US20030195520A1 - Methods and instrumentation for vertebral interbody fusion - Google Patents

Methods and instrumentation for vertebral interbody fusion Download PDF

Info

Publication number
US20030195520A1
US20030195520A1 US10/417,974 US41797403A US2003195520A1 US 20030195520 A1 US20030195520 A1 US 20030195520A1 US 41797403 A US41797403 A US 41797403A US 2003195520 A1 US2003195520 A1 US 2003195520A1
Authority
US
United States
Prior art keywords
distractor
disc space
implant
instrument
guide sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/417,974
Inventor
Lawrence Boyd
Eddie Ray
Bradley Estes
J. Burkus
John Dorchak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/417,974 priority Critical patent/US20030195520A1/en
Publication of US20030195520A1 publication Critical patent/US20030195520A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/025Joint distractors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1671Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1739Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
    • A61B17/1757Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/90Identification means for patients or instruments, e.g. tags
    • A61B90/94Identification means for patients or instruments, e.g. tags coded with symbols, e.g. text
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • A61F2/446Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages having a circular or elliptical cross-section substantially parallel to the axis of the spine, e.g. cylinders or frustocones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4611Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1735Guides or aligning means for drills, mills, pins or wires for rasps or chisels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/025Joint distractors
    • A61B2017/0256Joint distractors for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/03Automatic limiting or abutting means, e.g. for safety
    • A61B2090/033Abutting means, stops, e.g. abutting on tissue or skin
    • A61B2090/034Abutting means, stops, e.g. abutting on tissue or skin abutting on parts of the device itself
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30593Special structural features of bone or joint prostheses not otherwise provided for hollow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/3082Grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/3085Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with a threaded, e.g. self-tapping, bone-engaging surface, e.g. external surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/3085Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with a threaded, e.g. self-tapping, bone-engaging surface, e.g. external surface
    • A61F2002/30871Trapezoidal threads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30904Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves serrated profile, i.e. saw-toothed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2002/448Joints for the spine, e.g. vertebrae, spinal discs comprising multiple adjacent spinal implants within the same intervertebral space or within the same vertebra, e.g. comprising two adjacent spinal implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2002/4625Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use
    • A61F2002/4627Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use with linear motion along or rotating motion about the instrument axis or the implantation direction, e.g. telescopic, along a guiding rod, screwing inside the instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4681Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor by applying mechanical shocks, e.g. by hammering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4687Mechanical guides for implantation instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular
    • A61F2250/0063Nested prosthetic parts

Definitions

  • the present invention relates generally to surgical procedures for spinal stabilization and more specifically to instrumentation adapted for inserting a spinal implant within the intervertebral disc space between adjacent vertebra. More particularly, while aspects of the invention may have other applications, the present invention is especially suited for disc space preparation and implant insertion into a disc space from an anterior surgical approach to the spine.
  • the drill guide was thereafter removed following the reaming process to allow for the passage of the bone dowel which had an outer diameter significantly larger than the reamed bore and the inner diameter of the drill guide.
  • the removal of the drill guide left the dowel insertion phase completely unprotected.
  • An initial opening or openings are made in the disc space and the height of the disc space is distracted to approximate normal height.
  • a first distractor is inserted with a height estimated by radiological examination. If additional distraction is required, the first distractor is removed and a second, larger distractor is inserted.
  • the switching of distractors increases the potential for damage to neurovascular structures and may correspondingly increase the time of the procedure.
  • a double barrel sleeve may be inserted over the distractors, with a central extension extending into the disc space to maintain distraction.
  • guide sleeve placement is the amount of neurovascular retraction that must be achieved to place the guide sleeves against the disc space.
  • a double barrel sleeve may not be used because there is insufficient space adjacent the disc space to accept the sleeve assembly.
  • guide sleeves requiring less neurovascular retraction for proper placement and providing greater protection to adjacent tissue.
  • the present invention relates to methods and instrumentation for vertebral interbody fusion.
  • the instruments define a reduced width configuration that allows bilateral insertion of implants into the disc space.
  • a distractor in one aspect of the invention, includes a distractor shaft with a length.
  • a distractor tip extends from on end of the shaft.
  • the distractor tip has opposite first and second surfaces that define a distraction height between the surfaces.
  • the distractor tip has a recessed area, preferably a concave surface, that extends between the first and second surfaces.
  • the distractor shaft may include a recessed area along its length that is an extension of the recessed area of the distractor tip. The recessed area of the distractor and/or shaft may permit the passage of and rotation of surgical devices adjacent thereto.
  • a guide sleeve has a wall that defines a protected passageway to a distracted disc space.
  • the guide sleeve includes a proximal end and a distal end.
  • a pair of overlapping working channels extends between the ends.
  • the sleeve has a first width at the proximal end and a second width at the distal end.
  • the first width is greater than the second width.
  • the reduced second width is provided by reducing the exterior wall thickness of the sleeve at the distal end.
  • a first flange and a second flange extend from the distal end at the reduced wall thickness portions.
  • the flanges have a thickness that corresponds to the reduced wall thickness.
  • the first and second lateral extensions have a height less than the height of the distracted disc space, and inhibit encroachment of adjacent tissue into the distracted disc space.
  • the guide sleeve may include spikes projecting from the sleeve distal end between the flanges to engage the adjacent vertebral bodies.
  • the overlapping working channels are substantially cylindrical.
  • a guide sleeve assembly in another aspect, there is provided a guide sleeve assembly.
  • the assembly includes a sleeve defining a working channel.
  • a first distractor has a first distractor tip with a recessed area along a portion of its length, and a second distractor has a second distractor tip.
  • the recessed surface of the first distractor tip receives at least a portion of the second distractor tip.
  • the recessed area of the first distractor tip is defined by a concave surface and the second distractor tip has opposite convex surfaces, one of which is positioned adjacent the concave surface of the first distractor tip.
  • the first and second distractors define an overlap region in the guide sleeve working channel.
  • a first distractor having first distractor tip with a recessed area and a second concave distractor having a second distractor tip are disposed in side-by-side relation with the distractor tips inserted adjacent the disc space.
  • the distractors are also engaged within the working channel of an outer sleeve. The distractors distract and maintain the disc space at the desired height during the procedure.
  • the outer sleeve is advanced toward the disc space until disposed adjacent the disc space.
  • a driving cap may be positioned over the proximal end of the outer sleeve to apply a driving force thereto.
  • the outer sleeve is then driven into position so that opposing side flanges are positioned in the disc space and spikes on the outer sleeve enter the vertebral bodies.
  • the side flanges do not perform any distraction of the disc space.
  • the second distractor may be removed and a substantially cylindrical working space is provided through the sleeve to the disc space adjacent the first distractor.
  • the working space defines an area that is greater than one half of the area of the working channel of the guide sleeve.
  • Various surgical procedures are performed through the working space, such as reaming, tapping and inserting a threaded implant into the disc space.
  • the first implant is inserted, the second distractor is removed, and the first implant maintains the disc space distraction and defines a working space adjacent the inserted implant.
  • the first implant has a concave side wall to define a portion of a substantially cylindrical working space.
  • the surgical procedures are then repeated to insert a second implant adjacent the first implant.
  • the second implant has a circular cross-section.
  • the implant has a cross-section that mirrors that of the first implant after insertion.
  • outer sleeves according to the present invention have a reduced width portion adjacent the bone engaging distal end to limit the amount of retraction of the surrounding vasculature and neural tissue required for the procedure.
  • the reduced width portion preferably in combination with the previously described overlapping working channels, combine to greatly reduce the overall width of the sleeve.
  • a sleeve assembly includes a pair of opposite side flanges or lateral extensions having a first height. The lateral extensions provide protection from encroachment of tissue into the working area of the disc space.
  • the side flanges of the outer sleeve are not used to maintain distraction of the disc space and thus do not experience the forces of disc space distraction.
  • the flanges and adjacent side walls may be formed with a reduced wall thickness.
  • a further aspect includes the provision of a visualization window along the centerline of the outer sleeve for visual access to the interior working channel while instruments are in the working channel.
  • the present invention contemplates the use of manually adjustable depth stop that is to control the steps of trephining, reaming, tapping, and implant insertion.
  • implant is used in a broad sense throughout the disclosure and is intended to encompass bone dowels, metallic cages and spacers, and other implants used for interbody fusion regardless of shape or material of construction.
  • FIG. 1 a is a perspective view of a distractor according to the present invention.
  • FIG. 1 b is an enlarged front view of the tip of the distractor of FIG. 1 a.
  • FIG. 1 c is an enlarged side view of the tip of the distractor of FIG. 1 a.
  • FIG. 2 a is a perspective view of a distractor according to another aspect of the present invention.
  • FIG. 2 b is an enlarged front view of the tip of the distractor of FIG. 2 a.
  • FIG. 2 c is an enlarged side view of the tip of the distractor of FIG. 2 a.
  • FIG. 2 d is an elevation view of a distractor clip.
  • FIG. 3 is a perspective view of a guide sleeve according to another aspect of the present invention.
  • FIG. 4 is a front view of the guide sleeve of FIG. 3.
  • FIG. 5 is a side view of the guide sleeve of FIG. 3.
  • FIG. 6 is a perspective view of a guide sleeve assembly according to another aspect of the present invention.
  • FIG. 7 is an enlarged end view of the distal end of the guide sleeve assembly of FIG. 6.
  • FIG. 8 is an enlarged end view of the proximal end of the guide sleeve assembly of FIG. 6.
  • FIG. 9 is an anterior to posterior view of a guide sleeve assembly according to FIG. 3, the guide sleeve assembly is positioned in relation to a pair of adjacent vertebral bodies and blood vessels.
  • FIG. 10 is a partial cross-sectional view of the disc space through line 10 - 10 of FIG. 9.
  • FIG. 11 is a perspective view of the guide sleeve assembly during insertion of the distractors into the disc space.
  • FIGS. 11 a and 11 b are front and rear elevation views, respectively, of a distractor driver cap for driving the distractors into the disc space.
  • FIGS. 12 a - 12 b are perspective views of the guide sleeve assembly 150 with an impactor cap disposed thereon prior to seating the guide sleeve.
  • FIGS. 13 is a perspective view of the guide sleeve assembly with an impactor cap disposed thereon.
  • FIG. 14 is a perspective view of the guide sleeve assembly with a slap hammer disposed on one of the distractors.
  • FIGS. 15 a - 15 b are a perspective view and an end view, respectively, of the guide sleeve assembly with a distractor removed.
  • FIGS. 16 a - 16 b are a perspective view and an end view, respectively, of the guide sleeve assembly with a reamer disposed adjacent a distractor.
  • FIGS. 17 a - 17 c are a perspective view, detail view and end view, respectively, of the guide sleeve assembly with a tap disposed adjacent a distractor.
  • FIGS. 18 a - 18 c are a perspective view, detail view and end view, respectively, of the guide sleeve assembly with an implant disposed adjacent a distractor.
  • FIGS. 19 a - 19 c are perspective views and an end view, respectively, of the guide sleeve assembly showing withdrawal of the other distractor.
  • FIGS. 20 a - 20 b are a perspective view and an end view, respectively, of the guide sleeve assembly with a reamer disposed adjacent an implant.
  • FIGS. 21 a - 21 c are a perspective view, detail view and end view, respectively, of the guide sleeve assembly with a tap disposed adjacent an implant.
  • FIGS. 22 a - 22 c are a perspective view, detail view and end view, respectively, of the guide sleeve assembly with an implant disposed adjacent an implant.
  • the present invention relates to methods and instrumentation for performing vertebral interbody fusion.
  • the instruments and methods disclosed herein are particularly useful for anterior lumbar interbody fusion.
  • the surgical instruments and methods according to the present invention are not limited to such an approach, and may find application in, but without limitation, lateral and anterior-lateral approaches to the spine as well.
  • the surgical instruments and methods of the present invention may find application at all vertebral segments of the spine, and in areas other than spinal surgery.
  • Distractor 50 includes a proximal end 53 configured for engagement with conventional tools and handles (not shown) used in operative procedures on the spine.
  • a shaft 54 is joined with a distractor tip 56 .
  • shaft 54 has a hollow interior and a clip hole 55 communicating with the hollow interior; however, the present invention also contemplates a solid shaft 54 .
  • head 56 may be removably attached to shaft 54 .
  • One such removable attachment is more fully disclosed in U.S.
  • Distractor tip 56 is designed such that it can be inserted in a disc space to establish a first working distraction height 72 (see FIG. 1 b ). More specifically, distractor tip 56 has a rounded leading edge 62 that extends to opposing inclined surfaces 58 and 59 , which in turn extend more proximally and blend into substantially planar opposing surfaces 60 and 61 , respectively. Extending between planar surfaces 60 and 61 and proximal the rounded tip 62 are opposite convex surfaces 64 and 66 .
  • Planar surfaces 60 and 61 extend in a substantially parallel alignment along a longitudinal axis A of distractor 50 and define height 72 therebetween. It should be understood that the inclined surfaces 58 and 59 cooperate to aid insertion of the distractor tip 56 into the disc space and to initially distract the disc space to at least a height 72 . If first distraction height 72 is sufficient, further procedures as known in the art may then be carried out to accomplish implant insertion. While a specific distractor has been described in detail, it is contemplated that other known distractor configurations may be substituted for the same without deviating from the scope of this invention.
  • Distractor 80 includes a proximal end 83 configured for engagement with conventional tools and handles (not shown).
  • a shaft 84 is joined with a distractor tip 86 .
  • shaft 84 has a hollow interior and a hole 85 communicating therewith. While an integral shaft and head are shown, head 86 may be removably attached to shaft 84 , as similarly described with respect to the removable attachments disclosed in the '917 patent application.
  • distractor tip 86 is designed such that it can be inserted in a disc space to establish a first working distraction height 72 ′ (see FIG. 2 b ) that is preferably the substantially the same as working height 72 . More specifically, distractor tip 86 has a rounded leading edge 92 that extends to opposing inclined surfaces 88 and 89 which, in turn, extend more proximally and blend into substantially planar opposing surfaces 90 and 91 , respectively.
  • Planar surfaces 90 and 91 extend substantially parallel to longitudinal axis B of distractor 80 to define height 72 ′ therebetween. Extending between planar surfaces 90 and 91 are convex surface 94 and a recessed area defined by opposite concave surface 96 . Along the distractor shaft 84 , there is defined a concave surface 98 that is adjacent to and coplanar with concave surface 96 of distal tip 86 to define a concave surface extending along the length of distractor 80 . In the illustrated embodiment, surface 98 has a slot 87 formed therein communicating with the hollow interior of shaft 84 ; however, it the present invention also contemplates a solid shaft 84 and a shaft 84 without slot 87 .
  • concave surfaces 96 , 98 are configured to receive convex surface 64 or 66 of distractor 50 to reside therein when distractors 50 and 80 are disposed in side-by-side relation. Concave surfaces 96 , 98 also partially define a working space that allows operative procedures to be performed therethrough.
  • FIG. 2 d there is shown a distractor clip 75 having a cross member 76 with first clip member 77 and second clip member 78 extending therefrom. Clip members 77 and 78 are each received in a corresponding one of holes 55 and 85 to couple distractor 50 to distractor 80 . Clip 75 prevents splaying and maintains the relative positioning of distractors 50 , 80 during insertion into the disc space. If first distraction height 72 is sufficient, further procedures as known in the art may then be carried out to accomplish implant insertion. It should be further understood that second distractor 80 has a second width 74 that is less than a first width 70 of first distractor 50 .
  • the distractor heads 56 , 86 may be formed with heights 72 ranging from 6 mm to 24 mm.
  • height 72 of the next sized distractor increases or decreases in 2 mm increments.
  • Guide sleeve 100 has a wall 110 defining a working channel 130 having a figure eight shaped cross-section (FIG. 9) extending in a substantially unobstructed manner from a proximal end 102 to a distal end 104 .
  • Sleeve 100 includes upper windows 106 and 108 formed in wall 110 on at least one side of sleeve 100 for engagement by a removal tool to remove sleeve 100 .
  • the sleeve 100 also includes lower elongated visualization window 112 centered about the longitudinal axis L with an elongated slot 111 extending proximally window 112 .
  • Window 112 provides the surgeon with the ability to visualize the instruments inserted in guide sleeve 100 as well as the openings in the disc space and vertebral bodies, without entirely removing instrumentation from guide sleeve 100 .
  • the reduce width of sleeve 100 allows the use of one window 112 for visualization of implant insertion into its respective bilateral location in the disc space, and separate windows along each insertion path are not necessary.
  • any number of visualization windows and configurations thereof are contemplated herein, such as those described in the '917 patent application.
  • the present invention also contemplates that covers may be used for visualization windows, as described in greater detail in the '917 patent application.
  • a flange ring 155 strengthens sleeve 100 and provides a load transfer member to facilitate transfer of a driving force to sleeve 100 , as described more fully below.
  • Adjacent distal end 104 the material thickness along the exterior outer edge of wall 110 is reduced in order to provide a reduced thickness wall portion 114 and an opposite reduced thickness wall portion (not shown).
  • the reduced thickness wall portions define a smaller cross-sectional area for the sleeve 100 as well as a reduced width extending transverse to the longitudinal axis L.
  • the reduced cross-sectional area and smaller width of guide sleeve 100 reduces the amount of vasculature and neural tissue retraction adjacent the disc space that would otherwise be required to place a similarly sized guide sleeve without the width reduction.
  • Distal end 104 includes a pair of flanges 118 and 120 extending from wall 110 on opposite sides of working channel 130 .
  • Flanges 118 and 120 are configured to extend partially into the disc space.
  • Flanges 118 , 120 are each formed by and are an extension of the corresponding reduced thickness wall portions 114 described above.
  • flanges 118 and 120 do not provide distraction of the disc space but are primarily provided to protect surrounding vessels and neurological structures from damage during the procedures. Since the lateral flanges do not provide structural support for distraction, the material thickness of the flanges and adjacent side walls may be reduced.
  • distal end 104 includes spikes 122 , 124 , positioned between flanges 118 , 120 and a third spike 126 and a fourth spike 128 positioned opposite spikes 122 , 124 between flanges 118 , 120 as shown in FIG. 7. These spikes may be urged into the bone of the adjacent vertebral bodies to hold guide sleeve 100 in a fixed position relative to the vertebral bodies.
  • guide sleeve 100 is shown in front and side views, respectively, to further illustrate an additional aspect of the invention.
  • a proximal end 102 the guide sleeve 100 has a maximum width W1.
  • wall 110 has a reduced wall thickness at side walls 114 and 113 defining a width W2 that is less than width W1.
  • the side walls 113 , 114 are preferably not entirely flat and have a slight curvature.
  • Side walls 113 , 114 provide a reduction in wall thickness of wall 110 and taper to the full wall thickness of wall 110 at the termination of side walls 113 and 114 .
  • the reduction in width of wall 110 decreases the amount of vasculature and neural tissue retraction in the area adjacent the disc space.
  • the desirable reduction in width is accomplished with little reduction in the required strength of the device since distractors 50 , 80 are used to distract and maintain the distraction of the vertebral bodies instead of the extensions or side flanges 118 , 120 of guide sleeve 100 .
  • FIGS. 4 and 9 There are also shown in FIGS. 4 and 9 a first working channel portion 107 , defined about axis L1, and a second working channel portion 109 , defined about axis L2. These working channel portions 107 , 109 are positioned on either side of longitudinal axis L of sleeve 100 . There is no wall or other structure separating working channel portions 107 and 109 .
  • Working channel portion 107 is that portion of working channel 130 about axis L1 between longitudinal axis L and inside surface of 116 of guide sleeve 100 .
  • working channel portion 109 is that portion of working channel 130 about axis L2 between longitudinal axis L and inside surface 116 .
  • working channel portions 107 and 109 are substantially equal in area, and each has a truncated circular shape, with the truncated portions of each working channel 107 and 109 positioned adjacent one another.
  • FIG. 6 there is illustrated a distractor/guide sleeve assembly 150 that includes distractors 50 and 80 disposed within working channel 130 of guide sleeve 100 in side-by-side relation.
  • Distractors 50 , 80 reside within sleeve 100 with each distractor substantially occupying all or a portion of a corresponding one of working channel portions 107 and 109 of working channel 130 .
  • Each distractor 50 , 80 extends from proximal end 102 to distal end 104 of the guide sleeve 100 .
  • Flange ring 155 is in the form of a flange extending about the proximal end 102 of guide sleeve 100 and contacts a driving cap positioned on distractors 50 , 80 in order to maintain the relative positioning between sleeve 100 and distractors 50 , 80 during insertion of assembly 150 .
  • FIG. 7 there is illustrated an end view at distal end 104 of the assembly 150 showing distractors 50 and 80 in side-by-side relation. More particularly, shaft 54 of distractor 50 is received within concave portion 98 of distractor shaft 84 . As also illustrated in this view, concave portion 96 of distractor tip 86 is coextensive with concave surface 98 to form a concave surface that extends the length of the distractor 80 .
  • the concave surface of distractor 80 has a radius of curvature R that is preferably about one half the diameter of the cage or implant to be inserted into the disc space. For example, an 18 mm diameter implant requires use of a distractor 80 having a radius of curvature R of about 9 mm.
  • the cylindrical working space includes that portion of the working channel 130 between concave surfaces 96 , 98 and inside wall 116 of the guide sleeve 100 .
  • the working space occupies substantially all of working channel portion 107 , (FIG. 4) and a portion of working channel portion 109 .
  • the area of the portion of the working channel portion 109 occupied by the cylindrical working space is indicated in FIG. 7 by the hatched area A, and is hereinafter referred to as the overlap region.
  • This overlap region A allows operative procedures to be performed in the working space adjacent the distractor 80 using conventionally sized tools and implements while providing a guide sleeve 100 of reduced overall width.
  • the amount of width reduction achieved is approximately the maximum width of overlap region A.
  • shaft 84 need not have a recessed area to provide a cylindrical working space in the disc space, but rather can be provided with a reduced diameter or size that maintains access to the overlap region A in the disc space.
  • FIG. 8 there is shown a top view of the guide sleeve assembly 150 , looking down on proximal ends 53 , 83 of the distractors 50 , 80 and the proximal end 102 of guide sleeve 100 .
  • a locking segment 140 formed with and extending from the distractor shaft 54 .
  • Locking segment 140 has a first projection 142 and a second projection 144 .
  • First and second projections 142 , 144 are received within corresponding notches 146 , 148 defined in concave surface 98 of shaft 84 of distractor 80 to prevent rotation of distractors 50 and 80 with respect to one another.
  • the present invention also contemplates other mechanisms for engaging distractors 50 and 80 to prevent rotation relative to one another as would occur to those of ordinary skill in the art.
  • the above described distractor clip 75 can be used to couple the distractors 50 , 80 together.
  • the distractors 50 , 80 may be inserted without any locking mechanism.
  • the present invention contemplates that access to the disc space has heretofore been provided by known surgical techniques and therefore will not be further described herein.
  • the use of intraoperative templates for providing access to the disc space is known in the art.
  • One example of a procedure for gaining access to the disc space is disclosed in the '917 patent application.
  • Another reference including techniques for template positioning and disc space distraction using a starter distractor to initially distract the disc space is the surgical technique brochure entitled Reduced Profile Instrumentation published in 1999 by Sofamor Danek, said brochure being incorporated by reference herein in its entirety (hereinafter the Danek brochure.)
  • the present invention also contemplates the use and application of other procedures for gaining access to the disc space in conjunction with the procedures and instruments discussed below as would occur to those skilled in the art.
  • templates contemplated herein define the area necessary for placement of implants and instruments having a specific configuration and size. While in a preferred embodiment, templates are provided for cylindrical implants having diameters ranging from 16 mm to 24 mm, it is contemplated that other diameters of implant and templates for use therewith may be used and other shapes, such as, but without limitation, squares and rectangles.
  • Blood vessels particularly the aorta, vena cava, and branches thereof are mobilized to provide space for bilateral implant placement.
  • the template is inserted into the body and advanced until the pins are disposed adjacent a disc space.
  • the circumference of the template is selected to correspond to the circumference needed for bilateral placement of a pair of implants. More specifically, the area of the template closely approximates the area needed for placement of the guide sleeve disclosed herein, such as that shown in FIG. 7. It is contemplated that a guide sleeve 100 need not necessarily be used, and tissue to the surgical site is retracted by other means while the disc space is distracted by distractors 50 and 80 . The surgical procedures are then performed in the working space defined by the distractors 50 , 80 as discussed below without use of a guide sleeve.
  • FIG. 9 a cross section through guide sleeve 100 , with distractors 50 , 80 removed for clarity, is provided.
  • Sleeve 100 is inserted into a disc space D between two adjacent vertebra V1 and V2.
  • vessels 560 and 562 graphically representing portions of the aorta or vena cava.
  • FIG. 10 a cross-section through line 10 - 10 of FIG. 9, sleeve 100 , flanges 118 , 120 on guide sleeve 100 extend into the disc space where the surgical procedures are being performed.
  • Flanges 118 , 120 and sleeve 100 inhibit contact between vessels and tissue surrounding the disc space and the tools used during the surgical procedure.
  • Spikes 122 , 124 , 126 , and 128 may be inserted into the bone of the corresponding vertebral body V1, V2.
  • FIGS. 11 through 22 the sleeve assembly is assembled and prepared for insertion through the skin and to the disc space.
  • Distractor driver cap 250 of FIGS. 1 a and 1 b is positioned on proximal end 53 , 83 of distractors 50 , 80 .
  • Driver cap 250 includes a body 252 having T-shaped slots 253 and 254 configured to receive flanged posts 53 a and 83 a of distractors 50 and 80 , respectively.
  • Opposite slots 253 , 254 are windows 256 and 257 .
  • the flanged portion of posts 53 a and 83 a extend into a corresponding one of the windows 256 and 257 and also into a corresponding one of the upper portions 253 a and 254 a of slots 253 and 254 to secure driver cap 250 to distractors 50 , 80 .
  • distractor cap 250 contacts flange ring 155 with distractors 50 , 80 in sleeve 100 such that distractor tips 56 , 86 can be driven into the disc space while flanges 118 , 120 remain positioned outside the disc space.
  • the driving force applied to distractor cap 250 is transmitted to flange ring 155 , and drives sleeve 100 towards the disc space along with distractors 50 , 80 .
  • distractor cap 250 is secured to proximal ends 53 , 83 and distractor tips 56 , 86 are driven into the disc space.
  • Distractor cap 250 is then removed and sleeve 100 placed over the inserted distractors 50 , 80 and the procedure continues as discussed below.
  • clip 75 may be used to couple distractors 50 , 80 together during insertion.
  • alternating insertion of distractors 50 , 80 is not precluded by the present invention.
  • insertion of distractors 50 , 80 into the disc space simultaneously enables the surgeon maintain the positioning of distractors 50 , 80 and control the depth of insertion of distractor tips 56 , 86 with respect to one another.
  • an impactor cap 160 is disposed about proximal end 102 of sleeve 100 over flange ring 155 .
  • Sleeve 100 is now relatively free to move with respect to distractors 50 , 80 .
  • a driving force is applied to impactor cap 160 to drive sleeve 100 towards the disc space and position flanges 118 and 120 therein adjacent the distractor tips 56 , 86 already positioned into the disc space as shown in FIG. 12 b.
  • flanges 118 and 120 do not distract the disc space and prevent migration of tissue into the working space when distractor 50 , 80 is removed from sleeve 100 .
  • impactor cap 160 is positioned around and contacts the flange ring 155 .
  • Flange ring 155 is preferably of uniform size and shape for various sized guide sleeves 100 , thus providing a modular attachment to each of the various sized guide sleeves for a single impactor cap 160 .
  • Impactor cap 160 has a hollow interior 161 for receiving proximal ends 53 , 83 .
  • Hollow interior 161 has a depth d sufficient to allow movement of guide sleeve 100 into the disc space while the position of distractors 50 , 80 is maintained.
  • a slap hammer 165 is engaged to distractor 50 in order to withdrawal distractor 50 from the disc space.
  • the distractor 50 is removed from the working channel 130 of sleeve 110 using the slap hammer 165 .
  • the distractor tip 86 of concave distractor 80 remains disposed in the disc space to maintain the disc space distraction height during subsequent operative steps.
  • shaft 84 of distractor 80 is removably connected to tip 86 , in which case the shaft may be withdrawn while leaving tip 86 in place.
  • shaft 84 has a reduced size to accommodate insertion and rotation of devices into overlap region A of the disc space. With a removable or smaller diameter shaft, only tip 86 requires a recessed area.
  • the withdrawn distractor 50 leaves a working space comprised of working channel portion 109 and an overlap portion, indicated by hatched area A.
  • the concave surfaces 96 , 98 of distractor 80 and inside surface 116 of sleeve 110 define a substantially cylindrical working space for completion of further operative procedures as described further below.
  • the working space defines a substantially circular cross section along guide sleeve 100 that is adapted for receiving surgical tools therethrough to prepare the disc space for insertion of an implant.
  • the overlapping configuration of distractors 50 , 80 provides a reduced overall width for guide sleeve 100 .
  • FIGS. 16 a - 16 b there is shown a reamer 170 disposed through guide sleeve 110 .
  • a cutting head 171 has threads as known in the art to ream the disc space.
  • reamer 170 is positioned within the working space adjacent distractor 80 , while distractor tip 86 maintains the disc space distraction.
  • Concave surface 98 of shaft 84 of distractor 80 and the inside surface 116 of sleeve 110 acts as a guide for insertion and/or withdrawal of reamer 170 .
  • the depth of reaming can be controlled with a depth stop 172 and verified via fluoroscopy
  • tapping tool 175 is positioned within the working space adjacent the concave distractor 80 , while distractor tip 86 maintains the disc space distraction.
  • the concave surface 98 of shaft 84 of distractor 80 and inside surface 116 of sleeve 110 acts as a guide for insertion of tapping tool 175 .
  • Tapping tool 175 has a depth stop 178 to control the tapping depth in the disc space. Depth and sagittal alignment can also be verified via fluoroscopy during tapping.
  • Threaded implant 200 and insertion device 190 may be any one of the types and configuration disclosed in a first pending PCT Application No. PCT/US00/00590 filed on Jan. 11, 2000 and a second PCT Application No. PCT[US00/00604, also filed Jan. 11, 2000; each claiming priority to U.S. Provisional Application No. 60/115, 388, filed Jan. 11, 1999, each of said above referenced PCT applications being incorporated by reference herein in its entirety.
  • the implants of the present invention may be any other known implant and insertion device, so long as at least one implant has at least one recessed side wall.
  • the implants may be formed of any biocompatible material. Concave surface 98 of shaft 84 of distractor 80 and inside surface 116 of sleeve 110 acts as a guide for insertion of the implant into the disc space.
  • Inserter 190 includes a thumbscrew 191 having a threaded shaft (not shown) extending through inserter 190 to couples implant 200 thereto via an internally threaded opening in a slotted end 201 (FIG. 19) of implant 200 .
  • T-handle 192 is used to rotate implant 200 and thread it into the disc space, as shown in the enlarged view of FIG. 18 b.
  • implant 200 is inserted so that a concave face 202 is disposed toward concave surface 96 of distractor 80 . This positioning of concave face 202 can be confirmed by providing alignment markings on insertion device 190 and sleeve 100 .
  • insertion device 190 includes countersink marking 193 to provide an indication of the countersink of implant 200 into the disc space.
  • inserter 190 can be provided with a movable slide at its distal end that occupies the recessed area of concave surface 202 providing a round construct for threading. While implant 200 is threaded into place, distractor tip 86 maintains the disc space distraction.
  • FIGS. 19 a - 19 b when implant 200 is placed in the desired position, and implant inserter 190 is removed from guide sleeve 100 , distractor tip 86 is withdrawn from the disc space.
  • a slap hammer 165 is engaged to distractor 80 in order to withdraw distractor tip 86 from the disc space and distractor 80 from guide sleeve 100 .
  • distractor 80 is removed from working channel 130 of sleeve 110 .
  • Implant 200 remains disposed in the disc space to maintain the disc space distraction height during subsequent operative steps.
  • the withdrawn distractor 80 leaves a working space comprised of working channel portion 107 and an overlap region A.
  • concave surface 202 of implant 200 and inside surface 116 of sleeve 110 define a cylindrical working space in the disc space for further procedures as described below.
  • the working space defines a circular cross section that is adapted for receiving conventionally sized surgical tools to prepare the disc space for insertion of a second implant adjacent implant 200 , while providing a reduced overall width.
  • FIGS. 20 a - 20 b the above described reamer 170 is disposed through guide sleeve 110 .
  • Cutting head 171 has threads as known in the art to ream the disc space.
  • reamer 170 is positioned within the working space adjacent the concave surface 201 of implant 200 , while implant 200 maintains the disc space distraction.
  • the concave surface 201 of implant 200 and inside surface 116 of sleeve 110 acts as a guide for insertion and operation of reamer 170 .
  • FIGS. 21 a - 21 c reamer 170 is withdrawn and replaced by the above-described tapping tool 175 with head 176 to prepare the space for a second threaded implant.
  • head 176 of tapping tool 175 is positioned within the working space adjacent concave surface 201 of implant 200 , while implant 200 maintains the disc space distraction.
  • the concave surface 201 and inside surface 116 of sleeve 110 acts as a guide for insertion of tapping tool 175 .
  • Threaded implant 210 may either have a circular cross-section, such as that shown in solid lines in enlarged FIGS. 22 b and 22 c, or have a cross-section identical to implant 200 with a concave surface 202 as shown in hidden lines. In either event, concave surface 201 of implant 200 acts as a guide for threading of implant 210 into the disc space.
  • implant 210 If an implant like that of implant 200 is used, it is preferred to position implant 210 so that its concave surface 212 ′ is disposed towards concave surface 202 of implant 200 , forming a cavity 215 ′ therebetween as indicated in dashed lines in FIG. 22 c. The cavity may then be packed with bone growth promoting material. T-handle 192 is used to rotate implant 210 and thread it into the disc space, as shown in FIG. 22 b, adjacent to implant 200 . If a circular implant similar to that shown in FIG. 22 c is used, implant 210 is nested within concave surface 201 of implant 200 . Bone growth material can be placed in cavity 204 of implant 200 and in cavity 213 of implant 210 .
  • the present invention likewise contemplates using push-in type implants and/or expandable implants in the disc space. Also, while it is preferred that the present invention be utilized for insertion of two implants at bilateral locations within the disc space, insertion of a single implant into the disc space is also contemplated herein.
  • the present invention makes use of depth stops and other devices for measuring and controlling the depth of the various procedures performed in the disc space. These devices and procedures are more fully explained in the Danek brochure and in the '917 patent application. Additionally, the present invention is not limited to use with the tools and instruments described above, and guide sleeve 100 and distractors 50 , 80 may be used with other such devices as would normally occur to those skilled in the art to which the invention relates.

Abstract

A method and instrumentation particularly adapted for disc space preparation from an anterior approach to the spine. The invention provides an improved guide sleeve defining a channel having overlapping cylindrical working channel portions and lateral non-distracting extensions extending from reduced thickness wall portions. The guide sleeve has an overall reduced width configuration adjacent the distal end due to the overlapping working channel portions and reduced thickness wall portions. A pair of distractors are provided. A first distractor includes a shaft and distal tip, each having convex walls. A second distractor includes a shaft and distal tip including a recessed area at least along the tip. The first distractor is at least partially received within the recessed area of the second distractor when the first and second distractors are in side-by-side relation and a reduced overall width of the distractors is obtained. Preferably, the first and second distractors are used with the guide sleeve. A method of using the disclosed instruments is also provided.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 09/498,426, filed on Feb. 4, 2000, which claims the benefit of the filing date of Provisional Application Serial No. 60/118,793, filed Feb. 4, 1999, each of which are incorporated herein by reference in their entirety.[0001]
  • BACKGROUND OF THE INVENTION
  • The present invention relates generally to surgical procedures for spinal stabilization and more specifically to instrumentation adapted for inserting a spinal implant within the intervertebral disc space between adjacent vertebra. More particularly, while aspects of the invention may have other applications, the present invention is especially suited for disc space preparation and implant insertion into a disc space from an anterior surgical approach to the spine. [0002]
  • Various surgical methods have been devised for the implantation of fusion devices into the disc space. Both anterior and posterior surgical approaches have been used for interbody fusions. In 1956, Ralph Cloward developed a method and instrumentation for anterior spinal interbody fusion of the cervical spine. Cloward surgically removed the disc material and placed a tubular drill guide with a large foot plate and prongs over an alignment rod and then embedded the prongs into adjacent vertebrae. The drill guide served to maintain the alignment of the vertebrae and facilitated the reaming out of bone material adjacent the disc space. The reaming process created a bore to accommodate a bone dowel implant. The drill guide was thereafter removed following the reaming process to allow for the passage of the bone dowel which had an outer diameter significantly larger than the reamed bore and the inner diameter of the drill guide. The removal of the drill guide left the dowel insertion phase completely unprotected. [0003]
  • More recent techniques have advanced this concept and have provided further protection for sensitive tissue during disc space preparation and dowel insertion. Such techniques have been applied to an anterior approach to the lumbar spine. [0004]
  • An initial opening or openings are made in the disc space and the height of the disc space is distracted to approximate normal height. Typically, a first distractor is inserted with a height estimated by radiological examination. If additional distraction is required, the first distractor is removed and a second, larger distractor is inserted. However, since the positioning of the distractors is performed without the benefit of protective guide sleeves, the switching of distractors increases the potential for damage to neurovascular structures and may correspondingly increase the time of the procedure. [0005]
  • For bilateral procedures, a double barrel sleeve may be inserted over the distractors, with a central extension extending into the disc space to maintain distraction. One limitation on guide sleeve placement is the amount of neurovascular retraction that must be achieved to place the guide sleeves against the disc space. For some patients, a double barrel sleeve may not be used because there is insufficient space adjacent the disc space to accept the sleeve assembly. Thus, there remains a need for guide sleeves requiring less neurovascular retraction for proper placement and providing greater protection to adjacent tissue. [0006]
  • While the above-described techniques are advances, improvement is still needed to reduce the procedure time by utilization of improved instruments and techniques, to reduce the potential for damage to sensitive tissue adjacent the disc space, and to limit the amount of vessel retraction necessary to utilize the protective instrumentation. The present invention is directed to this need and provides more effective methods and instrumentation for achieving the same. [0007]
  • SUMMARY OF THE INVENTION
  • The present invention relates to methods and instrumentation for vertebral interbody fusion. In one aspect of the invention, the instruments define a reduced width configuration that allows bilateral insertion of implants into the disc space. [0008]
  • In one aspect of the invention, a distractor is provided that includes a distractor shaft with a length. A distractor tip extends from on end of the shaft. The distractor tip has opposite first and second surfaces that define a distraction height between the surfaces. The distractor tip has a recessed area, preferably a concave surface, that extends between the first and second surfaces. Optionally, the distractor shaft may include a recessed area along its length that is an extension of the recessed area of the distractor tip. The recessed area of the distractor and/or shaft may permit the passage of and rotation of surgical devices adjacent thereto. [0009]
  • In another aspect of the present invention, a guide sleeve has a wall that defines a protected passageway to a distracted disc space. The guide sleeve includes a proximal end and a distal end. A pair of overlapping working channels extends between the ends. The sleeve has a first width at the proximal end and a second width at the distal end. The first width is greater than the second width. The reduced second width is provided by reducing the exterior wall thickness of the sleeve at the distal end. Preferably, a first flange and a second flange extend from the distal end at the reduced wall thickness portions. Preferably, the flanges have a thickness that corresponds to the reduced wall thickness. Still more preferably, the first and second lateral extensions have a height less than the height of the distracted disc space, and inhibit encroachment of adjacent tissue into the distracted disc space. In another form, the guide sleeve may include spikes projecting from the sleeve distal end between the flanges to engage the adjacent vertebral bodies. In a further form, the overlapping working channels are substantially cylindrical. [0010]
  • In another aspect, there is provided a guide sleeve assembly. The assembly includes a sleeve defining a working channel. A first distractor has a first distractor tip with a recessed area along a portion of its length, and a second distractor has a second distractor tip. With the first distractor disposed in the working channel of the sleeve in side-by-side relation with the second distractor, the recessed surface of the first distractor tip receives at least a portion of the second distractor tip. In one form, the recessed area of the first distractor tip is defined by a concave surface and the second distractor tip has opposite convex surfaces, one of which is positioned adjacent the concave surface of the first distractor tip. In another form, the first and second distractors define an overlap region in the guide sleeve working channel. [0011]
  • In a method according to the present invention, access is gained to a disc space. A first distractor having first distractor tip with a recessed area and a second concave distractor having a second distractor tip are disposed in side-by-side relation with the distractor tips inserted adjacent the disc space. Preferably, the distractors are also engaged within the working channel of an outer sleeve. The distractors distract and maintain the disc space at the desired height during the procedure. Once the desired distraction of the disc space has been achieved, the outer sleeve is advanced toward the disc space until disposed adjacent the disc space. If necessary, a driving cap may be positioned over the proximal end of the outer sleeve to apply a driving force thereto. [0012]
  • The outer sleeve is then driven into position so that opposing side flanges are positioned in the disc space and spikes on the outer sleeve enter the vertebral bodies. Preferably, the side flanges do not perform any distraction of the disc space. Once the outer sleeve is positioned, the second distractor may be removed and a substantially cylindrical working space is provided through the sleeve to the disc space adjacent the first distractor. Preferably, the working space defines an area that is greater than one half of the area of the working channel of the guide sleeve. [0013]
  • Various surgical procedures are performed through the working space, such as reaming, tapping and inserting a threaded implant into the disc space. Once the first implant is inserted, the second distractor is removed, and the first implant maintains the disc space distraction and defines a working space adjacent the inserted implant. Preferably, the first implant has a concave side wall to define a portion of a substantially cylindrical working space. The surgical procedures are then repeated to insert a second implant adjacent the first implant. In one embodiment, the second implant has a circular cross-section. In another embodiment, the implant has a cross-section that mirrors that of the first implant after insertion. [0014]
  • Although various sleeves are known in the art, in a preferred embodiment, outer sleeves according to the present invention have a reduced width portion adjacent the bone engaging distal end to limit the amount of retraction of the surrounding vasculature and neural tissue required for the procedure. The reduced width portion, preferably in combination with the previously described overlapping working channels, combine to greatly reduce the overall width of the sleeve. In a preferred form, a sleeve assembly includes a pair of opposite side flanges or lateral extensions having a first height. The lateral extensions provide protection from encroachment of tissue into the working area of the disc space. Preferably, the side flanges of the outer sleeve are not used to maintain distraction of the disc space and thus do not experience the forces of disc space distraction. As a result, the flanges and adjacent side walls may be formed with a reduced wall thickness. [0015]
  • A further aspect includes the provision of a visualization window along the centerline of the outer sleeve for visual access to the interior working channel while instruments are in the working channel. Even without the use of an imaging system, the present invention contemplates the use of manually adjustable depth stop that is to control the steps of trephining, reaming, tapping, and implant insertion. The term implant is used in a broad sense throughout the disclosure and is intended to encompass bone dowels, metallic cages and spacers, and other implants used for interbody fusion regardless of shape or material of construction. [0016]
  • Related objects, advantages, aspects, forms, and features of the present invention will be apparent from the following description. [0017]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1[0018] a is a perspective view of a distractor according to the present invention.
  • FIG. 1[0019] b is an enlarged front view of the tip of the distractor of FIG. 1a.
  • FIG. 1[0020] c is an enlarged side view of the tip of the distractor of FIG. 1a.
  • FIG. 2[0021] a is a perspective view of a distractor according to another aspect of the present invention.
  • FIG. 2[0022] b is an enlarged front view of the tip of the distractor of FIG. 2a.
  • FIG. 2[0023] c is an enlarged side view of the tip of the distractor of FIG. 2a.
  • FIG. 2[0024] d is an elevation view of a distractor clip.
  • FIG. 3 is a perspective view of a guide sleeve according to another aspect of the present invention. [0025]
  • FIG. 4 is a front view of the guide sleeve of FIG. 3. [0026]
  • FIG. 5 is a side view of the guide sleeve of FIG. 3. [0027]
  • FIG. 6 is a perspective view of a guide sleeve assembly according to another aspect of the present invention. [0028]
  • FIG. 7 is an enlarged end view of the distal end of the guide sleeve assembly of FIG. 6. [0029]
  • FIG. 8 is an enlarged end view of the proximal end of the guide sleeve assembly of FIG. 6. [0030]
  • FIG. 9 is an anterior to posterior view of a guide sleeve assembly according to FIG. 3, the guide sleeve assembly is positioned in relation to a pair of adjacent vertebral bodies and blood vessels. [0031]
  • FIG. 10 is a partial cross-sectional view of the disc space through line [0032] 10-10 of FIG. 9.
  • FIG. 11 is a perspective view of the guide sleeve assembly during insertion of the distractors into the disc space. [0033]
  • FIGS. 11[0034] a and 11 b are front and rear elevation views, respectively, of a distractor driver cap for driving the distractors into the disc space.
  • FIGS. 12[0035] a-12 b are perspective views of the guide sleeve assembly 150 with an impactor cap disposed thereon prior to seating the guide sleeve.
  • FIGS. [0036] 13 is a perspective view of the guide sleeve assembly with an impactor cap disposed thereon.
  • FIG. 14 is a perspective view of the guide sleeve assembly with a slap hammer disposed on one of the distractors. [0037]
  • FIGS. 15[0038] a-15 b are a perspective view and an end view, respectively, of the guide sleeve assembly with a distractor removed.
  • FIGS. 16[0039] a-16 b are a perspective view and an end view, respectively, of the guide sleeve assembly with a reamer disposed adjacent a distractor.
  • FIGS. 17[0040] a-17 c are a perspective view, detail view and end view, respectively, of the guide sleeve assembly with a tap disposed adjacent a distractor.
  • FIGS. 18[0041] a-18 c are a perspective view, detail view and end view, respectively, of the guide sleeve assembly with an implant disposed adjacent a distractor.
  • FIGS. 19[0042] a-19 c are perspective views and an end view, respectively, of the guide sleeve assembly showing withdrawal of the other distractor.
  • FIGS. 20[0043] a-20 b are a perspective view and an end view, respectively, of the guide sleeve assembly with a reamer disposed adjacent an implant.
  • FIGS. 21[0044] a-21 c are a perspective view, detail view and end view, respectively, of the guide sleeve assembly with a tap disposed adjacent an implant.
  • FIGS. 22[0045] a-22 c are a perspective view, detail view and end view, respectively, of the guide sleeve assembly with an implant disposed adjacent an implant.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated device, and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art to which the invention relates. [0046]
  • The present invention relates to methods and instrumentation for performing vertebral interbody fusion. Specifically, although aspects of the present invention may have other uses either alone or in combination, the instruments and methods disclosed herein are particularly useful for anterior lumbar interbody fusion. However, the surgical instruments and methods according to the present invention are not limited to such an approach, and may find application in, but without limitation, lateral and anterior-lateral approaches to the spine as well. Also, the surgical instruments and methods of the present invention may find application at all vertebral segments of the spine, and in areas other than spinal surgery. [0047]
  • Referring now to FIGS. 1[0048] a-c, there is shown a convex or first disc space distractor 50 according to one aspect of the present invention. Distractor 50 includes a proximal end 53 configured for engagement with conventional tools and handles (not shown) used in operative procedures on the spine. A shaft 54 is joined with a distractor tip 56. In the illustrated embodiment, shaft 54 has a hollow interior and a clip hole 55 communicating with the hollow interior; however, the present invention also contemplates a solid shaft 54. Also, while an integral shaft and head are shown, head 56 may be removably attached to shaft 54. One such removable attachment is more fully disclosed in U.S. patent application entitled METHOD AND INSTRUMENTATION FOR VERTEBRAL INTERBODY FUSION, Ser. No. 09/287,917, filed Apr. 7, 1999, which is incorporated herein by reference in its entirety (hereinafter referred to as the '917 patent application.) Distractor tip 56 is designed such that it can be inserted in a disc space to establish a first working distraction height 72 (see FIG. 1b). More specifically, distractor tip 56 has a rounded leading edge 62 that extends to opposing inclined surfaces 58 and 59, which in turn extend more proximally and blend into substantially planar opposing surfaces 60 and 61, respectively. Extending between planar surfaces 60 and 61 and proximal the rounded tip 62 are opposite convex surfaces 64 and 66.
  • Planar surfaces [0049] 60 and 61 extend in a substantially parallel alignment along a longitudinal axis A of distractor 50 and define height 72 therebetween. It should be understood that the inclined surfaces 58 and 59 cooperate to aid insertion of the distractor tip 56 into the disc space and to initially distract the disc space to at least a height 72. If first distraction height 72 is sufficient, further procedures as known in the art may then be carried out to accomplish implant insertion. While a specific distractor has been described in detail, it is contemplated that other known distractor configurations may be substituted for the same without deviating from the scope of this invention.
  • Referring now to FIGS. 2[0050] a-c, there is shown a second disc space distractor 80 according to one aspect of the present invention. Distractor 80 includes a proximal end 83 configured for engagement with conventional tools and handles (not shown). A shaft 84 is joined with a distractor tip 86. In the illustrated embodiment, shaft 84 has a hollow interior and a hole 85 communicating therewith. While an integral shaft and head are shown, head 86 may be removably attached to shaft 84, as similarly described with respect to the removable attachments disclosed in the '917 patent application. Similar to distractor tip 56 of distractor 50, distractor tip 86 is designed such that it can be inserted in a disc space to establish a first working distraction height 72′ (see FIG. 2b) that is preferably the substantially the same as working height 72. More specifically, distractor tip 86 has a rounded leading edge 92 that extends to opposing inclined surfaces 88 and 89 which, in turn, extend more proximally and blend into substantially planar opposing surfaces 90 and 91, respectively.
  • Planar surfaces [0051] 90 and 91 extend substantially parallel to longitudinal axis B of distractor 80 to define height 72′ therebetween. Extending between planar surfaces 90 and 91 are convex surface 94 and a recessed area defined by opposite concave surface 96. Along the distractor shaft 84, there is defined a concave surface 98 that is adjacent to and coplanar with concave surface 96 of distal tip 86 to define a concave surface extending along the length of distractor 80. In the illustrated embodiment, surface 98 has a slot 87 formed therein communicating with the hollow interior of shaft 84; however, it the present invention also contemplates a solid shaft 84 and a shaft 84 without slot 87. As explained more fully below, concave surfaces 96, 98 are configured to receive convex surface 64 or 66 of distractor 50 to reside therein when distractors 50 and 80 are disposed in side-by-side relation. Concave surfaces 96, 98 also partially define a working space that allows operative procedures to be performed therethrough.
  • It should be understood that the [0052] inclined surfaces 88 and 89 cooperate to aid insertion of distractor tip 86 into the disc space, and to distract the disc space and maintain disc space distraction to at least a height 72, 72′. To further aid in distractor insertion, in FIG. 2d there is shown a distractor clip 75 having a cross member 76 with first clip member 77 and second clip member 78 extending therefrom. Clip members 77 and 78 are each received in a corresponding one of holes 55 and 85 to couple distractor 50 to distractor 80. Clip 75 prevents splaying and maintains the relative positioning of distractors 50, 80 during insertion into the disc space. If first distraction height 72 is sufficient, further procedures as known in the art may then be carried out to accomplish implant insertion. It should be further understood that second distractor 80 has a second width 74 that is less than a first width 70 of first distractor 50.
  • Specifically, but without limitation, the distractor heads [0053] 56, 86 may be formed with heights 72 ranging from 6 mm to 24 mm. Preferably, height 72 of the next sized distractor increases or decreases in 2 mm increments. Other variations and may be provided as long as the working distractor height provided approximates the disc height in a normal spine and accommodates insertion of an implant into the disc space as more fully described below.
  • Referring now to FIG. 3, there is shown a [0054] guide sleeve 100 that is useful with the distractors 50 and 80 described above. Guide sleeve 100 has a wall 110 defining a working channel 130 having a figure eight shaped cross-section (FIG. 9) extending in a substantially unobstructed manner from a proximal end 102 to a distal end 104. Sleeve 100 includes upper windows 106 and 108 formed in wall 110 on at least one side of sleeve 100 for engagement by a removal tool to remove sleeve 100. The sleeve 100 also includes lower elongated visualization window 112 centered about the longitudinal axis L with an elongated slot 111 extending proximally window 112. Window 112 provides the surgeon with the ability to visualize the instruments inserted in guide sleeve 100 as well as the openings in the disc space and vertebral bodies, without entirely removing instrumentation from guide sleeve 100. The reduce width of sleeve 100 allows the use of one window 112 for visualization of implant insertion into its respective bilateral location in the disc space, and separate windows along each insertion path are not necessary. However, it should be understood that any number of visualization windows and configurations thereof are contemplated herein, such as those described in the '917 patent application. The present invention also contemplates that covers may be used for visualization windows, as described in greater detail in the '917 patent application.
  • At [0055] proximal end 102 is provided a flange ring 155. Flange ring 155 strengthens sleeve 100 and provides a load transfer member to facilitate transfer of a driving force to sleeve 100, as described more fully below. Adjacent distal end 104, the material thickness along the exterior outer edge of wall 110 is reduced in order to provide a reduced thickness wall portion 114 and an opposite reduced thickness wall portion (not shown). The reduced thickness wall portions define a smaller cross-sectional area for the sleeve 100 as well as a reduced width extending transverse to the longitudinal axis L. The reduced cross-sectional area and smaller width of guide sleeve 100 reduces the amount of vasculature and neural tissue retraction adjacent the disc space that would otherwise be required to place a similarly sized guide sleeve without the width reduction.
  • [0056] Distal end 104 includes a pair of flanges 118 and 120 extending from wall 110 on opposite sides of working channel 130. Flanges 118 and 120 are configured to extend partially into the disc space. Flanges 118, 120 are each formed by and are an extension of the corresponding reduced thickness wall portions 114 described above. In a preferred embodiment, flanges 118 and 120 do not provide distraction of the disc space but are primarily provided to protect surrounding vessels and neurological structures from damage during the procedures. Since the lateral flanges do not provide structural support for distraction, the material thickness of the flanges and adjacent side walls may be reduced. Additionally, distal end 104 includes spikes 122, 124, positioned between flanges 118, 120 and a third spike 126 and a fourth spike 128 positioned opposite spikes 122, 124 between flanges 118, 120 as shown in FIG. 7. These spikes may be urged into the bone of the adjacent vertebral bodies to hold guide sleeve 100 in a fixed position relative to the vertebral bodies.
  • Referring to FIGS. 4 and 5, [0057] guide sleeve 100 is shown in front and side views, respectively, to further illustrate an additional aspect of the invention. A proximal end 102 the guide sleeve 100 has a maximum width W1. At distal end 104 of sleeve 100, wall 110 has a reduced wall thickness at side walls 114 and 113 defining a width W2 that is less than width W1. The side walls 113, 114 are preferably not entirely flat and have a slight curvature. Side walls 113, 114 provide a reduction in wall thickness of wall 110 and taper to the full wall thickness of wall 110 at the termination of side walls 113 and 114. The reduction in width of wall 110 decreases the amount of vasculature and neural tissue retraction in the area adjacent the disc space. The desirable reduction in width is accomplished with little reduction in the required strength of the device since distractors 50, 80 are used to distract and maintain the distraction of the vertebral bodies instead of the extensions or side flanges 118, 120 of guide sleeve 100.
  • There are also shown in FIGS. 4 and 9 a first working [0058] channel portion 107, defined about axis L1, and a second working channel portion 109, defined about axis L2. These working channel portions 107, 109 are positioned on either side of longitudinal axis L of sleeve 100. There is no wall or other structure separating working channel portions 107 and 109. Working channel portion 107 is that portion of working channel 130 about axis L1 between longitudinal axis L and inside surface of 116 of guide sleeve 100. Similarly, working channel portion 109 is that portion of working channel 130 about axis L2 between longitudinal axis L and inside surface 116. Thus, working channel portions 107 and 109 are substantially equal in area, and each has a truncated circular shape, with the truncated portions of each working channel 107 and 109 positioned adjacent one another.
  • Referring now to FIG. 6, there is illustrated a distractor/[0059] guide sleeve assembly 150 that includes distractors 50 and 80 disposed within working channel 130 of guide sleeve 100 in side-by-side relation. Distractors 50, 80 reside within sleeve 100 with each distractor substantially occupying all or a portion of a corresponding one of working channel portions 107 and 109 of working channel 130. Each distractor 50, 80 extends from proximal end 102 to distal end 104 of the guide sleeve 100. Flange ring 155 is in the form of a flange extending about the proximal end 102 of guide sleeve 100 and contacts a driving cap positioned on distractors 50, 80 in order to maintain the relative positioning between sleeve 100 and distractors 50, 80 during insertion of assembly 150.
  • Referring now to FIG. 7, there is illustrated an end view at [0060] distal end 104 of the assembly 150 showing distractors 50 and 80 in side-by-side relation. More particularly, shaft 54 of distractor 50 is received within concave portion 98 of distractor shaft 84. As also illustrated in this view, concave portion 96 of distractor tip 86 is coextensive with concave surface 98 to form a concave surface that extends the length of the distractor 80. The concave surface of distractor 80 has a radius of curvature R that is preferably about one half the diameter of the cage or implant to be inserted into the disc space. For example, an 18 mm diameter implant requires use of a distractor 80 having a radius of curvature R of about 9 mm.
  • When [0061] distractor 50 is removed from guide sleeve 100, there is defined a cylindrical working space through the working channel 130 adjacent and along the recessed areas of distractor 80. The cylindrical working space includes that portion of the working channel 130 between concave surfaces 96, 98 and inside wall 116 of the guide sleeve 100. Thus, the working space occupies substantially all of working channel portion 107, (FIG. 4) and a portion of working channel portion 109. The area of the portion of the working channel portion 109 occupied by the cylindrical working space is indicated in FIG. 7 by the hatched area A, and is hereinafter referred to as the overlap region. This overlap region A allows operative procedures to be performed in the working space adjacent the distractor 80 using conventionally sized tools and implements while providing a guide sleeve 100 of reduced overall width. The amount of width reduction achieved is approximately the maximum width of overlap region A. It should be understood that shaft 84 need not have a recessed area to provide a cylindrical working space in the disc space, but rather can be provided with a reduced diameter or size that maintains access to the overlap region A in the disc space.
  • In FIG. 8 there is shown a top view of the [0062] guide sleeve assembly 150, looking down on proximal ends 53, 83 of the distractors 50, 80 and the proximal end 102 of guide sleeve 100. In one embodiment, there is provided adjacent proximal end 53 of distractor 50 a locking segment 140 formed with and extending from the distractor shaft 54. Locking segment 140 has a first projection 142 and a second projection 144. First and second projections 142, 144 are received within corresponding notches 146, 148 defined in concave surface 98 of shaft 84 of distractor 80 to prevent rotation of distractors 50 and 80 with respect to one another. The present invention also contemplates other mechanisms for engaging distractors 50 and 80 to prevent rotation relative to one another as would occur to those of ordinary skill in the art. For example, the above described distractor clip 75 can be used to couple the distractors 50, 80 together. Moreover, it is contemplated that the distractors 50, 80 may be inserted without any locking mechanism.
  • The present invention contemplates that access to the disc space has heretofore been provided by known surgical techniques and therefore will not be further described herein. The use of intraoperative templates for providing access to the disc space is known in the art. One example of a procedure for gaining access to the disc space is disclosed in the '917 patent application. Another reference including techniques for template positioning and disc space distraction using a starter distractor to initially distract the disc space is the surgical technique brochure entitled [0063] Reduced Profile Instrumentation published in 1999 by Sofamor Danek, said brochure being incorporated by reference herein in its entirety (hereinafter the Danek brochure.) The present invention also contemplates the use and application of other procedures for gaining access to the disc space in conjunction with the procedures and instruments discussed below as would occur to those skilled in the art. The templates contemplated herein define the area necessary for placement of implants and instruments having a specific configuration and size. While in a preferred embodiment, templates are provided for cylindrical implants having diameters ranging from 16 mm to 24 mm, it is contemplated that other diameters of implant and templates for use therewith may be used and other shapes, such as, but without limitation, squares and rectangles.
  • Access to an anterior portion of the spinal column is achieved by known methods. Blood vessels, particularly the aorta, vena cava, and branches thereof are mobilized to provide space for bilateral implant placement. The template is inserted into the body and advanced until the pins are disposed adjacent a disc space. The circumference of the template is selected to correspond to the circumference needed for bilateral placement of a pair of implants. More specifically, the area of the template closely approximates the area needed for placement of the guide sleeve disclosed herein, such as that shown in FIG. 7. It is contemplated that a [0064] guide sleeve 100 need not necessarily be used, and tissue to the surgical site is retracted by other means while the disc space is distracted by distractors 50 and 80. The surgical procedures are then performed in the working space defined by the distractors 50, 80 as discussed below without use of a guide sleeve.
  • Referring to FIG. 9, a cross section through [0065] guide sleeve 100, with distractors 50, 80 removed for clarity, is provided. Sleeve 100 is inserted into a disc space D between two adjacent vertebra V1 and V2. Disposed adjacent guide sleeve 100 are vessels 560 and 562 graphically representing portions of the aorta or vena cava. Referring to FIG. 10, a cross-section through line 10-10 of FIG. 9, sleeve 100, flanges 118, 120 on guide sleeve 100 extend into the disc space where the surgical procedures are being performed. Flanges 118, 120 and sleeve 100 inhibit contact between vessels and tissue surrounding the disc space and the tools used during the surgical procedure. Spikes 122, 124, 126, and 128 may be inserted into the bone of the corresponding vertebral body V1, V2.
  • Various tools and implements are usable with [0066] guide sleeve 100 including distractors 50, 80 disclosed herein and more specifically within the working spaces defined by the working channel 130 of guide sleeve 100. Several of these tools are disclosed in the Danek brochure and in the '917 patent application, while other tools are known to those skilled in the art to which the present invention relates.
  • In accordance with a preferred method of using the apparatus of the present invention, reference will now be made to FIGS. 11 through 22. In FIG. 11, the sleeve assembly is assembled and prepared for insertion through the skin and to the disc space. [0067] Distractor driver cap 250 of FIGS. 1a and 1 b is positioned on proximal end 53, 83 of distractors 50, 80. Driver cap 250 includes a body 252 having T-shaped slots 253 and 254 configured to receive flanged posts 53 a and 83 a of distractors 50 and 80, respectively. Opposite slots 253, 254 are windows 256 and 257. Preferably, the flanged portion of posts 53 a and 83 a extend into a corresponding one of the windows 256 and 257 and also into a corresponding one of the upper portions 253 a and 254 a of slots 253 and 254 to secure driver cap 250 to distractors 50, 80.
  • In use, [0068] distractor cap 250 contacts flange ring 155 with distractors 50, 80 in sleeve 100 such that distractor tips 56, 86 can be driven into the disc space while flanges 118, 120 remain positioned outside the disc space. The driving force applied to distractor cap 250 is transmitted to flange ring 155, and drives sleeve 100 towards the disc space along with distractors 50, 80. Alternatively, if distractors 50, 80 are not positioned in guide sleeve 100, distractor cap 250 is secured to proximal ends 53, 83 and distractor tips 56, 86 are driven into the disc space. Distractor cap 250 is then removed and sleeve 100 placed over the inserted distractors 50, 80 and the procedure continues as discussed below. In this alternate technique, clip 75 may be used to couple distractors 50, 80 together during insertion. In a further variation, alternating insertion of distractors 50, 80 is not precluded by the present invention. However, insertion of distractors 50, 80 into the disc space simultaneously enables the surgeon maintain the positioning of distractors 50, 80 and control the depth of insertion of distractor tips 56, 86 with respect to one another.
  • In FIG. 12[0069] a, an impactor cap 160 is disposed about proximal end 102 of sleeve 100 over flange ring 155. Sleeve 100 is now relatively free to move with respect to distractors 50, 80. A driving force is applied to impactor cap 160 to drive sleeve 100 towards the disc space and position flanges 118 and 120 therein adjacent the distractor tips 56, 86 already positioned into the disc space as shown in FIG. 12b. Preferably, flanges 118 and 120 do not distract the disc space and prevent migration of tissue into the working space when distractor 50, 80 is removed from sleeve 100.
  • As shown in greater detail and enlarged FIG. 13, [0070] impactor cap 160 is positioned around and contacts the flange ring 155. Flange ring 155 is preferably of uniform size and shape for various sized guide sleeves 100, thus providing a modular attachment to each of the various sized guide sleeves for a single impactor cap 160. Impactor cap 160 has a hollow interior 161 for receiving proximal ends 53, 83. Hollow interior 161 has a depth d sufficient to allow movement of guide sleeve 100 into the disc space while the position of distractors 50, 80 is maintained.
  • In FIG. 14, a [0071] slap hammer 165 is engaged to distractor 50 in order to withdrawal distractor 50 from the disc space. In FIG. 15a the distractor 50 is removed from the working channel 130 of sleeve 110 using the slap hammer 165. The distractor tip 86 of concave distractor 80 remains disposed in the disc space to maintain the disc space distraction height during subsequent operative steps. In an alternate embodiment, it is contemplated that shaft 84 of distractor 80 is removably connected to tip 86, in which case the shaft may be withdrawn while leaving tip 86 in place. In a further embodiment, shaft 84 has a reduced size to accommodate insertion and rotation of devices into overlap region A of the disc space. With a removable or smaller diameter shaft, only tip 86 requires a recessed area.
  • In FIG. 15[0072] b, the withdrawn distractor 50 leaves a working space comprised of working channel portion 109 and an overlap portion, indicated by hatched area A. Thus, the concave surfaces 96, 98 of distractor 80 and inside surface 116 of sleeve 110 define a substantially cylindrical working space for completion of further operative procedures as described further below. The working space defines a substantially circular cross section along guide sleeve 100 that is adapted for receiving surgical tools therethrough to prepare the disc space for insertion of an implant. The overlapping configuration of distractors 50, 80 provides a reduced overall width for guide sleeve 100.
  • In FIGS. 16[0073] a-16 b, there is shown a reamer 170 disposed through guide sleeve 110. A cutting head 171 has threads as known in the art to ream the disc space. As shown in FIG. 16b, reamer 170 is positioned within the working space adjacent distractor 80, while distractor tip 86 maintains the disc space distraction. Concave surface 98 of shaft 84 of distractor 80 and the inside surface 116 of sleeve 110 acts as a guide for insertion and/or withdrawal of reamer 170. The depth of reaming can be controlled with a depth stop 172 and verified via fluoroscopy
  • In FIGS. 17[0074] a-17 c, the reamer 170 is withdrawn and replaced by a tapping tool 175 with a head 176 to prepare the space for a threaded implant. As shown in FIGS. 17b and 17 c, tapping tool 175 is positioned within the working space adjacent the concave distractor 80, while distractor tip 86 maintains the disc space distraction. The concave surface 98 of shaft 84 of distractor 80 and inside surface 116 of sleeve 110 acts as a guide for insertion of tapping tool 175. Tapping tool 175 has a depth stop 178 to control the tapping depth in the disc space. Depth and sagittal alignment can also be verified via fluoroscopy during tapping.
  • In FIGS. 18[0075] a-18 c, the tapping tool 175 is withdrawn and replaced by an implant insertion device 190 with a threaded implant 200 engaged on a distal end thereof. Threaded implant 200 and insertion device 190 may be any one of the types and configuration disclosed in a first pending PCT Application No. PCT/US00/00590 filed on Jan. 11, 2000 and a second PCT Application No. PCT[US00/00604, also filed Jan. 11, 2000; each claiming priority to U.S. Provisional Application No. 60/115, 388, filed Jan. 11, 1999, each of said above referenced PCT applications being incorporated by reference herein in its entirety. Further, the implants of the present invention may be any other known implant and insertion device, so long as at least one implant has at least one recessed side wall. The implants may be formed of any biocompatible material. Concave surface 98 of shaft 84 of distractor 80 and inside surface 116 of sleeve 110 acts as a guide for insertion of the implant into the disc space.
  • [0076] Inserter 190 includes a thumbscrew 191 having a threaded shaft (not shown) extending through inserter 190 to couples implant 200 thereto via an internally threaded opening in a slotted end 201 (FIG. 19) of implant 200. T-handle 192 is used to rotate implant 200 and thread it into the disc space, as shown in the enlarged view of FIG. 18b. As shown more clearly in the enlarged view of FIG. 18c, implant 200 is inserted so that a concave face 202 is disposed toward concave surface 96 of distractor 80. This positioning of concave face 202 can be confirmed by providing alignment markings on insertion device 190 and sleeve 100. Further, insertion device 190 includes countersink marking 193 to provide an indication of the countersink of implant 200 into the disc space. To facilitate implant rotation, inserter 190 can be provided with a movable slide at its distal end that occupies the recessed area of concave surface 202 providing a round construct for threading. While implant 200 is threaded into place, distractor tip 86 maintains the disc space distraction.
  • In FIGS. 19[0077] a-19 b, when implant 200 is placed in the desired position, and implant inserter 190 is removed from guide sleeve 100, distractor tip 86 is withdrawn from the disc space. Preferably, a slap hammer 165 is engaged to distractor 80 in order to withdraw distractor tip 86 from the disc space and distractor 80 from guide sleeve 100. As shown in FIGS. 19b-19 c, distractor 80 is removed from working channel 130 of sleeve 110. Implant 200 remains disposed in the disc space to maintain the disc space distraction height during subsequent operative steps. The withdrawn distractor 80 leaves a working space comprised of working channel portion 107 and an overlap region A. Thus, concave surface 202 of implant 200 and inside surface 116 of sleeve 110 define a cylindrical working space in the disc space for further procedures as described below. The working space defines a circular cross section that is adapted for receiving conventionally sized surgical tools to prepare the disc space for insertion of a second implant adjacent implant 200, while providing a reduced overall width.
  • In FIGS. 20[0078] a-20 b, the above described reamer 170 is disposed through guide sleeve 110. Cutting head 171 has threads as known in the art to ream the disc space. As shown in FIG. 20b, reamer 170 is positioned within the working space adjacent the concave surface 201 of implant 200, while implant 200 maintains the disc space distraction. The concave surface 201 of implant 200 and inside surface 116 of sleeve 110 acts as a guide for insertion and operation of reamer 170.
  • In FIGS. 21[0079] a-21 c, reamer 170 is withdrawn and replaced by the above-described tapping tool 175 with head 176 to prepare the space for a second threaded implant. As shown in FIGS. 21b and 21 c, head 176 of tapping tool 175 is positioned within the working space adjacent concave surface 201 of implant 200, while implant 200 maintains the disc space distraction. The concave surface 201 and inside surface 116 of sleeve 110 acts as a guide for insertion of tapping tool 175.
  • In FIGS. 22[0080] a-22 c, the tapping tool is withdrawn and replaced by the above described implant insertion device 190, with a threaded implant 210 engaged on a distal end thereof. Threaded implant 210 may either have a circular cross-section, such as that shown in solid lines in enlarged FIGS. 22b and 22 c, or have a cross-section identical to implant 200 with a concave surface 202 as shown in hidden lines. In either event, concave surface 201 of implant 200 acts as a guide for threading of implant 210 into the disc space.
  • If an implant like that of [0081] implant 200 is used, it is preferred to position implant 210 so that its concave surface 212′ is disposed towards concave surface 202 of implant 200, forming a cavity 215′ therebetween as indicated in dashed lines in FIG. 22c. The cavity may then be packed with bone growth promoting material. T-handle 192 is used to rotate implant 210 and thread it into the disc space, as shown in FIG. 22b, adjacent to implant 200. If a circular implant similar to that shown in FIG. 22c is used, implant 210 is nested within concave surface 201 of implant 200. Bone growth material can be placed in cavity 204 of implant 200 and in cavity 213 of implant 210.
  • While the use of threaded implants has been primarily discussed, the present invention likewise contemplates using push-in type implants and/or expandable implants in the disc space. Also, while it is preferred that the present invention be utilized for insertion of two implants at bilateral locations within the disc space, insertion of a single implant into the disc space is also contemplated herein. [0082]
  • Of course, the present invention makes use of depth stops and other devices for measuring and controlling the depth of the various procedures performed in the disc space. These devices and procedures are more fully explained in the Danek brochure and in the '917 patent application. Additionally, the present invention is not limited to use with the tools and instruments described above, and guide [0083] sleeve 100 and distractors 50, 80 may be used with other such devices as would normally occur to those skilled in the art to which the invention relates.
  • While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected. [0084]

Claims (50)

What is claimed is:
1. A surgical instrument for distracting a spinal disc space, comprising:
a distractor having a length and including:
a shaft and a first distractor tip connected to an end of said shaft, including:
a first surface and an opposite second surface defining a distraction height; and
a recessed area extending between said first and second surfaces along at least a portion of said length.
2. The instrument of claim 1, wherein said shaft includes a recessed area adjacent to and coplanar with said recessed area of said distractor tip along a portion of a length of said shaft.
3. The instrument of claim 2, wherein said recessed area of said distractor tip and said recessed area of said shaft extend along substantially the entire length of said distractor.
4. The instrument of claim 3, wherein said recessed areas are concave surfaces.
5. The instrument of claim 2, wherein said recessed areas are concave surfaces.
6. The instrument of claim 1, wherein said first surface and said second surface are substantially parallel.
7. The instrument of claim 6, wherein said first surface and said second surface are each substantially planar.
8. The instrument of claim 1, wherein said recessed area is configured to permit rotation of a surgical device positioned adjacent thereto.
9. The instrument of claim 1, wherein said distractor tip is integrally formed with said shaft.
10. The instrument of claim 1, wherein said recessed area is a concave surface extending between said first and second surfaces.
11. The instrument of claim 10, wherein said distractor tip includes a convex surface opposite said concave surface extending between said first and second surfaces.
12. The instrument of claim 1, wherein said distractor tip includes a rounded leading end extending between said first and second surfaces.
13. The surgical instrument of claim 1, further comprising:
a second distractor having a second length and including:
a second shaft extending along a portion of said second length;
a second distractor tip connected to an end of said second shaft, including:
a first surface and an opposite second surface defining a second distraction height; and
wherein said second distractor is positionable adjacent said distractor with at least a portion of said second distractor being received within said recessed area of said distractor to define an overlap region.
14. The instrument of claim 13, wherein said second distractor includes a pair of opposite convex surfaces extending between said first surface and said second surface.
15. The surgical instrument of claim 13, wherein said shaft of said distractor includes a recessed area adjacent to and coplanar with said recessed area of said distractor tip along the length of said shaft, and said second shaft of said second distractor is positionable adjacent said distractor shaft with said second distractor shaft at least partially received in said recessed area.
16. The instrument of claim 15, wherein said distractor shaft includes a pair of notches in said recessed area and said second distractor shaft includes a locking member positionable in said pair of notches to lock said first distractor and said second distractor together.
17. The instrument of claim 13, wherein said shaft includes an opening and said second shaft includes a second opening, and further including a clip securable to each of said opening and said second opening to couple said distractor adjacent to said second distractor.
18. The instrument of claim 13, further comprising a driving cap for placement over the other end said distractor and the other end of said second distractor for transmitting a driving force to said instrument during insertion.
19. A surgical instrument for distracting a spinal disc space, comprising:
a first distractor having a first shaft and a first distractor tip extending from said first shaft, said first distractor tip including opposite first and second surfaces defining a first distraction height and including a recessed area extending between said first and second surfaces;
a second distractor having a second shaft and a second distractor tip extending from said second shaft, said second distractor tip including opposite first and second surfaces defining a second distraction height substantially equal to said first distraction height; and
a guide sleeve having a wall defining a working channel, wherein said first and second distractors are received in said working channel of said guide sleeve.
20. The surgical instrument of claim 19, wherein:
said first distractor includes a convex surface opposite said recessed area extending between said first and second surfaces of said first distractor tip; and
said second distractor includes a pair of opposite convex surfaces extending between said first and second surfaces of said second distractor tip.
21. The instrument of claim 20, wherein said second distractor is positionable adjacent said first distractor with one of said convex surfaces of said second distractor tip received at least partially in said recessed surface to define an overlap region.
22. The instrument of claim 19, wherein said working channel extends between a proximal working end and a distal end of said guide sleeve.
23. The instrument of claim 19, wherein said distal end of said guide sleeve includes a pair of opposite flanges extending from a distal end of said guide sleeve said wall along each side of said working channel for insertion into a distracted disc space.
24. The instrument of claim 23, further comprising a number of spikes extending from said distal end of said guide sleeve intermediate said pair of flanges for engaging vertebrae on either side of the distracted disc space.
25. The instrument of claim 23, wherein said wall of said guide sleeve includes a reduced thickness portion along each side of said working channel extending from said distal end toward a proximal end of said guide sleeve, whereby said guide sleeve has a first width at said proximal end and a second width at said reduced thickness portions, said first width being greater than said second width.
26. The instrument of claim 25, wherein each of said flanges has a thickness corresponding to said reduced thickness portion.
27. The instrument of claim 19, wherein said guide sleeve includes a visualization window extending proximally from a distal end of said guide sleeve.
28. The instrument of claim 19, wherein said guide sleeve includes a flange ring at said proximal end.
29. The instrument of claim 19, wherein said working channel includes a first working channel portion for receiving said first distractor and a second working channel portion for receiving said second distractor.
30. The instrument of claim 29, wherein said first working channel portion and said second working channel portion form a working channel having a figure eight shape.
31. The instrument of claim 29, wherein each of said first and second working channel portions has a truncated circular shape, wherein said truncated portions are positioned adjacent one another.
32. A method for distracting a spinal disc space, comprising:
gaining access to the disc space;
providing a first distractor having a first distractor tip with a recessed area extending along its length;
providing a second distractor having a second distractor tip;
positioning the second distractor adjacent the first distractor with the second distractor tip at least partially received in the recessed area; and
inserting the distractor tips into the disc space to distract the disc space.
33. The method of claim 32, further comprising:
providing a guide sleeve having a working channel extending therethrough between a proximal end and a distal end;
positioning the first and second distractors within the working channel; and
applying a driving force to the first and second distractors and to the guide sleeve to insert the first and second distractor tips into the disc space.
34. The method of claim 33, further comprising:
applying a driving force only to the guide sleeve to advance the guide sleeve towards the disc space until the distal end is positioned adjacent the disc space.
35. The method of claim 34, wherein the guide sleeve is provided with a pair of flanges extending from the distal end, the flanges being positioned in the disc space when the distal end is positioned adjacent the disc space.
36. The method of claim 34, wherein the flanges have a height that is not greater a height of the distracted disc space.
37. The method of claim 34, wherein the guide sleeve is provided with a number of spikes extending from the distal end, the number of spikes engaging the vertebral bodies on either side of the disc space when the distal end is positioned adjacent the disc space.
38. The method of claim 34, further comprising:
removing the second distractor from the guide sleeve to form a substantially cylindrical working space through the guide sleeve adjacent the first distractor tip.
39. The method of claim 38, further comprising:
reaming the disc space adjacent the recessed area of the first distractor tip;
providing a first implant having a concave side surface; and
inserting the first implant into the reamed disc space with the concave side surface facing the first distractor tip.
40. The method of claim 39, further comprising:
tapping threads into this reamed disc space before inserting the implant; and
threading the first implant into the tapped disc space.
41. The method of claim 39, further comprising:
removing the first distractor from the disc space;
reaming the disc space adjacent the inserted implant; and
inserting a second implant adjacent the inserted implant.
42. The method of claim 41, the inserted second implant has a convex side surface positioned adjacent the concave side surface of the first implant.
43. The method of claim 42, wherein the second implant has a concave side surface facing the concave side surface of the first implant to define a cavity therebetween; and further comprising placing bone growth material within the cavity.
44. The method of claim 33, wherein the guide sleeve includes a flange ring on the proximal end, wherein the driving force to the guide sleeve is applied to the flange ring.
45. The method of claim 32, further comprising:
removing the second distractor from the disc space to form a working space adjacent the first distractor tip.
46. The method of claim 45, further comprising:
reaming the disc space adjacent the recessed area of the first distractor tip;
providing a first implant having a concave side surface; and
inserting the first implant into the reamed disc space with the concave side surface facing the first distractor tip.
47. The method of claim 46, further comprising:
tapping threads into this reamed disc space before inserting the implant; and
threading the first implant into the tapped disc space.
48. The method of claim 46, further comprising:
removing the first distractor from the disc space;
reaming the disc space adjacent the inserted implant; and
inserting a second implant adjacent the inserted implant.
49. The method of claim 48, the inserted second implant has a convex side surface positioned adjacent the concave side surface of the first implant.
50. The method of claim 49, wherein the second implant has a concave side surface facing the concave side surface of the first implant to define a cavity therebetween; and further comprising placing bone growth material within the cavity.
US10/417,974 1999-02-04 2003-04-17 Methods and instrumentation for vertebral interbody fusion Abandoned US20030195520A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/417,974 US20030195520A1 (en) 1999-02-04 2003-04-17 Methods and instrumentation for vertebral interbody fusion

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11879399P 1999-02-04 1999-02-04
US09/498,426 US6575981B1 (en) 1999-02-04 2000-02-04 Methods and instrumentation for vertebral interbody fusion
US10/417,974 US20030195520A1 (en) 1999-02-04 2003-04-17 Methods and instrumentation for vertebral interbody fusion

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/498,426 Division US6575981B1 (en) 1999-02-04 2000-02-04 Methods and instrumentation for vertebral interbody fusion

Publications (1)

Publication Number Publication Date
US20030195520A1 true US20030195520A1 (en) 2003-10-16

Family

ID=22380775

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/498,426 Expired - Fee Related US6575981B1 (en) 1999-02-04 2000-02-04 Methods and instrumentation for vertebral interbody fusion
US10/417,974 Abandoned US20030195520A1 (en) 1999-02-04 2003-04-17 Methods and instrumentation for vertebral interbody fusion

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/498,426 Expired - Fee Related US6575981B1 (en) 1999-02-04 2000-02-04 Methods and instrumentation for vertebral interbody fusion

Country Status (6)

Country Link
US (2) US6575981B1 (en)
EP (1) EP1152697A1 (en)
JP (1) JP4243026B2 (en)
AU (1) AU761818C (en)
CA (1) CA2361069A1 (en)
WO (1) WO2000045709A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050075643A1 (en) * 2002-10-08 2005-04-07 Schwab Frank J. Insertion device and techniques for orthopaedic implants
US20050240197A1 (en) * 2004-04-23 2005-10-27 Kmiec Stanley J Jr Device and method for inserting, positioning and removing an implant
US20060025864A1 (en) * 2004-07-27 2006-02-02 Lamprich Lonnie J Spinal disc prosthesis and methods
US20060052793A1 (en) * 2004-08-20 2006-03-09 Heinz Eric S Instrumentation and methods for vertebral distraction
US20060058808A1 (en) * 2004-09-08 2006-03-16 Susanne Schneid Surgical instrument
US20060064100A1 (en) * 2004-09-23 2006-03-23 Rudi Bertagnoli Adjustable cutting of cutout in vertebral bone
US20060149382A1 (en) * 2004-07-27 2006-07-06 Lamprich Lonnie J Spinal disc prosthesis apparatus and placement method
US20070288007A1 (en) * 1999-02-04 2007-12-13 Burkus J K Methods and instrument for vertebral interbody fusion
US20080221586A1 (en) * 2007-02-09 2008-09-11 Alphatec Spine, Inc. Curviliner spinal access method and device
US20090228110A1 (en) * 2008-03-07 2009-09-10 K2M, Inc. Intervertebral instrument, implant, and method
US7625379B2 (en) 2004-01-26 2009-12-01 Warsaw Orthopedic, Inc. Methods and instrumentation for inserting intervertebral grafts and devices
US20110098705A1 (en) * 2009-10-23 2011-04-28 Chappuis James L Devices and Methods for Temporarily Retaining Spinal Rootlets within Dural Sac
US8066714B2 (en) 2006-03-17 2011-11-29 Warsaw Orthopedic Inc. Instrumentation for distraction and insertion of implants in a spinal disc space
US8303601B2 (en) 2006-06-07 2012-11-06 Stryker Spine Collet-activated distraction wedge inserter
US9204906B2 (en) 2009-10-22 2015-12-08 Nuvasive, Inc. Posterior cervical fusion system and techniques
US9216096B2 (en) 2010-03-16 2015-12-22 Pinnacle Spine Group, Llc Intervertebral implants and related tools
US9358122B2 (en) 2011-01-07 2016-06-07 K2M, Inc. Interbody spacer
US9380932B1 (en) 2011-11-02 2016-07-05 Pinnacle Spine Group, Llc Retractor devices for minimally invasive access to the spine
US9717511B2 (en) 2006-07-31 2017-08-01 DePuy Synthes Products, Inc. Drilling/milling guide and keel cut preparation system
US9883950B2 (en) 2006-07-24 2018-02-06 Centinel Spine Llc Intervertebral implant with keel
US10070970B2 (en) 2013-03-14 2018-09-11 Pinnacle Spine Group, Llc Interbody implants and graft delivery systems
US10098674B2 (en) 2009-10-22 2018-10-16 Nuvasive, Inc. System and method for posterior cervical fusion
US10182831B2 (en) 2003-04-28 2019-01-22 Centinel Spine Llc Instruments and method for preparing an intervertebral space for receiving an artificial disc implant

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743234B2 (en) * 1999-02-04 2004-06-01 Sdgi Holdings, Inc. Methods and instrumentation for vertebral interbody fusion
WO2003026514A1 (en) * 1999-02-04 2003-04-03 Sdgi Holdings, Inc, Methods and instrumentation for vertebral interbody fusion
US6241770B1 (en) 1999-03-05 2001-06-05 Gary K. Michelson Interbody spinal fusion implant having an anatomically conformed trailing end
CA2363562C (en) * 1999-05-05 2010-08-03 Gary Karlin Michelson Nested interbody spinal fusion implants
WO2001013807A2 (en) 1999-08-26 2001-03-01 Sdgi Holdings, Inc. Devices and methods for implanting fusion cages
JP4326134B2 (en) 1999-10-20 2009-09-02 ウォーソー・オーソペディック・インコーポレーテッド Method and apparatus for performing a surgical procedure
US7462195B1 (en) 2000-04-19 2008-12-09 Warsaw Orthopedic, Inc. Artificial lumbar interbody spinal implant having an asymmetrical leading end
US6350283B1 (en) * 2000-04-19 2002-02-26 Gary K. Michelson Bone hemi-lumbar interbody spinal implant having an asymmetrical leading end and method of installation thereof
US6478800B1 (en) 2000-05-08 2002-11-12 Depuy Acromed, Inc. Medical installation tool
US6599291B1 (en) 2000-10-20 2003-07-29 Sdgi Holdings, Inc. Methods and instruments for interbody surgical techniques
US6989031B2 (en) * 2001-04-02 2006-01-24 Sdgi Holdings, Inc. Hemi-interbody spinal implant manufactured from a major long bone ring or a bone composite
US6890355B2 (en) * 2001-04-02 2005-05-10 Gary K. Michelson Artificial contoured spinal fusion implants made of a material other than bone
US7074226B2 (en) * 2002-09-19 2006-07-11 Sdgi Holdings, Inc. Oval dilator and retractor set and method
WO2004084742A1 (en) 2003-03-24 2004-10-07 Theken Surgical Llc Spinal implant adjustment device
US8784421B2 (en) 2004-03-03 2014-07-22 Boston Scientific Scimed, Inc. Apparatus and methods for removing vertebral bone and disc tissue
US20050197661A1 (en) * 2004-03-03 2005-09-08 Scimed Life Systems, Inc. Tissue removal probe with sliding burr in cutting window
US20050209622A1 (en) * 2004-03-03 2005-09-22 Scimed Life Systems, Inc. Tissue removal probe with irrigation and aspiration ports
US20050209610A1 (en) 2004-03-03 2005-09-22 Scimed Life Systems, Inc. Radially adjustable tissue removal device
US7033363B2 (en) * 2004-05-19 2006-04-25 Sean Powell Snap-lock for drill sleeve
US20060036261A1 (en) * 2004-08-13 2006-02-16 Stryker Spine Insertion guide for a spinal implant
US7799081B2 (en) 2004-09-14 2010-09-21 Aeolin, Llc System and method for spinal fusion
US8012207B2 (en) 2004-10-20 2011-09-06 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US7763074B2 (en) 2004-10-20 2010-07-27 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8152837B2 (en) 2004-10-20 2012-04-10 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8128662B2 (en) 2004-10-20 2012-03-06 Vertiflex, Inc. Minimally invasive tooling for delivery of interspinous spacer
US9023084B2 (en) 2004-10-20 2015-05-05 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for stabilizing the motion or adjusting the position of the spine
US8277488B2 (en) 2004-10-20 2012-10-02 Vertiflex, Inc. Interspinous spacer
US8123782B2 (en) 2004-10-20 2012-02-28 Vertiflex, Inc. Interspinous spacer
WO2009009049A2 (en) 2004-10-20 2009-01-15 Vertiflex, Inc. Interspinous spacer
US8167944B2 (en) 2004-10-20 2012-05-01 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8409282B2 (en) 2004-10-20 2013-04-02 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8425559B2 (en) 2004-10-20 2013-04-23 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8613747B2 (en) 2004-10-20 2013-12-24 Vertiflex, Inc. Spacer insertion instrument
US8317864B2 (en) 2004-10-20 2012-11-27 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US9161783B2 (en) 2004-10-20 2015-10-20 Vertiflex, Inc. Interspinous spacer
US8123807B2 (en) 2004-10-20 2012-02-28 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US9119680B2 (en) 2004-10-20 2015-09-01 Vertiflex, Inc. Interspinous spacer
US8945183B2 (en) 2004-10-20 2015-02-03 Vertiflex, Inc. Interspinous process spacer instrument system with deployment indicator
US20060089649A1 (en) * 2004-10-26 2006-04-27 Ullrich Peter F Jr Surgical instruments and method of using same
ATE524121T1 (en) 2004-11-24 2011-09-15 Abdou Samy DEVICES FOR PLACING AN ORTHOPEDIC INTERVERTEBRAL IMPLANT
WO2009086010A2 (en) * 2004-12-06 2009-07-09 Vertiflex, Inc. Spacer insertion instrument
US9271843B2 (en) 2005-09-27 2016-03-01 Henry F. Fabian Spine surgery method and implant
US8236058B2 (en) * 2005-09-27 2012-08-07 Fabian Henry F Spine surgery method and implant
US20070100366A1 (en) * 2005-10-28 2007-05-03 Sara Dziedzic Minimally invasive tissue expander systems and methods
US7867237B2 (en) * 2005-10-31 2011-01-11 Depuy Spine, Inc. Arthroplasty revision device and method
US20070123904A1 (en) * 2005-10-31 2007-05-31 Depuy Spine, Inc. Distraction instrument and method for distracting an intervertebral site
US20070123903A1 (en) * 2005-10-31 2007-05-31 Depuy Spine, Inc. Medical Device installation tool and methods of use
US8377072B2 (en) * 2006-02-06 2013-02-19 Depuy Spine, Inc. Medical device installation tool
US7615079B2 (en) * 2006-04-20 2009-11-10 Meditech Advisors, Llc Monorail system
US8845726B2 (en) 2006-10-18 2014-09-30 Vertiflex, Inc. Dilator
EP2155121B1 (en) 2007-04-16 2015-06-17 Vertiflex, Inc. Interspinous spacer
US8070754B2 (en) * 2007-05-31 2011-12-06 Fabian Henry F Spine surgery method and instrumentation
WO2009091922A2 (en) 2008-01-15 2009-07-23 Vertiflex, Inc. Interspinous spacer
US20090270873A1 (en) 2008-04-24 2009-10-29 Fabian Henry F Spine surgery method and inserter
ES2563172T3 (en) 2009-07-09 2016-03-11 R Tree Innovations, Llc Flexible intersomatic implant
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US8740948B2 (en) 2009-12-15 2014-06-03 Vertiflex, Inc. Spinal spacer for cervical and other vertebra, and associated systems and methods
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US9486256B1 (en) 2013-03-15 2016-11-08 Nuvasive, Inc. Rod reduction assemblies and related methods
US9675303B2 (en) 2013-03-15 2017-06-13 Vertiflex, Inc. Visualization systems, instruments and methods of using the same in spinal decompression procedures
AU2015256024B2 (en) 2014-05-07 2020-03-05 Vertiflex, Inc. Spinal nerve decompression systems, dilation systems, and methods of using the same
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US11051861B2 (en) 2018-06-13 2021-07-06 Nuvasive, Inc. Rod reduction assemblies and related methods
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11883303B2 (en) 2019-12-30 2024-01-30 Vertebration, Inc. Spine surgery method and instrumentation

Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015255A (en) * 1989-05-10 1991-05-14 Spine-Tech, Inc. Spinal stabilization method
US5055104A (en) * 1989-11-06 1991-10-08 Surgical Dynamics, Inc. Surgically implanting threaded fusion cages between adjacent low-back vertebrae by an anterior approach
US5431658A (en) * 1994-02-14 1995-07-11 Moskovich; Ronald Facilitator for vertebrae grafts and prostheses
US5484437A (en) * 1988-06-13 1996-01-16 Michelson; Gary K. Apparatus and method of inserting spinal implants
US5489307A (en) * 1993-02-10 1996-02-06 Spine-Tech, Inc. Spinal stabilization surgical method
US5514180A (en) * 1994-01-14 1996-05-07 Heggeness; Michael H. Prosthetic intervertebral devices
US5556399A (en) * 1995-02-14 1996-09-17 Huebner; Randall J. Bone-harvesting drill apparatus and method for its use
US5569205A (en) * 1994-07-14 1996-10-29 Hart; Charles C. Multiport trocar
US5571109A (en) * 1993-08-26 1996-11-05 Man Ceramics Gmbh System for the immobilization of vertebrae
US5609636A (en) * 1994-05-23 1997-03-11 Spine-Tech, Inc. Spinal implant
US5741253A (en) * 1988-06-13 1998-04-21 Michelson; Gary Karlin Method for inserting spinal implants
US5759185A (en) * 1994-10-24 1998-06-02 Smith & Nephew, Inc. Surgical instrument
US5766252A (en) * 1995-01-24 1998-06-16 Osteonics Corp. Interbody spinal prosthetic implant and method
US5772661A (en) * 1988-06-13 1998-06-30 Michelson; Gary Karlin Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
US5785710A (en) * 1988-06-13 1998-07-28 Sofamor Danek Group, Inc. Interbody spinal fusion implants
US5797909A (en) * 1988-06-13 1998-08-25 Michelson; Gary Karlin Apparatus for inserting spinal implants
US5865847A (en) * 1997-03-06 1999-02-02 Sulzer Spine-Tech Inc. Lordotic spinal implant
US5865834A (en) * 1991-12-13 1999-02-02 Mcguire; David A. Coring reamer
US5885299A (en) * 1994-09-15 1999-03-23 Surgical Dynamics, Inc. Apparatus and method for implant insertion
US5968098A (en) * 1996-10-22 1999-10-19 Surgical Dynamics, Inc. Apparatus for fusing adjacent bone structures
US6004326A (en) * 1997-09-10 1999-12-21 United States Surgical Method and instrumentation for implant insertion
US6033405A (en) * 1994-09-15 2000-03-07 Surgical Dynamics, Inc. Apparatus and method for implant insertion
US6042582A (en) * 1997-05-20 2000-03-28 Ray; Charles D. Instrumentation and method for facilitating insertion of spinal implant
US6056749A (en) * 1999-03-15 2000-05-02 Spineology, Inc. Method and device for fixing and correcting spondylolisthesis anteriorly
US6059790A (en) * 1997-08-29 2000-05-09 Sulzer Spine-Tech Inc. Apparatus and method for spinal stabilization
US6063088A (en) * 1997-03-24 2000-05-16 United States Surgical Corporation Method and instrumentation for implant insertion
US6083225A (en) * 1996-03-14 2000-07-04 Surgical Dynamics, Inc. Method and instrumentation for implant insertion
US6086595A (en) * 1997-08-29 2000-07-11 Sulzer Spine-Tech Inc. Apparatus and method for spinal stabilization
US6113602A (en) * 1999-03-26 2000-09-05 Sulzer Spine-Tech Inc. Posterior spinal instrument guide and method
US6123705A (en) * 1988-06-13 2000-09-26 Sdgi Holdings, Inc. Interbody spinal fusion implants
US6156595A (en) * 1997-10-08 2000-12-05 Sawada; Shigeki Method of fabricating a Bi-CMOS IC device including a self-alignment bipolar transistor capable of high speed operation
US6159214A (en) * 1996-07-31 2000-12-12 Michelson; Gary K. Milling instrumentation and method for preparing a space between adjacent vertebral bodies
US6171339B1 (en) * 1998-05-19 2001-01-09 Sulzer Spine-Tech Inc. Multi-lumen spinal implant guide and method
US6174311B1 (en) * 1998-10-28 2001-01-16 Sdgi Holdings, Inc. Interbody fusion grafts and instrumentation
US6197033B1 (en) * 1998-04-09 2001-03-06 Sdgi Holdings, Inc. Guide sleeve for offset vertebrae
US6210412B1 (en) * 1988-06-13 2001-04-03 Gary Karlin Michelson Method for inserting frusto-conical interbody spinal fusion implants
US6224599B1 (en) * 1999-05-19 2001-05-01 Matthew G. Baynham Viewable wedge distractor device
US6224607B1 (en) * 1999-01-25 2001-05-01 Gary K. Michelson Instrumentation and method for creating an intervertebral space for receiving an implant
US6228022B1 (en) * 1998-10-28 2001-05-08 Sdgi Holdings, Inc. Methods and instruments for spinal surgery
US20010016741A1 (en) * 2000-02-04 2001-08-23 Burkus J. Kenneth Methods and instrumentation for vertebral interbody fusion
US20040097932A1 (en) * 1998-04-09 2004-05-20 Ray Eddie F. Methods and instrumentation for vertebral interbody fusion

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7534254B1 (en) 1988-06-13 2009-05-19 Warsaw Orthopedic, Inc. Threaded frusto-conical interbody spinal fusion implants
US5269772A (en) 1992-01-24 1993-12-14 Wilk Peter J Laparoscopic cannula assembly and associated method
CA2238117C (en) * 1997-05-30 2006-01-10 United States Surgical Corporation Method and instrumentation for implant insertion
FR2767675B1 (en) 1997-08-26 1999-12-03 Materiel Orthopedique En Abreg INTERSOMATIC IMPLANT AND ANCILLARY OF PREPARATION SUITABLE FOR ALLOWING ITS POSITION
CA2360422C (en) 1999-01-11 2008-10-07 Sdgi Holdings, Inc. Truncated open intervertebral spacers

Patent Citations (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6123705A (en) * 1988-06-13 2000-09-26 Sdgi Holdings, Inc. Interbody spinal fusion implants
US6096038A (en) * 1988-06-13 2000-08-01 Michelson; Gary Karlin Apparatus for inserting spinal implants
US5741253A (en) * 1988-06-13 1998-04-21 Michelson; Gary Karlin Method for inserting spinal implants
US5484437A (en) * 1988-06-13 1996-01-16 Michelson; Gary K. Apparatus and method of inserting spinal implants
US6210412B1 (en) * 1988-06-13 2001-04-03 Gary Karlin Michelson Method for inserting frusto-conical interbody spinal fusion implants
US5505732A (en) * 1988-06-13 1996-04-09 Michelson; Gary K. Apparatus and method of inserting spinal implants
US6080155A (en) * 1988-06-13 2000-06-27 Michelson; Gary Karlin Method of inserting and preloading spinal implants
US5797909A (en) * 1988-06-13 1998-08-25 Michelson; Gary Karlin Apparatus for inserting spinal implants
US5785710A (en) * 1988-06-13 1998-07-28 Sofamor Danek Group, Inc. Interbody spinal fusion implants
US5772661A (en) * 1988-06-13 1998-06-30 Michelson; Gary Karlin Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
US5015255A (en) * 1989-05-10 1991-05-14 Spine-Tech, Inc. Spinal stabilization method
US5055104A (en) * 1989-11-06 1991-10-08 Surgical Dynamics, Inc. Surgically implanting threaded fusion cages between adjacent low-back vertebrae by an anterior approach
US5865834A (en) * 1991-12-13 1999-02-02 Mcguire; David A. Coring reamer
US5489307A (en) * 1993-02-10 1996-02-06 Spine-Tech, Inc. Spinal stabilization surgical method
US5720748A (en) * 1993-02-10 1998-02-24 Spine-Tech, Inc. Spinal stabilization surgical apparatus
US5899908A (en) * 1993-02-10 1999-05-04 Sulzer Spine-Tech Inc. Spinal drill tube guide
US5947971A (en) * 1993-02-10 1999-09-07 Sulzer Spine-Tech Inc. Spinal stabilization surgical apparatus
US5571109A (en) * 1993-08-26 1996-11-05 Man Ceramics Gmbh System for the immobilization of vertebrae
US5514180A (en) * 1994-01-14 1996-05-07 Heggeness; Michael H. Prosthetic intervertebral devices
US5431658A (en) * 1994-02-14 1995-07-11 Moskovich; Ronald Facilitator for vertebrae grafts and prostheses
US5609636A (en) * 1994-05-23 1997-03-11 Spine-Tech, Inc. Spinal implant
US5569205A (en) * 1994-07-14 1996-10-29 Hart; Charles C. Multiport trocar
US6033405A (en) * 1994-09-15 2000-03-07 Surgical Dynamics, Inc. Apparatus and method for implant insertion
US5885299A (en) * 1994-09-15 1999-03-23 Surgical Dynamics, Inc. Apparatus and method for implant insertion
US5759185A (en) * 1994-10-24 1998-06-02 Smith & Nephew, Inc. Surgical instrument
US5766252A (en) * 1995-01-24 1998-06-16 Osteonics Corp. Interbody spinal prosthetic implant and method
US5556399A (en) * 1995-02-14 1996-09-17 Huebner; Randall J. Bone-harvesting drill apparatus and method for its use
US6224595B1 (en) * 1995-02-17 2001-05-01 Sofamor Danek Holdings, Inc. Method for inserting a spinal implant
US6083225A (en) * 1996-03-14 2000-07-04 Surgical Dynamics, Inc. Method and instrumentation for implant insertion
US6159214A (en) * 1996-07-31 2000-12-12 Michelson; Gary K. Milling instrumentation and method for preparing a space between adjacent vertebral bodies
US5968098A (en) * 1996-10-22 1999-10-19 Surgical Dynamics, Inc. Apparatus for fusing adjacent bone structures
US6120506A (en) * 1997-03-06 2000-09-19 Sulzer Spine-Tech Inc. Lordotic spinal implant
US5865847A (en) * 1997-03-06 1999-02-02 Sulzer Spine-Tech Inc. Lordotic spinal implant
US6063088A (en) * 1997-03-24 2000-05-16 United States Surgical Corporation Method and instrumentation for implant insertion
US6042582A (en) * 1997-05-20 2000-03-28 Ray; Charles D. Instrumentation and method for facilitating insertion of spinal implant
US6156040A (en) * 1997-08-29 2000-12-05 Sulzer Spine-Tech Inc. Apparatus and method for spinal stablization
US6059790A (en) * 1997-08-29 2000-05-09 Sulzer Spine-Tech Inc. Apparatus and method for spinal stabilization
US6086595A (en) * 1997-08-29 2000-07-11 Sulzer Spine-Tech Inc. Apparatus and method for spinal stabilization
US6004326A (en) * 1997-09-10 1999-12-21 United States Surgical Method and instrumentation for implant insertion
US6156595A (en) * 1997-10-08 2000-12-05 Sawada; Shigeki Method of fabricating a Bi-CMOS IC device including a self-alignment bipolar transistor capable of high speed operation
US20040097932A1 (en) * 1998-04-09 2004-05-20 Ray Eddie F. Methods and instrumentation for vertebral interbody fusion
US6197033B1 (en) * 1998-04-09 2001-03-06 Sdgi Holdings, Inc. Guide sleeve for offset vertebrae
US6171339B1 (en) * 1998-05-19 2001-01-09 Sulzer Spine-Tech Inc. Multi-lumen spinal implant guide and method
US6174311B1 (en) * 1998-10-28 2001-01-16 Sdgi Holdings, Inc. Interbody fusion grafts and instrumentation
US6228022B1 (en) * 1998-10-28 2001-05-08 Sdgi Holdings, Inc. Methods and instruments for spinal surgery
US6224607B1 (en) * 1999-01-25 2001-05-01 Gary K. Michelson Instrumentation and method for creating an intervertebral space for receiving an implant
US6056749A (en) * 1999-03-15 2000-05-02 Spineology, Inc. Method and device for fixing and correcting spondylolisthesis anteriorly
US6113602A (en) * 1999-03-26 2000-09-05 Sulzer Spine-Tech Inc. Posterior spinal instrument guide and method
US6224599B1 (en) * 1999-05-19 2001-05-01 Matthew G. Baynham Viewable wedge distractor device
US20010016741A1 (en) * 2000-02-04 2001-08-23 Burkus J. Kenneth Methods and instrumentation for vertebral interbody fusion

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8579909B2 (en) 1999-02-04 2013-11-12 Warsaw Orthopedic, Inc Methods and instrument for vertebral interbody fusion
US20070288007A1 (en) * 1999-02-04 2007-12-13 Burkus J K Methods and instrument for vertebral interbody fusion
US7951154B2 (en) 2002-10-08 2011-05-31 Warsaw Orthopedic, Inc. Insertion device and techniques for orthopaedic implants
US20100222784A1 (en) * 2002-10-08 2010-09-02 Schwab Frank J Insertion device and techniques for orthopaedic implants
US7771432B2 (en) 2002-10-08 2010-08-10 Warsaw Orthopedic, Inc. Insertion device and techniques for orthopaedic implants
US20050075643A1 (en) * 2002-10-08 2005-04-07 Schwab Frank J. Insertion device and techniques for orthopaedic implants
US10182831B2 (en) 2003-04-28 2019-01-22 Centinel Spine Llc Instruments and method for preparing an intervertebral space for receiving an artificial disc implant
US20100069914A1 (en) * 2004-01-26 2010-03-18 Puno Rolando M Methods and instrumentation for inserting intervertebral grafts and devices
US7625379B2 (en) 2004-01-26 2009-12-01 Warsaw Orthopedic, Inc. Methods and instrumentation for inserting intervertebral grafts and devices
US8486083B2 (en) 2004-01-26 2013-07-16 Warsaw Orthopedic, Inc. Methods and instrumentation for inserting intervertebral grafts and devices
US20050240197A1 (en) * 2004-04-23 2005-10-27 Kmiec Stanley J Jr Device and method for inserting, positioning and removing an implant
WO2006015088A3 (en) * 2004-07-27 2009-05-07 Lonnie Jay Lamprich Spinal disc prosthesis and methods
US20110112645A1 (en) * 2004-07-27 2011-05-12 Lonnie Jay Lamprich Spinal Disc Prosthesis Apparatus and Placement Method
US7172628B2 (en) 2004-07-27 2007-02-06 Lonnie Jay Lamprich Spinal disc prosthesis and methods
US20060149382A1 (en) * 2004-07-27 2006-07-06 Lamprich Lonnie J Spinal disc prosthesis apparatus and placement method
WO2006015088A2 (en) * 2004-07-27 2006-02-09 Lonnie Jay Lamprich Spinal disc prosthesis and methods
US20060025863A1 (en) * 2004-07-27 2006-02-02 Lamprich Lonnie J Spinal disc prosthesis and methods
US7862617B2 (en) * 2004-07-27 2011-01-04 Lamprich Medical, Llc Spinal disc prosthesis apparatus and placement method
US7918890B2 (en) 2004-07-27 2011-04-05 Lamprich Medical, Llc Spinal disc prosthesis and methods
US20060025864A1 (en) * 2004-07-27 2006-02-02 Lamprich Lonnie J Spinal disc prosthesis and methods
US20060052793A1 (en) * 2004-08-20 2006-03-09 Heinz Eric S Instrumentation and methods for vertebral distraction
US7776045B2 (en) 2004-08-20 2010-08-17 Warsaw Orthopedic, Inc. Instrumentation and methods for vertebral distraction
US20060058808A1 (en) * 2004-09-08 2006-03-16 Susanne Schneid Surgical instrument
US8048084B2 (en) 2004-09-08 2011-11-01 Aesculap Ag Surgical instrument
US20090216330A1 (en) * 2004-09-23 2009-08-27 Christophe Geisert System and method for an intervertebral implant
US20060064100A1 (en) * 2004-09-23 2006-03-23 Rudi Bertagnoli Adjustable cutting of cutout in vertebral bone
US7763024B2 (en) 2004-09-23 2010-07-27 Spine Solutions, Inc. Adjustable cutting of cutout in vertebral bone
US9216024B2 (en) 2004-09-23 2015-12-22 DePuy Synthes Products, Inc. System and method for an intervertebral implant
US8066714B2 (en) 2006-03-17 2011-11-29 Warsaw Orthopedic Inc. Instrumentation for distraction and insertion of implants in a spinal disc space
US8303601B2 (en) 2006-06-07 2012-11-06 Stryker Spine Collet-activated distraction wedge inserter
US9883950B2 (en) 2006-07-24 2018-02-06 Centinel Spine Llc Intervertebral implant with keel
US9717511B2 (en) 2006-07-31 2017-08-01 DePuy Synthes Products, Inc. Drilling/milling guide and keel cut preparation system
US9949746B2 (en) 2006-07-31 2018-04-24 Centinel Spine Llc Drilling/milling guide and keel cut preparation system
US8152714B2 (en) 2007-02-09 2012-04-10 Alphatec Spine, Inc. Curviliner spinal access method and device
US20080221586A1 (en) * 2007-02-09 2008-09-11 Alphatec Spine, Inc. Curviliner spinal access method and device
US20090228110A1 (en) * 2008-03-07 2009-09-10 K2M, Inc. Intervertebral instrument, implant, and method
US8882844B2 (en) * 2008-03-07 2014-11-11 K2M, Inc. Intervertebral instrument, implant, and method
US20130238097A1 (en) * 2008-03-07 2013-09-12 K2M, Inc. Intervertebral instrument, implant, and method
US8449554B2 (en) * 2008-03-07 2013-05-28 K2M, Inc. Intervertebral implant and instrument with removable section
US9204906B2 (en) 2009-10-22 2015-12-08 Nuvasive, Inc. Posterior cervical fusion system and techniques
US10098674B2 (en) 2009-10-22 2018-10-16 Nuvasive, Inc. System and method for posterior cervical fusion
US9439640B2 (en) * 2009-10-23 2016-09-13 James L. Chappuis Devices and methods for temporarily retaining spinal rootlets within dural sac
US20110098705A1 (en) * 2009-10-23 2011-04-28 Chappuis James L Devices and Methods for Temporarily Retaining Spinal Rootlets within Dural Sac
US20150182212A1 (en) * 2009-10-23 2015-07-02 James L. Chappuis Devices and Methods for Temporarily Retaining Spinal Rootlets within Dural Sac
US8979748B2 (en) * 2009-10-23 2015-03-17 James L. Chappuis Devices and methods for temporarily retaining spinal rootlets within dural sac
US9649203B2 (en) 2010-03-16 2017-05-16 Pinnacle Spine Group, Llc Methods of post-filling an intervertebral implant
US9216096B2 (en) 2010-03-16 2015-12-22 Pinnacle Spine Group, Llc Intervertebral implants and related tools
US9788973B2 (en) 2010-03-16 2017-10-17 Pinnacle Spine Group, Llc Spinal implant
US9358122B2 (en) 2011-01-07 2016-06-07 K2M, Inc. Interbody spacer
US9380932B1 (en) 2011-11-02 2016-07-05 Pinnacle Spine Group, Llc Retractor devices for minimally invasive access to the spine
US10070970B2 (en) 2013-03-14 2018-09-11 Pinnacle Spine Group, Llc Interbody implants and graft delivery systems

Also Published As

Publication number Publication date
WO2000045709A1 (en) 2000-08-10
AU761818B2 (en) 2003-06-12
US6575981B1 (en) 2003-06-10
EP1152697A1 (en) 2001-11-14
AU761818C (en) 2004-05-27
JP2002536043A (en) 2002-10-29
JP4243026B2 (en) 2009-03-25
AU2981900A (en) 2000-08-25
CA2361069A1 (en) 2000-08-10

Similar Documents

Publication Publication Date Title
US6575981B1 (en) Methods and instrumentation for vertebral interbody fusion
US7244258B2 (en) Methods and instrumentation for vertebral interbody fusion
US6743234B2 (en) Methods and instrumentation for vertebral interbody fusion
US6428541B1 (en) Method and instrumentation for vertebral interbody fusion
EP1069864B1 (en) Vertebral body distraction device
US7776046B2 (en) Method and instrumentation for vertebral interbody fusion
US6171339B1 (en) Multi-lumen spinal implant guide and method
AU2002232959A1 (en) Methods and instrumentation for vertebral interbody fusion
JP2002501784A (en) Intervertebral body fixation device and method
AU2005201167B2 (en) Methods and instrumentation for vertebral interbody fusion
AU2003234872B2 (en) Methods and Instrumentation for Vertebral Interbody Fusion
WO2003026514A1 (en) Methods and instrumentation for vertebral interbody fusion
JP4326332B2 (en) Method and instrument for interbody fusion
AU2002330130A1 (en) Methods and instrumentation for vertebral interbody fusion

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION