US20050021018A1 - Robotic surgical tool with ultrasound cauterizing and cutting instrument - Google Patents

Robotic surgical tool with ultrasound cauterizing and cutting instrument Download PDF

Info

Publication number
US20050021018A1
US20050021018A1 US10/912,305 US91230504A US2005021018A1 US 20050021018 A1 US20050021018 A1 US 20050021018A1 US 91230504 A US91230504 A US 91230504A US 2005021018 A1 US2005021018 A1 US 2005021018A1
Authority
US
United States
Prior art keywords
instrument
surgical
tissue
ultrasound
robotic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/912,305
Inventor
Stephen Anderson
Christopher Julian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intuitive Surgical Inc
Original Assignee
Intuitive Surgical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intuitive Surgical Inc filed Critical Intuitive Surgical Inc
Priority to US10/912,305 priority Critical patent/US20050021018A1/en
Publication of US20050021018A1 publication Critical patent/US20050021018A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/76Manipulators having means for providing feel, e.g. force or tactile feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320069Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for ablating tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320071Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with articulating means for working tip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • A61B2017/320093Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw additional movable means performing cutting operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • A61B2017/320094Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw additional movable means performing clamping operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • A61B2017/320095Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw with sealing or cauterizing means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4405Device being mounted on a trolley
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras

Definitions

  • the present invention generally relates to surgical apparatus and methods. More specifically, the invention relates to a surgical instrument and method for use with a robotic surgical system, the instrument including an ultrasonic probe.
  • Minimally invasive surgical techniques generally reduce the amount of extraneous tissue damage during surgical procedures, thereby reducing patient recovery time, discomfort, and deleterious side effects.
  • One effect of minimally invasive surgery is reduced post-operative hospital recovery times. Because the average hospital stay for a standard surgery is typically significantly longer than the average stay for an analogous minimally invasive surgery, increased use of minimally invasive techniques could save millions of dollars in hospital costs each year. Patient recovery times, patient discomfort, surgical side effects, and time away from work can also be reduced by increasing the use of minimally invasive surgery.
  • endoscopy which is visual examination of a hollow space with a viewing instrument called an endoscope.
  • laparoscopy which is visual examination and/or treatment of the abdominal cavity.
  • laparoscopic surgery a patient's abdominal cavity is insufflated with gas and cannula sleeves are passed through small incisions in the musculature of the patient's abdomen to provide entry ports through which laparoscopic surgical instruments can be passed in a sealed fashion.
  • Such incisions are typically about 1 ⁇ 2 inch (about 12 mm) in length.
  • the laparoscopic surgical instruments generally include a laparoscope for viewing the surgical field and working tools defining end effectors.
  • Typical surgical end effectors include clamps, graspers, scissors, staplers, and needle holders, for example.
  • the working tools are similar to those used in conventional (open) surgery, except that the working end or end effector of each tool is separated from its handle by a long extension tube, typically of about 12 inches (about 300 mm) in length, for example, so as to permit the surgeon to introduce the end effector to the surgical site and to control movement of the end effector relative to the surgical site from outside a patient's body.
  • a surgeon typically passes the working tools or instruments through the cannula sleeves to the internal surgical site and manipulates the instruments from outside the abdomen by sliding them in and out through the cannula sleeves, rotating them in the cannula sleeves, levering (i.e., pivoting) the instruments against the abdominal wall and actuating the end effectors on distal ends of the instruments from outside the abdominal cavity.
  • the instruments normally pivot around centers defined by the incisions which extend through the muscles of the abdominal wall.
  • the surgeon typically monitors the procedure by means of a television monitor which displays an image of the surgical site captured by the laparoscopic camera.
  • the laparoscopic camera is also introduced through the abdominal wall so as to capture the image of the surgical site.
  • Telesurgery is a general term for surgical operations using systems where the surgeon uses some form of remote control, e.g., a servomechanism, or the like, to manipulate surgical instrument movements, rather than directly holding and moving the tools by hand.
  • the surgeon is typically provided with an image of the surgical site on a visual display at a location remote from the patient.
  • the surgeon can typically perform the surgical procedure at the location remote from the patient whilst viewing the end effector movement on the visual display during the surgical procedure. While viewing typically a three-dimensional image of the surgical site on the visual display, the surgeon performs the surgical procedures on the patient by manipulating master control devices at the remote location, which master control devices control motion of the remotely controlled instruments.
  • such a telesurgery system can be provided with at least two master control devices (one for each of the surgeon's hands), which are normally operatively associated with two robotic arms on each of which a surgical instrument is mounted. Operative communication between master control devices and associated robotic arm and instrument assemblies is typically achieved through a control system.
  • the control system typically includes at least one processor which relays input commands from the master control devices to the associated robotic arm and instrument assemblies and from the arm and instrument assemblies to the associated master control devices in the case of, e.g., force feedback, or the like.
  • One example of a robotic surgical system is the DAVINCITM system available from INTUITIVE SURGICAL, INC. of Mountain View, Calif.
  • a typical ultrasound treatment instrument for manual endoscopic surgery is the SonoSurg® instrument model T3070 made by OLYMPUS OPTICAL Co., LTD., of Tokyo, Japan.
  • Other examples of manually operated ultrasound treatment instruments are the Harmonic Scalpel® LaparoSonic® Coagulating Shears, made by ETHICON ENDO-SURGERY, INC., of Cincinnati, Ohio; and the AutoSonix® Ultra Shears® made by UNITED STATES SURGICAL CORPORATION of Norwalk, Conn.
  • Such an ultrasound treatment instrument may comprise ultrasonic transducers for generating ultrasonic vibrations; a handpiece including the ultrasonic transducers and serving as an operation unit; a generally elongate probe connected to the ultrasonic transducers and serving as a vibration conveyer for conveying ultrasonic vibrations to a distal end effector member or tip used to treat a living tissue; a sheath serving as a protective member for shielding the probe.
  • the instrument typically includes a movable holding, grasping or gripping end effector member pivotally opposed to the distal tip and constituting a movable section which clamps a living tissue in cooperation with the distal tip; an operating mechanism for moving the grasping member between a closed position in which the grasping member engages the distal tip of the vibration transmitting member and an open position in which the grasping member is separated from distal tip portion.
  • the operating mechanism includes handle portions for manipulation and actuation by a surgeon's hands.
  • Surgical ultrasound instruments are generally capable of treating tissue with use of frictional heat produced by ultrasonic vibrations. For example, the heat may be use to cut and/or cauterize tissue.
  • tissue may first be grasped by an ultrasound surgical device and then ultrasound energy may be delivered to the tissue to cut, cauterize or the like.
  • Ultrasound instruments provide advantages over other cutting and cauterizing systems, such as reduced collateral tissue damage, reduced risk of unwanted bums, and the like.
  • ultrasound instruments for use with a robotic surgical system are not available.
  • a surgical instrument for use with a robotic surgical system, that provides ultrasound energy at a surgical site.
  • Such an instrument would allow the advantages of ultrasound and minimally invasive robotic surgery to be combined.
  • Surgical apparatus and methods for enhancing robotic surgery generally include a surgical instrument with an elongate shaft having an ultrasound probe, an end effector at the distal end of the shaft, and a base at the proximal end of the shaft.
  • the end effector includes an ultrasound probe tip and the surgical instrument is generally configured for convenient positioning of the probe tip within a surgical site by a robotic surgical system.
  • Ultrasound energy delivered by the probe tip may be used to cut, cauterize, or achieve various other desired effects on tissue at a surgical site.
  • the present invention provides a method of performing a robotic surgical procedure on a patient.
  • the method includes coupling a surgical instrument with a robotic surgical system, the surgical instrument having a distal end with an ultrasound probe tip, positioning with the robotic surgical system the ultrasound probe tip in contact with tissue at a surgical site in the patient, and delivering ultrasound energy to the tissue with the ultrasound probe tip.
  • the distal end of the surgical instrument further includes a gripping member.
  • the method further includes transmitting at least one force from the robotic surgical system to the gripping member and moving the gripping member with the at least one force to hold a portion of the tissue between the gripping member and the ultrasound probe tip.
  • the method further includes transmitting the at least one force from an interface member on the robotic surgical system to a first rotatable shaft on the surgical instrument, the first rotatable shaft being coupled to a second rotatable shaft by a cable, the cable being coupled to an actuator rod, and the actuator rod being coupled to the gripping member, wherein the at least one force causes the first shaft, the second shaft and the cable to rotate, causing the actuator rod to move the gripping member.
  • the method further includes releasing the portion of tissue after delivering a desired amount of ultrasound energy to the portion of tissue.
  • the method also includes using the ultrasound probe tip to cut the tissue, cauterize the tissue, or both.
  • the present invention provides a surgical instrument for use with a robotic surgical system.
  • the surgical instrument includes an elongate shaft having a proximal end and a distal end, the elongate shaft including an ultrasound probe, an end effector disposed at the distal end, the end effector including an ultrasound probe tip of the ultrasound probe, and a base disposed at the distal end for connecting the surgical instrument to the robotic surgical system.
  • the elongate shaft may be configured to rotate in relation to the base about an axis drawn from the proximal end to the distal end.
  • the base of the surgical instrument may include: at least two shafts rotatably mounted within the base, each of the shafts having two ends, at least one of the ends of one of the shafts protruding from the base to engage a corresponding interface member on the robotic surgical system; at least two spools, each spool being mounted on one of the shafts; at least one cable for connecting two of the spools; and a rotating member coupled to the cable and to the elongate shaft, the rotating member being configured to rotate the elongate shaft in response to movements of the interface member, the at least two shafts, the at least two spools and the at least one cable.
  • the end effector of the surgical instrument includes a gripping member hingedly attached to the end effector for gripping tissue in cooperation with the ultrasound probe tip.
  • the surgical instrument may optionally include at least one force transmitting member for transmitting one or more forces between the robotic surgical system and the gripping member to move the gripping member.
  • the transmitting member may include: at least two shafts rotatably mounted within the base, each of the shafts having two ends, at least one of the ends of one of the shafts protruding from the base to engage a corresponding interface member on the robotic surgical system; at least two spools, each spool being mounted on one of the shafts; at least one cable for connecting two of the spools; and an actuator rod coupled to the cable and to the gripping member and extending through the elongate shaft, the actuator rod being configured to move the gripping member in response to movements of the interface member, the at least two shafts, the at least two spools and the at least one cable.
  • the base of the surgical instrument includes an ultrasound source connector for connecting the ultrasound probe to an external ultrasound source.
  • the base includes an internal ultrasound source for providing ultrasound energy to the ultrasound probe.
  • the ultrasound probe of the surgical instrument may include various components.
  • the probe includes an ultrasound transducer for generating ultrasonic vibrations and one or more amplifying horns for amplifying the ultrasonic vibrations.
  • the ultrasonic probe assembly may be arranged to be axially movable within the elongate shaft, and the proximal portion of the probe may be mechanically coupled to one or more movable interface members so that the probe is movable in a reciprocating manner in response to movement of the interface member.
  • the distal portion of the probe assembly may be coupled to the grip member, so that the grip opens or closes as the probe moves axially. In this manner the movable probe assembly may serve the function of a grip actuator rod in addition to transmitting ultrasound energy to the surgical site.
  • Certain exemplary surgical instrument embodiments having aspects of the invention may be described or characterized in general terms as comprising an instrument probe assembly having a distal end configured to be insertable into a patient's body through a small aperture, such as a minimally invasive surgical incision or the like, typically defined by a cannula or trocar.
  • the instrument probe assembly comprises a proximal end coupled to an instrument base.
  • the instrument probe assembly typically is elongate, having an axis extending between the distal and proximal probe ends, and may have a generally straight or shaft-like medial portion. In alternative embodiments, the medial probe portion may be curved and/or may be flexible in shape relative to the axis.
  • the instrument base includes an instrument interface assembly which is engagable to a robotic surgical system.
  • the instrument interface assembly is removably engageable to the robotic surgical system, and may include a latch mechanism permitting quick connection and disconnection.
  • the instrument interface assembly is engagable with provides for one or more instrument actuation inputs from the robotic surgical system in response to an input by an operator (i.e., an activation input to the instrument, being an activation output from the robotic surgical system, which in turn is a response by the robotic control system to an operator control input).
  • an operator i.e., an activation input to the instrument, being an activation output from the robotic surgical system, which in turn is a response by the robotic control system to an operator control input.
  • the one or more instrument activation inputs include an input to activate at least one degree of freedom of motion of the all or a portion of the instrument probe assembly relative to the instrument base.
  • the activation input may be a mechanical input, an electrical input, a magnetic input, a signal input, an optical input, a fluidic input, a pneumatic input, and the like, or a combination of these, without departing from the spirit of the invention.
  • At least one activation input includes an operative engagement of a rotatable interface body (activation interface body) of the robotic surgical system with a corresponding rotatable shaft (instrument interface body or instrument interface shaft) of the instrument interface assembly in the instrument base.
  • the rotatable shaft is in turn mechanically coupled by one or more drive elements to all or a portion of the to the instrument probe assembly, so as to impart a corresponding degree of freedom to all or a portion of the instrument probe assembly relative to the base.
  • an electrical power/control interface (e.g., including a multi-pin connector) may be included in the interface assembly to transmit electrical power and/or control signals from the robotic surgical system to actuate a motor pack mounted in the instrument base, the motor pack output may in turn may be coupled to the instrument probe assembly so as to impart one or more corresponding degrees of freedom to all or portions of the instrument probe assembly relative to the base.
  • the motor pack may include one or more electrical motors, transmission gearing, position encoders, torque sensors, feedback sensors, and the like, and may transmit feedback or sensor signals to the robotic surgical system via the interface.
  • the at least one degree of freedom of motion in response to an activation input from the robotic surgical system includes the pivotal activation of a clamp or grip member of an end effector coupled to the distal probe end.
  • the at least one degree of freedom of motion includes the axial rotation of at least the major portion of the instrument probe assembly about its axis relative to the instrument base.
  • the instrument probe assembly may include at least one distal joint to controllably orient the distal probe end relative to the probe axis, such as a wrist-like rotational or pivotal joint supporting a distal end effector.
  • the probe medial portion may have a flexible section which is controllably variable in shape by one or more degrees of freedom, being driveable by longitudinal tendon members extending within the instrument probe assembly.
  • the instrument interface assembly is coupled to drive members of the instrument probe assembly to activate such degrees of freedom and is engagable with the robotic surgical system to receive activation inputs to activate such drive members.
  • Further examples of alternative instrument embodiments include instrument probe assemblies having controllable shape-memory components, movable piezo-electric drive elements, hydraulic drive elements, and the like, or combinations of these.
  • the robotic activation input may include a corresponding activation modality suitable for any of these instrument probe assembly movement modalities, without departing from the spirit of the invention.
  • the instrument may include OEM parts.
  • the instrument probe assembly may include parts or components generally similar or identical to parts or components (OEM components) of current or future commercially-available endoscopic instruments for surgical or diagnostic uses (OEM medical systems), including manually operated instruments.
  • the surgical instruments of the invention may perform some or all of the functions of such OEM medical systems.
  • the instrument probe assembly of the surgical instruments of the invention may include OEM components of ultrasound treatment probes, electrocautery probes, ultrasound diagnostic probes, diagnostic imagery probes.
  • the instrument probe assembly may include suitable OEM components of biopsy probes, suction probes, substance injection probes, surgical accessory application probes, stapler probes, tissue grasping and cutting probes, and the like.
  • the instrument probe assembly may combine more than one of the medical functions of the above described instruments.
  • the instrument probe assembly comprises a distally disposed end effector coupled to the probe distal end to engage tissue employing a medical energy modality.
  • the instrument probe assembly may include a conduction element or conduction core coupled to the end effector; and extending along the probe axis.
  • the conduction element may be configured and composed to communicate the medical energy between the end effector and a medical energy source.
  • the instrument may include one or more energy connector devices coupled to the conduction element, the connector devices being engagable operatively communicate to a power, signal and/or control system external to the instrument to enable medical functions of the instrument (medical energy system).
  • the medical energy system may include a power, signal and/or control system which is distinct from the robotic surgical system, such as the power, signal and/or control system of an OEM medical system.
  • Such medical energy systems may likewise be responsive to a control input of an operator.
  • instrument embodiments of the invention may include a cable connector configured to connect to an OEM surgical ultrasound generator, an OEM electrocautery generator, and the like.
  • the energy connector device of the instrument may be configured for “wireless” engagement with the medical energy system, so that operative reception and/or transmission of the medical energy signal may be by non-contact communication with the medical energy system.
  • the medical energy system may be integrated with the robotic surgical system.
  • the respective energy connector devices may be integrated with the instrument interface assembly, and optionally operator input devices of the medical energy system may be integrated with the operator input devices of the robotic surgical system.
  • the medical energy modality is ultrasound energy for tissue treatment
  • the instrument probe assembly comprises an ultrasonic treatment assembly or ultrasonic treatment probe.
  • the ultrasonic treatment probe includes a transducer coupled to an ultrasonic acoustical conduction core, the transducer preferably being supported at least partially by the instrument base.
  • the medical energy system comprises an OEM ultrasonic generator.
  • the interface connector device includes a cable connector mounted to the base and engagable with a cable to communicate with an OEM ultrasonic generator.
  • the ultrasonic treatment probe includes a probe tip coupled to the conduction core and configured to engage tissue and controllably transmit ultrasound energy to the engaged tissue.
  • an instrument probe assembly employing another type of medical energy modality may be included.
  • the instrument probe assembly may comprise an electrosurgical treatment probe including a electrical conduction element coupled to an end effector, and the base may include a connector interface coupled to the electrocautery treatment probe, and configured to be connectable to an OEM electrosurgical generator.
  • the instrument probe assembly may include a conduction element for communicating a diagnostic energy modality, e.g., signals to and/or from an end effector having an diagnostic ultrasound transducer or other diagnostic sensor and or transmitter.
  • FIG. 1 is a perspective illustration of a robotic surgical system with which various embodiments of the present invention may be used.
  • FIG. 2 is a perspective illustration of a robotic surgical tool which may be used with a robotic surgical system as in FIG. 1 .
  • FIG. 3 is a perspective illustration of the robotic surgical tool in FIG. 2 , with a cover of a tool base removed to show internal structures of the tool base.
  • FIG. 4 is a side-view illustration of a manually operated ultrasound treatment apparatus as described in U.S. Pat. No. 6,193,709.
  • FIG. 5 is a side-view illustration of a manually operated ultrasound treatment apparatus as in FIG. 4 , with a portion of the operative end of the apparatus shown in exploded view.
  • FIG. 6 is a side-view illustration of the distal end of a manually operated ultrasound treatment apparatus as in FIGS. 4 and 5 , with a jaw of the distal end in an open position.
  • FIG. 7 is a side-view illustration of the distal end of a manually operated ultrasound treatment apparatus as in FIGS. 4 and 5 , with a jaw of the distal end in a closed position.
  • FIG. 8 is a cross-sectional side-view illustration of a portion of a manually operated ultrasound treatment apparatus as in FIGS. 4 and 5 .
  • FIG. 9 is a cross-sectional side-view illustration of a portion of a manually operated ultrasound treatment apparatus as in FIGS. 4 and 5 .
  • FIG. 10 is a perspective illustration of a distal portion of a robotic surgical tool according to an embodiment of the present invention.
  • FIGS. 11 a - b are perspective illustrations of a proximal portion of a surgical tool according to an embodiment of the present invention, with a cover on a tool base of the surgical tool removed to show internal structures of the tool base.
  • FIG. 11 c is a perspective illustration of a distal portion of a robotic surgical tool according to an embodiment of the present invention.
  • FIG. 12 a is a perspective illustration of a proximal portion of a surgical tool according to an embodiment of the present invention, including a tool base of the surgical tool.
  • FIG. 12 b is a perspective illustration of a proximal portion of a surgical tool as in FIG. 12 a , with a cover on the tool base removed to show internal structures of the tool base.
  • FIG. 12 c is a perspective illustration of a proximal portion of a surgical tool as in FIG. 12 b , with a an upper chassis further removed from the tool base to show internal structures of the tool base.
  • FIG. 12 d is a perspective illustration of a surgical tool according to an embodiment of the present invention.
  • FIG. 13 is an enlarged perspective illustration of a tool base as shown in FIG. 12 c.
  • FIG. 14 a is a top-view illustration of a tool base as shown in FIGS. 12 c and 13 .
  • FIG. 14 b is a side-view illustration of a tool base according to an embodiment of the present invention.
  • FIG. 15 a is an enlarged view of a tool base as shown in FIG. 14 a.
  • FIG. 15 b is an enlarged view of a tool base as shown in FIG. 14 b.
  • FIGS. 16 a - d are perspective illustrations of a tool base according to an embodiment of the present invention, in progressive stages of disassembly.
  • FIG. 17 is a perspective illustration of a portion of a tool base according to an embodiment of the present invention.
  • FIG. 18 is an exploded perspective illustration of a portion of a tool base according to an embodiment of the present invention.
  • FIG. 19 is an exploded perspective illustration of a portion of a tool base according to an embodiment of the present invention.
  • FIG. 20 illustrates an alternative example of an instrument including aspects of the invention.
  • FIG. 21 is a top view of a proximal portion of the alternative instrument embodiment shown in FIG. 20 .
  • FIG. 22 is a side view of the proximal portion shown in FIG. 21 .
  • FIG. 23 is a side view of the removable treatment assembly of the instrument embodiment shown in FIG. 20 .
  • FIG. 24 is a side view of the proximal portion of the instrument embodiment shown in FIG. 22 , with the treatment assembly removed.
  • FIG. 25 is a perspective view of a molded half portion of the adaptor housing of the removable treatment assembly shown in FIGS. 21 and 22 .
  • FIG. 26 is a side perspective view of another alternate embodiment of an ultrasonic instrument in an open position, as described in U.S. Pat. No. 6,280,407.
  • FIG. 27 is a perspective view of an elongated body portion of the ultrasonic instrument shown in FIG. 26 .
  • FIG. 28A is a side perspective view of the clamp of the ultrasonic instrument shown in FIG. 26 .
  • FIG. 28B is a side perspective view of the tissue contact surface of the clamp shown in FIG. 28A .
  • FIG. 28C is a side perspective view of the distal end of the elongated body portion of the ultrasonic instrument shown in FIG. 26 .
  • FIG. 29 is a side perspective view of the elongated body portion and rotation assembly of the ultrasonic instrument shown in FIG. 26 .
  • FIG. 30 is a side perspective view of the handle assembly and transducer assembly of the ultrasonic instrument shown in FIG. 26 .
  • FIG. 31 is a side partial cross-sectional view of the ultrasonic instrument shown in FIG. 26 in the open position.
  • FIG. 31A is an enlarged perspective view of a C-clip locator for the vibration coupler.
  • FIG. 32 is an enlarged view of the indicated area of detail of FIG. 31 illustrating the clamp in the open position.
  • FIG. 33 is a side perspective view of the distal end of the elongated body portion of the ultrasonic instrument shown in FIG. 33 .
  • FIG. 34 is a side perspective, partial cutaway view of the distal end of the elongated body portion of the ultrasonic instrument shown in FIG. 33 .
  • FIG. 35 is a side partial cross-sectional view of the ultrasonic instrument of FIG. 26 in the closed position.
  • FIG. 36 is an enlarged view of the indicated area of detail of FIG. 35 illustrating the clamp in the closed position.
  • the invention provides robotic surgical apparatus and methods for applying ultrasound energy in robotic surgery.
  • the invention includes a robotic surgical apparatus for use with a robotic surgical system.
  • the apparatus typically incudes an elongate shaft with an end effector at one end and a base at the opposite end.
  • the end effector includes an ultrasound tip and a gripper for gripping tissue and the like between the gripper and the ultrasound tip.
  • the gripper may also pivot around one or more axes in relation to the apparatus.
  • the tool base is generally configured to engage the robotic surgical system and to transmit forces from the robotic surgical system to the gripper, for example to pivot the gripper.
  • a robotic surgical system 10 suitably includes a user-operated control station 12 and a surgical work station, or “cart” 20 .
  • the control station 12 includes an image display module 14 for displaying an image of a surgical site, a support 16 on which an operator may rest his/her forearms, and a space 18 where two master control devices are located (not shown).
  • a surgeon or other user typically sits in a chair in front of control station 12 , positions views the surgical site through display module 14 and grips the master controls one in each hand while resting the forearms on support 16 .
  • One example of a robotic surgical system as described in FIG. 1 is the DAVINCITM system available from Intuitive Surgical, Inc. of Mountain View, Calif.
  • Control station 12 is generally coupled to cart 20 such that command from master controls may be transmitted to cart 20 .
  • cart 20 is positioned adjacent a patient requiring surgery and is then normally caused to remain stationary until a surgical procedure to be performed by means of surgical system 10 is complete.
  • Cart 20 typically has wheels or castors to render it mobile.
  • Control station 12 is typically positioned remote from cart 20 and in some embodiments may be separated from cart 20 by a great distance, for example miles away, but will typically be used within an operating room with cart 20 .
  • cart 20 includes at least three robotic arm assemblies 22 , 26 , 26 , one of which is configured to hold an image capture device 24 and the others of which are configured to hold surgical instruments 28 .
  • cart may include more or fewer than three robotic arm assemblies and the robotic arm assemblies may be configured to hold any suitable tool, instrument, imaging device and/or the like.
  • Image capture device 24 may include any suitable device, such as an endoscope, fiber optic camera, or the like.
  • Image capture device 24 generally includes an object viewing end 24 . 1 at a remote end of an elongate shaft configured to enable viewing end 24 . 1 to be inserted through an entry port in a patient's body to capture an image of a surgical site.
  • Coupling of cart 20 to control station 12 generally enables display module 14 to display an image captured by image capture device 24 .
  • Coupling of cart 20 to control station 12 also typically allows each of master controls on control station 12 (not shown) to control one robotic arm assembly 26 and one surgical instrument 28 .
  • each master control may alternatively be used to control more than one robotic arm assembly 26 and/or more than one surgical instrument 28 .
  • Surgical instruments 28 on the robotic arm assemblies 26 typically include elongate shafts, with proximal and distal ends. End effectors are generally mounted on wrist-like mechanisms pivotally mounted on the distal ends of the shafts, for enabling the instruments 28 to perform one or more surgical tasks. Generally, the elongate shafts of surgical instruments 28 allow the end effectors to be inserted through entry ports in a patient's body so as to access the internal surgical site. Movement of the end effectors is generally controlled via master controls on control center 12 .
  • surgical instrument 28 suitably includes an elongate shaft 28 . 1 having a proximal end 33 and a distal end 31 , a pivot 32 and end effector 38 disposed at the distal end, and an instrument base 34 disposed at the proximal end.
  • Base 34 is generally configured to releasably engage a robotic surgical system, such as robotic surgical system 10 in FIG. 1 .
  • instrument 28 is engaged with system via base 34 (base not shown in FIG. 1 ) such that instrument 28 is releasably mountable on a carriage 37 which can be driven to translate along a linear guide formation 38 of the arm 26 in the direction of arrows P.
  • shaft 28 . 1 is rotatably mounted on base 34 for rotation about an axis 28 . 2 extending longitudinally along the shaft 28 . 1 as indicated by the arrows E.
  • end effector 38 may have a plurality of degrees of freedom of movement relative to manipulator arm 26 , in addition to actuation movement of the end effector itself.
  • the instrument may be translated along an insertion axis (Arrows P in FIG. 1 ).
  • the instrument degrees of freedom include rotation about the axis 28 . 2 as indicated by arrows E, and in the case of instruments 28 including pivots 32 , angular displacement as a whole about pivot 32 as indicated by arrows D.
  • distal pivoting degree of freedom may be omitted.
  • a single pivot wrist, a multi-pivot wrist, a distal roll joint mechanism or other joints may be included to provide additional operational degrees of freedom to the end effector. Movement of end effector 38 relative to manipulator arm 26 controlled by appropriately positioned actuators, such as electric motors, or the like, which respond to inputs from an associated master control at the control station 12 , so as to drive the end effector 38 to a required orientation as dictated by movement of the associated master control.
  • base 34 of surgical instrument 28 suitably includes transmission members 70 , 72 , 74 , and 76 , which include spools secured on shafts 70 . 1 , 72 . 1 , 74 . 1 , and 76 . 1 .
  • Ends of shafts 70 . 1 , 72 . 1 , 74 . 1 , 76 . 1 generally extend from a side 77 of base 34 to a mounting plate 78 within base 34 and are configured to rotate.
  • the ends of shafts 70 . 1 , 72 . 1 , 74 . 1 , 76 . 1 at side 77 of base 34 extend through side 77 , to an outer surface of side 77 (not shown).
  • each shaft 70 . 1 , 72 . 1 , 74 . 1 , 76 . 1 includes an engaging member (not shown) configured to releasably couple with a complementary engaging member (not shown) rotatably mounted on the carriage 37 of a robotic arm assembly 26 (see FIG. 1 ).
  • the engaging members on carriage 37 are generally coupled to actuators (not shown), such as electric motors or the like, to cause selective angular displacement of each engaging member on the carriage 37 in response to actuation of its associated actuator.
  • actuators such as electric motors or the like
  • selective actuation of the actuators is transmitted through the engaging members on the carriage 37 , to the engaging members on the opposed ends of the shafts 70 . 1 , 72 . 1 , 74 . 1 , 76 . 1 to cause selective angular displacement of the spools 70 , 72 , 74 , 76 .
  • the number of spools may be decreased or increased.
  • an ultrasound treatment system 201 for manually-performed endoscopic surgery suitably includes a handle unit 202 , a probe unit 203 , and a vibrator unit 204 .
  • the following description of FIGS. 4-9 corresponds generally to the description of FIGS. 12-23 in U.S. Pat. No. 6,193,709.
  • the vibrator unit 204 is formed as a hand piece 241 .
  • the hand piece 241 includes a cylindrical cover 242 that forms a grasping section.
  • An ultrasonic transducer 243 and a horn 244 are arranged inside the cover 242 .
  • a hand piece cord 245 extends from the proximal end of the vibrator unit 204 , and a hand piece plug 246 is provided on an end portion of the cord 245 (see FIG. 4 ).
  • the plug 246 is connected electrically to an ultrasonic oscillator (not shown).
  • the vibrator unit 243 is vibrated as it is supplied with electric power from the ultrasonic oscillator.
  • the horn 244 which is coupled to the ultrasonic transducer 243 , amplifies ultrasonic vibration generated by the ultrasonic transducer 243 and enlarges its amplitude to a first phase.
  • the distal end of the horn 244 is formed having an internal-thread portion to which the probe unit 203 is attached.
  • a connecting member 247 is attached to the distal end of the cover 242 .
  • the member 247 connects the vibrator unit 204 , along with the probe unit 203 combined therewith, to the handle unit 202 .
  • the connecting member 247 is provided with an engaging ring (C-shaped ring) 248 having a semicircular profile.
  • the vibrator unit 204 is connected to the handle unit 202 as the ring 248 is caused elastically to engage an engaging groove 211 a of a vibrator connecting section 211 (mentioned later) of the unit 202 .
  • the probe unit 203 is formed as a rod-shaped vibration transmitting member 251 for transmitting the ultrasonic vibration generated by the ultrasonic transducer 243 .
  • An external-thread portion 251 e to be screwed into the internal-thread portion at the distal end of the horn 244 of the vibrator unit 204 is formed on the proximal end of the transmitting member 251 .
  • the transmitting member 251 includes a proximal-side horn 251 d , intermediate portion 251 c , distal-side horn 251 b , and columnar distal end portion 251 a .
  • the proximal-side horn 251 d further enlarges the amplitude of the ultrasonic vibration, amplified by the horn 244 , to a second phase.
  • the intermediate portion 251 c is situated on the distal end side of the horn 251 d .
  • the distal-side horn 251 b which is situated on the distal end side of the intermediate portion 251 c , enlarges the amplitude of the ultrasonic vibration, amplified by the horn 251 d , to a final phase.
  • the distal end portion 251 a is situated on the distal end side of the horn 251 b (or on the distal end side of the vibration transmitting member 251 ).
  • the ultrasonic vibration from the probe ultrasonic transducer 243 is transmitted to the distal end portion 251 a , whereupon the end portion 251 a vibrates. Further, the distal end portion 251 a , along with a distal acting section 205 (mentioned later) of the handle unit 202 , constitutes a treatment section 210 of the ultrasonic treatment apparatus 201 .
  • the handle unit 202 includes an operating section 206 , the insertable sheath section 231 formed of a long sheathing tube 220 that is rotatably attached to the operating section 206 , and the distal acting section 205 on the distal end of the insertable sheath section 231 .
  • the operating section 206 includes an operating section body 212 , a fixed handle 213 formed integrally with the body 212 , and a movable handle 214 .
  • the operating section body 212 is provided with the vibrator connecting section 211 on its proximal end.
  • the vibrator unit 204 is removably connected to the connecting section 211 .
  • the movable handle 214 is rockably mounted on the operating section body 212 (fixed handle 213 ) by means of a handle pivot 217 .
  • the handle pivot 217 is situated on the opposite side of the longitudinal central axis of the insertable sheath section 231 from the fixed handle 213 .
  • the movable handle 214 is rocked around a fulcrum that is situated above the longitudinal central axis of the sheath section 231 . Further, the handle 214 has engaging pins 219 on or near the central axis of the sheath section 231 . The pins 219 can engage a transmitting member 258 (see FIG. 8 , mentioned later) in the operating body 212 .
  • a cylindrical interpolative member 212 b is inserted and fastened in the operating section body 212 .
  • the distal end portion of the member 212 b is held between a nut 212 d , which is fitted in the distal end portion of the operating section body 212 , and a cylindrical rotating member 212 c , which is inserted and fastened in the distal end portion of the member 212 b .
  • the cylindrical transmitting member (rotor) 258 is disposed inside the interpolative member 212 b .
  • the vibration transmitting member 251 is passed through a bore of the member 258 .
  • the proximal-side horn 251 d of the transmitting member 251 and the proximal-side portion thereof are arranged in the bore of the transmitting member 258 .
  • an engaging groove 262 is formed on the outer peripheral surface of the transmitting member 258 . Fitted in the groove 262 are the engaging pins 219 of the movable handle 214 , which individually penetrate through-holes 212 a in the operating section body 212 and the interpolative member 212 b.
  • the annular vibrator connecting section 211 is attached to the inner peripheral surface of the proximal end portion of the interpolative member 212 b by screwing and/or an adhesive such as glue.
  • the engaging groove 211 a is formed on the inner peripheral surface of the connecting section 211 .
  • the groove 211 has a conical engaging surface 211 b on its proximal end side.
  • the engaging surface 211 b is designed to fit the curved outer peripheral surface of the engaging ring 248 that is attached to the connecting member 247 of the vibrator unit 204 .
  • a cylindrical rotary knob 232 is attached to the nut 212 d by means of a V-groove on the nut 212 d and a cone-point setscrew.
  • the proximal end portion of the sheathing tube 220 of the insertable sheath section 231 is inserted in a bore of the knob 232 .
  • An end member 220 a is fitted on the outer periphery of the proximal end portion of the tube 220 in the bore of the knob 232 .
  • the distal end portion of a connecting cylinder 220 b is fitted and fixed on the outer periphery of the end member 220 a by adhesive bonding.
  • a thread portion 224 is formed on the outer peripheral surface of the distal end portion of the cylinder 220 b .
  • the distal end portion of the rotating member 212 c which extends in the bore of the rotary knob 232 , is screwed on the thread portion 224 . Further, the proximal end side of the connecting cylinder 220 b is inserted into a bore of the rotating member 212 c , and is held between the member 212 c and the distal end portion of the transmitting member 258 in a manner such that it can move back and forth.
  • the position (or longitudinal movement) of the cylinder 220 b in the member 212 c can be adjusted by rotating a nut 220 c , which is screwed on the thread portion 224 of the cylinder 220 b and engages the distal end of the member 212 c .
  • the connecting cylinder 220 b has an engaging groove 220 d on its proximal end. As a positioning pin 220 e that protrudes from the transmitting member 258 engages the engaging groove 220 d , the cylinder 220 b is restrained from rotating relatively to the member 258 .
  • the distal acting section 205 includes a holding member 270 , which is attached to the distal end portion of the sheathing tube 220 , and an open-close member 275 of a single-swing type, which is rockably (pivotably) attached to the member 270 by means of pivots 274 .
  • the acting section 205 along with the distal end portion 251 a of the vibration transmitting member 251 of the probe unit 203 , constitutes the treatment section 210 of the ultrasonic treatment apparatus 201 .
  • the open-close member 275 can hold a living organism in cooperation with the distal end portion 251 a of the vibration transmitting member 251 so that the organism is pressed against the distal end portion 251 a that is undergoing the ultrasonic vibration. Thus, vibration energy can be transmitted from the distal end portion 251 a to the organism.
  • the member 275 also functions as an exfoliating forceps for exfoliating living organisms.
  • the open-close member 275 is composed of a pair of opposite side walls 275 a and 275 b , a proximal-side connecting portion 275 c connecting the respective proximal-side upper end portions of the side walls 275 a and 275 b , a distal-side connecting portion 275 d connecting the respective distal end portions of the side walls 275 a and 275 b , and attachment portions 275 e extending individually downward from the respective proximal end portions of the side walls 275 a and 275 b.
  • a slit 234 is defined between the side walls 275 a and 275 b , and a grasping member 282 is located in the slit 234 for rocking motion.
  • the member 282 can grasp the living organism in cooperation with the vibration transmitting member 251 .
  • the grasping member 282 is connected integrally to a jaw 278 by means of a cylindrical collar member 277 a so that the jaw 278 is held between the members 282 and 277 a .
  • an attachment portion 282 a of the member 282 which is situated in the slit 234 , is rockably attached to the open-close member 275 by means of a pivot pin 277 .
  • the collar member 277 a penetrates the attachment portion 282 a of the grasping member 282 in the slit 234 and the jaw 278 , while the pin 277 is passed through the member 277 a .
  • the width of the slit 234 is made greater than that of the attachment portion 282 a of the grasping member 282 that is fitted in the slit 234 .
  • FIGS. 10-19 show a preferred embodiment of a robotic tool 80 having aspects of the present invention.
  • the tool 80 includes an ultrasound treatment instrument assembly which may have a number of features which are generally similar to portions of the ultrasonic treatment instrument shown in FIGS. 5-9 .
  • portions of a suitable OEM ultrasound instrument for example, the SonoSurg® ultrasonic treatment instrument model T3070 made by Olympus Optical Co., Ltd., of Tokyo, Japan
  • a suitable OEM ultrasound instrument for example, the SonoSurg® ultrasonic treatment instrument model T3070 made by Olympus Optical Co., Ltd., of Tokyo, Japan
  • the above referenced U.S. Pat. No. 6,193,709 describes an ultrasound treatment instrument generally similar to the SonoSurg® instrument.
  • portions of the generally similar Ultracision® Harmonic Scalpel® LaparoSonic® Coagulating Shears may be included as subassemblies of the robotic tool 80 .
  • a description of an ultrasound treatment instrument generally similar to the LaparoSonic® Coagulating Shears is included in U.S. Pat. No. 5,322,055, which patent is hereby incorporated by reference.
  • the tool 80 may be used in operative association with a suitable prior art OEM ultrasound driver transducer, power supply and control system (for example, the SonoSurg® model T2H made by Olympus Optical Co., Ltd., of Tokyo, Japan) to provide ultrasound energy supply and control functions.
  • a distal portion of a robotic surgical instrument 80 suitably includes a shaft 84 , covered by a sheath 86 , with an end effector 81 at the distal end of shaft 84 .
  • End effector 81 includes a gripper 82 hingedly attached to shaft 84 at a hinge 83 , and an ultrasonic probe tip 85 b .
  • the distal portion of surgical instrument 80 also includes a distal sealing ring 87 ( FIG. 11 c ).
  • ultrasound probe tip 85 b is configured to delivery ultrasound energy at a surgical site for cutting, cauterization or any other suitable purpose.
  • ultrasound probe may be designed to have any suitable configuration.
  • ultrasound probe tip 85 b may comprise a cylindrical probe with a rounded tip, as in FIG. 10 , or may alternatively comprise a triangle-shaped probe, a square probe, a probe with a flat or pointed tip, a shorter probe, a longer probe or the like.
  • gripper 82 is configured to be movable at hinge 83 such that the distal end of gripper 82 may be moved toward ultrasound probe tip 85 , 85 b to grip tissue or other substances between gripper 82 and probe tip 85 b , and may be moved away from probe tip 85 b to release tissue.
  • gripper 82 may be used to grip tissue and position it in contact with ultrasound probe tip 85 b to enable cutting or cauterization by probe tip 85 b .
  • gripper 82 may have any suitable configuration for holding, gripping or otherwise moving tissue against probe tip 85 b .
  • gripper 82 may include teeth, as in FIG. 10 , or may have straight, flat edges, or one tooth or other gripping mechanism or the like.
  • one or more axes for freedom of motion of end effector 81 may be included in the distal portion.
  • shaft 84 is configured to rotate with sheath 86 , enabling end effector 81 to rotate about the long axis of the surgical instrument.
  • a wrist-like mechanism at the connection of shaft 84 to end effector 81 allows hinge-like movement of end effector 81 in relation to shaft 84 .
  • hinge 83 allows movement of gripper 82 . Any suitable combination of such hinges, wrist-like mechanisms, rotational devices and the like are contemplated within the scope of the present invention.
  • a base 90 of surgical instrument 80 includes multiple components, such as actuator pulleys, idler pulleys, actuator rods and the like. Embodiments of such components are described in more detail below, but generally, the components of base 90 are configured to enable coupling of surgical instrument 80 with a robotic surgical system. More specifically, components of base 90 enable forces originating at one or more master controllers of a robotic surgical system to be transmitted to end effector 81 to achieve an effect at a surgical site.
  • Some of the components of various embodiments of base 90 and surgical instrument 80 are generally similar to those described in U.S. application Ser. No. 09/398,958, filed Sep. 17, 1999 (Atty. Docket 17516-4410), and U.S. application Ser. No. 09/418,726, filed Dec. 6, 1999 (Atty. Docket 17516-3210) (both previously incorporated herein by reference).
  • FIGS. 12 a - 12 c base 90 is shown with an enclosing cover 91 in place ( FIG. 12 a ), with enclosing cover 91 removed to show an upper chassis 93 ( FIG. 12 b ) and with upper chassis 93 removed ( FIG. 12 c ).
  • Upper chassis 93 is generally configured to rotatably hold and support one end of one or more actuator spools 94 , 95 and one or more idler spools 95 a .
  • Base also suitably includes a rear connector 97 for coupling base 90 to an ultrasound driver (not shown).
  • FIG. 12 d is a perspective illustration of a surgical instrument 80 , showing base 90 with covering 91 , sheath 86 enclosing shaft, and end effector 81 .
  • base 90 includes a shaft receiver 86 b , a bearing housing 98 , a roll drum 96 , a actuator tube 110 , a roll spool 94 , an upper cable 101 a , and a lower cable 101 b .
  • Shaft receiver 86 b is generally configured to attach roll drum 96 to shaft/sheath 86 .
  • Roll drum 96 is in turn rotatably supported by bearings within bearing housing 98 .
  • Roll drum 96 interconnects to receiver 86 b and surrounds actuator tube 110 .
  • Roll cable 101 spans between roll spool 94 and roll drum 96 as follows: upper cable 101 a wraps around drum 96 at its rear portion (clockwise as seen from rear) and also wraps around spool 94 upper portion (clockwise as seen from above). In the opposite sense, lower cable 101 b wraps around the front portion of drum 96 and around the lower portion of spool 94 .
  • spool 94 is rotated by an interface member of a robotic surgical system, as shown by Arrow R 1 , roll cable 101 transfers rotational motion to drum 96 by corresponding winding and unwinding of roll cable 101 around spool 94 and drum 96 .
  • gripper 82 of end effector 81 is movable by one or more actuator rods housed within shaft 86 .
  • the motive force for actuating the rod is supplied by actuator spool 95 which engages an interface member (not shown) on a robotic surgical system.
  • a cable loop 102 wraps around spool 95 and also around idler spool 95 b in a closed loop extending in a longitudinal direction generally parallel as spaced apart on the right side of shaft 86 .
  • the inner portion of loop 102 is fixed to the right end 104 b of pivot bar or rod 104 , the left hand end of bar 104 is pivoted at pivot pin 105 on the left hand side of shaft 86 .
  • the bar 104 (also referred to as a “square hole rod”) extends above, below and across shaft 86 , and contacts actuator assembly 110 at a medial portion of bar 104 above and below shaft 86 .
  • various embodiments of base 90 suitably include additional components, including one or more: drive shafts 144 for coupling pulleys with a robotic surgical system; attachment pins and/or rings 140 ; holders and lock nuts 141 ; washers and bushings 106 a,b to reduce friction; bushings for pins 142 ; tube and grip assemblies 148 ; pins 149 to align roll pulleys and actuators; retainers 147 to hold square hole rod washers and bushings in place; pins 146 to align and hold tube and grip assembly 148 ; retaining pins, rings and caps 145 to hold roll pulley and outer tube assembly; and rods 111 to connect actuator to grip.
  • bar 104 is configured to extend under shaft/sheath 86 and loop around shaft/sheath 86 , with sufficient clearance from the shaft 86 to enable it to pivot freely within a desired range of motion.
  • spool 95 rotates counter-clockwise as shown by Arrow A 1 ( FIG. 13 )
  • loop 102 moves counter-clockwise as shown by Arrow A 2 , so that the inner portion of the loop moves bar 104 pivotally rearwards (towards the rear or proximal end of base 90 ).
  • actuator 110 moves rearward through about one half of the range of motion of loop 102 .
  • bushings 106 a,b bear on actuator tube or ring 110 which is moved rearward or forward by bar 104 (as shown).
  • the actuator ring extends concentrically within drum 96 and transfers this motion to actuator rod 111 which extends within shaft 86 distally to pivotally connect to gripper 82 .
  • actuator rod 111 acts about a lever arm of gripper 82 to alternately open gripper 82 (rearward rod movement) or close gripper 82 (forward rod movement).
  • Bushings 106 a,b slidably bear on bar 104 so as transmit longitudinal forces to the actuator tube 110 as the shaft 86 is rotated, thus permitting gripper actuation at any angle of shaft rotation.
  • this actuator motion is reversible and controllable by the robotic system, producing a controllable forward or rearward actuator 110 and rod 111 motion and in turn controllably opening and closing gripper 82 .
  • rear connector 97 on base 90 is generally configured to connect to a transducer driver to permit ultrasound energy to be transmitted through probe core 85 housed within shaft 86 .
  • base 90 may include an internal ultrasound source, such that surgical instrument 80 may contain its own source of ultrasound energy.
  • FIGS. 17-19 illustrate details of the longitudinal coupling from bar 104 (often referred to as “square hole rod” due to the open midsection of the particular embodiment shown) to actuator tube 110 .
  • the motion of the midsection of bar 104 is transferred via bushings 106 a,b to tube 110 , which is moved rearward or forward by bushings 106 a,b .
  • Actuator ring 110 extends distally (drum 96 is omitted in FIG. 17 for clarity) and transfers this longitudinal motion to actuator rod 111 which extends within shaft 86 distally to pivotally connect to gripper 82 .
  • FIGS. 18 and 19 are exploded views of an actuator tube assembly 180 according to an embodiment of the present invention.
  • the assembly 180 also suitably includes additional washers 107 a,b to reduce friction in the assembly.
  • actuator tube 110 includes retainer tube 110 b .
  • retainer tube 110 b threads into tube 110 when assembled, so as to “sandwich” or trap bushings 106 a,b between flange portions of rings 110 , 110 b and the side surfaces 104 a,b of bar 104 .
  • FIGS. 20 through 23 illustrate an alternative example of an instrument embodiment 300 including aspects of the invention.
  • FIGS. 24-27 are sheets of reproductions of the FIGS. 26-36 of U.S. Pat. No. 6,280,407, issued Aug. 28, 2001 to Manna, et al., entitled “Ultrasonic Dissection And Coagulation System”, and assigned to United States Surgical Corporation of Norwalk, Conn., the entire contents of which are hereby incorporated by reference.
  • the patent describes, among other things, a hand-held ultrasonic treatment instrument example generally similar to the AutoSonix* Ultra Shears* made by United States Surgical Corporation of Norwalk, Conn.
  • the instruments described in U.S. Pat. No. 6,280,407 include, among other things, a transducer portion, an ultrasonic core (vibration coupler) portion, a shaft/distal end effector portion, and an ultrasonic power supply/controller suitable for employment as parts of the instrument embodiment of FIGS. 20-23 .
  • a transducer portion an ultrasonic core (vibration coupler) portion
  • a shaft/distal end effector portion a shaft/distal end effector portion
  • an ultrasonic power supply/controller suitable for employment as parts of the instrument embodiment of FIGS. 20-23 .
  • FIG. 26 illustrates another alternate embodiment of the ultrasonic instrument, shown generally as 412 .
  • Ultrasonic instrument 412 includes housing 422 and elongated body portion 424 extending distally from housing 422 .
  • Housing 422 is preferably formed from molded housing half-sections 422 a and 422 b and includes a barrel portion 426 having a longitudinal axis aligned with the longitudinal axis of body portion 424 and a stationary handle portion 428 extending obliquely from barrel portion 426 .
  • Ultrasonic transducer 430 is supported within and extends from the proximal end of housing 422 and includes a proximal fluted portion 431 configured to engage an attachment device to facilitate attachment and removal of transducer 430 from instrument 412 .
  • Jaw assembly 432 is disposed adjacent the distal end of elongated body portion 424 and is actuated by moving movable handle 436 with respect to stationary handle portion 428 .
  • Movable handle 436 and stationary handle portion 428 include openings 438 and 440 , respectively, to facilitate gripping and actuation of ultrasonic instrument 412 .
  • Elongated body portion 424 is supported within rotatable knob 434 and may be selectively rotated by rotating knob 434 with respect to housing 422 to change the orientation of jaw assembly 432 .
  • FIG. 27 illustrates elongated body portion 424 with parts separated.
  • Elongated body portion 424 includes an outer tube 442 which is preferably cylindrical and has a proximally located annular flange 444 dimensioned to engage rotatable knob 434 .
  • An elongated actuator tube 446 which is also preferably cylindrical, is configured to be slidably received within outer tube 442 and includes a proximally located annular flange 448 dimensioned to engage coupling member 498 which is supported within housing 422 .
  • a portion of actuator tube 446 and a portion of outer tube 442 adjacent flange 444 flares outwardly to provide additional clearance for vibration coupler 450 .
  • Vibration coupler 450 is dimensioned to extend through elongated actuator tube 446 and includes an enlarged proximal end 452 having a bore (not shown) configured to operatively engage ultrasonic transducer 430 .
  • the distal end of actuator tube 446 includes a pair of resilient arms 453 having distally located openings 455 .
  • the openings 455 are dimensioned to receive protrusions 461 formed on an adaptor 457 .
  • Arms 453 are flexible outwardly and engage adaptor 457 .
  • Cutting jaw 458 is monolithically formed with vibration coupler 450 . Alternately, cutting jaw 458 and vibration coupler 450 can be formed separately and fastened together using any known connector, e.g., screw threads, friction fit, etc.
  • a plurality of sealing rings can be molded or otherwise attached to the nodal points along vibration coupler 450 to seal between vibration coupler 450 and actuator tube 446 .
  • a clamp 460 is operably connected to adaptor 457 .
  • Clamp 460 preferably includes a pair of longitudinally extending rows of teeth 462 which are spaced from each other a distance which permits cutting jaw 458 to be positioned between the rows of teeth 462 .
  • Teeth 462 function to grip tissue when the jaw assembly 432 is in a closed position to prevent tissue from moving with respect to cutting jaw 458 during vibration of the cutting jaw.
  • Pivot members or pins 466 are formed at the proximal end of clamp 460 and are configured to be received within open ended slots 468 in the distal end of outer tube 442 . Slots 468 are open on one side thereof to permit clamp 460 to be retained therein.
  • a longitudinally extending guide slot 470 formed in adaptor 457 is dimensioned to slidably receive pivot pin 466 and permit relative movement between adaptor 457 and clamp 460 .
  • a pair of camming members 472 are also formed on clamp 462 and are positioned to be received in cam slots 474 formed in the adaptor in 457 .
  • Cutting jaw 458 includes blade surface 459 which is flat and angled downwardly toward its distal end to define a fixed acute angle .theta. of from about 10 degrees to about 20 degrees with respect to the longitudinal axis of the elongated body portion 424 and to the axis of vibration.
  • the angled blade surface provides for good visibility at the surgical site.
  • angle .theta. is about 12 degrees, but greater angles such as 20 to 30 degrees are also envisioned.
  • blade surface 459 may be other than flat, e.g., sharpened, rounded, etc.
  • Clamp 460 is movable relative to cutting jaw 458 from an open position in which tissue contact surface 464 of clamp 460 is spaced from blade surface 459 to a closed or clamped position in which tissue contact surface 464 is in juxtaposed closer alignment with blade surface 459 .
  • tissue contact surface 464 In the clamped position, note the positioning of tissue contact surface 464 with respect to blade surface 459 . Actuation of clamp 460 from the open position to the clamped position will be described in detail below.
  • housing half-sections 422 a and 422 b define a chamber 476 configured to house a portion of ultrasonic transducer 430 .
  • Chamber 476 has an 20 opening 478 communicating with the interior of housing 422 .
  • Ultrasonic transducer 430 includes a cylindrical stem 480 configured to be received in an opening in proximal end 454 of vibration coupler 450 . In the assembled condition, proximal end 454 extends through opening 478 into engagement with cylindrical stem 480 .
  • Movable handle 436 is pivotally connected between housing half-sections 422 a and 422 b about pivot pin members 482 which are monolithically formed with housing half-sections 422 a .
  • a cam slot 488 formed in each leg 486 is configured to receive a protrusion 490 projecting outwardly from coupling member 498 .
  • Coupling member 498 operatively connects movable handle 436 to actuator tube 446 and is preferably formed from molded half-sections 498 a and 498 b to define a throughbore 500 dimensioned to slidably receive the proximal end of vibration coupler 450 .
  • Coupling member 498 has an inner distally located annular groove 502 dimensioned to receive annular flange 448 of actuator tube 446 and an outer proximally located annular groove 504 positioned to receive an annular projection 506 formed on the internal wall of swivel member 508 .
  • the projection 506 of swivel member 508 is movable through groove 504 to permit relative longitudinal movement between coupling member 498 and swivel member 508 .
  • a spring 463 is positioned between coupling member 498 and swivel member 508 to bias the swivel member 508 proximally with respect to coupling member 498 .
  • Swivel member 508 is preferably formed from molded half-sections 508 a and 508 b and permits rotation of coupling member 498 relative to movable handle 436 .
  • Protrusions 490 project outwardly from sidewalls of swivel member 508 and extend through cam slots 488 of movable handle 436 .
  • Rotation knob 434 is preferably formed from molded half-sections 434 a and 434 b and includes a proximal cavity 510 for slidably supporting coupling member 498 and a distal bore 512 dimensioned to receive outer tube 442 .
  • An annular groove 514 formed in bore 512 is positioned to receive annular flange 444 of outer tube 442 .
  • the outer wall of knob 434 has a proximally located annular ring 516 dimensioned to be rotatably received within annular slot 518 formed in housing 422 , and a scalloped surface 522 to facilitate gripping of rotatable knob 434 .
  • Annular ring 516 permits rotation of knob 434 with respect to housing 422 while preventing axial movement with respect thereto.
  • a pair of rods or pins 524 extend between half-sections 434 a and 434 b through a rectangular opening 526 formed in coupling member 498 .
  • Rods 524 engage a pair of flattened surfaces 528 formed on vibration coupler 450 , such that rotation of knob 434 causes rotation of vibration coupler 450 and thus rotation of blade 458 and clamp 460 .
  • a C-clip shown generally as 580 in FIG. 31A is provided.
  • C-clip 580 mounted by pins 586 has an opening 582 to receive the vibration coupler 450 .
  • the flats of vibration coupler 450 contact the four flat regions 590 of the C-clip 580 .
  • a retainer ring (not shown) may be mounted on ribs 492 of housing 422 to provide additional support for actuator tube 446 .
  • tube 446 would extend proximally past ribs 492 .
  • FIGS. 31-34 illustrate ultrasonic instrument 412 with clamp 460 in the open position.
  • the elongated body 424 which includes clamp 460 and blade 458 , and housing 422 which includes handles 428 and 436 , are packaged as an integral unit that requires no assembly by the user prior to use, i.e., vibration coupler 450 , clamp 460 , and blade 458 are non-detachably connected. That is, the user needs only to attach transducer 430 to housing 422 to ready instrument 412 for use.
  • movable handle 436 is spaced rearwardly from stationary handle portion 428 and protrusions 490 are positioned in the lower proximal portion of cam slots 488 .
  • pivot members 466 are positioned near the distal end of guide slots 470 and camming members 472 are positioned in the upper distal portion of cam slots 474 .
  • Tissue contact surface 464 of clamp 460 is spaced from blade surface 459 to define a tissue receiving area 532 .
  • the proximal end of tissue receiving area 532 is defined by a pair of tissue receiving stops 535 which are preferably integrally formed with clamp 460 and extend below blade surface 459 .
  • the distal end of blade 458 is devoid of sharp edges which may cause inadvertent damage to tissue during use of instrument 412 .
  • the distal end of blade 458 may be formed having any shape which may be suitable to a particular surgical application, i.e., flat, pointed, etc.
  • cam slot 488 engages protrusion 490 of swivel member 508 to advance coupling member 498 distally within cavity 510 of rotation knob 434 . Since actuator tube 446 is attached to coupling member 498 by annular flange 448 , actuator tube 446 is also advanced distally in the direction indicated by arrow “H” in FIG. 36 .
  • Movement of actuator tube 446 distally causes cam slots 474 to move into engagement with camming members 472 to pivot clamp body 462 about pivot members 466 , in the direction indicated by arrow “I” in FIG. 36 , to move clamp member 462 and tissue contact member 464 into the clamped position.
  • Spring 463 prevents over clamping of tissue by permitting relative movement between swivel member 508 and coupling member 498 after a predetermined clamping pressure has been applied against blade 458 .
  • protrusions 490 are located in a central portion of cam slots 488
  • pivot members 466 are located near the proximal end of guide slots 470
  • camming members 472 are located in the proximal lower portion of cam slots 474 .
  • Elongated body portion 424 can be freely rotated with respect to housing 422 by rotating rotation knob 434 .
  • Rotation of knob 434 in the direction indicated by arrow “J” causes rotation of jaw assembly 432 in the direction indicated by arrow “K”.
  • Knob 434 is positioned adjacent housing 422 to facilitate one handed operation of both movable handle 436 and rotation knob 434 .
  • ultrasonic probe 85 is a distinct part separate from actuator rod 111 , the probe 85 being arranged to be rotatable about its axis, but is not required to translate along the axis.
  • Rod 111 is arranged to reciprocate axially, and is coupled to gripper 82 to open and close the gripper.
  • the ultrasonic probe assembly 320 is arranged to be axially movable within the instrument along the instrument axis 311 , so that the distal portion 322 of the probe assembly 320 is movable in a reciprocating manner within the shaft sheath 312 .
  • the probe assembly distal portion 322 is in turn mechanically coupled to a gripper element of the end effector. For example, see actuator tube 446 which engages gripper or clamp 460 , shown in FIG. 27 .
  • FIG. 20 illustrates an alternative instrument embodiment 300 including aspects of the invention.
  • the proximal potion comprises an instrument base 330 and a cover 301 .
  • Shaft 307 extends distally, covered by outer sheath 312 .
  • An end effector 302 is coupled to the distal end of the shaft 307 , comprising an ultrasonic blade 304 , which cooperatively mates with pivotally mounted gripper or clamp 303 .
  • Ultrasonic transducer 305 mounts to the proximal end of base 330 , the power/control cable 306 extending to a conventional ultrasonic surgical generator, such as the Auto Sonix* generator (not shown) made by United States Surgical Corporation of Norwalk, Conn.
  • a conventional ultrasonic surgical generator such as the Auto Sonix* generator (not shown) made by United States Surgical Corporation of Norwalk, Conn.
  • FIGS. 21 and 22 are top and side views respectively of the proximal portion of the alternative instrument embodiment 300 , illustrated with the cover 301 removed from the base 330 .
  • the base 330 supports a rotational support structure including, in this example, front bearing support 332 and medial bushing 333 .
  • Bearing 332 and bushing 333 are axially aligned and rotatably mount receiver 335 , which spans between bearing 332 and bushing 333 .
  • Receiver 335 mounts roll drum 336 .
  • Receiver 335 has a hollow axial lumen 340 which is configured to removably mount the treatment assembly 310 (see also FIG. 23 ).
  • the removable treatment assembly 310 is generally aligned parallel with the axis 311 , and is mounted by insertion into lumen 340 .
  • the removable treatment assembly 310 is retained in its mounted position by a latching mechanism, which in the example shown includes a pair of latches 337 a and 337 b mounted to base 330 .
  • the latches 337 a and 337 b each include a spring-loaded slidable finger 338 a , 338 b , oriented generally perpendicular to the axis 311 .
  • Fingers 338 a and 338 b are urged by springs 338 a and 338 b towards the axis 311 by springs 339 a and 339 b , the fingers overlapping adaptor 313 to bear on rear-facing surface 314 of adaptor 313 , thus securing the treatment assembly 310 by preventing axial motion of the adaptor 313 relative to the receiver 335 .
  • the latch fingers 338 a and 338 b may be retracted by moving the finger against spring forces.
  • finger extension 341 protrudes upwardly through slot 342 , permitting the finger to be manually retracted. The fingers do not interfere with rotational motion of the receiver and treatment assembly combination about axis 311 .
  • a latching mechanism may be included in the receiver 335 , removably coupling to adaptor 313 .
  • the contact surface between the receiver lumen 340 and the adaptor 313 may be configured as a threaded joint, to allow disassembly.
  • the roll barrel 336 of instrument 300 functions in generally the same manner as the roll barrel of instrument 80 shown in FIGS. 10-19 .
  • a robotic surgical system interface member (not shown herein, see incorporated application Ser. Nos. 09/398,958 and 09/418,726, referenced above) is configured to engages the pivotally mounted instrument roll interface member 344 so as to controllably rotate interface member 344 in either direction through a selected range of motion.
  • the instrument roll interface member is supported by bearing 345 mounted to base 301 .
  • the perimeter of instrument interface member 344 is shown configured to provide a spool surface 345 which engages cable 346 .
  • cable 346 is guided by front and rear idler pulley pairs 347 a,b and 348 a,b respectively, to conduct the cable 346 to engage the perimeter of roll drum 336 .
  • the two ends of cable 346 ( 346 a,b ) are led to an upper and lower point on the perimeter of drum 336 respectively, wrapping about the drum 336 in opposite directions, so that rotational motion of interface member 344 (Arrow C) causes the cable to impart a rotational motion to the drum 336 , and in turn to impart a corresponding rotational motion to the receiver and treatment assembly, as shown by Arrow B.
  • a separate roll spool may be axially coupled with instrument interface member 344 , in the manner shown in the instrument 80 of FIGS. 10-19 .
  • the cable 346 is fixed to the interface member 344 at a medial anchor point 349 , the ratio of the diameters of the member 344 and the drum 336 being selected to provide a desired range of rotational motion of drum 336 within less than a 360° rotation of member 344 .
  • the cable 346 may be frictionally engaged to member 344 rather than, so as to permit a greater than less than a 360° rotation of member 344 .
  • to separate cables may be attached to two separate spool members.
  • a gear train or other mechanical transmission means e.g., a right-angled helical gear pair, may be used to rotationally couple the interface member 344 with the receiver 335 .
  • FIG. 23 is a side view of the removable treatment assembly 310 of the instrument embodiment 300 shown in FIGS. 20 and 21 .
  • FIG. 24 is a corresponding side view of the proximal portion of the instrument embodiment 300 from the same perspective as shown in FIG. 22 , with the treatment assembly 310 removed.
  • the removable treatment assembly 310 comprises adaptor housing 313 having an internal hollow volume 315 communicating between openings at its distal and proximal ends.
  • FIG. 25 is a perspective view of a molded half portion of the adaptor housing 313 a of the removable treatment assembly 310 shown in FIGS. 21 and 22 .
  • housing halfportion 313 a of the adaptor housing 313 defines half of the internal volume 315 , here denoted as 315 a .
  • Internal volume 315 holds and mounts the ultrasound conducting core assembly 320 .
  • the internal volume 315 is shaped and sized so as to permit the core assembly 320 to move axially through a selected range of motion, as shown by Arrows A in FIGS. 21 and 22 .
  • Return spring 323 is mounted between the proximal face 316 of receiver 313 and push plate 324 , which is mounted at a medial position on the core assembly 310 .
  • Spring 323 serves to bias the location of core assembly 320 to the proximal extent of the range of motion shown by Arrows A 1 - 4 .
  • the adaptor housing mounts the outer sheath 312 , which may comprise a tubular structure, such as the outer tube 442 identified in FIG. 29 . As shown in the example of FIG. 25 , adaptor housing 313 has a distal annular groove 316 which is configured receive the proximal flange of outer tube 442 of FIG. 29 .
  • the core assembly 320 includes components corresponding in function and general structure to the following components described in U.S. Pat. No. 6,280,407 and identified in FIGS. 29 and 30 : Coupling member 498 ; actuator tube 446 ; vibration coupler 450 and blade 458 .
  • the grip or clamp end effector 303 may comprise the component identified as clamp 460 in FIG. 29 .
  • the coupling of the end effector and shaft components may be in the manner described in U.S. Pat. No. 6,280,407.
  • the removable treatment assembly comprises a conventional ultrasound transducer 305 , preferably coupled to the ultrasonic core assembly by threaded connector, such as the transducer 430 shown in FIG. 29 .
  • push plate 324 is activated by contact with one or more movable paddle plates 350 (a opposed pair of paddle plates 350 a and 350 b are shown).
  • Each paddle plate 350 is supported by a generally vertically oriented paddle shaft 351 , which is offset laterally from the instrument axis 311 .
  • Each paddle 350 extend towards the axis 311 to slightly overlap the perimeter of push plate 324 along the proximal surface of the pushplate.
  • the paddle shafts 351 a and 351 b are pivotally mounted to base 301 , being supported by bearings 352 a and 352 b respectively, and each is activated by instrument actuator interface member 353 a and 353 b respectively.
  • the instrument actuator interface member 353 is configured to engage a robotic surgical system interface member (not shown herein, see incorporated application Ser. Nos. 09/398,958 and 09/418,726, referenced above).
  • a reciprocating actuation of paddle shafts 351 causes the grip or claim 303 to alternately open and close.
  • the coupling of the grip or clamp 303 is such that the grip is closed and in contact with blade 304 when the core assembly is in its proximal position (proximal extent of Arrows A 1 - 4 ) as urged by bias spring 323 .
  • the grip arrangement is “normally closed”, and positive actuation is used to move the core assembly distally to open the grip.
  • the grip coupling may be configured to be “normally open” or neutral.
  • the materials of the surface of paddles 350 and pushplate 324 may be selected to have a low frictional coefficient, so that sliding contact of the surfaces permits the treatment assembly to be rotated about axis 311 (by engagement of the pivotally mounted instrument roll interface member 344 ) when the grip 303 is in either an open position or a closed position.
  • the paddles 350 may be biased by a torsion spring or like member to have a clearance from pushplate 324 when actuator torque of the robotic system is not being applied to the actuation interface member 353 .

Abstract

A surgical instrument for enhancing robotic surgery generally includes an elongate shaft with an ultrasound probe, an end effector at the distal end of the shaft, and a base at the proximal end of the shaft. The end effector includes an ultrasound probe tip and the surgical instrument is generally configured for convenient positioning of the probe tip within a surgical site by a robotic surgical system. Ultrasound energy delivered by the probe tip may be used to cut, cauterize, or achieve various other desired effects on tissue at a surgical site. In various embodiments, the end effector also includes a gripper, for gripping tissue in cooperation with the ultrasound probe tip. The base is generally configured to removably couple the surgical instrument to a robotic surgical system and to transmit forces from the surgical system to the end effector, through the elongate shaft. A method for enhancing robotic surgery generally includes coupling the surgical instrument to a robotic surgical system, positioning the probe tip in contact with tissue at a surgical site, and delivering ultrasound energy to the tissue.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This application is a divisional application of U.S. patent application Ser. No. 10/126,499 filed on Apr. 18, 2002, which claims the benefit of prior provisional application No. 60/285,485, filed on Apr. 19, 2001, under 37 CFR §1.78(a)(4), the full disclosures of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • The present invention generally relates to surgical apparatus and methods. More specifically, the invention relates to a surgical instrument and method for use with a robotic surgical system, the instrument including an ultrasonic probe.
  • Minimally invasive surgical techniques generally reduce the amount of extraneous tissue damage during surgical procedures, thereby reducing patient recovery time, discomfort, and deleterious side effects. One effect of minimally invasive surgery, for example, is reduced post-operative hospital recovery times. Because the average hospital stay for a standard surgery is typically significantly longer than the average stay for an analogous minimally invasive surgery, increased use of minimally invasive techniques could save millions of dollars in hospital costs each year. Patient recovery times, patient discomfort, surgical side effects, and time away from work can also be reduced by increasing the use of minimally invasive surgery.
  • In theory, a significant number of surgical procedures could potentially be performed by minimally invasive techniques to achieve the advantages just described. Only a small percentage of procedures currently use minimally invasive techniques, however, because certain instruments, systems and methods are not currently available in a form for providing minimally invasive surgery.
  • Traditional forms of minimally invasive surgery typically include endoscopy, which is visual examination of a hollow space with a viewing instrument called an endoscope. One of the more common forms of endoscopy is laparoscopy, which is visual examination and/or treatment of the abdominal cavity. In traditional laparoscopic surgery a patient's abdominal cavity is insufflated with gas and cannula sleeves are passed through small incisions in the musculature of the patient's abdomen to provide entry ports through which laparoscopic surgical instruments can be passed in a sealed fashion. Such incisions are typically about ½ inch (about 12 mm) in length.
  • The laparoscopic surgical instruments generally include a laparoscope for viewing the surgical field and working tools defining end effectors. Typical surgical end effectors include clamps, graspers, scissors, staplers, and needle holders, for example. The working tools are similar to those used in conventional (open) surgery, except that the working end or end effector of each tool is separated from its handle by a long extension tube, typically of about 12 inches (about 300 mm) in length, for example, so as to permit the surgeon to introduce the end effector to the surgical site and to control movement of the end effector relative to the surgical site from outside a patient's body.
  • To perform a surgical procedure, a surgeon typically passes the working tools or instruments through the cannula sleeves to the internal surgical site and manipulates the instruments from outside the abdomen by sliding them in and out through the cannula sleeves, rotating them in the cannula sleeves, levering (i.e., pivoting) the instruments against the abdominal wall and actuating the end effectors on distal ends of the instruments from outside the abdominal cavity. The instruments normally pivot around centers defined by the incisions which extend through the muscles of the abdominal wall. The surgeon typically monitors the procedure by means of a television monitor which displays an image of the surgical site captured by the laparoscopic camera. Typically, the laparoscopic camera is also introduced through the abdominal wall so as to capture the image of the surgical site. Similar endoscopic techniques are employed in, for example, arthroscopy, retroperitoneoscopy, pelviscopy, nephroscopy, cystoscopy, cisternoscopy, sinoscopy, hysteroscopy, urethroscopy, and the like.
  • Although traditional minimally invasive surgical instruments and techniques like those just described have proven highly effective, newer systems may provide even further advantages. For example, traditional minimally invasive surgical instruments often deny the surgeon the flexibility of tool placement found in open surgery. Difficulty is experienced in approaching the surgical site with the instruments through the small incisions. Additionally, the added length of typical endoscopic instruments often reduces the surgeon's ability to feel forces exerted by tissues and organs on the end effector. Furthermore, coordination of the movement of the end effector of the instrument as viewed in the image on the television monitor with actual end effector movement is particularly difficult, since the movement as perceived in the image normally does not correspond intuitively with the actual end effector movement. Accordingly, lack of intuitive response to surgical instrument movement input is often experienced. Such a lack of intuitiveness, dexterity and sensitivity of endoscopic tools has been found to be an impediment in the increased the use of minimally invasive surgery.
  • Minimally invasive robotic (or “telesurgical”) surgical systems have been developed to increase surgical dexterity as well as to permit a surgeon to operate on a patient in an intuitive manner. Telesurgery is a general term for surgical operations using systems where the surgeon uses some form of remote control, e.g., a servomechanism, or the like, to manipulate surgical instrument movements, rather than directly holding and moving the tools by hand. In such a telesurgery system, the surgeon is typically provided with an image of the surgical site on a visual display at a location remote from the patient. The surgeon can typically perform the surgical procedure at the location remote from the patient whilst viewing the end effector movement on the visual display during the surgical procedure. While viewing typically a three-dimensional image of the surgical site on the visual display, the surgeon performs the surgical procedures on the patient by manipulating master control devices at the remote location, which master control devices control motion of the remotely controlled instruments.
  • Typically, such a telesurgery system can be provided with at least two master control devices (one for each of the surgeon's hands), which are normally operatively associated with two robotic arms on each of which a surgical instrument is mounted. Operative communication between master control devices and associated robotic arm and instrument assemblies is typically achieved through a control system. The control system typically includes at least one processor which relays input commands from the master control devices to the associated robotic arm and instrument assemblies and from the arm and instrument assemblies to the associated master control devices in the case of, e.g., force feedback, or the like. One example of a robotic surgical system is the DAVINCI™ system available from INTUITIVE SURGICAL, INC. of Mountain View, Calif.
  • Just as robotic surgical systems have been found advantageous, so too has use of ultrasound energy in surgery been found beneficial. A number of patents disclose ultrasonic treatment instruments for both open surgery and manually-performed endoscopic surgery. These patents include U.S. Pat. No. 6,056,735 issued May 2, 2000, entitled “Ultrasound Treatment System”; U.S. Pat. No. 6,066,151 issued May 23, 2000, entitled “Ultrasonic Surgical Apparatus”; U.S. Pat. No. 6,139,561 issued Oct. 31, 2000, entitled “Ultrasonic Medical Instrument”; U.S. Pat. No. 6,165,191 issued Dec. 26, 2000, entitled “Ultrasonic Treating Tool”; and U.S. Pat. No. 6,193,709 issued Feb. 27, 2001, entitled “Ultrasonic Treatment Apparatus”. The full disclosure of each of these patents is incorporated herein by reference.
  • A typical ultrasound treatment instrument for manual endoscopic surgery is the SonoSurg® instrument model T3070 made by OLYMPUS OPTICAL Co., LTD., of Tokyo, Japan. Other examples of manually operated ultrasound treatment instruments are the Harmonic Scalpel® LaparoSonic® Coagulating Shears, made by ETHICON ENDO-SURGERY, INC., of Cincinnati, Ohio; and the AutoSonix® Ultra Shears® made by UNITED STATES SURGICAL CORPORATION of Norwalk, Conn. Such an ultrasound treatment instrument may comprise ultrasonic transducers for generating ultrasonic vibrations; a handpiece including the ultrasonic transducers and serving as an operation unit; a generally elongate probe connected to the ultrasonic transducers and serving as a vibration conveyer for conveying ultrasonic vibrations to a distal end effector member or tip used to treat a living tissue; a sheath serving as a protective member for shielding the probe. The instrument typically includes a movable holding, grasping or gripping end effector member pivotally opposed to the distal tip and constituting a movable section which clamps a living tissue in cooperation with the distal tip; an operating mechanism for moving the grasping member between a closed position in which the grasping member engages the distal tip of the vibration transmitting member and an open position in which the grasping member is separated from distal tip portion. The operating mechanism includes handle portions for manipulation and actuation by a surgeon's hands.
  • Surgical ultrasound instruments are generally capable of treating tissue with use of frictional heat produced by ultrasonic vibrations. For example, the heat may be use to cut and/or cauterize tissue. With many currently available instruments, tissue may first be grasped by an ultrasound surgical device and then ultrasound energy may be delivered to the tissue to cut, cauterize or the like. Ultrasound instruments provide advantages over other cutting and cauterizing systems, such as reduced collateral tissue damage, reduced risk of unwanted bums, and the like. Currently, however, ultrasound instruments for use with a robotic surgical system are not available.
  • Therefore, a need exists for a surgical instrument, for use with a robotic surgical system, that provides ultrasound energy at a surgical site. Such an instrument would allow the advantages of ultrasound and minimally invasive robotic surgery to be combined.
  • BRIEF SUMMARY OF THE INVENTION
  • Surgical apparatus and methods for enhancing robotic surgery generally include a surgical instrument with an elongate shaft having an ultrasound probe, an end effector at the distal end of the shaft, and a base at the proximal end of the shaft. The end effector includes an ultrasound probe tip and the surgical instrument is generally configured for convenient positioning of the probe tip within a surgical site by a robotic surgical system. Ultrasound energy delivered by the probe tip may be used to cut, cauterize, or achieve various other desired effects on tissue at a surgical site. By providing ultrasound energy via a robotic surgical instrument for use with a robotic surgical system, the apparatus and methods of the present invention enable the advantages associated with ultrasound to be combined with the advantages of minimally invasive robotic surgery.
  • In accordance with one aspect, the present invention provides a method of performing a robotic surgical procedure on a patient. Generally, the method includes coupling a surgical instrument with a robotic surgical system, the surgical instrument having a distal end with an ultrasound probe tip, positioning with the robotic surgical system the ultrasound probe tip in contact with tissue at a surgical site in the patient, and delivering ultrasound energy to the tissue with the ultrasound probe tip. Optionally, the distal end of the surgical instrument further includes a gripping member. In embodiments including a gripping member, the method further includes transmitting at least one force from the robotic surgical system to the gripping member and moving the gripping member with the at least one force to hold a portion of the tissue between the gripping member and the ultrasound probe tip.
  • In some embodiments, the method further includes transmitting the at least one force from an interface member on the robotic surgical system to a first rotatable shaft on the surgical instrument, the first rotatable shaft being coupled to a second rotatable shaft by a cable, the cable being coupled to an actuator rod, and the actuator rod being coupled to the gripping member, wherein the at least one force causes the first shaft, the second shaft and the cable to rotate, causing the actuator rod to move the gripping member. In other embodiments, the method further includes releasing the portion of tissue after delivering a desired amount of ultrasound energy to the portion of tissue. In various embodiments, the method also includes using the ultrasound probe tip to cut the tissue, cauterize the tissue, or both.
  • In another aspect, the present invention provides a surgical instrument for use with a robotic surgical system. Generally, the surgical instrument includes an elongate shaft having a proximal end and a distal end, the elongate shaft including an ultrasound probe, an end effector disposed at the distal end, the end effector including an ultrasound probe tip of the ultrasound probe, and a base disposed at the distal end for connecting the surgical instrument to the robotic surgical system. Optionally, the elongate shaft may be configured to rotate in relation to the base about an axis drawn from the proximal end to the distal end.
  • Also optionally, the base of the surgical instrument may include: at least two shafts rotatably mounted within the base, each of the shafts having two ends, at least one of the ends of one of the shafts protruding from the base to engage a corresponding interface member on the robotic surgical system; at least two spools, each spool being mounted on one of the shafts; at least one cable for connecting two of the spools; and a rotating member coupled to the cable and to the elongate shaft, the rotating member being configured to rotate the elongate shaft in response to movements of the interface member, the at least two shafts, the at least two spools and the at least one cable.
  • In some embodiments, the end effector of the surgical instrument includes a gripping member hingedly attached to the end effector for gripping tissue in cooperation with the ultrasound probe tip. In those embodiments, the surgical instrument may optionally include at least one force transmitting member for transmitting one or more forces between the robotic surgical system and the gripping member to move the gripping member. In various embodiments, the transmitting member may include: at least two shafts rotatably mounted within the base, each of the shafts having two ends, at least one of the ends of one of the shafts protruding from the base to engage a corresponding interface member on the robotic surgical system; at least two spools, each spool being mounted on one of the shafts; at least one cable for connecting two of the spools; and an actuator rod coupled to the cable and to the gripping member and extending through the elongate shaft, the actuator rod being configured to move the gripping member in response to movements of the interface member, the at least two shafts, the at least two spools and the at least one cable.
  • In some embodiments, the base of the surgical instrument includes an ultrasound source connector for connecting the ultrasound probe to an external ultrasound source. In other embodiments, the base includes an internal ultrasound source for providing ultrasound energy to the ultrasound probe.
  • Generally, the ultrasound probe of the surgical instrument may include various components. For example, in one embodiment the probe includes an ultrasound transducer for generating ultrasonic vibrations and one or more amplifying horns for amplifying the ultrasonic vibrations.
  • In some embodiments, the ultrasonic probe assembly may be arranged to be axially movable within the elongate shaft, and the proximal portion of the probe may be mechanically coupled to one or more movable interface members so that the probe is movable in a reciprocating manner in response to movement of the interface member. The distal portion of the probe assembly may be coupled to the grip member, so that the grip opens or closes as the probe moves axially. In this manner the movable probe assembly may serve the function of a grip actuator rod in addition to transmitting ultrasound energy to the surgical site.
  • Certain exemplary surgical instrument embodiments having aspects of the invention may be described or characterized in general terms as comprising an instrument probe assembly having a distal end configured to be insertable into a patient's body through a small aperture, such as a minimally invasive surgical incision or the like, typically defined by a cannula or trocar. The instrument probe assembly comprises a proximal end coupled to an instrument base. The instrument probe assembly typically is elongate, having an axis extending between the distal and proximal probe ends, and may have a generally straight or shaft-like medial portion. In alternative embodiments, the medial probe portion may be curved and/or may be flexible in shape relative to the axis. The instrument base includes an instrument interface assembly which is engagable to a robotic surgical system. Preferably, the instrument interface assembly is removably engageable to the robotic surgical system, and may include a latch mechanism permitting quick connection and disconnection.
  • The instrument interface assembly is engagable with provides for one or more instrument actuation inputs from the robotic surgical system in response to an input by an operator (i.e., an activation input to the instrument, being an activation output from the robotic surgical system, which in turn is a response by the robotic control system to an operator control input). Preferably the one or more instrument activation inputs include an input to activate at least one degree of freedom of motion of the all or a portion of the instrument probe assembly relative to the instrument base. The activation input may be a mechanical input, an electrical input, a magnetic input, a signal input, an optical input, a fluidic input, a pneumatic input, and the like, or a combination of these, without departing from the spirit of the invention.
  • In certain exemplary embodiments of surgical instruments having aspects of the invention, at least one activation input includes an operative engagement of a rotatable interface body (activation interface body) of the robotic surgical system with a corresponding rotatable shaft (instrument interface body or instrument interface shaft) of the instrument interface assembly in the instrument base. The rotatable shaft is in turn mechanically coupled by one or more drive elements to all or a portion of the to the instrument probe assembly, so as to impart a corresponding degree of freedom to all or a portion of the instrument probe assembly relative to the base.
  • As described above, in alternative embodiments another type of activation modality may be substituted for the rotatable interface body of the robotic surgical system. For example, an electrical power/control interface (e.g., including a multi-pin connector) may be included in the interface assembly to transmit electrical power and/or control signals from the robotic surgical system to actuate a motor pack mounted in the instrument base, the motor pack output may in turn may be coupled to the instrument probe assembly so as to impart one or more corresponding degrees of freedom to all or portions of the instrument probe assembly relative to the base. The motor pack may include one or more electrical motors, transmission gearing, position encoders, torque sensors, feedback sensors, and the like, and may transmit feedback or sensor signals to the robotic surgical system via the interface.
  • In certain exemplary embodiments of surgical instruments having aspects of the invention, the at least one degree of freedom of motion in response to an activation input from the robotic surgical system includes the pivotal activation of a clamp or grip member of an end effector coupled to the distal probe end. In certain exemplary embodiments, the at least one degree of freedom of motion includes the axial rotation of at least the major portion of the instrument probe assembly about its axis relative to the instrument base.
  • In alternative embodiments other types of degrees of freedom of motion of all or a portion of the instrument probe assembly may be activated by engagement of the robotic surgical system. For example, the instrument probe assembly may include at least one distal joint to controllably orient the distal probe end relative to the probe axis, such as a wrist-like rotational or pivotal joint supporting a distal end effector. In another example, the probe medial portion may have a flexible section which is controllably variable in shape by one or more degrees of freedom, being driveable by longitudinal tendon members extending within the instrument probe assembly.
  • In these alternative embodiments, the instrument interface assembly is coupled to drive members of the instrument probe assembly to activate such degrees of freedom and is engagable with the robotic surgical system to receive activation inputs to activate such drive members. Further examples of alternative instrument embodiments include instrument probe assemblies having controllable shape-memory components, movable piezo-electric drive elements, hydraulic drive elements, and the like, or combinations of these. As describe above, the robotic activation input may include a corresponding activation modality suitable for any of these instrument probe assembly movement modalities, without departing from the spirit of the invention.
  • To reduce costs and for manufacturing convenience, the instrument may include OEM parts. For example, the instrument probe assembly may include parts or components generally similar or identical to parts or components (OEM components) of current or future commercially-available endoscopic instruments for surgical or diagnostic uses (OEM medical systems), including manually operated instruments. The surgical instruments of the invention may perform some or all of the functions of such OEM medical systems. For example, the instrument probe assembly of the surgical instruments of the invention may include OEM components of ultrasound treatment probes, electrocautery probes, ultrasound diagnostic probes, diagnostic imagery probes. In further examples, the instrument probe assembly may include suitable OEM components of biopsy probes, suction probes, substance injection probes, surgical accessory application probes, stapler probes, tissue grasping and cutting probes, and the like. Likewise, the instrument probe assembly may combine more than one of the medical functions of the above described instruments.
  • In certain exemplary embodiments of surgical instruments having aspects of the invention, the instrument probe assembly comprises a distally disposed end effector coupled to the probe distal end to engage tissue employing a medical energy modality. For example, the instrument probe assembly may include a conduction element or conduction core coupled to the end effector; and extending along the probe axis. The conduction element may be configured and composed to communicate the medical energy between the end effector and a medical energy source. For example, the instrument may include one or more energy connector devices coupled to the conduction element, the connector devices being engagable operatively communicate to a power, signal and/or control system external to the instrument to enable medical functions of the instrument (medical energy system).
  • The medical energy system may include a power, signal and/or control system which is distinct from the robotic surgical system, such as the power, signal and/or control system of an OEM medical system. Such medical energy systems may likewise be responsive to a control input of an operator. For example, instrument embodiments of the invention may include a cable connector configured to connect to an OEM surgical ultrasound generator, an OEM electrocautery generator, and the like.
  • Optionally, the energy connector device of the instrument may be configured for “wireless” engagement with the medical energy system, so that operative reception and/or transmission of the medical energy signal may be by non-contact communication with the medical energy system.
  • In a further option, the medical energy system may be integrated with the robotic surgical system. Optionally, the respective energy connector devices may be integrated with the instrument interface assembly, and optionally operator input devices of the medical energy system may be integrated with the operator input devices of the robotic surgical system.
  • In the particular instrument examples shown in the figures, the medical energy modality is ultrasound energy for tissue treatment, and the instrument probe assembly comprises an ultrasonic treatment assembly or ultrasonic treatment probe. The ultrasonic treatment probe includes a transducer coupled to an ultrasonic acoustical conduction core, the transducer preferably being supported at least partially by the instrument base. The medical energy system comprises an OEM ultrasonic generator. The interface connector device includes a cable connector mounted to the base and engagable with a cable to communicate with an OEM ultrasonic generator. The ultrasonic treatment probe includes a probe tip coupled to the conduction core and configured to engage tissue and controllably transmit ultrasound energy to the engaged tissue.
  • As described above, in alternative embodiments an instrument probe assembly employing another type of medical energy modality may be included. For example, the instrument probe assembly may comprise an electrosurgical treatment probe including a electrical conduction element coupled to an end effector, and the base may include a connector interface coupled to the electrocautery treatment probe, and configured to be connectable to an OEM electrosurgical generator. In further examples, the instrument probe assembly may include a conduction element for communicating a diagnostic energy modality, e.g., signals to and/or from an end effector having an diagnostic ultrasound transducer or other diagnostic sensor and or transmitter.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective illustration of a robotic surgical system with which various embodiments of the present invention may be used.
  • FIG. 2 is a perspective illustration of a robotic surgical tool which may be used with a robotic surgical system as in FIG. 1.
  • FIG. 3 is a perspective illustration of the robotic surgical tool in FIG. 2, with a cover of a tool base removed to show internal structures of the tool base.
  • FIG. 4 is a side-view illustration of a manually operated ultrasound treatment apparatus as described in U.S. Pat. No. 6,193,709.
  • FIG. 5 is a side-view illustration of a manually operated ultrasound treatment apparatus as in FIG. 4, with a portion of the operative end of the apparatus shown in exploded view.
  • FIG. 6 is a side-view illustration of the distal end of a manually operated ultrasound treatment apparatus as in FIGS. 4 and 5, with a jaw of the distal end in an open position.
  • FIG. 7 is a side-view illustration of the distal end of a manually operated ultrasound treatment apparatus as in FIGS. 4 and 5, with a jaw of the distal end in a closed position.
  • FIG. 8 is a cross-sectional side-view illustration of a portion of a manually operated ultrasound treatment apparatus as in FIGS. 4 and 5.
  • FIG. 9 is a cross-sectional side-view illustration of a portion of a manually operated ultrasound treatment apparatus as in FIGS. 4 and 5.
  • FIG. 10 is a perspective illustration of a distal portion of a robotic surgical tool according to an embodiment of the present invention.
  • FIGS. 11 a-b are perspective illustrations of a proximal portion of a surgical tool according to an embodiment of the present invention, with a cover on a tool base of the surgical tool removed to show internal structures of the tool base.
  • FIG. 11 c is a perspective illustration of a distal portion of a robotic surgical tool according to an embodiment of the present invention.
  • FIG. 12 a is a perspective illustration of a proximal portion of a surgical tool according to an embodiment of the present invention, including a tool base of the surgical tool.
  • FIG. 12 b is a perspective illustration of a proximal portion of a surgical tool as in FIG. 12 a, with a cover on the tool base removed to show internal structures of the tool base.
  • FIG. 12 c is a perspective illustration of a proximal portion of a surgical tool as in FIG. 12 b, with a an upper chassis further removed from the tool base to show internal structures of the tool base.
  • FIG. 12 d is a perspective illustration of a surgical tool according to an embodiment of the present invention.
  • FIG. 13 is an enlarged perspective illustration of a tool base as shown in FIG. 12 c.
  • FIG. 14 a is a top-view illustration of a tool base as shown in FIGS. 12 c and 13.
  • FIG. 14 b is a side-view illustration of a tool base according to an embodiment of the present invention.
  • FIG. 15 a is an enlarged view of a tool base as shown in FIG. 14 a.
  • FIG. 15 b is an enlarged view of a tool base as shown in FIG. 14 b.
  • FIGS. 16 a-d are perspective illustrations of a tool base according to an embodiment of the present invention, in progressive stages of disassembly.
  • FIG. 17 is a perspective illustration of a portion of a tool base according to an embodiment of the present invention.
  • FIG. 18 is an exploded perspective illustration of a portion of a tool base according to an embodiment of the present invention.
  • FIG. 19 is an exploded perspective illustration of a portion of a tool base according to an embodiment of the present invention.
  • FIG. 20 illustrates an alternative example of an instrument including aspects of the invention.
  • FIG. 21 is a top view of a proximal portion of the alternative instrument embodiment shown in FIG. 20.
  • FIG. 22 is a side view of the proximal portion shown in FIG. 21.
  • FIG. 23 is a side view of the removable treatment assembly of the instrument embodiment shown in FIG. 20.
  • FIG. 24 is a side view of the proximal portion of the instrument embodiment shown in FIG. 22, with the treatment assembly removed.
  • FIG. 25 is a perspective view of a molded half portion of the adaptor housing of the removable treatment assembly shown in FIGS. 21 and 22.
  • FIG. 26 is a side perspective view of another alternate embodiment of an ultrasonic instrument in an open position, as described in U.S. Pat. No. 6,280,407.
  • FIG. 27 is a perspective view of an elongated body portion of the ultrasonic instrument shown in FIG. 26.
  • FIG. 28A is a side perspective view of the clamp of the ultrasonic instrument shown in FIG. 26.
  • FIG. 28B is a side perspective view of the tissue contact surface of the clamp shown in FIG. 28A.
  • FIG. 28C is a side perspective view of the distal end of the elongated body portion of the ultrasonic instrument shown in FIG. 26.
  • FIG. 29 is a side perspective view of the elongated body portion and rotation assembly of the ultrasonic instrument shown in FIG. 26.
  • FIG. 30 is a side perspective view of the handle assembly and transducer assembly of the ultrasonic instrument shown in FIG. 26.
  • FIG. 31 is a side partial cross-sectional view of the ultrasonic instrument shown in FIG. 26 in the open position.
  • FIG. 31A is an enlarged perspective view of a C-clip locator for the vibration coupler.
  • FIG. 32 is an enlarged view of the indicated area of detail of FIG. 31 illustrating the clamp in the open position.
  • FIG. 33 is a side perspective view of the distal end of the elongated body portion of the ultrasonic instrument shown in FIG. 33.
  • FIG. 34 is a side perspective, partial cutaway view of the distal end of the elongated body portion of the ultrasonic instrument shown in FIG. 33.
  • FIG. 35 is a side partial cross-sectional view of the ultrasonic instrument of FIG. 26 in the closed position.
  • FIG. 36 is an enlarged view of the indicated area of detail of FIG. 35 illustrating the clamp in the closed position.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides robotic surgical apparatus and methods for applying ultrasound energy in robotic surgery. In various embodiments, the invention includes a robotic surgical apparatus for use with a robotic surgical system. The apparatus typically incudes an elongate shaft with an end effector at one end and a base at the opposite end. In some embodiments, the end effector includes an ultrasound tip and a gripper for gripping tissue and the like between the gripper and the ultrasound tip. Optionally, the gripper may also pivot around one or more axes in relation to the apparatus. The tool base is generally configured to engage the robotic surgical system and to transmit forces from the robotic surgical system to the gripper, for example to pivot the gripper. Use of ultrasound in robotic surgery, as provided by apparatus and methods of the present invention, will allow for more precise, safe cutting and cauterization of tissues as well as other advantages typically seen with ultrasound.
  • Referring now to FIG. 1, a robotic surgical system 10 suitably includes a user-operated control station 12 and a surgical work station, or “cart” 20. The control station 12 includes an image display module 14 for displaying an image of a surgical site, a support 16 on which an operator may rest his/her forearms, and a space 18 where two master control devices are located (not shown). When using control station 12, a surgeon or other user typically sits in a chair in front of control station 12, positions views the surgical site through display module 14 and grips the master controls one in each hand while resting the forearms on support 16. One example of a robotic surgical system as described in FIG. 1 is the DAVINCI™ system available from Intuitive Surgical, Inc. of Mountain View, Calif.
  • Control station 12 is generally coupled to cart 20 such that command from master controls may be transmitted to cart 20. In use, cart 20 is positioned adjacent a patient requiring surgery and is then normally caused to remain stationary until a surgical procedure to be performed by means of surgical system 10 is complete. Cart 20 typically has wheels or castors to render it mobile. Control station 12 is typically positioned remote from cart 20 and in some embodiments may be separated from cart 20 by a great distance, for example miles away, but will typically be used within an operating room with cart 20.
  • In various embodiments, cart 20 includes at least three robotic arm assemblies 22, 26, 26, one of which is configured to hold an image capture device 24 and the others of which are configured to hold surgical instruments 28. Alternatively, cart may include more or fewer than three robotic arm assemblies and the robotic arm assemblies may be configured to hold any suitable tool, instrument, imaging device and/or the like. Image capture device 24 may include any suitable device, such as an endoscope, fiber optic camera, or the like. Image capture device 24 generally includes an object viewing end 24.1 at a remote end of an elongate shaft configured to enable viewing end 24.1 to be inserted through an entry port in a patient's body to capture an image of a surgical site. Coupling of cart 20 to control station 12 generally enables display module 14 to display an image captured by image capture device 24.
  • Coupling of cart 20 to control station 12 also typically allows each of master controls on control station 12 (not shown) to control one robotic arm assembly 26 and one surgical instrument 28. In various embodiments, each master control may alternatively be used to control more than one robotic arm assembly 26 and/or more than one surgical instrument 28.
  • Surgical instruments 28 on the robotic arm assemblies 26 typically include elongate shafts, with proximal and distal ends. End effectors are generally mounted on wrist-like mechanisms pivotally mounted on the distal ends of the shafts, for enabling the instruments 28 to perform one or more surgical tasks. Generally, the elongate shafts of surgical instruments 28 allow the end effectors to be inserted through entry ports in a patient's body so as to access the internal surgical site. Movement of the end effectors is generally controlled via master controls on control center 12.
  • Referring now to FIG. 2, surgical instrument 28 suitably includes an elongate shaft 28.1 having a proximal end 33 and a distal end 31, a pivot 32 and end effector 38 disposed at the distal end, and an instrument base 34 disposed at the proximal end. Base 34 is generally configured to releasably engage a robotic surgical system, such as robotic surgical system 10 in FIG. 1. In general, instrument 28 is engaged with system via base 34 (base not shown in FIG. 1) such that instrument 28 is releasably mountable on a carriage 37 which can be driven to translate along a linear guide formation 38 of the arm 26 in the direction of arrows P.
  • With reference to FIGS. 2 and 3, shaft 28.1 is rotatably mounted on base 34 for rotation about an axis 28.2 extending longitudinally along the shaft 28.1 as indicated by the arrows E. Thus, when mounted on an arm assembly 26, end effector 38 may have a plurality of degrees of freedom of movement relative to manipulator arm 26, in addition to actuation movement of the end effector itself. The instrument may be translated along an insertion axis (Arrows P in FIG. 1). Typically, the instrument degrees of freedom include rotation about the axis 28.2 as indicated by arrows E, and in the case of instruments 28 including pivots 32, angular displacement as a whole about pivot 32 as indicated by arrows D. Alternatively, the distal pivoting degree of freedom may be omitted. A single pivot wrist, a multi-pivot wrist, a distal roll joint mechanism or other joints may be included to provide additional operational degrees of freedom to the end effector. Movement of end effector 38 relative to manipulator arm 26 controlled by appropriately positioned actuators, such as electric motors, or the like, which respond to inputs from an associated master control at the control station 12, so as to drive the end effector 38 to a required orientation as dictated by movement of the associated master control.
  • Referring now to FIG. 3, base 34 of surgical instrument 28 suitably includes transmission members 70, 72, 74, and 76, which include spools secured on shafts 70.1, 72.1, 74.1, and 76.1. Ends of shafts 70.1, 72.1, 74.1, 76.1 generally extend from a side 77 of base 34 to a mounting plate 78 within base 34 and are configured to rotate. Generally, the ends of shafts 70.1, 72.1, 74.1, 76.1 at side 77 of base 34 extend through side 77, to an outer surface of side 77 (not shown). At the outer surface, each shaft 70.1, 72.1, 74.1, 76.1 includes an engaging member (not shown) configured to releasably couple with a complementary engaging member (not shown) rotatably mounted on the carriage 37 of a robotic arm assembly 26 (see FIG. 1). The engaging members on carriage 37 are generally coupled to actuators (not shown), such as electric motors or the like, to cause selective angular displacement of each engaging member on the carriage 37 in response to actuation of its associated actuator. Thus, selective actuation of the actuators is transmitted through the engaging members on the carriage 37, to the engaging members on the opposed ends of the shafts 70.1, 72.1, 74.1, 76.1 to cause selective angular displacement of the spools 70, 72, 74, 76. Where more or fewer degrees of freedom are desired, the number of spools may be decreased or increased.
  • Referring now to FIGS. 4 and 5 an ultrasound treatment system 201 for manually-performed endoscopic surgery, as described in U.S. Pat. No. 6,193,709 (previously incorporated by reference), suitably includes a handle unit 202, a probe unit 203, and a vibrator unit 204. The following description of FIGS. 4-9 corresponds generally to the description of FIGS. 12-23 in U.S. Pat. No. 6,193,709.
  • As shown in FIGS. 5 and 9, the vibrator unit 204 is formed as a hand piece 241. The hand piece 241 includes a cylindrical cover 242 that forms a grasping section. An ultrasonic transducer 243 and a horn 244 are arranged inside the cover 242. A hand piece cord 245 extends from the proximal end of the vibrator unit 204, and a hand piece plug 246 is provided on an end portion of the cord 245 (see FIG. 4). The plug 246 is connected electrically to an ultrasonic oscillator (not shown). The vibrator unit 243 is vibrated as it is supplied with electric power from the ultrasonic oscillator.
  • The horn 244, which is coupled to the ultrasonic transducer 243, amplifies ultrasonic vibration generated by the ultrasonic transducer 243 and enlarges its amplitude to a first phase. The distal end of the horn 244 is formed having an internal-thread portion to which the probe unit 203 is attached.
  • A connecting member 247 is attached to the distal end of the cover 242. The member 247 connects the vibrator unit 204, along with the probe unit 203 combined therewith, to the handle unit 202. More specifically, the connecting member 247 is provided with an engaging ring (C-shaped ring) 248 having a semicircular profile. The vibrator unit 204 is connected to the handle unit 202 as the ring 248 is caused elastically to engage an engaging groove 211 a of a vibrator connecting section 211 (mentioned later) of the unit 202.
  • As shown in FIG. 5, the probe unit 203 is formed as a rod-shaped vibration transmitting member 251 for transmitting the ultrasonic vibration generated by the ultrasonic transducer 243. An external-thread portion 251 e to be screwed into the internal-thread portion at the distal end of the horn 244 of the vibrator unit 204 is formed on the proximal end of the transmitting member 251. The transmitting member 251 includes a proximal-side horn 251 d, intermediate portion 251 c, distal-side horn 251 b, and columnar distal end portion 251 a. The proximal-side horn 251 d further enlarges the amplitude of the ultrasonic vibration, amplified by the horn 244, to a second phase. The intermediate portion 251 c is situated on the distal end side of the horn 251 d. The distal-side horn 251 b, which is situated on the distal end side of the intermediate portion 251 c, enlarges the amplitude of the ultrasonic vibration, amplified by the horn 251 d, to a final phase. The distal end portion 251 a is situated on the distal end side of the horn 251 b (or on the distal end side of the vibration transmitting member 251).
  • The ultrasonic vibration from the probe ultrasonic transducer 243, amplified by the horns 244, 251 d and 251 b, is transmitted to the distal end portion 251 a, whereupon the end portion 251 a vibrates. Further, the distal end portion 251 a, along with a distal acting section 205 (mentioned later) of the handle unit 202, constitutes a treatment section 210 of the ultrasonic treatment apparatus 201.
  • As shown in FIG. 5, the handle unit 202 includes an operating section 206, the insertable sheath section 231 formed of a long sheathing tube 220 that is rotatably attached to the operating section 206, and the distal acting section 205 on the distal end of the insertable sheath section 231.
  • The operating section 206 includes an operating section body 212, a fixed handle 213 formed integrally with the body 212, and a movable handle 214. The operating section body 212 is provided with the vibrator connecting section 211 on its proximal end. The vibrator unit 204 is removably connected to the connecting section 211. The movable handle 214 is rockably mounted on the operating section body 212 (fixed handle 213) by means of a handle pivot 217. In this case, the handle pivot 217 is situated on the opposite side of the longitudinal central axis of the insertable sheath section 231 from the fixed handle 213. Thus, the movable handle 214 is rocked around a fulcrum that is situated above the longitudinal central axis of the sheath section 231. Further, the handle 214 has engaging pins 219 on or near the central axis of the sheath section 231. The pins 219 can engage a transmitting member 258 (see FIG. 8, mentioned later) in the operating body 212.
  • As shown in detail in FIGS. 8 and 9, a cylindrical interpolative member 212 b is inserted and fastened in the operating section body 212. In this case, the distal end portion of the member 212 b is held between a nut 212 d, which is fitted in the distal end portion of the operating section body 212, and a cylindrical rotating member 212 c, which is inserted and fastened in the distal end portion of the member 212 b. Further, the cylindrical transmitting member (rotor) 258 is disposed inside the interpolative member 212 b. The vibration transmitting member 251 is passed through a bore of the member 258. In an assembled state, the proximal-side horn 251 d of the transmitting member 251 and the proximal-side portion thereof are arranged in the bore of the transmitting member 258. Moreover, an engaging groove 262 is formed on the outer peripheral surface of the transmitting member 258. Fitted in the groove 262 are the engaging pins 219 of the movable handle 214, which individually penetrate through-holes 212 a in the operating section body 212 and the interpolative member 212 b.
  • The annular vibrator connecting section 211 is attached to the inner peripheral surface of the proximal end portion of the interpolative member 212 b by screwing and/or an adhesive such as glue. The engaging groove 211 a is formed on the inner peripheral surface of the connecting section 211. The groove 211 has a conical engaging surface 211 b on its proximal end side. The engaging surface 211 b is designed to fit the curved outer peripheral surface of the engaging ring 248 that is attached to the connecting member 247 of the vibrator unit 204.
  • A cylindrical rotary knob 232 is attached to the nut 212 d by means of a V-groove on the nut 212 d and a cone-point setscrew. The proximal end portion of the sheathing tube 220 of the insertable sheath section 231 is inserted in a bore of the knob 232. An end member 220 a is fitted on the outer periphery of the proximal end portion of the tube 220 in the bore of the knob 232. The distal end portion of a connecting cylinder 220 b is fitted and fixed on the outer periphery of the end member 220 a by adhesive bonding. A thread portion 224 is formed on the outer peripheral surface of the distal end portion of the cylinder 220 b. The distal end portion of the rotating member 212 c, which extends in the bore of the rotary knob 232, is screwed on the thread portion 224. Further, the proximal end side of the connecting cylinder 220 b is inserted into a bore of the rotating member 212 c, and is held between the member 212 c and the distal end portion of the transmitting member 258 in a manner such that it can move back and forth. The position (or longitudinal movement) of the cylinder 220 b in the member 212 c can be adjusted by rotating a nut 220 c, which is screwed on the thread portion 224 of the cylinder 220 b and engages the distal end of the member 212 c. The connecting cylinder 220 b has an engaging groove 220 d on its proximal end. As a positioning pin 220 e that protrudes from the transmitting member 258 engages the engaging groove 220 d, the cylinder 220 b is restrained from rotating relatively to the member 258.
  • As shown in FIGS. 4 and 5, the distal acting section 205 includes a holding member 270, which is attached to the distal end portion of the sheathing tube 220, and an open-close member 275 of a single-swing type, which is rockably (pivotably) attached to the member 270 by means of pivots 274. The acting section 205, along with the distal end portion 251 a of the vibration transmitting member 251 of the probe unit 203, constitutes the treatment section 210 of the ultrasonic treatment apparatus 201.
  • The open-close member 275 can hold a living organism in cooperation with the distal end portion 251 a of the vibration transmitting member 251 so that the organism is pressed against the distal end portion 251 a that is undergoing the ultrasonic vibration. Thus, vibration energy can be transmitted from the distal end portion 251 a to the organism. The member 275 also functions as an exfoliating forceps for exfoliating living organisms.
  • As shown in FIGS. 6 and 7, the open-close member 275 is composed of a pair of opposite side walls 275 a and 275 b, a proximal-side connecting portion 275 c connecting the respective proximal-side upper end portions of the side walls 275 a and 275 b, a distal-side connecting portion 275 d connecting the respective distal end portions of the side walls 275 a and 275 b, and attachment portions 275 e extending individually downward from the respective proximal end portions of the side walls 275 a and 275 b.
  • A slit 234 is defined between the side walls 275 a and 275 b, and a grasping member 282 is located in the slit 234 for rocking motion. The member 282 can grasp the living organism in cooperation with the vibration transmitting member 251. More specifically, the grasping member 282 is connected integrally to a jaw 278 by means of a cylindrical collar member 277 a so that the jaw 278 is held between the members 282 and 277 a. Further, an attachment portion 282 a of the member 282, which is situated in the slit 234, is rockably attached to the open-close member 275 by means of a pivot pin 277. In this case, the collar member 277 a penetrates the attachment portion 282 a of the grasping member 282 in the slit 234 and the jaw 278, while the pin 277 is passed through the member 277 a. The width of the slit 234 is made greater than that of the attachment portion 282 a of the grasping member 282 that is fitted in the slit 234.
  • FIGS. 10-19 show a preferred embodiment of a robotic tool 80 having aspects of the present invention. The tool 80 includes an ultrasound treatment instrument assembly which may have a number of features which are generally similar to portions of the ultrasonic treatment instrument shown in FIGS. 5-9. As a matter of cost and convenience, portions of a suitable OEM ultrasound instrument (for example, the SonoSurg® ultrasonic treatment instrument model T3070 made by Olympus Optical Co., Ltd., of Tokyo, Japan) may be modified and included as a subassembly of the robotic tool 80. The above referenced U.S. Pat. No. 6,193,709 describes an ultrasound treatment instrument generally similar to the SonoSurg® instrument. Likewise, portions of the generally similar Ultracision® Harmonic Scalpel® LaparoSonic® Coagulating Shears, now made by Ethicon Endo-Surgery, Inc, of Cincinnati, Ohio, may be included as subassemblies of the robotic tool 80. A description of an ultrasound treatment instrument generally similar to the LaparoSonic® Coagulating Shears is included in U.S. Pat. No. 5,322,055, which patent is hereby incorporated by reference. The tool 80 may be used in operative association with a suitable prior art OEM ultrasound driver transducer, power supply and control system (for example, the SonoSurg® model T2H made by Olympus Optical Co., Ltd., of Tokyo, Japan) to provide ultrasound energy supply and control functions.
  • Referring now to FIGS. 10 and 11 c, a distal portion of a robotic surgical instrument 80 according to various embodiments of the present invention suitably includes a shaft 84, covered by a sheath 86, with an end effector 81 at the distal end of shaft 84. End effector 81 includes a gripper 82 hingedly attached to shaft 84 at a hinge 83, and an ultrasonic probe tip 85 b. In one embodiment, the distal portion of surgical instrument 80 also includes a distal sealing ring 87 (FIG. 11 c).
  • Generally, ultrasound probe tip 85 b is configured to delivery ultrasound energy at a surgical site for cutting, cauterization or any other suitable purpose. As such, ultrasound probe may be designed to have any suitable configuration. For example, ultrasound probe tip 85 b may comprise a cylindrical probe with a rounded tip, as in FIG. 10, or may alternatively comprise a triangle-shaped probe, a square probe, a probe with a flat or pointed tip, a shorter probe, a longer probe or the like.
  • According to an aspect of the present invention, gripper 82 is configured to be movable at hinge 83 such that the distal end of gripper 82 may be moved toward ultrasound probe tip 85, 85 b to grip tissue or other substances between gripper 82 and probe tip 85 b, and may be moved away from probe tip 85 b to release tissue. For example, gripper 82 may be used to grip tissue and position it in contact with ultrasound probe tip 85 b to enable cutting or cauterization by probe tip 85 b. As such, gripper 82 may have any suitable configuration for holding, gripping or otherwise moving tissue against probe tip 85 b. For example, gripper 82 may include teeth, as in FIG. 10, or may have straight, flat edges, or one tooth or other gripping mechanism or the like.
  • According to another aspect of the invention, one or more axes for freedom of motion of end effector 81 may be included in the distal portion. For example, in one embodiment, shaft 84 is configured to rotate with sheath 86, enabling end effector 81 to rotate about the long axis of the surgical instrument. In another embodiment, a wrist-like mechanism at the connection of shaft 84 to end effector 81 allows hinge-like movement of end effector 81 in relation to shaft 84. In another embodiment, as already described, hinge 83 allows movement of gripper 82. Any suitable combination of such hinges, wrist-like mechanisms, rotational devices and the like are contemplated within the scope of the present invention.
  • Referring now to FIGS. 11 a and 11 b, a base 90 of surgical instrument 80 according to various aspects of the present invention includes multiple components, such as actuator pulleys, idler pulleys, actuator rods and the like. Embodiments of such components are described in more detail below, but generally, the components of base 90 are configured to enable coupling of surgical instrument 80 with a robotic surgical system. More specifically, components of base 90 enable forces originating at one or more master controllers of a robotic surgical system to be transmitted to end effector 81 to achieve an effect at a surgical site. Some of the components of various embodiments of base 90 and surgical instrument 80 are generally similar to those described in U.S. application Ser. No. 09/398,958, filed Sep. 17, 1999 (Atty. Docket 17516-4410), and U.S. application Ser. No. 09/418,726, filed Dec. 6, 1999 (Atty. Docket 17516-3210) (both previously incorporated herein by reference).
  • Referring now to FIGS. 12 a -12 c base 90 is shown with an enclosing cover 91 in place (FIG. 12 a), with enclosing cover 91 removed to show an upper chassis 93 (FIG. 12 b) and with upper chassis 93 removed (FIG. 12 c). Upper chassis 93 is generally configured to rotatably hold and support one end of one or more actuator spools 94, 95 and one or more idler spools 95 a. Base also suitably includes a rear connector 97 for coupling base 90 to an ultrasound driver (not shown).
  • FIG. 12 d is a perspective illustration of a surgical instrument 80, showing base 90 with covering 91, sheath 86 enclosing shaft, and end effector 81.
  • Referring now to FIGS. 13, 14 a, 14 b, 15 a and 15 b, various views of base 90 as shown in FIG. 12 c are illustrated. In various embodiments, base 90 includes a shaft receiver 86 b, a bearing housing 98, a roll drum 96, a actuator tube 110, a roll spool 94, an upper cable 101 a, and a lower cable 101 b. Shaft receiver 86 b is generally configured to attach roll drum 96 to shaft/sheath 86. Roll drum 96 is in turn rotatably supported by bearings within bearing housing 98. Roll drum 96 interconnects to receiver 86 b and surrounds actuator tube 110. Roll cable 101 spans between roll spool 94 and roll drum 96 as follows: upper cable 101 a wraps around drum 96 at its rear portion (clockwise as seen from rear) and also wraps around spool 94 upper portion (clockwise as seen from above). In the opposite sense, lower cable 101 b wraps around the front portion of drum 96 and around the lower portion of spool 94. Thus, when spool 94 is rotated by an interface member of a robotic surgical system, as shown by Arrow R1, roll cable 101 transfers rotational motion to drum 96 by corresponding winding and unwinding of roll cable 101 around spool 94 and drum 96. For example, as spool 94 is rotated as shown by Arrow R1, upper cable 101 a moves as shown by Arrow R2 and lower cable 101 b moves as shown by Arrow R3, causing drum 96 and shaft 86 to rotate as shown by Arrow R4. The motion is reversible and controllable by the robotic surgical system.
  • According to one aspect of the present invention, gripper 82 of end effector 81 is movable by one or more actuator rods housed within shaft 86. The motive force for actuating the rod is supplied by actuator spool 95 which engages an interface member (not shown) on a robotic surgical system. A cable loop 102 wraps around spool 95 and also around idler spool 95 b in a closed loop extending in a longitudinal direction generally parallel as spaced apart on the right side of shaft 86. The inner portion of loop 102 is fixed to the right end 104 b of pivot bar or rod 104, the left hand end of bar 104 is pivoted at pivot pin 105 on the left hand side of shaft 86. The bar 104 (also referred to as a “square hole rod”) extends above, below and across shaft 86, and contacts actuator assembly 110 at a medial portion of bar 104 above and below shaft 86.
  • Referring now to FIGS. 14 a and 14 b, various embodiments of base 90 suitably include additional components, including one or more: drive shafts 144 for coupling pulleys with a robotic surgical system; attachment pins and/or rings 140; holders and lock nuts 141; washers and bushings 106 a,b to reduce friction; bushings for pins 142; tube and grip assemblies 148; pins 149 to align roll pulleys and actuators; retainers 147 to hold square hole rod washers and bushings in place; pins 146 to align and hold tube and grip assembly 148; retaining pins, rings and caps 145 to hold roll pulley and outer tube assembly; and rods 111 to connect actuator to grip.
  • Referring now to FIGS. 17-19, in one embodiment bar 104 is configured to extend under shaft/sheath 86 and loop around shaft/sheath 86, with sufficient clearance from the shaft 86 to enable it to pivot freely within a desired range of motion. As spool 95 rotates counter-clockwise as shown by Arrow A1 (FIG. 13), loop 102 moves counter-clockwise as shown by Arrow A2, so that the inner portion of the loop moves bar 104 pivotally rearwards (towards the rear or proximal end of base 90). The distal and proximal side surfaces 104 a,b of bar 104 bear on distal and proximal bushings 106 a,b which in turn contact the actuator 110 to cause it to move rearward, in turn moving the actuator rod 111 rearward so as to close the gripper 82. Typically, due to mechanical advantage of the system, actuator 110 moves rearward through about one half of the range of motion of loop 102.
  • As discussed further below with respect to FIGS. 17-19, bushings 106 a,b bear on actuator tube or ring 110 which is moved rearward or forward by bar 104 (as shown). The actuator ring extends concentrically within drum 96 and transfers this motion to actuator rod 111 which extends within shaft 86 distally to pivotally connect to gripper 82. As shown in FIGS. 14, 15, actuator rod 111 acts about a lever arm of gripper 82 to alternately open gripper 82 (rearward rod movement) or close gripper 82 (forward rod movement). Bushings 106 a,b slidably bear on bar 104 so as transmit longitudinal forces to the actuator tube 110 as the shaft 86 is rotated, thus permitting gripper actuation at any angle of shaft rotation. Generally, this actuator motion is reversible and controllable by the robotic system, producing a controllable forward or rearward actuator 110 and rod 111 motion and in turn controllably opening and closing gripper 82.
  • According to another aspect of the invention, rear connector 97 on base 90 is generally configured to connect to a transducer driver to permit ultrasound energy to be transmitted through probe core 85 housed within shaft 86. In other embodiments, base 90 may include an internal ultrasound source, such that surgical instrument 80 may contain its own source of ultrasound energy.
  • FIGS. 17-19 illustrate details of the longitudinal coupling from bar 104 (often referred to as “square hole rod” due to the open midsection of the particular embodiment shown) to actuator tube 110. The motion of the midsection of bar 104 is transferred via bushings 106 a,b to tube 110, which is moved rearward or forward by bushings 106 a,b. Actuator ring 110 extends distally (drum 96 is omitted in FIG. 17 for clarity) and transfers this longitudinal motion to actuator rod 111 which extends within shaft 86 distally to pivotally connect to gripper 82.
  • FIGS. 18 and 19 are exploded views of an actuator tube assembly 180 according to an embodiment of the present invention. In addition to components of actuator tube assembly 180 previously described above, the assembly 180 also suitably includes additional washers 107 a,b to reduce friction in the assembly. According to one aspect of the invention, as shown in FIGS. 18 and 19, actuator tube 110 includes retainer tube 110 b. In one embodiment, retainer tube 110 b threads into tube 110 when assembled, so as to “sandwich” or trap bushings 106 a,b between flange portions of rings 110, 110 b and the side surfaces 104 a,b of bar 104.
  • FIGS. 20 through 23 illustrate an alternative example of an instrument embodiment 300 including aspects of the invention.
  • It should be noted that much of the description above with respect to the robotic instrument embodiment 80 of FIGS. 10-19, including incorporated references, is also relevant with respect to instrument 300, since in many cases generally similar structures of each instrument serve equivalent functions.
  • For convenience and to minimize manufacturing costs, selected OEM components of commercially available instruments may optionally be included in the instrument 300 described herein. FIGS. 24-27 are sheets of reproductions of the FIGS. 26-36 of U.S. Pat. No. 6,280,407, issued Aug. 28, 2001 to Manna, et al., entitled “Ultrasonic Dissection And Coagulation System”, and assigned to United States Surgical Corporation of Norwalk, Conn., the entire contents of which are hereby incorporated by reference. The patent describes, among other things, a hand-held ultrasonic treatment instrument example generally similar to the AutoSonix* Ultra Shears* made by United States Surgical Corporation of Norwalk, Conn.
  • The instruments described in U.S. Pat. No. 6,280,407 include, among other things, a transducer portion, an ultrasonic core (vibration coupler) portion, a shaft/distal end effector portion, and an ultrasonic power supply/controller suitable for employment as parts of the instrument embodiment of FIGS. 20-23. For simplicity, in the description below the relevant parts shown and described in U.S. Pat. No. 6,280,407 will be presumed to be included in the instrument example 300, although it will be clear to one of ordinary skill in the art how to make and configure the production details of equivalent dedicated parts.
  • For convenience, an excerpt of U.S. Pat. No. 6,280,407, from column 11, line 50, to column 14, line 55, is included below. This excerpt includes description of FIGS. 26-36 of that patent, reproduced and attached as FIGS. 26-36 herein.
  • FIG. 26 illustrates another alternate embodiment of the ultrasonic instrument, shown generally as 412. Ultrasonic instrument 412 includes housing 422 and elongated body portion 424 extending distally from housing 422. Housing 422 is preferably formed from molded housing half- sections 422 a and 422 b and includes a barrel portion 426 having a longitudinal axis aligned with the longitudinal axis of body portion 424 and a stationary handle portion 428 extending obliquely from barrel portion 426. Ultrasonic transducer 430 is supported within and extends from the proximal end of housing 422 and includes a proximal fluted portion 431 configured to engage an attachment device to facilitate attachment and removal of transducer 430 from instrument 412. Jaw assembly 432 is disposed adjacent the distal end of elongated body portion 424 and is actuated by moving movable handle 436 with respect to stationary handle portion 428. Movable handle 436 and stationary handle portion 428 include openings 438 and 440, respectively, to facilitate gripping and actuation of ultrasonic instrument 412. Elongated body portion 424 is supported within rotatable knob 434 and may be selectively rotated by rotating knob 434 with respect to housing 422 to change the orientation of jaw assembly 432.
  • FIG. 27 illustrates elongated body portion 424 with parts separated. Elongated body portion 424 includes an outer tube 442 which is preferably cylindrical and has a proximally located annular flange 444 dimensioned to engage rotatable knob 434. An elongated actuator tube 446, which is also preferably cylindrical, is configured to be slidably received within outer tube 442 and includes a proximally located annular flange 448 dimensioned to engage coupling member 498 which is supported within housing 422. Although not shown, it is contemplated that a portion of actuator tube 446 and a portion of outer tube 442 adjacent flange 444 flares outwardly to provide additional clearance for vibration coupler 450. Vibration coupler 450 is dimensioned to extend through elongated actuator tube 446 and includes an enlarged proximal end 452 having a bore (not shown) configured to operatively engage ultrasonic transducer 430. The distal end of actuator tube 446 includes a pair of resilient arms 453 having distally located openings 455. The openings 455 are dimensioned to receive protrusions 461 formed on an adaptor 457. Arms 453 are flexible outwardly and engage adaptor 457. Cutting jaw 458 is monolithically formed with vibration coupler 450. Alternately, cutting jaw 458 and vibration coupler 450 can be formed separately and fastened together using any known connector, e.g., screw threads, friction fit, etc. Although not shown, a plurality of sealing rings can be molded or otherwise attached to the nodal points along vibration coupler 450 to seal between vibration coupler 450 and actuator tube 446.
  • Referring also to FIGS. 28A-C, a clamp 460 is operably connected to adaptor 457. Clamp 460 preferably includes a pair of longitudinally extending rows of teeth 462 which are spaced from each other a distance which permits cutting jaw 458 to be positioned between the rows of teeth 462. Teeth 462 function to grip tissue when the jaw assembly 432 is in a closed position to prevent tissue from moving with respect to cutting jaw 458 during vibration of the cutting jaw.
  • Pivot members or pins 466 are formed at the proximal end of clamp 460 and are configured to be received within open ended slots 468 in the distal end of outer tube 442. Slots 468 are open on one side thereof to permit clamp 460 to be retained therein. A longitudinally extending guide slot 470 formed in adaptor 457 is dimensioned to slidably receive pivot pin 466 and permit relative movement between adaptor 457 and clamp 460. A pair of camming members 472 are also formed on clamp 462 and are positioned to be received in cam slots 474 formed in the adaptor in 457.
  • Cutting jaw 458 includes blade surface 459 which is flat and angled downwardly toward its distal end to define a fixed acute angle .theta. of from about 10 degrees to about 20 degrees with respect to the longitudinal axis of the elongated body portion 424 and to the axis of vibration. The angled blade surface provides for good visibility at the surgical site. Preferably, angle .theta. is about 12 degrees, but greater angles such as 20 to 30 degrees are also envisioned. Alternately, blade surface 459 may be other than flat, e.g., sharpened, rounded, etc.
  • Clamp 460 is movable relative to cutting jaw 458 from an open position in which tissue contact surface 464 of clamp 460 is spaced from blade surface 459 to a closed or clamped position in which tissue contact surface 464 is in juxtaposed closer alignment with blade surface 459. In the clamped position, note the positioning of tissue contact surface 464 with respect to blade surface 459. Actuation of clamp 460 from the open position to the clamped position will be described in detail below.
  • Referring to FIGS. 29 and 30, housing half- sections 422 a and 422 b define a chamber 476 configured to house a portion of ultrasonic transducer 430. Chamber 476 has an 20 opening 478 communicating with the interior of housing 422. Ultrasonic transducer 430 includes a cylindrical stem 480 configured to be received in an opening in proximal end 454 of vibration coupler 450. In the assembled condition, proximal end 454 extends through opening 478 into engagement with cylindrical stem 480. Movable handle 436 is pivotally connected between housing half- sections 422 a and 422 b about pivot pin members 482 which are monolithically formed with housing half-sections 422 a. A cam slot 488 formed in each leg 486 is configured to receive a protrusion 490 projecting outwardly from coupling member 498.
  • Coupling member 498 operatively connects movable handle 436 to actuator tube 446 and is preferably formed from molded half- sections 498 a and 498 b to define a throughbore 500 dimensioned to slidably receive the proximal end of vibration coupler 450. Coupling member 498 has an inner distally located annular groove 502 dimensioned to receive annular flange 448 of actuator tube 446 and an outer proximally located annular groove 504 positioned to receive an annular projection 506 formed on the internal wall of swivel member 508. The projection 506 of swivel member 508 is movable through groove 504 to permit relative longitudinal movement between coupling member 498 and swivel member 508. A spring 463 is positioned between coupling member 498 and swivel member 508 to bias the swivel member 508 proximally with respect to coupling member 498. Swivel member 508 is preferably formed from molded half- sections 508 a and 508 b and permits rotation of coupling member 498 relative to movable handle 436. Protrusions 490 project outwardly from sidewalls of swivel member 508 and extend through cam slots 488 of movable handle 436.
  • Rotation knob 434 is preferably formed from molded half- sections 434 a and 434 b and includes a proximal cavity 510 for slidably supporting coupling member 498 and a distal bore 512 dimensioned to receive outer tube 442. An annular groove 514 formed in bore 512 is positioned to receive annular flange 444 of outer tube 442. The outer wall of knob 434 has a proximally located annular ring 516 dimensioned to be rotatably received within annular slot 518 formed in housing 422, and a scalloped surface 522 to facilitate gripping of rotatable knob 434. Annular ring 516 permits rotation of knob 434 with respect to housing 422 while preventing axial movement with respect thereto. A pair of rods or pins 524 extend between half- sections 434 a and 434 b through a rectangular opening 526 formed in coupling member 498. Rods 524 engage a pair of flattened surfaces 528 formed on vibration coupler 450, such that rotation of knob 434 causes rotation of vibration coupler 450 and thus rotation of blade 458 and clamp 460. Alternately, to provide additional surface contact, instead of pins 524, a C-clip shown generally as 580 in FIG. 31A is provided. C-clip 580 mounted by pins 586 has an opening 582 to receive the vibration coupler 450. The flats of vibration coupler 450 contact the four flat regions 590 of the C-clip 580.
  • A retainer ring (not shown) may be mounted on ribs 492 of housing 422 to provide additional support for actuator tube 446. In this embodiment, tube 446 would extend proximally past ribs 492.
  • FIGS. 31-34 illustrate ultrasonic instrument 412 with clamp 460 in the open position. The elongated body 424 which includes clamp 460 and blade 458, and housing 422 which includes handles 428 and 436, are packaged as an integral unit that requires no assembly by the user prior to use, i.e., vibration coupler 450, clamp 460, and blade 458 are non-detachably connected. That is, the user needs only to attach transducer 430 to housing 422 to ready instrument 412 for use. In the open position, movable handle 436 is spaced rearwardly from stationary handle portion 428 and protrusions 490 are positioned in the lower proximal portion of cam slots 488. At the distal end of ultrasonic instrument 412, pivot members 466 are positioned near the distal end of guide slots 470 and camming members 472 are positioned in the upper distal portion of cam slots 474. Tissue contact surface 464 of clamp 460 is spaced from blade surface 459 to define a tissue receiving area 532. The proximal end of tissue receiving area 532 is defined by a pair of tissue receiving stops 535 which are preferably integrally formed with clamp 460 and extend below blade surface 459. Preferably, the distal end of blade 458 is devoid of sharp edges which may cause inadvertent damage to tissue during use of instrument 412. Alternately, the distal end of blade 458 may be formed having any shape which may be suitable to a particular surgical application, i.e., flat, pointed, etc.
  • Referring to FIGS. 35 and 36, when movable handle 436 is pivoted clockwise about pivot member 482 towards stationary handle portion 428, in the direction indicated by arrow “G” in FIG. 35, cam slot 488 engages protrusion 490 of swivel member 508 to advance coupling member 498 distally within cavity 510 of rotation knob 434. Since actuator tube 446 is attached to coupling member 498 by annular flange 448, actuator tube 446 is also advanced distally in the direction indicated by arrow “H” in FIG. 36. Movement of actuator tube 446 distally causes cam slots 474 to move into engagement with camming members 472 to pivot clamp body 462 about pivot members 466, in the direction indicated by arrow “I” in FIG. 36, to move clamp member 462 and tissue contact member 464 into the clamped position. Spring 463 prevents over clamping of tissue by permitting relative movement between swivel member 508 and coupling member 498 after a predetermined clamping pressure has been applied against blade 458. In the clamped position, protrusions 490 are located in a central portion of cam slots 488, pivot members 466 are located near the proximal end of guide slots 470, and camming members 472 are located in the proximal lower portion of cam slots 474.
  • Elongated body portion 424 can be freely rotated with respect to housing 422 by rotating rotation knob 434. Rotation of knob 434 in the direction indicated by arrow “J” causes rotation of jaw assembly 432 in the direction indicated by arrow “K”. Knob 434 is positioned adjacent housing 422 to facilitate one handed operation of both movable handle 436 and rotation knob 434.
  • Returning to FIGS. 10-19, note that in the example of instrument 80 of FIGS. 10-19, ultrasonic probe 85 is a distinct part separate from actuator rod 111, the probe 85 being arranged to be rotatable about its axis, but is not required to translate along the axis. Rod 111 is arranged to reciprocate axially, and is coupled to gripper 82 to open and close the gripper.
  • In reference to FIGS. 20-25, in the alternative instrument example 300, the ultrasonic probe assembly 320 is arranged to be axially movable within the instrument along the instrument axis 311, so that the distal portion 322 of the probe assembly 320 is movable in a reciprocating manner within the shaft sheath 312. The probe assembly distal portion 322 is in turn mechanically coupled to a gripper element of the end effector. For example, see actuator tube 446 which engages gripper or clamp 460, shown in FIG. 27.
  • FIG. 20 illustrates an alternative instrument embodiment 300 including aspects of the invention. The proximal potion comprises an instrument base 330 and a cover 301. Shaft 307 extends distally, covered by outer sheath 312. An end effector 302 is coupled to the distal end of the shaft 307, comprising an ultrasonic blade 304, which cooperatively mates with pivotally mounted gripper or clamp 303. Ultrasonic transducer 305 mounts to the proximal end of base 330, the power/control cable 306 extending to a conventional ultrasonic surgical generator, such as the Auto Sonix* generator (not shown) made by United States Surgical Corporation of Norwalk, Conn.
  • FIGS. 21 and 22 are top and side views respectively of the proximal portion of the alternative instrument embodiment 300, illustrated with the cover 301 removed from the base 330. The base 330 supports a rotational support structure including, in this example, front bearing support 332 and medial bushing 333. Bearing 332 and bushing 333 are axially aligned and rotatably mount receiver 335, which spans between bearing 332 and bushing 333. Receiver 335 mounts roll drum 336. Receiver 335 has a hollow axial lumen 340 which is configured to removably mount the treatment assembly 310 (see also FIG. 23). The removable treatment assembly 310 is generally aligned parallel with the axis 311, and is mounted by insertion into lumen 340.
  • The removable treatment assembly 310 is retained in its mounted position by a latching mechanism, which in the example shown includes a pair of latches 337 a and 337 b mounted to base 330. The latches 337 a and 337 b each include a spring-loaded slidable finger 338 a, 338 b, oriented generally perpendicular to the axis 311. Fingers 338 a and 338 b are urged by springs 338 a and 338 b towards the axis 311 by springs 339 a and 339 b, the fingers overlapping adaptor 313 to bear on rear-facing surface 314 of adaptor 313, thus securing the treatment assembly 310 by preventing axial motion of the adaptor 313 relative to the receiver 335. For insertion or removal of the treatment assembly, the latch fingers 338 a and 338 b may be retracted by moving the finger against spring forces. In the example shown, for example shown, finger extension 341 protrudes upwardly through slot 342, permitting the finger to be manually retracted. The fingers do not interfere with rotational motion of the receiver and treatment assembly combination about axis 311.
  • Other conventional latching mechanisms known in the mechanical arts may be used to secure the treatment assembly 310 to the receiver 313. For example, a latching mechanism may be included in the receiver 335, removably coupling to adaptor 313. Alternatively, the contact surface between the receiver lumen 340 and the adaptor 313 may be configured as a threaded joint, to allow disassembly.
  • The roll barrel 336 of instrument 300 functions in generally the same manner as the roll barrel of instrument 80 shown in FIGS. 10-19. A robotic surgical system interface member (not shown herein, see incorporated application Ser. Nos. 09/398,958 and 09/418,726, referenced above) is configured to engages the pivotally mounted instrument roll interface member 344 so as to controllably rotate interface member 344 in either direction through a selected range of motion. The instrument roll interface member is supported by bearing 345 mounted to base 301. The perimeter of instrument interface member 344 is shown configured to provide a spool surface 345 which engages cable 346. In the example shown, cable 346 is guided by front and rear idler pulley pairs 347 a,b and 348 a,b respectively, to conduct the cable346 to engage the perimeter of roll drum 336. The two ends of cable 346 (346 a,b) are led to an upper and lower point on the perimeter of drum 336 respectively, wrapping about the drum 336 in opposite directions, so that rotational motion of interface member 344 (Arrow C) causes the cable to impart a rotational motion to the drum 336, and in turn to impart a corresponding rotational motion to the receiver and treatment assembly, as shown by Arrow B.
  • Alternatively, a separate roll spool may be axially coupled with instrument interface member 344, in the manner shown in the instrument 80 of FIGS. 10-19. In the example shown, the cable 346 is fixed to the interface member 344 at a medial anchor point 349, the ratio of the diameters of the member 344 and the drum 336 being selected to provide a desired range of rotational motion of drum 336 within less than a 360° rotation of member 344. Alternatively, the cable 346 may be frictionally engaged to member 344 rather than, so as to permit a greater than less than a 360° rotation of member 344. In still another alternative, to separate cables may be attached to two separate spool members. In a still further alternative, a gear train or other mechanical transmission means, e.g., a right-angled helical gear pair, may be used to rotationally couple the interface member 344 with the receiver 335.
  • It should also be noted that in the instruments examples of the invention shown in FIGS. 10-25, where a mechanical robotic actuator interface is described (see the incorporated application Ser. Nos. 09/398,958 and 09/418,726, referenced above), other actuation interface devices, such a as an electromechanical drive, a magnetic interface, a flexible drive interface, hydraulic interface or the like, may be substituted without departing from the spirit of the invention. For example, one or more electric motor assemblies or motor packs (optionally having gears and/or encoders) may be mounted to base 330 to drive one or more of the rotational and/or translational degrees of freedom of the instrument, the motor packs being electrically connected to receive control/power signals from (and optionally transmit feedback signals to) the robotic surgical control system.
  • FIG. 23 is a side view of the removable treatment assembly 310 of the instrument embodiment 300 shown in FIGS. 20 and 21. FIG. 24 is a corresponding side view of the proximal portion of the instrument embodiment 300 from the same perspective as shown in FIG. 22, with the treatment assembly 310 removed.
  • As shown in FIGS. 21 through 24, the removable treatment assembly 310 comprises adaptor housing 313 having an internal hollow volume 315 communicating between openings at its distal and proximal ends. FIG. 25 is a perspective view of a molded half portion of the adaptor housing 313 a of the removable treatment assembly 310 shown in FIGS. 21 and 22.
  • The interior of housing halfportion 313 a of the adaptor housing 313 defines half of the internal volume 315, here denoted as 315 a. Internal volume 315 holds and mounts the ultrasound conducting core assembly 320. The internal volume 315 is shaped and sized so as to permit the core assembly 320 to move axially through a selected range of motion, as shown by Arrows A in FIGS. 21 and 22. Return spring 323 is mounted between the proximal face 316 of receiver 313 and push plate 324, which is mounted at a medial position on the core assembly 310. Spring 323 serves to bias the location of core assembly 320 to the proximal extent of the range of motion shown by Arrows A1-4.
  • The adaptor housing mounts the outer sheath 312, which may comprise a tubular structure, such as the outer tube 442 identified in FIG. 29. As shown in the example of FIG. 25, adaptor housing 313 has a distal annular groove 316 which is configured receive the proximal flange of outer tube 442 of FIG. 29.
  • The core assembly 320 includes components corresponding in function and general structure to the following components described in U.S. Pat. No. 6,280,407 and identified in FIGS. 29 and 30: Coupling member 498; actuator tube 446; vibration coupler 450 and blade 458. The grip or clamp end effector 303 may comprise the component identified as clamp 460 in FIG. 29. The coupling of the end effector and shaft components may be in the manner described in U.S. Pat. No. 6,280,407. The removable treatment assembly comprises a conventional ultrasound transducer 305, preferably coupled to the ultrasonic core assembly by threaded connector, such as the transducer 430 shown in FIG. 29.
  • As shown in FIGS. 21 and 22, push plate 324 is activated by contact with one or more movable paddle plates 350 (a opposed pair of paddle plates 350 a and 350 b are shown). Each paddle plate 350 is supported by a generally vertically oriented paddle shaft 351, which is offset laterally from the instrument axis 311. Each paddle 350 extend towards the axis 311 to slightly overlap the perimeter of push plate 324 along the proximal surface of the pushplate. The paddle shafts 351 a and 351 b are pivotally mounted to base 301, being supported by bearings 352 a and 352 b respectively, and each is activated by instrument actuator interface member 353 a and 353 b respectively. Like the instrument roll interface member 344 described above, the instrument actuator interface member 353 is configured to engage a robotic surgical system interface member (not shown herein, see incorporated application Ser. Nos. 09/398,958 and 09/418,726, referenced above).
  • As each paddle shaft is rotated (Arrow D), the respective paddle plate pushes against the pushplate 324 (clockwise as shown in FIG. 21 for paddle 350 a, counterclockwise as shown for paddle 350 b), causing the pushplate to move distally as shown by Arrow A2, in turn causing the core assembly 320 to translate distally as shown by Arrows A1, A3 and A4. The paddles thus actuate the core assembly 320 against the bias force of spring 323. Actuation of the paddles in the opposite direction releases the contact force of the paddles 350 against the pushplate 324, permitting the core assembly 320 to move proximally (to proximal extent of Arrows A1-4). Note that the transducer 305 core assembly 320 is slidingly supported by guide tube 354.
  • Through the coupling of the core assembly to the grip 303 (see example of FIGS. 26-36, a reciprocating actuation of paddle shafts 351 causes the grip or claim 303 to alternately open and close. In the example shown, the coupling of the grip or clamp 303 is such that the grip is closed and in contact with blade 304 when the core assembly is in its proximal position (proximal extent of Arrows A1-4) as urged by bias spring 323. Thus the grip arrangement is “normally closed”, and positive actuation is used to move the core assembly distally to open the grip. Alternatively, the grip coupling may be configured to be “normally open” or neutral.
  • The materials of the surface of paddles 350 and pushplate 324 may be selected to have a low frictional coefficient, so that sliding contact of the surfaces permits the treatment assembly to be rotated about axis 311 (by engagement of the pivotally mounted instrument roll interface member 344) when the grip 303 is in either an open position or a closed position. The paddles 350 may be biased by a torsion spring or like member to have a clearance from pushplate 324 when actuator torque of the robotic system is not being applied to the actuation interface member 353.
  • While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.

Claims (5)

1. A method of performing a robotic surgical procedure on a patient, the method comprising:
coupling a surgical instrument with a robotic surgical system, the surgical instrument having a distal end having an ultrasound probe tip;
positioning, with the robotic surgical system, the ultrasound probe tip in contact with tissue at a surgical site in the patient; and
delivering ultrasound energy to the tissue with the ultrasound probe tip.
2. A method as in claim 1, wherein the distal end of the surgical instrument further includes a gripping member, the method further comprising:
transmitting at least one force from the robotic surgical system to the gripping member; and
moving the gripping member with the at least one force to hold a portion of the tissue between the gripping member and the ultrasound probe tip.
3. A method as in claim 2, wherein the transmitting and moving steps further comprise transmitting the at least one force from an interface member on the robotic surgical system to a first rotatable shaft on the surgical instrument, the first rotatable shaft being coupled to a second rotatable shaft by a cable, the cable being coupled to an actuator rod, and the actuator rod being coupled to the gripping member, wherein the at least one force causes the first shaft, the second shaft and the cable to rotate, causing the actuator rod to move the gripping member.
4. A method as in claim 2, further comprising releasing the portion of tissue after delivering a desired amount of ultrasound energy to the portion of tissue.
5. A method as in claim 1, further comprising using the ultrasound probe tip to cut the tissue, cauterize the tissue, or both.
US10/912,305 2001-04-19 2004-08-04 Robotic surgical tool with ultrasound cauterizing and cutting instrument Abandoned US20050021018A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/912,305 US20050021018A1 (en) 2001-04-19 2004-08-04 Robotic surgical tool with ultrasound cauterizing and cutting instrument

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US28548501P 2001-04-19 2001-04-19
US10/126,499 US6783524B2 (en) 2001-04-19 2002-04-18 Robotic surgical tool with ultrasound cauterizing and cutting instrument
US10/912,305 US20050021018A1 (en) 2001-04-19 2004-08-04 Robotic surgical tool with ultrasound cauterizing and cutting instrument

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/126,499 Division US6783524B2 (en) 2001-04-19 2002-04-18 Robotic surgical tool with ultrasound cauterizing and cutting instrument

Publications (1)

Publication Number Publication Date
US20050021018A1 true US20050021018A1 (en) 2005-01-27

Family

ID=26824721

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/126,499 Expired - Lifetime US6783524B2 (en) 2001-04-19 2002-04-18 Robotic surgical tool with ultrasound cauterizing and cutting instrument
US10/912,305 Abandoned US20050021018A1 (en) 2001-04-19 2004-08-04 Robotic surgical tool with ultrasound cauterizing and cutting instrument

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/126,499 Expired - Lifetime US6783524B2 (en) 2001-04-19 2002-04-18 Robotic surgical tool with ultrasound cauterizing and cutting instrument

Country Status (1)

Country Link
US (2) US6783524B2 (en)

Cited By (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060195071A1 (en) * 2000-07-20 2006-08-31 Doyle Mark C Hand-actuated articulating surgical tool
US20070018958A1 (en) * 2003-10-24 2007-01-25 Tavakoli Seyed M Force reflective robotic control system and minimally invasive surgical device
US20090281536A1 (en) * 2008-05-09 2009-11-12 Hugh Beckman Medical Device For Diagnosing and Treating Anomalous Tissue and Method for Doing the Same
US20090301643A1 (en) * 2008-06-02 2009-12-10 Loma Vista Medical, Inc. Inflatable medical devices
US20090320637A1 (en) * 2008-06-27 2009-12-31 Allegiance Corporation Flexible wrist-type element and methods of manufacture and use thereof
US20100099949A1 (en) * 2007-01-30 2010-04-22 Alexander Quillin Tilson Biological navigation device
US20100241136A1 (en) * 2006-12-05 2010-09-23 Mark Doyle Instrument positioning/holding devices
US20100286670A1 (en) * 2004-06-16 2010-11-11 Mark Doyle Surgical tool kit
US20110087070A1 (en) * 2007-01-30 2011-04-14 Alexander Quillin Tilson Sheaths for medical devices
US8021358B2 (en) 2004-06-16 2011-09-20 Carefusion 2200, Inc. Surgical tool kit
US20120095336A1 (en) * 2008-08-07 2012-04-19 University Of Rochester Robotic localizing aid for high-intensity focused ultrasound delivery
US20130218185A1 (en) * 2011-03-28 2013-08-22 Olympus Medical Systems Corp. Ultrasonic treatment device
WO2014004120A1 (en) * 2012-06-29 2014-01-03 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned jaw assemblies
US9066747B2 (en) 2007-11-30 2015-06-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US9107689B2 (en) 2010-02-11 2015-08-18 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9220527B2 (en) 2007-07-27 2015-12-29 Ethicon Endo-Surgery, Llc Surgical instruments
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9232979B2 (en) 2012-02-10 2016-01-12 Ethicon Endo-Surgery, Inc. Robotically controlled surgical instrument
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9414853B2 (en) 2007-07-27 2016-08-16 Ethicon Endo-Surgery, Llc Ultrasonic end effectors with increased active length
US9427249B2 (en) 2010-02-11 2016-08-30 Ethicon Endo-Surgery, Llc Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US9439669B2 (en) 2007-07-31 2016-09-13 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9445832B2 (en) 2007-07-31 2016-09-20 Ethicon Endo-Surgery, Llc Surgical instruments
US9486189B2 (en) 2010-12-02 2016-11-08 Hitachi Aloka Medical, Ltd. Assembly for use with surgery system
US9498245B2 (en) 2009-06-24 2016-11-22 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9504483B2 (en) 2007-03-22 2016-11-29 Ethicon Endo-Surgery, Llc Surgical instruments
US9504855B2 (en) 2008-08-06 2016-11-29 Ethicon Surgery, LLC Devices and techniques for cutting and coagulating tissue
US9510850B2 (en) 2010-02-11 2016-12-06 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
USD778437S1 (en) 2015-09-03 2017-02-07 Transonic Systems, Inc. Couplant delivery support
US9592119B2 (en) 2010-07-13 2017-03-14 C.R. Bard, Inc. Inflatable medical devices
US9623237B2 (en) 2009-10-09 2017-04-18 Ethicon Endo-Surgery, Llc Surgical generator for ultrasonic and electrosurgical devices
US9636135B2 (en) 2007-07-27 2017-05-02 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9649126B2 (en) 2010-02-11 2017-05-16 Ethicon Endo-Surgery, Llc Seal arrangements for ultrasonically powered surgical instruments
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US9707027B2 (en) 2010-05-21 2017-07-18 Ethicon Endo-Surgery, Llc Medical device
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9764164B2 (en) 2009-07-15 2017-09-19 Ethicon Llc Ultrasonic surgical instruments
US9801648B2 (en) 2007-03-22 2017-10-31 Ethicon Llc Surgical instruments
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9848902B2 (en) 2007-10-05 2017-12-26 Ethicon Llc Ergonomic surgical instruments
US9883884B2 (en) 2007-03-22 2018-02-06 Ethicon Llc Ultrasonic surgical instruments
US9962182B2 (en) 2010-02-11 2018-05-08 Ethicon Llc Ultrasonic surgical instruments with moving cutting implement
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10188436B2 (en) 2010-11-09 2019-01-29 Loma Vista Medical, Inc. Inflatable medical devices
US10194973B2 (en) 2015-09-30 2019-02-05 Ethicon Llc Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US10201382B2 (en) 2009-10-09 2019-02-12 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10251664B2 (en) 2016-01-15 2019-04-09 Ethicon Llc Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10278721B2 (en) 2010-07-22 2019-05-07 Ethicon Llc Electrosurgical instrument with separate closure and cutting members
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10349999B2 (en) 2014-03-31 2019-07-16 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10420580B2 (en) 2016-08-25 2019-09-24 Ethicon Llc Ultrasonic transducer for surgical instrument
WO2019191396A1 (en) * 2018-03-29 2019-10-03 Intuitive Surgical Operations, Inc. Surgical instrument actuation systems
WO2019191420A1 (en) * 2018-03-29 2019-10-03 Intuitive Surgical Operations, Inc. Surgical instrument actuation mechanisms
US10433900B2 (en) 2011-07-22 2019-10-08 Ethicon Llc Surgical instruments for tensioning tissue
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10524854B2 (en) 2010-07-23 2020-01-07 Ethicon Llc Surgical instrument
US10537352B2 (en) 2004-10-08 2020-01-21 Ethicon Llc Tissue pads for use with surgical instruments
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US20200069297A1 (en) * 2018-08-28 2020-03-05 Medicaroid Corporation Adapter, surgical instrument set, and method for connecting surgical instrument
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
WO2020176161A1 (en) * 2019-02-25 2020-09-03 Acessa Health Inc. Automated ablation control systems
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US10779879B2 (en) 2014-03-18 2020-09-22 Ethicon Llc Detecting short circuits in electrosurgical medical devices
US10779845B2 (en) 2012-06-29 2020-09-22 Ethicon Llc Ultrasonic surgical instruments with distally positioned transducers
US10779848B2 (en) 2006-01-20 2020-09-22 Ethicon Llc Ultrasound medical instrument having a medical ultrasonic blade
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10856929B2 (en) 2014-01-07 2020-12-08 Ethicon Llc Harvesting energy from a surgical generator
US10856896B2 (en) 2005-10-14 2020-12-08 Ethicon Llc Ultrasonic device for cutting and coagulating
US10874418B2 (en) 2004-02-27 2020-12-29 Ethicon Llc Ultrasonic surgical shears and method for sealing a blood vessel using same
US10881449B2 (en) 2012-09-28 2021-01-05 Ethicon Llc Multi-function bi-polar forceps
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10912580B2 (en) 2013-12-16 2021-02-09 Ethicon Llc Medical device
US10912603B2 (en) 2013-11-08 2021-02-09 Ethicon Llc Electrosurgical devices
US10925659B2 (en) 2013-09-13 2021-02-23 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10987123B2 (en) 2012-06-28 2021-04-27 Ethicon Llc Surgical instruments with articulating shafts
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US11033292B2 (en) 2013-12-16 2021-06-15 Cilag Gmbh International Medical device
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US11058447B2 (en) 2007-07-31 2021-07-13 Cilag Gmbh International Temperature controlled ultrasonic surgical instruments
US20210212684A1 (en) * 2017-09-01 2021-07-15 RevMedica, Inc. Proximal loaded disposable loading unit for surgical stapler
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US20210259693A1 (en) * 2020-02-26 2021-08-26 Covidien Lp Surgical stapling device with flexible shaft
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US20220015845A1 (en) * 2020-07-17 2022-01-20 Auris Health, Inc. Segmented shaft for robotic surgical tools
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US11311326B2 (en) 2015-02-06 2022-04-26 Cilag Gmbh International Electrosurgical instrument with rotation and articulation mechanisms
WO2022084840A1 (en) * 2020-10-22 2022-04-28 Cilag Gmbh International Ultrasonic surgical instrument with translating transducer, waveguide and blade
US11324527B2 (en) 2012-11-15 2022-05-10 Cilag Gmbh International Ultrasonic and electrosurgical devices
US11337747B2 (en) 2014-04-15 2022-05-24 Cilag Gmbh International Software algorithms for electrosurgical instruments
US11399855B2 (en) 2014-03-27 2022-08-02 Cilag Gmbh International Electrosurgical devices
WO2022186994A1 (en) * 2021-03-01 2022-09-09 RevMedica, Inc. Power pack for activating surgical instruments
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11564685B2 (en) 2019-07-19 2023-01-31 RevMedica, Inc. Surgical stapler with removable power pack
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11617580B2 (en) 2017-09-01 2023-04-04 RevMedica, Inc. Surgical stapler with removable power pack and interchangeable battery pack
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11717296B2 (en) 2017-09-01 2023-08-08 RevMedica, Inc. Surgical stapler with removable power pack
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11806037B2 (en) 2020-10-22 2023-11-07 Cilag Gmbh International Damping rings for an ultrasonic surgical instrument
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11950797B2 (en) 2020-05-29 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias

Families Citing this family (1571)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762256A (en) * 1995-08-28 1998-06-09 United States Surgical Corporation Surgical stapler
US5782396A (en) 1995-08-28 1998-07-21 United States Surgical Corporation Surgical stapler
US5865361A (en) 1997-09-23 1999-02-02 United States Surgical Corporation Surgical stapling apparatus
US8303576B2 (en) * 1998-02-24 2012-11-06 Hansen Medical, Inc. Interchangeable surgical instrument
US6949106B2 (en) 1998-02-24 2005-09-27 Endovia Medical, Inc. Surgical instrument
US7713190B2 (en) 1998-02-24 2010-05-11 Hansen Medical, Inc. Flexible instrument
US7901399B2 (en) 1998-02-24 2011-03-08 Hansen Medical, Inc. Interchangeable surgical instrument
US7789875B2 (en) 1998-02-24 2010-09-07 Hansen Medical, Inc. Surgical instruments
US7775972B2 (en) 1998-02-24 2010-08-17 Hansen Medical, Inc. Flexible instrument
US7297142B2 (en) * 1998-02-24 2007-11-20 Hansen Medical, Inc. Interchangeable surgical instrument
US8414598B2 (en) 1998-02-24 2013-04-09 Hansen Medical, Inc. Flexible instrument
US7758569B2 (en) 1998-02-24 2010-07-20 Hansen Medical, Inc. Interchangeable surgical instrument
US20020087148A1 (en) * 1998-02-24 2002-07-04 Brock David L. Flexible instrument
EP1224918A3 (en) 1999-05-10 2002-12-18 endoVia Medical Inc. Surgical instrument
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
US8256430B2 (en) 2001-06-15 2012-09-04 Monteris Medical, Inc. Hyperthermia treatment and probe therefor
US8414505B1 (en) 2001-02-15 2013-04-09 Hansen Medical, Inc. Catheter driver system
US7766894B2 (en) * 2001-02-15 2010-08-03 Hansen Medical, Inc. Coaxial catheter system
US20090182226A1 (en) * 2001-02-15 2009-07-16 Barry Weitzner Catheter tracking system
US20030135204A1 (en) 2001-02-15 2003-07-17 Endo Via Medical, Inc. Robotically controlled medical instrument with a flexible section
US7699835B2 (en) 2001-02-15 2010-04-20 Hansen Medical, Inc. Robotically controlled surgical instruments
US6517546B2 (en) 2001-03-13 2003-02-11 Gregory R. Whittaker Method and apparatus for fixing a graft in a bone tunnel
US7195642B2 (en) 2001-03-13 2007-03-27 Mckernan Daniel J Method and apparatus for fixing a graft in a bone tunnel
US7594917B2 (en) * 2001-03-13 2009-09-29 Ethicon, Inc. Method and apparatus for fixing a graft in a bone tunnel
US6994708B2 (en) * 2001-04-19 2006-02-07 Intuitive Surgical Robotic tool with monopolar electro-surgical scissors
US8398634B2 (en) 2002-04-18 2013-03-19 Intuitive Surgical Operations, Inc. Wristed robotic surgical tool for pluggable end-effectors
US7367973B2 (en) * 2003-06-30 2008-05-06 Intuitive Surgical, Inc. Electro-surgical instrument with replaceable end-effectors and inhibited surface conduction
US7824401B2 (en) * 2004-10-08 2010-11-02 Intuitive Surgical Operations, Inc. Robotic tool with wristed monopolar electrosurgical end effectors
CA2443819C (en) * 2001-05-04 2011-07-19 Board Of Regents, The University Of Texas System Apparatus and methods for delivery of transcranial magnetic stimulation
US7846096B2 (en) 2001-05-29 2010-12-07 Ethicon Endo-Surgery, Inc. Method for monitoring of medical treatment using pulse-echo ultrasound
US20030032898A1 (en) 2001-05-29 2003-02-13 Inder Raj. S. Makin Method for aiming ultrasound for medical treatment
US9155544B2 (en) * 2002-03-20 2015-10-13 P Tech, Llc Robotic systems and methods
CA2633137C (en) 2002-08-13 2012-10-23 The Governors Of The University Of Calgary Microsurgical robot system
US20040176751A1 (en) * 2002-08-14 2004-09-09 Endovia Medical, Inc. Robotic medical instrument system
US7331967B2 (en) * 2002-09-09 2008-02-19 Hansen Medical, Inc. Surgical instrument coupling mechanism
JP4448449B2 (en) 2002-10-04 2010-04-07 タイコ ヘルスケア グループ エルピー Tool assembly for a surgical stapling device
ES2730694T3 (en) 2002-10-04 2019-11-12 Covidien Lp Surgical stapler with universal joint and prior tissue support
EP2238917B1 (en) 2002-10-04 2012-12-05 Tyco Healthcare Group LP Tool assembly for a surgical stapling device
JP4384439B2 (en) * 2002-11-21 2009-12-16 富士機械製造株式会社 Anti-substrate work machine, anti-substrate work system, and work head use preparation processing program for anti-substrate work machine
US8083707B2 (en) * 2003-04-17 2011-12-27 Tosaya Carol A Non-contact damage-free ultrasonic cleaning of implanted or natural structures having moving parts and located in a living body
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US8007511B2 (en) * 2003-06-06 2011-08-30 Hansen Medical, Inc. Surgical instrument design
JP4664909B2 (en) 2003-06-17 2011-04-06 タイコ ヘルスケア グループ リミテッド パートナーシップ Surgical stapling device
US7042184B2 (en) 2003-07-08 2006-05-09 Board Of Regents Of The University Of Nebraska Microrobot for surgical applications
US20080058989A1 (en) * 2006-04-13 2008-03-06 Board Of Regents Of The University Of Nebraska Surgical camera robot
US7126303B2 (en) * 2003-07-08 2006-10-24 Board Of Regents Of The University Of Nebraska Robot for surgical applications
US7960935B2 (en) 2003-07-08 2011-06-14 The Board Of Regents Of The University Of Nebraska Robotic devices with agent delivery components and related methods
WO2005010711A2 (en) * 2003-07-21 2005-02-03 Johns Hopkins University Robotic 5-dimensional ultrasound
US20050181343A1 (en) * 2004-02-02 2005-08-18 Ault Mark J. Ultrasound guided vascular access training device
US7976539B2 (en) 2004-03-05 2011-07-12 Hansen Medical, Inc. System and method for denaturing and fixing collagenous tissue
EP1720480A1 (en) 2004-03-05 2006-11-15 Hansen Medical, Inc. Robotic catheter system
WO2005096965A1 (en) * 2004-04-08 2005-10-20 Emmebi S.R.L. Shaver handpiece and terminal accessories, particularly for use in arthroscopy
US7883468B2 (en) 2004-05-18 2011-02-08 Ethicon Endo-Surgery, Inc. Medical system having an ultrasound source and an acoustic coupling medium
CA2508055C (en) * 2004-05-19 2009-09-29 Sport Maska Inc. Face guard for a sporting helmet
US7951095B2 (en) * 2004-05-20 2011-05-31 Ethicon Endo-Surgery, Inc. Ultrasound medical system
US7695436B2 (en) * 2004-05-21 2010-04-13 Ethicon Endo-Surgery, Inc. Transmit apodization of an ultrasound transducer array
US7806839B2 (en) 2004-06-14 2010-10-05 Ethicon Endo-Surgery, Inc. System and method for ultrasound therapy using grating lobes
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US20060229641A1 (en) * 2005-01-28 2006-10-12 Rajiv Gupta Guidance and insertion system
US8375808B2 (en) 2005-12-30 2013-02-19 Intuitive Surgical Operations, Inc. Force sensing for surgical instruments
US7752920B2 (en) * 2005-12-30 2010-07-13 Intuitive Surgical Operations, Inc. Modular force sensor
US8465474B2 (en) 2009-05-19 2013-06-18 Intuitive Surgical Operations, Inc. Cleaning of a surgical instrument force sensor
US9138226B2 (en) 2005-03-30 2015-09-22 Covidien Lp Cartridge assembly for a surgical stapling device
US8463439B2 (en) 2009-03-31 2013-06-11 Intuitive Surgical Operations, Inc. Optic fiber connection for a force sensing instrument
US8496647B2 (en) 2007-12-18 2013-07-30 Intuitive Surgical Operations, Inc. Ribbed force sensor
US7780055B2 (en) 2005-04-06 2010-08-24 Tyco Healthcare Group Lp Loading unit having drive assembly locking mechanism
WO2007005976A1 (en) 2005-07-01 2007-01-11 Hansen Medical, Inc. Robotic catheter system
US20160001064A1 (en) 2005-07-22 2016-01-07 The Spectranetics Corporation Endocardial lead cutting apparatus
US8097012B2 (en) * 2005-07-27 2012-01-17 The Spectranetics Corporation Endocardial lead removing apparatus
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US8800838B2 (en) * 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US20070194082A1 (en) 2005-08-31 2007-08-23 Morgan Jerome R Surgical stapling device with anvil having staple forming pockets of varying depths
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
CA2563147C (en) 2005-10-14 2014-09-23 Tyco Healthcare Group Lp Surgical stapling device
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US8672922B2 (en) * 2005-12-20 2014-03-18 Intuitive Surgical Operations, Inc. Wireless communication in a robotic surgical system
WO2007075844A1 (en) 2005-12-20 2007-07-05 Intuitive Surgical, Inc. Telescoping insertion axis of a robotic surgical system
US11432895B2 (en) 2005-12-20 2022-09-06 Intuitive Surgical Operations, Inc. Wireless communication in a robotic surgical system
JP5152993B2 (en) 2005-12-30 2013-02-27 インテュイティブ サージカル インコーポレイテッド Modular force sensor
US8628518B2 (en) 2005-12-30 2014-01-14 Intuitive Surgical Operations, Inc. Wireless force sensor on a distal portion of a surgical instrument and method
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US8219178B2 (en) 2007-02-16 2012-07-10 Catholic Healthcare West Method and system for performing invasive medical procedures using a surgical robot
US10653497B2 (en) 2006-02-16 2020-05-19 Globus Medical, Inc. Surgical tool systems and methods
US10893912B2 (en) 2006-02-16 2021-01-19 Globus Medical Inc. Surgical tool systems and methods
US10357184B2 (en) 2012-06-21 2019-07-23 Globus Medical, Inc. Surgical tool systems and method
US8394115B2 (en) * 2006-03-22 2013-03-12 Ethicon Endo-Surgery, Inc. Composite end effector for an ultrasonic surgical instrument
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US20110163146A1 (en) 2006-03-23 2011-07-07 Ortiz Mark S Surgical Stapling And Cuttting Device
US9675375B2 (en) * 2006-03-29 2017-06-13 Ethicon Llc Ultrasonic surgical system and method
US8597280B2 (en) * 2006-06-13 2013-12-03 Intuitive Surgical Operations, Inc. Surgical instrument actuator
EP2040635A1 (en) * 2006-06-14 2009-04-01 MacDonald Dettwiler & Associates Inc. Surgical manipulator with right-angle pulley drive mechanisms
CA2991346C (en) 2006-06-22 2020-03-10 Board Of Regents Of The University Of Nebraska Magnetically coupleable robotic devices and related methods
US8974440B2 (en) 2007-08-15 2015-03-10 Board Of Regents Of The University Of Nebraska Modular and cooperative medical devices and related systems and methods
US8679096B2 (en) 2007-06-21 2014-03-25 Board Of Regents Of The University Of Nebraska Multifunctional operational component for robotic devices
US9579088B2 (en) 2007-02-20 2017-02-28 Board Of Regents Of The University Of Nebraska Methods, systems, and devices for surgical visualization and device manipulation
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
WO2008063249A2 (en) * 2006-07-11 2008-05-29 Duke University Real-time 3-d ultrasound guidance of surgical robotics
US20080021317A1 (en) * 2006-07-24 2008-01-24 Siemens Medical Solutions Usa, Inc. Ultrasound medical imaging with robotic assistance for volume imaging
US20110057930A1 (en) * 2006-07-26 2011-03-10 Inneroptic Technology Inc. System and method of using high-speed, high-resolution depth extraction to provide three-dimensional imagery for endoscopy
US20110288560A1 (en) * 2006-08-01 2011-11-24 Shaul Shohat System and method for telesurgery
US7728868B2 (en) 2006-08-02 2010-06-01 Inneroptic Technology, Inc. System and method of providing real-time dynamic imagery of a medical procedure site using multiple modalities
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US8485412B2 (en) 2006-09-29 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical staples having attached drivers and stapling instruments for deploying the same
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US8708210B2 (en) 2006-10-05 2014-04-29 Covidien Lp Method and force-limiting handle mechanism for a surgical instrument
US7845535B2 (en) 2006-10-06 2010-12-07 Tyco Healthcare Group Lp Surgical instrument having a plastic surface
US7866525B2 (en) 2006-10-06 2011-01-11 Tyco Healthcare Group Lp Surgical instrument having a plastic surface
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US20110174861A1 (en) 2007-01-10 2011-07-21 Shelton Iv Frederick E Surgical Instrument With Wireless Communication Between Control Unit and Remote Sensor
US8701958B2 (en) 2007-01-11 2014-04-22 Ethicon Endo-Surgery, Inc. Curved end effector for a surgical stapling device
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US20080234709A1 (en) 2007-03-22 2008-09-25 Houser Kevin L Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US7832408B2 (en) 2007-06-04 2010-11-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US7905380B2 (en) 2007-06-04 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8444631B2 (en) 2007-06-14 2013-05-21 Macdonald Dettwiler & Associates Inc Surgical manipulator
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
JP5591696B2 (en) 2007-07-12 2014-09-17 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ Biopsy elements, arm devices, and medical devices
US8348967B2 (en) 2007-07-27 2013-01-08 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8252012B2 (en) 2007-07-31 2012-08-28 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with modulator
US20090076536A1 (en) 2007-08-15 2009-03-19 Board Of Regents Of The University Of Nebraska Medical inflation, attachment, and delivery devices and related methods
US8061576B2 (en) 2007-08-31 2011-11-22 Tyco Healthcare Group Lp Surgical instrument
US20090088742A1 (en) * 2007-09-27 2009-04-02 Shinya Masuda Surgical operating apparatus
US10271844B2 (en) * 2009-04-27 2019-04-30 Covidien Lp Surgical stapling apparatus employing a predictive stapling algorithm
US7954685B2 (en) 2007-11-06 2011-06-07 Tyco Healthcare Group Lp Articulation and firing force mechanisms
US8561473B2 (en) 2007-12-18 2013-10-22 Intuitive Surgical Operations, Inc. Force sensor temperature compensation
WO2009094646A2 (en) 2008-01-24 2009-07-30 The University Of North Carolina At Chapel Hill Methods, systems, and computer readable media for image guided ablation
US7905381B2 (en) 2008-09-19 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with cutting member arrangement
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US7793812B2 (en) 2008-02-14 2010-09-14 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US8340379B2 (en) 2008-03-07 2012-12-25 Inneroptic Technology, Inc. Systems and methods for displaying guidance data based on updated deformable imaging data
US10368838B2 (en) * 2008-03-31 2019-08-06 Intuitive Surgical Operations, Inc. Surgical tools for laser marking and laser cutting
US9895813B2 (en) * 2008-03-31 2018-02-20 Intuitive Surgical Operations, Inc. Force and torque sensing in a surgical robot setup arm
US7969866B2 (en) * 2008-03-31 2011-06-28 Telefonaktiebolaget L M Ericsson (Publ) Hierarchical virtual private LAN service hub connectivity failure recovery
US20090270854A1 (en) * 2008-04-28 2009-10-29 Chie Yachi Surgical operating apparatus
US7789283B2 (en) 2008-06-06 2010-09-07 Tyco Healthcare Group Lp Knife/firing rod connection for surgical instrument
US8701959B2 (en) 2008-06-06 2014-04-22 Covidien Lp Mechanically pivoting cartridge channel for surgical instrument
US7942303B2 (en) 2008-06-06 2011-05-17 Tyco Healthcare Group Lp Knife lockout mechanisms for surgical instrument
CN102014759B (en) * 2008-06-11 2012-12-26 韩商未来股份有限公司 Instrument of surgical robot arm
US8058771B2 (en) 2008-08-06 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US8728092B2 (en) * 2008-08-14 2014-05-20 Monteris Medical Corporation Stereotactic drive system
US8747418B2 (en) 2008-08-15 2014-06-10 Monteris Medical Corporation Trajectory guide
PL3476312T3 (en) 2008-09-19 2024-03-11 Ethicon Llc Surgical stapler with apparatus for adjusting staple height
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US7988028B2 (en) 2008-09-23 2011-08-02 Tyco Healthcare Group Lp Surgical instrument having an asymmetric dynamic clamping member
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US7896214B2 (en) 2008-09-23 2011-03-01 Tyco Healthcare Group Lp Tissue stop for surgical instrument
US8215532B2 (en) 2008-09-23 2012-07-10 Tyco Healthcare Group Lp Tissue stop for surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8628544B2 (en) 2008-09-23 2014-01-14 Covidien Lp Knife bar for surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US20100126293A1 (en) * 2008-11-21 2010-05-27 Comau Inc. Robotic radial tool positioning system
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
JP2012517287A (en) 2009-02-06 2012-08-02 エシコン・エンド−サージェリィ・インコーポレイテッド Improvement of driven surgical stapler
US11464578B2 (en) 2009-02-17 2022-10-11 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures
US8641621B2 (en) 2009-02-17 2014-02-04 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures
US8554307B2 (en) 2010-04-12 2013-10-08 Inneroptic Technology, Inc. Image annotation in image-guided medical procedures
US8690776B2 (en) 2009-02-17 2014-04-08 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image guided surgery
US8292154B2 (en) 2009-04-16 2012-10-23 Tyco Healthcare Group Lp Surgical apparatus for applying tissue fasteners
US9254123B2 (en) 2009-04-29 2016-02-09 Hansen Medical, Inc. Flexible and steerable elongate instruments with shape control and support elements
US8127976B2 (en) 2009-05-08 2012-03-06 Tyco Healthcare Group Lp Stapler cartridge and channel interlock
US8132706B2 (en) 2009-06-05 2012-03-13 Tyco Healthcare Group Lp Surgical stapling apparatus having articulation mechanism
US8461744B2 (en) 2009-07-15 2013-06-11 Ethicon Endo-Surgery, Inc. Rotating transducer mount for ultrasonic surgical instruments
US9017326B2 (en) 2009-07-15 2015-04-28 Ethicon Endo-Surgery, Inc. Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments
US20110043612A1 (en) * 2009-07-31 2011-02-24 Inneroptic Technology Inc. Dual-tube stereoscope
US8342378B2 (en) 2009-08-17 2013-01-01 Covidien Lp One handed stapler
US20110082351A1 (en) * 2009-10-07 2011-04-07 Inneroptic Technology, Inc. Representing measurement information during a medical procedure
US9295485B2 (en) 2009-10-09 2016-03-29 Ethicon Endo-Surgery, Inc. Loader for exchanging end effectors in vivo
US20120259325A1 (en) * 2009-10-09 2012-10-11 Houser Kevin L Laparoscopic Instrument with Attachable Energy End Effector
US10172669B2 (en) 2009-10-09 2019-01-08 Ethicon Llc Surgical instrument comprising an energy trigger lockout
US8418907B2 (en) 2009-11-05 2013-04-16 Covidien Lp Surgical stapler having cartridge with adjustable cam mechanism
US8376938B2 (en) * 2009-11-20 2013-02-19 Ethicon Endo-Surgery, Inc. Discrete flexion head for single port device
US9282947B2 (en) 2009-12-01 2016-03-15 Inneroptic Technology, Inc. Imager focusing based on intraoperative data
US8282546B2 (en) * 2009-12-11 2012-10-09 Ethicon Endo-Surgery, Inc. Inverted conical expandable retractor with coil spring
US8435174B2 (en) * 2009-12-11 2013-05-07 Ethicon Endo-Surgery, Inc. Methods and devices for accessing a body cavity
US8517932B2 (en) * 2009-12-11 2013-08-27 Ethicon Endo-Surgery, Inc. Methods and devices for providing access through tissue to a surgical site
US8357088B2 (en) * 2009-12-11 2013-01-22 Ethicon Endo-Surgery, Inc. Methods and devices for providing access into a body cavity
US8460186B2 (en) * 2009-12-11 2013-06-11 Ethicon Endo-Surgery, Inc. Methods and devices for providing access through tissue to a surgical site
US8231570B2 (en) * 2009-12-11 2012-07-31 Ethicon Endo-Surgery, Inc. Inverted conical expandable retractor
US8444557B2 (en) * 2009-12-11 2013-05-21 Ethicon Endo-Surgery, Inc. Methods and devices for providing access through tissue to a surgical site
US8414483B2 (en) * 2009-12-11 2013-04-09 Ethicon Endo-Surgery, Inc. Methods and devices for providing access into a body cavity
US8500633B2 (en) * 2009-12-11 2013-08-06 Ethicon Endo-Surgery, Inc. Methods and devices for providing surgical access through tissue to a surgical site
US8353873B2 (en) * 2009-12-11 2013-01-15 Ethicon Endo-Surgery, Inc. Methods and devices for providing access through tissue to a surgical site
US8894633B2 (en) 2009-12-17 2014-11-25 Board Of Regents Of The University Of Nebraska Modular and cooperative medical devices and related systems and methods
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US20110184313A1 (en) * 2010-01-22 2011-07-28 The Regents Of The University Of Michigan Cauterization Device and Method of Cauterizing
US8323302B2 (en) 2010-02-11 2012-12-04 Ethicon Endo-Surgery, Inc. Methods of using ultrasonically powered surgical instruments with rotatable cutting implements
US8382782B2 (en) 2010-02-11 2013-02-26 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement
US9259234B2 (en) 2010-02-11 2016-02-16 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements
US8419759B2 (en) 2010-02-11 2013-04-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with comb-like tissue trimming device
US8531064B2 (en) 2010-02-11 2013-09-10 Ethicon Endo-Surgery, Inc. Ultrasonically powered surgical instruments with rotating cutting implement
US8348127B2 (en) 2010-04-07 2013-01-08 Covidien Lp Surgical fastener applying apparatus
US8834518B2 (en) 2010-04-12 2014-09-16 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with cam-actuated jaws
US9033998B1 (en) 2010-05-13 2015-05-19 Titan Medical Inc. Independent roll wrist mechanism
US8685020B2 (en) 2010-05-17 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instruments and end effectors therefor
KR200453239Y1 (en) * 2010-07-26 2011-04-15 (주)미래컴퍼니 Surgical instrument
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8968267B2 (en) 2010-08-06 2015-03-03 Board Of Regents Of The University Of Nebraska Methods and systems for handling or delivering materials for natural orifice surgery
US9089327B2 (en) 2010-09-24 2015-07-28 Ethicon Endo-Surgery, Inc. Surgical instrument with multi-phase trigger bias
US9402682B2 (en) 2010-09-24 2016-08-02 Ethicon Endo-Surgery, Llc Articulation joint features for articulating surgical device
US9545253B2 (en) 2010-09-24 2017-01-17 Ethicon Endo-Surgery, Llc Surgical instrument with contained dual helix actuator assembly
US20120078244A1 (en) 2010-09-24 2012-03-29 Worrell Barry C Control features for articulating surgical device
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US20120080498A1 (en) 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Curved end effector for a stapling instrument
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
CA2812553C (en) 2010-09-30 2019-02-12 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix and an alignment matrix
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9113865B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a layer
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US8899461B2 (en) 2010-10-01 2014-12-02 Covidien Lp Tissue stop for surgical instrument
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US8979890B2 (en) 2010-10-01 2015-03-17 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
US8603078B2 (en) 2010-10-13 2013-12-10 Ethicon Endo-Surgery, Inc. Methods and devices for guiding and supporting surgical instruments
AU2011323193A1 (en) 2010-11-05 2013-05-30 Ethicon Endo-Surgery, Inc. Medical device usage data processing
US9510895B2 (en) 2010-11-05 2016-12-06 Ethicon Endo-Surgery, Llc Surgical instrument with modular shaft and end effector
US9011471B2 (en) 2010-11-05 2015-04-21 Ethicon Endo-Surgery, Inc. Surgical instrument with pivoting coupling to modular shaft and end effector
US9072523B2 (en) 2010-11-05 2015-07-07 Ethicon Endo-Surgery, Inc. Medical device with feature for sterile acceptance of non-sterile reusable component
US20120116381A1 (en) 2010-11-05 2012-05-10 Houser Kevin L Surgical instrument with charging station and wireless communication
US9017851B2 (en) 2010-11-05 2015-04-28 Ethicon Endo-Surgery, Inc. Sterile housing for non-sterile medical device component
US9782215B2 (en) 2010-11-05 2017-10-10 Ethicon Endo-Surgery, Llc Surgical instrument with ultrasonic transducer having integral switches
US9597143B2 (en) 2010-11-05 2017-03-21 Ethicon Endo-Surgery, Llc Sterile medical instrument charging device
US20120116261A1 (en) 2010-11-05 2012-05-10 Mumaw Daniel J Surgical instrument with slip ring assembly to power ultrasonic transducer
US9421062B2 (en) 2010-11-05 2016-08-23 Ethicon Endo-Surgery, Llc Surgical instrument shaft with resiliently biased coupling to handpiece
US9000720B2 (en) 2010-11-05 2015-04-07 Ethicon Endo-Surgery, Inc. Medical device packaging with charging interface
US9375255B2 (en) 2010-11-05 2016-06-28 Ethicon Endo-Surgery, Llc Surgical instrument handpiece with resiliently biased coupling to modular shaft and end effector
US9039720B2 (en) 2010-11-05 2015-05-26 Ethicon Endo-Surgery, Inc. Surgical instrument with ratcheting rotatable shaft
US10660695B2 (en) 2010-11-05 2020-05-26 Ethicon Llc Sterile medical instrument charging device
US9017849B2 (en) 2010-11-05 2015-04-28 Ethicon Endo-Surgery, Inc. Power source management for medical device
US9089338B2 (en) 2010-11-05 2015-07-28 Ethicon Endo-Surgery, Inc. Medical device packaging with window for insertion of reusable component
US9782214B2 (en) 2010-11-05 2017-10-10 Ethicon Llc Surgical instrument with sensor and powered control
US9649150B2 (en) 2010-11-05 2017-05-16 Ethicon Endo-Surgery, Llc Selective activation of electronic components in medical device
US9161803B2 (en) 2010-11-05 2015-10-20 Ethicon Endo-Surgery, Inc. Motor driven electrosurgical device with mechanical and electrical feedback
US20120116265A1 (en) 2010-11-05 2012-05-10 Houser Kevin L Surgical instrument with charging devices
EP2635222B1 (en) 2010-11-05 2020-09-09 Ethicon LLC Surgical instrument with modular end effector and detection feature
US10085792B2 (en) 2010-11-05 2018-10-02 Ethicon Llc Surgical instrument with motorized attachment feature
JP6482758B2 (en) 2010-11-05 2019-03-13 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with modular clamp pad
WO2012061645A1 (en) 2010-11-05 2012-05-10 Ethicon Endo-Surgery, Inc. Surgical instrument with modular end effector
US10881448B2 (en) 2010-11-05 2021-01-05 Ethicon Llc Cam driven coupling between ultrasonic transducer and waveguide in surgical instrument
US10959769B2 (en) 2010-11-05 2021-03-30 Ethicon Llc Surgical instrument with slip ring assembly to power ultrasonic transducer
US9247986B2 (en) 2010-11-05 2016-02-02 Ethicon Endo-Surgery, Llc Surgical instrument with ultrasonic transducer having integral switches
US9526921B2 (en) * 2010-11-05 2016-12-27 Ethicon Endo-Surgery, Llc User feedback through end effector of surgical instrument
US9381058B2 (en) 2010-11-05 2016-07-05 Ethicon Endo-Surgery, Llc Recharge system for medical devices
CA2816981A1 (en) 2010-11-05 2012-05-10 Kevin L. Houser User feedback through handpiece of surgical instrument
US8308041B2 (en) 2010-11-10 2012-11-13 Tyco Healthcare Group Lp Staple formed over the wire wound closure procedure
WO2012100211A2 (en) 2011-01-20 2012-07-26 Hansen Medical, Inc. System and method for endoluminal and transluminal therapy
WO2012131660A1 (en) 2011-04-01 2012-10-04 Ecole Polytechnique Federale De Lausanne (Epfl) Robotic system for spinal and other surgeries
US9161512B2 (en) * 2011-04-28 2015-10-20 Technologies Holdings Corp. Milking box with robotic attacher comprising an arm that pivots, rotates, and grips
AU2012250197B2 (en) 2011-04-29 2017-08-10 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9289209B2 (en) 2011-06-09 2016-03-22 Covidien Lp Surgical fastener applying apparatus
US9271728B2 (en) 2011-06-09 2016-03-01 Covidien Lp Surgical fastener applying apparatus
US9451959B2 (en) 2011-06-09 2016-09-27 Covidien Lp Surgical fastener applying apparatus
US9060781B2 (en) 2011-06-10 2015-06-23 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to surgical end effectors
US8763876B2 (en) 2011-06-30 2014-07-01 Covidien Lp Surgical instrument and cartridge for use therewith
US20130012958A1 (en) 2011-07-08 2013-01-10 Stanislaw Marczyk Surgical Device with Articulation and Wrist Rotation
CA3082073C (en) 2011-07-11 2023-07-25 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
US20130030363A1 (en) 2011-07-29 2013-01-31 Hansen Medical, Inc. Systems and methods utilizing shape sensing fibers
JP5841451B2 (en) 2011-08-04 2016-01-13 オリンパス株式会社 Surgical instrument and control method thereof
JP6021484B2 (en) 2011-08-04 2016-11-09 オリンパス株式会社 Medical manipulator
JP6000641B2 (en) 2011-08-04 2016-10-05 オリンパス株式会社 Manipulator system
EP2740434A4 (en) 2011-08-04 2015-03-18 Olympus Corp Medical manipulator and method for controlling same
JP5936914B2 (en) 2011-08-04 2016-06-22 オリンパス株式会社 Operation input device and manipulator system including the same
JP5931497B2 (en) 2011-08-04 2016-06-08 オリンパス株式会社 Surgery support apparatus and assembly method thereof
WO2013018897A1 (en) 2011-08-04 2013-02-07 オリンパス株式会社 Surgical implement and medical treatment manipulator
JP6005950B2 (en) 2011-08-04 2016-10-12 オリンパス株式会社 Surgery support apparatus and control method thereof
CN103648425B (en) 2011-08-04 2016-10-19 奥林巴斯株式会社 Medical manipulator and surgery support device
JP5953058B2 (en) 2011-08-04 2016-07-13 オリンパス株式会社 Surgery support device and method for attaching and detaching the same
JP6081061B2 (en) 2011-08-04 2017-02-15 オリンパス株式会社 Surgery support device
JP6009840B2 (en) 2011-08-04 2016-10-19 オリンパス株式会社 Medical equipment
JP6021353B2 (en) 2011-08-04 2016-11-09 オリンパス株式会社 Surgery support device
US9155537B2 (en) 2011-08-08 2015-10-13 Covidien Lp Surgical fastener applying apparatus
US9724095B2 (en) 2011-08-08 2017-08-08 Covidien Lp Surgical fastener applying apparatus
US9539007B2 (en) 2011-08-08 2017-01-10 Covidien Lp Surgical fastener applying aparatus
US8617176B2 (en) 2011-08-24 2013-12-31 Depuy Mitek, Llc Cross pinning guide devices and methods
US9044243B2 (en) 2011-08-30 2015-06-02 Ethcon Endo-Surgery, Inc. Surgical cutting and fastening device with descendible second trigger arrangement
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
WO2013048963A2 (en) 2011-09-30 2013-04-04 Ethicon Endo-Surgery, Inc. Laparoscopic instrument with attachable energy end effector
US9265965B2 (en) 2011-09-30 2016-02-23 Board Of Regents, The University Of Texas System Apparatus and method for delivery of transcranial magnetic stimulation using biological feedback to a robotic arm
US8899464B2 (en) 2011-10-03 2014-12-02 Ethicon Endo-Surgery, Inc. Attachment of surgical staple buttress to cartridge
US9089326B2 (en) 2011-10-07 2015-07-28 Ethicon Endo-Surgery, Inc. Dual staple cartridge for surgical stapler
US9763690B2 (en) 2011-10-10 2017-09-19 Ethicon Llc Surgical instrument with transducer carrier assembly
US9629652B2 (en) 2011-10-10 2017-04-25 Ethicon Endo-Surgery, Llc Surgical instrument with clutching slip ring assembly to power ultrasonic transducer
US9050125B2 (en) 2011-10-10 2015-06-09 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with modular end effector
US20130090576A1 (en) 2011-10-10 2013-04-11 Foster B. Stulen Surgical instrument with ultrasonic waveguide defining a fluid lumen
US8734476B2 (en) 2011-10-13 2014-05-27 Ethicon Endo-Surgery, Inc. Coupling for slip ring assembly and ultrasonic transducer in surgical instrument
WO2013059432A1 (en) 2011-10-19 2013-04-25 Ethicon Endo-Surgery, Inc. Clip applier adapted for use with a surgical robot
US9333025B2 (en) 2011-10-24 2016-05-10 Ethicon Endo-Surgery, Llc Battery initialization clip
US9016539B2 (en) 2011-10-25 2015-04-28 Covidien Lp Multi-use loading unit
FR2983059B1 (en) * 2011-11-30 2014-11-28 Medtech ROBOTIC-ASSISTED METHOD OF POSITIONING A SURGICAL INSTRUMENT IN RELATION TO THE BODY OF A PATIENT AND DEVICE FOR CARRYING OUT SAID METHOD
US8740036B2 (en) 2011-12-01 2014-06-03 Covidien Lp Surgical instrument with actuator spring arm
US9603599B2 (en) 2011-12-16 2017-03-28 Ethicon Endo-Surgery, Llc Feature to reengage safety switch of tissue stapler
US9186148B2 (en) 2012-01-05 2015-11-17 Ethicon Endo-Surgery, Inc. Tissue stapler anvil feature to prevent premature jaw opening
US9549738B2 (en) 2012-01-05 2017-01-24 Ethicon Endo-Surgery, Llc Ratcheting feature on tissue staple trigger to prevent premature jaw opening
JP6377530B2 (en) 2012-01-10 2018-08-22 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ Surgical insertion device
US10299815B2 (en) 2012-01-19 2019-05-28 Covidien Lp Surgical instrument with clam releases mechanism
US8864010B2 (en) 2012-01-20 2014-10-21 Covidien Lp Curved guide member for articulating instruments
WO2013116240A1 (en) 2012-01-30 2013-08-08 Inneroptic Technology, Inc. Multiple medical device guidance
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9108318B2 (en) * 2012-02-15 2015-08-18 Intuitive Surgical Operations, Inc. Switching control of an instrument to an input device upon the instrument entering a display area viewable by an operator of the input device
US9198722B2 (en) 2012-03-01 2015-12-01 Stewart And Stien Enterprises, Llc Medical instrument and method of performing a surgical procedure with the medical instrument
US9017327B2 (en) 2012-03-01 2015-04-28 Stewart And Stien Enterprises, Llc Medical instrument and method of performing a surgical procedure with the medical instrument
US9427226B2 (en) * 2012-03-14 2016-08-30 Ethicon Endo-Surgery, Llc Laparoscopic suturing instrument with rack drive
US8979827B2 (en) 2012-03-14 2015-03-17 Covidien Lp Surgical instrument with articulation mechanism
US20130253480A1 (en) 2012-03-22 2013-09-26 Cory G. Kimball Surgical instrument usage data management
US9364249B2 (en) 2012-03-22 2016-06-14 Ethicon Endo-Surgery, Llc Method and apparatus for programming modular surgical instrument
JP6305979B2 (en) 2012-03-28 2018-04-04 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Tissue thickness compensator with multiple layers
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
RU2644272C2 (en) 2012-03-28 2018-02-08 Этикон Эндо-Серджери, Инк. Limitation node with tissue thickness compensator
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
US20130267874A1 (en) 2012-04-09 2013-10-10 Amy L. Marcotte Surgical instrument with nerve detection feature
US9814457B2 (en) 2012-04-10 2017-11-14 Ethicon Llc Control interface for laparoscopic suturing instrument
US9788851B2 (en) 2012-04-18 2017-10-17 Ethicon Llc Surgical instrument with tissue density sensing
US10238416B2 (en) 2012-04-30 2019-03-26 Ethicon Llc Ultrasonic device for cutting and coagulating
US9498292B2 (en) 2012-05-01 2016-11-22 Board Of Regents Of The University Of Nebraska Single site robotic device and related systems and methods
CN105007850B (en) 2012-05-02 2018-04-24 伊西康内外科公司 For the electro-surgical device for cutting and solidifying
US9526497B2 (en) 2012-05-07 2016-12-27 Covidien Lp Surgical instrument with articulation mechanism
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US9572592B2 (en) 2012-05-31 2017-02-21 Ethicon Endo-Surgery, Llc Surgical instrument with orientation sensing
US9681884B2 (en) 2012-05-31 2017-06-20 Ethicon Endo-Surgery, Llc Surgical instrument with stress sensor
US9301772B2 (en) 2012-05-31 2016-04-05 Ethicon Endo-Surgery, Llc Loading cartridge for surgical instrument end effector
JP6053342B2 (en) * 2012-06-15 2016-12-27 キヤノン株式会社 Medical manipulator and medical imaging system including the medical manipulator
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US10758315B2 (en) 2012-06-21 2020-09-01 Globus Medical Inc. Method and system for improving 2D-3D registration convergence
US10624710B2 (en) 2012-06-21 2020-04-21 Globus Medical, Inc. System and method for measuring depth of instrumentation
US11857149B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. Surgical robotic systems with target trajectory deviation monitoring and related methods
US11317971B2 (en) 2012-06-21 2022-05-03 Globus Medical, Inc. Systems and methods related to robotic guidance in surgery
US11045267B2 (en) 2012-06-21 2021-06-29 Globus Medical, Inc. Surgical robotic automation with tracking markers
US10231791B2 (en) 2012-06-21 2019-03-19 Globus Medical, Inc. Infrared signal based position recognition system for use with a robot-assisted surgery
US11399900B2 (en) 2012-06-21 2022-08-02 Globus Medical, Inc. Robotic systems providing co-registration using natural fiducials and related methods
US10350013B2 (en) 2012-06-21 2019-07-16 Globus Medical, Inc. Surgical tool systems and methods
US11793570B2 (en) 2012-06-21 2023-10-24 Globus Medical Inc. Surgical robotic automation with tracking markers
US11857266B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. System for a surveillance marker in robotic-assisted surgery
US10136954B2 (en) 2012-06-21 2018-11-27 Globus Medical, Inc. Surgical tool systems and method
US11607149B2 (en) 2012-06-21 2023-03-21 Globus Medical Inc. Surgical tool systems and method
US11253327B2 (en) 2012-06-21 2022-02-22 Globus Medical, Inc. Systems and methods for automatically changing an end-effector on a surgical robot
US11864839B2 (en) 2012-06-21 2024-01-09 Globus Medical Inc. Methods of adjusting a virtual implant and related surgical navigation systems
US11116576B2 (en) 2012-06-21 2021-09-14 Globus Medical Inc. Dynamic reference arrays and methods of use
JP2015528713A (en) 2012-06-21 2015-10-01 グローバス メディカル インコーポレイティッド Surgical robot platform
US11864745B2 (en) 2012-06-21 2024-01-09 Globus Medical, Inc. Surgical robotic system with retractor
US11395706B2 (en) 2012-06-21 2022-07-26 Globus Medical Inc. Surgical robot platform
US11298196B2 (en) 2012-06-21 2022-04-12 Globus Medical Inc. Surgical robotic automation with tracking markers and controlled tool advancement
CA2876846C (en) 2012-06-22 2021-04-06 Board Of Regents Of The University Of Nebraska Local control robotic surgical devices and related methods
CN104602638B (en) 2012-06-27 2017-12-19 曼特瑞斯医药有限责任公司 System for influenceing to treat tissue
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US20140005640A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical end effector jaw and electrode configurations
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9232944B2 (en) 2012-06-29 2016-01-12 Covidien Lp Surgical instrument and bushing
CA2880622C (en) 2012-08-08 2021-01-12 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems and related methods
US9770305B2 (en) 2012-08-08 2017-09-26 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
US10350001B2 (en) * 2012-09-08 2019-07-16 John Craig Collins Apparatus, systems, and methods for identifying instruments in laparoscopic or other minimally invasive surgery
WO2014043697A2 (en) 2012-09-17 2014-03-20 Omniguide, Inc. Devices and methods for laser surgery
EP2897537B1 (en) 2012-09-19 2018-10-24 Ethicon LLC Surgical instrument with multi-phase trigger bias
CN104640509B (en) 2012-09-19 2017-07-04 伊西康内外科公司 With the surgical instruments for including Double-spiral actuator
US9125681B2 (en) 2012-09-26 2015-09-08 Ethicon Endo-Surgery, Inc. Detachable end effector and loader
US9364217B2 (en) 2012-10-16 2016-06-14 Covidien Lp In-situ loaded stapler
US20140148673A1 (en) 2012-11-28 2014-05-29 Hansen Medical, Inc. Method of anchoring pullwire directly articulatable region in catheter
US9498222B2 (en) 2012-11-29 2016-11-22 Ethicon Endo-Surgery, Llc Pivoting anvil for surgical circular stapler
US9289207B2 (en) 2012-11-29 2016-03-22 Ethicon Endo-Surgery, Llc Surgical staple with integral pledget for tip deflection
US9566062B2 (en) 2012-12-03 2017-02-14 Ethicon Endo-Surgery, Llc Surgical instrument with secondary jaw closure feature
US9078677B2 (en) 2012-12-03 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical instrument with curved blade firing path
US9724100B2 (en) 2012-12-04 2017-08-08 Ethicon Llc Circular anvil introduction system with alignment feature
US9572573B2 (en) 2012-12-04 2017-02-21 Ethicon Endo-Surgery, Llc Trans-oral circular anvil introduction system with dilation feature
US9848900B2 (en) 2012-12-07 2017-12-26 Ethicon Llc Ultrasonic surgical blade
US9572622B2 (en) 2012-12-10 2017-02-21 Ethicon Endo-Surgery, Llc Bipolar electrosurgical features for targeted hemostasis
US9050100B2 (en) 2012-12-10 2015-06-09 Ethicon Endo-Surgery, Inc. Surgical instrument with feedback at end effector
US9445808B2 (en) 2012-12-11 2016-09-20 Ethicon Endo-Surgery, Llc Electrosurgical end effector with tissue tacking features
US20140171977A1 (en) 2012-12-13 2014-06-19 Ethicon Endo-Surgery, Inc. Pawl Mechanism in Circular Needle Applier
US9445816B2 (en) 2012-12-17 2016-09-20 Ethicon Endo-Surgery, Llc Circular stapler with selectable motorized and manual control
US9463022B2 (en) 2012-12-17 2016-10-11 Ethicon Endo-Surgery, Llc Motor driven rotary input circular stapler with lockable flexible shaft
US9597081B2 (en) 2012-12-17 2017-03-21 Ethicon Endo-Surgery, Llc Motor driven rotary input circular stapler with modular end effector
US20140194874A1 (en) 2013-01-10 2014-07-10 Ethicon Endo-Surgery, Inc. Electrosurgical end effector with independent closure feature and blade
US9345480B2 (en) 2013-01-18 2016-05-24 Covidien Lp Surgical instrument and cartridge members for use therewith
US20140207124A1 (en) 2013-01-23 2014-07-24 Ethicon Endo-Surgery, Inc. Surgical instrument with selectable integral or external power source
US9149325B2 (en) 2013-01-25 2015-10-06 Ethicon Endo-Surgery, Inc. End effector with compliant clamping jaw
US9241758B2 (en) 2013-01-25 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with blade compliant along vertical cutting edge plane
US9610114B2 (en) 2013-01-29 2017-04-04 Ethicon Endo-Surgery, Llc Bipolar electrosurgical hand shears
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US9451937B2 (en) 2013-02-27 2016-09-27 Ethicon Endo-Surgery, Llc Percutaneous instrument with collet locking mechanisms
US9808248B2 (en) 2013-02-28 2017-11-07 Ethicon Llc Installation features for surgical instrument end effector cartridge
US9717497B2 (en) 2013-02-28 2017-08-01 Ethicon Llc Lockout feature for movable cutting member of surgical instrument
US9517065B2 (en) 2013-02-28 2016-12-13 Ethicon Endo-Surgery, Llc Integrated tissue positioning and jaw alignment features for surgical stapler
US9186142B2 (en) 2013-02-28 2015-11-17 Ethicon Endo-Surgery, Inc. Surgical instrument end effector articulation drive with pinion and opposing racks
US9839421B2 (en) 2013-02-28 2017-12-12 Ethicon Llc Jaw closure feature for end effector of surgical instrument
US10092292B2 (en) 2013-02-28 2018-10-09 Ethicon Llc Staple forming features for surgical stapling instrument
US9867615B2 (en) 2013-02-28 2018-01-16 Ethicon Llc Surgical instrument with articulation lock having a detenting binary spring
US9622746B2 (en) 2013-02-28 2017-04-18 Ethicon Endo-Surgery, Llc Distal tip features for end effector of surgical instrument
US9795379B2 (en) 2013-02-28 2017-10-24 Ethicon Llc Surgical instrument with multi-diameter shaft
RU2669463C2 (en) 2013-03-01 2018-10-11 Этикон Эндо-Серджери, Инк. Surgical instrument with soft stop
BR112015021098B1 (en) 2013-03-01 2022-02-15 Ethicon Endo-Surgery, Inc COVERAGE FOR A JOINT JOINT AND SURGICAL INSTRUMENT
US20140249557A1 (en) 2013-03-01 2014-09-04 Ethicon Endo-Surgery, Inc. Thumbwheel switch arrangements for surgical instruments
US10561432B2 (en) 2013-03-05 2020-02-18 Covidien Lp Pivoting screw for use with a pair of jaw members of a surgical instrument
US9370354B1 (en) 2013-03-11 2016-06-21 Ethicon Endo-Surgery, Llc Automated needle loader
US9125645B1 (en) 2013-03-11 2015-09-08 Ethicon Endo-Surgery, Inc. Reciprocating needle drive without cables
US9782167B1 (en) 2013-03-11 2017-10-10 Ethicon Llc Button actuated needle loader
US9402687B2 (en) 2013-03-13 2016-08-02 Ethicon Endo-Surgery, Llc Robotic electrosurgical device with disposable shaft
US10058310B2 (en) 2013-03-13 2018-08-28 Ethicon Llc Electrosurgical device with drum-driven articulation
US9668728B2 (en) 2013-03-13 2017-06-06 Covidien Lp Surgical stapling apparatus
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9314308B2 (en) 2013-03-13 2016-04-19 Ethicon Endo-Surgery, Llc Robotic ultrasonic surgical device with articulating end effector
US9220569B2 (en) 2013-03-13 2015-12-29 Ethicon Endo-Surgery, Inc. Electrosurgical device with disposable shaft having translating gear and snap fit
US9737300B2 (en) 2013-03-13 2017-08-22 Ethicon Llc Electrosurgical device with disposable shaft having rack and pinion drive
US9254170B2 (en) 2013-03-13 2016-02-09 Ethicon Endo-Surgery, Inc. Electrosurgical device with disposable shaft having modular subassembly
US9814463B2 (en) 2013-03-13 2017-11-14 Covidien Lp Surgical stapling apparatus
US9717498B2 (en) 2013-03-13 2017-08-01 Covidien Lp Surgical stapling apparatus
US9107685B2 (en) 2013-03-13 2015-08-18 Ethicon Endo-Surgery, Inc. Electrosurgical device with disposable shaft having clamshell coupling
US9629628B2 (en) 2013-03-13 2017-04-25 Covidien Lp Surgical stapling apparatus
US9168090B2 (en) 2013-03-14 2015-10-27 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with restricted trigger
US9326822B2 (en) 2013-03-14 2016-05-03 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US10314559B2 (en) 2013-03-14 2019-06-11 Inneroptic Technology, Inc. Medical device guidance
US20140277334A1 (en) 2013-03-14 2014-09-18 Hansen Medical, Inc. Active drives for robotic catheter manipulators
WO2014152418A1 (en) 2013-03-14 2014-09-25 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to force control surgical systems
US9877782B2 (en) 2013-03-14 2018-01-30 Ethicon Llc Electrosurgical instrument end effector with compliant electrode
US9254171B2 (en) 2013-03-14 2016-02-09 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with multi-stage actuator
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US9743987B2 (en) 2013-03-14 2017-08-29 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers
US20140276730A1 (en) 2013-03-14 2014-09-18 Ethicon Endo-Surgery, Inc. Surgical instrument with reinforced articulation section
US20140276936A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Active drive mechanism for simultaneous rotation and translation
US9895161B2 (en) 2013-03-15 2018-02-20 Ethicon Llc Ultrasonic surgical shears with clamping feature
US20150351749A1 (en) 2014-06-06 2015-12-10 Ethicon Endo-Surgery, Inc. Needle Cartridge with Moveable Cover
US9375212B2 (en) 2014-06-06 2016-06-28 Ethicon Endo-Surgery, Llc Circular needle applier with cleats
US9408669B2 (en) 2013-03-15 2016-08-09 Hansen Medical, Inc. Active drive mechanism with finite range of motion
US9237923B2 (en) 2013-03-15 2016-01-19 Ethicon Endo-Surgery, Inc. Surgical instrument with partial trigger lockout
US9510906B2 (en) 2013-03-15 2016-12-06 Ethicon Endo-Surgery, Llc Tissue clamping features of surgical instrument end effector
WO2014144220A1 (en) 2013-03-15 2014-09-18 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methdos
US9510827B2 (en) 2013-03-25 2016-12-06 Covidien Lp Micro surgical instrument and loading unit for use therewith
KR102115447B1 (en) * 2013-03-27 2020-05-27 한양대학교 에리카산학협력단 Endoscope apparatus
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
US9579118B2 (en) 2013-05-01 2017-02-28 Ethicon Endo-Surgery, Llc Electrosurgical instrument with dual blade end effector
US9566110B2 (en) 2013-05-09 2017-02-14 Ethicon Endo-Surgery, Llc Surgical instrument with jaw opening assist feature
US9237900B2 (en) 2013-05-10 2016-01-19 Ethicon Endo-Surgery, Inc. Surgical instrument with split jaw
US9629648B2 (en) 2013-05-10 2017-04-25 Ethicon Endo-Surgery, Llc Surgical instrument with translating compliant jaw closure feature
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9579147B2 (en) 2013-06-04 2017-02-28 Ethicon Endo-Surgery, Llc Electrosurgical forceps with translating blade driver
US9504520B2 (en) 2013-06-06 2016-11-29 Ethicon Endo-Surgery, Llc Surgical instrument with modular motor
US9351788B2 (en) 2013-06-06 2016-05-31 Ethicon Endo-Surgery, Llc Surgical instrument having knife band with curved distal edge
US9445810B2 (en) 2013-06-12 2016-09-20 Covidien Lp Stapling device with grasping jaw mechanism
US9775667B2 (en) 2013-06-18 2017-10-03 Ethicon Llc Surgical instrument with articulation indicator
JP6479790B2 (en) 2013-07-17 2019-03-06 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ Robotic surgical device, system and related methods
US9924942B2 (en) 2013-08-23 2018-03-27 Ethicon Llc Motor-powered articulatable surgical instruments
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
US9662108B2 (en) 2013-08-30 2017-05-30 Covidien Lp Surgical stapling apparatus
US9220508B2 (en) 2013-09-06 2015-12-29 Ethicon Endo-Surgery, Inc. Surgical clip applier with articulation section
US10172636B2 (en) 2013-09-17 2019-01-08 Ethicon Llc Articulation features for ultrasonic surgical instrument
US20150080925A1 (en) 2013-09-19 2015-03-19 Ethicon Endo-Surgery, Inc. Alignment features for ultrasonic surgical instrument
US10231747B2 (en) 2013-09-20 2019-03-19 Ethicon Llc Transducer features for ultrasonic surgical instrument
US9713469B2 (en) 2013-09-23 2017-07-25 Ethicon Llc Surgical stapler with rotary cam drive
US9283048B2 (en) 2013-10-04 2016-03-15 KB Medical SA Apparatus and systems for precise guidance of surgical tools
CA2926748A1 (en) 2013-11-04 2015-05-07 Covidien Lp Surgical fastener applying apparatus
CN105682568B (en) 2013-11-04 2018-10-23 柯惠Lp公司 Surgical fasteners bringing device
US11033264B2 (en) 2013-11-04 2021-06-15 Covidien Lp Surgical fastener applying apparatus
US9861381B2 (en) 2013-11-12 2018-01-09 Ethicon Llc Removable battery casing for surgical instrument
US9907600B2 (en) 2013-11-15 2018-03-06 Ethicon Llc Ultrasonic anastomosis instrument with piezoelectric sealing head
US9901358B2 (en) 2013-11-15 2018-02-27 Ethicon Llc Ultrasonic surgical instrument with integral blade cleaning feature
US9913655B2 (en) 2013-11-18 2018-03-13 Ethicon Llc Surgical instrument with active element and suction cage
US9763688B2 (en) 2013-11-20 2017-09-19 Ethicon Llc Ultrasonic surgical instrument with features for forming bubbles to enhance cavitation
US9949785B2 (en) 2013-11-21 2018-04-24 Ethicon Llc Ultrasonic surgical instrument with electrosurgical feature
US10368892B2 (en) 2013-11-22 2019-08-06 Ethicon Llc Features for coupling surgical instrument shaft assembly with instrument body
US10226271B2 (en) 2013-11-22 2019-03-12 Ethicon Llc Methods and features for coupling ultrasonic surgical instrument components together
USD749730S1 (en) 2013-11-26 2016-02-16 Ethicon Endo-Surgery, Llc Blade for ultrasonic surgical instrument
US9943325B2 (en) 2013-11-26 2018-04-17 Ethicon Llc Handpiece and blade configurations for ultrasonic surgical instrument
JP2016538069A (en) 2013-11-26 2016-12-08 エシコン・エンド−サージェリィ・エルエルシーEthicon Endo−Surgery, LLC Mechanism for applying fluid to an ultrasonic blade of a surgical instrument
EP3578119B1 (en) 2013-12-11 2021-03-17 Covidien LP Wrist and jaw assemblies for robotic surgical systems
US9724120B2 (en) 2013-12-17 2017-08-08 Ethicon Endo-Surgery, Llc Clamp arm features for ultrasonic surgical instrument
US9743946B2 (en) 2013-12-17 2017-08-29 Ethicon Llc Rotation features for ultrasonic surgical instrument
US9867613B2 (en) 2013-12-19 2018-01-16 Covidien Lp Surgical staples and end effectors for deploying the same
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9585662B2 (en) 2013-12-23 2017-03-07 Ethicon Endo-Surgery, Llc Fastener cartridge comprising an extendable firing member
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9763674B2 (en) 2013-12-26 2017-09-19 Ethicon Llc Ultrasonic bone cutting instrument
US9700341B2 (en) 2013-12-26 2017-07-11 Ethicon Llc Loading features for ultrasonic surgical instrument
US9539020B2 (en) 2013-12-27 2017-01-10 Ethicon Endo-Surgery, Llc Coupling features for ultrasonic surgical instrument
WO2015107099A1 (en) 2014-01-15 2015-07-23 KB Medical SA Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery
EP3104803B1 (en) 2014-02-11 2021-09-15 KB Medical SA Sterile handle for controlling a robotic surgical system from a sterile field
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9848874B2 (en) 2014-02-14 2017-12-26 Covidien Lp Small diameter endoscopic stapler
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
US20140166725A1 (en) 2014-02-24 2014-06-19 Ethicon Endo-Surgery, Inc. Staple cartridge including a barbed staple.
US10010340B2 (en) 2014-02-28 2018-07-03 Ethicon Llc Ultrasonic surgical instrument with removable handle assembly
US10349967B2 (en) 2014-02-28 2019-07-16 Ethicon Llc Ultrasonic surgical instrument with removable handle assembly
US20150265353A1 (en) 2014-03-18 2015-09-24 Monteris Medical Corporation Image-guided therapy of a tissue
WO2015143025A1 (en) 2014-03-18 2015-09-24 Monteris Medical Corporation Image-guided therapy of a tissue
US10675113B2 (en) 2014-03-18 2020-06-09 Monteris Medical Corporation Automated therapy of a three-dimensional tissue region
US9675374B2 (en) 2014-03-24 2017-06-13 Ethicon Llc Ultrasonic forceps
US20150272580A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Verification of number of battery exchanges/procedure count
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
US10524852B1 (en) 2014-03-28 2020-01-07 Ethicon Llc Distal sealing end effector with spacers
US9757126B2 (en) 2014-03-31 2017-09-12 Covidien Lp Surgical stapling apparatus with firing lockout mechanism
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US11185330B2 (en) 2014-04-16 2021-11-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US20150297222A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
US9895160B2 (en) 2014-04-16 2018-02-20 Gyrus Acmi Inc. Surgical operating apparatus with temperature control
CN106456176B (en) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 Fastener cartridge including the extension with various configuration
US9757186B2 (en) 2014-04-17 2017-09-12 Ethicon Llc Device status feedback for bipolar tissue spacer
US10046140B2 (en) 2014-04-21 2018-08-14 Hansen Medical, Inc. Devices, systems, and methods for controlling active drive systems
US9668733B2 (en) 2014-04-21 2017-06-06 Covidien Lp Stapling device with features to prevent inadvertent firing of staples
US10258363B2 (en) 2014-04-22 2019-04-16 Ethicon Llc Method of operating an articulating ultrasonic surgical instrument
US10667835B2 (en) 2014-04-22 2020-06-02 Ethicon Llc Ultrasonic surgical instrument with end effector having restricted articulation
US10004562B2 (en) 2014-04-24 2018-06-26 Globus Medical, Inc. Surgical instrument holder for use with a robotic surgical system
CA2946595A1 (en) 2014-05-05 2015-11-12 Vicarious Surgical Inc. Virtual reality surgical device
US9861366B2 (en) 2014-05-06 2018-01-09 Covidien Lp Ejecting assembly for a surgical stapler
WO2015174985A1 (en) 2014-05-15 2015-11-19 Lp Covidien Surgical fastener applying apparatus
US20150351745A1 (en) 2014-06-06 2015-12-10 Ethicon Endo-Surgery, Inc. Ratchet Controlled Circular Needle Driver
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US10292701B2 (en) 2014-06-25 2019-05-21 Ethicon Llc Articulation drive features for surgical stapler
US9693774B2 (en) 2014-06-25 2017-07-04 Ethicon Llc Pivotable articulation joint unlocking feature for surgical stapler
US10456132B2 (en) 2014-06-25 2019-10-29 Ethicon Llc Jaw opening feature for surgical stapler
US10335147B2 (en) 2014-06-25 2019-07-02 Ethicon Llc Method of using lockout features for surgical stapler cartridge
BR112016030332B1 (en) 2014-06-25 2022-11-01 Ethicon Endo-Surgery, Llc LOCKING DEVICE FOR SURGICAL STAPLER
US10064620B2 (en) 2014-06-25 2018-09-04 Ethicon Llc Method of unlocking articulation joint in surgical stapler
US9999423B2 (en) 2014-06-25 2018-06-19 Ethicon Llc Translatable articulation joint unlocking feature for surgical stapler
US9700333B2 (en) 2014-06-30 2017-07-11 Ethicon Llc Surgical instrument with variable tissue compression
CN107072673A (en) 2014-07-14 2017-08-18 Kb医疗公司 Anti-skidding operating theater instruments for preparing hole in bone tissue
US9750521B2 (en) 2014-07-22 2017-09-05 Ethicon Llc Ultrasonic blade overmold
US10194976B2 (en) 2014-08-25 2019-02-05 Ethicon Llc Lockout disabling mechanism
US9877776B2 (en) 2014-08-25 2018-01-30 Ethicon Llc Simultaneous I-beam and spring driven cam jaw closure mechanism
US10194972B2 (en) 2014-08-26 2019-02-05 Ethicon Llc Managing tissue treatment
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10135242B2 (en) 2014-09-05 2018-11-20 Ethicon Llc Smart cartridge wake up operation and data retention
EP3868322A1 (en) 2014-09-12 2021-08-25 Board of Regents of the University of Nebraska Quick-release effectors and related systems
US9901360B2 (en) 2014-09-17 2018-02-27 Ethicon Llc Ultrasonic surgical instrument with retractable integral clamp arm
US10058346B2 (en) 2014-09-17 2018-08-28 Ethicon Llc Ultrasonic surgical instrument with removable clamp arm
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
MX2017003960A (en) 2014-09-26 2017-12-04 Ethicon Llc Surgical stapling buttresses and adjunct materials.
US9901406B2 (en) 2014-10-02 2018-02-27 Inneroptic Technology, Inc. Affected region display associated with a medical device
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9907565B2 (en) 2014-10-15 2018-03-06 Eithicon LLC Activation features for ultrasonic surgical instrument
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US10136938B2 (en) 2014-10-29 2018-11-27 Ethicon Llc Electrosurgical instrument with sensor
US11504192B2 (en) 2014-10-30 2022-11-22 Cilag Gmbh International Method of hub communication with surgical instrument systems
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
EP4286104A3 (en) 2014-11-11 2024-02-14 Board of Regents of the University of Nebraska Robotic device with compact joint design and related systems and methods
US10433863B2 (en) 2014-11-25 2019-10-08 Ethicon Llc Ultrasonic surgical instrument with blade cooling through retraction
US10004529B2 (en) 2014-11-25 2018-06-26 Ethicon Llc Features to drive fluid toward an ultrasonic blade of a surgical instrument
US10206705B2 (en) 2014-11-25 2019-02-19 Ethicon Llc Features for communication of fluid through shaft assembly of ultrasonic surgical instrument
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10188467B2 (en) 2014-12-12 2019-01-29 Inneroptic Technology, Inc. Surgical guidance intersection display
US10076379B2 (en) 2014-12-15 2018-09-18 Ethicon Llc Electrosurgical instrument with removable components for cleaning access
CN107106131B (en) * 2014-12-16 2021-03-26 皇家飞利浦有限公司 Telerobotic actuation of transesophageal echocardiography probe
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
RU2703684C2 (en) 2014-12-18 2019-10-21 ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи Surgical instrument with anvil which is selectively movable relative to staple cartridge around discrete fixed axis
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10117706B2 (en) 2014-12-19 2018-11-06 Ethicon Llc Electrosurgical instrument with integral tissue removal feature
US9993284B2 (en) 2014-12-19 2018-06-12 Ethicon Llc Electrosurgical instrument with jaw cleaning mode
US10357311B2 (en) 2014-12-19 2019-07-23 Ethicon Llc Electrosurgical instrument with removable jaw components
US10327796B2 (en) 2014-12-19 2019-06-25 Ethicon Llc Ultrasonic surgical instrument with dual modes
US9888942B1 (en) 2014-12-19 2018-02-13 Ethicon Llc Adaptor for robotics cannula and seal assembly
US10111699B2 (en) 2014-12-22 2018-10-30 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US9848937B2 (en) 2014-12-22 2017-12-26 Ethicon Llc End effector with detectable configurations
US10092348B2 (en) 2014-12-22 2018-10-09 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US10159524B2 (en) 2014-12-22 2018-12-25 Ethicon Llc High power battery powered RF amplifier topology
US10537667B2 (en) 2015-01-28 2020-01-21 Ethicon Llc High temperature material for use in medical devices
US10013808B2 (en) 2015-02-03 2018-07-03 Globus Medical, Inc. Surgeon head-mounted display apparatuses
EP3258872B1 (en) 2015-02-18 2023-04-26 KB Medical SA Systems for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique
US10695142B2 (en) 2015-02-19 2020-06-30 Covidien Lp Repositioning method of input device for robotic surgical system
US10039545B2 (en) 2015-02-23 2018-08-07 Covidien Lp Double fire stapling
US10085749B2 (en) 2015-02-26 2018-10-02 Covidien Lp Surgical apparatus with conductor strain relief
US10285698B2 (en) 2015-02-26 2019-05-14 Covidien Lp Surgical apparatus
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US10226250B2 (en) 2015-02-27 2019-03-12 Ethicon Llc Modular stapling assembly
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US10716639B2 (en) 2015-03-10 2020-07-21 Covidien Lp Measuring health of a connector member of a robotic surgical system
US9918717B2 (en) 2015-03-18 2018-03-20 Covidien Lp Pivot mechanism for surgical device
US10568621B2 (en) 2015-03-25 2020-02-25 Ethicon Llc Surgical staple buttress with integral adhesive for releasably attaching to a surgical stapler
US10478187B2 (en) 2015-03-25 2019-11-19 Ethicon Llc Biologically derived extracellular matrix with infused viscous absorbable copolymer for releasably attaching a staple buttress to a surgical stapler
US10172618B2 (en) 2015-03-25 2019-01-08 Ethicon Llc Low glass transition temperature bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler
US10172617B2 (en) 2015-03-25 2019-01-08 Ethicon Llc Malleable bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler
US10349939B2 (en) 2015-03-25 2019-07-16 Ethicon Llc Method of applying a buttress to a surgical stapler
US10136891B2 (en) 2015-03-25 2018-11-27 Ethicon Llc Naturally derived bioabsorbable polymer gel adhesive for releasably attaching a staple buttress to a surgical stapler
US10548593B2 (en) 2015-03-25 2020-02-04 Ethicon Llc Flowable bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler
US10863984B2 (en) 2015-03-25 2020-12-15 Ethicon Llc Low inherent viscosity bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
US10327830B2 (en) 2015-04-01 2019-06-25 Monteris Medical Corporation Cryotherapy, thermal therapy, temperature modulation therapy, and probe apparatus therefor
US10314638B2 (en) 2015-04-07 2019-06-11 Ethicon Llc Articulating radio frequency (RF) tissue seal with articulating state sensing
US10117702B2 (en) 2015-04-10 2018-11-06 Ethicon Llc Surgical generator systems and related methods
US10463368B2 (en) 2015-04-10 2019-11-05 Covidien Lp Endoscopic stapler
US20160302818A1 (en) 2015-04-16 2016-10-20 Ethicon Endo-Surgery, Llc Ultrasonic surgical instrument with movable rigidizing member
US10111698B2 (en) 2015-04-16 2018-10-30 Ethicon Llc Surgical instrument with rotatable shaft having plurality of locking positions
US10342567B2 (en) 2015-04-16 2019-07-09 Ethicon Llc Ultrasonic surgical instrument with opposing thread drive for end effector articulation
US10029125B2 (en) 2015-04-16 2018-07-24 Ethicon Llc Ultrasonic surgical instrument with articulation joint having integral stiffening members
US20160302819A1 (en) 2015-04-16 2016-10-20 Ethicon Endo-Surgery, Llc Ultrasonic surgical instrument with articulating end effector having a curved blade
US10226274B2 (en) 2015-04-16 2019-03-12 Ethicon Llc Ultrasonic surgical instrument with articulation joint having plurality of locking positions
US10034683B2 (en) 2015-04-16 2018-07-31 Ethicon Llc Ultrasonic surgical instrument with rigidizing articulation drive members
US10130410B2 (en) 2015-04-17 2018-11-20 Ethicon Llc Electrosurgical instrument including a cutting member decouplable from a cutting member trigger
US9872725B2 (en) 2015-04-29 2018-01-23 Ethicon Llc RF tissue sealer with mode selection
US10299789B2 (en) 2015-05-05 2019-05-28 Covidie LP Adapter assembly for surgical stapling devices
US10117650B2 (en) 2015-05-05 2018-11-06 Covidien Lp Adapter assembly and loading units for surgical stapling devices
US10039532B2 (en) 2015-05-06 2018-08-07 Covidien Lp Surgical instrument with articulation assembly
JP6420501B6 (en) 2015-05-08 2018-12-19 ジャストライト サージカル,リミティド ライアビリティ カンパニー Surgical stapler
US10022120B2 (en) 2015-05-26 2018-07-17 Ethicon Llc Surgical needle with recessed features
US10349941B2 (en) 2015-05-27 2019-07-16 Covidien Lp Multi-fire lead screw stapling device
US10172615B2 (en) 2015-05-27 2019-01-08 Covidien Lp Multi-fire push rod stapling device
JP6714618B2 (en) 2015-06-03 2020-06-24 コヴィディエン リミテッド パートナーシップ Offset instrument drive
WO2016205266A1 (en) 2015-06-16 2016-12-22 Covidien Lp Robotic surgical system torque transduction sensing
US10405863B2 (en) 2015-06-18 2019-09-10 Ethicon Llc Movable firing beam support arrangements for articulatable surgical instruments
EP3313315B1 (en) 2015-06-23 2024-04-10 Covidien LP Robotic surgical assemblies
US10548599B2 (en) 2015-07-20 2020-02-04 Covidien Lp Endoscopic stapler and staple
US9987012B2 (en) 2015-07-21 2018-06-05 Covidien Lp Small diameter cartridge design for a surgical stapling instrument
US9949700B2 (en) 2015-07-22 2018-04-24 Inneroptic Technology, Inc. Medical device approaches
US10201348B2 (en) 2015-07-28 2019-02-12 Ethicon Llc Surgical stapler cartridge with compression features at staple driver edges
US10314580B2 (en) 2015-07-28 2019-06-11 Ethicon Llc Surgical staple cartridge with compression feature at knife slot
US10194912B2 (en) 2015-07-28 2019-02-05 Ethicon Llc Surgical staple cartridge with outer edge compression features
US10064622B2 (en) 2015-07-29 2018-09-04 Covidien Lp Surgical stapling loading unit with stroke counter and lockout
US10045782B2 (en) 2015-07-30 2018-08-14 Covidien Lp Surgical stapling loading unit with stroke counter and lockout
US10058394B2 (en) 2015-07-31 2018-08-28 Globus Medical, Inc. Robot arm and methods of use
US10646298B2 (en) 2015-07-31 2020-05-12 Globus Medical, Inc. Robot arm and methods of use
WO2017024081A1 (en) 2015-08-03 2017-02-09 Board Of Regents Of The University Of Nebraska Robotic surgical devices systems and related methods
US10080615B2 (en) 2015-08-12 2018-09-25 Globus Medical, Inc. Devices and methods for temporary mounting of parts to bone
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10342542B2 (en) 2015-08-24 2019-07-09 Ethicon Llc Surgical stapler buttress applicator with end effector actuated release mechanism
US10342532B2 (en) 2015-08-24 2019-07-09 Ethicon Llc Surgical stapler buttress applicator with multi-point actuated release mechanism
US10349940B2 (en) 2015-08-24 2019-07-16 Ethicon Llc Surgical stapler buttress applicator with state indicator
US11039832B2 (en) 2015-08-24 2021-06-22 Cilag Gmbh International Surgical stapler buttress applicator with spent staple cartridge lockout
US10166023B2 (en) 2015-08-24 2019-01-01 Ethicon Llc Method of applying a buttress to a surgical stapler end effector
US10321930B2 (en) 2015-08-24 2019-06-18 Ethicon Llc Activation features for ultrasonic surgical instrument
US10639039B2 (en) 2015-08-24 2020-05-05 Ethicon Llc Surgical stapler buttress applicator with multi-zone platform for pressure focused release
US10130383B2 (en) 2015-08-25 2018-11-20 Ethicon Llc Ultrasonic surgical instrument with rotatable actuation levers and mechanical lockout
US10258361B2 (en) 2015-08-26 2019-04-16 Ethicon Llc Ultrasonic surgical instrument with slidable flexing activation member
US10507033B2 (en) 2015-08-26 2019-12-17 Ethicon Llc Ultrasonic surgical instrument with replaceable clamp pad
US10098642B2 (en) 2015-08-26 2018-10-16 Ethicon Llc Surgical staples comprising features for improved fastening of tissue
US10413314B2 (en) 2015-08-26 2019-09-17 Ethicon Llc Ultrasonic surgical instrument with activation member pair and slidable cover
US10456157B2 (en) 2015-08-26 2019-10-29 Ethicon Llc Ultrasonic surgical instrument clamp arm with snap-on clamp pad
BR112018003693B1 (en) 2015-08-26 2022-11-22 Ethicon Llc SURGICAL STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPPING INSTRUMENT
US10426506B2 (en) 2015-08-26 2019-10-01 Ethicon Llc Ultrasonic surgical instrument with multi-grip activation and power selection
WO2017037127A1 (en) 2015-08-31 2017-03-09 KB Medical SA Robotic surgical systems and methods
US10238390B2 (en) 2015-09-02 2019-03-26 Ethicon Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
MX2022006189A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
US10034716B2 (en) 2015-09-14 2018-07-31 Globus Medical, Inc. Surgical robotic systems and methods thereof
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10806454B2 (en) 2015-09-25 2020-10-20 Covidien Lp Robotic surgical assemblies and instrument drive connectors thereof
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10314578B2 (en) 2015-09-29 2019-06-11 Ethicon Llc Battery drain circuit for surgical instrument
US10182813B2 (en) 2015-09-29 2019-01-22 Ethicon Llc Surgical stapling instrument with shaft release, powered firing, and powered articulation
JP6852063B2 (en) 2015-09-30 2021-03-31 エシコン エルエルシーEthicon LLC Frequency agile generator for surgical instruments
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10561420B2 (en) 2015-09-30 2020-02-18 Ethicon Llc Tubular absorbable constructs
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10213204B2 (en) 2015-10-02 2019-02-26 Covidien Lp Micro surgical instrument and loading unit for use therewith
US10052164B2 (en) 2015-10-02 2018-08-21 Ethicon Llc System and method of converting user input into motion of a surgical instrument via a robotic surgical system
US9771092B2 (en) 2015-10-13 2017-09-26 Globus Medical, Inc. Stabilizer wheel assembly and methods of use
US11141159B2 (en) 2015-10-15 2021-10-12 Cilag Gmbh International Surgical stapler end effector with multi-staple driver crossing center line
US10265073B2 (en) 2015-10-15 2019-04-23 Ethicon Llc Surgical stapler with terminal staple orientation crossing center line
US10265069B2 (en) 2015-10-15 2019-04-23 Ethicon Llc Surgical staple cartridge with varying staple crown width along a curve
US10952730B2 (en) 2015-10-15 2021-03-23 Ethicon Llc End effector for surgical stapler with varying curve and taper
US10342535B2 (en) 2015-10-15 2019-07-09 Ethicon Llc Method of applying staples to liver and other organs
US20170105727A1 (en) 2015-10-15 2017-04-20 Ethicon Endo-Surgery, Llc Surgical stapler with progressively driven asymmetric alternating staple drivers
US10499917B2 (en) 2015-10-15 2019-12-10 Ethicon Llc Surgical stapler end effector with knife position indicators
US10226251B2 (en) 2015-10-15 2019-03-12 Ethicon Llc Surgical staple actuating sled with actuation stroke having minimized distance relative to distal staple
US10327797B2 (en) 2015-10-16 2019-06-25 Ethicon Llc Ultrasonic surgical instrument with removable shaft assembly portion
US10959771B2 (en) 2015-10-16 2021-03-30 Ethicon Llc Suction and irrigation sealing grasper
ITUB20154977A1 (en) 2015-10-16 2017-04-16 Medical Microinstruments S R L Medical instrument and method of manufacture of said medical instrument
US11020200B2 (en) 2015-10-19 2021-06-01 Ethicon Llc Surgical instrument with dual mode end effector and compound lever with detents
US10507035B2 (en) 2015-10-20 2019-12-17 Ethicon Llc Surgical instrument providing ultrasonic tissue emulsification and ultrasonic shearing
US10058393B2 (en) 2015-10-21 2018-08-28 P Tech, Llc Systems and methods for navigation and visualization
WO2017070275A1 (en) 2015-10-23 2017-04-27 Covidien Lp Surgical system for detecting gradual changes in perfusion
US10772632B2 (en) 2015-10-28 2020-09-15 Covidien Lp Surgical stapling device with triple leg staples
US10499918B2 (en) 2015-10-29 2019-12-10 Ethicon Llc Surgical stapler buttress assembly with features to interact with movable end effector components
US10517592B2 (en) 2015-10-29 2019-12-31 Ethicon Llc Surgical stapler buttress assembly with adhesion to wet end effector
US10433839B2 (en) 2015-10-29 2019-10-08 Ethicon Llc Surgical stapler buttress assembly with gel adhesive retainer
US10085745B2 (en) 2015-10-29 2018-10-02 Ethicon Llc Extensible buttress assembly for surgical stapler
US10441286B2 (en) 2015-10-29 2019-10-15 Ethicon Llc Multi-layer surgical stapler buttress assembly
US10251649B2 (en) 2015-10-29 2019-04-09 Ethicon Llc Surgical stapler buttress applicator with data communication
US10314588B2 (en) 2015-10-29 2019-06-11 Ethicon Llc Fluid penetrable buttress assembly for a surgical stapler
US10238388B2 (en) 2015-10-29 2019-03-26 Ethicon Llc Surgical stapler buttress assembly with humidity tolerant adhesive
US10357248B2 (en) 2015-10-29 2019-07-23 Ethicon Llc Extensible buttress assembly for surgical stapler
US10028765B2 (en) 2015-10-30 2018-07-24 Ethicon Llc Ultrasonic surgical instrument clamp arm with proximal nodal pad
WO2017087439A1 (en) 2015-11-19 2017-05-26 Covidien Lp Optical force sensor for robotic surgical system
US10595864B2 (en) 2015-11-24 2020-03-24 Covidien Lp Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US10639059B2 (en) 2015-11-25 2020-05-05 Ethicon Llc Restricted usage features for surgical instrument
US10111660B2 (en) 2015-12-03 2018-10-30 Covidien Lp Surgical stapler flexible distal tip
US20170164972A1 (en) 2015-12-10 2017-06-15 Ethicon Endo-Surgery, Llc End effector for instrument with ultrasonic and electrosurgical features
USD800306S1 (en) 2015-12-10 2017-10-17 Ethicon Llc Surgical suturing device
US20170164997A1 (en) 2015-12-10 2017-06-15 Ethicon Endo-Surgery, Llc Method of treating tissue using end effector with ultrasonic and electrosurgical features
US10660692B2 (en) 2015-12-10 2020-05-26 Ethicon Llc End effector for instrument with ultrasonic blade and bipolar clamp arm
US10470790B2 (en) 2015-12-16 2019-11-12 Ethicon Llc Surgical instrument with selector
US10238413B2 (en) 2015-12-16 2019-03-26 Ethicon Llc Surgical instrument with multi-function button
US20170172614A1 (en) 2015-12-17 2017-06-22 Ethicon Endo-Surgery, Llc Surgical instrument with multi-functioning trigger
US10492885B2 (en) 2015-12-17 2019-12-03 Ethicon Llc Ultrasonic surgical instrument with cleaning port
US10231749B2 (en) 2015-12-21 2019-03-19 Ethicon Llc Ultrasonic surgical instrument with blade replacement features
US10314607B2 (en) 2015-12-21 2019-06-11 Ethicon Llc Ultrasonic surgical instrument with tubular acoustic waveguide segment
US10368957B2 (en) 2015-12-21 2019-08-06 Ethicon Llc Ultrasonic surgical instrument with blade cleaning feature
US10368894B2 (en) 2015-12-21 2019-08-06 Ethicon Llc Surgical instrument with variable clamping force
US10743901B2 (en) 2015-12-29 2020-08-18 Ethicon Llc Snap fit clamp pad for ultrasonic surgical instrument
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10959806B2 (en) 2015-12-30 2021-03-30 Ethicon Llc Energized medical device with reusable handle
US10470791B2 (en) 2015-12-30 2019-11-12 Ethicon Llc Surgical instrument with staged application of electrosurgical and ultrasonic energy
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10966717B2 (en) 2016-01-07 2021-04-06 Covidien Lp Surgical fastener apparatus
US10660623B2 (en) 2016-01-15 2020-05-26 Covidien Lp Centering mechanism for articulation joint
US11058378B2 (en) 2016-02-03 2021-07-13 Globus Medical, Inc. Portable medical imaging system
US10448910B2 (en) 2016-02-03 2019-10-22 Globus Medical, Inc. Portable medical imaging system
US11883217B2 (en) 2016-02-03 2024-01-30 Globus Medical, Inc. Portable medical imaging system and method
US10117632B2 (en) 2016-02-03 2018-11-06 Globus Medical, Inc. Portable medical imaging system with beam scanning collimator
US10842453B2 (en) 2016-02-03 2020-11-24 Globus Medical, Inc. Portable medical imaging system
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US10349937B2 (en) 2016-02-10 2019-07-16 Covidien Lp Surgical stapler with articulation locking mechanism
US10420559B2 (en) 2016-02-11 2019-09-24 Covidien Lp Surgical stapler with small diameter endoscopic portion
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US9675319B1 (en) 2016-02-17 2017-06-13 Inneroptic Technology, Inc. Loupe display
CN108697467B (en) * 2016-03-04 2021-05-28 柯惠Lp公司 Ultrasonic instrument for robotic surgical system
US10459740B2 (en) 2016-03-04 2019-10-29 Ethicon Llc System and method to establish current setpoint for ultrasonic transducer
US10866119B2 (en) 2016-03-14 2020-12-15 Globus Medical, Inc. Metal detector for detecting insertion of a surgical device into a hollow tube
US10175096B2 (en) 2016-04-01 2019-01-08 Ethicon Llc System and method to enable re-use of surgical instrument
US10485542B2 (en) 2016-04-01 2019-11-26 Ethicon Llc Surgical stapling instrument comprising multiple lockouts
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10492819B2 (en) 2016-04-01 2019-12-03 Ethicon Llc Surgical instrument with dual mode articulation drive
US10575836B2 (en) 2016-04-04 2020-03-03 Ethicon Llc Surgical instrument with selectively locked articulation assembly
US10507034B2 (en) 2016-04-04 2019-12-17 Ethicon Llc Surgical instrument with motorized articulation drive in shaft rotation knob
US10743850B2 (en) 2016-04-04 2020-08-18 Ethicon Llc Surgical instrument with locking articulation drive wheel
US10405876B2 (en) 2016-04-05 2019-09-10 Ethicon Llc Articulation joint for surgical instrument
US11576562B2 (en) 2016-04-07 2023-02-14 Titan Medical Inc. Camera positioning method and apparatus for capturing images during a medical procedure
US10433864B2 (en) 2016-04-13 2019-10-08 Ethicon Llc Ultrasonic surgical instrument with sliding blade sheath
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US10363032B2 (en) 2016-04-20 2019-07-30 Ethicon Llc Surgical stapler with hydraulic deck control
US10258337B2 (en) 2016-04-20 2019-04-16 Ethicon Llc Surgical staple cartridge with severed tissue edge adjunct
US10653420B2 (en) 2016-04-20 2020-05-19 Ethicon Llc Compliant compensation features for end effector of surgical stapling instrument
US10285700B2 (en) 2016-04-20 2019-05-14 Ethicon Llc Surgical staple cartridge with hydraulic staple deployment
US10286424B2 (en) 2016-04-26 2019-05-14 Ethicon Llc Ultrasonic cleaning of surgical instrument
US10172684B2 (en) 2016-04-29 2019-01-08 Ethicon Llc Lifecycle monitoring features for surgical instrument
US10856934B2 (en) 2016-04-29 2020-12-08 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
US10987156B2 (en) 2016-04-29 2021-04-27 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US10561419B2 (en) 2016-05-04 2020-02-18 Covidien Lp Powered end effector assembly with pivotable channel
US11065022B2 (en) 2016-05-17 2021-07-20 Covidien Lp Cutting member for a surgical instrument
EP3457951B1 (en) 2016-05-18 2024-03-06 Virtual Incision Corporation Robotic surgical devices and systems
US10543013B2 (en) 2016-05-19 2020-01-28 Ethicon Llc Passive dissection features for ultrasonic surgical instrument
US10624667B2 (en) 2016-05-20 2020-04-21 Ethicon Llc System and method to track usage of surgical instrument
US10702296B2 (en) 2016-05-25 2020-07-07 Ethicon Llc Ultrasonic surgical instrument with cooling conduit
US10660663B2 (en) 2016-05-25 2020-05-26 Ethicon Llc Ultrasonic surgical instrument blade with heat reduction feature
US10555748B2 (en) 2016-05-25 2020-02-11 Ethicon Llc Features and methods to control delivery of cooling fluid to end effector of ultrasonic surgical instrument
AU2017272075B2 (en) 2016-05-26 2021-04-29 Covidien Lp Robotic surgical assemblies
US10736219B2 (en) 2016-05-26 2020-08-04 Covidien Lp Instrument drive units
CN113180835A (en) 2016-06-03 2021-07-30 柯惠Lp公司 Control arm for robotic surgical system
EP3463162A4 (en) 2016-06-03 2020-06-24 Covidien LP Systems, methods, and computer-readable program products for controlling a robotically delivered manipulator
US11553984B2 (en) 2016-06-03 2023-01-17 Covidien Lp Robotic surgical system with an embedded imager
CN114504387A (en) 2016-06-03 2022-05-17 柯惠Lp公司 Passive shaft system for robotic surgical system
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
US10675024B2 (en) 2016-06-24 2020-06-09 Ethicon Llc Staple cartridge comprising overdriven staples
CN109310431B (en) 2016-06-24 2022-03-04 伊西康有限责任公司 Staple cartridge comprising wire staples and punch staples
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
US10543014B2 (en) 2016-07-01 2020-01-28 Ethicon Llc Ultrasonic surgical instrument with clamp arm deflection feature
CN106214257B (en) * 2016-07-08 2018-08-28 天津大学 A kind of micro-wound operation robot main operation platform
US10258362B2 (en) 2016-07-12 2019-04-16 Ethicon Llc Ultrasonic surgical instrument with AD HOC formed blade
US10499912B2 (en) 2016-07-13 2019-12-10 Ethicon Llc Apparatus for hydraulic assisted fracture of liver parenchyma
US10555750B2 (en) 2016-08-25 2020-02-11 Ethicon Llc Ultrasonic surgical instrument with replaceable blade having identification feature
CN116269696A (en) 2016-08-25 2023-06-23 内布拉斯加大学董事会 Quick release tool coupler and related systems and methods
US10463439B2 (en) 2016-08-26 2019-11-05 Auris Health, Inc. Steerable catheter with shaft load distributions
US10682137B2 (en) 2016-08-29 2020-06-16 Ethicon Llc Surgical stapler
US11241559B2 (en) 2016-08-29 2022-02-08 Auris Health, Inc. Active drive for guidewire manipulation
CN109890580B (en) 2016-08-30 2022-06-28 内布拉斯加大学董事会 Robotic devices with compact joint design and additional degrees of freedom and related systems and methods
AU2017331465B2 (en) 2016-09-23 2022-03-10 U.S. Patent Innovations Llc Robotic surgical system
US10751117B2 (en) 2016-09-23 2020-08-25 Ethicon Llc Electrosurgical instrument with fluid diverter
US10278778B2 (en) 2016-10-27 2019-05-07 Inneroptic Technology, Inc. Medical device navigation using a virtual 3D space
US10631857B2 (en) 2016-11-04 2020-04-28 Covidien Lp Loading unit for surgical instruments with low profile pushers
US11642126B2 (en) 2016-11-04 2023-05-09 Covidien Lp Surgical stapling apparatus with tissue pockets
US10492784B2 (en) 2016-11-08 2019-12-03 Covidien Lp Surgical tool assembly with compact firing assembly
US10542981B2 (en) 2016-11-14 2020-01-28 Ethicon Llc Atraumatic stapling head features for circular surgical stapler
US11116532B2 (en) 2016-11-16 2021-09-14 Cilag Gmbh International Surgical instrument with selectively actuated gap-setting features for end effector
EP3544539A4 (en) 2016-11-22 2020-08-05 Board of Regents of the University of Nebraska Improved gross positioning device and related systems and methods
CN115553922A (en) 2016-11-29 2023-01-03 虚拟切割有限公司 User controller with user presence detection and related systems and methods
US10463371B2 (en) 2016-11-29 2019-11-05 Covidien Lp Reload assembly with spent reload indicator
US10646300B2 (en) 2016-12-14 2020-05-12 Ethicon Llc Ultrasonic surgical instrument with transducer locking feature
US10722319B2 (en) 2016-12-14 2020-07-28 Virtual Incision Corporation Releasable attachment device for coupling to medical devices and related systems and methods
US10575917B2 (en) 2016-12-14 2020-03-03 Ethicon Llc Ultrasonic surgical instrument with integral torque wrench and transverse engagement
US10603129B2 (en) 2016-12-14 2020-03-31 Ethicon Llc Ultrasonic surgical instrument with integral torque wrench and longitudinal engagement
US10660722B2 (en) 2016-12-14 2020-05-26 Ethicon Llc Ultrasonic surgical instrument with integral shaft assembly torque wrench
US9833256B1 (en) 2016-12-14 2017-12-05 Ethicon Endo-Surgery, Llc Ultrasonic surgical instrument with transducer slip joint
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10588630B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical tool assemblies with closure stroke reduction features
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10617414B2 (en) 2016-12-21 2020-04-14 Ethicon Llc Closure member arrangements for surgical instruments
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
BR112019011947A2 (en) 2016-12-21 2019-10-29 Ethicon Llc surgical stapling systems
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US20180168608A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US20180168648A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Durability features for end effectors and firing assemblies of surgical stapling instruments
US10709901B2 (en) 2017-01-05 2020-07-14 Covidien Lp Implantable fasteners, applicators, and methods for brachytherapy
USD865964S1 (en) 2017-01-05 2019-11-05 Ethicon Llc Handle for electrosurgical instrument
EP3360502A3 (en) 2017-01-18 2018-10-31 KB Medical SA Robotic navigation of robotic surgical systems
US10952767B2 (en) 2017-02-06 2021-03-23 Covidien Lp Connector clip for securing an introducer to a surgical fastener applying apparatus
US10799308B2 (en) 2017-02-09 2020-10-13 Vicarious Surgical Inc. Virtual reality surgical tools system
JP2020507377A (en) 2017-02-15 2020-03-12 コヴィディエン リミテッド パートナーシップ Systems and equipment for crush prevention in medical robot applications
US11033325B2 (en) 2017-02-16 2021-06-15 Cilag Gmbh International Electrosurgical instrument with telescoping suction port and debris cleaner
US11103244B2 (en) 2017-02-17 2021-08-31 Cilag Gmbh International Surgical stapling end effector jaw with tip deflecting toward other jaw
US11564687B2 (en) 2017-02-17 2023-01-31 Cilag Gmbh International Method of surgical stapling with end effector component having a curved tip
US11272930B2 (en) 2017-02-17 2022-03-15 Cilag Gmbh International Method of surgical stapling with end effector component having a curved tip
US11564684B2 (en) 2017-02-17 2023-01-31 Cilag Gmbh International Surgical stapling end effector component with tip having varying bend angle
US10806451B2 (en) 2017-02-17 2020-10-20 Ethicon Llc Surgical stapler with cooperating distal tip features on anvil and staple cartridge
US10729434B2 (en) * 2017-02-17 2020-08-04 Ethicon Llc Surgical stapler with insertable distal anvil tip
US10828031B2 (en) 2017-02-17 2020-11-10 Ethicon Llc Surgical stapler with elastically deformable tip
US10758231B2 (en) 2017-02-17 2020-09-01 Ethicon Llc Surgical stapler with bent anvil tip, angled staple cartridge tip, and tissue gripping features
US20180235618A1 (en) 2017-02-22 2018-08-23 Covidien Lp Loading unit for surgical instruments with low profile pushers
US10849621B2 (en) 2017-02-23 2020-12-01 Covidien Lp Surgical stapler with small diameter endoscopic portion
US11350915B2 (en) 2017-02-23 2022-06-07 Covidien Lp Surgical stapler with small diameter endoscopic portion
US10299790B2 (en) 2017-03-03 2019-05-28 Covidien Lp Adapter with centering mechanism for articulation joint
US10799284B2 (en) 2017-03-15 2020-10-13 Ethicon Llc Electrosurgical instrument with textured jaws
US10660641B2 (en) 2017-03-16 2020-05-26 Covidien Lp Adapter with centering mechanism for articulation joint
US11071594B2 (en) 2017-03-16 2021-07-27 KB Medical SA Robotic navigation of robotic surgical systems
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
US10881451B2 (en) 2017-04-27 2021-01-05 Ethicon Llc Lead screw assembly for articulation control in surgical instrument
US10980594B2 (en) 2017-04-27 2021-04-20 Ethicon Llc Articulation drive feature in surgical instrument
US10932845B2 (en) 2017-04-27 2021-03-02 Ethicon Llc Detent feature for articulation control in surgical instrument
US10603035B2 (en) 2017-05-02 2020-03-31 Covidien Lp Surgical loading unit including an articulating end effector
US11324502B2 (en) 2017-05-02 2022-05-10 Covidien Lp Surgical loading unit including an articulating end effector
US10524784B2 (en) 2017-05-05 2020-01-07 Covidien Lp Surgical staples with expandable backspan
US10390826B2 (en) 2017-05-08 2019-08-27 Covidien Lp Surgical stapling device with elongated tool assembly and methods of use
US11129661B2 (en) 2017-05-22 2021-09-28 Cilag Gmbh International Combination ultrasonic and electrosurgical system having EEPROM and ASIC components
US11229475B2 (en) 2017-05-22 2022-01-25 Cilag Gmbh International Combination ultrasonic and electrosurgical instrument and method for sealing tissue with various termination parameters
US11717361B2 (en) 2017-05-24 2023-08-08 Covidien Lp Electrosurgical robotic system having tool presence detection
EP3629980A4 (en) 2017-05-25 2021-03-10 Covidien LP Robotic surgical system with automated guidance
US11553974B2 (en) 2017-05-25 2023-01-17 Covidien Lp Systems and methods for detection of objects within a field of view of an image capture device
EP3629983B1 (en) 2017-05-25 2023-06-28 Covidien LP Robotic surgical systems and drapes for covering components of robotic surgical systems
US10420551B2 (en) 2017-05-30 2019-09-24 Covidien Lp Authentication and information system for reusable surgical instruments
US10478185B2 (en) 2017-06-02 2019-11-19 Covidien Lp Tool assembly with minimal dead space
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10163309B1 (en) 2017-06-27 2018-12-25 Ethicon Llc Surgical instrument with integrated and independently powered displays
US10888324B2 (en) 2017-06-27 2021-01-12 Ethicon Llc Powered surgical instrument with independent selectively applied rotary and linear drivetrains
US11071548B2 (en) 2017-06-27 2021-07-27 Cilag Gmbh International Powered circular stapler with reciprocating drive member to provide independent stapling and cutting of tissue
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US10667812B2 (en) 2017-06-27 2020-06-02 Ethicon Llc Modular powered electrical connection for surgical instrument with features to prevent electrical discharge
US10835218B2 (en) 2017-06-27 2020-11-17 Ethicon Llc Apparatus and method to determine end of life of battery powered surgical instrument
US10828029B2 (en) 2017-06-27 2020-11-10 Ethicon Llc Surgical stapler with independently actuated drivers to provide varying staple heights
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10511065B2 (en) 2017-06-27 2019-12-17 Ethicon Llc Battery powered surgical instrument with dual power utilization circuits for dual modes
US10639018B2 (en) 2017-06-27 2020-05-05 Ethicon Llc Battery pack with integrated circuit providing sleep mode to battery pack and associated surgical instrument
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10987103B2 (en) 2017-06-27 2021-04-27 Ethicon Llc Powered surgical instrument with latching feature preventing removal of battery pack
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10090616B1 (en) * 2017-06-27 2018-10-02 Ethicon Llc Surgical instrument handle assembly with feature to clean electrical contacts at modular shaft interface
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10603117B2 (en) 2017-06-28 2020-03-31 Ethicon Llc Articulation state detection mechanisms
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10709473B2 (en) 2017-06-29 2020-07-14 Ethicon Llc Trocar obturator with detachable rotary tissue fastener
US10709440B2 (en) 2017-06-29 2020-07-14 Ethicon Llc Suture passing instrument with puncture site identification feature
US10568619B2 (en) 2017-06-29 2020-02-25 Ethicon Llc Surgical port with wound closure channels
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10675018B2 (en) 2017-06-29 2020-06-09 Ethicon Llc Needle guide instrument with transverse suture capture feature
US10485580B2 (en) 2017-06-29 2019-11-26 Ethicon Llc Trocar with oblique needle insertion port and coplanar stopcock
US10939937B2 (en) 2017-06-29 2021-03-09 Ethicon Llc Trocar with oblique needle insertion port and perpendicular seal latch
US10869690B2 (en) 2017-06-29 2020-12-22 Ethicon Llc Trocar obturator with transverse needle ports
US10639068B2 (en) 2017-06-29 2020-05-05 Ethicon Llc Trocar with oblique needle insertion port and perpendicular seal latch
US11389192B2 (en) 2017-06-29 2022-07-19 Cilag Gmbh International Method of suturing a trocar path incision
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10639029B2 (en) 2017-06-29 2020-05-05 Ethicon Llc Suture grasping instrument
WO2019006068A1 (en) * 2017-06-30 2019-01-03 Intuitive Surgical Operations, Inc. Electrosurgical instrument with compliant elastomeric electrode
US10478211B2 (en) 2017-07-07 2019-11-19 Ethicon Llc Features to promote removal of debris from within ultrasonic surgical instrument
US10709470B2 (en) 2017-07-10 2020-07-14 Ethicon Llc Features to couple acoustic drivetrain components in ultrasonic surgical instrument
US10813662B2 (en) 2017-07-10 2020-10-27 Ethicon Llc Acoustic drivetrain with external collar at nodal position
WO2019018289A1 (en) 2017-07-19 2019-01-24 Ethicon Llc Surgical devices and systems with rotating end effector assemblies having an ultrasonic blade
US10925630B2 (en) 2018-06-19 2021-02-23 Ethicon Llc Surgical devices and systems with rotating end effector assemblies having an ultrasonic blade
US11033293B2 (en) 2017-07-19 2021-06-15 Cilag Gmbh International Ultrasonic transducer to blade acoustic coupling, connections, and configurations
US10582945B2 (en) 2018-03-20 2020-03-10 Ethicon Llc Surgical devices and systems with rotating end effector assemblies having an ultrasonic blade
US10675094B2 (en) 2017-07-21 2020-06-09 Globus Medical Inc. Robot surgical platform
US10561436B2 (en) 2017-07-31 2020-02-18 Ethicon Llc Surgical instrument use indicator
US11259879B2 (en) 2017-08-01 2022-03-01 Inneroptic Technology, Inc. Selective transparency to assist medical device navigation
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US10624636B2 (en) 2017-08-23 2020-04-21 Covidien Lp Surgical stapling device with floating staple cartridge
US10806452B2 (en) 2017-08-24 2020-10-20 Covidien Lp Loading unit for a surgical stapling instrument
US10932846B2 (en) 2017-08-25 2021-03-02 Ethicon Llc Articulation section for shaft assembly of surgical instrument
US11160602B2 (en) 2017-08-29 2021-11-02 Cilag Gmbh International Control of surgical field irrigation
US11504126B2 (en) 2017-08-29 2022-11-22 Cilag Gmbh International Control system for clip applier
US11172928B2 (en) 2017-08-29 2021-11-16 Cilag Gmbh International Endocutter control system
JP2020533047A (en) 2017-08-29 2020-11-19 エシコン エルエルシーEthicon LLC Electric surgical system for cutting and welding parenchymal organs
US10912567B2 (en) 2017-08-29 2021-02-09 Ethicon Llc Circular stapler
US10675082B2 (en) 2017-08-29 2020-06-09 Ethicon Llc Control of surgical field irrigation by electrosurgical tool
US10905417B2 (en) * 2017-08-29 2021-02-02 Ethicon Llc Circular stapler
US10485527B2 (en) 2017-08-29 2019-11-26 Ethicon Llc Control system for clip applier
US10932808B2 (en) 2017-08-29 2021-03-02 Ethicon Llc Methods, systems, and devices for controlling electrosurgical tools
US11013528B2 (en) 2017-08-29 2021-05-25 Ethicon Llc Electrically-powered surgical systems providing fine clamping control during energy delivery
US10912581B2 (en) 2017-08-29 2021-02-09 Ethicon Llc Electrically-powered surgical systems with articulation-compensated ultrasonic energy delivery
US10856928B2 (en) 2017-08-29 2020-12-08 Ethicon Llc Electrically-powered surgical systems
US10925682B2 (en) 2017-08-29 2021-02-23 Ethicon Llc Electrically-powered surgical systems employing variable compression during treatment
US10898219B2 (en) 2017-08-29 2021-01-26 Ethicon Llc Electrically-powered surgical systems for cutting and welding solid organs
WO2019043508A2 (en) 2017-08-29 2019-03-07 Ethicon Llc Endocutter control system
US10888370B2 (en) 2017-08-29 2021-01-12 Ethicon Llc Methods, systems, and devices for controlling electrosurgical tools
US10905493B2 (en) 2017-08-29 2021-02-02 Ethicon Llc Methods, systems, and devices for controlling electrosurgical tools
US10470758B2 (en) 2017-08-29 2019-11-12 Ethicon Llc Suturing device
US10548601B2 (en) 2017-08-29 2020-02-04 Ethicon Llc Control system for clip applier
US10772677B2 (en) 2017-08-29 2020-09-15 Ethicon Llc Electrically-powered surgical systems
US10905421B2 (en) * 2017-08-29 2021-02-02 Ethicon Llc Electrically-powered surgical box staplers
US10881403B2 (en) 2017-08-29 2021-01-05 Ethicon Llc Endocutter control system
US10743903B2 (en) 2017-08-30 2020-08-18 Ethicon Llc Ultrasonic surgical instrument with pre-assembled acoustic assembly
US11134975B2 (en) 2017-08-31 2021-10-05 Cilag Gmbh International Apparatus and method to control operation of surgical instrument based on audible feedback
US11413087B2 (en) 2017-08-31 2022-08-16 Cilag Gmbh International End effector for electrosurgical instrument with irrigation
CN110177516B (en) 2017-09-05 2023-10-24 柯惠Lp公司 Collision handling algorithm for robotic surgical systems
JP2020533061A (en) 2017-09-06 2020-11-19 コヴィディエン リミテッド パートナーシップ Boundary scaling of surgical robots
US11583342B2 (en) 2017-09-14 2023-02-21 Vicarious Surgical Inc. Virtual reality surgical camera system
CA3076625A1 (en) 2017-09-27 2019-04-04 Virtual Incision Corporation Robotic surgical devices with tracking camera technology and related systems and methods
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US11033323B2 (en) 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
US11564756B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11229436B2 (en) 2017-10-30 2022-01-25 Cilag Gmbh International Surgical system comprising a surgical tool and a surgical hub
US11317919B2 (en) 2017-10-30 2022-05-03 Cilag Gmbh International Clip applier comprising a clip crimping system
US11311342B2 (en) 2017-10-30 2022-04-26 Cilag Gmbh International Method for communicating with surgical instrument systems
US11291510B2 (en) 2017-10-30 2022-04-05 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11510741B2 (en) 2017-10-30 2022-11-29 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
US11406390B2 (en) 2017-10-30 2022-08-09 Cilag Gmbh International Clip applier comprising interchangeable clip reloads
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11129636B2 (en) 2017-10-30 2021-09-28 Cilag Gmbh International Surgical instruments comprising an articulation drive that provides for high articulation angles
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US20190133578A1 (en) 2017-11-06 2019-05-09 Ethicon Llc Multi-Layer Tissue Thickness Compensator Comprising Resilient and Sacrificial Collapsible Layers
JP6778242B2 (en) 2017-11-09 2020-10-28 グローバス メディカル インコーポレイティッド Surgical robot systems for bending surgical rods, and related methods and equipment
US11794338B2 (en) 2017-11-09 2023-10-24 Globus Medical Inc. Robotic rod benders and related mechanical and motor housings
US11382666B2 (en) 2017-11-09 2022-07-12 Globus Medical Inc. Methods providing bend plans for surgical rods and related controllers and computer program products
US11134862B2 (en) 2017-11-10 2021-10-05 Globus Medical, Inc. Methods of selecting surgical implants and related devices
US10925603B2 (en) 2017-11-14 2021-02-23 Covidien Lp Reload with articulation stabilization system
US10863987B2 (en) 2017-11-16 2020-12-15 Covidien Lp Surgical instrument with imaging device
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11179151B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a display
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11304745B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical evacuation sensing and display
US11419667B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US11266468B2 (en) 2017-12-28 2022-03-08 Cilag Gmbh International Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11076921B2 (en) 2017-12-28 2021-08-03 Cilag Gmbh International Adaptive control program updates for surgical hubs
US11786245B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Surgical systems with prioritized data transmission capabilities
US11056244B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks
US11446052B2 (en) 2017-12-28 2022-09-20 Cilag Gmbh International Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
US20190200981A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US11273001B2 (en) 2017-12-28 2022-03-15 Cilag Gmbh International Surgical hub and modular device response adjustment based on situational awareness
US11633237B2 (en) 2017-12-28 2023-04-25 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US20190201042A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Determining the state of an ultrasonic electromechanical system according to frequency shift
US11069012B2 (en) 2017-12-28 2021-07-20 Cilag Gmbh International Interactive surgical systems with condition handling of devices and data capabilities
US11100631B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Use of laser light and red-green-blue coloration to determine properties of back scattered light
US11844579B2 (en) 2017-12-28 2023-12-19 Cilag Gmbh International Adjustments based on airborne particle properties
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US11160605B2 (en) 2017-12-28 2021-11-02 Cilag Gmbh International Surgical evacuation sensing and motor control
US11213359B2 (en) 2017-12-28 2022-01-04 Cilag Gmbh International Controllers for robot-assisted surgical platforms
US11540855B2 (en) 2017-12-28 2023-01-03 Cilag Gmbh International Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
US11423007B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Adjustment of device control programs based on stratified contextual data in addition to the data
US11253315B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Increasing radio frequency to create pad-less monopolar loop
US11257589B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US11559307B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method of robotic hub communication, detection, and control
US11602393B2 (en) 2017-12-28 2023-03-14 Cilag Gmbh International Surgical evacuation sensing and generator control
US10898622B2 (en) 2017-12-28 2021-01-26 Ethicon Llc Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device
US11284936B2 (en) 2017-12-28 2022-03-29 Cilag Gmbh International Surgical instrument having a flexible electrode
US11424027B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Method for operating surgical instrument systems
US11832840B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical instrument having a flexible circuit
US20190201113A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Controls for robot-assisted surgical platforms
US11464535B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Detection of end effector emersion in liquid
US11317937B2 (en) 2018-03-08 2022-05-03 Cilag Gmbh International Determining the state of an ultrasonic end effector
US11051876B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Surgical evacuation flow paths
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US10987178B2 (en) 2017-12-28 2021-04-27 Ethicon Llc Surgical hub control arrangements
US11464559B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
US20190201087A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Smoke evacuation system including a segmented control circuit for interactive surgical platform
US10849697B2 (en) 2017-12-28 2020-12-01 Ethicon Llc Cloud interface for coupled surgical devices
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11529187B2 (en) 2017-12-28 2022-12-20 Cilag Gmbh International Surgical evacuation sensor arrangements
US11308075B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
US11571234B2 (en) 2017-12-28 2023-02-07 Cilag Gmbh International Temperature control of ultrasonic end effector and control system therefor
US10892899B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Self describing data packets generated at an issuing instrument
US11589888B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Method for controlling smart energy devices
US20190201039A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Situational awareness of electrosurgical systems
US10892995B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11096693B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11304699B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US10932872B2 (en) 2017-12-28 2021-03-02 Ethicon Llc Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US11419630B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Surgical system distributed processing
US11576677B2 (en) 2017-12-28 2023-02-14 Cilag Gmbh International Method of hub communication, processing, display, and cloud analytics
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11559308B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method for smart energy device infrastructure
US11324557B2 (en) 2017-12-28 2022-05-10 Cilag Gmbh International Surgical instrument with a sensing array
US11311306B2 (en) 2017-12-28 2022-04-26 Cilag Gmbh International Surgical systems for detecting end effector tissue distribution irregularities
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
US11179208B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Cloud-based medical analytics for security and authentication trends and reactive measures
US11376002B2 (en) 2017-12-28 2022-07-05 Cilag Gmbh International Surgical instrument cartridge sensor assemblies
US11304763B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
US11026751B2 (en) 2017-12-28 2021-06-08 Cilag Gmbh International Display of alignment of staple cartridge to prior linear staple line
US11147607B2 (en) 2017-12-28 2021-10-19 Cilag Gmbh International Bipolar combination device that automatically adjusts pressure based on energy modality
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11410259B2 (en) 2017-12-28 2022-08-09 Cilag Gmbh International Adaptive control program updates for surgical devices
US10943454B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Detection and escalation of security responses of surgical instruments to increasing severity threats
US10966791B2 (en) 2017-12-28 2021-04-06 Ethicon Llc Cloud-based medical analytics for medical facility segmented individualization of instrument function
US10758310B2 (en) 2017-12-28 2020-09-01 Ethicon Llc Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US10944728B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Interactive surgical systems with encrypted communication capabilities
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11304720B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Activation of energy devices
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11234756B2 (en) 2017-12-28 2022-02-01 Cilag Gmbh International Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter
US11278281B2 (en) 2017-12-28 2022-03-22 Cilag Gmbh International Interactive surgical system
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11364075B2 (en) 2017-12-28 2022-06-21 Cilag Gmbh International Radio frequency energy device for delivering combined electrical signals
US20190201146A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Safety systems for smart powered surgical stapling
US11291495B2 (en) 2017-12-28 2022-04-05 Cilag Gmbh International Interruption of energy due to inadvertent capacitive coupling
US11432885B2 (en) 2017-12-28 2022-09-06 Cilag Gmbh International Sensing arrangements for robot-assisted surgical platforms
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
CN111556735A (en) 2018-01-04 2020-08-18 柯惠Lp公司 Systems and assemblies for mounting surgical accessories to robotic surgical systems and providing access therethrough
WO2019136360A1 (en) 2018-01-05 2019-07-11 Board Of Regents Of The University Of Nebraska Single-arm robotic device with compact joint design and related systems and methods
US10945732B2 (en) 2018-01-17 2021-03-16 Covidien Lp Surgical stapler with self-returning assembly
US11129587B2 (en) 2018-01-22 2021-09-28 Novasignal Corp. Systems and methods for detecting neurological conditions
US20190223837A1 (en) * 2018-01-23 2019-07-25 Neural Analytics, Inc. Disposable probe
US11484365B2 (en) 2018-01-23 2022-11-01 Inneroptic Technology, Inc. Medical image guidance
US20190254753A1 (en) 2018-02-19 2019-08-22 Globus Medical, Inc. Augmented reality navigation systems for use with robotic surgical systems and methods of their use
EP3758618A4 (en) 2018-03-02 2021-10-06 Covidien LP Surgical stapling instrument
US11189379B2 (en) 2018-03-06 2021-11-30 Digital Surgery Limited Methods and systems for using multiple data structures to process surgical data
US11701162B2 (en) 2018-03-08 2023-07-18 Cilag Gmbh International Smart blade application for reusable and disposable devices
US11839396B2 (en) 2018-03-08 2023-12-12 Cilag Gmbh International Fine dissection mode for tissue classification
US11259830B2 (en) 2018-03-08 2022-03-01 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
WO2019173056A1 (en) 2018-03-08 2019-09-12 Covidien Lp Surgical robotic systems
US10631860B2 (en) 2018-03-23 2020-04-28 Ethicon Llc Surgical instrument with electrical contact under membrane
US11026681B2 (en) 2018-03-23 2021-06-08 Cilag Gmbh International Surgical instrument with recessed contacts and electrically insulating barriers
US10631861B2 (en) 2018-03-23 2020-04-28 Ethicon Llc Slip ring assembly for surgical instrument
US10779828B2 (en) 2018-03-23 2020-09-22 Ethicon Llc Surgical instrument with capacitive electrical interface
US10799257B2 (en) 2018-03-23 2020-10-13 Ethicon Llc Seal for surgical instrument
US10639038B2 (en) 2018-03-23 2020-05-05 Ethicon Llc Staple cartridge with short circuit prevention features
US10842517B2 (en) 2018-03-23 2020-11-24 Ethicon Llc Surgical instrument with compressible electrical connector
US10973520B2 (en) 2018-03-28 2021-04-13 Ethicon Llc Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature
US11090047B2 (en) 2018-03-28 2021-08-17 Cilag Gmbh International Surgical instrument comprising an adaptive control system
US11219453B2 (en) 2018-03-28 2022-01-11 Cilag Gmbh International Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
US11589865B2 (en) 2018-03-28 2023-02-28 Cilag Gmbh International Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems
US11278280B2 (en) 2018-03-28 2022-03-22 Cilag Gmbh International Surgical instrument comprising a jaw closure lockout
US11096688B2 (en) 2018-03-28 2021-08-24 Cilag Gmbh International Rotary driven firing members with different anvil and channel engagement features
US11471156B2 (en) 2018-03-28 2022-10-18 Cilag Gmbh International Surgical stapling devices with improved rotary driven closure systems
US11129611B2 (en) 2018-03-28 2021-09-28 Cilag Gmbh International Surgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein
US11207067B2 (en) 2018-03-28 2021-12-28 Cilag Gmbh International Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
EP3773265A4 (en) * 2018-03-29 2022-04-13 Covidien LP Robotic surgical systems and instrument drive assemblies
US10573023B2 (en) 2018-04-09 2020-02-25 Globus Medical, Inc. Predictive visualization of medical imaging scanner component movement
US11051841B2 (en) 2018-04-12 2021-07-06 Ethicon Llc Mechanical lockout for ultrasonic surgical instrument
US11160578B2 (en) 2018-04-12 2021-11-02 Cilag Gmbh International Mechanical lockout for ultrasonic surgical instrument
US10945755B2 (en) 2018-04-12 2021-03-16 Ethicon Llc Mechanical lockout for ultrasonic surgical instrument
US11076881B2 (en) 2018-04-12 2021-08-03 Cilag Gmbh International Electrical lockout for ultrasonic surgical instrument
CN111989065A (en) 2018-04-20 2020-11-24 柯惠Lp公司 Compensation of observer movement in a robotic surgical system with a stereoscopic display
US11622805B2 (en) 2018-06-08 2023-04-11 Acclarent, Inc. Apparatus and method for performing vidian neurectomy procedure
US11147629B2 (en) 2018-06-08 2021-10-19 Acclarent, Inc. Surgical navigation system with automatically driven endoscope
US10849622B2 (en) 2018-06-21 2020-12-01 Covidien Lp Articulated stapling with fire lock
CN112105312A (en) 2018-07-03 2020-12-18 柯惠Lp公司 Systems, methods, and computer-readable media for detecting image degradation during a surgical procedure
BR112021000654A2 (en) 2018-07-16 2021-04-13 Ethicon Llc SURGICAL CLAMPING ACTUATOR CLAW WITH DEFLECTED TIP TOWARDS ANOTHER CLAW
WO2020016724A2 (en) 2018-07-16 2020-01-23 Ethicon Llc Method of surgical stapling with end effector component having a curved tip
US10973515B2 (en) 2018-07-16 2021-04-13 Ethicon Llc Permanent attachment means for curved tip of component of surgical stapling instrument
US10912558B2 (en) 2018-07-16 2021-02-09 Ethicon Llc Surgical stapling end effector component with deformable tip having thick distal end
WO2020016721A1 (en) 2018-07-16 2020-01-23 Ethicon Llc Surgical stapling end effector component with tip having varying bend angle
US10786252B2 (en) 2018-07-16 2020-09-29 Ethicon Llc Surgical stapling end effector component with deformable tip having void
US11160550B2 (en) 2018-07-16 2021-11-02 Cilag Gmbh International Surgical stapling end effector component with articulation and asymmetric deformable tip
US10912561B2 (en) 2018-07-16 2021-02-09 Ethicon Llc Buttress applier cartridge for surgical stapler having end effector with deflectable curved tip
US11179154B2 (en) 2018-07-16 2021-11-23 Cilag Gmbh International Surgical stapling end effector component with deformable tip skewing in multiple planes
US10736631B2 (en) 2018-08-07 2020-08-11 Covidien Lp End effector with staple cartridge ejector
US11278285B2 (en) 2018-08-13 2022-03-22 Cilag GbmH International Clamping assembly for linear surgical stapler
US11033266B2 (en) 2018-08-13 2021-06-15 Cilag Gmbh International Decoupling mechanism for linear surgical stapler
US10898187B2 (en) 2018-08-13 2021-01-26 Ethicon Llc Firing system for linear surgical stapler
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10849620B2 (en) 2018-09-14 2020-12-01 Covidien Lp Connector mechanisms for surgical stapling instruments
US11510669B2 (en) 2020-09-29 2022-11-29 Covidien Lp Hand-held surgical instruments
US11109746B2 (en) 2018-10-10 2021-09-07 Titan Medical Inc. Instrument insertion system, method, and apparatus for performing medical procedures
US10905419B2 (en) 2018-10-11 2021-02-02 Ethicon Llc Closure assembly for linear surgical stapler
US11045193B2 (en) 2018-10-11 2021-06-29 Cilag Gmbh International Anvil assembly for linear surgical stapler
US11090051B2 (en) 2018-10-23 2021-08-17 Covidien Lp Surgical stapling device with floating staple cartridge
US11197673B2 (en) 2018-10-30 2021-12-14 Covidien Lp Surgical stapling instruments and end effector assemblies thereof
US11337742B2 (en) 2018-11-05 2022-05-24 Globus Medical Inc Compliant orthopedic driver
USD895112S1 (en) 2018-11-15 2020-09-01 Ethicon Llc Laparoscopic bipolar electrosurgical device
US11278360B2 (en) 2018-11-16 2022-03-22 Globus Medical, Inc. End-effectors for surgical robotic systems having sealed optical components
US11602402B2 (en) 2018-12-04 2023-03-14 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11744655B2 (en) 2018-12-04 2023-09-05 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11116505B2 (en) 2018-12-28 2021-09-14 Cilag Gmbh International Applicator for surgical stapler buttress
USD933220S1 (en) 2018-12-28 2021-10-12 Cilag Gmbh International Buttress assembly for a surgical stapler
US11202628B2 (en) 2018-12-28 2021-12-21 Cilag Gmbh International Surgical stapler with tissue engagement features around tissue containment pin
US11586106B2 (en) 2018-12-28 2023-02-21 Titan Medical Inc. Imaging apparatus having configurable stereoscopic perspective
USD926318S1 (en) 2018-12-28 2021-07-27 Cilag Gmbh International Surgical stapler deck with tissue engagement recess features
USD922576S1 (en) 2018-12-28 2021-06-15 Cilag Gmbh International Applicator tray for a buttress applicator for a surgical stapler
US11166724B2 (en) 2018-12-28 2021-11-09 Cilag Gmbh International Adhesive distribution on buttress for surgical stapler
USD901686S1 (en) 2018-12-28 2020-11-10 Ethicon Llc Applicator for surgical stapler buttress
US11432817B2 (en) 2018-12-28 2022-09-06 Cilag Gmbh International Packaging for surgical stapler buttress
US10905424B2 (en) 2018-12-28 2021-02-02 Ethicon Llc Curved tip surgical stapler buttress assembly applicator with proximal alignment features
USD903115S1 (en) 2018-12-28 2020-11-24 Ethicon Llc Applicator for a surgical stapler buttress
US11033269B2 (en) 2018-12-28 2021-06-15 Cilag Gmbh International Method of applying buttresses to surgically cut and stapled sites
US11103243B2 (en) 2018-12-28 2021-08-31 Cilag Gmbh International Curved tip surgical stapler buttress assembly applicator with compression layer pocket feature
US11701109B2 (en) 2018-12-28 2023-07-18 Cilag Gmbh International Surgical stapler with sloped staple deck for varying tissue compression
US11272935B2 (en) 2018-12-28 2022-03-15 Cilag Gmbh International Curved tip surgical stapler buttress assembly applicator with opening feature for curved tip alignment
USD932621S1 (en) 2018-12-28 2021-10-05 Cilag Gmbh International Buttress assembly for a surgical stapler
USD926317S1 (en) 2018-12-28 2021-07-27 Cilag Gmbh International Surgical stapler deck with tissue engagement cleat features
US11166725B2 (en) 2018-12-28 2021-11-09 Cilag Gmbh International Configuration of buttress for surgical stapler
US10912563B2 (en) 2019-01-02 2021-02-09 Covidien Lp Stapling device including tool assembly stabilizing member
US11903658B2 (en) 2019-01-07 2024-02-20 Virtual Incision Corporation Robotically assisted surgical system and related devices and methods
US11717355B2 (en) 2019-01-29 2023-08-08 Covidien Lp Drive mechanisms for surgical instruments such as for use in robotic surgical systems
US11576733B2 (en) 2019-02-06 2023-02-14 Covidien Lp Robotic surgical assemblies including electrosurgical instruments having articulatable wrist assemblies
US11484372B2 (en) 2019-02-15 2022-11-01 Covidien Lp Articulation mechanisms for surgical instruments such as for use in robotic surgical systems
US11357503B2 (en) 2019-02-19 2022-06-14 Cilag Gmbh International Staple cartridge retainers with frangible retention features and methods of using same
US11751872B2 (en) 2019-02-19 2023-09-12 Cilag Gmbh International Insertable deactivator element for surgical stapler lockouts
US11317915B2 (en) 2019-02-19 2022-05-03 Cilag Gmbh International Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
US11259807B2 (en) 2019-02-19 2022-03-01 Cilag Gmbh International Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device
US11369377B2 (en) 2019-02-19 2022-06-28 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US11344297B2 (en) 2019-02-28 2022-05-31 Covidien Lp Surgical stapling device with independently movable jaws
US11259808B2 (en) 2019-03-13 2022-03-01 Covidien Lp Tool assemblies with a gap locking member
US11918313B2 (en) 2019-03-15 2024-03-05 Globus Medical Inc. Active end effectors for surgical robots
US11571265B2 (en) 2019-03-22 2023-02-07 Globus Medical Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US20200297357A1 (en) 2019-03-22 2020-09-24 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11806084B2 (en) 2019-03-22 2023-11-07 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11317978B2 (en) 2019-03-22 2022-05-03 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11382549B2 (en) 2019-03-22 2022-07-12 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11419616B2 (en) 2019-03-22 2022-08-23 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11284892B2 (en) 2019-04-01 2022-03-29 Covidien Lp Loading unit and adapter with modified coupling assembly
US11284893B2 (en) 2019-04-02 2022-03-29 Covidien Lp Stapling device with articulating tool assembly
US11241228B2 (en) 2019-04-05 2022-02-08 Covidien Lp Surgical instrument including an adapter assembly and an articulating surgical loading unit
US11202629B2 (en) 2019-04-26 2021-12-21 Cilag Gmbh International Clamping based lockout mechanism for right angle surgical stapler
US11324504B2 (en) 2019-04-26 2022-05-10 Cilag Gmbh International Cartridge based lockout mechanism for right angle surgical stapler
US11266403B2 (en) 2019-04-26 2022-03-08 Cilag Gmbh International Tissue cutting washer for right angle surgical stapler
US11166721B2 (en) 2019-04-26 2021-11-09 Cilag Gmbh International Staple retainer for surgical stapler cartridge
USD938029S1 (en) 2019-04-26 2021-12-07 Cilag Gmbh International Staple retainer for surgical stapler cartridge
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11202650B2 (en) 2019-04-30 2021-12-21 Cilag Gmbh International Blade cooling gas/fluid storage
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11350960B2 (en) 2019-04-30 2022-06-07 Cilag Gmbh International Dual sterilization and temperature based sterilization detection
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11123095B2 (en) 2019-04-30 2021-09-21 Cilag Gmbh International Blade grounding mechanisms and alternative pin designs
US11179177B2 (en) 2019-04-30 2021-11-23 Cilag Gmbh International Ultrasonic blade and clamp arm matching design
US11045179B2 (en) 2019-05-20 2021-06-29 Global Medical Inc Robot-mounted retractor system
US20200375596A1 (en) 2019-05-28 2020-12-03 Ethicon Llc Nozzle Fluid Ingress Prevention Features for Surgical Stapler
USD950728S1 (en) 2019-06-25 2022-05-03 Cilag Gmbh International Surgical staple cartridge
USD952144S1 (en) 2019-06-25 2022-05-17 Cilag Gmbh International Surgical staple cartridge retainer with firing system authentication key
USD964564S1 (en) 2019-06-25 2022-09-20 Cilag Gmbh International Surgical staple cartridge retainer with a closure system authentication key
US11547468B2 (en) 2019-06-27 2023-01-10 Cilag Gmbh International Robotic surgical system with safety and cooperative sensing control
US11612445B2 (en) 2019-06-27 2023-03-28 Cilag Gmbh International Cooperative operation of robotic arms
US11607278B2 (en) 2019-06-27 2023-03-21 Cilag Gmbh International Cooperative robotic surgical systems
US11413102B2 (en) 2019-06-27 2022-08-16 Cilag Gmbh International Multi-access port for surgical robotic systems
US11723729B2 (en) 2019-06-27 2023-08-15 Cilag Gmbh International Robotic surgical assembly coupling safety mechanisms
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11224419B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Bi-directional barbed suture with tailored suture segments
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11628023B2 (en) 2019-07-10 2023-04-18 Globus Medical, Inc. Robotic navigational system for interbody implants
US11224424B2 (en) 2019-08-02 2022-01-18 Covidien Lp Linear stapling device with vertically movable knife
US11202686B2 (en) * 2019-08-21 2021-12-21 Ethicon LLC. Manual knife bailout monitoring using inductive coupling
US11612409B2 (en) 2019-08-30 2023-03-28 Cilag Gmbh International Ultrasonic transducer alignment of an articulating ultrasonic surgical instrument
US11712261B2 (en) 2019-08-30 2023-08-01 Cilag Gmbh International Rotatable linear actuation mechanism
US11457945B2 (en) 2019-08-30 2022-10-04 Cilag Gmbh International Ultrasonic blade and clamp arm alignment features
US11690642B2 (en) 2019-08-30 2023-07-04 Cilag Gmbh International Ultrasonic surgical instrument with a multi-planar articulating shaft assembly
US11471181B2 (en) 2019-08-30 2022-10-18 Cilag Gmbh International Ultrasonic surgical instrument with axisymmetric clamping
EP4140420A1 (en) 2019-08-30 2023-03-01 Cilag GmbH International Ultrasonic surgical instrument with a multi-planar articulating shaft assembly
US11571171B2 (en) 2019-09-24 2023-02-07 Globus Medical, Inc. Compound curve cable chain
US11426178B2 (en) 2019-09-27 2022-08-30 Globus Medical Inc. Systems and methods for navigating a pin guide driver
US11864857B2 (en) 2019-09-27 2024-01-09 Globus Medical, Inc. Surgical robot with passive end effector
US11890066B2 (en) 2019-09-30 2024-02-06 Globus Medical, Inc Surgical robot with passive end effector
US11406385B2 (en) 2019-10-11 2022-08-09 Covidien Lp Stapling device with a gap locking member
US11510684B2 (en) 2019-10-14 2022-11-29 Globus Medical, Inc. Rotary motion passive end effector for surgical robots in orthopedic surgeries
US11857283B2 (en) 2019-11-05 2024-01-02 Cilag Gmbh International Articulation joint with helical lumen
US11123068B2 (en) 2019-11-08 2021-09-21 Covidien Lp Surgical staple cartridge
US11534163B2 (en) 2019-11-21 2022-12-27 Covidien Lp Surgical stapling instruments
US11707274B2 (en) 2019-12-06 2023-07-25 Covidien Lp Articulating mechanism for surgical instrument
US11109862B2 (en) 2019-12-12 2021-09-07 Covidien Lp Surgical stapling device with flexible shaft
US11737747B2 (en) 2019-12-17 2023-08-29 Covidien Lp Hand-held surgical instruments
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11452524B2 (en) 2020-01-31 2022-09-27 Covidien Lp Surgical stapling device with lockout
US11278282B2 (en) 2020-01-31 2022-03-22 Covidien Lp Stapling device with selective cutting
US11382699B2 (en) 2020-02-10 2022-07-12 Globus Medical Inc. Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery
US11890014B2 (en) 2020-02-14 2024-02-06 Covidien Lp Cartridge holder for surgical staples and having ridges in peripheral walls for gripping tissue
US11207150B2 (en) 2020-02-19 2021-12-28 Globus Medical, Inc. Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment
US11344301B2 (en) 2020-03-02 2022-05-31 Covidien Lp Surgical stapling device with replaceable reload assembly
US11344302B2 (en) 2020-03-05 2022-05-31 Covidien Lp Articulation mechanism for surgical stapling device
US11246593B2 (en) 2020-03-06 2022-02-15 Covidien Lp Staple cartridge
US11707278B2 (en) 2020-03-06 2023-07-25 Covidien Lp Surgical stapler tool assembly to minimize bleeding
US11317911B2 (en) 2020-03-10 2022-05-03 Covidien Lp Tool assembly with replaceable cartridge assembly
US11357505B2 (en) 2020-03-10 2022-06-14 Covidien Lp Surgical stapling apparatus with firing lockout mechanism
US11406383B2 (en) 2020-03-17 2022-08-09 Covidien Lp Fire assisted powered EGIA handle
US11426159B2 (en) 2020-04-01 2022-08-30 Covidien Lp Sled detection device
US11331098B2 (en) 2020-04-01 2022-05-17 Covidien Lp Sled detection device
US11504117B2 (en) 2020-04-02 2022-11-22 Covidien Lp Hand-held surgical instruments
US11253216B2 (en) 2020-04-28 2022-02-22 Globus Medical Inc. Fixtures for fluoroscopic imaging systems and related navigation systems and methods
US11153555B1 (en) 2020-05-08 2021-10-19 Globus Medical Inc. Extended reality headset camera system for computer assisted navigation in surgery
US11510750B2 (en) 2020-05-08 2022-11-29 Globus Medical, Inc. Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications
US11382700B2 (en) 2020-05-08 2022-07-12 Globus Medical Inc. Extended reality headset tool tracking and control
US11937794B2 (en) 2020-05-11 2024-03-26 Covidien Lp Powered handle assembly for surgical devices
US11191537B1 (en) 2020-05-12 2021-12-07 Covidien Lp Stapling device with continuously parallel jaws
US11406387B2 (en) 2020-05-12 2022-08-09 Covidien Lp Surgical stapling device with replaceable staple cartridge
US11766275B2 (en) 2020-05-18 2023-09-26 Covidien Lp Articulating ultrasonic surgical instruments and systems
US11534167B2 (en) 2020-05-28 2022-12-27 Covidien Lp Electrotaxis-conducive stapling
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US11191538B1 (en) 2020-06-08 2021-12-07 Covidien Lp Surgical stapling device with parallel jaw closure
US11317973B2 (en) 2020-06-09 2022-05-03 Globus Medical, Inc. Camera tracking bar for computer assisted navigation during surgery
US11382713B2 (en) 2020-06-16 2022-07-12 Globus Medical, Inc. Navigated surgical system with eye to XR headset display calibration
US11844517B2 (en) 2020-06-25 2023-12-19 Covidien Lp Linear stapling device with continuously parallel jaws
US11324500B2 (en) 2020-06-30 2022-05-10 Covidien Lp Surgical stapling device
US11446028B2 (en) 2020-07-09 2022-09-20 Covidien Lp Tool assembly with pivotable clamping beam
US11517305B2 (en) 2020-07-09 2022-12-06 Covidien Lp Contoured staple pusher
US11877807B2 (en) 2020-07-10 2024-01-23 Globus Medical, Inc Instruments for navigated orthopedic surgeries
USD963851S1 (en) 2020-07-10 2022-09-13 Covidien Lp Port apparatus
US11857247B2 (en) 2020-07-17 2024-01-02 Cilag Gmbh International Jaw for surgical instrument end effector
US11793588B2 (en) 2020-07-23 2023-10-24 Globus Medical, Inc. Sterile draping of robotic arms
US20220031350A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with double pivot articulation joint arrangements
US11266402B2 (en) 2020-07-30 2022-03-08 Covidien Lp Sensing curved tip for surgical stapling instruments
US11439392B2 (en) 2020-08-03 2022-09-13 Covidien Lp Surgical stapling device and fastener for pathological exam
US11395654B2 (en) 2020-08-07 2022-07-26 Covidien Lp Surgical stapling device with articulation braking assembly
US11602342B2 (en) 2020-08-27 2023-03-14 Covidien Lp Surgical stapling device with laser probe
US11737831B2 (en) 2020-09-02 2023-08-29 Globus Medical Inc. Surgical object tracking template generation for computer assisted navigation during surgical procedure
US11678878B2 (en) 2020-09-16 2023-06-20 Covidien Lp Articulation mechanism for surgical stapling device
US11523785B2 (en) 2020-09-24 2022-12-13 Globus Medical, Inc. Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement
US11660092B2 (en) 2020-09-29 2023-05-30 Covidien Lp Adapter for securing loading units to handle assemblies of surgical stapling instruments
US11406384B2 (en) 2020-10-05 2022-08-09 Covidien Lp Stapling device with drive assembly stop member
US11576674B2 (en) 2020-10-06 2023-02-14 Covidien Lp Surgical stapling device with articulation lock assembly
US11944341B2 (en) * 2020-10-22 2024-04-02 Cilag Gmbh International Ultrasonic surgical instrument with a mid-shaft closure system and related methods
US11911112B2 (en) 2020-10-27 2024-02-27 Globus Medical, Inc. Robotic navigational system
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11941814B2 (en) 2020-11-04 2024-03-26 Globus Medical Inc. Auto segmentation using 2-D images taken during 3-D imaging spin
US11890007B2 (en) 2020-11-18 2024-02-06 Covidien Lp Stapling device with flex cable and tensioning mechanism
US11717350B2 (en) 2020-11-24 2023-08-08 Globus Medical Inc. Methods for robotic assistance and navigation in spinal surgery and related systems
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11737774B2 (en) 2020-12-04 2023-08-29 Covidien Lp Surgical instrument with articulation assembly
US11819200B2 (en) 2020-12-15 2023-11-21 Covidien Lp Surgical instrument with articulation assembly
US20220192767A1 (en) 2020-12-21 2022-06-23 Ethicon Llc Dynamic trocar positioning for robotic surgical system
US11553914B2 (en) 2020-12-22 2023-01-17 Covidien Lp Surgical stapling device with parallel jaw closure
US11759206B2 (en) 2021-01-05 2023-09-19 Covidien Lp Surgical stapling device with firing lockout mechanism
US11744582B2 (en) 2021-01-05 2023-09-05 Covidien Lp Surgical stapling device with firing lockout mechanism
US11759207B2 (en) 2021-01-27 2023-09-19 Covidien Lp Surgical stapling apparatus with adjustable height clamping member
US11517313B2 (en) 2021-01-27 2022-12-06 Covidien Lp Surgical stapling device with laminated drive member
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
EP4114297A1 (en) 2021-03-02 2023-01-11 Cilag GmbH International Adjustment feature for electrosurgical instrument
US11717300B2 (en) 2021-03-11 2023-08-08 Covidien Lp Surgical stapling apparatus with integrated visualization
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11497495B2 (en) 2021-03-31 2022-11-15 Covidien Lp Continuous stapler strip for use with a surgical stapling device
US11666330B2 (en) 2021-04-05 2023-06-06 Covidien Lp Surgical stapling device with lockout mechanism
US11576670B2 (en) 2021-05-06 2023-02-14 Covidien Lp Surgical stapling device with optimized drive assembly
US11812956B2 (en) 2021-05-18 2023-11-14 Covidien Lp Dual firing radial stapling device
US11696755B2 (en) 2021-05-19 2023-07-11 Covidien Lp Surgical stapling device with reload assembly removal lockout
US11510673B1 (en) 2021-05-25 2022-11-29 Covidien Lp Powered stapling device with manual retraction
US11771423B2 (en) 2021-05-25 2023-10-03 Covidien Lp Powered stapling device with manual retraction
US11701119B2 (en) 2021-05-26 2023-07-18 Covidien Lp Powered stapling device with rack release
US11948226B2 (en) 2021-05-28 2024-04-02 Covidien Lp Systems and methods for clinical workspace simulation
US20220378426A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a mounted shaft orientation sensor
US11576675B2 (en) 2021-06-07 2023-02-14 Covidien Lp Staple cartridge with knife
US11707275B2 (en) 2021-06-29 2023-07-25 Covidien Lp Asymmetrical surgical stapling device
US11617579B2 (en) 2021-06-29 2023-04-04 Covidien Lp Ultra low profile surgical stapling instrument for tissue resections
US11602344B2 (en) 2021-06-30 2023-03-14 Covidien Lp Surgical stapling apparatus with firing lockout assembly
US11931026B2 (en) 2021-06-30 2024-03-19 Cilag Gmbh International Staple cartridge replacement
US11857273B2 (en) 2021-07-06 2024-01-02 Globus Medical, Inc. Ultrasonic robotic surgical navigation
US11439444B1 (en) 2021-07-22 2022-09-13 Globus Medical, Inc. Screw tower and rod reduction tool
US11540831B1 (en) 2021-08-12 2023-01-03 Covidien Lp Staple cartridge with actuation sled detection
US11779334B2 (en) 2021-08-19 2023-10-10 Covidien Lp Surgical stapling device including a manual retraction assembly
US20230056243A1 (en) 2021-08-19 2023-02-23 Sterilmed, Inc. Apparatus and method to inspect microlumen of catheter
US11576671B1 (en) 2021-08-20 2023-02-14 Covidien Lp Small diameter linear surgical stapling apparatus
US11707277B2 (en) 2021-08-20 2023-07-25 Covidien Lp Articulating surgical stapling apparatus with pivotable knife bar guide assembly
US11864761B2 (en) 2021-09-14 2024-01-09 Covidien Lp Surgical instrument with illumination mechanism
US11660094B2 (en) 2021-09-29 2023-05-30 Covidien Lp Surgical fastening instrument with two-part surgical fasteners
US11653922B2 (en) 2021-09-29 2023-05-23 Covidien Lp Surgical stapling device with firing lockout mechanism
US20230096074A1 (en) 2021-09-30 2023-03-30 Cilag Gmbh International Electrosurgical instrument with light accumulator end effector and fiber optics
US11849949B2 (en) 2021-09-30 2023-12-26 Covidien Lp Surgical stapling device with firing lockout member
US20230100459A1 (en) 2021-09-30 2023-03-30 Cilag Gmbh International Electrosurgical instrument with fiber optic rotary coupling
US20230101623A1 (en) 2021-09-30 2023-03-30 Cilag Gmbh International Electrosurgical system with optical sensor electronics
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US11911115B2 (en) 2021-12-20 2024-02-27 Globus Medical Inc. Flat panel registration fixture and method of using same
WO2023128665A1 (en) * 2021-12-29 2023-07-06 주식회사 리브스메드 Surgery instrument
WO2023170645A1 (en) 2022-03-11 2023-09-14 Cilag Gmbh International Electrosurgical instrument with clamp closure sensor
EP4241713A1 (en) 2022-03-11 2023-09-13 Cilag GmbH International Electrosurgical instrument with clamp closure sensor
US20240000499A1 (en) 2022-06-30 2024-01-04 Cilag Gmbh International Electrosurgical instrument for applying non-therapeutic rf signals
US11896327B1 (en) 2022-12-28 2024-02-13 Cilag Gmbh International Tissue sensing circuit for surgical instrument

Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038987A (en) * 1974-02-08 1977-08-02 Olympus Optical Co., Ltd. Forceps device for endoscope
US4149278A (en) * 1977-09-27 1979-04-17 Nasa Compact artificial hand
US4281447A (en) * 1979-03-01 1981-08-04 Mcdonnell Douglas Corporation Detachable tool interface system for a robot
US4332066A (en) * 1980-01-07 1982-06-01 General Dynamics Corporation Compliance mechanism
US4367998A (en) * 1979-09-13 1983-01-11 United Kingdom Atomic Energy Authority Manipulators
US4486928A (en) * 1981-07-09 1984-12-11 Magnavox Government And Industrial Electronics Company Apparatus for tool storage and selection
US4500065A (en) * 1982-03-01 1985-02-19 Cincinnati Milacron Inc. Releasable tool mount for manipulator
US4511305A (en) * 1982-01-16 1985-04-16 Meidensha Electric Mfg. Co., Ltd. Manipulator
US4512709A (en) * 1983-07-25 1985-04-23 Cincinnati Milacron Inc. Robot toolchanger system
US4706372A (en) * 1985-06-11 1987-11-17 D.E.A. Digital Electronic Automation S.P.A. Device for effecting automatic exchange of measuring tools in a measuring robot or machine
US4710093A (en) * 1984-06-08 1987-12-01 Kuka Schweissanlagen & Roboter Gmbh Device for the automatic gripping and releasing of a tool holder in a manipulator
US4744363A (en) * 1986-07-07 1988-05-17 Hasson Harrith M Intra-abdominal organ stabilizer, retractor and tissue manipulator
US4751925A (en) * 1984-12-28 1988-06-21 Reinhold Tontarra Gripper for surgical purposes
US4766775A (en) * 1986-05-02 1988-08-30 Hodge Steven W Modular robot manipulator
US4793053A (en) * 1987-04-16 1988-12-27 General Motors Corporation Quick disconnect device
US4809747A (en) * 1987-07-31 1989-03-07 General Motors Corporation Quick disconnect device
US4830569A (en) * 1987-03-31 1989-05-16 Asea Brown Boveri Ab Industrial robot having a detachable electrical connection between housing on robot arm and tool holder
US4832198A (en) * 1987-06-15 1989-05-23 Raza Alikhan Container for packaging and counting surgical sponges
US4837703A (en) * 1986-06-26 1989-06-06 Toshiba Kikai Kabushiki Kaisha Method for generating tool path
US4928546A (en) * 1988-08-17 1990-05-29 Walters David A Robotic devices
US4943939A (en) * 1988-08-29 1990-07-24 Rocklin Hoover Surgical instrument accounting apparatus and method
US4979949A (en) * 1988-04-26 1990-12-25 The Board Of Regents Of The University Of Washington Robot-aided system for surgery
US4996975A (en) * 1989-06-01 1991-03-05 Kabushiki Kaisha Toshiba Electronic endoscope apparatus capable of warning lifetime of electronic scope
US5018266A (en) * 1987-12-07 1991-05-28 Megamation Incorporated Novel means for mounting a tool to a robot arm
US5078140A (en) * 1986-05-08 1992-01-07 Kwoh Yik S Imaging device - aided robotic stereotaxis system
US5143453A (en) * 1988-10-04 1992-09-01 G.I.R. Temperature monitoring device containing at least one element of an alloy which memorizes its shape
US5174300A (en) * 1991-04-04 1992-12-29 Symbiosis Corporation Endoscopic surgical instruments having rotatable end effectors
US5217003A (en) * 1991-03-18 1993-06-08 Wilk Peter J Automated surgical system and apparatus
US5221283A (en) * 1992-05-15 1993-06-22 General Electric Company Apparatus and method for stereotactic surgery
US5255429A (en) * 1991-04-09 1993-10-26 Matsushita Electric Industrial Co., Ltd. Component mounting apparatus
US5257998A (en) * 1989-09-20 1993-11-02 Mitaka Kohki Co., Ltd. Medical three-dimensional locating apparatus
US5271384A (en) * 1989-09-01 1993-12-21 Mcewen James A Powered surgical retractor
US5294209A (en) * 1991-07-25 1994-03-15 Yamaha Hatsudoki Kabushiki Kaisha Tool attaching device
US5305203A (en) * 1988-02-01 1994-04-19 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US5312212A (en) * 1992-09-28 1994-05-17 United Technologies Corporation Axially compliant tool holder
US5313935A (en) * 1992-12-31 1994-05-24 Symbiosis Corporation Apparatus for counting the number of times a surgical instrument has been used
US5322055A (en) * 1993-01-27 1994-06-21 Ultracision, Inc. Clamp coagulator/cutting system for ultrasonic surgical instruments
US5343385A (en) * 1993-08-17 1994-08-30 International Business Machines Corporation Interference-free insertion of a solid body into a cavity
US5354314A (en) * 1988-12-23 1994-10-11 Medical Instrumentation And Diagnostics Corporation Three-dimensional beam localization apparatus and microscope for stereotactic diagnoses or surgery mounted on robotic type arm
US5762458A (en) * 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5797900A (en) * 1996-05-20 1998-08-25 Intuitive Surgical, Inc. Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302343A (en) 1987-02-25 1994-04-12 Adir Jacob Process for dry sterilization of medical devices and materials
US5359993A (en) 1992-12-31 1994-11-01 Symbiosis Corporation Apparatus for counting the number of times a medical instrument has been used
US5417210A (en) 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5279309A (en) 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5355743A (en) 1991-12-19 1994-10-18 The University Of Texas At Austin Robot and robot actuator module therefor
DE69312053T2 (en) 1992-01-21 1997-10-30 Stanford Res Inst Int TELEOPERATEURSYSTEM AND METHOD WITH TELE PRESENCE
US5631973A (en) 1994-05-05 1997-05-20 Sri International Method for telemanipulation with telepresence
FR2691093B1 (en) 1992-05-12 1996-06-14 Univ Joseph Fourier ROBOT FOR GUIDANCE OF GESTURES AND CONTROL METHOD.
US5372147A (en) 1992-06-16 1994-12-13 Origin Medsystems, Inc. Peritoneal distension robotic arm
JP3273084B2 (en) 1992-08-20 2002-04-08 オリンパス光学工業株式会社 Medical device holder device
US5397323A (en) 1992-10-30 1995-03-14 International Business Machines Corporation Remote center-of-motion robot for surgery
US5400267A (en) 1992-12-08 1995-03-21 Hemostatix Corporation Local in-device memory feature for electrically powered medical equipment
US5427097A (en) 1992-12-10 1995-06-27 Accuray, Inc. Apparatus for and method of carrying out stereotaxic radiosurgery and radiotherapy
JP2665052B2 (en) 1993-05-14 1997-10-22 エスアールアイ インターナショナル Remote center positioning device
US5876325A (en) 1993-11-02 1999-03-02 Olympus Optical Co., Ltd. Surgical manipulation system
DE4340707C2 (en) 1993-11-30 1997-03-27 Wolf Gmbh Richard manipulator
WO1995016396A1 (en) 1993-12-15 1995-06-22 Computer Motion, Inc. Automated endoscope system for optimal positioning
US6056735A (en) * 1996-04-04 2000-05-02 Olympus Optical Co., Ltd. Ultrasound treatment system
US5649956A (en) * 1995-06-07 1997-07-22 Sri International System and method for releasably holding a surgical instrument
ES2244971T3 (en) 1995-06-07 2005-12-16 Sri International SURGICAL MANIPULATOR FOR A TELERROBOTIC SYSTEM.
US5624398A (en) * 1996-02-08 1997-04-29 Symbiosis Corporation Endoscopic robotic surgical tools and methods
US5792135A (en) 1996-05-20 1998-08-11 Intuitive Surgical, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US6129735A (en) * 1996-06-21 2000-10-10 Olympus Optical Co., Ltd. Ultrasonic treatment appliance
US6036667A (en) 1996-10-04 2000-03-14 United States Surgical Corporation Ultrasonic dissection and coagulation system
US6058323A (en) * 1996-11-05 2000-05-02 Lemelson; Jerome System and method for treating select tissue in a living being
US5845646A (en) * 1996-11-05 1998-12-08 Lemelson; Jerome System and method for treating select tissue in a living being
US6331181B1 (en) 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US6132368A (en) 1996-12-12 2000-10-17 Intuitive Surgical, Inc. Multi-component telepresence system and method
EP2362286B1 (en) 1997-09-19 2015-09-02 Massachusetts Institute Of Technology Robotic apparatus
JPH11178833A (en) 1997-12-24 1999-07-06 Olympus Optical Co Ltd Ultrasonic treatment implement
JP3686765B2 (en) 1998-04-16 2005-08-24 オリンパス株式会社 Ultrasonic treatment device
US6193709B1 (en) 1998-05-13 2001-02-27 Olympus Optical Co., Ltd. Ultrasonic treatment apparatus
US6165191A (en) 1998-05-28 2000-12-26 Olympus Optical Co., Ltd. Ultrasonic treating tool
US6096033A (en) * 1998-07-20 2000-08-01 Tu; Hosheng Medical device having ultrasonic ablation capability
US6319227B1 (en) * 1998-08-05 2001-11-20 Scimed Life Systems, Inc. Automatic/manual longitudinal position translator and rotary drive system for catheters
US6394998B1 (en) 1999-01-22 2002-05-28 Intuitive Surgical, Inc. Surgical tools for use in minimally invasive telesurgical applications
US6454717B1 (en) * 2000-04-13 2002-09-24 Scimed Life Systems, Inc. Concentric catheter drive shaft clutch

Patent Citations (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038987A (en) * 1974-02-08 1977-08-02 Olympus Optical Co., Ltd. Forceps device for endoscope
US4149278A (en) * 1977-09-27 1979-04-17 Nasa Compact artificial hand
US4281447A (en) * 1979-03-01 1981-08-04 Mcdonnell Douglas Corporation Detachable tool interface system for a robot
US4367998A (en) * 1979-09-13 1983-01-11 United Kingdom Atomic Energy Authority Manipulators
US4332066A (en) * 1980-01-07 1982-06-01 General Dynamics Corporation Compliance mechanism
US4486928A (en) * 1981-07-09 1984-12-11 Magnavox Government And Industrial Electronics Company Apparatus for tool storage and selection
US4511305A (en) * 1982-01-16 1985-04-16 Meidensha Electric Mfg. Co., Ltd. Manipulator
US4500065A (en) * 1982-03-01 1985-02-19 Cincinnati Milacron Inc. Releasable tool mount for manipulator
US4512709A (en) * 1983-07-25 1985-04-23 Cincinnati Milacron Inc. Robot toolchanger system
US4710093A (en) * 1984-06-08 1987-12-01 Kuka Schweissanlagen & Roboter Gmbh Device for the automatic gripping and releasing of a tool holder in a manipulator
US4751925A (en) * 1984-12-28 1988-06-21 Reinhold Tontarra Gripper for surgical purposes
US4706372A (en) * 1985-06-11 1987-11-17 D.E.A. Digital Electronic Automation S.P.A. Device for effecting automatic exchange of measuring tools in a measuring robot or machine
US4766775A (en) * 1986-05-02 1988-08-30 Hodge Steven W Modular robot manipulator
US5078140A (en) * 1986-05-08 1992-01-07 Kwoh Yik S Imaging device - aided robotic stereotaxis system
US4837703A (en) * 1986-06-26 1989-06-06 Toshiba Kikai Kabushiki Kaisha Method for generating tool path
US4744363A (en) * 1986-07-07 1988-05-17 Hasson Harrith M Intra-abdominal organ stabilizer, retractor and tissue manipulator
US4830569A (en) * 1987-03-31 1989-05-16 Asea Brown Boveri Ab Industrial robot having a detachable electrical connection between housing on robot arm and tool holder
US4793053A (en) * 1987-04-16 1988-12-27 General Motors Corporation Quick disconnect device
US4832198A (en) * 1987-06-15 1989-05-23 Raza Alikhan Container for packaging and counting surgical sponges
US4809747A (en) * 1987-07-31 1989-03-07 General Motors Corporation Quick disconnect device
US5018266A (en) * 1987-12-07 1991-05-28 Megamation Incorporated Novel means for mounting a tool to a robot arm
US5305203A (en) * 1988-02-01 1994-04-19 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US4979949A (en) * 1988-04-26 1990-12-25 The Board Of Regents Of The University Of Washington Robot-aided system for surgery
US5236432A (en) * 1988-04-26 1993-08-17 Board Of Regents Of The University Of Washington Robot-aided system for surgery
US5154717A (en) * 1988-04-26 1992-10-13 The Board Of Regents Of The University Of Washington Robot-aided system for surgery
US4928546A (en) * 1988-08-17 1990-05-29 Walters David A Robotic devices
US4943939A (en) * 1988-08-29 1990-07-24 Rocklin Hoover Surgical instrument accounting apparatus and method
US5143453A (en) * 1988-10-04 1992-09-01 G.I.R. Temperature monitoring device containing at least one element of an alloy which memorizes its shape
US5354314A (en) * 1988-12-23 1994-10-11 Medical Instrumentation And Diagnostics Corporation Three-dimensional beam localization apparatus and microscope for stereotactic diagnoses or surgery mounted on robotic type arm
US4996975A (en) * 1989-06-01 1991-03-05 Kabushiki Kaisha Toshiba Electronic endoscope apparatus capable of warning lifetime of electronic scope
US5271384A (en) * 1989-09-01 1993-12-21 Mcewen James A Powered surgical retractor
US5257998A (en) * 1989-09-20 1993-11-02 Mitaka Kohki Co., Ltd. Medical three-dimensional locating apparatus
US5217003A (en) * 1991-03-18 1993-06-08 Wilk Peter J Automated surgical system and apparatus
US5174300A (en) * 1991-04-04 1992-12-29 Symbiosis Corporation Endoscopic surgical instruments having rotatable end effectors
US5255429A (en) * 1991-04-09 1993-10-26 Matsushita Electric Industrial Co., Ltd. Component mounting apparatus
US5294209A (en) * 1991-07-25 1994-03-15 Yamaha Hatsudoki Kabushiki Kaisha Tool attaching device
US5221283A (en) * 1992-05-15 1993-06-22 General Electric Company Apparatus and method for stereotactic surgery
US5312212A (en) * 1992-09-28 1994-05-17 United Technologies Corporation Axially compliant tool holder
US5313935A (en) * 1992-12-31 1994-05-24 Symbiosis Corporation Apparatus for counting the number of times a surgical instrument has been used
US5322055A (en) * 1993-01-27 1994-06-21 Ultracision, Inc. Clamp coagulator/cutting system for ultrasonic surgical instruments
US5322055B1 (en) * 1993-01-27 1997-10-14 Ultracision Inc Clamp coagulator/cutting system for ultrasonic surgical instruments
US5343385A (en) * 1993-08-17 1994-08-30 International Business Machines Corporation Interference-free insertion of a solid body into a cavity
US5762458A (en) * 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5797900A (en) * 1996-05-20 1998-08-25 Intuitive Surgical, Inc. Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity

Cited By (289)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060195071A1 (en) * 2000-07-20 2006-08-31 Doyle Mark C Hand-actuated articulating surgical tool
US8105319B2 (en) 2000-07-20 2012-01-31 Carefusion 2200, Inc. Hand-actuated articulating surgical tool
US20090105727A1 (en) * 2000-07-20 2009-04-23 Allegiance Corporation Hand-actuated articulating surgical tool
US11229472B2 (en) 2001-06-12 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US20070018958A1 (en) * 2003-10-24 2007-01-25 Tavakoli Seyed M Force reflective robotic control system and minimally invasive surgical device
US10874418B2 (en) 2004-02-27 2020-12-29 Ethicon Llc Ultrasonic surgical shears and method for sealing a blood vessel using same
US11730507B2 (en) 2004-02-27 2023-08-22 Cilag Gmbh International Ultrasonic surgical shears and method for sealing a blood vessel using same
US20100286670A1 (en) * 2004-06-16 2010-11-11 Mark Doyle Surgical tool kit
US8021358B2 (en) 2004-06-16 2011-09-20 Carefusion 2200, Inc. Surgical tool kit
US8353897B2 (en) 2004-06-16 2013-01-15 Carefusion 2200, Inc. Surgical tool kit
US11006971B2 (en) 2004-10-08 2021-05-18 Ethicon Llc Actuation mechanism for use with an ultrasonic surgical instrument
US10537352B2 (en) 2004-10-08 2020-01-21 Ethicon Llc Tissue pads for use with surgical instruments
US10856896B2 (en) 2005-10-14 2020-12-08 Ethicon Llc Ultrasonic device for cutting and coagulating
US10779848B2 (en) 2006-01-20 2020-09-22 Ethicon Llc Ultrasound medical instrument having a medical ultrasonic blade
US20100241136A1 (en) * 2006-12-05 2010-09-23 Mark Doyle Instrument positioning/holding devices
US10188273B2 (en) 2007-01-30 2019-01-29 Loma Vista Medical, Inc. Biological navigation device
US20110087070A1 (en) * 2007-01-30 2011-04-14 Alexander Quillin Tilson Sheaths for medical devices
US20100099949A1 (en) * 2007-01-30 2010-04-22 Alexander Quillin Tilson Biological navigation device
US10278682B2 (en) * 2007-01-30 2019-05-07 Loma Vista Medical, Inc. Sheaths for medical devices
US9801648B2 (en) 2007-03-22 2017-10-31 Ethicon Llc Surgical instruments
US9504483B2 (en) 2007-03-22 2016-11-29 Ethicon Endo-Surgery, Llc Surgical instruments
US10722261B2 (en) 2007-03-22 2020-07-28 Ethicon Llc Surgical instruments
US10828057B2 (en) 2007-03-22 2020-11-10 Ethicon Llc Ultrasonic surgical instruments
US9883884B2 (en) 2007-03-22 2018-02-06 Ethicon Llc Ultrasonic surgical instruments
US9987033B2 (en) 2007-03-22 2018-06-05 Ethicon Llc Ultrasonic surgical instruments
US10398466B2 (en) 2007-07-27 2019-09-03 Ethicon Llc Ultrasonic end effectors with increased active length
US9220527B2 (en) 2007-07-27 2015-12-29 Ethicon Endo-Surgery, Llc Surgical instruments
US9636135B2 (en) 2007-07-27 2017-05-02 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9642644B2 (en) 2007-07-27 2017-05-09 Ethicon Endo-Surgery, Llc Surgical instruments
US11607268B2 (en) 2007-07-27 2023-03-21 Cilag Gmbh International Surgical instruments
US11690641B2 (en) 2007-07-27 2023-07-04 Cilag Gmbh International Ultrasonic end effectors with increased active length
US10531910B2 (en) 2007-07-27 2020-01-14 Ethicon Llc Surgical instruments
US9707004B2 (en) 2007-07-27 2017-07-18 Ethicon Llc Surgical instruments
US9414853B2 (en) 2007-07-27 2016-08-16 Ethicon Endo-Surgery, Llc Ultrasonic end effectors with increased active length
US9913656B2 (en) 2007-07-27 2018-03-13 Ethicon Llc Ultrasonic surgical instruments
US10426507B2 (en) 2007-07-31 2019-10-01 Ethicon Llc Ultrasonic surgical instruments
US11058447B2 (en) 2007-07-31 2021-07-13 Cilag Gmbh International Temperature controlled ultrasonic surgical instruments
US11877734B2 (en) 2007-07-31 2024-01-23 Cilag Gmbh International Ultrasonic surgical instruments
US10420579B2 (en) 2007-07-31 2019-09-24 Ethicon Llc Surgical instruments
US9439669B2 (en) 2007-07-31 2016-09-13 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US11666784B2 (en) 2007-07-31 2023-06-06 Cilag Gmbh International Surgical instruments
US9445832B2 (en) 2007-07-31 2016-09-20 Ethicon Endo-Surgery, Llc Surgical instruments
US10828059B2 (en) 2007-10-05 2020-11-10 Ethicon Llc Ergonomic surgical instruments
US9848902B2 (en) 2007-10-05 2017-12-26 Ethicon Llc Ergonomic surgical instruments
US10463887B2 (en) 2007-11-30 2019-11-05 Ethicon Llc Ultrasonic surgical blades
US10888347B2 (en) 2007-11-30 2021-01-12 Ethicon Llc Ultrasonic surgical blades
US11766276B2 (en) 2007-11-30 2023-09-26 Cilag Gmbh International Ultrasonic surgical blades
US9339289B2 (en) 2007-11-30 2016-05-17 Ehticon Endo-Surgery, LLC Ultrasonic surgical instrument blades
US11439426B2 (en) 2007-11-30 2022-09-13 Cilag Gmbh International Ultrasonic surgical blades
US11253288B2 (en) 2007-11-30 2022-02-22 Cilag Gmbh International Ultrasonic surgical instrument blades
US10441308B2 (en) 2007-11-30 2019-10-15 Ethicon Llc Ultrasonic surgical instrument blades
US10433866B2 (en) 2007-11-30 2019-10-08 Ethicon Llc Ultrasonic surgical blades
US10433865B2 (en) 2007-11-30 2019-10-08 Ethicon Llc Ultrasonic surgical blades
US10265094B2 (en) 2007-11-30 2019-04-23 Ethicon Llc Ultrasonic surgical blades
US9066747B2 (en) 2007-11-30 2015-06-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US11690643B2 (en) 2007-11-30 2023-07-04 Cilag Gmbh International Ultrasonic surgical blades
US10245065B2 (en) 2007-11-30 2019-04-02 Ethicon Llc Ultrasonic surgical blades
US11266433B2 (en) 2007-11-30 2022-03-08 Cilag Gmbh International Ultrasonic surgical instrument blades
US10045794B2 (en) 2007-11-30 2018-08-14 Ethicon Llc Ultrasonic surgical blades
US20090281536A1 (en) * 2008-05-09 2009-11-12 Hugh Beckman Medical Device For Diagnosing and Treating Anomalous Tissue and Method for Doing the Same
US8708955B2 (en) 2008-06-02 2014-04-29 Loma Vista Medical, Inc. Inflatable medical devices
US20090301643A1 (en) * 2008-06-02 2009-12-10 Loma Vista Medical, Inc. Inflatable medical devices
US9186488B2 (en) 2008-06-02 2015-11-17 Loma Vista Medical, Inc. Method of making inflatable medical devices
US20100241178A1 (en) * 2008-06-02 2010-09-23 Loma Vista Medical, Inc. Inflatable medical devices
US9504811B2 (en) 2008-06-02 2016-11-29 Loma Vista Medical, Inc. Inflatable medical devices
US20090320637A1 (en) * 2008-06-27 2009-12-31 Allegiance Corporation Flexible wrist-type element and methods of manufacture and use thereof
US8398619B2 (en) 2008-06-27 2013-03-19 Carefusion 2200, Inc. Flexible wrist-type element and methods of manufacture and use thereof
US9504855B2 (en) 2008-08-06 2016-11-29 Ethicon Surgery, LLC Devices and techniques for cutting and coagulating tissue
US10022568B2 (en) 2008-08-06 2018-07-17 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US9795808B2 (en) 2008-08-06 2017-10-24 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US11890491B2 (en) 2008-08-06 2024-02-06 Cilag Gmbh International Devices and techniques for cutting and coagulating tissue
US10335614B2 (en) 2008-08-06 2019-07-02 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US10022567B2 (en) 2008-08-06 2018-07-17 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US20140088422A1 (en) * 2008-08-07 2014-03-27 University Of Rochester Robotic localizing aid for high intensity focused ultrasound delivery
US20120095336A1 (en) * 2008-08-07 2012-04-19 University Of Rochester Robotic localizing aid for high-intensity focused ultrasound delivery
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US10709906B2 (en) 2009-05-20 2020-07-14 Ethicon Llc Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US9498245B2 (en) 2009-06-24 2016-11-22 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US11717706B2 (en) 2009-07-15 2023-08-08 Cilag Gmbh International Ultrasonic surgical instruments
US9764164B2 (en) 2009-07-15 2017-09-19 Ethicon Llc Ultrasonic surgical instruments
US10688321B2 (en) 2009-07-15 2020-06-23 Ethicon Llc Ultrasonic surgical instruments
US10265117B2 (en) 2009-10-09 2019-04-23 Ethicon Llc Surgical generator method for controlling and ultrasonic transducer waveform for ultrasonic and electrosurgical devices
US10201382B2 (en) 2009-10-09 2019-02-12 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US11871982B2 (en) 2009-10-09 2024-01-16 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10263171B2 (en) 2009-10-09 2019-04-16 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US9623237B2 (en) 2009-10-09 2017-04-18 Ethicon Endo-Surgery, Llc Surgical generator for ultrasonic and electrosurgical devices
US10835768B2 (en) 2010-02-11 2020-11-17 Ethicon Llc Dual purpose surgical instrument for cutting and coagulating tissue
US11369402B2 (en) 2010-02-11 2022-06-28 Cilag Gmbh International Control systems for ultrasonically powered surgical instruments
US9427249B2 (en) 2010-02-11 2016-08-30 Ethicon Endo-Surgery, Llc Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US9962182B2 (en) 2010-02-11 2018-05-08 Ethicon Llc Ultrasonic surgical instruments with moving cutting implement
US9649126B2 (en) 2010-02-11 2017-05-16 Ethicon Endo-Surgery, Llc Seal arrangements for ultrasonically powered surgical instruments
US10117667B2 (en) 2010-02-11 2018-11-06 Ethicon Llc Control systems for ultrasonically powered surgical instruments
US11382642B2 (en) 2010-02-11 2022-07-12 Cilag Gmbh International Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US10299810B2 (en) 2010-02-11 2019-05-28 Ethicon Llc Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US9107689B2 (en) 2010-02-11 2015-08-18 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US9848901B2 (en) 2010-02-11 2017-12-26 Ethicon Llc Dual purpose surgical instrument for cutting and coagulating tissue
US9510850B2 (en) 2010-02-11 2016-12-06 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9707027B2 (en) 2010-05-21 2017-07-18 Ethicon Endo-Surgery, Llc Medical device
US9592119B2 (en) 2010-07-13 2017-03-14 C.R. Bard, Inc. Inflatable medical devices
US10278721B2 (en) 2010-07-22 2019-05-07 Ethicon Llc Electrosurgical instrument with separate closure and cutting members
US10524854B2 (en) 2010-07-23 2020-01-07 Ethicon Llc Surgical instrument
US10188436B2 (en) 2010-11-09 2019-01-29 Loma Vista Medical, Inc. Inflatable medical devices
US9486189B2 (en) 2010-12-02 2016-11-08 Hitachi Aloka Medical, Ltd. Assembly for use with surgery system
US20130218185A1 (en) * 2011-03-28 2013-08-22 Olympus Medical Systems Corp. Ultrasonic treatment device
US8795307B2 (en) * 2011-03-28 2014-08-05 Olympus Medical Systems Corp. Ultrasonic treatment device
US10433900B2 (en) 2011-07-22 2019-10-08 Ethicon Llc Surgical instruments for tensioning tissue
US10729494B2 (en) 2012-02-10 2020-08-04 Ethicon Llc Robotically controlled surgical instrument
US9925003B2 (en) 2012-02-10 2018-03-27 Ethicon Endo-Surgery, Llc Robotically controlled surgical instrument
US9232979B2 (en) 2012-02-10 2016-01-12 Ethicon Endo-Surgery, Inc. Robotically controlled surgical instrument
US10517627B2 (en) 2012-04-09 2019-12-31 Ethicon Llc Switch arrangements for ultrasonic surgical instruments
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US11419626B2 (en) 2012-04-09 2022-08-23 Cilag Gmbh International Switch arrangements for ultrasonic surgical instruments
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9700343B2 (en) 2012-04-09 2017-07-11 Ethicon Endo-Surgery, Llc Devices and techniques for cutting and coagulating tissue
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US10987123B2 (en) 2012-06-28 2021-04-27 Ethicon Llc Surgical instruments with articulating shafts
US11583306B2 (en) 2012-06-29 2023-02-21 Cilag Gmbh International Surgical instruments with articulating shafts
US10842580B2 (en) 2012-06-29 2020-11-24 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US10441310B2 (en) 2012-06-29 2019-10-15 Ethicon Llc Surgical instruments with curved section
US11871955B2 (en) 2012-06-29 2024-01-16 Cilag Gmbh International Surgical instruments with articulating shafts
US9713507B2 (en) 2012-06-29 2017-07-25 Ethicon Endo-Surgery, Llc Closed feedback control for electrosurgical device
US10993763B2 (en) 2012-06-29 2021-05-04 Ethicon Llc Lockout mechanism for use with robotic electrosurgical device
US10398497B2 (en) 2012-06-29 2019-09-03 Ethicon Llc Lockout mechanism for use with robotic electrosurgical device
US9737326B2 (en) 2012-06-29 2017-08-22 Ethicon Endo-Surgery, Llc Haptic feedback devices for surgical robot
WO2014004120A1 (en) * 2012-06-29 2014-01-03 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned jaw assemblies
US10524872B2 (en) 2012-06-29 2020-01-07 Ethicon Llc Closed feedback control for electrosurgical device
US10966747B2 (en) 2012-06-29 2021-04-06 Ethicon Llc Haptic feedback devices for surgical robot
AU2013280951B2 (en) * 2012-06-29 2018-07-05 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned jaw assemblies
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US11602371B2 (en) 2012-06-29 2023-03-14 Cilag Gmbh International Ultrasonic surgical instruments with control mechanisms
US10543008B2 (en) 2012-06-29 2020-01-28 Ethicon Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US10335183B2 (en) 2012-06-29 2019-07-02 Ethicon Llc Feedback devices for surgical control systems
US10779845B2 (en) 2012-06-29 2020-09-22 Ethicon Llc Ultrasonic surgical instruments with distally positioned transducers
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US11096752B2 (en) 2012-06-29 2021-08-24 Cilag Gmbh International Closed feedback control for electrosurgical device
US11426191B2 (en) 2012-06-29 2022-08-30 Cilag Gmbh International Ultrasonic surgical instruments with distally positioned jaw assemblies
US10335182B2 (en) 2012-06-29 2019-07-02 Ethicon Llc Surgical instruments with articulating shafts
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
CN104602624A (en) * 2012-06-29 2015-05-06 伊西康内外科公司 Ultrasonic surgical instruments with distally positioned jaw assemblies
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US11717311B2 (en) 2012-06-29 2023-08-08 Cilag Gmbh International Surgical instruments with articulating shafts
US10881449B2 (en) 2012-09-28 2021-01-05 Ethicon Llc Multi-function bi-polar forceps
US9795405B2 (en) 2012-10-22 2017-10-24 Ethicon Llc Surgical instrument
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US11179173B2 (en) 2012-10-22 2021-11-23 Cilag Gmbh International Surgical instrument
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US11324527B2 (en) 2012-11-15 2022-05-10 Cilag Gmbh International Ultrasonic and electrosurgical devices
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US11272952B2 (en) 2013-03-14 2022-03-15 Cilag Gmbh International Mechanical fasteners for use with surgical energy devices
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9743947B2 (en) 2013-03-15 2017-08-29 Ethicon Endo-Surgery, Llc End effector with a clamp arm assembly and blade
US10925659B2 (en) 2013-09-13 2021-02-23 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US10912603B2 (en) 2013-11-08 2021-02-09 Ethicon Llc Electrosurgical devices
US10912580B2 (en) 2013-12-16 2021-02-09 Ethicon Llc Medical device
US11033292B2 (en) 2013-12-16 2021-06-15 Cilag Gmbh International Medical device
US10856929B2 (en) 2014-01-07 2020-12-08 Ethicon Llc Harvesting energy from a surgical generator
US10779879B2 (en) 2014-03-18 2020-09-22 Ethicon Llc Detecting short circuits in electrosurgical medical devices
US10932847B2 (en) 2014-03-18 2021-03-02 Ethicon Llc Detecting short circuits in electrosurgical medical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US11399855B2 (en) 2014-03-27 2022-08-02 Cilag Gmbh International Electrosurgical devices
US11471209B2 (en) 2014-03-31 2022-10-18 Cilag Gmbh International Controlling impedance rise in electrosurgical medical devices
US10349999B2 (en) 2014-03-31 2019-07-16 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US11337747B2 (en) 2014-04-15 2022-05-24 Cilag Gmbh International Software algorithms for electrosurgical instruments
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US11413060B2 (en) 2014-07-31 2022-08-16 Cilag Gmbh International Actuation mechanisms and load adjustment assemblies for surgical instruments
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US11311326B2 (en) 2015-02-06 2022-04-26 Cilag Gmbh International Electrosurgical instrument with rotation and articulation mechanisms
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US11553954B2 (en) 2015-06-30 2023-01-17 Cilag Gmbh International Translatable outer tube for sealing using shielded lap chole dissector
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10952788B2 (en) 2015-06-30 2021-03-23 Ethicon Llc Surgical instrument with user adaptable algorithms
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US11903634B2 (en) 2015-06-30 2024-02-20 Cilag Gmbh International Surgical instrument with user adaptable techniques
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
USD778437S1 (en) 2015-09-03 2017-02-07 Transonic Systems, Inc. Couplant delivery support
US10624691B2 (en) 2015-09-30 2020-04-21 Ethicon Llc Techniques for operating generator for digitally generating electrical signal waveforms and surgical instruments
US10751108B2 (en) 2015-09-30 2020-08-25 Ethicon Llc Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms
US11033322B2 (en) 2015-09-30 2021-06-15 Ethicon Llc Circuit topologies for combined generator
US10610286B2 (en) 2015-09-30 2020-04-07 Ethicon Llc Techniques for circuit topologies for combined generator
US10736685B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments
US11559347B2 (en) 2015-09-30 2023-01-24 Cilag Gmbh International Techniques for circuit topologies for combined generator
US11058475B2 (en) 2015-09-30 2021-07-13 Cilag Gmbh International Method and apparatus for selecting operations of a surgical instrument based on user intention
US10194973B2 (en) 2015-09-30 2019-02-05 Ethicon Llc Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
US10687884B2 (en) 2015-09-30 2020-06-23 Ethicon Llc Circuits for supplying isolated direct current (DC) voltage to surgical instruments
US11766287B2 (en) 2015-09-30 2023-09-26 Cilag Gmbh International Methods for operating generator for digitally generating electrical signal waveforms and surgical instruments
US11666375B2 (en) 2015-10-16 2023-06-06 Cilag Gmbh International Electrode wiping surgical device
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10779849B2 (en) 2016-01-15 2020-09-22 Ethicon Llc Modular battery powered handheld surgical instrument with voltage sag resistant battery pack
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11684402B2 (en) 2016-01-15 2023-06-27 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10299821B2 (en) 2016-01-15 2019-05-28 Ethicon Llc Modular battery powered handheld surgical instrument with motor control limit profile
US11229450B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with motor drive
US11751929B2 (en) 2016-01-15 2023-09-12 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11051840B2 (en) 2016-01-15 2021-07-06 Ethicon Llc Modular battery powered handheld surgical instrument with reusable asymmetric handle housing
US10537351B2 (en) 2016-01-15 2020-01-21 Ethicon Llc Modular battery powered handheld surgical instrument with variable motor control limits
US10828058B2 (en) 2016-01-15 2020-11-10 Ethicon Llc Modular battery powered handheld surgical instrument with motor control limits based on tissue characterization
US10709469B2 (en) 2016-01-15 2020-07-14 Ethicon Llc Modular battery powered handheld surgical instrument with energy conservation techniques
US10251664B2 (en) 2016-01-15 2019-04-09 Ethicon Llc Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly
US11058448B2 (en) 2016-01-15 2021-07-13 Cilag Gmbh International Modular battery powered handheld surgical instrument with multistage generator circuits
US11896280B2 (en) 2016-01-15 2024-02-13 Cilag Gmbh International Clamp arm comprising a circuit
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11134978B2 (en) 2016-01-15 2021-10-05 Cilag Gmbh International Modular battery powered handheld surgical instrument with self-diagnosing control switches for reusable handle assembly
US10842523B2 (en) 2016-01-15 2020-11-24 Ethicon Llc Modular battery powered handheld surgical instrument and methods therefor
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US11202670B2 (en) 2016-02-22 2021-12-21 Cilag Gmbh International Method of manufacturing a flexible circuit electrode for electrosurgical instrument
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US11864820B2 (en) 2016-05-03 2024-01-09 Cilag Gmbh International Medical device with a bilateral jaw configuration for nerve stimulation
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10966744B2 (en) 2016-07-12 2021-04-06 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US11883055B2 (en) 2016-07-12 2024-01-30 Cilag Gmbh International Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US11344362B2 (en) 2016-08-05 2022-05-31 Cilag Gmbh International Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD924400S1 (en) 2016-08-16 2021-07-06 Cilag Gmbh International Surgical instrument
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10779847B2 (en) 2016-08-25 2020-09-22 Ethicon Llc Ultrasonic transducer to waveguide joining
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10420580B2 (en) 2016-08-25 2019-09-24 Ethicon Llc Ultrasonic transducer for surgical instrument
US11350959B2 (en) 2016-08-25 2022-06-07 Cilag Gmbh International Ultrasonic transducer techniques for ultrasonic surgical instrument
US11925378B2 (en) 2016-08-25 2024-03-12 Cilag Gmbh International Ultrasonic transducer for surgical instrument
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US11617580B2 (en) 2017-09-01 2023-04-04 RevMedica, Inc. Surgical stapler with removable power pack and interchangeable battery pack
US11857186B2 (en) 2017-09-01 2024-01-02 Revmedica, Inc Proximal loaded disposable loading unit for surgical stapler
US11717296B2 (en) 2017-09-01 2023-08-08 RevMedica, Inc. Surgical stapler with removable power pack
US11723659B2 (en) 2017-09-01 2023-08-15 RevMedica, Inc. Surgical stapler with removable power pack and interchangeable battery pack
US20210212684A1 (en) * 2017-09-01 2021-07-15 RevMedica, Inc. Proximal loaded disposable loading unit for surgical stapler
US11540830B2 (en) 2017-09-01 2023-01-03 RevMedica, Inc. Surgical stapler with removable power pack
US11944398B2 (en) 2018-03-29 2024-04-02 Intuitive Surgical Operations, Inc. Surgical instrument actuation mechanisms
WO2019191396A1 (en) * 2018-03-29 2019-10-03 Intuitive Surgical Operations, Inc. Surgical instrument actuation systems
WO2019191420A1 (en) * 2018-03-29 2019-10-03 Intuitive Surgical Operations, Inc. Surgical instrument actuation mechanisms
US11944280B2 (en) * 2018-08-28 2024-04-02 Medicaroid Corporation Adapter, surgical instrument set, and method for connecting surgical instrument
US20200069297A1 (en) * 2018-08-28 2020-03-05 Medicaroid Corporation Adapter, surgical instrument set, and method for connecting surgical instrument
WO2020176161A1 (en) * 2019-02-25 2020-09-03 Acessa Health Inc. Automated ablation control systems
US11564685B2 (en) 2019-07-19 2023-01-31 RevMedica, Inc. Surgical stapler with removable power pack
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11744636B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Electrosurgical systems with integrated and external power sources
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11707318B2 (en) 2019-12-30 2023-07-25 Cilag Gmbh International Surgical instrument with jaw alignment features
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US20210259693A1 (en) * 2020-02-26 2021-08-26 Covidien Lp Surgical stapling device with flexible shaft
US11950797B2 (en) 2020-05-29 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11931124B2 (en) * 2020-07-17 2024-03-19 Cilag Gmbh International Segmented shaft for robotic surgical tools
US20220015845A1 (en) * 2020-07-17 2022-01-20 Auris Health, Inc. Segmented shaft for robotic surgical tools
WO2022084840A1 (en) * 2020-10-22 2022-04-28 Cilag Gmbh International Ultrasonic surgical instrument with translating transducer, waveguide and blade
US11806037B2 (en) 2020-10-22 2023-11-07 Cilag Gmbh International Damping rings for an ultrasonic surgical instrument
WO2022186994A1 (en) * 2021-03-01 2022-09-09 RevMedica, Inc. Power pack for activating surgical instruments

Also Published As

Publication number Publication date
US20020177843A1 (en) 2002-11-28
US6783524B2 (en) 2004-08-31

Similar Documents

Publication Publication Date Title
US6783524B2 (en) Robotic surgical tool with ultrasound cauterizing and cutting instrument
US11337717B2 (en) Articulating ultrasonic surgical instruments and systems
US11344375B2 (en) Grip force control in a robotic surgical instrument
JP6553232B2 (en) End effector with redundant closing mechanism
US11883109B2 (en) Systems and methods for a dual control surgical instrument
US20210282793A1 (en) Rotary input for lever actuation
US20210177500A1 (en) Surgical instruments having non-linear cam slots
US6991627B2 (en) Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US6994708B2 (en) Robotic tool with monopolar electro-surgical scissors
US5897523A (en) Articulating ultrasonic surgical instrument
US11592087B2 (en) Instrument transmission converting roll to linear actuation
CN104602624A (en) Ultrasonic surgical instruments with distally positioned jaw assemblies
CN113679449A (en) Articulating ultrasonic surgical instrument and system
US20230293160A1 (en) Surgical instrument wrist
KR20170125174A (en) Robot apparatus for minimally invasive surgery
US20230053012A1 (en) Articulating ultrasonic surgical instruments and systems
US20220346780A1 (en) Translatable barrel cam of a robotic surgical system
US20210361316A1 (en) Ultrasonic transducer assembly for an ultrasonic surgical instrument
CN113679450A (en) Articulating ultrasonic surgical instrument and system

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION