US20030152514A1 - Methods for using anti-MUC18 antibodies - Google Patents

Methods for using anti-MUC18 antibodies Download PDF

Info

Publication number
US20030152514A1
US20030152514A1 US10/330,530 US33053002A US2003152514A1 US 20030152514 A1 US20030152514 A1 US 20030152514A1 US 33053002 A US33053002 A US 33053002A US 2003152514 A1 US2003152514 A1 US 2003152514A1
Authority
US
United States
Prior art keywords
muc18
ser
antibody
gly
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/330,530
Other versions
US7067131B2 (en
Inventor
Jean Gudas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amgen Fremont Inc
University of Texas System
Original Assignee
Abgenix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abgenix Inc filed Critical Abgenix Inc
Priority to US10/330,530 priority Critical patent/US7067131B2/en
Assigned to ABGENIX, INC. reassignment ABGENIX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GUDAS, JEAN
Publication of US20030152514A1 publication Critical patent/US20030152514A1/en
Assigned to ABGENIX, INC. reassignment ABGENIX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GREEN, LARRY L.
Assigned to BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM reassignment BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAR-ELI, MENASHE
Application granted granted Critical
Publication of US7067131B2 publication Critical patent/US7067131B2/en
Assigned to NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT reassignment NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: UNIVERSITY OF TEXAS M. D. ANDERSON CANCER CENTER
Assigned to NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT reassignment NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: UNIVERSITY OF TEXAS M. D. ANDERSON CANCER CENTER
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6811Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
    • A61K47/6817Toxins
    • A61K47/6819Plant toxins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6865Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from skin, nerves or brain cancer cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/10Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
    • A61K51/1045Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody against animal or human tumor cells or tumor cell determinants
    • A61K51/1066Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody against animal or human tumor cells or tumor cell determinants the tumor cell being from skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man

Definitions

  • Embodiments of the present invention concern antibodies binding MUC18 antigen as well as methods and means for making and using such antibodies.
  • MUC18 is a cell-surface glycoprotein originally identified as a melanoma antigen, melanoma cell adhesion molecule (MCAM), whose expression is associated with tumor progression and the development of metastatic potential.
  • MCAM melanoma cell adhesion molecule
  • MUC18 is a 113 kDA cell surface integral membrane glycoprotein composed of a signal peptide, five immunoglobulin-like domains, a transmembrane region, and a short cytoplasmic tail (Lehmann et al., Proc Natl Acad Sci USA, 86(24):9891-5 (1989)).
  • MUC18 is a member of the immunoglobulin superfamily and has significant sequence homology to a number of cell adhesion molecules of the Ig superfamily (Lehmann et al., Proc. Natl. Acad. Sci. USA, 86:9891-9895 (1989)), including BEN (Pourquie et al., Proc. Natl. Acad. Sci. USA, 89:5261-5265 (1992)), neural-cell adhesion molecule (N-CAM) (Owens et al., Proc. Natl., Acad. Sci. USA, 84:294-298 (1987)), myelin-associated glycoprotein (MAG) (Lai et al., Proc.
  • BEN Pourquie et al., Proc. Natl. Acad. Sci. USA, 89:5261-5265 (1992)
  • N-CAM neural-cell adhesion molecule
  • MAG myelin-associated glycoprotein
  • MUC18 has been detected in relatively limited spectrum of normal human tissues and in a variety of malignant neoplasms. In normal adult tissues, MUC 18 is expressed on endothelial cells, smooth muscle cells (Shih et al., Lab.
  • MUC18 is also expressed on a variety of malignant neoplasms including smooth muscle neoplasms (Leiomyomas and leiomyosarcomas), tumors of vascular origin (angiosarcomas and Kaposi's sarcomas), placental site trophoblastic tumors, choriocarcinomas and melanomas (Shih et al., Clinical Cancer Res., 2:569-575 (1996); Holzmann et al., Int. J. Cancer, 39:466-471 (1987)).
  • the expression of MUC18 correlates directly with the metastatic potential of human melanoma cells (Bar-Eli, M., Cancer Metastasis, 18(3):377-85 (1999)).
  • MUC18 is a marker of tumor progression and metastasis in melanomas.
  • the expression of MUC18 is absent in normal melanocytes and benign nevi but prominent on many primary melanomas and in most metastatic lesions (Lehmann et al., Proc. Natl. Acad. Sci. USA, 86:9891-9895 (1989); Lehmann et al., Cancer Res., 47:841-845 (1987); Shih et al., Cancer Res., 54:2514-2520 (1994)).
  • MUC18 expression correlates well with tumor vertical thickness and metastasis formation, and greater than 80% of metastatic lesions express MUC18 (Lehmann et al., Proc. Natl. Acad. Sci. USA, 86:9891-9895 (1989); Xie et al., Cancer Res., 57:2295-2303 (1997); Sers et al., Proc. Natl. Acad. Sci. USA, 90:8514-8518 (1993); Lehmann et al., Cancer Res., 47:841-845 (1987); Shih et al., Cancer Res., 54:2514-2520 (1994).
  • FIG. 1 A diagram depicting the expression of MUC18 with respect to other known molecular lesions in human melanoma is presented in FIG. 1.
  • CREB/ATF-1 may play an essential role in invasion by regulating the CRE-dependent expression of the adhesion molecule MUC18 and metalloproteinase MMP-2 (Jean et al., Mol. Cell Biochem., 212(1-2):19-28 (2000)) which belongs to the MMP family known to contribute to cancers and to have a role in tumor invasion, angiogenesis, and metastasis.
  • Tumor cells are believed to utilize the matrix degrading capability of MMPs to spread to distant sites, and once the tumor cells have metastasized, MMPs are thought to promote the growth of these tumor cells.
  • the role of MUC18 in melanoma tumor progression is not completely understood, but may include a role in one or more steps in the metastatic process possibly by affecting MMP-2 activation or cell migration.
  • MUC18 Although the function of MUC18 is not fully understood, several studies have demonstrated a role for this protein in mediating cell-cell and cell-matrix interactions by binding to an unidentified ligand (Shih et al., Cancer Res., 57:3835-3840 (1997); Johnson et al., Int. J. cancer, 73:769-774 (1997)).
  • the expression of cell adhesion molecules which mediate cell-to-cell or cell-to-matrix interactions is a tumor cell property that is essential for metastases.
  • MUC18-transfected melanoma cells showed increased homotypic adhesion, increased attachment to human endothelial cells, and increased invasion through Matrigel-coated filters suggesting a role in tumor invasion and trans-endothelial migration (Xie et al., Cancer Res., 57:2295-2303 (1997)).
  • anti-MUC 18 antibodies were able to inhibit these functions in the MUC 18-transfected cells (Xie et al., Cancer Res., 57:2295-2303 (1997)). Accordingly, there is a great need for anti-MUC 18 antibodies that are able to inhibit the biological function of MUC18, most importantly cell proliferation and growth which may be essential to tumor progression and metastasis.
  • Such antibodies would likely interfere with the inherent ability of MUC18 to mediate cell-cell and cell-matrix interactions.
  • the inhibition of such activity may be possible with a monoclonal antibody targeted to MUC18.
  • the ability to affect the progression of tumor cells expressing MUC18 on the cell surface may prove to be a treatment for patients with tumors or of use for prevention of metastatic disease in patients with such tumors.
  • the present invention is based on the development of monoclonal antibodies that were found to bind MUC18 and affect MUC18 function.
  • This application describes human anti-MUC18 antibodies and anti-MUC18 antibody preparations with desirable properties from a therapeutic perspective, including strong binding affinity for MUC18, the ability to inhibit metastasis in vivo and the ability to promote cell survival.
  • One embodiment of the invention is a method of inhibiting cell proliferation or tumor metastasis associated with the expression of MUC18 tumor antigen.
  • the method includes the steps of providing a monoclonal antibody comprising a heavy chain amino acid, wherein the antibody has an amino acid sequence selected from the group consisting of SEQ ID NOs: 1, 5 9, 13, 17, 21, 25, 29, 33 and 37, and wherein said monoclonal antibody binds MUC18; contacting cells expressing MUC18 with an effective amount of the antibody; and incubating said cells and the antibody, wherein said incubation results in inhibited proliferation of the cells.
  • Another embodiment of the invention is a method of inhibiting cell proliferation or tumor metastasis associated with the expression of MUC18 tumor antigen which includes: providing a monoclonal antibody comprising a light chain amino acid, wherein the antibody has an amino acid sequence selected from the group consisting of: SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34 and 38, and wherein said monoclonal antibody binds MUC18; contacting cells expressing MUC18 with an effective amount of the antibody; and incubating the cells and the antibody, wherein the incubation results in inhibited proliferation of the cells.
  • the invention provides an anti-human MUC18 monoclonal antibody which binds to and neutralizes a biological activity of at least human MUC18 or stimulates the internalization and down-regulation of the protein.
  • the antibody can significantly reduce or eliminate a biological activity of the human MUC18 in question.
  • the biological activity of the subject human MUC18 may be cell proliferation. Further, the biological activity may include angiogenesis and cell proliferation important for primary tumor growth and metastasis, cell invasion and/or migration, and activation of metalloproteinase MMP-2. Even further, the biological activity may include growth and metastasis of tumor cells in patients with tumors, for example, melanoma.
  • an isolated nucleic acid molecule encoding any of the antibodies described herein, a vector comprising the isolated nucleic acid molecule, a host cell transformed with the nucleic acid molecule, and a method of producing the antibody comprising culturing the host cell under conditions wherein the nucleic acid molecule is expressed to produce the antibody and optionally recovering the antibody from the host cell.
  • the antibody may be of the IgG class.
  • the isolated nucleic acid molecule preferably comprises a nucleotide sequence encoding a heavy chain variable domain of a monoclonal antibody, wherein said nucleotide sequence is selected from the group consisting of the nucleotide sequence of the heavy chain variable domain of c3.19.1 (SEQ ID NO: 3), c6.11.3 (SEQ ID NO: 7), C3.10 (SEQ ID NO: 11), C3.22 (SEQ ID NO: 15), C3.27 (SEQ ID NO: 19), C3.45 (SEQ ID NO: 23), C3.65 (SEQ ID NO: 27), C6.1 (SEQ ID NO: 31), C6.9 (SEQ ID NO: 35) or C6.2 (SEQ ID NO: 39), or a nucleotide sequence encoding a light chain variable domain of a monoclonal antibody, wherein said nucleotide sequence is selected from the group consisting of the nucleotide sequence of the light chain variable domain of 3.19.1 (SEQ ID NO: 4), 6.11.3
  • the invention provides a method for the treatment of a disease or condition associated with the expression of MUC18 in a patient, comprising administering to the patient an effective amount of an anti-MUC18 antibody.
  • the patient is a mammalian patient, preferably a human patient.
  • the disease is a tumor, such as melanoma.
  • FIG. 1 is a diagram depicting the expression pattern of MUC18 and other known oncogenes and growth factors involved in melanoma tumor progression.
  • FIG. 2 shows immunoblot analysis with anti-MUC18 antibodies and demonstrates a positive correlation between MUC18 expression with the metastatic capacity of human melanoma cells.
  • the expression of MUC18 in human metastatic melanoma cell lines (A375SM, TXM-13, and WM2664), nonmetastatic cell line SB-2, and normal mouse endothelial (NMEs) cells are shown.
  • FIGS. 3A and 3B are line graphs illustrating that neither the A375-SM (FIG. 3A) nor the WM-2664 cells (FIG. 3B) demonstrated a fluorescent shift when incubated in the presence of the control IgG2 Ab (bold line). However, when incubated in the presence of anti-MUC18 (dotted line), a strong shift in fluorescence intensity indicative of cell surface expression of the antigen was observed.
  • FIG. 4 is a line graph illustrating that treatment with anti-MUC18 antibody c3.19.1, prolongs the survival of WM2664 mice bearing metastatic melanoma tumors.
  • FIG. 5 shows the amino acid sequence of the variable region of the heavy (SEQ ID NO: 1) and light chain (SEQ ID NO: 2) and the nucleotide sequence encoding the variable region of the heavy (SEQ ID NO: 3) and light (SEQ ID NO: 4) chain of anti-MUC18 antibody, c3.19.1.
  • FIG. 6 shows the amino acid sequence of the variable region of the heavy (SEQ ID NO: 5) and light chain (SEQ ID NO: 6) and the nucleotide sequence encoding the variable region of the heavy (SEQ ID NO: 7) and light (SEQ ID NO: 8) chain of anti-MUC18 antibody, c6.11.3.
  • FIG. 7 shows the amino acid sequence of the variable region of the heavy (SEQ ID NO: 9) and light chain (SEQ ID NO: 10) and the nucleotide sequence encoding the variable region of the heavy (SEQ ID NO: 11) and light (SEQ ID NO: 12) chain of anti-MUC18 antibody, c3.10.
  • FIG. 8 shows the amino acid sequence of the variable region of the heavy (SEQ ID NO: 13) and light chain (SEQ ID NO: 14) and the nucleotide sequence encoding the variable region of the heavy (SEQ ID NO: 15) and light (SEQ ID NO: 16) chain of anti-MUC18 antibody, c3.22.
  • FIG. 9 shows the amino acid sequence of the variable region of the heavy (SEQ ID NO: 17) and light chain (SEQ ID NO: 18) and the nucleotide sequence encoding the variable region of the heavy (SEQ ID NO: 19) and light (SEQ ID NO: 20) chain of anti-MUC18 antibody, c3.27.
  • FIG. 10 shows the amino acid sequence of the variable region of the heavy (SEQ ID NO: 21) and light chain (SEQ ID NO: 22) and the nucleotide sequence encoding the variable region of the heavy (SEQ ID NO: 23) and light (SEQ ID NO: 24) chain of anti-MUC18 antibody, c3.45.
  • FIG. 11 shows the amino acid sequence of the variable region of the heavy (SEQ ID NO: 25) and light chain (SEQ ID NO: 26) and the nucleotide sequence encoding the variable region of the heavy (SEQ ID NO: 27) and light (SEQ ID NO: 28) chain of anti-MUC18 antibody, c3.65.
  • FIG. 12 shows the amino acid sequence of the variable region of the heavy (SEQ ID NO: 29) and light chain (SEQ ID NO: 30) and the nucleotide sequence encoding the variable region of the heavy (SEQ ID NO: 31) and light (SEQ ID NO: 32) chain of anti-MUC18 antibody, c6.1.
  • FIG. 13 shows the amino acid sequence of the variable region of the heavy (SEQ ID NO: 33) and light chain (SEQ ID NO: 34) and the nucleotide sequence encoding the variable region of the heavy (SEQ ID NO: 35) and light (SEQ ID NO: 36) chain of anti-MUC18 antibody, c6.9 (also independently cloned as c6.12).
  • FIG. 14 shows the amino acid sequence of the variable region of the heavy (SEQ ID NO: 37) and light chain (SEQ ID NO: 38) and the nucleotide sequence encoding the variable region of the heavy (SEQ ID NO: 39) and light (SEQ ID NO: 40) chain of anti-MUC18 antibody, c6.2.
  • FIG. 15 represents an alignment between the amino acid sequence of the variable region of the heavy chain of anti-MUC18 antibody, c3.10 (SEQ ID NO: 9), and the amino acid sequence encoding the V4-59 region (SEQ ID NO: 41) of the germline V H gene used.
  • the consensus sequence (SEQ ID NO: 42) is shown below the alignment.
  • FIG. 16 represents an alignment between the amino acid sequence of the variable region of the light chain of anti-MUC18 antibody, c3.10 (SEQ ID NO: 10), and the amino acid sequence encoding the O2 region (SEQ ID NO: 43) of the germline V k gene used.
  • the consensus sequence (SEQ ID NO: 44) is shown below the alignment.
  • FIG. 17 represents an alignment between the amino acid sequence of the variable region of the heavy chain of anti-MUC18 antibody, c3.22 (SEQ ID NO: 13), and the amino acid sequence encoding the V4-31 region (SEQ ID NO: 45) of the germline V H gene used.
  • the consensus sequence (SEQ ID NO: 46) is shown below the alignment.
  • FIG. 18 represents an alignment between the amino acid sequence of the variable region of the light chain of anti-MUC18 antibody, c3.22 (SEQ ID NO: 14), and the amino acid sequence encoding the A30 region (SEQ ID NO: 47) of the germline V k gene used.
  • the consensus sequence (SEQ ID NO: 48) is shown below the alignment.
  • FIG. 19 represents an alignment between the amino acid sequence of the variable region of the heavy chain of anti-MUC18 antibody, c3.27 (SEQ ID NO: 17), and the amino acid sequence encoding the V4-59 region (SEQ ID NO: 49) of the germline V H gene used.
  • the consensus sequence (SEQ ID NO: 50) is shown below the alignment.
  • FIG. 20 represents an alignment between the amino acid sequence of the variable region of the light chain of anti-MUC18 antibody, c3.27 (SEQ ID NO: 18), and the amino acid sequence encoding the A30 region (SEQ ID NO: 51) of the germline V k gene used.
  • the consensus sequence (SEQ ID NO: 52) is shown below the alignment.
  • FIG. 21 represents an alignment between the amino acid sequence of the variable region of the heavy chain of anti-MUC18 antibody, c3.45 (SEQ ID NO: 21), and the amino acid sequence encoding the V1-18 region (SEQ ID NO: 53) of the germline V H gene used.
  • the consensus sequence (SEQ ID NO: 54) is shown below the alignment.
  • FIG. 22 represents an alignment between the amino acid sequence of the variable region of the light chain of anti-MUC18 antibody, c3.45 (SEQ ID NO: 22), and the amino acid sequence encoding the B3 region (SEQ ID NO: 55) of the germline V k gene used.
  • the consensus sequence (SEQ ID NO: 56) is shown below the alignment.
  • FIG. 23 represents an alignment between the amino acid sequence of the variable region of the heavy chain of anti-MUC18 antibody, c3.65 (SEQ ID NO: 25), and the amino acid sequence encoding the 4-31 region (SEQ ID NO: 57) of the germline V H gene used.
  • the consensus sequence (SEQ ID NO: 58) is shown below the alignment.
  • FIG. 24 represents an alignment between the amino acid sequence of the variable region of the light chain of anti-MUC18 antibody, c3.65 (SEQ ID NO: 26), and the amino acid sequence encoding the O8 region (SEQ ID NO: 59) of the germline V k gene used.
  • the consensus sequence (SEQ ID NO: 60) is shown below the alignment.
  • FIG. 25 represents an alignment between the amino acid sequence of the variable region of the heavy chain of anti-MUC18 antibody, c6.1 (SEQ ID NO: 29), and the amino acid sequence encoding the V3-30 region (SEQ ID NO: 61) of the germline V H gene used.
  • the consensus sequence (SEQ ID NO: 62) is shown below the alignment.
  • FIG. 26 represents an alignment between the amino acid sequence of the variable region of the light chain of anti-MUC1 8 antibody, c6.1 (SEQ ID NO: 30), and the amino acid sequence encoding the A20 region (SEQ ID NO: 63) of the germline V k gene used.
  • the consensus sequence (SEQ ID NO: 64) is shown below the alignment.
  • FIG. 27 represents an alignment between the amino acid sequence of the variable region of the heavy chain of anti-MUC18 antibody, c6.12, and the amino acid sequence encoding the V4-31 region (SEQ ID NO: 65) of the germline V H gene used.
  • the consensus sequence (SEQ ID NO: 66) is shown below the alignment.
  • FIG. 28 represents an alignment between the amino acid sequence of the variable region of the light chain of anti-MUC18 antibody, c6.12, and the amino acid sequence encoding the L2 region (SEQ ID NO: 67) of the germline V k gene used.
  • the consensus sequence (SEQ ID NO: 68) is shown below the alignment.
  • FIG. 29 represents an alignment between the amino acid sequence of the variable region of the heavy chain of anti-MUC18 antibody, c6.2 (SEQ ID NO: 37), and the amino acid sequence encoding the V4-59 region (SEQ ID NO: 69) of the germline V H gene used.
  • the consensus sequence (SEQ ID NO: 70) is shown below the alignment.
  • FIG. 30 represents an alignment between the amino acid sequence of the variable region of the light chain of anti-MUC18 antibody, c6.2 (SEQ ID NO: 38), and the amino acid sequence encoding the A19 region (SEQ ID NO: 71) of the germline V k gene used.
  • the consensus sequence (SEQ ID NO: 72) is shown below the alignment.
  • FIG. 31 represents an alignment between the amino acid sequence of the variable region of the heavy chain of anti-MUC18 antibody, c6.9 (SEQ ID NO: 33), and the amino acid sequence encoding the V4-31 region (SEQ ID NO: 73) of the germline V H gene used.
  • the consensus sequence (SEQ ID NO: 74) is shown below the alignment.
  • FIG. 32 represents an alignment between the amino acid sequence of the variable region of the light chain of anti-MUC1 8 antibody, c6.9 (SEQ ID NO: 34), and the amino acid sequence encoding the L2 region (SEQ ID NO: 75) of the germline V k gene used.
  • the consensus sequence (SEQ ID NO: 76) is shown below the alignment.
  • FIG. 33 represents an alignment between the amino acid sequence of the variable region of the heavy chain of anti-MUC18 antibody, c6.11.3 (SEQ ID NO: 5), and the amino acid sequence encoding the V4-31 region (SEQ ID NO: 77) of the germline V H gene used.
  • the consensus sequence (SEQ ID NO: 78) is shown below the alignment.
  • FIG. 34 represents an alignment between the amino acid sequence of the variable region of the light chain of anti-MUC18 antibody, c6.11.3 (SEQ ID NO: 6), and the amino acid sequence encoding the L2 region (SEQ ID NO: 79) of the germline V k gene used.
  • the consensus sequence (SEQ ID NO: 80) is shown below the alignment.
  • FIG. 35 represents a summary of the sequences comprising the V, D, J and resulting N recombination regions of the MUC18 antibody clones identified in the present invention.
  • MUC18 refers to the cell surface polypeptide that is a member of the immunoglobulin superfamily with sequence similarity to a number of cell adhesion molecules. MUC18 is also known in the art as “MCAM”, “Mel-CAM”, or “CD146”. For purposes of this invention, from here on, “MUC18” is used to represent “MCAM”, “Mel-CAM”, and “CD146”.
  • c3.19.1 refers to a fully human IgG 2 monoclonal antibody directed against the MUC18 antigen.
  • the antibody was generated using XenoMouse® technology (Abgenix, Inc. Fremont, Calif.) and consists of human gamma 2 heavy and kappa light chains with a molecular weight of approximately 150 kDa.
  • biological activity and “biologically active” with regard to MUC18 refer to the ability of a molecule to specifically affect tumor progression. Preferred biological activities include the ability to induce growth and metastasis of tumor cells. The effect of MUC 18 on metastasis of tumor cells may include the ability to induce MMP-2 activation and/or cell migration. A further preferred biological activity is the ability to induce animal death due to tumor burden.
  • biological activity and “biologically active” with regard to anti-MUC18 antibodies refer to the ability of a molecule to inhibit the growth and metastasis of tumor cells often associated with MUC18 expression. Further, another metahcnism of action or activity for anti-MUC18 antibodies include the ability to stimulate MUC18 internalization and a consequent loss of cell surface expression. Specifically, the tumor cells include tumor cells in patients with tumors.
  • PCR Polymerase chain reaction
  • sequence information from the ends of the region of interest or beyond needs to be available, such that oligonucleotide primers can be designed; these primers will be identical or similar in sequence to opposite strands of the template to be amplified.
  • the 5′ terminal nucleotides of the two primers can coincide with the ends of the amplified material.
  • PCR can be used to amplify specific RNA sequences, specific DNA sequences from total genomic DNA, and cDNA transcribed from total cellular RNA, bacteriophage or plasmid sequences, etc. See generally Mullis et al., Cold Spring Harbor Symp. Quant. Biol. 51:263 (1987); Erlich, ed., PCR Technology (Stockton Pres, NY, 1989).
  • PCR is considered to be one, but not the only, example of a nucleic acid polymerase reaction method for amplifying a nucleic acid test sample comprising the use of a known nucleic acid as a primer and a nucleic acid polymerase to amplify or generate a specific piece of nucleic acid.
  • Tumor refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
  • cancer and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth.
  • examples of cancer include, but are not limited to, melanoma, carcinoma, lymphoma, blastoma, sarcoma, and leukemia or lymphoid malignancies. More particular examples of such cancers include squamous cell cancer (e.g.
  • lung cancer including small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung and squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer including gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, rectal cancer, colorectal cancer, endometrial cancer or uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, anal carcinoma, penile carcinoma, as well as head and neck cancer.
  • lung cancer including small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung and squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer including gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer
  • Antibodies are glycoproteins having the same structural characteristics. While antibodies exhibit binding specificity to a specific antigen, immunoglobulins include both antibodies and other antibody-like molecules which lack antigen specificity. Polypeptides of the latter kind are, for example, produced at low levels by the lymph system and at increased levels by myelomas.
  • “Native antibodies and immunoglobulins” are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies between the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (VH) followed by a number of constant domains.
  • VH variable domain
  • Each light chain has a variable domain at one end (VL) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light chain variable domain is aligned with the variable domain of the heavy chain.
  • Particular amino acid residues are believed to form an interface between the light- and heavy-chain variable domains (Chothia et al. J. Mol. Biol. 186:651 (1985; Novotny and Haber, Proc. Natl. Acad. Sci. U.S.A. 82:4592 (1985); Chothia et al., Nature 342:877-883 (1989)).
  • antibody herein is used in the broadest sense and specifically covers intact monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g. bispecific antibodies) formed from at least two intact antibodies, and antibody fragments, so long as they exhibit the desired biological activity.
  • the “light chains” of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called ⁇ and ⁇ , based on the amino acid sequences of their constant domains.
  • intact antibodies can be assigned to different “classes”. There are five major classes of intact antibodies: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into “subclasses” (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA, and IgA2.
  • the heavy-chain constant domains that correspond to the different classes of antibodies are called ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ , respectively.
  • the subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known.
  • antibody includes all classes and subclasses of intact immunoglobulins.
  • antibody also covers antibody fragments.
  • antibody specifically covers monoclonal antibodies, including antibody fragment clones.
  • the term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to polyclonal antibody preparations which include different antibodies directed against different determinants (epitopes), each monoclonal antibody id directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they may be synthesized uncontaminated by other antibodies.
  • the modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
  • the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (see, e.g., U.S. Pat. No. 4,816,567).
  • the “monoclonal antibodies” may also be isolated from phage antibody libraries using the techniques described in Clackson et al, Nature, 352:624-628 (1991) and Marks et al., J. Mol. Biol., 222:581-597 (1991), for example.
  • an “isolated” antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes.
  • the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain.
  • Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.
  • neutralizing antibody an antibody molecule which is able to eliminate or significantly reduce an effector function of a target antigen to which is binds. Accordingly, a “neutralizing” anti-MUC18 antibody is capable of eliminating or significantly reducing an effector function which may include MUC18 dependent regulation of cell adhesion, migration or MMP activation. The antibody can affect the funtion of MUC18 by stimulating the internalization and degradation of the molecule thus effectively removing cell surface expression of the antigen.
  • variable refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called complementarity-determining regions (CDRs) or hypervariable regions both in the light-chain and heavy-chain variable domains. The more highly conserved portions of variable domains are called the framework (FR).
  • CDRs complementarity-determining regions
  • FR framework
  • the variable domains of native heavy and light chains each comprise four FR regions, largely adopting a ⁇ -sheet configuration, connected by three CDRs, which form loops connecting, and in some cases forming part of, the ⁇ -sheet structure.
  • the CDRs in each chain are held together in close proximity by the FR regions and, with the CDRs from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al (1991).
  • the constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody-dependent cellular toxicity.
  • Fv is the minimum antibody fragment which contains a complete antigen-recognition and binding site.
  • this region consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association.
  • one heavy- and one light-chain variable domain can be covalently linked by a flexible peptide linker such that the light and heavy chains can associate in a “dimeric” structure analogous to that in a two-chain Fv species. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer.
  • the six CDRs confer antigen-binding specificity to the antibody.
  • a single variable domain or half of an Fv comprising only three CDRs specific for an antigen
  • hypervariable region when used herein refers to the amino acid residues of an antibody which are responsible for antigen-binding.
  • the hypervariable region generally comprises amino acid residues from a “complementarity determining region” or “CDR” (e.g. residues 24-34 (L1), 50-62 (L2), and 89-97 (L3) in the light chain variable domain and 31-55 (H1), 50-65 (H2) and 95-102 (H3) in the heavy chain variable domain; Kabat et al., Sequences of Proteins of Immunological Interest, 5 th Ed. Public Health Service, National Institutes of Health, Bethesda, Md.
  • CDR complementarity determining region
  • “hypervariable loop” e.g. residues 26-32 (L1), 50-52 (L2) and 91-96 (L3) in the light chain variable domain and 26-32 ((H1), 53-55 (H2) and 96-101 (H3) in the heavy chain variable domain; Chothia and Lesk J. Mol. Biol 196:901-917 (1987)).
  • “Framework Region” or “FR” residues are those variable domain residues other than the hypervariable region residues as herein defined.
  • CDRs complementarity determining regions
  • the CDRs of immunological receptors are the most variable part of the receptor protein, giving receptors their diversity, and are carried on six loops at the distal end of the receptor's variable domains, three loops coming from each of the two variable domains of the receptor.
  • epitopope is used to refer to binding sites for (monoclonal or polyclonal) antibodies on protein antigens.
  • amino acid or amino acid residue refers to naturally occurring L amino acids or to D amino acids as described further below with respect to variants.
  • the commonly used on- and three-letter abbreviations for amino acids are used herein (Bruce Alberts et al., Molecular Biology of the Cell, Garland Publishing, Inc., New York (3d ed. 1994)).
  • disease state refers to a physiological state of a cell or of a whole mammal in which an interruption, cessation, or disorder of cellular or body functions, systems, or organs has occurred.
  • beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable.
  • Treatment can also mean prolonging survival as compared to expected survival if not receiving treatment.
  • Those in need of treatment include those already with the condition or disorder as well as those prone to have the condition or disorder or those in which the condition or disorder is to be prevented.
  • a “disorder” is any condition that would benefit from treatment as described below. This includes chronic and acute disorders or disease including those pathological conditions which predispose the mammal to the disorder in question.
  • disorders to be treated herein include benign and malignant tumors, leukemias and lymphoid malignancies, in particular prostate, renal, ovarian, stomach, endometrial, salivary gland, kidney, colon, thyroid, pancreatic, prostate or bladder cancer, and malignant tumors, such as cervical carcinomas and cervical intraepithelial squamous and glandular neoplasia, renal cell carcinoma (RCC), esophageal tumors, and carcinoma-derived cell lines.
  • a preferred disorder to be treated in accordance with the present invention is renal and prostate cancer.
  • An even further preferred disorder to be treated is melanoma
  • “Mammal” for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, etc. Preferably, the mammal is human.
  • Lipofection refers to a practical nonviral method for introduction of genetic information into target tissues.
  • Nonviral methods include chemical or physical methods.
  • Lipofection uses an electrostatically bonded complex of positively charged lipids and negatively charged DNA as a vector which fuses with the cell membrane and delivers DNA into the cytoplasm. Lipofection differs from viral methods in that the efficiency of transfer of genetic information by lipofection is lower than by viral vectors and that the expression of the gene is transient. Alternatively, the complex of lipid and DNA is more stable and easier to handle when compared to viral vectors.
  • Monoclonal Antibodies may be made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Pat. No. 4,816,567).
  • a mouse or other appropriate host animal such as a hamster or macaque monkey
  • a host animal such as a hamster or macaque monkey
  • lymphocytes may be immunized in vitro. Animals are immunized against the immunogenic conjugates or derivatives by combing 1 mg or 1 ⁇ g of conjugate (for rabbits or mice, respectively) with 3 volumes of Freud's complete adjuvant and injecting the solution intradermally at multiple sites.
  • the animals are boosted with 1 ⁇ 5 to ⁇ fraction (1/0) ⁇ the original amount of conjugate in Freud's complete adjuvant by subcutaneous injection at multiple sites. 7 to 14 days later the animals are bled and the serum is assayed for anti-MUC18 antibody titer. Antibodies are boosted until the titer plateaus. Preferably, the animal is boosted with the conjugate of the same MUC18 antigen, but conjugated to a different protein and/or through a different cross-linking agent. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are used to enhance the immune response.
  • Lymphocytes or more preferably, lymphocytes enriched for B cells isolated from such immunized animals are then fused with myeloma cells by an electrocell fusion process or by using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp. 59-109, [Academic Press, 1996]).
  • a suitable fusing agent such as polyethylene glycol
  • the hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells.
  • a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells.
  • the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.
  • Preferred myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium.
  • preferred mycloma cell lines are murine myeloma lines, such as those derived from MOP-21 and MC.-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, Calif. USA, and SP-2 or X63-Ag8-653 cells available from the American Type Culture Collection, Rockville, Md. USA.
  • Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol. 133: 3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63, Marcel Dekker, Inc., New York, [1987]).
  • Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen.
  • the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunosorbent assay (ELISA).
  • RIA radioimmunoassay
  • ELISA enzyme-linked immunosorbent assay
  • the binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson et al., Anal. Biochem. 107: 220 (1980).
  • hybridoma cells After hybridoma cells are identified that produce antibodies of the desired specificity, affinity, and/or activity, the cells may be subcloned by limiting dilution procedures and grown by standard methods (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103, Academic Press, 1996). Suitable culture media for this purpose include, for example, DMEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown in vivo as ascites tumors in an animal.
  • the monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
  • DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the monoclonal antibodies).
  • the hybridoma cells serve as a preferred source of such DNA.
  • the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells.
  • the DNA also may be modified, for example, by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide.
  • “chimeric” or “hybrid” antibodies are prepared that have the binding specificity of an anti-MUC18 monoclonal antibody herein.
  • non-immunoglobulin polypeptides are substituted for the constant domains of an antibody of the invention, or they are substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an MUC18 and another antigen-combining site having specificity for a different antigen.
  • Chimeric or hybrid antibodies also may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents.
  • immunotoxins may be constructed using a disulfide exchange reaction or by forming a thioether bond.
  • suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate.
  • EBV-infected cells are difficult to clone and usually produce only relatively low yields of immunoglobulin (James and Bell, J. Immunol. Methods 100: 5-40 [1987]).
  • the immortalization of human B cells might possibly be achieved by introducing a defined combination of transforming genes.
  • Such a possibility is highlighted by a recent demonstration that the expression of the telomerase catalytic subunit together with the SV40 large T oncoprotein and an oncogenic allele of H-ras resulted in the tumorigenic conversion of normal human epithelial and fibroblast cells (Hahn et al., Nature 400: 464-468 [1999]).
  • transgenic animals e.g. mice
  • transgenic animals e.g. mice
  • transgenic animals that are capable, upon immunization, of producing a repertoire of human antibodies in the absence of endogenous immunoglobulin production
  • Kanobovits et al. Nature 362: 255-258 [1993]
  • Lonberg and Huszar Int. Rev. Immunol. 13: 65-93 [1995]
  • Tomizuka et al. Proc. Natl.
  • Mendez et al. ( Nature Genetics 15: 146-156 [1997]) have generated a line of transgenic mice designated as “XenoMouse® II” that, when challenged with an antigen, generates high affinity fully human antibodies. This was achieved by germ-line integration of megabase human heavy chain and light chain loci into mice with deletion into endogenous J H segment as described above.
  • the XenoMouse® II harbors 1,020 kb of human heavy chain locus containing approximately 66 V H genes, complete D H and J H regions and three different constant regions ( ⁇ , ⁇ and ⁇ ), and also harbors 800 kb of human ⁇ locus containing 32 V ⁇ genes, J ⁇ segments and C ⁇ genes.
  • the antibodies produced in these mice closely resemble that seen in humans in all respects, including gene rearrangement, assembly, and repertoire.
  • the human antibodies are preferentially expressed over endogenous antibodies due to deletion in endogenous J H segment that prevents gene rearrangement in the murine locus.
  • Techniques for generating antibodies using Abgenix's XenoMouse® technology include injection of a particular antigen of interest into such mice. Sera from such immunized animals may be screened for antibody-reactivity against the initial antigen. Lymphocytes may be isolated from lymph nodes or spleen cells and may further be selected for B cells by selecting for CD138-negative and CD19+ cells. The B cell cultures (BCCs) may be either fused to myeloma cells to generate hybridomas as detailed above or screened further for reactivity against the initial antigen. Such screening includes ELISA.
  • Transfection refers to the taking up of an expression vector by a host cell whether or not any coding sequences are in fact expressed. Numerous methods of transfection are known to the ordinarily skilled artisan, for example, CaPO 4 precipitation and electroporation. Successful transfection is generally recognized when any indication of the operation of this vector occurs within the host cell.
  • the antibodies of the present invention comprise an anti-human MUC18 monoclonal antibody heavy chain or a fragment thereof, comprising the following CDR's (as defined by Kabat et al., Sequences of Proteins of Immunological Interest, Fifth Edition, NIH Publication 91-3242, Bethesda Md. (1991), vols 1-3): (a) CDR1, (b) CDR2 and (c) CDR3.
  • the heavy chain of the antibodies of one embodiment of the present invention comprise of the following sequences:
  • SEQ ID NO: 1 SEQ ID NO: 5, SEQ ID NO: 9, SEQ ID NO: 13, SEQ ID NO: 17, SEQ ID NO: 21, SEQ ID NO: 25, SEQ ID NO: 29, SEQ ID NO: 33, OR SEQ ID NO: 37.
  • the invention provides an anti-human MUC18 monoclonal antibody light chain or a fragment thereof, comprising the following CDRs: (a) CDR1, (b) CDR2 and (c) CDR3.
  • the light chain of the antibodies in one embodiment of the present invention comprise of the following sequences:
  • SEQ ID NO: 2 SEQ ID NO: 6, SEQ ID NO: 10; SEQ ID NO: 14, SEQ ID NO: 18; SEQ ID NO: 22; SEQ ID NO: 26; SEQ ID NO: 30; SEQ ID NO: 34; or SEQ ID NO: 38.
  • the present invention includes anti-MUC18 antibodies such as c3.19.1 and c6.11.3.
  • the heavy chain amino acid and nucleotide sequences of c3.19.1 are encoded by SEQ ID NO: 1 and 3, respectively, and the heavy chain amino acid and nucleotide sequence of c6.11.3 are encoded by 5 and 7, respectively.
  • the light chain amino acid and nucleotide sequences of c3.1.9.1. are encoded by SEQ ID NO: 2 and 4, respectively, and the light chain amino acid and nucleotide sequences of c6.11.3 are encoded by 6 and 8, respectively.
  • melanoma cells were used for analysis of anti-MUC18 antibody function.
  • the melanoma cells were derived from a number of sources and possessed a variety of characteristics that could potentially contribute to the metastatic phenotype. Their phenotypes are presented in Table 1.
  • kinetic measurements and binding affinity of the anti-MUC18 antibodies were obtained from Biacore experiments.
  • the Biacore experiments measured the affinity of MUC18 antibodies captured on a protein A surface for labeled MUC18 antigen and are further described in the examples below.
  • Anti-MUC18 antibodies with a Kd of 6 ⁇ 10 ⁇ 10 M were considered high affinity anti-MUC18 antibodies.
  • anti-MUC18 antibodies of the present invention were able to recognize denatured MUC18 in human melanoma cells
  • the antibodies were used for immunoblots of metastatic melanoma cells and non-metastatic melanoma cells (control). Those antibodies which were able to detect MUC18 in metastatic melanoma cells were selected as anti-MUC18 antibodies of interest.
  • mice bearing tumors were screened for the ability to increase the survival of mice bearing tumors.
  • WM-2664 human melanoma tumor cells in their exponential phase were harvested, resuspended in suitable buffer, and injected into the lateral tail vein of male BALB/c nude mice.
  • Therapeutic formulations of the anti-MUC18 antibodies of the invention are prepared for storage by mixing antibody having the desired degree of purity with optional physiologically acceptable carriers, excipients, or stabilizers ( Remington: The Science and Practice of Pharmacy, 19th Edition, Alfonso, R., ed, Mack Publishing Co. (Easton, Pa.: 1995)), in the form of lyophilized cake or aqueous solutions.
  • Acceptable carriers, excipients or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as Tween, Pluronics or polyethylene glycol (PEG).
  • buffers such as phosphate, citrate, and other organic acids
  • antioxidants including ascorbic acid
  • the anti-MUC18 antibody to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes, prior to or following lyophilization and reconstitution.
  • the anti-MUC18 antibody ordinarily will be stored in lyophilized form or in solution.
  • Therapeutic anti-MUC18 antibody compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
  • the route of anti-MUC18 antibody administration is in accord with known methods, e.g. injection or infusion by intravenous, intraperitoneal, intracerebral, subcutaneous, intramuscular, intraocular, intraarterial, intracerebrospinal, or intralesional routes, or by sustained release systems as noted below.
  • the antibody is given systemically.
  • sustained-release preparations include semipermeable polymer matrices in the form of shaped articles, e.g. films, or microcapsules.
  • Sustained release matrices include polyesters, hydrogels, polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman et al., Biopolymers, 22: 547-556 (1983)), poly (2-hydroxyethyl-methacrylate) (Langer et al., J. Biomed. Mater. Res., 15: 167-277 (1981) and Langer, Chem.
  • Sustained-release anti-MUC18 antibody compositions may also include liposomally entrapped antibody. Liposomes containing antibody are prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci.
  • the liposomes are of the small (about 200-800 Angstroms) unilamelar type in which the lipid content is greater than about 30 mol. % cholesterol, the selected proportion being adjusted for the optimal antibody therapy.
  • Anti-MUC18 antibody can also be administered by inhalation.
  • Commercially available nebulizers for liquid formulations including jet nebulizers and ultrasonic nebulizers are useful for administration.
  • Liquid formulations can be directly nebulized and lyophilized powder can be nebulized after reconstitution.
  • anti-MUC18 antibody can be aerosolized using a fluorocarbon formulation and a metered dose inhaler, or inhaled as a lyophilized and milled powder.
  • an “effective amount” of anti-MUC18 antibody to be employed therapeutically will depend, for example, upon the therapeutic objectives, the route of administration, the type of anti-MUC18 antibody employed, and the condition of the patient. Accordingly, it will be necessary for the therapist to titer the dosage and modify the route of administration as required to obtain the optimal therapeutic effect. Typically, the clinician will administer the anti-MUC18 antibody until a dosage is reached that achieves the desired effect. The progress of this therapy is easily monitored by conventional assays.
  • Antibodies specific to tumor antigens such as anti-MUC18 are useful in targeting of tumor cells for destruction.
  • ricin a cellular toxin derived from plants, is finding unique applications, especially in the fight against tumors and cancer. Implications are being discovered as to the use of ricin in the treatment of tumors. Ricin has been suggested to have a greater affinity for cancerous cells than normal cells (Montfort et al. 1987) and has been often termed as a “magic bullet” for targeting malignant tumors. Toxins such as ricin remain active even if the B chain of the toxin is removed.
  • the toxin has a specific affinity for cancerous cells over normal cells (Taylorson 1996).
  • ricin immunotoxin has been developed to target the CD5 T-cell antigen often found in T-cell and B-cell malignancies (Kreitman et al. 1998).
  • the linking of such anti-MUC18 antibodies to radioisotopes provides advantages to tumor treatments. Unlike chemotherapy and other forms of cancer treatment, radioimmunotherapy or the administration of a radioisotope-antibody combination directly targets the cancer cells with minimal damage to surrounding normal, healthy tissue.
  • antibodies such as MUC18 antibodies
  • modified antibodies can also be readily prepared utilizing techniques that are well known in the art.
  • the patients to be treated with the anti-MUC18 antibody of the invention include patients with tumors, preferably melanomaand/or prostate or renal cancer.
  • Other tumors include esophageal, pancreatic, colorectal tumors, carcinomas, such as renal cell carcinoma (RCC), cervical carcinomas and cervical intraepithelial squamous and glandular neoplasia, and cancers, such as colorectal cancer, breast cancer, lung cancer, and other malignancies.
  • Patients are candidates for therapy in accord with this invention until such point as no healthy tissue remains to be protected from tumor progression. It is desirable to administer an anti-MUC18 antibody as early as possible in the development of the tumor, and to continue treatment for as long as is necessary.
  • the antibody composition will be formulated, dosed, and administered in a fashion consistent with good medical practice.
  • Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the antibody, the particular type of antibody, the method of administration, the scheduling of administration, and other factors known to medical practitioners.
  • the “therapeutically effective amount” of antibody to be administered will be governed by such considerations, and is the minimum amount necessary to prevent, ameliorate, or treat the disorder, including treating chronic autoimmune conditions and immunosuppression maintenance in transplant recipients. Such amount is preferably below the amount that is toxic to the host or renders the host significantly more susceptible to infections.
  • the initial pharmaceutically effective amount of the antibody administered parenterally will be in the range of about 0.1 to 50 mg/kg of patient body weight per day, with the typical initial range of antibody used being 0.3 to 20 mg/kg/day, more preferably 0.3 to 15 mg/kg/day.
  • the desired dosage can be delivered by a single bolus administration, by multiple bolus administrations, or by continuous infusion administration of antibody, depending on the pattern of pharmacokinetic decay that the practitioner wishes to achieve.
  • the antibody may be optionally formulated with one or more agents currently used to prevent or treat tumors such as standard- or high-dose chemotherapy and hematopoietic stem-cell transplantation.
  • the effective amount of such other agents depends on the amount of anti-MUC18 antibody present in the formulation, the type of disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as used hereinbefore or about from 1 to 99% of the heretofore employed dosages.
  • the primers used for the amplification of the ECD of MUC18 were as follows: Forward primer: 5′-ATATTACGAATTCACTTGCGTCTCGCCCTCCGG-3′ (SEQ ID NO: 10) Reverse primer: 5′-CAGCTTAGAGCTAGCCGGCTCTCCGGCTCCGGCA-3′ (SEQ ID NO: 11)
  • MUC18 cDNA was amplified (Gene Amp XL PCR kit, Perkin Elmer) from RNA (RNAzol,Tel Test, INC) prepared from SK-MEL-28 cells (ATCC HTB-72).
  • RNA RNAzol,Tel Test, INC
  • HuIgG2 fusion protein the 1700 bp PCR product encoding amino acids 1-559 was digested with EcoRI and NheI and ligated into CD147HuIgG2DHFR vector (ABGX) digested with EcoRI and NheI or pcDNA3.1V5HISB vector (Invitrogen) digested with EcoRI and XbaI.
  • the resulting plasmids were transfected in 293 cells by CaPO 4 method, and then, the fusion protein was purified from harvested conditioned media via ProteinA chromatography (MUC18-HuIgG2) or Ni—NTA chromatography (MUC18-V5HIS).
  • the MUC18 ECD contained 4 amino acid differences from the published NCBI sequence: #383 D>G,#390 P>L,#424 K>N, and #425 L>V.
  • Monoclonal antibody against MUC18 was developed by sequentially immunizing XenoMouse mice (XenoMouse G2, Abgenix, Inc. Fremont, Calif.). The initial immunization was with 5 ⁇ 10 6 SK-MEL-28 cells admixed 1:1 v/v with Complete Freund's Adjuvant (CFA).
  • CFA Complete Freund's Adjuvant
  • mice were initially injected with MUC18 antigen at a concentration of 1-5 ⁇ g/mouse. Each mouse was further immunized into each hind footpad 6 additional times (at 3-4 day intervals) with soluble antigen, specifically 5 ⁇ g of soluble MUC18-human IgG2 Fc fusion protein in DPBS admixed 1:1 v/v with IFA then a final boost of 10 ⁇ g soluble MUC18-human IgG2 Fe fusion protein in DPBS without adjuvant. The animals were immunized on days 0, 4, 7, 10, 14, 17 and 20 and four days later on day 4, fusions were performed. For the fusions, the mice were euthanized, and inguinal and popliteal lymph nodes were recovered.
  • Lymphocytes from the immunized XenoMouse mice were released by mechanical disruption of the lymph nodes using a tissue grinder and then depleted of T cells by CD90 negative selection.
  • the fusion was performed by mixing washed enriched B cells and non-secretory myeloma P2X63Ag8.653 cells purchased from ATCC (Cat. #CRL 1580) (Kearney et al., J. Immunol., 123:1548-1550 (1979)) at a ratio of 1:1.
  • the cell mixture was gently subjected to centrifugation at 800 g. After complete removal of the supernatant, the cells were treated with 2-4 mL of Pronase solution (CalBiochem, Cat.
  • Electro-cell fusion was performed using a fusion generator, model ECM2001, Genetronic, Inc., San Diego, Calif.
  • DMEM JRH Biosciences
  • FCS Hyclone
  • OPI oxaloacetate, pyruvate, bovine insulin
  • IL-6 Boehringer Mannheim
  • HAT hypoxanthine, aminopterin and thymidine
  • HT hyperxanthine and thymidine
  • Hybridomas were selected for by survival in HAT medium and supernatants from those wells containing hybridomas were screened for antigen reactivity by ELISA.
  • the ELISA format entailed incubating supernatants on antigen coated plates and detecting human anti-MUC18 binding using horseradish peroxidase (HRP) labeled mouse anti-human IgG2.
  • HR horseradish peroxidase
  • Cloning was performed on selected antigen-positive wells using limited dilution plating. Plates were visually inspected for the presence of single colony growth and supernatants from single colony wells then screened by antigen-specific ELISA as described above. Highly reactive clones were assayed to verify purity of human gamma and kappa chain by multiplex ELISA using a Luminex instrument.
  • melanoma cell lines A375SM, SB2, TXM-13, WM-2664 and nude mouse endothelial cells (NME) were seeded (1 ⁇ 10 6 ) in 100 mm tissue culture plates (Falcon) in 10 mL complete growth medium. After overnight incubation, the plates were washed two times in PBS, and scraped in 400 ⁇ l Triton lysis buffer containing a cocktail of protease inhibitors plus DTT. Following centrifugation, the protein concentration was determined using a kit from BioRad.
  • Anti-MUC18 antibodies detected high levels of MUC18 in the metastatic A375SM, TXM-13 and WM-2664 cells and no signal in the nonmetastatic cell line SB-2 and normal mouse endothelial (NME2) cells were MUC18 (FIG. 2). The reason for the lack of a signal in the NME2 in this experiment was due most likely to the failure of anti-MUC18 antibody to cross-react with mouse MUC18 protein.
  • A375-SM and WM-2664 cells (4 ⁇ 10 5 ) were detached with PBS-EDTA and incubated in FACS buffer (PBS, 2% FBS and 0.02% sodium azide) with either an isotype-matched control human IgG2 antibody or anti-MUC18 antibody for 20 minutes at 4° C. After washing with FACS buffer, all samples were incubated with phycoerythrin-conjugated F(ab′) 2 fragments of Goat Anti-Human IgG (H+L) (Jackson) for 20 minutes at 4° C. in the dark. After several washings, the cells were resuspended in FACS buffer and analyzed by cytofluorometry.
  • a Biacore 3000 instrument was used for all kinetic measurements with HBS-P (Hepes-buffered saline, 0.005% polysorbate 20) buffer. The measurements were made utilizing three B1 sensor chips (carboxymethyldextran matrix with a low amount of carboxylation). The experiments were performed by covalently immobilizing protein A by standard amine coupling at a level of 1500-3000 RU (resonance units) on the surface of the four flow cells of a B1 chip. MAb 3.19.1 was captured by flowing a 1 ⁇ g/ml solution of 3.19.1 at a flow rate of 60 ⁇ L/min. for 20-30 sec. across the protein A surface, giving a captured level of 110-250 RU.
  • control protein A surface did not have any MAb captured on it.
  • the data were processed by “Scrubber”, version 1.10, and the processed sensorgrams were non-linearly fit by “Clamp”, version 3.40, employing a simple bimolecular 1:1 kinetic model (Table 3).
  • Tumors Tumors/Animal Control 13/14 7/14 3/14 4/14 10
  • Antibody c3.19.1 10/14 6/14 5/14 3/14 12 0.1 mg/dose
  • FIG. 4 demonstrated that treatment with anti-MUC18 antibody (c3.19.1) can prolong the survival of mice bearing metastatic melanoma tumors. A dose dependent increase in survival was observed and to date no animals in the group receiving the high dose of anti-MUC18 antibody have died due to tumor burden.
  • anti-MUC18 antibody does not inhibit the growth of melanoma tumor cells in cell culture, it does inhibit the growth of subcutaneous and metastatic tumor cells in vivo.
  • the cumulative evidence indicates that MUC18 plays a role in one or more steps in the metastatic process possibly by affecting MMP-2 activation or cell migration.
  • anti-MUC18 antibody is a promising therapeutic antibody for inhibiting the growth and metastasis of human melanoma cells in patients with this disease.
  • Antibodies specific to antigens such as anti-MUC18 are useful in targeting of tumor cells expressing such antigens for elimination.
  • Ricin a cellular toxin
  • Ricin is finding unique applications, especially in the fight against tumors and cancer. Implications are being discovered as to the use of ricin in the treatment of tumors.
  • Ricin has been suggested to have a greater affinity for cancerous cells than normal cells (Montfort et al. 1987) and has been often termed as a “magic bullet” for targeting malignant tumors.
  • Toxins such as ricin remain active even if the B chain which is responsible for because of toxin nonspecific lectin activity leads to toxic side effects is removed. Accordingly, if the solitary A chain is coupled to a tumor-specific antibody, the toxin has a specific affinity for cancerous cells over normal cells (Taylorson 1996).
  • ricin immunotoxin has been developed to target the CD5 T-cell antigen often found in T-cell and B-cell malignancies (Kreitman et al. 1998).
  • a novel method of coupling whole intact ricin to monoclonal antibody is described in Pietersz et al. ( Cancer Res 48(16):4469-76 (1998)) and includes blocking of nonspecific binding of the ricin B-chain.
  • Coupling of ricin to the anti-MUC18 antibodies of the present invention may be done by using the bifunctional reagents S-acetylmercaptosuccinic anhydride for antibody and succinimidyl 3-(2-pyridyldithio)propionate for ricin.
  • the coupling should result in the loss of B-chain binding activity, while impairing neither the toxic potential of the A-chain nor the activity of the antibody.
  • Whole ricin-antibody conjugates produced in this way should not bind nonspecifically to target cells, the most important implication being that such immunotoxins should be more potent that ricin A-chain conjugates and capable of being used in vivo.
  • radioisotopes provide advantages to tumor treatments. Unlike chemotherapy and other forms of cancer treatment, radioimmunotherapy or the administration of a radioisotope-antibody combination directly targets the cancer cells with minimal damage to surrounding normal, healthy tissue. With this “magic bullet,” the patient can be treated with much smaller quantities of radioisotopes than other forms of treatment available today.
  • Preferred radioisotopes include yttrium 90 (90Y), indium 111 (111In), 131 I, 99 mTc, radiosilver-111, radiosilver-199, and Bismuth 213 .
  • Linkage of radioisotopes to antibodies may be performed with conventional bifunction chelates. Since silver is monovalent, for radiosilver-111 and radiosilver-199 linkage, sulfur-based linkers may be used (Hazra et al., Cell Biophys, 24-25:1-7 (1994)). Linkage of silver radioisotopes may involved reducing the immunoglobulin with ascorbic acid.
  • tiuxetan is an MX-DTPA linker chelator attached to ibritumomab to form ibritumomab tiuxetan (Zevalin) (Witzig, T.
  • Ibritumomab tiuxetan can react with radioisotypes such as indium 111 (111In) or 90Y to form 111In-ibritumomab tiuxetan and 90Y-ibritumomab tiuxetan, respectively.
  • 111In indium 111
  • 90Y 90Y-ibritumomab tiuxetan
  • a tumor patient treated with anti-MUC18 antibodies have a lower level of tumor growth and metastasis compared to the level of tumor growth and metastasis of tumors in tumor patients treated with control antibodies.
  • Control antibodies that may be used include antibodies of the same isotype as the anti-MUC18 antibodies tested and further, may not have the ability to bind to MUC18 tumor antigen.
  • anti-MUC18 antibody conjugates human patients or animals exhibiting tumors are injected over a certain amount of time with an effective amount of anti-MUC18 antibody conjugate.
  • the anti-MUC18 antibody conjugate administered is maytansine-anti-MUC18 antibody conjugate or radioisotope-anti-MUC18 antibody conjugate.
  • the human patients or animals are monitored to determine whether their tumors progress, in particular, whether the tumors grow and metastasize.
  • a human patient or animal exhibiting tumors and undergoing treatment with either maytansine-anti-MUC18 antibody or radioisotope-anti-MUC18 antibody conjugates have a lower level of tumor growth and metastasis when compared to a control patient or animal exhibiting tumors and undergoing treatment with control antibody conjugates, such as control maytansine-antibody or control radioisotope-antibody.
  • Control maytansine-antibodies that may be used include conjugates comprising maytansine linked to antibodies of the same isotype of the anti-MUC18 antibodies, but more specifically, not having the ability to bind to MUC18 tumor antigen.
  • Control radioisotope-antibodies that may be used include conjugates comprising radioisotope linked to antibodies of the same isotype of the anti-MUC18 antibodies, but more specifically, not having the ability to bind to MUC18 tumor antigen.

Abstract

The present invention relates generally to the generation and characterization of anti-MUC18 monoclonal antibodies. The invention further relates to the use of such anti-MUC18 antibodies in the diagnosis and treatment of disorders associated with increased activity of MUC18, in particular, tumors, such as melanomas.

Description

    RELATED APPLICATION
  • This application claims priority from U.S. provisional application No. 60/346,414, filed on Dec. 28, 2001 and entitled “METHODS FOR USING ANTI-MUC18 ANTIBODIES”.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • Embodiments of the present invention concern antibodies binding MUC18 antigen as well as methods and means for making and using such antibodies. [0003]
  • 2. Description of the Related Art [0004]
  • MUC18 is a cell-surface glycoprotein originally identified as a melanoma antigen, melanoma cell adhesion molecule (MCAM), whose expression is associated with tumor progression and the development of metastatic potential. MUC18 is a 113 kDA cell surface integral membrane glycoprotein composed of a signal peptide, five immunoglobulin-like domains, a transmembrane region, and a short cytoplasmic tail (Lehmann et al., [0005] Proc Natl Acad Sci USA, 86(24):9891-5 (1989)).
  • MUC18 is a member of the immunoglobulin superfamily and has significant sequence homology to a number of cell adhesion molecules of the Ig superfamily (Lehmann et al., [0006] Proc. Natl. Acad. Sci. USA, 86:9891-9895 (1989)), including BEN (Pourquie et al., Proc. Natl. Acad. Sci. USA, 89:5261-5265 (1992)), neural-cell adhesion molecule (N-CAM) (Owens et al., Proc. Natl., Acad. Sci. USA, 84:294-298 (1987)), myelin-associated glycoprotein (MAG) (Lai et al., Proc. Natl. Acad. Sci. USA, 84:4337-4341 (1987)), deleted in colorectal cancer (DCC) (Hedrick et al., Genes Devel., 8(10):1174-83 (1994)), and gicerin (Taira et al., Neuron, 12: 861-872 (1994)). The expression of MUC18 has been detected in relatively limited spectrum of normal human tissues and in a variety of malignant neoplasms. In normal adult tissues, MUC 18 is expressed on endothelial cells, smooth muscle cells (Shih et al., Lab. Invest., 75:377-388 (1996);Sers et al., Cancer Res., 54(21):5689-94 (1994)), a subpopulation of activated T lymphocytes (Pickl et al., J. Immunol., 158:2107-2115 (1997)) and intermediate trophoblasts (Shih et al., Lab. Invest., 75:377-388 (1996)). MUC18 is also expressed on a variety of malignant neoplasms including smooth muscle neoplasms (Leiomyomas and leiomyosarcomas), tumors of vascular origin (angiosarcomas and Kaposi's sarcomas), placental site trophoblastic tumors, choriocarcinomas and melanomas (Shih et al., Clinical Cancer Res., 2:569-575 (1996); Holzmann et al., Int. J. Cancer, 39:466-471 (1987)). The expression of MUC18 correlates directly with the metastatic potential of human melanoma cells (Bar-Eli, M., Cancer Metastasis, 18(3):377-85 (1999)).
  • A number of studies have identified MUC18 as a marker of tumor progression and metastasis in melanomas. The expression of MUC18 is absent in normal melanocytes and benign nevi but prominent on many primary melanomas and in most metastatic lesions (Lehmann et al., [0007] Proc. Natl. Acad. Sci. USA, 86:9891-9895 (1989); Lehmann et al., Cancer Res., 47:841-845 (1987); Shih et al., Cancer Res., 54:2514-2520 (1994)). Importantly, MUC18 expression correlates well with tumor vertical thickness and metastasis formation, and greater than 80% of metastatic lesions express MUC18 (Lehmann et al., Proc. Natl. Acad. Sci. USA, 86:9891-9895 (1989); Xie et al., Cancer Res., 57:2295-2303 (1997); Sers et al., Proc. Natl. Acad. Sci. USA, 90:8514-8518 (1993); Lehmann et al., Cancer Res., 47:841-845 (1987); Shih et al., Cancer Res., 54:2514-2520 (1994). A diagram depicting the expression of MUC18 with respect to other known molecular lesions in human melanoma is presented in FIG. 1.
  • The expression of the transcription factors ATF-1 and CREB is upregulated in metastatic melanoma cells. However, how overexpression of ATF-1/CREB contributes to the acquisition of the metastasis is unclear. CREB/ATF-1 may play an essential role in invasion by regulating the CRE-dependent expression of the adhesion molecule MUC18 and metalloproteinase MMP-2 (Jean et al., [0008] Mol. Cell Biochem., 212(1-2):19-28 (2000)) which belongs to the MMP family known to contribute to cancers and to have a role in tumor invasion, angiogenesis, and metastasis. Tumor cells are believed to utilize the matrix degrading capability of MMPs to spread to distant sites, and once the tumor cells have metastasized, MMPs are thought to promote the growth of these tumor cells. The role of MUC18 in melanoma tumor progression is not completely understood, but may include a role in one or more steps in the metastatic process possibly by affecting MMP-2 activation or cell migration.
  • The analysis of human melanoma cell lines showed a positive correlation of [0009] MUC 18 expression with the ability of cells to produce metastases in nude mice (Johnson et al., Cancer Metastasis Rev., 18:345-357 (1999)). The generation of tumorigenic variants from a non-tumorigenic melanoma cell line was reported to be accompanied by induction of MUC18 expression (Luca et al., Melanoma Res., 3:35-41 (1993)). Expression of MUC18 on MUC18-negative human melanoma cell lines increased their tumorigenicity and enhanced their metastatic capability in experimental tumor models (Xie et al., Cancer Res., 57:2295-2303 (1997); Bani et al., Cancer Res., 56:3075-3086 (1996)). Finally, inhibition of MUC18 expression in metastases using genetic suppressor elements of MUC18 cDNA led to a decrease of the tumorigenic phenotype in nude mice (Styamoorthy et al., Oncogene, 20:4676 (2001)).
  • Although the function of MUC18 is not fully understood, several studies have demonstrated a role for this protein in mediating cell-cell and cell-matrix interactions by binding to an unidentified ligand (Shih et al., [0010] Cancer Res., 57:3835-3840 (1997); Johnson et al., Int. J. cancer, 73:769-774 (1997)). The expression of cell adhesion molecules which mediate cell-to-cell or cell-to-matrix interactions is a tumor cell property that is essential for metastases. Accordingly, MUC18-transfected melanoma cells showed increased homotypic adhesion, increased attachment to human endothelial cells, and increased invasion through Matrigel-coated filters suggesting a role in tumor invasion and trans-endothelial migration (Xie et al., Cancer Res., 57:2295-2303 (1997)). Importantly, anti-MUC 18 antibodies were able to inhibit these functions in the MUC 18-transfected cells (Xie et al., Cancer Res., 57:2295-2303 (1997)). Accordingly, there is a great need for anti-MUC 18 antibodies that are able to inhibit the biological function of MUC18, most importantly cell proliferation and growth which may be essential to tumor progression and metastasis. Such antibodies would likely interfere with the inherent ability of MUC18 to mediate cell-cell and cell-matrix interactions. The inhibition of such activity may be possible with a monoclonal antibody targeted to MUC18. The ability to affect the progression of tumor cells expressing MUC18 on the cell surface may prove to be a treatment for patients with tumors or of use for prevention of metastatic disease in patients with such tumors.
  • SUMMARY OF THE INVENTION
  • The present invention is based on the development of monoclonal antibodies that were found to bind MUC18 and affect MUC18 function. This application describes human anti-MUC18 antibodies and anti-MUC18 antibody preparations with desirable properties from a therapeutic perspective, including strong binding affinity for MUC18, the ability to inhibit metastasis in vivo and the ability to promote cell survival. [0011]
  • One embodiment of the invention is a method of inhibiting cell proliferation or tumor metastasis associated with the expression of MUC18 tumor antigen. The method includes the steps of providing a monoclonal antibody comprising a heavy chain amino acid, wherein the antibody has an amino acid sequence selected from the group consisting of SEQ ID NOs: 1, 5 9, 13, 17, 21, 25, 29, 33 and 37, and wherein said monoclonal antibody binds MUC18; contacting cells expressing MUC18 with an effective amount of the antibody; and incubating said cells and the antibody, wherein said incubation results in inhibited proliferation of the cells. [0012]
  • Another embodiment of the invention is a method of inhibiting cell proliferation or tumor metastasis associated with the expression of MUC18 tumor antigen which includes: providing a monoclonal antibody comprising a light chain amino acid, wherein the antibody has an amino acid sequence selected from the group consisting of: SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34 and 38, and wherein said monoclonal antibody binds MUC18; contacting cells expressing MUC18 with an effective amount of the antibody; and incubating the cells and the antibody, wherein the incubation results in inhibited proliferation of the cells. [0013]
  • In one aspect, the invention provides an anti-human MUC18 monoclonal antibody which binds to and neutralizes a biological activity of at least human MUC18 or stimulates the internalization and down-regulation of the protein. The antibody can significantly reduce or eliminate a biological activity of the human MUC18 in question. [0014]
  • The biological activity of the subject human MUC18 may be cell proliferation. Further, the biological activity may include angiogenesis and cell proliferation important for primary tumor growth and metastasis, cell invasion and/or migration, and activation of metalloproteinase MMP-2. Even further, the biological activity may include growth and metastasis of tumor cells in patients with tumors, for example, melanoma. [0015]
  • Also provided is an isolated nucleic acid molecule encoding any of the antibodies described herein, a vector comprising the isolated nucleic acid molecule, a host cell transformed with the nucleic acid molecule, and a method of producing the antibody comprising culturing the host cell under conditions wherein the nucleic acid molecule is expressed to produce the antibody and optionally recovering the antibody from the host cell. The antibody may be of the IgG class. The isolated nucleic acid molecule preferably comprises a nucleotide sequence encoding a heavy chain variable domain of a monoclonal antibody, wherein said nucleotide sequence is selected from the group consisting of the nucleotide sequence of the heavy chain variable domain of c3.19.1 (SEQ ID NO: 3), c6.11.3 (SEQ ID NO: 7), C3.10 (SEQ ID NO: 11), C3.22 (SEQ ID NO: 15), C3.27 (SEQ ID NO: 19), C3.45 (SEQ ID NO: 23), C3.65 (SEQ ID NO: 27), C6.1 (SEQ ID NO: 31), C6.9 (SEQ ID NO: 35) or C6.2 (SEQ ID NO: 39), or a nucleotide sequence encoding a light chain variable domain of a monoclonal antibody, wherein said nucleotide sequence is selected from the group consisting of the nucleotide sequence of the light chain variable domain of 3.19.1 (SEQ ID NO: 4), 6.11.3 (SEQ ID NO: 8), C3.10 (SEQ ID NO: 12), C3.22 (SEQ ID NO: 16), C3.27 (SEQ ID NO: 20), C3.45 (SEQ ID NO: 24), C3.65 (SEQ ID NO: 28), C6.1 (SEQ ID NO: 32), C6.9 (SEQ ID NO: 36), or C6.2 (SEQ ID NO: 40). [0016]
  • In a different aspect, the invention provides a method for the treatment of a disease or condition associated with the expression of MUC18 in a patient, comprising administering to the patient an effective amount of an anti-MUC18 antibody. The patient is a mammalian patient, preferably a human patient. The disease is a tumor, such as melanoma.[0017]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram depicting the expression pattern of MUC18 and other known oncogenes and growth factors involved in melanoma tumor progression. [0018]
  • FIG. 2 shows immunoblot analysis with anti-MUC18 antibodies and demonstrates a positive correlation between MUC18 expression with the metastatic capacity of human melanoma cells. The expression of MUC18 in human metastatic melanoma cell lines (A375SM, TXM-13, and WM2664), nonmetastatic cell line SB-2, and normal mouse endothelial (NMEs) cells are shown. [0019]
  • FIGS. 3A and 3B are line graphs illustrating that neither the A375-SM (FIG. 3A) nor the WM-2664 cells (FIG. 3B) demonstrated a fluorescent shift when incubated in the presence of the control IgG2 Ab (bold line). However, when incubated in the presence of anti-MUC18 (dotted line), a strong shift in fluorescence intensity indicative of cell surface expression of the antigen was observed. [0020]
  • FIG. 4 is a line graph illustrating that treatment with anti-MUC18 antibody c3.19.1, prolongs the survival of WM2664 mice bearing metastatic melanoma tumors. [0021]
  • FIG. 5 shows the amino acid sequence of the variable region of the heavy (SEQ ID NO: 1) and light chain (SEQ ID NO: 2) and the nucleotide sequence encoding the variable region of the heavy (SEQ ID NO: 3) and light (SEQ ID NO: 4) chain of anti-MUC18 antibody, c3.19.1. [0022]
  • FIG. 6 shows the amino acid sequence of the variable region of the heavy (SEQ ID NO: 5) and light chain (SEQ ID NO: 6) and the nucleotide sequence encoding the variable region of the heavy (SEQ ID NO: 7) and light (SEQ ID NO: 8) chain of anti-MUC18 antibody, c6.11.3. [0023]
  • FIG. 7 shows the amino acid sequence of the variable region of the heavy (SEQ ID NO: 9) and light chain (SEQ ID NO: 10) and the nucleotide sequence encoding the variable region of the heavy (SEQ ID NO: 11) and light (SEQ ID NO: 12) chain of anti-MUC18 antibody, c3.10. [0024]
  • FIG. 8 shows the amino acid sequence of the variable region of the heavy (SEQ ID NO: 13) and light chain (SEQ ID NO: 14) and the nucleotide sequence encoding the variable region of the heavy (SEQ ID NO: 15) and light (SEQ ID NO: 16) chain of anti-MUC18 antibody, c3.22. [0025]
  • FIG. 9 shows the amino acid sequence of the variable region of the heavy (SEQ ID NO: 17) and light chain (SEQ ID NO: 18) and the nucleotide sequence encoding the variable region of the heavy (SEQ ID NO: 19) and light (SEQ ID NO: 20) chain of anti-MUC18 antibody, c3.27. [0026]
  • FIG. 10 shows the amino acid sequence of the variable region of the heavy (SEQ ID NO: 21) and light chain (SEQ ID NO: 22) and the nucleotide sequence encoding the variable region of the heavy (SEQ ID NO: 23) and light (SEQ ID NO: 24) chain of anti-MUC18 antibody, c3.45. [0027]
  • FIG. 11 shows the amino acid sequence of the variable region of the heavy (SEQ ID NO: 25) and light chain (SEQ ID NO: 26) and the nucleotide sequence encoding the variable region of the heavy (SEQ ID NO: 27) and light (SEQ ID NO: 28) chain of anti-MUC18 antibody, c3.65. [0028]
  • FIG. 12 shows the amino acid sequence of the variable region of the heavy (SEQ ID NO: 29) and light chain (SEQ ID NO: 30) and the nucleotide sequence encoding the variable region of the heavy (SEQ ID NO: 31) and light (SEQ ID NO: 32) chain of anti-MUC18 antibody, c6.1. [0029]
  • FIG. 13 shows the amino acid sequence of the variable region of the heavy (SEQ ID NO: 33) and light chain (SEQ ID NO: 34) and the nucleotide sequence encoding the variable region of the heavy (SEQ ID NO: 35) and light (SEQ ID NO: 36) chain of anti-MUC18 antibody, c6.9 (also independently cloned as c6.12). [0030]
  • FIG. 14 shows the amino acid sequence of the variable region of the heavy (SEQ ID NO: 37) and light chain (SEQ ID NO: 38) and the nucleotide sequence encoding the variable region of the heavy (SEQ ID NO: 39) and light (SEQ ID NO: 40) chain of anti-MUC18 antibody, c6.2. [0031]
  • FIG. 15 represents an alignment between the amino acid sequence of the variable region of the heavy chain of anti-MUC18 antibody, c3.10 (SEQ ID NO: 9), and the amino acid sequence encoding the V4-59 region (SEQ ID NO: 41) of the germline V[0032] H gene used. The consensus sequence (SEQ ID NO: 42) is shown below the alignment.
  • FIG. 16 represents an alignment between the amino acid sequence of the variable region of the light chain of anti-MUC18 antibody, c3.10 (SEQ ID NO: 10), and the amino acid sequence encoding the O2 region (SEQ ID NO: 43) of the germline V[0033] k gene used. The consensus sequence (SEQ ID NO: 44) is shown below the alignment.
  • FIG. 17 represents an alignment between the amino acid sequence of the variable region of the heavy chain of anti-MUC18 antibody, c3.22 (SEQ ID NO: 13), and the amino acid sequence encoding the V4-31 region (SEQ ID NO: 45) of the germline V[0034] H gene used. The consensus sequence (SEQ ID NO: 46) is shown below the alignment.
  • FIG. 18 represents an alignment between the amino acid sequence of the variable region of the light chain of anti-MUC18 antibody, c3.22 (SEQ ID NO: 14), and the amino acid sequence encoding the A30 region (SEQ ID NO: 47) of the germline V[0035] k gene used. The consensus sequence (SEQ ID NO: 48) is shown below the alignment.
  • FIG. 19 represents an alignment between the amino acid sequence of the variable region of the heavy chain of anti-MUC18 antibody, c3.27 (SEQ ID NO: 17), and the amino acid sequence encoding the V4-59 region (SEQ ID NO: 49) of the germline V[0036] H gene used. The consensus sequence (SEQ ID NO: 50) is shown below the alignment.
  • FIG. 20 represents an alignment between the amino acid sequence of the variable region of the light chain of anti-MUC18 antibody, c3.27 (SEQ ID NO: 18), and the amino acid sequence encoding the A30 region (SEQ ID NO: 51) of the germline V[0037] k gene used. The consensus sequence (SEQ ID NO: 52) is shown below the alignment.
  • FIG. 21 represents an alignment between the amino acid sequence of the variable region of the heavy chain of anti-MUC18 antibody, c3.45 (SEQ ID NO: 21), and the amino acid sequence encoding the V1-18 region (SEQ ID NO: 53) of the germline V[0038] H gene used. The consensus sequence (SEQ ID NO: 54) is shown below the alignment.
  • FIG. 22 represents an alignment between the amino acid sequence of the variable region of the light chain of anti-MUC18 antibody, c3.45 (SEQ ID NO: 22), and the amino acid sequence encoding the B3 region (SEQ ID NO: 55) of the germline V[0039] k gene used. The consensus sequence (SEQ ID NO: 56) is shown below the alignment.
  • FIG. 23 represents an alignment between the amino acid sequence of the variable region of the heavy chain of anti-MUC18 antibody, c3.65 (SEQ ID NO: 25), and the amino acid sequence encoding the 4-31 region (SEQ ID NO: 57) of the germline V[0040] H gene used. The consensus sequence (SEQ ID NO: 58) is shown below the alignment.
  • FIG. 24 represents an alignment between the amino acid sequence of the variable region of the light chain of anti-MUC18 antibody, c3.65 (SEQ ID NO: 26), and the amino acid sequence encoding the O8 region (SEQ ID NO: 59) of the germline V[0041] k gene used. The consensus sequence (SEQ ID NO: 60) is shown below the alignment.
  • FIG. 25 represents an alignment between the amino acid sequence of the variable region of the heavy chain of anti-MUC18 antibody, c6.1 (SEQ ID NO: 29), and the amino acid sequence encoding the V3-30 region (SEQ ID NO: 61) of the germline V[0042] H gene used. The consensus sequence (SEQ ID NO: 62) is shown below the alignment.
  • FIG. 26 represents an alignment between the amino acid sequence of the variable region of the light chain of anti-MUC1 8 antibody, c6.1 (SEQ ID NO: 30), and the amino acid sequence encoding the A20 region (SEQ ID NO: 63) of the germline V[0043] k gene used. The consensus sequence (SEQ ID NO: 64) is shown below the alignment.
  • FIG. 27 represents an alignment between the amino acid sequence of the variable region of the heavy chain of anti-MUC18 antibody, c6.12, and the amino acid sequence encoding the V4-31 region (SEQ ID NO: 65) of the germline V[0044] H gene used. The consensus sequence (SEQ ID NO: 66) is shown below the alignment.
  • FIG. 28 represents an alignment between the amino acid sequence of the variable region of the light chain of anti-MUC18 antibody, c6.12, and the amino acid sequence encoding the L2 region (SEQ ID NO: 67) of the germline V[0045] k gene used. The consensus sequence (SEQ ID NO: 68) is shown below the alignment.
  • FIG. 29 represents an alignment between the amino acid sequence of the variable region of the heavy chain of anti-MUC18 antibody, c6.2 (SEQ ID NO: 37), and the amino acid sequence encoding the V4-59 region (SEQ ID NO: 69) of the germline V[0046] H gene used. The consensus sequence (SEQ ID NO: 70) is shown below the alignment.
  • FIG. 30 represents an alignment between the amino acid sequence of the variable region of the light chain of anti-MUC18 antibody, c6.2 (SEQ ID NO: 38), and the amino acid sequence encoding the A19 region (SEQ ID NO: 71) of the germline V[0047] k gene used. The consensus sequence (SEQ ID NO: 72) is shown below the alignment.
  • FIG. 31 represents an alignment between the amino acid sequence of the variable region of the heavy chain of anti-MUC18 antibody, c6.9 (SEQ ID NO: 33), and the amino acid sequence encoding the V4-31 region (SEQ ID NO: 73) of the germline V[0048] H gene used. The consensus sequence (SEQ ID NO: 74) is shown below the alignment.
  • FIG. 32 represents an alignment between the amino acid sequence of the variable region of the light chain of anti-MUC1 8 antibody, c6.9 (SEQ ID NO: 34), and the amino acid sequence encoding the L2 region (SEQ ID NO: 75) of the germline V[0049] k gene used. The consensus sequence (SEQ ID NO: 76) is shown below the alignment.
  • FIG. 33 represents an alignment between the amino acid sequence of the variable region of the heavy chain of anti-MUC18 antibody, c6.11.3 (SEQ ID NO: 5), and the amino acid sequence encoding the V4-31 region (SEQ ID NO: 77) of the germline V[0050] H gene used. The consensus sequence (SEQ ID NO: 78) is shown below the alignment.
  • FIG. 34 represents an alignment between the amino acid sequence of the variable region of the light chain of anti-MUC18 antibody, c6.11.3 (SEQ ID NO: 6), and the amino acid sequence encoding the L2 region (SEQ ID NO: 79) of the germline V[0051] k gene used. The consensus sequence (SEQ ID NO: 80) is shown below the alignment.
  • FIG. 35 represents a summary of the sequences comprising the V, D, J and resulting N recombination regions of the MUC18 antibody clones identified in the present invention.[0052]
  • DETAILED DESCRIPTION
  • A. Definitions [0053]
  • Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. See, e.g. Singleton et al, [0054] Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, N.Y. 1994); Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Springs Harbor Press (Cold Springs Harbor, N.Y. 1989). For purposes of the present invention, the following terms are defined below.
  • As used herein, the term “MUC18” refers to the cell surface polypeptide that is a member of the immunoglobulin superfamily with sequence similarity to a number of cell adhesion molecules. MUC18 is also known in the art as “MCAM”, “Mel-CAM”, or “CD146”. For purposes of this invention, from here on, “MUC18” is used to represent “MCAM”, “Mel-CAM”, and “CD146”. [0055]
  • The term “c3.19.1” as used herein refers to a fully human IgG[0056] 2 monoclonal antibody directed against the MUC18 antigen. The antibody was generated using XenoMouse® technology (Abgenix, Inc. Fremont, Calif.) and consists of human gamma 2 heavy and kappa light chains with a molecular weight of approximately 150 kDa. C3.19.1 is also herein referred to as ABX-MA1 and binds specifically to human MUC18 with high affinity (Kd=6×10−10 M).
  • The terms “biological activity” and “biologically active” with regard to MUC18 refer to the ability of a molecule to specifically affect tumor progression. Preferred biological activities include the ability to induce growth and metastasis of tumor cells. The effect of [0057] MUC 18 on metastasis of tumor cells may include the ability to induce MMP-2 activation and/or cell migration. A further preferred biological activity is the ability to induce animal death due to tumor burden.
  • The terms “biological activity” and “biologically active” with regard to anti-MUC18 antibodies refer to the ability of a molecule to inhibit the growth and metastasis of tumor cells often associated with MUC18 expression. Further, another metahcnism of action or activity for anti-MUC18 antibodies include the ability to stimulate MUC18 internalization and a consequent loss of cell surface expression. Specifically, the tumor cells include tumor cells in patients with tumors. [0058]
  • “Polymerase chain reaction” or “PCR” refers to a procedure or technique in which minute amounts of a specific piece of nucleic acid, RNA and/or DNA, are amplified as described in U.S. Pat. No. 4,683,195 issued Jul. 28, 1987. Generally, sequence information from the ends of the region of interest or beyond needs to be available, such that oligonucleotide primers can be designed; these primers will be identical or similar in sequence to opposite strands of the template to be amplified. The 5′ terminal nucleotides of the two primers can coincide with the ends of the amplified material. PCR can be used to amplify specific RNA sequences, specific DNA sequences from total genomic DNA, and cDNA transcribed from total cellular RNA, bacteriophage or plasmid sequences, etc. See generally Mullis et al., [0059] Cold Spring Harbor Symp. Quant. Biol. 51:263 (1987); Erlich, ed., PCR Technology (Stockton Pres, NY, 1989). As used herein, PCR is considered to be one, but not the only, example of a nucleic acid polymerase reaction method for amplifying a nucleic acid test sample comprising the use of a known nucleic acid as a primer and a nucleic acid polymerase to amplify or generate a specific piece of nucleic acid.
  • “Tumor”, as used herein, refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues. [0060]
  • The terms “cancer” and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer include, but are not limited to, melanoma, carcinoma, lymphoma, blastoma, sarcoma, and leukemia or lymphoid malignancies. More particular examples of such cancers include squamous cell cancer (e.g. epithelial squamous cell cancer), lung cancer including small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung and squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer including gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, rectal cancer, colorectal cancer, endometrial cancer or uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, anal carcinoma, penile carcinoma, as well as head and neck cancer. [0061]
  • “Antibodies” (Abs) and “immunoglobulins” (Igs) are glycoproteins having the same structural characteristics. While antibodies exhibit binding specificity to a specific antigen, immunoglobulins include both antibodies and other antibody-like molecules which lack antigen specificity. Polypeptides of the latter kind are, for example, produced at low levels by the lymph system and at increased levels by myelomas. [0062]
  • “Native antibodies and immunoglobulins” are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies between the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (VH) followed by a number of constant domains. Each light chain has a variable domain at one end (VL) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light chain variable domain is aligned with the variable domain of the heavy chain. Particular amino acid residues are believed to form an interface between the light- and heavy-chain variable domains (Chothia et al. [0063] J. Mol. Biol. 186:651 (1985; Novotny and Haber, Proc. Natl. Acad. Sci. U.S.A. 82:4592 (1985); Chothia et al., Nature 342:877-883 (1989)).
  • The term “antibody” herein is used in the broadest sense and specifically covers intact monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g. bispecific antibodies) formed from at least two intact antibodies, and antibody fragments, so long as they exhibit the desired biological activity. [0064]
  • The “light chains” of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called κ and λ, based on the amino acid sequences of their constant domains. [0065]
  • Depending on the amino acid sequence of the constant domain of their heavy chains, intact antibodies can be assigned to different “classes”. There are five major classes of intact antibodies: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into “subclasses” (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA, and IgA2. The heavy-chain constant domains that correspond to the different classes of antibodies are called α, δ, ε, γ, and μ, respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known. [0066]
  • The term “antibody” includes all classes and subclasses of intact immunoglobulins. The term “antibody” also covers antibody fragments. The term “antibody” specifically covers monoclonal antibodies, including antibody fragment clones. [0067]
  • The term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to polyclonal antibody preparations which include different antibodies directed against different determinants (epitopes), each monoclonal antibody id directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they may be synthesized uncontaminated by other antibodies. The modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler et al., [0068] Nature, 256:495 (1975), or may be made by recombinant DNA methods (see, e.g., U.S. Pat. No. 4,816,567). The “monoclonal antibodies” may also be isolated from phage antibody libraries using the techniques described in Clackson et al, Nature, 352:624-628 (1991) and Marks et al., J. Mol. Biol., 222:581-597 (1991), for example.
  • An “isolated” antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In preferred embodiments, the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step. [0069]
  • By “neutralizing antibody” is meant an antibody molecule which is able to eliminate or significantly reduce an effector function of a target antigen to which is binds. Accordingly, a “neutralizing” anti-MUC18 antibody is capable of eliminating or significantly reducing an effector function which may include MUC18 dependent regulation of cell adhesion, migration or MMP activation. The antibody can affect the funtion of MUC18 by stimulating the internalization and degradation of the molecule thus effectively removing cell surface expression of the antigen. [0070]
  • The term “variable” refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called complementarity-determining regions (CDRs) or hypervariable regions both in the light-chain and heavy-chain variable domains. The more highly conserved portions of variable domains are called the framework (FR). The variable domains of native heavy and light chains each comprise four FR regions, largely adopting a β-sheet configuration, connected by three CDRs, which form loops connecting, and in some cases forming part of, the β-sheet structure. The CDRs in each chain are held together in close proximity by the FR regions and, with the CDRs from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al (1991). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody-dependent cellular toxicity. [0071]
  • “Fv” is the minimum antibody fragment which contains a complete antigen-recognition and binding site. In a two-chain Fv species, this region consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association. In a single-chain Fv species, one heavy- and one light-chain variable domain can be covalently linked by a flexible peptide linker such that the light and heavy chains can associate in a “dimeric” structure analogous to that in a two-chain Fv species. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site. [0072]
  • The term “hypervariable region” when used herein refers to the amino acid residues of an antibody which are responsible for antigen-binding. The hypervariable region generally comprises amino acid residues from a “complementarity determining region” or “CDR” (e.g. residues 24-34 (L1), 50-62 (L2), and 89-97 (L3) in the light chain variable domain and 31-55 (H1), 50-65 (H2) and 95-102 (H3) in the heavy chain variable domain; Kabat et al., [0073] Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)) and/or those residues from a “hypervariable loop” (e.g. residues 26-32 (L1), 50-52 (L2) and 91-96 (L3) in the light chain variable domain and 26-32 ((H1), 53-55 (H2) and 96-101 (H3) in the heavy chain variable domain; Chothia and Lesk J. Mol. Biol 196:901-917 (1987)). “Framework Region” or “FR” residues are those variable domain residues other than the hypervariable region residues as herein defined.
  • The term “complementarity determining regions” or “CDRs” when used herein refers to parts of immunological receptors that make contact with a specific ligand and determine its specificity. The CDRs of immunological receptors are the most variable part of the receptor protein, giving receptors their diversity, and are carried on six loops at the distal end of the receptor's variable domains, three loops coming from each of the two variable domains of the receptor. [0074]
  • The term “epitope” is used to refer to binding sites for (monoclonal or polyclonal) antibodies on protein antigens. [0075]
  • The term amino acid or amino acid residue, as used herein , refers to naturally occurring L amino acids or to D amino acids as described further below with respect to variants. The commonly used on- and three-letter abbreviations for amino acids are used herein (Bruce Alberts et al., [0076] Molecular Biology of the Cell, Garland Publishing, Inc., New York (3d ed. 1994)).
  • The term “disease state” refers to a physiological state of a cell or of a whole mammal in which an interruption, cessation, or disorder of cellular or body functions, systems, or organs has occurred. [0077]
  • The term “treat” or “treatment” refer to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) an undesired physiological change or disorder, such as the development or spread of cancer. For purposes of this invention, beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. “Treatment” can also mean prolonging survival as compared to expected survival if not receiving treatment. Those in need of treatment include those already with the condition or disorder as well as those prone to have the condition or disorder or those in which the condition or disorder is to be prevented. [0078]
  • A “disorder” is any condition that would benefit from treatment as described below. This includes chronic and acute disorders or disease including those pathological conditions which predispose the mammal to the disorder in question. Non-limiting examples of disorders to be treated herein include benign and malignant tumors, leukemias and lymphoid malignancies, in particular prostate, renal, ovarian, stomach, endometrial, salivary gland, kidney, colon, thyroid, pancreatic, prostate or bladder cancer, and malignant tumors, such as cervical carcinomas and cervical intraepithelial squamous and glandular neoplasia, renal cell carcinoma (RCC), esophageal tumors, and carcinoma-derived cell lines. A preferred disorder to be treated in accordance with the present invention is renal and prostate cancer. An even further preferred disorder to be treated is melanoma [0079]
  • “Mammal” for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, etc. Preferably, the mammal is human. [0080]
  • “Lipofection” refers to a practical nonviral method for introduction of genetic information into target tissues. Nonviral methods include chemical or physical methods. Lipofection uses an electrostatically bonded complex of positively charged lipids and negatively charged DNA as a vector which fuses with the cell membrane and delivers DNA into the cytoplasm. Lipofection differs from viral methods in that the efficiency of transfer of genetic information by lipofection is lower than by viral vectors and that the expression of the gene is transient. Alternatively, the complex of lipid and DNA is more stable and easier to handle when compared to viral vectors. [0081]
  • B. Methods for Carrying Out an Embodiment of the Invention [0082]
  • 1. Generation of Anti-MUC18 Antibodies [0083]
  • A description follows as to exemplary techniques for the production of the antibodies used in accordance with the present invention. [0084]
  • (a) Monoclonal Antibodies [0085]
  • Monoclonal Antibodies may be made using the hybridoma method first described by Kohler et al., [0086] Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Pat. No. 4,816,567).
  • In the hybridoma method, a mouse or other appropriate host animal, such as a hamster or macaque monkey, is immunized as herein above described to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization. Alternatively, cells expressing the antigen of interest may be used for immunization. Further alternatively, lymphocytes may be immunized in vitro. Animals are immunized against the immunogenic conjugates or derivatives by combing 1 mg or 1 μg of conjugate (for rabbits or mice, respectively) with 3 volumes of Freud's complete adjuvant and injecting the solution intradermally at multiple sites. One month later, the animals are boosted with ⅕ to {fraction (1/0)} the original amount of conjugate in Freud's complete adjuvant by subcutaneous injection at multiple sites. 7 to 14 days later the animals are bled and the serum is assayed for anti-MUC18 antibody titer. Antibodies are boosted until the titer plateaus. Preferably, the animal is boosted with the conjugate of the same MUC18 antigen, but conjugated to a different protein and/or through a different cross-linking agent. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are used to enhance the immune response. [0087]
  • Lymphocytes or more preferably, lymphocytes enriched for B cells isolated from such immunized animals are then fused with myeloma cells by an electrocell fusion process or by using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, [0088] Monoclonal Antibodies: Principles and Practice, pp. 59-109, [Academic Press, 1996]).
  • The hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells. For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells. [0089]
  • Preferred myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. Among these, preferred mycloma cell lines are murine myeloma lines, such as those derived from MOP-21 and MC.-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, Calif. USA, and SP-2 or X63-Ag8-653 cells available from the American Type Culture Collection, Rockville, Md. USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, [0090] J. Immunol. 133: 3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63, Marcel Dekker, Inc., New York, [1987]).
  • Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunosorbent assay (ELISA). [0091]
  • The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson et al., [0092] Anal. Biochem. 107: 220 (1980).
  • After hybridoma cells are identified that produce antibodies of the desired specificity, affinity, and/or activity, the cells may be subcloned by limiting dilution procedures and grown by standard methods (Goding, [0093] Monoclonal Antibodies: Principles and Practice, pp.59-103, Academic Press, 1996). Suitable culture media for this purpose include, for example, DMEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown in vivo as ascites tumors in an animal.
  • The monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography. [0094]
  • DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the monoclonal antibodies). The hybridoma cells serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as [0095] E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also may be modified, for example, by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. In that manner, “chimeric” or “hybrid” antibodies are prepared that have the binding specificity of an anti-MUC18 monoclonal antibody herein.
  • Typically such non-immunoglobulin polypeptides are substituted for the constant domains of an antibody of the invention, or they are substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an MUC18 and another antigen-combining site having specificity for a different antigen. [0096]
  • Chimeric or hybrid antibodies also may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins may be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate. [0097]
  • (b) Human Antibodies [0098]
  • Attempts to use the same technology for generating human mAbs have been hampered by the lack of a suitable human myeloma cell line. The best results were obtained using heteromyelomas (mouse×human hybrid myelomas) as fusion partners (Kozbor, [0099] J. Immunol. 133: 3001 (1984); Brodeur, et al., Monoclonal Antibody Production Techniques and Applications, pp.51-63, Marcel Dekker, Inc., New York, 1987). Alternatively, human antibody-secreting cells can be immortalized by infection with the Epstein-Barr virus (EBV). However, EBV-infected cells are difficult to clone and usually produce only relatively low yields of immunoglobulin (James and Bell, J. Immunol. Methods 100: 5-40 [1987]). In the future, the immortalization of human B cells might possibly be achieved by introducing a defined combination of transforming genes. Such a possibility is highlighted by a recent demonstration that the expression of the telomerase catalytic subunit together with the SV40 large T oncoprotein and an oncogenic allele of H-ras resulted in the tumorigenic conversion of normal human epithelial and fibroblast cells (Hahn et al., Nature 400: 464-468 [1999]).
  • It is now possible to produce transgenic animals (e.g. mice) that are capable, upon immunization, of producing a repertoire of human antibodies in the absence of endogenous immunoglobulin production (Jakobovits et al., [0100] Nature 362: 255-258 [1993]; Lonberg and Huszar, Int. Rev. Immunol. 13: 65-93 [1995]; Fishwild et al., Nat. Biotechnol. 14: 845-851 [1996]; Mendez et al., Nat. Genet. 15: 146-156 [1997]; Green, J. Immunol. Methods 231: 11-23 [1999]; Tomizuka et al., Proc. Natl. Acad. Sci. USA 97: 722-727 [2000]; reviewed in Little et al., Immunol. Today 21: 364-370 [2000]). For example, it has been described that the homozygous deletion of the antibody heavy chain joining region (JH) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production (Jakobovits et al., Proc. Natl. Acad. Sci. USA 90: 2551-2555 [1993]). Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice results in the production of human antibodies upon antigen challenge (Jakobovits et al., Nature 362: 255-258 [1993]).
  • Mendez et al. ([0101] Nature Genetics 15: 146-156 [1997]) have generated a line of transgenic mice designated as “XenoMouse® II” that, when challenged with an antigen, generates high affinity fully human antibodies. This was achieved by germ-line integration of megabase human heavy chain and light chain loci into mice with deletion into endogenous JH segment as described above. The XenoMouse® II harbors 1,020 kb of human heavy chain locus containing approximately 66 VH genes, complete DH and JH regions and three different constant regions (μ, δ and γ), and also harbors 800 kb of human κ locus containing 32 Vκ genes, Jκ segments and Cκ genes. The antibodies produced in these mice closely resemble that seen in humans in all respects, including gene rearrangement, assembly, and repertoire. The human antibodies are preferentially expressed over endogenous antibodies due to deletion in endogenous JH segment that prevents gene rearrangement in the murine locus.
  • Techniques for generating antibodies using Abgenix's XenoMouse® technology include injection of a particular antigen of interest into such mice. Sera from such immunized animals may be screened for antibody-reactivity against the initial antigen. Lymphocytes may be isolated from lymph nodes or spleen cells and may further be selected for B cells by selecting for CD138-negative and CD19+ cells. The B cell cultures (BCCs) may be either fused to myeloma cells to generate hybridomas as detailed above or screened further for reactivity against the initial antigen. Such screening includes ELISA. [0102]
  • Transfection refers to the taking up of an expression vector by a host cell whether or not any coding sequences are in fact expressed. Numerous methods of transfection are known to the ordinarily skilled artisan, for example, CaPO[0103] 4 precipitation and electroporation. Successful transfection is generally recognized when any indication of the operation of this vector occurs within the host cell.
  • In a preferred embodiment, the antibodies of the present invention comprise an anti-human MUC18 monoclonal antibody heavy chain or a fragment thereof, comprising the following CDR's (as defined by Kabat et al., [0104] Sequences of Proteins of Immunological Interest, Fifth Edition, NIH Publication 91-3242, Bethesda Md. (1991), vols 1-3): (a) CDR1, (b) CDR2 and (c) CDR3.
  • The heavy chain of the antibodies of one embodiment of the present invention comprise of the following sequences: [0105]
  • SEQ ID NO: 1, SEQ ID NO: 5, SEQ ID NO: 9, SEQ ID NO: 13, SEQ ID NO: 17, SEQ ID NO: 21, SEQ ID NO: 25, SEQ ID NO: 29, SEQ ID NO: 33, OR SEQ ID NO: 37. [0106]
  • In yet another embodiment, the invention provides an anti-human MUC18 monoclonal antibody light chain or a fragment thereof, comprising the following CDRs: (a) CDR1, (b) CDR2 and (c) CDR3. The light chain of the antibodies in one embodiment of the present invention comprise of the following sequences: [0107]
  • SEQ ID NO: 2, SEQ ID NO: 6, SEQ ID NO: 10; SEQ ID NO: 14, SEQ ID NO: 18; SEQ ID NO: 22; SEQ ID NO: 26; SEQ ID NO: 30; SEQ ID NO: 34; or SEQ ID NO: 38. [0108]
  • In one aspect, the present invention includes anti-MUC18 antibodies such as c3.19.1 and c6.11.3. The heavy chain amino acid and nucleotide sequences of c3.19.1 are encoded by SEQ ID NO: 1 and 3, respectively, and the heavy chain amino acid and nucleotide sequence of c6.11.3 are encoded by 5 and 7, respectively. The light chain amino acid and nucleotide sequences of c3.1.9.1. are encoded by SEQ ID NO: 2 and 4, respectively, and the light chain amino acid and nucleotide sequences of c6.11.3 are encoded by 6 and 8, respectively. [0109]
  • 2. Screening for Antibodies with the Desired Properties [0110]
  • Techniques for generating antibodies have been described above. One may further select antibodies with certain biological characteristics, as desired. [0111]
  • In one embodiment of the invention, melanoma cells were used for analysis of anti-MUC18 antibody function. The melanoma cells were derived from a number of sources and possessed a variety of characteristics that could potentially contribute to the metastatic phenotype. Their phenotypes are presented in Table 1. [0112]
    TABLE 1
    Properties of Melanoma Cells Used for Studies
    Metastatic MUC18
    Cell Line Origin Capacity Expression
    A375-SM Selection fromanimal High High
    model of metastasis
    SB-2 Cutaneous melanoma Non-metastatic Negative
    TXM-13 Brain metastasis High High
    WM-2664 Metastasis from High Medium
    cutaneous melanoma
  • (a) Binding to MUC18 Antigen [0113]
  • For example, to identify anti-MUC18 antibodies with high affinity for human MUC18, kinetic measurements and binding affinity of the anti-MUC18 antibodies were obtained from Biacore experiments. The Biacore experiments measured the affinity of MUC18 antibodies captured on a protein A surface for labeled MUC18 antigen and are further described in the examples below. Anti-MUC18 antibodies with a Kd of 6×10[0114] −10 M were considered high affinity anti-MUC18 antibodies.
  • In a further example, to determine whether anti-MUC18 antibodies of the present invention were able to recognize denatured MUC18 in human melanoma cells, the antibodies were used for immunoblots of metastatic melanoma cells and non-metastatic melanoma cells (control). Those antibodies which were able to detect MUC18 in metastatic melanoma cells were selected as anti-MUC18 antibodies of interest. [0115]
  • Further, to identify anti-MUC18 antibodies that recognized the native form of the MUC18 protein on the surface of cells, flow cytometry analysis was performed. According to this assay, cells expressing the antigen of interest were detached from cell culture plates, incubated with either an isotype-matched control human antibody or the anti-MUC18 antibody for 20 minutes at 4° C. After washing, all samples were incubated with phycoerythrin-conjugated F(ab′)[0116] 2 fragments of Goat Anti-Human IgG (H+L) (Jackson) for 20 minutes at 4° C. in the dark. After several washings, the cells were resuspended in FACS buffer and analyzed by cytofluorometry. Those antibodies which shift the fluorescence intensity when compared to control antibodies were selected as anti-MUC18 antibodies of interest.
  • (b) Inhibition of Metastasis [0117]
  • To select for metastasis inhibitory anti-MUC18 antibodies, antibodies were screened for the ability to inhibit metastasis in animal models. Exponentially growing A375SM cells were harvested on [0118] Day 0, resuspended and injected into the lateral tail veins of female nude mice. The animals were treated one day prior to tumor cell injection and once a week thereafter with a specific dose of anti-MUC18 antibody. All animals were sacrificed after 6 weeks at which time the lungs were removed and the tumor nodules were counted with the aid of a dissecting microscope. Those antibodies which inhibited melanoma metastasis into the lung in a dose-dependent manner were selected as metastasis inhibitory antibodies.
  • (c) Promotion of Animal Survival [0119]
  • To select for antibodies which increase the survival of animals bearing metastatic melanoma tumors, antibodies were screened for the ability to increase the survival of mice bearing tumors. WM-2664 human melanoma tumor cells in their exponential phase were harvested, resuspended in suitable buffer, and injected into the lateral tail vein of male BALB/c nude mice. After administration of anti-MUC18 antibody or control antibody intraperitoneally at 1 mg or 0.2 mg per mouse on a weekly basis, mice were monitored daily for survival. Those antibodies which demonstrated a dose dependent increase in survival of the mice were selected as survival prolonging antibodies. [0120]
  • 3. Therapeutic Compositions and Mode of Administration of Anti-MUC18 Antibodies [0121]
  • Therapeutic formulations of the anti-MUC18 antibodies of the invention are prepared for storage by mixing antibody having the desired degree of purity with optional physiologically acceptable carriers, excipients, or stabilizers ([0122] Remington: The Science and Practice of Pharmacy, 19th Edition, Alfonso, R., ed, Mack Publishing Co. (Easton, Pa.: 1995)), in the form of lyophilized cake or aqueous solutions. Acceptable carriers, excipients or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as Tween, Pluronics or polyethylene glycol (PEG).
  • The anti-MUC18 antibody to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes, prior to or following lyophilization and reconstitution. The anti-MUC18 antibody ordinarily will be stored in lyophilized form or in solution. [0123]
  • Therapeutic anti-MUC18 antibody compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle. [0124]
  • The route of anti-MUC18 antibody administration is in accord with known methods, e.g. injection or infusion by intravenous, intraperitoneal, intracerebral, subcutaneous, intramuscular, intraocular, intraarterial, intracerebrospinal, or intralesional routes, or by sustained release systems as noted below. Preferably the antibody is given systemically. [0125]
  • Suitable examples of sustained-release preparations include semipermeable polymer matrices in the form of shaped articles, e.g. films, or microcapsules. Sustained release matrices include polyesters, hydrogels, polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman et al., [0126] Biopolymers, 22: 547-556 (1983)), poly (2-hydroxyethyl-methacrylate) (Langer et al., J. Biomed. Mater. Res., 15: 167-277 (1981) and Langer, Chem. Tech., 12: 98-105 (1982)), ethylene vinyl acetate (Langer et al., supra) or poly-D-(−)-3-hydroxybutyric acid (EP 133,988). Sustained-release anti-MUC18 antibody compositions may also include liposomally entrapped antibody. Liposomes containing antibody are prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA, 77: 4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese patent application 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily the liposomes are of the small (about 200-800 Angstroms) unilamelar type in which the lipid content is greater than about 30 mol. % cholesterol, the selected proportion being adjusted for the optimal antibody therapy.
  • Anti-MUC18 antibody can also be administered by inhalation. Commercially available nebulizers for liquid formulations, including jet nebulizers and ultrasonic nebulizers are useful for administration. Liquid formulations can be directly nebulized and lyophilized powder can be nebulized after reconstitution. Alternatively, anti-MUC18 antibody can be aerosolized using a fluorocarbon formulation and a metered dose inhaler, or inhaled as a lyophilized and milled powder. [0127]
  • An “effective amount” of anti-MUC18 antibody to be employed therapeutically will depend, for example, upon the therapeutic objectives, the route of administration, the type of anti-MUC18 antibody employed, and the condition of the patient. Accordingly, it will be necessary for the therapist to titer the dosage and modify the route of administration as required to obtain the optimal therapeutic effect. Typically, the clinician will administer the anti-MUC18 antibody until a dosage is reached that achieves the desired effect. The progress of this therapy is easily monitored by conventional assays. [0128]
  • Antibodies specific to tumor antigens such as anti-MUC18 are useful in targeting of tumor cells for destruction. For example, ricin, a cellular toxin derived from plants, is finding unique applications, especially in the fight against tumors and cancer. Implications are being discovered as to the use of ricin in the treatment of tumors. Ricin has been suggested to have a greater affinity for cancerous cells than normal cells (Montfort et al. 1987) and has been often termed as a “magic bullet” for targeting malignant tumors. Toxins such as ricin remain active even if the B chain of the toxin is removed. Accordingly, if the solitary A chain is coupled to a tumor-specific antibody, such as anti-MUC18 antibody, the toxin has a specific affinity for cancerous cells over normal cells (Taylorson 1996). For example, ricin immunotoxin has been developed to target the CD5 T-cell antigen often found in T-cell and B-cell malignancies (Kreitman et al. 1998). Further, the linking of such anti-MUC18 antibodies to radioisotopes provides advantages to tumor treatments. Unlike chemotherapy and other forms of cancer treatment, radioimmunotherapy or the administration of a radioisotope-antibody combination directly targets the cancer cells with minimal damage to surrounding normal, healthy tissue. With this “magic bullet,” the patient can be treated with much smaller quantities of radioisotopes than other forms of treatment available today. Most commonly antibodies are conjugated with potent chemotherapeutic agents such as maytansine, geldanamycin or calichaemycin for delivery to tumors (Frankel et al., [0129] Cancer Biotherapy and Radiopharmaceuticals, 15:459-476 (2000); Knoll et al., Cancer Res., 60:6089-6094 (2000); Liu et al., Proc. Natl. Acad. Sci. USA, 93:8618-8623 (1996); Mandler et al., J. Natl. Cancer Inst., 92:1573-1581 (2000); and Ota et al., Int. J. Clin. Oncol., 4:236-240 (1999). These drugs are too toxic to be administered on their own. When conjugated to a therapeutic antibody such as MUC18, their biological activity can be directed specifically to the tumor cells. Accordingly, antibodies, such as MUC18 antibodies, can be modified to act as immunotoxins utilizing techniques that are well known in the art. See e.g., Vitetta et al., Immunol. Today, 14:252 (1993) and U.S. Pat. No. 5,194,594. In connection with the preparation of radiolabeled antibodies, such modified antibodies can also be readily prepared utilizing techniques that are well known in the art. See e.g., Junghans et al., Cancer Chemotherapy and Biotherapy, pgs. 655-686 (second edition, Chafner and Longo, eds., Lippincott Raven (1996)) and U.S. Pat. Nos. 4,681,581, 4,735,210, 5,101,827, 5,102,990, 5,648,471, and 5,697,901. The immunotoxins and radiolabeled molecules would be likely to kill cells expressing MUC18, and particularly those cells in which the antibodies of the invention are effective.
  • The patients to be treated with the anti-MUC18 antibody of the invention include patients with tumors, preferably melanomaand/or prostate or renal cancer. Other tumors include esophageal, pancreatic, colorectal tumors, carcinomas, such as renal cell carcinoma (RCC), cervical carcinomas and cervical intraepithelial squamous and glandular neoplasia, and cancers, such as colorectal cancer, breast cancer, lung cancer, and other malignancies. Patients are candidates for therapy in accord with this invention until such point as no healthy tissue remains to be protected from tumor progression. It is desirable to administer an anti-MUC18 antibody as early as possible in the development of the tumor, and to continue treatment for as long as is necessary. [0130]
  • In the treatment and prevention of tumor-associated disorder by an anti-MUC18 antibody, the antibody composition will be formulated, dosed, and administered in a fashion consistent with good medical practice. Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the antibody, the particular type of antibody, the method of administration, the scheduling of administration, and other factors known to medical practitioners. The “therapeutically effective amount” of antibody to be administered will be governed by such considerations, and is the minimum amount necessary to prevent, ameliorate, or treat the disorder, including treating chronic autoimmune conditions and immunosuppression maintenance in transplant recipients. Such amount is preferably below the amount that is toxic to the host or renders the host significantly more susceptible to infections. [0131]
  • As a general proposition, the initial pharmaceutically effective amount of the antibody administered parenterally will be in the range of about 0.1 to 50 mg/kg of patient body weight per day, with the typical initial range of antibody used being 0.3 to 20 mg/kg/day, more preferably 0.3 to 15 mg/kg/day. The desired dosage can be delivered by a single bolus administration, by multiple bolus administrations, or by continuous infusion administration of antibody, depending on the pattern of pharmacokinetic decay that the practitioner wishes to achieve. [0132]
  • As noted above, however, these suggested amounts of antibody are subject to a great deal of therapeutic discretion. The key factor in selecting an appropriate dose and scheduling is the result obtained, as indicated above. For example, the antibody may be optionally formulated with one or more agents currently used to prevent or treat tumors such as standard- or high-dose chemotherapy and hematopoietic stem-cell transplantation. The effective amount of such other agents depends on the amount of anti-MUC18 antibody present in the formulation, the type of disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as used hereinbefore or about from 1 to 99% of the heretofore employed dosages. [0133]
  • Further details of the invention can be found in the following example, which further defines the scope of the invention. All references cited throughout the specification, and the references cited therein, are hereby expressly incorporated by reference in their entirety. [0134]
  • EXAMPLE 1
  • Preparation of MUC18 Antigens [0135]
  • In the present study, recombinant MUC18 proteins were prepared. The extracellular domain (ECD) (aa#1-559) of human MUC18 was cloned from SK-MEL-28 cells (ATCC HTB-72) by Reverse Transcriptase-PCR (RT-PCR) with primers that incorporate an EcoRI site in the forward primer and an NheI site in the reverse primer based on the published NCBI sequence (Accession # NM[0136] 006500).
  • The primers used for the amplification of the ECD of MUC18 were as follows: [0137]
    Forward primer: 5′-ATATTACGAATTCACTTGCGTCTCGCCCTCCGG-3′ (SEQ ID NO: 10)
    Reverse primer: 5′-CAGCTTAGAGCTAGCCGGCTCTCCGGCTCCGGCA-3′ (SEQ ID NO: 11)
  • MUC18 cDNA was amplified (Gene Amp XL PCR kit, Perkin Elmer) from RNA (RNAzol,Tel Test, INC) prepared from SK-MEL-28 cells (ATCC HTB-72). For construction of a V5-HIS or HuIgG2 fusion protein, the 1700 bp PCR product encoding amino acids 1-559 was digested with EcoRI and NheI and ligated into CD147HuIgG2DHFR vector (ABGX) digested with EcoRI and NheI or pcDNA3.1V5HISB vector (Invitrogen) digested with EcoRI and XbaI. The resulting plasmids were transfected in 293 cells by CaPO[0138] 4 method, and then, the fusion protein was purified from harvested conditioned media via ProteinA chromatography (MUC18-HuIgG2) or Ni—NTA chromatography (MUC18-V5HIS).
  • The MUC18 ECD contained 4 amino acid differences from the published NCBI sequence: #383 D>G,#390 P>L,#424 K>N, and #425 L>V. [0139]
  • EXAMPLE 2
  • Anti-MUC18 Antibodies [0140]
  • A. Antibody Generation [0141]
  • 1. Immunization and Selection of Animals for Harvesting by ELISA [0142]
  • Monoclonal antibody against MUC18 was developed by sequentially immunizing XenoMouse mice (XenoMouse G2, Abgenix, Inc. Fremont, Calif.). The initial immunization was with 5×10[0143] 6 SK-MEL-28 cells admixed 1:1 v/v with Complete Freund's Adjuvant (CFA). Subsequent boosts were made first with 5×106 SK-MEL-28 cells admixed 1:1 v/v with Incomplete Freund's Adjuvant (IFA), followed by four injections with 5 μg soluble MUC18-human IgG2 Fe fusion protein admixed 1:1 v/v with IFA, and then a final boost of 10 μg soluble MUC18-human IgG2 Fe fusion protein without adjuvant. In particular, each mouse was immunized either at the base of the tail by intraperitoneal injection or via hind footpad injection with MUC18 recombinant antigen followed by the generation of a large number of candidate mAbs, and the screening of antibodies for binding and activity.
  • The mice were initially injected with MUC18 antigen at a concentration of 1-5 μg/mouse. Each mouse was further immunized into each [0144] hind footpad 6 additional times (at 3-4 day intervals) with soluble antigen, specifically 5 μg of soluble MUC18-human IgG2 Fc fusion protein in DPBS admixed 1:1 v/v with IFA then a final boost of 10 μg soluble MUC18-human IgG2 Fe fusion protein in DPBS without adjuvant. The animals were immunized on days 0, 4, 7, 10, 14, 17 and 20 and four days later on day 4, fusions were performed. For the fusions, the mice were euthanized, and inguinal and popliteal lymph nodes were recovered.
  • Lymphocytes from the immunized XenoMouse mice were released by mechanical disruption of the lymph nodes using a tissue grinder and then depleted of T cells by CD90 negative selection. The fusion was performed by mixing washed enriched B cells and non-secretory myeloma P2X63Ag8.653 cells purchased from ATCC (Cat. #CRL 1580) (Kearney et al., [0145] J. Immunol., 123:1548-1550 (1979)) at a ratio of 1:1. The cell mixture was gently subjected to centrifugation at 800 g. After complete removal of the supernatant, the cells were treated with 2-4 mL of Pronase solution (CalBiochem, Cat. #53702; 0.5 mg/mL in PBS) for no more than 2 minutes. Then 3-5 ml of FBS was added to stop the enzyme activity, and the suspension was adjusted to 40 mL total volume using electro cell fusion solution, ECFS (0.3M Sucrose, Sigma, Cat#S7903; 0.1 mM Magnesium Acetate, Sigma, Cat. #M2545; 0.1 mM Calcium Acetate, Sigma, Cat#C4705). The supernatant was removed after centrifugation and the cells were resuspended in 40 mL ECFS. This wash step was repeated, and the cells again were resuspended in ECFS to a concentration of 2×106 cells/mL. Electro-cell fusion was performed using a fusion generator, model ECM2001, Genetronic, Inc., San Diego, Calif.
  • After fusion, the cells were resuspended in DMEM (JRH Biosciences), 15% FCS (Hyclone), containing HAT, and supplemented with L-glutamine, pen/strep, OPI (oxaloacetate, pyruvate, bovine insulin) (all from Sigma) and IL-6 (Boehringer Mannheim) for culture at 37° C. and 10% CO[0146] 2 in air. Cells were plated in flat-bottomed 96-well tissue culture plates at 4×104 cells per well. Cultures were maintained in HAT (hypoxanthine, aminopterin and thymidine) supplemented media for 2 weeks before transfer to HT (hypoxanthine and thymidine) supplemented media. Hybridomas were selected for by survival in HAT medium and supernatants from those wells containing hybridomas were screened for antigen reactivity by ELISA. The ELISA format entailed incubating supernatants on antigen coated plates and detecting human anti-MUC18 binding using horseradish peroxidase (HRP) labeled mouse anti-human IgG2.
  • Cloning was performed on selected antigen-positive wells using limited dilution plating. Plates were visually inspected for the presence of single colony growth and supernatants from single colony wells then screened by antigen-specific ELISA as described above. Highly reactive clones were assayed to verify purity of human gamma and kappa chain by multiplex ELISA using a Luminex instrument. [0147]
  • Based on the assay results, the following clones were identified as anti-MUC18 antibodies: c3.19.1, c6.11.3, c3.10, c3.22, c3.27, c3.45, c3.65, c6.1, c6.9, c6.2, and c6.12. c6.9 and c6.12 were identical individually identified clones. The antibodies of the present invention were analyzed for sequence similarity to germline V[0148] H and VK genes. Such analysis is summarized in Table 2 and FIG. 35. The amino acid sequences of the heavy and light chain variable regions of the MUC18 antibodies of the present invention were further aligned with germline VH and VK sequences, respectively. These alignments are shown in FIGS. 15-16 (c3.10), FIGS. 17-18 (C3.22), FIGS. 19-20 (C3.27), FIGS. 21-22 (c3.45), FIGS. 23-24 (c3.65), FIGS. 25-26 (c6.1), FIGS. 27-28 (c6.12), FIGS. 29-30 (c6.2), FIGS. 31-32 (c6.9), and FIGS. 33-34 (c6.1 1). c3.19.1 was selected for further characterization.
    TABLE 2
    Comparison of CDR regions in MUC18 antibody clones with CDR
    regions in germline VH and VK genes
    No. of Nucleotide/Amino acid changes
    Clone Germline genes used FR1 CDR1 FR2 CDR2 FR3 CDR3 FR4
    MUC18 V D J V D & J
    A15-3.10 VH V4-59 D21-9 JH3B 0/0 0/0 1/0 3/3 5/2 0/0 0/0
    VK 02 JK2 0/0 1/1 1/0 1/1 1/0 1/1 0/0
    A15-3.22 VH V4-31 JH4B 0/0 2/1 0/0 1/1 0/0 0/0 0/0
    VK A30 JK4 0/0 0/0 0/0 0/0 0/0 0/0 0/0
    A15-3.27 VH V4-59 D21-9 JH3B 0/0 0/0 1/0 4/4 6/1 0/0 0/0
    VK A30 JK1 0/0 0/0 0/0 0/0 1/0 0/0 0/0
    A15-3.45 VH V1-18 D3-10 JH6B 1/0 4/2 1/1 0/0 1/0 0/0 0/0
    VK B3 JK1 2/1 2/2 0/0 0/0 2/2 0/0 0/0
    A15-3.65 VH 4-31 D6-13 JH5A 0/0 2/2 0/0 1/1 4/4 0/0 0/0
    VK 08 JK4 0/0 1/1 0/0 0/0 2/1 1/1 0/0
    A15-6.1 VH V3-30 D3-3 JH6B 1/0 1/1 0/0 0/0 0/0 0/0 0/0
    VK A20 JK3 0/0 1/1 1/1 1/1 0/0 3/3 2/1
    A15-6.2 VH V4-59 D6-19 JH3B 1/0 2/1 1/0 4/3 4/2 0/0 0/0
    VK A19 JK4 2/1 2/2 0/0 0/0 2/2 2/1 0/0
    A15-6.9 VH V4-31 D5-24 JHI 4/3 3/2 2/1 1/1 2/1 0/0 0/0
    VK L2 JK1 0/0 3/3 1/1 0/0 2/0 0/0 0/0
    A15-6.11 VH V4-31 D5-24 JH1 0/0 3/2 0/0 0/0 0/0 0/0 0/0
    VK L2 JK1 0/0 2/1 0/0 0/0 0/0 0/0 0/0
    A15-6.12 VH V4-31 D5-24 JH1 4/3 3/2 2/1 1/1 2/1 0/0 0/0
    VK L2 JK1 0/0 3/3 1/1 0/0 2/0 0/0 0/0
  • B. Characterization of MUC18 Antibodies [0149]
  • 1. Binding of Anti-MUC18 Antibodies to MUC18 Antigen [0150]
  • (a) Immunoblot Analysis of Binding of Anti-MUC18 Antibody to MUC18 [0151]
  • To determine whether anti-MUC18 antibody recognized MUC18 expressed on melanoma cell lines, melanoma cell lines A375SM, SB2, TXM-13, WM-2664 and nude mouse endothelial cells (NME) were seeded (1×10[0152] 6) in 100 mm tissue culture plates (Falcon) in 10 mL complete growth medium. After overnight incubation, the plates were washed two times in PBS, and scraped in 400 μl Triton lysis buffer containing a cocktail of protease inhibitors plus DTT. Following centrifugation, the protein concentration was determined using a kit from BioRad. 40 μg of protein was loaded onto a 10% SDS-PAGE and electrophoretically transferred to a 0.45 -micron nitrocellulose membrane (Millipore). The membrane was incubated in buffer containing anti-MUC18 antibody overnight, reacted with a conjugated secondary antibody (Anti-human IgG) for one hour and the proteins were subsequently detected by the ECL (Amersham Corp) method according to the manufactures protocol.
  • Anti-MUC18 antibodies detected high levels of MUC18 in the metastatic A375SM, TXM-13 and WM-2664 cells and no signal in the nonmetastatic cell line SB-2 and normal mouse endothelial (NME2) cells were MUC18 (FIG. 2). The reason for the lack of a signal in the NME2 in this experiment was due most likely to the failure of anti-MUC18 antibody to cross-react with mouse MUC18 protein. [0153]
  • Further, these results corroborate the findings of others with respect to a positive correlation between MUC18 expression and the metastatic capacity of melanoma cells (Shih et al., [0154] Clinical Cancer Res., 2:569-575 (1996); Johnson et al., Cancer Metastasis Rev., 18:345-357 (1999); Xie et al., Oncogene, 15(17):2069-75 (1997); Xie et al., Cancer Res., 57(11):2295-303 (1997); Schlagbauer-Wadl et al., Int J Cancer, 81(6):951-5 (1999)).
  • (b) Flow Cytometric Analysis of Binding of Anti-MUC18 Antibody to MUC18 [0155]
  • To determine whether anti-MUC18 antibody recognized the native form of the MUC18 protein on the surface of cells, flow cytometry analysis was performed. [0156]
  • A375-SM and WM-2664 cells (4×10[0157] 5) were detached with PBS-EDTA and incubated in FACS buffer (PBS, 2% FBS and 0.02% sodium azide) with either an isotype-matched control human IgG2 antibody or anti-MUC18 antibody for 20 minutes at 4° C. After washing with FACS buffer, all samples were incubated with phycoerythrin-conjugated F(ab′)2 fragments of Goat Anti-Human IgG (H+L) (Jackson) for 20 minutes at 4° C. in the dark. After several washings, the cells were resuspended in FACS buffer and analyzed by cytofluorometry.
  • As shown in FIG. 3, neither the A375-SM nor the WM-2664 cells demonstrated a fluorescent shift when incubated in the presence of the control IgG2 Ab (bold line). However, when incubated in the presence of anti-MUC18 (dotted line), a strong shift in fluorescence intensity indicative of cell surface expression of the antigen was observed. These results show that anti-MUC18 antibody can recognize the native MUC18 antigen expressed on the surface of human melanoma cells. [0158]
  • (c) Binding Kinetics and Affinity of MUC18 to Anti-MUC18 Antibody [0159]
  • A Biacore 3000 instrument was used for all kinetic measurements with HBS-P (Hepes-buffered saline, 0.005% polysorbate 20) buffer. The measurements were made utilizing three B1 sensor chips (carboxymethyldextran matrix with a low amount of carboxylation). The experiments were performed by covalently immobilizing protein A by standard amine coupling at a level of 1500-3000 RU (resonance units) on the surface of the four flow cells of a B1 chip. MAb 3.19.1 was captured by flowing a 1 μg/ml solution of 3.19.1 at a flow rate of 60 μL/min. for 20-30 sec. across the protein A surface, giving a captured level of 110-250 RU. The control protein A surface did not have any MAb captured on it. Various concentrations of MUC18-V5-His antigen, ranging from 0.5 nM-100 nM, were flowed across the surface in triplicate for 2.5 minutes at 100 μL/min., and the dissociation phase was followed for 10 mins. The data were processed by “Scrubber”, version 1.10, and the processed sensorgrams were non-linearly fit by “Clamp”, version 3.40, employing a simple bimolecular 1:1 kinetic model (Table 3). [0160]
    TABLE 3
    Binding Kinetics and Affinity of anti-MUC18 antibody
    (c3.19.1) for MUC18 Antigen
    Date of Chip
    Measure- Desig- c3.19.1
    ment nation* Lot# ka (M−1s−1) kd (s−1) Kd (nM)
    May 2001  I 385020A 4.531 × 105 3.021 × 104 0.67
    October  II 360-67 7.090 × 105 4.019 × 104 0.57
    2001
    October  II 360-67 5.746 × 105 3.961 × 104 0.69
    2001
    November III 360-67 7.494 × 105 3.466 × 104 0.46
    2001
    November III 360-67 6.251 × 105 3.852 × 104 0.62
    2001
    November III RD#1 6.146 × 105 4.021 × 104 0.65
    2001
    November III RD#2 6.608 × 105 3.894 × 104 0.59
    2001
    95% Confidence
    Average Standard Deviation Interval
    ka (M−1s−1) 6.27 × 105 ±9.66 × 104 ±8.94 × 104 (14%)
    kd (s−1) 3.75 × 10−4 ±3.73 × 10−5 ±3.45 × 10−5 (9.2%)
    Kd (nM) 0.61 ±0.078 ±0.072 (12%)
  • 2. Effect of Anti-MUC18 Antibody on Metastasis of Melanoma Cells in vivo [0161]
  • Because MUC18 expression is most closely associated with the metastatic phenotype in melanoma patients, the ability of anti-MUC18 antibody (c3.19.1) to inhibit the formation of lung metastases when injected intravenously into the tail veins of nude mice was examined. Exponentially growing A375-SM cells were harvested on [0162] Day 0, resuspended in Hanks' balanced salt solution (HBSS) and 4×105 viable tumor cells were injected into the lateral tail veins of female nude mice from Harlan Laboratories. The animals were treated one day prior to tumor cell injection and once a week thereafter with the indicated dose of anti-MUC18 antibody. All animals were sacrificed after six weeks at which time the lungs were removed and the tumor nodules counted with the aid of a dissecting microscope. The results of this experiment are presented in Table 4 and demonstrate that anti-MUC18 antibody inhibits lung tumor formation in a dose-dependent manner. The total number of lung metastases was decreased in all treated animals. In mice receiving the 1.0 mg per mouse dose of anti-MUC18 (c3.19.1), the tumor burden was very low and no animals had more than 50 nodules in their lungs.
    TABLE 4
    A375-SM Melanoma Metastasis Formation in Mouse Lungs
    Animals Animals Animals
    with ≦10 with 11-50 with >50 Median No.
    Treatment Incidence of Tumors Tumors Tumors Tumors Tumors/Animal
    Control
    13/14  7/14 3/14 4/14 10
    Antibody
    c3.19.1 10/14  6/14 5/14 3/14 12
    0.1 mg/dose
    c3.19.1 14/14 12/14 2/14 0/14 5
    1.0 mg/dose
  • One additional study was performed in vivo to evaluate the ability of anti-MUC18 antibody (c3.19.1) to increase the survival of mice bearing metastatic melanoma tumors. The WM-2664 human melanoma tumor cells in their exponential growth phase were harvested and resuspended in PBS. Viable tumor cells (10[0163] 6 in 0.2 mL PBS) were injected into the lateral tail vein of male BALB/c nude mice on Day 0. On the same day, the animals were administered PBS (n=21), c3.19.1 (n=12) or isotype-matched control IgG2 antibody (n=12) intraperitoneally at 1 mg or 0.2 mg per mouse, and once weekly thereafter. The mice were monitored everyday for survival. Autopsies were performed on dead mice from the different groups to confirm the presence of tumor metastases. The data were expressed as percent survival calculated as follows: 100−[100×(Number of dead mice/Total number of mice)].
  • FIG. 4 demonstrated that treatment with anti-MUC18 antibody (c3.19.1) can prolong the survival of mice bearing metastatic melanoma tumors. A dose dependent increase in survival was observed and to date no animals in the group receiving the high dose of anti-MUC18 antibody have died due to tumor burden. [0164]
  • The role of MUC18 in melanoma tumor progression and the mechanism of anti-MUC18 antibody (c3.19.1) action on this target is not completely understood. Although anti-MUC18 antibody does not inhibit the growth of melanoma tumor cells in cell culture, it does inhibit the growth of subcutaneous and metastatic tumor cells in vivo. The cumulative evidence indicates that MUC18 plays a role in one or more steps in the metastatic process possibly by affecting MMP-2 activation or cell migration. When considered together these data provide evidence that anti-MUC18 antibody is a promising therapeutic antibody for inhibiting the growth and metastasis of human melanoma cells in patients with this disease. [0165]
  • EXAMPLE 3
  • Antibody Conjugates [0166]
  • Antibodies specific to antigens such as anti-MUC18 are useful in targeting of tumor cells expressing such antigens for elimination. [0167]
  • A. Linkage of Anti-MUC18 Antibody to Ricin [0168]
  • Ricin, a cellular toxin, is finding unique applications, especially in the fight against tumors and cancer. Implications are being discovered as to the use of ricin in the treatment of tumors. Ricin has been suggested to have a greater affinity for cancerous cells than normal cells (Montfort et al. 1987) and has been often termed as a “magic bullet” for targeting malignant tumors. Toxins such as ricin remain active even if the B chain which is responsible for because of toxin nonspecific lectin activity leads to toxic side effects is removed. Accordingly, if the solitary A chain is coupled to a tumor-specific antibody, the toxin has a specific affinity for cancerous cells over normal cells (Taylorson 1996). For example, ricin immunotoxin has been developed to target the CD5 T-cell antigen often found in T-cell and B-cell malignancies (Kreitman et al. 1998). [0169]
  • A novel method of coupling whole intact ricin to monoclonal antibody is described in Pietersz et al. ([0170] Cancer Res 48(16):4469-76 (1998)) and includes blocking of nonspecific binding of the ricin B-chain. Coupling of ricin to the anti-MUC18 antibodies of the present invention may be done by using the bifunctional reagents S-acetylmercaptosuccinic anhydride for antibody and succinimidyl 3-(2-pyridyldithio)propionate for ricin. The coupling should result in the loss of B-chain binding activity, while impairing neither the toxic potential of the A-chain nor the activity of the antibody. Whole ricin-antibody conjugates produced in this way should not bind nonspecifically to target cells, the most important implication being that such immunotoxins should be more potent that ricin A-chain conjugates and capable of being used in vivo.
  • B. Linkage to Radioisotope [0171]
  • The linking of such anti-MUC18 antibodies to radioisotopes provides advantages to tumor treatments. Unlike chemotherapy and other forms of cancer treatment, radioimmunotherapy or the administration of a radioisotope-antibody combination directly targets the cancer cells with minimal damage to surrounding normal, healthy tissue. With this “magic bullet,” the patient can be treated with much smaller quantities of radioisotopes than other forms of treatment available today. Preferred radioisotopes include yttrium[0172] 90 (90Y), indium111 (111In), 131I, 99mTc, radiosilver-111, radiosilver-199, and Bismuth213.
  • Linkage of radioisotopes to antibodies may be performed with conventional bifunction chelates. Since silver is monovalent, for radiosilver-111 and radiosilver-199 linkage, sulfur-based linkers may be used (Hazra et al., [0173] Cell Biophys, 24-25:1-7 (1994)). Linkage of silver radioisotopes may involved reducing the immunoglobulin with ascorbic acid. In another aspect, tiuxetan is an MX-DTPA linker chelator attached to ibritumomab to form ibritumomab tiuxetan (Zevalin) (Witzig, T. E, Cancer Chemother Pharmacol, 48 Suppl 1:S91-5 (2001). Ibritumomab tiuxetan can react with radioisotypes such as indium111 (111In) or 90Y to form 111In-ibritumomab tiuxetan and 90Y-ibritumomab tiuxetan, respectively.
  • C. Linkage of Anti-MUC18 Antibody to Toxic Chemotherapeutic Agents [0174]
  • Most commonly antibodies to treat cancer are being conjugated with toxic chemotherapeutic drugs such as maytansine, geldanamycin or calichaemycin. Different linkers that release the drugs under acidic or reducing conditions or upon exposure to specific proteases are employed with this technology. [0175]
  • EXAMPLE 4
  • Uses of Anti-MUC18 Antibodies and Antibody Conjugate [0176]
  • A. Treatment of humans with anti-MUC18 antibodies [0177]
  • To determine the in vivo effects of anti-MUC18 antibody treatment in human patients with tumors, such human patients are injected over a certain amount of time with an effective amount of anti-MUC18 antibody. At periodic times during the treatment, the human patients are monitored to determine whether their tumors progress, in particular, whether the tumors grow and metastasize. [0178]
  • A tumor patient treated with anti-MUC18 antibodies have a lower level of tumor growth and metastasis compared to the level of tumor growth and metastasis of tumors in tumor patients treated with control antibodies. Control antibodies that may be used include antibodies of the same isotype as the anti-MUC18 antibodies tested and further, may not have the ability to bind to MUC18 tumor antigen. [0179]
  • B. Treatment with Anti-MUC18 Antibody Conjugates [0180]
  • To determine the in vivo effects of anti-MUC18 antibody conjugates, human patients or animals exhibiting tumors are injected over a certain amount of time with an effective amount of anti-MUC18 antibody conjugate. In one embodiment, the anti-MUC18 antibody conjugate administered is maytansine-anti-MUC18 antibody conjugate or radioisotope-anti-MUC18 antibody conjugate. At periodic times during the treatment, the human patients or animals are monitored to determine whether their tumors progress, in particular, whether the tumors grow and metastasize. [0181]
  • A human patient or animal exhibiting tumors and undergoing treatment with either maytansine-anti-MUC18 antibody or radioisotope-anti-MUC18 antibody conjugates have a lower level of tumor growth and metastasis when compared to a control patient or animal exhibiting tumors and undergoing treatment with control antibody conjugates, such as control maytansine-antibody or control radioisotope-antibody. Control maytansine-antibodies that may be used include conjugates comprising maytansine linked to antibodies of the same isotype of the anti-MUC18 antibodies, but more specifically, not having the ability to bind to MUC18 tumor antigen. Control radioisotope-antibodies that may be used include conjugates comprising radioisotope linked to antibodies of the same isotype of the anti-MUC18 antibodies, but more specifically, not having the ability to bind to MUC18 tumor antigen. [0182]
  • The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by the construct deposited, since the deposited embodiment is intended as a single illustration of certain aspects of the invention and any constructs that are functionally equivalent are within the scope of this invention. The deposit of material herein does not constitute an admission that the written description herein contained is inadequate to enable the practice of any aspect of the invention, including the best mode thereof, nor is it to be construed as limiting the scope of the claims to the specific illustrations that it represents. [0183]
  • 1 40 1 121 PRT Homo Sapiens 1 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 1 5 10 15 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Tyr 20 25 30 Tyr Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45 Gly Tyr Ile Tyr Tyr Thr Trp Thr Ser Asn Tyr Asn Pro Ser Leu Lys 50 55 60 Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu 65 70 75 80 Arg Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95 Arg Asp Gln Gly Gln Trp Leu Leu Pro Asp Ala Phe Asp Ile Trp Gly 100 105 110 Gln Gly Thr Met Val Thr Val Ser Ser 115 120 2 112 PRT Homo Sapiens 2 Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 1 5 10 15 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu Arg Ser 20 25 30 Asn Gly Tyr Asn Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45 Pro His Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala Ser Gly Val Pro 50 55 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Ala 85 90 95 Gln Gln Ser Pro Ile Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile Lys 100 105 110 3 364 DNA Homo Sapiens 3 caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcggagac cctgtccctc 60 acctgcactg tctctggtgg ctccatcagt agttactact ggagctggat ccggcagccc 120 ccagggaagg gactggagtg gattggctat atctattaca cttggacctc caactacaac 180 ccctccctca agagtcgcgt caccatatca gtggacacgt ccaaaaacca gttctccctg 240 aggctgagtt ctgtgaccgc tgcggacacg gccgtttatt actgtgcgag agatcagggg 300 cagtggttac tacccgatgc ttttgatatc tggggccaag ggacaatggt caccgtctct 360 tcag 364 4 337 DNA Homo Sapiens 4 gatattgtga tgactcagtc tccactctcc ctgcccgtca cccctggaga gccggcctcc 60 atctcctgca ggtctagtca gagcctcctg cgtagtaatg gatacaacta tttggattgg 120 tacctgcaga agccaggaca gtctccacat ctcctgatct atttgggttc taatcgggcc 180 tccggggtcc ctgacaggtt cagtggcagt ggatcaggca cagattttac actgaaaatc 240 agcagagtgg aggctgagga tgttggggtt tattactgca tgcaagctca acaaagtccg 300 atcaccttcg gccaagggac acgactggag attaaac 337 5 117 PRT Homo Sapiens 5 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln 1 5 10 15 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Gly 20 25 30 Thr Tyr His Trp Ser Trp Ile Arg Gln His Pro Gly Lys Gly Leu Glu 35 40 45 Trp Ile Gly Tyr Ile Tyr Tyr Ser Gly Ser Thr Tyr Tyr Asn Pro Ser 50 55 60 Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe 65 70 75 80 Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr 85 90 95 Cys Ala Arg Gly Gly Asp Gly Tyr Lys Tyr Trp Gly Gln Gly Thr Leu 100 105 110 Val Thr Val Ser Ser 115 6 107 PRT Homo Sapiens 6 Glu Ile Val Met Thr Gln Ser Pro Ala Thr Leu Ser Val Ser Pro Gly 1 5 10 15 Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Asn Asn 20 25 30 Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile 35 40 45 Tyr Gly Ala Ser Thr Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Ser 65 70 75 80 Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Asn Asn Trp Pro Arg 85 90 95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105 7 352 DNA Homo Sapiens 7 caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcacagac cctgtccctc 60 acctgcactg tctctggtgg ctccatcagc agtggtactt accactggag ctggatccgc 120 cagcacccag ggaagggcct ggagtggatt gggtacatct attacagtgg gagcacctac 180 tacaacccgt ccctcaagag tcgagttacc atatcagtag acacgtctaa gaaccagttc 240 tccctgaagc tgagctctgt gactgccgcg gacacggccg tgtattactg tgcgagaggg 300 ggagatggct acaagtactg gggccaggga accctggtca ccgtctcctc ag 352 8 322 DNA Homo Sapiens 8 gaaatagtga tgacgcagtc tccagccacc ctgtctgtgt ctccagggga aagagccacc 60 ctctcctgca gggccagtca gagtgttagc aacaacttag cctggtatca gcagaaacct 120 ggccaggctc ccaggctcct catctatggt gcatccacca gggccactgg tatcccagcc 180 aggttcagtg gcagtgggtc tgggacagag ttcactctca ccatcagcag cctgcagtct 240 gaagattttg cagtttatta ctgtcagcag tataataact ggcctcggac gttcggccaa 300 gggaccaagg tggaaatcaa ac 322 9 121 PRT Homo Sapiens 9 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 1 5 10 15 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Tyr 20 25 30 Tyr Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45 Gly Tyr Ile Tyr Tyr Thr Trp Thr Thr Asn Tyr Asn Pro Ser Leu Lys 50 55 60 Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu 65 70 75 80 Arg Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Leu Tyr Tyr Cys Ala 85 90 95 Arg Asp Gln Gly Gln Trp Leu Leu Pro Asp Ala Phe Asp Ile Trp Gly 100 105 110 Gln Gly Thr Met Val Thr Val Ser Ser 115 120 10 109 PRT Homo Sapiens 10 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Asn Tyr 20 25 30 Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45 Tyr Gly Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys Arg Gln Ser Tyr Ser Thr Pro Pro 85 90 95 Glu Cys Ser Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 11 364 DNA Homo Sapiens 11 caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcggagac cctgtccctc 60 acctgcactg tctctggtgg ctccatcagt agttactact ggagctggat ccggcagccc 120 ccagggaagg gactggagtg gattggctat atctattaca cttggaccac caactacaac 180 ccctccctca agagtcgcgt caccatatca gtggacacgt ccaagaacca gttctccctg 240 aggctgagct ctgtgaccgc tgcggacacg gccctttatt actgtgcgag agatcagggg 300 cagtggttac tacccgatgc ttttgatatc tggggccaag ggacaatggt caccgtctct 360 tcag 364 12 328 DNA Homo Sapiens 12 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gagcattagc aactatttaa attggtatca gcagaaacca 120 ggaaaagccc ctaagctcct gatctatggt gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagtg gcagtggatc tgggacagat ttcactctca ccatcagcag tctgcaacct 240 gaagattttg caacctacta ctgtcgacag agttacagta cccctccgga gtgcagtttt 300 ggccagggga ccaagctgga gatcaaac 328 13 117 PRT Homo Sapiens 13 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln 1 5 10 15 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Gly 20 25 30 Gly Tyr Tyr Trp Thr Trp Ile Arg Gln His Pro Gly Lys Gly Leu Glu 35 40 45 Trp Ile Gly Phe Ile Tyr Tyr Ser Gly Ser Thr Tyr Tyr Asn Pro Ser 50 55 60 Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe 65 70 75 80 Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr 85 90 95 Cys Ala Arg Glu Gly Asp Gly Phe Asp Tyr Trp Gly Gln Gly Thr Leu 100 105 110 Val Thr Val Ser Ser 115 14 107 PRT Homo Sapiens 14 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Asn Asp 20 25 30 Leu Gly Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile 35 40 45 Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln His Asn Ser Tyr Pro Leu 85 90 95 Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 100 105 15 352 DNA Homo Sapiens 15 caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcacagac cctgtccctc 60 acctgcactg tctctggtgg ctccatcagc agtggtggtt actactggac ttggatccgc 120 cagcacccag ggaagggcct ggagtggatt gggttcatct attacagtgg gagcacctac 180 tacaacccgt ccctcaagag tcgagttacc atatcagtag acacgtctaa gaaccagttc 240 tccctgaagc tgagctctgt gactgccgcg gacacggccg tgtattactg tgcgagagag 300 ggagatggct ttgactactg gggccaggga accctggtca ccgtctcctc ag 352 16 322 DNA Homo Sapiens 16 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacag cataatagtt acccgctcac tttcggcgga 300 gggaccaagg tggagatcaa ac 322 17 121 PRT Homo Sapiens 17 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 1 5 10 15 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Tyr 20 25 30 Tyr Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45 Gly Tyr Ile Tyr Tyr Thr Trp Thr Ser Asn Tyr Asn Pro Ser Leu Lys 50 55 60 Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu 65 70 75 80 Arg Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95 Arg Asp Gln Gly Gln Trp Leu Leu Pro Asp Ala Phe Asp Ile Trp Gly 100 105 110 Gln Gly Thr Met Val Thr Val Ser Ser 115 120 18 107 PRT Homo Sapiens 18 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Asn Asp 20 25 30 Leu Gly Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile 35 40 45 Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln His Asn Ser Tyr Pro Trp 85 90 95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105 19 364 DNA Homo Sapiens 19 caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcggagac cctgtccctc 60 acctgcactg tctctggtgg ctccatcagt agttactact ggagctggat ccggcagccc 120 ccagggaagg gactggagtg gattggctat atctattaca cttggacctc caactacaac 180 ccctccctca agagtcgcgt caccatatca gtggacacgt ccaagaacca gttctccctg 240 aggctgagtt ctgtgaccgc tgcggacacg gccgtttact actgtgcgag agatcagggg 300 cagtggttac tacccgatgc ttttgatatc tggggccaag ggacaatggt caccgtctct 360 tcag 364 20 322 DNA Homo Sapiens 20 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120 gggaaagccc ctaagcgcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180 aggttcagcg gcagtggatc tgggacagag ttcactctca caatcagcag cctgcagcct 240 gaagattttg caacttatta ctgtctacag cataatagtt acccgtggac gttcggccaa 300 gggaccaagg tggaaatcaa ac 322 21 123 PRT Homo Sapiens 21 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Phe Ser Tyr 20 25 30 Gly Phe Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Leu 35 40 45 Gly Trp Ile Ser Ala Tyr Asn Gly Asn Thr Asn Tyr Ala Gln Lys Leu 50 55 60 Gln Gly Arg Val Thr Met Thr Thr Asp Thr Ser Thr Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Arg Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Glu Thr Lys Val Arg Gly Val His Tyr Tyr Gly Met Asp Val 100 105 110 Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 120 22 113 PRT Homo Sapiens 22 Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly 1 5 10 15 Glu Arg Ala Thr Ile Ile Cys Lys Ser Ser Gln Ser Ile Leu Tyr Ser 20 25 30 Ser Asn Asn Lys Asn Tyr Leu Gly Trp Tyr Gln Gln Lys Pro Gly Gln 35 40 45 Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50 55 60 Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 65 70 75 80 Ile Asn Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln 85 90 95 Tyr Tyr Ser Thr Pro Arg Ser Phe Gly Gln Gly Thr Met Val Glu Ile 100 105 110 Lys 23 370 DNA Homo Sapiens 23 caggttcagc tggtgcagtc gggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60 tcctgcaagg cttctggtta cacctttttt agctatggtt tcagctgggt gcgacaggcc 120 cctggacaag ggcttgagtg gctgggatgg atcagcgctt acaatggtaa cacaaactat 180 gcacagaagc tccagggcag agtcaccatg accacagaca cttccacgag cacagcctac 240 atggagctga ggagcctgag atctgacgac acggccgtgt attactgtgc gagagaaact 300 aaggttcggg gagtccacta ctacggtatg gacgtctggg gccaagggac cacggtcacc 360 gtctcctcag 370 24 340 DNA Homo Sapiens 24 gacatcgtga tgacccagtc tccagactcc ctggctgtgt ctctgggcga gagggccacc 60 atcatctgca agtccagcca gagtatttta tacagctcca acaataagaa ctacttaggt 120 tggtaccagc agaaaccagg acagcctcct aagctgctca tttactgggc atctacccgg 180 gaatccgggg tccctgcccg attcagtggc agcgggtctg ggacagattt cactctcacc 240 atcaacagcc tgcaggctga agatgtggca gtttattact gtcagcaata ttatagtact 300 cctcggtcgt tcggccaagg gaccatggtg gaaatcaaac 340 25 119 PRT Homo Sapiens 25 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln 1 5 10 15 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Asn Ser Gly 20 25 30 Gly Cys Tyr Trp Ser Trp Ile Arg Gln His Pro Gly Lys Gly Leu Glu 35 40 45 Trp Ile Gly Tyr Ile Tyr Ser Ser Gly Ser Thr Tyr Tyr Asn Pro Ser 50 55 60 Leu Lys Ser Arg Ile Thr Leu Ser Val Asp Thr Ser Lys Asn Gln Phe 65 70 75 80 Ser Leu Lys Leu Asn Ser Met Thr Ala Ala Asp Thr Ala Val Tyr Tyr 85 90 95 Cys Ala Arg Asp Arg Glu Thr Ala Gly Phe Asp Tyr Trp Gly Gln Gly 100 105 110 Thr Leu Val Thr Val Ser Ser 115 26 107 PRT Homo Sapiens 26 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Asp Ile Asn Asn Tyr 20 25 30 Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45 Tyr Asp Ala Ser Asn Leu Glu Thr Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Gly Leu Gln Pro 65 70 75 80 Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln Tyr Asp Thr Leu Pro Leu 85 90 95 Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 100 105 27 358 DNA Homo Sapiens 27 caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcacagac cctgtccctc 60 acctgcactg tctctggtgg ctccatcaac agtggtggtt gctactggag ctggatccgc 120 cagcacccag ggaagggcct ggagtggatt gggtacatct attccagtgg gagcacctac 180 tacaacccgt ccctcaagag tcgaattacc ttatcagtag acacgtctaa gaaccagttc 240 tccctgaagc tgaactctat gactgccgcg gacacggccg tgtattactg tgcgagagat 300 cgggaaacag ctggttttga ctactggggc cagggaaccc tggtcaccgt ctcctcag 358 28 322 DNA Homo Sapiens 28 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc aggcgagtca ggacattaac aactatttaa attggtatca gcagaaacca 120 gggaaagccc ctaagctcct gatctacgat gcatccaatt tggaaacagg ggtcccatca 180 aggttcagtg gaagtggatc tgggacagat tttactttca ccatcagcgg cctgcagcct 240 gaggatattg caacatatta ctgtcaacag tatgatactc tccctctcac tttcggcggc 300 gggaccaagg tggagatcaa ac 322 29 120 PRT Homo Sapiens 29 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg 1 5 10 15 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30 Ala Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45 Ala Val Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val 50 55 60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Ser Ile Phe Gly Val Val Ile Asp Tyr Gly Met Asp Val Trp 100 105 110 Gly Gln Gly Thr Thr Val Thr Val 115 120 30 107 PRT Homo Sapiens 30 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Asn Tyr 20 25 30 Leu Ala Trp Tyr Gln Gln Asn Pro Gly Lys Val Pro Lys Leu Leu Ile 35 40 45 Tyr Gly Ala Ser Thr Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80 Glu Asp Val Ala Thr Tyr Tyr Cys Gln Lys Phe Ser Ser Pro Pro Phe 85 90 95 Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Ser 100 105 31 367 DNA Homo Sapiens 31 caggtgcagc tggtggagtc ggggggaggc gtggtccagc ctgggaggtc cctgagactc 60 tcctgtgcag cctctggatt caccttcagt agctatgcca tgcactgggt ccgccaggct 120 ccaggcaagg ggctggagtg ggtggcagtt atatcatatg atggaagtaa taaatactat 180 gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240 ctgcaaatga acagcctgag agctgaggac acggctgtgt attactgtgc gagatcgatt 300 tttggagtgg ttatcgacta cggtatggac gtctggggcc aagggaccac ggtcaccgtc 360 tcctcag 367 32 322 DNA Homo Sapiens 32 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60 atcacttgcc gggcgagtca gggcattaga aattatttag cctggtatca gcagaatcca 120 gggaaagttc ctaagctcct gatctatggt gcatccactt tgcaatcagg ggtcccatct 180 cggttcagtg gcagtggatc tgggacagat ttcactctca ccatcagcag cctgcagcct 240 gaagatgttg caacttatta ctgtcaaaag tttagcagtc ccccattcac tttcggccct 300 gggaccaaag tggatatcag tc 322 33 117 PRT Homo Sapiens 33 Gln Val Gln Leu Glu Gln Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 1 5 10 15 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Gly 20 25 30 Thr Tyr His Trp Ser Trp Ile Arg Gln His Pro Gly Arg Gly Leu Glu 35 40 45 Trp Ile Gly Tyr Ile Tyr Tyr Ser Gly Ser Thr Tyr His Asn Pro Ser 50 55 60 Leu Lys Ser Arg Ile Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe 65 70 75 80 Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr 85 90 95 Cys Ala Arg Gly Gly Asp Gly Tyr Arg Tyr Trp Gly Gln Gly Thr Leu 100 105 110 Val Thr Val Ser Ser 115 34 107 PRT Homo Sapiens 34 Glu Ile Val Met Thr Gln Ser Pro Ala Thr Leu Ser Val Ser Pro Gly 1 5 10 15 Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Ile Ser Asn Asn 20 25 30 Phe Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile 35 40 45 Phe Gly Ala Ser Thr Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Ser 65 70 75 80 Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Asn Asn Trp Pro Arg 85 90 95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105 35 352 DNA Homo Sapiens 35 caggtgcagc tggagcagtc ggggccagga ctggtgaagc cttcagagac cctgtccctc 60 acctgcactg tctctggtgg ctccatcagc agtggtactt accactggag ctggatccgc 120 cagcacccag ggaggggcct ggagtggatt ggatacatct attacagtgg gagcacctac 180 cacaacccgt ccctcaagag tcgaattacc atatcagtag acacgtctaa gaaccagttc 240 tccctgaagc tgagctctgt gacggccgcg gacacggccg tgtattactg tgcgagaggg 300 ggagatggct acagatactg gggccaggga accctggtca ccgtctcctc ag 352 36 322 DNA Homo Sapiens 36 gaaatagtga tgacgcagtc tccagccacc ctgtctgtgt ctccagggga aagagccacc 60 ctctcctgca gggccagtca gagtattagc aacaacttcg cctggtacca gcagaaacct 120 ggccaggctc ccaggctcct catctttggt gcatccacca gggccactgg tatcccagcc 180 aggttcagtg gcagtgggtc tgggacagaa ttcactctca ccatcagcag cctacagtct 240 gaagattttg cagtttatta ctgtcagcag tataataact ggcctcggac gttcggccaa 300 gggaccaagg tggaaatcaa ac 322 37 121 PRT Homo Sapiens 37 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 1 5 10 15 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Thr Tyr 20 25 30 Tyr Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45 Gly Tyr Ile Tyr Tyr Thr Gly Asn Thr Tyr Tyr Asn Pro Ser Leu Lys 50 55 60 Ser Arg Val Thr Val Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu 65 70 75 80 Lys Leu Asn Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95 Arg Asp Pro Gly Gln Trp Leu Val Pro Asp Ala Phe Asp Ile Trp Gly 100 105 110 Gln Gly Thr Met Val Ser Val Ser Ser 115 120 38 112 PRT Homo Sapiens 38 Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Ile Pro Gly 1 5 10 15 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu Gln Ser 20 25 30 Asn Gly Asn Asn Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45 Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala Ser Gly Val Pro 50 55 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80 Ser Arg Val Glu Ala Asp Asp Val Gly Ile Tyr Tyr Cys Met Gln Ala 85 90 95 Leu Gln Ile Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 100 105 110 39 364 DNA Homo Sapiens 39 caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cctcggagac cctgtccctc 60 acctgcactg tctctggtgg ctccatcagt acttactact ggagttggat ccggcagccc 120 ccagggaagg gactggagtg gattggatac atctattaca ctgggaacac ctactacaac 180 ccctccctca agagtcgagt caccgtttca gttgacacgt ccaagaacca gttctccctg 240 aagctgaact ctgtgaccgc tgcggacacg gccgtgtatt actgtgcgag agatccaggc 300 cagtggctgg tccctgatgc ttttgatatc tggggccaag ggacaatggt ctccgtctct 360 tcag 364 40 337 DNA Homo Sapiens 40 gatattgtga tgactcagtc tccactctcc ctgcccgtca ttcctggaga gccggcctcc 60 atctcctgca ggtctagtca gagcctcctg cagagtaatg gaaacaacta tttggattgg 120 tacctgcaga agccagggca gtctccacag ctcctgatct atttgggttc taatcgggcc 180 tccggggtcc ctgacaggtt cagtggcagt ggatcaggca cagattttac actgaaaatc 240 agcagagtgg aggctgacga tgttgggatt tattactgca tgcaagctct ccaaattcct 300 ctcactttcg gcggagggac caaggtggag atcaaac 337

Claims (17)

What is claimed:
1. A method of inhibiting cell proliferation associated with the expression of MUC18 tumor antigen comprising:
providing a monoclonal antibody comprising a heavy chain amino acid, wherein said antibody has an amino acid sequence selected from the group consisting of SEQ ID NOs: 1,5 9, 13, 17, 21, 25, 29, 33 and 37, and wherein said monoclonal antibody binds MUC18;
contacting cells expressing MUC18 with an effective amount of said antibody; and
incubating said cells and said antibody, wherein said incubation results in inhibited proliferation of said cells.
2. The method of claim 1, wherein said antibody is a fully human antibody.
3. The method of claim 1, wherein said antibody further comprises a light chain amino acid having an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34 and 38.
4. The method of claim 1, wherein said antibody is conjugated to a therapeutic or cytotoxic agent.
5. The method of claim 4, wherein the cytotoxic agent is ricin.
6. The method of claim 4, wherein the further therapeutic agent is a radioisotope.
7. The method of claim 1, wherein said cell is a melanoma cell.
8. The method of claim 1, wherein said cell is a tumor cell.
9. The method of claim 1, wherein said cell proliferation is tumor metastasis.
10. A method of inhibiting cell proliferation associated with the expression of MUC18 tumor antigen comprising:
providing a monoclonal antibody comprising a light chain amino acid, wherein said antibody has an amino acid sequence selected from the group consisting of: SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34 and 38, and wherein said monoclonal antibody binds MUC18;
contacting cells expressing MUC18 with an effective amount of said antibody; and
incubating said cells and said antibody, wherein said incubation results in inhibited proliferation of said cells.
11. The method of claim 10, wherein said antibody is a fully human antibody.
12. The method of claim 10, wherein said antibody is conjugated to a therapeutic or cytotoxic agent.
13. The method of claim 13, wherein the cytotoxic agent is ricin.
14. The method of claim 13, wherein the further therapeutic agent is a radioisotope.
15. The method of claim 10, wherein said cell is a melanoma cell.
16. The method of claim 10, wherein said cell is a tumor cell.
17. The method of claim 10, wherein said cell proliferation is tumor metastasis.
US10/330,530 2001-12-28 2002-12-26 Methods for using anti-MUC18 antibodies Expired - Fee Related US7067131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/330,530 US7067131B2 (en) 2001-12-28 2002-12-26 Methods for using anti-MUC18 antibodies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34641401P 2001-12-28 2001-12-28
US10/330,530 US7067131B2 (en) 2001-12-28 2002-12-26 Methods for using anti-MUC18 antibodies

Publications (2)

Publication Number Publication Date
US20030152514A1 true US20030152514A1 (en) 2003-08-14
US7067131B2 US7067131B2 (en) 2006-06-27

Family

ID=23359270

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/330,530 Expired - Fee Related US7067131B2 (en) 2001-12-28 2002-12-26 Methods for using anti-MUC18 antibodies

Country Status (5)

Country Link
US (1) US7067131B2 (en)
EP (1) EP1467756A4 (en)
JP (1) JP2005516965A (en)
CA (1) CA2471936A1 (en)
WO (1) WO2003057837A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030068319A1 (en) * 2001-03-23 2003-04-10 Menashe Bar-Eli Methods for inhibition of angiogenesis, tumor growth and metastasis by fully human anti-IL8 and anti-MUC18 in diverse types of tumors
US20070065444A1 (en) * 2005-09-07 2007-03-22 Amgen Fremont Inc. Human monoclonal antibodies to activin receptor-like kinase-1
US20150218266A1 (en) * 2009-06-10 2015-08-06 Val-Chum, Limited Partnership Inhibition of th17 cells migration to inflamed tissues using antibodies directed against mcam
WO2020132232A3 (en) * 2018-12-21 2020-07-23 Multitude Inc. Antibodies specific to muc18
WO2022082073A3 (en) * 2020-10-16 2022-06-02 Board Of Regents, The University Of Texas System Compositions and methods for muc18 targeting

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7521053B2 (en) * 2001-10-11 2009-04-21 Amgen Inc. Angiopoietin-2 specific binding agents
US7658924B2 (en) * 2001-10-11 2010-02-09 Amgen Inc. Angiopoietin-2 specific binding agents
ES2392954T3 (en) * 2003-07-15 2012-12-17 Amgen Inc. Human anti-NGF neutralizing antibodies as selective inhibitors of the NGF pathway
ME00226B (en) 2004-07-15 2011-02-10 Medarex Llc Human anti-ngf neutralizing antibodies as selective ngf pathway inhibitors
EP2471509B1 (en) 2006-09-29 2017-04-19 Johnson & Johnson Vision Care, Inc. Method of preventing oxidation of an ophthalmic device comprising an anti-allergic agent
JO2913B1 (en) * 2008-02-20 2015-09-15 امجين إنك, Antibodies directed to angiopoietin-1 and angiopoietin-2 and uses thereof
EP2216399A1 (en) * 2009-01-30 2010-08-11 Université de la Méditerranée Human soluble CD146, preparation and uses thereof
US8734796B2 (en) 2009-03-20 2014-05-27 Amgen Inc. Carrier immunoglobulins
WO2012040518A2 (en) 2010-09-22 2012-03-29 Amgen Inc. Carrier immunoglobulins and uses thereof
JP6305919B2 (en) 2011-06-06 2018-04-04 プロセナ バイオサイエンシーズ リミテッド MCAM antagonists and methods of treatment
TWI660972B (en) 2012-09-10 2019-06-01 愛爾蘭商尼歐托普生物科學公司 Anti-mcam antibodies and associated methods of use
UY35148A (en) 2012-11-21 2014-05-30 Amgen Inc HETERODIMERIC IMMUNOGLOBULINS
WO2014144817A2 (en) 2013-03-15 2014-09-18 Amgen Inc. Inhibitory polypeptides specific to wnt inhibitors
AU2014318017B2 (en) 2013-09-05 2020-02-06 Amgen Inc. Fc-containing molecules exhibiting predictable, consistent, and reproducible glycoform profiles
TW201623331A (en) 2014-03-12 2016-07-01 普羅帝納生物科學公司 Anti-MCAM antibodies and associated methods of use
EP3116911B8 (en) 2014-03-12 2019-10-23 Prothena Biosciences Limited Anti-mcam antibodies and associated methods of use
JP2017514458A (en) 2014-03-12 2017-06-08 プロセナ バイオサイエンシーズ リミテッド Anti-laminin 4 antibody specific for LG4-5
JP6671298B2 (en) 2014-05-16 2020-03-25 アムジェン インコーポレイテッド Assays for detecting TH1 and TH2 cell populations
WO2017046774A2 (en) 2015-09-16 2017-03-23 Prothena Biosciences Limited Use of anti-mcam antibodies for treatment or prophylaxis of giant cell arteritis, polymyalgia rheumatica or takayasu's arteritis
JP2018530540A (en) 2015-09-16 2018-10-18 プロセナ バイオサイエンシーズ リミテッド Use of anti-MCAM antibodies for the treatment or prevention of giant cell arteritis, polymyalgia rheumatica or Takayasu arteritis
WO2017149513A1 (en) 2016-03-03 2017-09-08 Prothena Biosciences Limited Anti-mcam antibodies and associated methods of use
WO2017153953A1 (en) 2016-03-09 2017-09-14 Prothena Biosciences Limited Use of anti-mcam antibodies for treatment or prophylaxis of granulomatous lung diseases
WO2017153955A1 (en) 2016-03-09 2017-09-14 Prothena Biosciences Limited Use of anti-mcam antibodies for treatment or prophylaxis of granulomatous lung diseases
WO2017208210A1 (en) 2016-06-03 2017-12-07 Prothena Biosciences Limited Anti-mcam antibodies and associated methods of use
JP2020513813A (en) 2017-03-14 2020-05-21 アムジエン・インコーポレーテツド Regulation of total nonfucosylated glycoforms of antibodies produced in cell culture
WO2018220467A1 (en) 2017-05-30 2018-12-06 Foroogh Nejatollahi Anti-muc18 human immunotoxin and applications thereof
JP2021519068A (en) 2018-03-26 2021-08-10 アムジェン インコーポレイテッド Total non-fucosylated glycoform of antibodies produced in cell culture
WO2021062372A1 (en) 2019-09-26 2021-04-01 Amgen Inc. Methods of producing antibody compositions
WO2021247892A1 (en) 2020-06-04 2021-12-09 Amgen Inc. Assessment of cleaning procedures of a biotherapeutic manufacturing process
MX2023004364A (en) 2020-10-15 2023-05-03 Amgen Inc Relative unpaired glycans in antibody production methods.
WO2022261021A1 (en) 2021-06-07 2022-12-15 Amgen Inc. Using fucosidase to control afucosylation level of glycosylated proteins
AU2022361382A1 (en) 2021-10-05 2024-03-28 Amgen Inc. Fc-gamma receptor ii binding and glycan content
WO2023133595A2 (en) 2022-01-10 2023-07-13 Sana Biotechnology, Inc. Methods of ex vivo dosing and administration of lipid particles or viral vectors and related systems and uses
WO2023215725A1 (en) 2022-05-02 2023-11-09 Fred Hutchinson Cancer Center Compositions and methods for cellular immunotherapy

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735210A (en) * 1985-07-05 1988-04-05 Immunomedics, Inc. Lymphographic and organ imaging method and kit
US5102990A (en) * 1989-08-09 1992-04-07 Rhomed Incorporated Direct radiolabeling of antibodies and other proteins with technetium or rhenium
US5101827A (en) * 1985-07-05 1992-04-07 Immunomedics, Inc. Lymphographic and organ imaging method and kit
US5466468A (en) * 1990-04-03 1995-11-14 Ciba-Geigy Corporation Parenterally administrable liposome formulation comprising synthetic lipids
US5648471A (en) * 1987-12-03 1997-07-15 Centocor, Inc. One vial method for labeling antibodies with Technetium-99m
US5697901A (en) * 1989-12-14 1997-12-16 Elof Eriksson Gene delivery by microneedle injection
US5800820A (en) * 1989-01-10 1998-09-01 Repligen Corporation Methods and compositions for treatment of angiogenic diseases
US6024956A (en) * 1994-07-13 2000-02-15 Chugai Pharmaceutical Co., Ltd. Method to treat inflammation with humanized anti-IL-8-antibodies
US6133426A (en) * 1997-02-21 2000-10-17 Genentech, Inc. Humanized anti-IL-8 monoclonal antibodies
US6150584A (en) * 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6229048B1 (en) * 1997-07-31 2001-05-08 Yeda Research And Development Co. Ltd. At The Weizmann Institute Of Science Helianthrone derivatives as anti-cancer agents
US6342221B1 (en) * 1999-04-28 2002-01-29 Board Of Regents, The University Of Texas System Antibody conjugate compositions for selectively inhibiting VEGF
US6342220B1 (en) * 1997-08-25 2002-01-29 Genentech, Inc. Agonist antibodies
US20030068319A1 (en) * 2001-03-23 2003-04-10 Menashe Bar-Eli Methods for inhibition of angiogenesis, tumor growth and metastasis by fully human anti-IL8 and anti-MUC18 in diverse types of tumors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69133566T2 (en) * 1990-01-12 2007-12-06 Amgen Fremont Inc. Formation of xenogenic antibodies
ES2301183T3 (en) 1996-12-03 2008-06-16 Amgen Fremont Inc. COMPLETELY HUMAN ANTIBODY THAT JOINS THE EGFR RECEIVER.
US6833268B1 (en) * 1999-06-10 2004-12-21 Abgenix, Inc. Transgenic animals for producing specific isotypes of human antibodies via non-cognate switch regions
DE60226499D1 (en) 2001-12-28 2008-06-19 Amgen Fremont Inc USE OF ANTIBODIES TO THE MUC18 ANTIGEN

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5101827A (en) * 1985-07-05 1992-04-07 Immunomedics, Inc. Lymphographic and organ imaging method and kit
US4735210A (en) * 1985-07-05 1988-04-05 Immunomedics, Inc. Lymphographic and organ imaging method and kit
US5648471A (en) * 1987-12-03 1997-07-15 Centocor, Inc. One vial method for labeling antibodies with Technetium-99m
US5800820A (en) * 1989-01-10 1998-09-01 Repligen Corporation Methods and compositions for treatment of angiogenic diseases
US5102990A (en) * 1989-08-09 1992-04-07 Rhomed Incorporated Direct radiolabeling of antibodies and other proteins with technetium or rhenium
US5697901A (en) * 1989-12-14 1997-12-16 Elof Eriksson Gene delivery by microneedle injection
US6150584A (en) * 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
US5466468A (en) * 1990-04-03 1995-11-14 Ciba-Geigy Corporation Parenterally administrable liposome formulation comprising synthetic lipids
US6024956A (en) * 1994-07-13 2000-02-15 Chugai Pharmaceutical Co., Ltd. Method to treat inflammation with humanized anti-IL-8-antibodies
US6133426A (en) * 1997-02-21 2000-10-17 Genentech, Inc. Humanized anti-IL-8 monoclonal antibodies
US6229048B1 (en) * 1997-07-31 2001-05-08 Yeda Research And Development Co. Ltd. At The Weizmann Institute Of Science Helianthrone derivatives as anti-cancer agents
US6342220B1 (en) * 1997-08-25 2002-01-29 Genentech, Inc. Agonist antibodies
US6342221B1 (en) * 1999-04-28 2002-01-29 Board Of Regents, The University Of Texas System Antibody conjugate compositions for selectively inhibiting VEGF
US20030068319A1 (en) * 2001-03-23 2003-04-10 Menashe Bar-Eli Methods for inhibition of angiogenesis, tumor growth and metastasis by fully human anti-IL8 and anti-MUC18 in diverse types of tumors

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030068319A1 (en) * 2001-03-23 2003-04-10 Menashe Bar-Eli Methods for inhibition of angiogenesis, tumor growth and metastasis by fully human anti-IL8 and anti-MUC18 in diverse types of tumors
AP2723A (en) * 2005-09-07 2013-08-31 Amgen Fremont Inc Human monoclonal antibodies to activ in receptor-like Kinase-1
WO2007040912A3 (en) * 2005-09-07 2009-04-30 Amgen Fremont Inc Human monoclonal antibodies to activin receptor-like kinase-1
US7537762B2 (en) 2005-09-07 2009-05-26 Amgen Fremont, Inc. Human monoclonal antibodies to activin receptor-like kinase-1
US8080646B2 (en) 2005-09-07 2011-12-20 Amgen Fremont, Inc. Human monoclonal antibodies to activin receptor-like kinase-1
EA018453B1 (en) * 2005-09-07 2013-08-30 Эмджен Фримонт Инк. Human monoclonal antibodies to activin receptor-like kinase-1 and use thereof
US20070065444A1 (en) * 2005-09-07 2007-03-22 Amgen Fremont Inc. Human monoclonal antibodies to activin receptor-like kinase-1
KR101536487B1 (en) * 2005-09-07 2015-07-13 암젠 프레몬트 인코포레이티드 Human monoclonal antibodies to activin receptor-like kinase-1
KR101536506B1 (en) * 2005-09-07 2015-07-14 암젠 프레몬트 인코포레이티드 Human monoclonal antibodies to activin receptor-like kinase-1
US9221915B2 (en) 2005-09-07 2015-12-29 Pfizer Inc. Human monoclonal antibodies to activin receptor-like kinase-1
US20150218266A1 (en) * 2009-06-10 2015-08-06 Val-Chum, Limited Partnership Inhibition of th17 cells migration to inflamed tissues using antibodies directed against mcam
WO2020132232A3 (en) * 2018-12-21 2020-07-23 Multitude Inc. Antibodies specific to muc18
CN113423830A (en) * 2018-12-21 2021-09-21 普众发现医药科技(上海)有限公司 Antibodies specific to MUC18
WO2022082073A3 (en) * 2020-10-16 2022-06-02 Board Of Regents, The University Of Texas System Compositions and methods for muc18 targeting

Also Published As

Publication number Publication date
EP1467756A4 (en) 2007-03-21
EP1467756A2 (en) 2004-10-20
US7067131B2 (en) 2006-06-27
WO2003057837A2 (en) 2003-07-17
WO2003057837A3 (en) 2003-11-27
CA2471936A1 (en) 2003-07-17
JP2005516965A (en) 2005-06-09
WO2003057837A8 (en) 2003-10-30

Similar Documents

Publication Publication Date Title
US20030152514A1 (en) Methods for using anti-MUC18 antibodies
US20030147809A1 (en) Antibodies against the MUC18 antigen
US20040115205A1 (en) Use of antibodies against the MUC18 antigen
US20040018198A1 (en) Antibodies against carbonic anydrase IX (CA IX) tumor antigen
ES2645272T3 (en) DLL3 modulators and usage procedures
KR101834890B1 (en) Anti-gcc antibody molecules and related compositions and methods
KR101960509B1 (en) Antibodies specific for claudin 6 (cldn6)
ES2407819T3 (en) Monoclonal antibodies against claudin-18 for cancer treatment
KR20170052648A (en) Macropinocytosing human anti-cd46 antibodies and targeted cancer therapeutics
JP2010528056A (en) Humanized anti-TROP-2 antibody and chimeric anti-TROP-2 antibody that mediate cell killing effect of cancer cells
PT1957539E (en) Human monoclonal antibodies to protein tyrosine kinase 7 (ptk7) and their use
US20180296691A1 (en) Anti-efna4 antibody-drug conjugates
AU2002361885B2 (en) Methods for using anti-MUC18 antibodies
KR20220161267A (en) Anti-MUC1-SEA antibody

Legal Events

Date Code Title Description
AS Assignment

Owner name: ABGENIX, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GUDAS, JEAN;REEL/FRAME:013911/0854

Effective date: 20030326

AS Assignment

Owner name: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAR-ELI, MENASHE;REEL/FRAME:016767/0785

Effective date: 20050823

Owner name: ABGENIX, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GREEN, LARRY L.;REEL/FRAME:016767/0776

Effective date: 20050823

CC Certificate of correction
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100627

AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF TEXAS M. D. ANDERSON CANCER CENTER;REEL/FRAME:028314/0493

Effective date: 20120515

AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF TEXAS M. D. ANDERSON CANCER CENTER;REEL/FRAME:028325/0225

Effective date: 20120515