a current of supercritical carbon dioxide as an antiviral agent
US5460962A (en) * 1994-01-04 1995-10-24 Organogenesis Inc. Peracetic acid sterilization of collagen or collagenous tissue
US5716454A (en) * 1994-02-03 1998-02-10 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Decontamination of devices and instruments contacted with body tissues
US5509968A (en) * 1994-02-03 1996-04-23 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Decontamination of orthopaedic implants
US6027743A (en) * 1994-06-03 2000-02-22 Stryker Corporation Manufacture of autogenous replacement body parts
US5785966A (en) * 1994-06-15 1998-07-28 Coles; John G. Inhibition of human xenogenic or allogenic antibodies to reduce xenograft or allograft rejection in human recipients
US5556379A (en) * 1994-08-19 1996-09-17 Lifenet Research Foundation Process for cleaning large bone grafts and bone grafts produced thereby
US5797871A (en) * 1994-08-19 1998-08-25 Lifenet Research Foundation Ultrasonic cleaning of allograft bone
US5674292A (en) * 1995-06-07 1997-10-07 Stryker Corporation Terminally sterilized osteogenic devices and preparation thereof
US6402783B1 (en) * 1995-09-15 2002-06-11 Crosscart, Inc. Anterior cruciate ligament xenografts
US5944755A (en) * 1995-09-15 1999-08-31 Crosscart, Inc. Articular cartilage xenografts
US5753195A (en) * 1996-01-02 1998-05-19 Kew Import/Export Inc. Cleaning and sterilizing mechanism
US5711921A (en) * 1996-01-02 1998-01-27 Kew Import/Export Inc. Medical cleaning and sterilizing apparatus
US6024735A (en) * 1996-03-20 2000-02-15 Lifenet Research Foundation Process and composition for cleaning soft tissue grafts optionally attached to bone and soft tissue and bone grafts produced thereby
US6206931B1 (en) * 1996-08-23 2001-03-27 Cook Incorporated Graft prosthesis materials
US5846484A (en) * 1997-03-20 1998-12-08 Osteotech, Inc. Pressure flow system and method for treating a fluid permeable workpiece such as a bone
US5993844A (en) * 1997-05-08 1999-11-30 Organogenesis, Inc. Chemical treatment, without detergents or enzymes, of tissue to form an acellular, collagenous matrix
US20030125755A1 (en) * 1998-06-03 2003-07-03 Laurent Schaller Tissue connector apparatus and methods
US6149864A (en) * 1998-06-25 2000-11-21 Massachusetts Institute Of Technology Supercritical fluid sterilization method
US6102056A (en) * 1998-08-18 2000-08-15 Kotsopey; Omelan Cleaning apparatus
US20050096742A1 (en) * 1998-11-13 2005-05-05 Mills C. R. Cyclic implant perfusion, cleaning and passivation process and implant produced thereby
US6482584B1 (en) * 1998-11-13 2002-11-19 Regeneration Technologies, Inc. Cyclic implant perfusion cleaning and passivation process
US20050100862A1 (en) * 1998-11-13 2005-05-12 Mills C. R. Cyclic implant perfusion, cleaning and passivation process and implant produced thereby
US20030097179A1 (en) * 2000-01-11 2003-05-22 Carter Kevin C. Materials and methods for improved bone tendon bone transplantation
US20030023304A1 (en) * 2000-01-11 2003-01-30 Carter Kevin C. Materials and methods for improved bone tendon bone transplantation
US7309356B2 (en) * 2002-03-08 2007-12-18 Musculoskeletal Transplant Foundation Bone-tendon- bone assembly with cancellous allograft bone block
US20050025667A1 (en) * 2003-06-23 2005-02-03 Novasterilis Inc. Sterilization methods and apparatus which employ additive-containing supercritical carbon dioxide sterilant
US20060200236A1 (en) * 2005-03-04 2006-09-07 Regeneration Technologies, Inc. Intermediate bone block and its use in bone block assemblies and assembled bone-tendon-bone grafts
US20060200235A1 (en) * 2005-03-04 2006-09-07 Regeneration Technologies, Inc. Assembled bone-tendon-bone grafts
US20060212036A1 (en) * 2005-03-04 2006-09-21 Regeneration Technologies, Inc. Bone block assemblies and their use in assembled bone-tendon-bone grafts

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100268349A1 (en) * 1997-08-27 2010-10-21 Bianchi John R Assembled implant
US9763787B2 (en) 1997-08-27 2017-09-19 Rti Surgical, Inc. Assembled implant
US9332750B2 (en) 1998-11-13 2016-05-10 Rti Surgical, Inc. Cyclic implant perfusion, cleaning and passivation process and implant produced thereby
US8669043B2 (en) 1998-11-13 2014-03-11 Rti Surgical, Inc. Cyclic implant perfusion, cleaning and passivation process and implant produced thereby
US9078765B2 (en) 2001-07-13 2015-07-14 Ldr Medical Vertebral cage device with modular fixation
US20120213821A1 (en) * 2002-12-09 2012-08-23 Universite Paris Sud Xi Novel method for isolating endotoxins
US7919096B2 (en) 2003-06-23 2011-04-05 Novasterilis, Inc. Inactivating organisms using carbon dioxide at or near its supercritical pressure and temperature conditions
US8034288B2 (en) * 2003-06-23 2011-10-11 Novasterilis Method and apparatus for cleaning of viable donor soft tissue
US20090246193A1 (en) * 2003-06-23 2009-10-01 Christensen Tim W Inactivating organisms using carbon dioxide at or near its supercritical pressure and temperature conditions
US8974730B2 (en) 2003-06-23 2015-03-10 Novasterilis, Inc. Process for creating acellular viable donor soft tissue
US20080166266A1 (en) * 2003-06-23 2008-07-10 Burns David C Method and Apparatus for Cleaning of Viable Donor Soft Tissue
US20110014184A1 (en) * 2003-06-23 2011-01-20 Christensen Tim W Inactivating organisms using carbon dioxide at or near its supercritical pressure and temperature conditions
US8388944B2 (en) 2003-06-23 2013-03-05 Novasterilis Inc. Inactivating organisms using carbon dioxide at or near its supercritical pressure and temperature conditions
US6913695B2 (en) 2003-07-08 2005-07-05 Bayer Healthcare Llc Sanitization of chromatographic media
US20050006307A1 (en) * 2003-07-08 2005-01-13 Jones Nathan C. Sanitization of chromatographic media
WO2005007204A1 (en) * 2003-07-08 2005-01-27 Bayer Healthcare, Llc Sanitization of chromatographic media
US8158379B2 (en) 2003-10-28 2012-04-17 Allosource Methods for determining microbial contamination of allograft products
US9186426B2 (en) 2003-10-28 2015-11-17 Allosource Methods for determining microbial contamination of allograft products
US20060228252A1 (en) * 2004-04-20 2006-10-12 Mills C R Process and apparatus for treating implants comprising soft tissue
US9597194B2 (en) 2005-09-23 2017-03-21 Ldr Medical Intervertebral disc prosthesis
US10492919B2 (en) 2005-09-23 2019-12-03 Ldr Medical Intervertebral disc prosthesis
US11872138B2 (en) 2005-09-23 2024-01-16 Ldr Medical Intervertebral disc prosthesis
US20070260109A1 (en) * 2005-12-05 2007-11-08 Donna Squillace Vascular graft sterilization and decellularization
US7658706B2 (en) * 2005-12-05 2010-02-09 Rti Biologics, Inc. Vascular graft sterilization and decellularization
US9713535B2 (en) 2006-02-15 2017-07-25 Ldr Medical Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US20070270951A1 (en) * 2006-02-15 2007-11-22 Reginald James Davis Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US8409288B2 (en) 2006-02-15 2013-04-02 Ldr Medical Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US10758363B2 (en) 2006-02-15 2020-09-01 Ldr Medical Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US8945219B1 (en) 2007-05-11 2015-02-03 SDCmaterials, Inc. System for and method of introducing additives to biological materials using supercritical fluids
US9173967B1 (en) 2007-05-11 2015-11-03 SDCmaterials, Inc. System for and method of processing soft tissue and skin with fluids using temperature and pressure changes
US20080294270A1 (en) * 2007-05-24 2008-11-27 Zimmer Orthobiologics, Inc. Differentially processed tissue and processing methods thereof
US10751187B2 (en) 2007-06-08 2020-08-25 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US8343219B2 (en) 2007-06-08 2013-01-01 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US10322835B1 (en) * 2009-01-02 2019-06-18 Lifecell Corporation Method for preparing collagen-based materials
US10906679B1 (en) 2009-01-02 2021-02-02 Lifecell Corporation Method for preparing collagen-based materials
US9463091B2 (en) 2009-09-17 2016-10-11 Ldr Medical Intervertebral implant having extendable bone fixation members
US11246715B2 (en) 2009-12-31 2022-02-15 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US10531961B2 (en) 2009-12-31 2020-01-14 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US9044337B2 (en) 2009-12-31 2015-06-02 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US9833331B2 (en) 2009-12-31 2017-12-05 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US10195046B2 (en) 2009-12-31 2019-02-05 Ldr Medical Instruments and methods for removing fixation devices from intervertebral implants
US8753406B2 (en) 2010-08-31 2014-06-17 Zimmer Inc. Osteochondral graft delivery device and uses thereof
US9610383B2 (en) * 2010-10-27 2017-04-04 Cosmobiomedicare Co., Ltd. Method for producing a bone transplant material, and bone transplant material produced by same
CN103200972A (en) * 2010-10-27 2013-07-10 克世摸生物医学有限公司 Method for producing a bone transplant material, and bone transplant material produced by same
WO2012057454A3 (en) * 2010-10-27 2012-07-26 Park Chang Soo Method for producing a bone transplant material, and bone transplant material produced by same
US20130220365A1 (en) * 2010-10-27 2013-08-29 Chang Soo Park Method for Producing a Bone Transplant Material, and Bone Transplant Material Produced by Same
KR101163594B1 (en) * 2010-10-27 2012-07-06 이윤진 Method for producing tooth bone graft materials and tooth bone graft materials produced by thereof
WO2012121463A1 (en) * 2011-03-08 2012-09-13 Park Chang Soo Bone-graft-substance production device
KR101190710B1 (en) * 2011-03-08 2012-10-12 이윤진 Manufacturing apparatus of bone grafting material
US8901078B2 (en) 2011-07-28 2014-12-02 Harbor Medtech, Inc. Crosslinked human or animal tissue products and their methods of manufacture and use
US9592320B2 (en) 2011-07-28 2017-03-14 Harbor Medtech, Inc. Crosslinked human or animal tissue products and their methods of manufacture and use
US9399084B2 (en) 2011-07-28 2016-07-26 Harbor Medtech, Inc. Crosslinked human or animal tissue products and their methods of manufacture and use
US10611822B2 (en) 2011-07-28 2020-04-07 Harbor Medtech, Inc. Crosslinked human or animal tissue products and their methods of manufacture and use
US9220808B2 (en) 2011-07-28 2015-12-29 Harbor Medtech, Inc. Crosslinked human or animal tissue products and their methods of manufacture and use
US9992024B2 (en) 2012-01-25 2018-06-05 Fujitsu Limited Establishing a chain of trust within a virtual machine
US10245156B2 (en) 2012-02-24 2019-04-02 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US9039774B2 (en) 2012-02-24 2015-05-26 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US11273056B2 (en) 2012-02-24 2022-03-15 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US10350083B2 (en) 2012-02-24 2019-07-16 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument

Also Published As

Publication number Publication date
US20050100862A1 (en) 2005-05-12
US20090186333A1 (en) 2009-07-23
US20140193798A1 (en) 2014-07-10
US20120214149A1 (en) 2012-08-23
US6482584B1 (en) 2002-11-19
US20050096742A1 (en) 2005-05-05
US9332750B2 (en) 2016-05-10
US8142991B2 (en) 2012-03-27
US8669043B2 (en) 2014-03-11

Similar Documents

Publication Publication Date Title
US9332750B2 (en) Cyclic implant perfusion, cleaning and passivation process and implant produced thereby
US6652818B1 (en) Implant sterilization apparatus
US6613278B1 (en) Tissue pooling process
CA2180447C (en) Preparation of bone for transplantation
US20080188939A1 (en) Allograft tissue purification process for cleaning bone
US5788941A (en) Method of sterilization of bone tussue
JPH06218036A (en) Treatment method for bone tissue and related transplantable bio-material
US20080038364A1 (en) Methods of processing body parts for surgery
AU2004319805B2 (en) Process and apparatus for treating implants
US20060228252A1 (en) Process and apparatus for treating implants comprising soft tissue
MXPA96002719A (en) Preparation of bone for transplantac

Legal Events

Date Code Title Description
AS Assignment

Owner name: MERRILL LYNCH BUSINESS FINANCIAL SERVICES, INC., T

Free format text: SECURITY AGREEMENT;ASSIGNORS:REGENERATION TECHNOLOGIES, INC.;ALABAMA TISSUE CENTER, INC.;RTI SERVICES, INC.;AND OTHERS;REEL/FRAME:015116/0841

Effective date: 20040323

AS Assignment

Owner name: REGENERATION TECHNOLOGIES, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:REGENERATION TECHNOLOGIES, INC.;REEL/FRAME:017639/0049

Effective date: 20050805

Owner name: REGENERATION TECHNOLOGIES, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MILLS, C. RANDAL;WIRONEN, JOHN F.;HANSTKE, SEAN;REEL/FRAME:017638/0951;SIGNING DATES FROM 19981110 TO 19981112

AS Assignment

Owner name: RTI BIOLOGICS, INC., FLORIDA

Free format text: CHANGE OF NAME;ASSIGNOR:REGENERATION TECHNOLOGIES, INC.;REEL/FRAME:020690/0942

Effective date: 20080227

Owner name: RTI BIOLOGICS, INC.,FLORIDA

Free format text: CHANGE OF NAME;ASSIGNOR:REGENERATION TECHNOLOGIES, INC.;REEL/FRAME:020690/0942

Effective date: 20080227

AS Assignment

Owner name: RTI BIOLOGICS, INC. (F/K/A) REGENERATION TECHNOLOG

Free format text: RECORD OF RELEASE OF SECURITY INTEREST;ASSIGNOR:GE BUSINESS FINANCIAL SERVICES INC.;REEL/FRAME:022151/0633

Effective date: 20081230

Owner name: RTI SERVICES, INC., FLORIDA

Free format text: RECORD OF RELEASE OF SECURITY INTEREST;ASSIGNOR:GE BUSINESS FINANCIAL SERVICES INC.;REEL/FRAME:022151/0633

Effective date: 20081230

Owner name: BIOLOGICAL RECOVERY GROUP, INC., FLORIDA

Free format text: RECORD OF RELEASE OF SECURITY INTEREST;ASSIGNOR:GE BUSINESS FINANCIAL SERVICES INC.;REEL/FRAME:022151/0633

Effective date: 20081230

Owner name: REGENERATION TECHNOLOGIES, INC.-CARDIOVASCULAR (F/

Free format text: RECORD OF RELEASE OF SECURITY INTEREST;ASSIGNOR:GE BUSINESS FINANCIAL SERVICES INC.;REEL/FRAME:022151/0633

Effective date: 20081230

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION