US20060201398A1 - Plastic pallet having diagonally corrugated deck - Google Patents

Plastic pallet having diagonally corrugated deck Download PDF

Info

Publication number
US20060201398A1
US20060201398A1 US11/358,333 US35833306A US2006201398A1 US 20060201398 A1 US20060201398 A1 US 20060201398A1 US 35833306 A US35833306 A US 35833306A US 2006201398 A1 US2006201398 A1 US 2006201398A1
Authority
US
United States
Prior art keywords
deck
pallet
corrugations
frame
pallets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/358,333
Inventor
Roy Moore
Ronald Brochu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Engineered Pallet Co LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/358,333 priority Critical patent/US20060201398A1/en
Publication of US20060201398A1 publication Critical patent/US20060201398A1/en
Assigned to ENGINEERED PALLET COMPANY, THE LLC reassignment ENGINEERED PALLET COMPANY, THE LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOORE, ROY E. JR, BROCHU, RONALD P.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D19/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D19/0004Rigid pallets without side walls
    • B65D19/0053Rigid pallets without side walls the load supporting surface being made of more than one element
    • B65D19/0055Rigid pallets without side walls the load supporting surface being made of more than one element forming a continuous plane contact surface
    • B65D19/0057Rigid pallets without side walls the load supporting surface being made of more than one element forming a continuous plane contact surface the base surface being made of a single element
    • B65D19/0059Rigid pallets without side walls the load supporting surface being made of more than one element forming a continuous plane contact surface the base surface being made of a single element forming a continuous plane contact surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D19/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D19/0004Rigid pallets without side walls
    • B65D19/0053Rigid pallets without side walls the load supporting surface being made of more than one element
    • B65D19/0055Rigid pallets without side walls the load supporting surface being made of more than one element forming a continuous plane contact surface
    • B65D19/0057Rigid pallets without side walls the load supporting surface being made of more than one element forming a continuous plane contact surface the base surface being made of a single element
    • B65D19/0061Rigid pallets without side walls the load supporting surface being made of more than one element forming a continuous plane contact surface the base surface being made of a single element forming discontinuous or non-planar contact surfaces
    • B65D19/0063Rigid pallets without side walls the load supporting surface being made of more than one element forming a continuous plane contact surface the base surface being made of a single element forming discontinuous or non-planar contact surfaces and each contact surface having a stringer-like shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D19/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D19/0004Rigid pallets without side walls
    • B65D19/0053Rigid pallets without side walls the load supporting surface being made of more than one element
    • B65D19/0077Rigid pallets without side walls the load supporting surface being made of more than one element forming discontinuous or non-planar contact surfaces
    • B65D19/0079Rigid pallets without side walls the load supporting surface being made of more than one element forming discontinuous or non-planar contact surfaces the base surface being made of a single element
    • B65D19/0081Rigid pallets without side walls the load supporting surface being made of more than one element forming discontinuous or non-planar contact surfaces the base surface being made of a single element forming a continuous plane contact surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00014Materials for the load supporting surface
    • B65D2519/00024Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00014Materials for the load supporting surface
    • B65D2519/00034Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00014Materials for the load supporting surface
    • B65D2519/00044Combination, e.g. different elements made of different materials, laminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00049Materials for the base surface
    • B65D2519/00069Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00084Materials for the non-integral separating spacer
    • B65D2519/00104Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00119Materials for the construction of the reinforcements
    • B65D2519/00129Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00263Overall construction of the pallet
    • B65D2519/00273Overall construction of the pallet made of more than one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00283Overall construction of the load supporting surface
    • B65D2519/00288Overall construction of the load supporting surface made of one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00283Overall construction of the load supporting surface
    • B65D2519/00293Overall construction of the load supporting surface made of more than one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00313Overall construction of the base surface
    • B65D2519/00318Overall construction of the base surface made of one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00313Overall construction of the base surface
    • B65D2519/00323Overall construction of the base surface made of more than one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00313Overall construction of the base surface
    • B65D2519/00328Overall construction of the base surface shape of the contact surface of the base
    • B65D2519/00333Overall construction of the base surface shape of the contact surface of the base contact surface having a stringer-like shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00313Overall construction of the base surface
    • B65D2519/00363Overall construction of the base surface grid type, e.g. perforated plate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00368Overall construction of the non-integral separating spacer
    • B65D2519/00373Overall construction of the non-integral separating spacer whereby at least one spacer is made of one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00368Overall construction of the non-integral separating spacer
    • B65D2519/00388Cell type, e.g. honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00368Overall construction of the non-integral separating spacer
    • B65D2519/00393Overall construction of the non-integral separating spacer grid type, e.g. perforated plate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00398Overall construction reinforcements
    • B65D2519/00402Integral, e.g. ribs
    • B65D2519/00407Integral, e.g. ribs on the load supporting surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00398Overall construction reinforcements
    • B65D2519/00402Integral, e.g. ribs
    • B65D2519/00417Integral, e.g. ribs on the non-integral separating spacer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00398Overall construction reinforcements
    • B65D2519/00432Non-integral, e.g. inserts
    • B65D2519/00437Non-integral, e.g. inserts on the load supporting surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00398Overall construction reinforcements
    • B65D2519/00432Non-integral, e.g. inserts
    • B65D2519/00442Non-integral, e.g. inserts on the base surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00398Overall construction reinforcements
    • B65D2519/00432Non-integral, e.g. inserts
    • B65D2519/00447Non-integral, e.g. inserts on the non-integral separating spacer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00547Connections
    • B65D2519/00552Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer
    • B65D2519/00557Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer without separate auxiliary elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00547Connections
    • B65D2519/00552Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer
    • B65D2519/00557Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer without separate auxiliary elements
    • B65D2519/00562Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer without separate auxiliary elements chemical connection, e.g. glued, welded, sealed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00547Connections
    • B65D2519/00552Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer
    • B65D2519/00572Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer with separate auxiliary element, e.g. screws, nails, bayonets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00736Details
    • B65D2519/00825Finishing of the external surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00736Details
    • B65D2519/0086Protection against environmental hazards, e.g. humidity, bacteria, fire

Definitions

  • the present invention relates to plastic pallets, particularly those used for transporting miscellaneous industrial and commercial goods by means of forklift devices and the like.
  • Rectangular wood pallets have been long used with forklift devices for transporting and storing common goods. They have been attractive because of simplicity and low cost. However, wood pallets are prone to damage during use, and constantly must be replaced or discarded. They also are difficult to keep clean. In recent years plastic pallets have been commercially available. They would seem to offer a number of potential advantages over wood pallets, including better durability, moisture resistance, and other known advantages of a polymer material, compared to wood. Plastic pallets have most often been made of familiar polyolefin thermoplastics; some other polymers have been used, particularly for fire-resistance. However, plastic pallets have not gained wide acceptance, for a number or reasons, which can be stated briefly as relating to a failure to satisfactorily meet all of a variety of criteria, including mechanical performance, weight, cost, and fire resistance.
  • a plastic pallet which can be made in the present invention, is often referred in the U.S. to as a GMA pallet. It has a rectangular base, eight columns running up from the periphery of the base, and a rectangular deck. The pallet is in the shape of a 40 inch ⁇ 48 inch rectangle.
  • a comparable European pallet is a 1000 mm by 1200 mm pallet, sometimes called a CP-1 pallet. For such pallets to become accepted for widespread use in commerce, they must meet various technical and performance standards.
  • the Grocery Manufacturers of America (GMA), Washington, D.C., U.S. in conjunction with other organizations, has published a document entitled “Recommendations on the Grocery Industry Pallet System” (1992).
  • the height must be less about 5.56 inches or less.
  • the pallet must allow four-way entry by forks, and each side must have two openings which are at least 3.1 to 3.8 inches high and 12 to 12.5 inches wide.
  • the pallet should weigh less than 55 pounds.
  • the pallet has to be “rackable.” By that is meant, among other things, that the pallet must be capable of being held on open beam warehouse racks without failing or exceeding a specified amount of creep deformation when loaded.
  • plastic pallets of the size and type described have not been able to simultaneously meet all of the performance criteria for an acceptable cost and weight. Thus, they have not substantially replaced widely used wood pallets. It is an aim of the invention to do better.
  • decks appear to have been mostly made from sheet or injection molded plastic. Typically, decks are permanently attached to the other parts of the pallet, although sometimes they have been mechanically and detachably assembled. Often the decks have many openings and ribs for lightness and drainage, which present large surface areas and adversely affect fire test performance.
  • thermoplastics combined with the high surface area of plastic decks and other parts, have meant that the rate of heat evolution during a fire is much greater than allowed by the UL 2335 standard.
  • fire retardants have been included within the plastics to address the issue, it has been difficult for plastic pallet makers to meet the standard while meeting the other requirements.
  • the fire retarding additives can compromise mechanical properties, increase cost and weight, and introduce environmental problems.
  • An object of the invention is to provide superior strength to the deck of a pallet which is made of sheet material.
  • a further object of the invention is to provide a plastic pallet that has a desirable combination of properties required by commercial users, including those which relate to dimensions, creep strength, weight, stacking density and fire resistance.
  • a further object is to reduce the number and size of reinforcing beams in a pallet.
  • a plastic pallet has a rectangular base, a frame supported on columns running upwardly, and a corrugated sheet deck attached to the frame or to a subframe within the frame.
  • the deck has at least three corrugations which are nominally parallel to the line which connects the diagonally opposite corners of the deck.
  • the at least three corrugations are within about 10-15 degrees, preferably within 0-3 degrees, of alignment with the diagonal line.
  • all the corrugations of the deck are parallel to each other.
  • a deck has a first set of at least three corrugations which are nominally parallel to a first corner-to-corner diagonal line, and a second set of at least three corrugations which are nominally parallel to the other corner-to-corner diagonal line.
  • the first set of corrugations is continuous and the second set is discontinuous where the corrugation sets intersect near the center of the deck.
  • deck has a circumscribing flange and the edges of the deck are spaced apart from the outer edges of the frame, so they are protected from horizontal impact damage.
  • the frame comprises impact absorbers and the stays in the bridge parts of the frame, which bridges span the spaces between columns.
  • the deck may be made of metal sheet or non-metal sheet
  • a pallet having the foregoing features comprises eight outer columns and a center column which run upwardly from the base.
  • the deck is attached to the frame or a subframe within the frame, and to the center column.
  • the area of the deck is at least 75 percent of the area of the top of the pallet.
  • One embodiment of pallet which is referred to as a GMA pallet, is 40 inches by 48 inches in outside dimension, and is made of polypropylene or polyethylene thermoplastic.
  • the base rails have steel reinforcing beams and the corrugated deck is made of aluminum alloy sheet.
  • the predominately plastic pallet is 30-45 percent metal by weight.
  • the corrugated deck of the invention has good stiffness, for supporting goods placed on the deck; and in meeting the GMA pallet demands, the stiffness and strength of the deck cooperate with the structure of the base in a way which avoids the need of reinforcing beams in the top, and reduces the required size of beams in the base, which results in a strong pallet having a desired low height results.
  • the invention may be applied to non-GMA pallets, including wholly plastic pallets and pallets having wood bases.
  • FIG. 1 is an isometric view of a quarter section of a pallet.
  • FIG. 2 is a vertical cross section through the outer edge and part of the deck of the pallet of FIG. 1 .
  • FIG. 3 is like FIG. 2 , showing another embodiment pallet deck attachment.
  • FIG. 4 shows in vertical section part of the top outer edge of a pallet, where the deck is attached by means of plastic nubs.
  • FIG. 5 is a vertical cross section of the top outer edge of a pallet, where the deck is attached by means of a rail having integral pins.
  • FIG. 6 shows in vertical section part of the top outer edge of a pallet, where the deck is encapsulated with thermoplastic.
  • FIG. 7 is an isometric view of a quarter of a rectangular pallet having diagonal corrugations.
  • FIG. 8 is a top view of the pallet, showing continuous corrugations which run parallel to a line L connecting diagonally opposing corners of the pallet.
  • FIG. 9 is a vertical cross section through a portion of a corrugated deck showing the shape of the corrugations.
  • FIG. 10 is like FIG. 9 and shows different contour corrugations.
  • FIG. 11 is a graph comparing the mechanical behavior of decks having different corrugation patterns.
  • FIG. 12 is like FIG. 2 , showing a vertical cross section portion of a pallet having metal beams, for describing pallet vertical dimensions.
  • FIG. 13 is an isometric view of a quadrant of a pallet having a deck mounted on a suspension system which comprises a subframe.
  • FIG. 14 is an exploded view of the pallet of FIG. 13 .
  • FIG. 15 is a graph of pallet stacking density as a function of pallet height.
  • the invention is mostly described in terms of a preferred embodiment pallet, having the dimensions of a GMA pallet.
  • the invention will be useful in non-GMA pallets.
  • the present invention is aimed at meeting particular mechanical requirements, along with the fire test requirements of UL Standard 2335, while minimizing the use of fire retardants.
  • a predominately thermoplastic pallet has a combination of metal beams in the base and a textured, preferably a metal, deck.
  • a metal deck enables avoiding the use of reinforcing beams in the top. That aspect is described first. There is an advantage to having corrugations which having specified orientations and dimensions. That is described next.
  • a GMA pallet has the property of uniquely high stacking density. That is described last.
  • a pallet of the present invention pallet may be molded-in components and subassemblies, preferably by injection molding using gas assistance. See U.S. Pat. No. 5,401,459.
  • the several parts or subassemblies may be joined as an assembly by known thermoplastic fabrication methods, for example, by mechanical means, by hot plate welding, vibratory welding, or ultrasonic welding. See, for instance, U.S. Pat. Nos. 6,250,234 and 6,283,044.
  • the thermoplastic parts of the pallet may be made of commercial grade polypropylene, high density polyethylene or other polyolefin. Other plastics, including thermosets and engineered plastics, may be used for the parts of the pallet.
  • FIG. 1 is an isometric view of a quadrant portion of pallet 20 which has a rectangular base 30 . It is useful and illustrates many principles of the invention.
  • the pallet 320 described below, is more complex and more preferred.
  • Frame 24 is supported by the eight columns 28 which are at the rectangular periphery of the pallet.
  • a frame is by definition a rectangular structure with an interior opening; and the interior opening is spanned by the deck.
  • Formed aluminum sheet metal deck 22 is attached to frame 24 .
  • Base 30 is comprised of four outside rails 31 which form a rectangle that corresponds with the shape of frame 24 .
  • Two cross rails 33 connect the opposing centers of the outside rails; they cross each other at the center of the pallet.
  • Center column 29 is at the cross rail intersection and deck 22 is fastened to the top of the center column.
  • the openings 34 , between adjacent columns 28 have a width and height which enables “four-way” fork entry for lifting and transport and which meet industry dimensional requirements.
  • Metal beams 74 are embedded within the rails 31 , 33 of base 30 . See also the vertical cross section of FIG. 2 .
  • the metal beams provide strength and stiffness to the base of the pallet, so that the pallet can be stored in a rack which has spaced apart rack supports, and so the pallet can endure other specified loads.
  • Beams are incorporated within the frame in accord with the teachings of U.S. Pat. Nos. 6,705,237 of Moore et al., 6,955,128 of Apps et al., and 5,868,080 of Wyler et al., the disclosures of which are hereby incorporated by reference.
  • the beams are preferably configured so that during a fire the embedded beams, and the pallet, collapse when the burning thermoplastic softens. See the related application entitled “Fire collapsible beamed pallet,” bearing Atty. No. EPC-2443 filed on even date herewith by R. Moore et al., the disclosure of which is hereby incorporated by reference.
  • the construction of the deck and its attachment to the thermoplastic parts of the pallet are features of the invention.
  • the deck has texturing which provides the sheet material with strength sufficient to both carry a load of goods and to impart strength to the pallet as a whole.
  • a variety of ways for imparting stiffness to the deck sheet material may be used.
  • RigidizedTM metal sheet may be used.
  • the sheet may have a waffle pattern.
  • the deck has a multiplicity of corrugations, and it is also made of metal, as described below.
  • deck 22 of pallet 20 has corrugations running in several different directions, in accord with the corrugation pattern shown as Type B in FIG. 11 .
  • the deck is made of 0.060 inch thick Type 5052 aluminum alloy sheet.
  • the periphery of deck 22 comprises a flange 49 , as shown in FIGS. 1 and 4 , which is plain or un-textured and which and facilitates attachment to the frame.
  • FIG. 3 through 6 show in vertical cross section some alternative deck attachments.
  • FIG. 3 shows how deck 22 is pinned to the frame by screw or driven pin fasteners 36 .
  • FIG. 4 shows a multiplicity of vertically extending projections or nubs, which are molded into the plastic frame when it is fabricated. After a deck with mating holes is placed on the frame, the nubs are headed, or flattened over, as indicated by the arrows and phantom in FIG. 4 .
  • the deck and frame have holes, to receive the stakes of a metal or plastic rail 40 , which is pressed down onto the frame to capture the flange of the deck.
  • deck 22 is first encapsulated in whole or part by a layer 340 of thermoplastic, using commercial processes. Then, the layer is plastic-welded to the frame, for instance by ultrasonic, vibratory or hot plate welding.
  • This embodiment can provide a good seal between the deck and the frame. See a related application entitled “Plastic pallet with sealed deck to frame joint”, bearing Atty. No. EPC-2442, filed on even date herewith by R. Moore et al., the disclosure of which is hereby incorporated by reference.
  • the outer edge of the deck may be mechanically captured within the frame during the molding of the frame.
  • FIG. 3 shows a corrugated deck 22 which has no flange and which is not inset from the outer edge of the frame; the deck covers the entire top of the pallet.
  • the edges of a metal deck are inset from, or inwardly spaced apart from, the outside edge of the frame by a distance D, as shown in FIGS. 1 and 2 .
  • a distance D As shown in FIGS. 1 and 2 .
  • the inset of the deck edge With the inset of the deck edge, a peripheral portion of the top of the frame is exposed.
  • Distance D will be a design choice, according to the character of the exposed part the frame and anticipated impacts.
  • D is preferably the same for all edges, at about 1-3 inches for a GMA size pallet. D may be different at different sides of the pallet. In the pallet 120 embodiment discussed below, D is preferably about 4-5 inches. Thus for a 40 ⁇ 48 GMA pallet the deck area will be at least about 75 percent of total area of the top of the pallet. When the deck is metal, fire test performance is much improved due to the lessening of the quantity and surface area of combustible plastic in the pallet.
  • the frame may be constructed in a manner which is familiar to those making ordinary injection molded structural beams.
  • it may be shaped like a C-channel; it may have lightening pockets and ribs, etc.
  • the bridge parts 25 of the frame 24 are less conventionally constructed, and they have one or more lengthwise compliant zones which comprise an impact absorber 26 .
  • a bridge is that portion of a frame which spans the space between adjacent columns 28 .
  • One type of impact absorber 26 is shown in FIG. 1 and FIG. 2 ; another is shown in FIG. 7 .
  • the impact absorber comprises two parallel rows of open cells bounded by lengthwise and transverse ribs near the outer edge 27 of bridge 25 .
  • the bridge comprises a third lengthwise zone, namely, the innermost portion of the bridge, where deck 22 is attached. See FIG. 6 . That portion is not designed for impact absorption and is of conventional structural plastic design. Thus, when horizontally impacted, the outer portion of the bridge 25 is more complaint, or less stiff and therefore more deformable, than is the innermost part of the bridge. The outer portions absorb the force of a horizontal impact and the inner portion does not appreciably move. Impact absorber construction is described more particularly in the related application entitled “Plastic pallet with sealed deck to frame joint,” bearing Atty. No. EPC-2442, filed on even date herewith by R. Moore et al., the disclosure of which is hereby incorporated by reference.
  • Rectangular cross section beams 74 in the rails 31 , 33 of the base 30 are made of sheet metal.
  • 0.059 inch thick AISI 1040 steel having yield strength of at least 80,000 pounds per square inch, may be used.
  • 0.090 inch thick cold rolled AISI 1018 steel having a Rockwell B hardness of 60-65 may be used.
  • the vertical height (or depth) of the beams is about 0.7 inch, when a metal deck is used.
  • FIG. 11 illustrates some of the texturing patterns which are now discussed.
  • FIG. 7 shows in isometric view, similar to the view of FIG. 1 , a portion of pallet 120 having a preferred corrugated deck.
  • Pallet 120 has an essential construction and dimensions like those of pallet 20 . Numbers having two digits preceded by the digit 1, 2, 3, etc., here and below, denote elements which correspond with two-digit numbered elements above.
  • the texturing of deck 122 of pallet 120 comprises parallel corrugations 45 which run at an angle to the edges of the deck and pallet.
  • GMA pallet 120 preferably has an aluminum alloy sheet metal deck, as described above, the corrugation pattern invention may be employed other pallets having non-metal decks.
  • Flange 149 of deck 122 is attached to the frame 124 of the pallet by means of screw or stake fasteners, or in other ways mentioned above.
  • the center of the deck is fastened to the top of center column 129 .
  • Deck 122 has a multiplicity of corrugations 45 which, when viewed in a vertical cross section, comprise valleys 41 and peaks 47 .
  • Some exemplary corrugation cross section patterns are shown in the vertical cross section decks of FIG. 9 and FIG. 10 .
  • the tops of peaks 47 and the bottoms of valleys 41 of deck 122 are substantially flat and parallel to the top of the frame; and, the peaks and valleys are connected by webs running at a nominal 45 degree angle to the horizontal.
  • the pitch, P, or center to center spacing, of the corrugations is about 2 inches.
  • Depth DP is the effective depth of the deck; and is nominally the depth of the valleys. All valleys are preferably of uniform depth and provide the deck with an effective depth of about 0.5 inches.
  • FIG. 10 shows the corrugation cross section of alternate embodiment deck 122 A which has peaks 45 A and valleys 47 A running along a nominally sinusoidal path.
  • Other dimension corrugations may be used, including those in which the corrugations vary in width or pitch.
  • Depth DP may vary from valley to valley and along the length of any valley.
  • the bottoms of the valleys preferably have spaced-apart drain holes, visible in FIG. 1 and FIG. 13 , to make fire sprinkler water drop onto the underlying cross rails, for helping performance in fire tests. See related application entitled “Fire sprinkler-friendly pallet,” bearing Atty. No. EPC-2440, filed on even date herewith by R. Moore et al., the disclosure of which is hereby incorporated by reference.
  • decks are formed from flat sheet using conventional metalworking techniques, including cold forming, press forming, drawing, etc. Especially when there is a flat flange, the deck may be conceived as a flat sheet into which valleys 41 have been pressed. Thus, in the following discussion a reference to a corrugation may be considered interchangeably to refer to a valley.
  • FIG. 8 is a top view of pallet 120 and illustrates the lay of the lengthwise axes 53 of the corrugations.
  • all the corrugations of deck 120 run parallel to L, the line running between the intersects of the edges at two diagonally opposed corners.
  • L will also be the diagonal of the frame and pallet as a whole.
  • Line L of the deck will not be coincident with the corresponding diagonal of the frame or pallet when the rectangle of the deck is not congruent with the rectangle of the pallet.
  • the line L lies at an angle B of about 40 degrees to the longer edge of the frame 124 .
  • the axes 53 of all the corrugations of deck 120 lie within plus or minus angle A of parallelism with line L.
  • Angle A is about 10 degrees, preferably 3 degrees. If a deck is deviant from a perfect rectangle shape, L will be the diagonal of a best fit rectangle.
  • the invention will be useful with patents which are square. When it is said corrugations are parallel, that means they are substantially parallel, and there may be small deviations from exact parallelism between adjacent corrugations.
  • FIG. 11 graphically illustrates the surprising advantage in performance for certain deck corrugation patterns, as revealed by finite element analysis (FEA) of decks which were subject to the same uniform loads.
  • FEA finite element analysis
  • decks were assumed to be made of 0.050 inch Type 5052 aluminum alloy sheet. All corrugations had the same width, depth and the cross section shape which is shown in FIG. 9 . Thus, only the orientations of the corrugations were changed, from one type deck to another, in the analysis.
  • the icons in FIG. 11 are simplified top view sketches of pallet decks, to show the different deck corrugation patterns of the analysis.
  • the decks in the FEA were analyzed when supported in two different ways. First, the pallet was supported at the opposing 48 inch length sides, or in the so-called “long direction” (the data for which is represented by circle symbols). Second, the pallet was supported at the opposing 40 inch length sides, or in the so-called “short direction” (the data for which is represented by circle symbols). In FIG. 11 , those two different support modes are indicated by stating the span between the supports, e.g., a span of 40 inches means the deck was supported along the 49 inch sides.
  • the comparative FEA deformations of different configurations of decks were determined. Those data are represented in the graph by the open symbols. Maximum elastic stress in the deck was calculated according to Von Mises theory and criteria.
  • the Von Mises analysis data are represented by solid symbols. A deck having better strength will have lower deflection and lower Von Mises values, when performance in both directions of support is considered. The comparative deflection performance of some of the patterns was confirmed in testing of prototype decks and pallets.
  • Decks of type INV and type I have surprising advantage over the other patterns, and they are preferred embodiments of the present invention.
  • type INV all the corrugations run parallel to L, the diagonal.
  • the associated data set is marked by the box 80 .
  • Deck of type I, with which is associated data set 90, is only somewhat inferior to the most preferred embodiment type INV.
  • a deck of type B provides inferior performance, compared to what artisan intuition about its symmetry might suggest. In fact, such pattern was used on early prototypes.
  • the long direction corrugations which characterize type III deck give the deck excellent results in one span-support direction and quite inferior results in the other span-support direction.
  • the type II deck has similar but somewhat lesser inadequacy.
  • Type I and type INV decks are characterized by at least three corrugations running continuously and parallel to the diagonal line of the deck.
  • Type I deck has a second set of three corrugations, namely those running along the other diagonal of the pallet.
  • the corrugations of the second set are discontinuous where their path crosses the first set of corrugations.
  • Type I has in addition 4 to 6 valleys which run parallel to the each of the rectangular edges of the deck.
  • type IA not shown, the configuration is like type I: A first set of at least 3 corrugations is parallel to a first diagonal line of the deck; and, all the other corrugations on the deck are parallel to the second diagonal.
  • a type I deck is less preferred than a type INV deck, but both are substantially superior to other types of texturing.
  • one corrugation valley is centered on line L, and there are two or more parallel valleys on either side of the primary valley.
  • the two adjacent the primary valley have only a little shorter than the primary valley length.
  • the term “corner” as applied to this aspect of the invention is to be interpreted as embracing a region of the deck, rather than a point.
  • the three corrugations nearest line L run to the corners, even though the outer portion of the corner near the edge intersect is an un-textured flange. While the analysis simulated a metal deck, the invention will be useful with decks which are made of non-metals. Logic suggests that two, or even one, continuous diagonal corrugations would suffice, although providing less strength but that has not yet been proved.
  • each corrugation provides strength to the edge of the deck, and helps inhibits bending of the deck about the length axis of the corrugation at the deck edge.
  • the combination of features of the invention provides another unexpected advantage, namely, a heretofore unattainable low profile, or total height, for a pallet which meets the many requirements which have been mentioned above for a GMA pallet.
  • a heretofore unattainable low profile, or total height for a pallet which meets the many requirements which have been mentioned above for a GMA pallet.
  • FIG. 12 is used to illustrate dimensions associated with pallets.
  • FIG. 12 is analogous to FIG. 2 and shows a vertical cross section of a simplified prior art pallet 220 having metal beams 275 , 274 , respectively in the top and base.
  • the fork opening 234 (also sometimes called the window) must have a height FO of at least 3.1 inches and a width WO of at least 12.5 inches wide.
  • the hollow square AISI 1018 steel beams 275 , 274 have a vertical height of about 0.875 inches. That produces a base rail height DB of about 1.1 inches.
  • the top frame has a similar beams and similar height DT.
  • the resultant total height of the pallet is near the maximum 5.56 inch height allowed.
  • the present invention which comprises a corrugated metal deck, in particular an aluminum deck, having the corrugations of Type INV or Type I, enables both omitting metal beams in the top and reducing the height of the beams in the base, while meeting the dimensional, load bearing and weight requirements attending a GMA pallet. Leaving the beam out of the top means the top can be made thinner than heretofore has been possible.
  • a top frame height, DT of about 0.7 inches is achieved.
  • the effective height of the deck is 0.5 inches, and that fits easily within the frame profile.
  • the corrugated deck is sufficiently stiff and supported at the center column. Thus, when it deflects under a load of goods, it does not deflect below the elevation of the bottom of the frame.
  • the strong metal deck and thermoplastic elements of the top cooperate with the base to provide good racking strength.
  • the pallet construction enables a reduction in the size of the beams used in the base.
  • the vertical height (also called “depth”) of the steel beams in the base of a preferred embodiment pallet is about 0.5 inches, which is about 60% of the previously required beam height of 0.875 inches.
  • the thicknesses of both the top and both parts of the pallet are thinner than was heretofore possible.
  • the use of the corrugated metal deck enables a surprising and significant reduction in height and associated stacking density, compared to what could be done in the past.
  • Exemplary pallets of the invention have heights of less than 5.4 inches. In a preferred embodiment a pallet is 4.7 to 4.9 inches high. As a fraction of the height of the pallet, the required minimum 3.1 inch fork opening height is more than about 60 percent; the 0.7 inch top height is less than about 15 percent; and the 0.9 inch base height is less than about 20 percent. Those percentages are a measure of the efficiency and uniqueness of the design.
  • FIG. 13 A quadrant of an exemplary pallet 320 which has features of the present invention is shown in FIG. 13 .
  • the exploded view of FIG. 14 shows how it is constructed.
  • pallet 320 has most elements like those previously described.
  • the corrugated deck is of the type INV and all the corrugations are parallel to the deck diagonal.
  • Pallet 320 is different from other embodiments described up to this point in the following way:
  • the deck 322 is attached to a subframe 66 which is supported within the frame by attachment to cantilever brackets 68 , 78 .
  • the deck is also fastened to center column 329 which preferably has vertical fins on top rather than a mirror-fit corrugation contour pattern.
  • the subframe 66 and attached deck are spaced apart from the inner edge 72 of the frame.
  • each bridge 325 has impact absorber construction across its whole width. Since the edge of the deck is spaced apart from the inner edge of the bridge, the bridge can deform compliantly and inwardly under horizontal impact loads without damaging the deck.
  • the construction of the pallet of FIG. 13 is further described in a patent application entitled “Plastic pallet having impact resisting top”, bearing Atty. No. EPC-2437, and an application entitled “Plastic pallet having deck suspension system”, bearing Atty. No. EPC-2439, both filed on even date herewith by R. Moore et al., the disclosures of which is hereby incorporated by reference.
  • a pallet of the present invention like that shown in FIG. 13 , when made of polypropylene or comparable density plastic, and when having corrugated aluminum alloy deck and steel beams only in the base, is by weight about 30-45 percent metal, balance thermoplastic.
  • the metal is about 32-40 weight percent.
  • the preferred embodiment pallet is approximately 90 percent plastic. Therefore, on both bases, the invention pallet is characterized as predominately plastic.
  • the total weight is about less than 55 pounds, preferably about 51 pounds, according to the particular height.
  • the aluminum deck weighs about 6 lb and the steel reinforcing beams weigh about 12.5 lb, which are respectively about 11-12% and 23-25% of the total pallet weight.
  • Such pallet is 34-37% percent metal by weight.
  • Some or all of the metal parts may be replaced by non-metal parts, such as with engineered plastics or ceramics which provide comparable section moduli and strengths to the metal parts.
  • the new technology makes possible the construction of GMA-load rated pallets which are predominately plastic, but at the same time they have a total height which is 10-15% less than GMA-rated pallets in the prior art.
  • a pallet which has a 4.7 inch height has about 15% less height than a 5.56 inch high prior art pallet. That means that about 20% more pallets can be carried within the volume of a typical large truck or other vehicle, which is explained now.
  • a typical stack of pallets for carrying within a familiar U.S. over-the-road enclosed semi-trailer cannot exceed about 109 inch. Obviously, if the remaining space above an uppermost pallet is less than the height of a full pallet, that space must remain empty. In the invention, a stack of 23 most preferred embodiment 4.7 inch high pallets will be about 108 inches high. A stack of 19 prior art 5.56 inch pallets will be about 106 inches high. Normalizing those numbers, a stack of 5.56 inch pallets has a vertical density of 2.15 pallets per foot. In the invention, the most preferred embodiment 4.7 inch high pallet has a stack density of 2.55 pallets per foot. Table 1 shows data for different models, or embodiments of the invention. The pallet height and density data of Table 1 are plotted in FIG. 15 . When certain cost considerations are weighed, the design Model A, having a 4.9 inch height, is most preferred at the present time; and a substantial advantage is obtained.
  • Prototype GMA pallets which had the features of most preferred embodiments of the invention passed the test of UL 2335.
  • the pallets were made of polypropylene containing fire retardants and had a corrugated aluminum deck with drain holes over the base rails, collapsible steel beams in the base rails, and thermoset foam within the hollows of the columns.
  • the 5052 aluminum alloy has an elastic modulus in tension of 10.3 ⁇ 106 psi (7.1 ⁇ 104 MPa) and a specific stiffness of about 105 ⁇ 106 inch (26 ⁇ 105 m).
  • AISI 300 series stainless steel may be used.
  • Such steel alloy has about three times the density of the aluminum alloy, but it also has an elastic modulus which is about three times that of the aluminum alloy.
  • the two classes of metals have about the same specific stiffness.
  • the steel deck could be about one-third of the thickness of an aluminum deck.
  • a deck may alternately be made of any of a number of steels which have mechanical properties comparable to the 300 series stainless steels.
  • a deck may be made of alloys of magnesium or titanium, although they have poor fire test characteristics.
  • Sheet of fiber reinforced thermoset plastic may be used.
  • Pallets may be alternately constructed using beams which are not metal, such as those made of graphite or glass or metal fibers.
  • the rails of bases may be constructed wholly of engineered plastics.
  • thermoplastic or “thermoplastic,” unless qualified, the term does not exclude the presence of other materials such as metal reinforcing members, fillers, fibers, fire retardants, and the like; and it means that the pallet is mostly or predominately plastic or thermoplastic, as applies.
  • a thermoplastic pallet or member may also be comprised of lesser fraction thermoset and or elastomer materials. Such terminology compares to a reference to a wholly or purely plastic or thermoplastic pallet or article.
  • commercially available fire retardants are ordinarily included with thermoplastics, to help meet the UL 2335 requirements, as is known in the art.
  • the base of a pallet may have cross rails which run in a different pattern from that described.
  • the cross rails may run between diagonally opposed corners.
  • the cross rails may be wholly metal.
  • the columns might be wholly or part metal.
  • a corrugated deck of the invention can be used with pallets which have no reinforcing beams in the base, or with pallets which have no base rails, but which are supported by resting the lower ends of the columns on a flat surface, in which case the columns might more accurately be called feet.
  • the inventions will be useful as improvements for pallets which are not GMA dimensioned or structurally rated.
  • the deck corrugation patterns can be used in other pallets having sheet material decks, including where the deck material is any kind of plastic, including engineered plastics, such as those reinforced with graphite fibers and fiberglass.
  • the invention may be applied to wholly plastic pallets and pallets having wood bases.

Abstract

A molded plastic rectangular pallet has a deck made of corrugated thin sheet material. A multiplicity of corrugations, and preferably all of them, run continuously across the deck and parallel to a line connecting the diagonally opposite corners of the deck. The pallet, when predominately plastic, preferably has a metal deck and a base comprised of rails having steel reinforcing beams. Eight columns extend upwardly from the rails for supporting a frame which forms the periphery of the top. The deck edge is preferably inset from the outer edge of the top of the pallet, and the deck has a flat flange which is attached to the frame or to a subframe mounted within the frame.

Description

  • This application claims benefit of provisional patent applications Ser. Nos. 60/654,760, 60/654,761, 60/654,765, and 60/654,768, all filed Feb. 18, 2005.
  • TECHNICAL FIELD
  • The present invention relates to plastic pallets, particularly those used for transporting miscellaneous industrial and commercial goods by means of forklift devices and the like.
  • BACKGROUND
  • Rectangular wood pallets have been long used with forklift devices for transporting and storing common goods. They have been attractive because of simplicity and low cost. However, wood pallets are prone to damage during use, and constantly must be replaced or discarded. They also are difficult to keep clean. In recent years plastic pallets have been commercially available. They would seem to offer a number of potential advantages over wood pallets, including better durability, moisture resistance, and other known advantages of a polymer material, compared to wood. Plastic pallets have most often been made of familiar polyolefin thermoplastics; some other polymers have been used, particularly for fire-resistance. However, plastic pallets have not gained wide acceptance, for a number or reasons, which can be stated briefly as relating to a failure to satisfactorily meet all of a variety of criteria, including mechanical performance, weight, cost, and fire resistance.
  • A plastic pallet, which can be made in the present invention, is often referred in the U.S. to as a GMA pallet. It has a rectangular base, eight columns running up from the periphery of the base, and a rectangular deck. The pallet is in the shape of a 40 inch×48 inch rectangle. A comparable European pallet is a 1000 mm by 1200 mm pallet, sometimes called a CP-1 pallet. For such pallets to become accepted for widespread use in commerce, they must meet various technical and performance standards. The Grocery Manufacturers of America (GMA), Washington, D.C., U.S., in conjunction with other organizations, has published a document entitled “Recommendations on the Grocery Industry Pallet System” (1992). From that and other references, the characteristics for a GMA pallet which are required for acceptance by large commercial users in the U.S. include the following: The height must be less about 5.56 inches or less. The pallet must allow four-way entry by forks, and each side must have two openings which are at least 3.1 to 3.8 inches high and 12 to 12.5 inches wide. The pallet should weigh less than 55 pounds. The pallet has to be “rackable.” By that is meant, among other things, that the pallet must be capable of being held on open beam warehouse racks without failing or exceeding a specified amount of creep deformation when loaded.
  • “Recommended Test Protocol for Plastic Pallet, Version 3” (1998) published by Virginia Tech, Blacksburg, Va., U.S., sets forth mechanical performance and test requirements for pallets including a warehouse racking test. ISO 8611:1991 and proposed Underwriters Laboratories (UL) Standard 2417 specify similar mechanical performance and testing standards. Pallets must also meet other standards. UL Standard 2335 specifies fire tests and performance for warehouse pallets made of plastic. To meet such fire test standard, pallets must not exceed a certain rate of heat release rate during a simulated warehouse fire. ANSI/NSF 2-1996, published by NSF and approved by American National Standards Institute, at Section 7, sets standards for pallets used in food service. Commercial purchasers have their own standards which are often somewhat more demanding.
  • In the past, plastic pallets of the size and type described have not been able to simultaneously meet all of the performance criteria for an acceptable cost and weight. Thus, they have not substantially replaced widely used wood pallets. It is an aim of the invention to do better.
  • In the plastic pallets which have been commercially offered or described in patent literature, decks appear to have been mostly made from sheet or injection molded plastic. Typically, decks are permanently attached to the other parts of the pallet, although sometimes they have been mechanically and detachably assembled. Often the decks have many openings and ribs for lightness and drainage, which present large surface areas and adversely affect fire test performance.
  • In order to have sufficient GMA strengths, the tops of pallets have had to be thick or have had to make use of metal beams, as described in various patents, including U.S. Pat. Nos. 5,868,080, 6,705,237, and 6,955,128. Beams, especially when they are encapsulated in plastic for protection, tend to increase the thickness, height and weight. Having a low pallet height, or low profile, is of interest for the following reason. Economics and current environmental concerns dictate that empty plastic pallets be exchanged, or returned to a source of goods for reuse Shippers want to pack as many empty pallets as possible on a truck or other transport vehicle, to reduce the shipping cost per pallet. Thus, it follows that the bigger the profile, the higher the cost of transporting a pallet.
  • Despite the best efforts of engineers and designers, plastic pallets which seek to meet the GMA standards—with or without using beams, have tended to be at or beyond the user-specified maximum 5.56 inch height. Small height changes can have a powerful effect on pallet strength, since section modulus and therefore stiffness of any structure is a cubic function of section height.
  • It has also been difficult for plastic pallet designers to meet the fire resisting requirements. The high energy content of thermoplastics, combined with the high surface area of plastic decks and other parts, have meant that the rate of heat evolution during a fire is much greater than allowed by the UL 2335 standard. While fire retardants have been included within the plastics to address the issue, it has been difficult for plastic pallet makers to meet the standard while meeting the other requirements. The fire retarding additives can compromise mechanical properties, increase cost and weight, and introduce environmental problems.
  • Thus, there is a need for further improvements in the design and construction of plastic pallets, to meet the difficult goals mentioned above.
  • SUMMARY
  • An object of the invention is to provide superior strength to the deck of a pallet which is made of sheet material. A further object of the invention is to provide a plastic pallet that has a desirable combination of properties required by commercial users, including those which relate to dimensions, creep strength, weight, stacking density and fire resistance. A further object is to reduce the number and size of reinforcing beams in a pallet.
  • In accord with the invention, a plastic pallet has a rectangular base, a frame supported on columns running upwardly, and a corrugated sheet deck attached to the frame or to a subframe within the frame. The deck has at least three corrugations which are nominally parallel to the line which connects the diagonally opposite corners of the deck. The at least three corrugations are within about 10-15 degrees, preferably within 0-3 degrees, of alignment with the diagonal line. Preferably, all the corrugations of the deck are parallel to each other. In an alternate embodiment, a deck has a first set of at least three corrugations which are nominally parallel to a first corner-to-corner diagonal line, and a second set of at least three corrugations which are nominally parallel to the other corner-to-corner diagonal line. The first set of corrugations is continuous and the second set is discontinuous where the corrugation sets intersect near the center of the deck.
  • Preferably, deck has a circumscribing flange and the edges of the deck are spaced apart from the outer edges of the frame, so they are protected from horizontal impact damage. Preferably, the frame comprises impact absorbers and the stays in the bridge parts of the frame, which bridges span the spaces between columns. The deck may be made of metal sheet or non-metal sheet
  • In further accord with the invention, a pallet having the foregoing features comprises eight outer columns and a center column which run upwardly from the base. The deck is attached to the frame or a subframe within the frame, and to the center column. The area of the deck is at least 75 percent of the area of the top of the pallet. One embodiment of pallet, which is referred to as a GMA pallet, is 40 inches by 48 inches in outside dimension, and is made of polypropylene or polyethylene thermoplastic. The base rails have steel reinforcing beams and the corrugated deck is made of aluminum alloy sheet. The predominately plastic pallet is 30-45 percent metal by weight.
  • The corrugated deck of the invention has good stiffness, for supporting goods placed on the deck; and in meeting the GMA pallet demands, the stiffness and strength of the deck cooperate with the structure of the base in a way which avoids the need of reinforcing beams in the top, and reduces the required size of beams in the base, which results in a strong pallet having a desired low height results. The invention may be applied to non-GMA pallets, including wholly plastic pallets and pallets having wood bases.
  • The foregoing and other objects, features and advantages of the present invention will become more apparent from the following description of preferred embodiments and accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an isometric view of a quarter section of a pallet.
  • FIG. 2 is a vertical cross section through the outer edge and part of the deck of the pallet of FIG. 1.
  • FIG. 3 is like FIG. 2, showing another embodiment pallet deck attachment.
  • FIG. 4 shows in vertical section part of the top outer edge of a pallet, where the deck is attached by means of plastic nubs.
  • FIG. 5 is a vertical cross section of the top outer edge of a pallet, where the deck is attached by means of a rail having integral pins.
  • FIG. 6 shows in vertical section part of the top outer edge of a pallet, where the deck is encapsulated with thermoplastic.
  • FIG. 7 is an isometric view of a quarter of a rectangular pallet having diagonal corrugations.
  • FIG. 8 is a top view of the pallet, showing continuous corrugations which run parallel to a line L connecting diagonally opposing corners of the pallet.
  • FIG. 9 is a vertical cross section through a portion of a corrugated deck showing the shape of the corrugations.
  • FIG. 10 is like FIG. 9 and shows different contour corrugations.
  • FIG. 11 is a graph comparing the mechanical behavior of decks having different corrugation patterns.
  • FIG. 12 is like FIG. 2, showing a vertical cross section portion of a pallet having metal beams, for describing pallet vertical dimensions.
  • FIG. 13 is an isometric view of a quadrant of a pallet having a deck mounted on a suspension system which comprises a subframe.
  • FIG. 14 is an exploded view of the pallet of FIG. 13.
  • FIG. 15 is a graph of pallet stacking density as a function of pallet height.
  • DESCRIPTION
  • The invention is mostly described in terms of a preferred embodiment pallet, having the dimensions of a GMA pallet. The invention will be useful in non-GMA pallets. As detailed further below, the present invention is aimed at meeting particular mechanical requirements, along with the fire test requirements of UL Standard 2335, while minimizing the use of fire retardants.
  • In one aspect of the invention, a predominately thermoplastic pallet has a combination of metal beams in the base and a textured, preferably a metal, deck. A metal deck enables avoiding the use of reinforcing beams in the top. That aspect is described first. There is an advantage to having corrugations which having specified orientations and dimensions. That is described next. By using the special combination of features a GMA pallet has the property of uniquely high stacking density. That is described last.
  • A pallet of the present invention pallet may be molded-in components and subassemblies, preferably by injection molding using gas assistance. See U.S. Pat. No. 5,401,459. The several parts or subassemblies may be joined as an assembly by known thermoplastic fabrication methods, for example, by mechanical means, by hot plate welding, vibratory welding, or ultrasonic welding. See, for instance, U.S. Pat. Nos. 6,250,234 and 6,283,044. The thermoplastic parts of the pallet may be made of commercial grade polypropylene, high density polyethylene or other polyolefin. Other plastics, including thermosets and engineered plastics, may be used for the parts of the pallet.
  • FIG. 1 is an isometric view of a quadrant portion of pallet 20 which has a rectangular base 30. It is useful and illustrates many principles of the invention. The pallet 320, described below, is more complex and more preferred. There are nine columns which run upwardly from the rectangular base. Frame 24 is supported by the eight columns 28 which are at the rectangular periphery of the pallet. There are four corner columns and four columns at the midpoint of each side of the pallet. A frame is by definition a rectangular structure with an interior opening; and the interior opening is spanned by the deck. Formed aluminum sheet metal deck 22 is attached to frame 24. Base 30 is comprised of four outside rails 31 which form a rectangle that corresponds with the shape of frame 24. Two cross rails 33 connect the opposing centers of the outside rails; they cross each other at the center of the pallet. Center column 29 is at the cross rail intersection and deck 22 is fastened to the top of the center column. The openings 34, between adjacent columns 28 have a width and height which enables “four-way” fork entry for lifting and transport and which meet industry dimensional requirements.
  • Metal beams 74 are embedded within the rails 31, 33 of base 30. See also the vertical cross section of FIG. 2. The metal beams provide strength and stiffness to the base of the pallet, so that the pallet can be stored in a rack which has spaced apart rack supports, and so the pallet can endure other specified loads. Beams are incorporated within the frame in accord with the teachings of U.S. Pat. Nos. 6,705,237 of Moore et al., 6,955,128 of Apps et al., and 5,868,080 of Wyler et al., the disclosures of which are hereby incorporated by reference. The beams are preferably configured so that during a fire the embedded beams, and the pallet, collapse when the burning thermoplastic softens. See the related application entitled “Fire collapsible beamed pallet,” bearing Atty. No. EPC-2443 filed on even date herewith by R. Moore et al., the disclosure of which is hereby incorporated by reference.
  • The construction of the deck and its attachment to the thermoplastic parts of the pallet are features of the invention. The deck has texturing which provides the sheet material with strength sufficient to both carry a load of goods and to impart strength to the pallet as a whole. When meeting fire test performance is the main criterion, and diminished strength can be accepted, a variety of ways for imparting stiffness to the deck sheet material may be used. For instance, Rigidized™ metal sheet may be used. For instance, the sheet may have a waffle pattern. Preferably, the deck has a multiplicity of corrugations, and it is also made of metal, as described below.
  • With reference to FIG. 1 and FIG. 2, deck 22 of pallet 20 has corrugations running in several different directions, in accord with the corrugation pattern shown as Type B in FIG. 11. The deck is made of 0.060 inch thick Type 5052 aluminum alloy sheet. The periphery of deck 22 comprises a flange 49, as shown in FIGS. 1 and 4, which is plain or un-textured and which and facilitates attachment to the frame.
  • The deck may be attached to the frame 24 in various ways, to act as a structural element for racking strength and the like. FIG. 3 through 6 show in vertical cross section some alternative deck attachments. FIG. 3 shows how deck 22 is pinned to the frame by screw or driven pin fasteners 36. FIG. 4 shows a multiplicity of vertically extending projections or nubs, which are molded into the plastic frame when it is fabricated. After a deck with mating holes is placed on the frame, the nubs are headed, or flattened over, as indicated by the arrows and phantom in FIG. 4. In another embodiment, shown in FIG. 5, the deck and frame have holes, to receive the stakes of a metal or plastic rail 40, which is pressed down onto the frame to capture the flange of the deck.
  • In still another embodiment of deck attachment, illustrated by FIG. 6, deck 22 is first encapsulated in whole or part by a layer 340 of thermoplastic, using commercial processes. Then, the layer is plastic-welded to the frame, for instance by ultrasonic, vibratory or hot plate welding. This embodiment can provide a good seal between the deck and the frame. See a related application entitled “Plastic pallet with sealed deck to frame joint”, bearing Atty. No. EPC-2442, filed on even date herewith by R. Moore et al., the disclosure of which is hereby incorporated by reference. In another embodiment, not shown, the outer edge of the deck may be mechanically captured within the frame during the molding of the frame.
  • FIG. 3 shows a corrugated deck 22 which has no flange and which is not inset from the outer edge of the frame; the deck covers the entire top of the pallet. Preferably, the edges of a metal deck are inset from, or inwardly spaced apart from, the outside edge of the frame by a distance D, as shown in FIGS. 1 and 2. With the inset of the deck edge, a peripheral portion of the top of the frame is exposed. With the inset deck design, the edges of the deck are less prone to being damaged when objects horizontally impact the frame of the pallet. Distance D will be a design choice, according to the character of the exposed part the frame and anticipated impacts. In a FIG. 1 pallet embodiment, D is preferably the same for all edges, at about 1-3 inches for a GMA size pallet. D may be different at different sides of the pallet. In the pallet 120 embodiment discussed below, D is preferably about 4-5 inches. Thus for a 40×48 GMA pallet the deck area will be at least about 75 percent of total area of the top of the pallet. When the deck is metal, fire test performance is much improved due to the lessening of the quantity and surface area of combustible plastic in the pallet.
  • In the generality of the invention, the frame may be constructed in a manner which is familiar to those making ordinary injection molded structural beams. For example it may be shaped like a C-channel; it may have lightening pockets and ribs, etc. Preferably, the bridge parts 25 of the frame 24 are less conventionally constructed, and they have one or more lengthwise compliant zones which comprise an impact absorber 26. A bridge is that portion of a frame which spans the space between adjacent columns 28. One type of impact absorber 26 is shown in FIG. 1 and FIG. 2; another is shown in FIG. 7. In FIG. 1, the impact absorber comprises two parallel rows of open cells bounded by lengthwise and transverse ribs near the outer edge 27 of bridge 25. The bridge comprises a third lengthwise zone, namely, the innermost portion of the bridge, where deck 22 is attached. See FIG. 6. That portion is not designed for impact absorption and is of conventional structural plastic design. Thus, when horizontally impacted, the outer portion of the bridge 25 is more complaint, or less stiff and therefore more deformable, than is the innermost part of the bridge. The outer portions absorb the force of a horizontal impact and the inner portion does not appreciably move. Impact absorber construction is described more particularly in the related application entitled “Plastic pallet with sealed deck to frame joint,” bearing Atty. No. EPC-2442, filed on even date herewith by R. Moore et al., the disclosure of which is hereby incorporated by reference.
  • Rectangular cross section beams 74 in the rails 31, 33 of the base 30 are made of sheet metal. For example, 0.059 inch thick AISI 1040 steel, having yield strength of at least 80,000 pounds per square inch, may be used. For example, 0.090 inch thick cold rolled AISI 1018 steel having a Rockwell B hardness of 60-65 may be used. Preferably, the vertical height (or depth) of the beams is about 0.7 inch, when a metal deck is used.
  • If pallet weight is not critical, then the deck could be flat plate. However, it is preferred to use lighter gage sheet material and to texture the sheet, so it has good stiffness and section modulus. Some types of deck texturing are much preferred. FIG. 11 illustrates some of the texturing patterns which are now discussed. FIG. 7 shows in isometric view, similar to the view of FIG. 1, a portion of pallet 120 having a preferred corrugated deck. Pallet 120 has an essential construction and dimensions like those of pallet 20. Numbers having two digits preceded by the digit 1, 2, 3, etc., here and below, denote elements which correspond with two-digit numbered elements above. The texturing of deck 122 of pallet 120 comprises parallel corrugations 45 which run at an angle to the edges of the deck and pallet. While a GMA pallet 120 preferably has an aluminum alloy sheet metal deck, as described above, the corrugation pattern invention may be employed other pallets having non-metal decks. Flange 149 of deck 122 is attached to the frame 124 of the pallet by means of screw or stake fasteners, or in other ways mentioned above. The center of the deck is fastened to the top of center column 129.
  • Deck 122 has a multiplicity of corrugations 45 which, when viewed in a vertical cross section, comprise valleys 41 and peaks 47. Some exemplary corrugation cross section patterns are shown in the vertical cross section decks of FIG. 9 and FIG. 10. In the pattern shown in FIG. 9 the tops of peaks 47 and the bottoms of valleys 41 of deck 122 are substantially flat and parallel to the top of the frame; and, the peaks and valleys are connected by webs running at a nominal 45 degree angle to the horizontal. The pitch, P, or center to center spacing, of the corrugations is about 2 inches. Depth DP is the effective depth of the deck; and is nominally the depth of the valleys. All valleys are preferably of uniform depth and provide the deck with an effective depth of about 0.5 inches.
  • FIG. 10 shows the corrugation cross section of alternate embodiment deck 122A which has peaks 45A and valleys 47A running along a nominally sinusoidal path. Other dimension corrugations may be used, including those in which the corrugations vary in width or pitch. Depth DP may vary from valley to valley and along the length of any valley. The bottoms of the valleys preferably have spaced-apart drain holes, visible in FIG. 1 and FIG. 13, to make fire sprinkler water drop onto the underlying cross rails, for helping performance in fire tests. See related application entitled “Fire sprinkler-friendly pallet,” bearing Atty. No. EPC-2440, filed on even date herewith by R. Moore et al., the disclosure of which is hereby incorporated by reference. When made of metal, decks are formed from flat sheet using conventional metalworking techniques, including cold forming, press forming, drawing, etc. Especially when there is a flat flange, the deck may be conceived as a flat sheet into which valleys 41 have been pressed. Thus, in the following discussion a reference to a corrugation may be considered interchangeably to refer to a valley.
  • It has been discovered that particular corrugation dispositions or arrangements are surprisingly advantageous. FIG. 8 is a top view of pallet 120 and illustrates the lay of the lengthwise axes 53 of the corrugations. In FIG. 8, all the corrugations of deck 120 run parallel to L, the line running between the intersects of the edges at two diagonally opposed corners. When the deck is congruent with the frame exterior, as is ordinarily the case, L will also be the diagonal of the frame and pallet as a whole. Line L of the deck will not be coincident with the corresponding diagonal of the frame or pallet when the rectangle of the deck is not congruent with the rectangle of the pallet. For the exemplary 40×48 pallet, the line L lies at an angle B of about 40 degrees to the longer edge of the frame 124. The axes 53 of all the corrugations of deck 120, and of certain corrugations in other embodiments, lie within plus or minus angle A of parallelism with line L. Angle A is about 10 degrees, preferably 3 degrees. If a deck is deviant from a perfect rectangle shape, L will be the diagonal of a best fit rectangle. The invention will be useful with patents which are square. When it is said corrugations are parallel, that means they are substantially parallel, and there may be small deviations from exact parallelism between adjacent corrugations.
  • FIG. 11 graphically illustrates the surprising advantage in performance for certain deck corrugation patterns, as revealed by finite element analysis (FEA) of decks which were subject to the same uniform loads. In the analysis, decks were assumed to be made of 0.050 inch Type 5052 aluminum alloy sheet. All corrugations had the same width, depth and the cross section shape which is shown in FIG. 9. Thus, only the orientations of the corrugations were changed, from one type deck to another, in the analysis. The icons in FIG. 11 are simplified top view sketches of pallet decks, to show the different deck corrugation patterns of the analysis.
  • The decks in the FEA were analyzed when supported in two different ways. First, the pallet was supported at the opposing 48 inch length sides, or in the so-called “long direction” (the data for which is represented by circle symbols). Second, the pallet was supported at the opposing 40 inch length sides, or in the so-called “short direction” (the data for which is represented by circle symbols). In FIG. 11, those two different support modes are indicated by stating the span between the supports, e.g., a span of 40 inches means the deck was supported along the 49 inch sides. The comparative FEA deformations of different configurations of decks were determined. Those data are represented in the graph by the open symbols. Maximum elastic stress in the deck was calculated according to Von Mises theory and criteria. The Von Mises analysis data are represented by solid symbols. A deck having better strength will have lower deflection and lower Von Mises values, when performance in both directions of support is considered. The comparative deflection performance of some of the patterns was confirmed in testing of prototype decks and pallets.
  • Decks of type INV and type I have surprising advantage over the other patterns, and they are preferred embodiments of the present invention. In type INV all the corrugations run parallel to L, the diagonal. The associated data set is marked by the box 80. Deck of type I, with which is associated data set 90, is only somewhat inferior to the most preferred embodiment type INV. A deck of type B provides inferior performance, compared to what artisan intuition about its symmetry might suggest. In fact, such pattern was used on early prototypes. The long direction corrugations which characterize type III deck give the deck excellent results in one span-support direction and quite inferior results in the other span-support direction. The type II deck has similar but somewhat lesser inadequacy.
  • The superior type I and type INV decks are characterized by at least three corrugations running continuously and parallel to the diagonal line of the deck. Type I deck has a second set of three corrugations, namely those running along the other diagonal of the pallet. The corrugations of the second set are discontinuous where their path crosses the first set of corrugations. Type I has in addition 4 to 6 valleys which run parallel to the each of the rectangular edges of the deck. In another embodiment, type IA, not shown, the configuration is like type I: A first set of at least 3 corrugations is parallel to a first diagonal line of the deck; and, all the other corrugations on the deck are parallel to the second diagonal.
  • When decks are made of sheet metal, fabricating a deck of type I is much more difficult than fabricating a type INV deck. There is more of tendency for thinning of the deck material during forming, and the thinning can be difficult to predict or eliminate. Thus, a type I deck is less preferred than a type INV deck, but both are substantially superior to other types of texturing. Thus, in a preferred embodiment of the invention there are at least three parallel continuous corrugations running from one corner to the diagonally opposite corner. The permissible range of alignment of corrugations is as described above in connection with FIG. 8.
  • Variation is possible within the scope of the corrugation orientation invention. In preferred embodiment deck, one corrugation valley is centered on line L, and there are two or more parallel valleys on either side of the primary valley. The two adjacent the primary valley have only a little shorter than the primary valley length. There need not be a primary valley along L; that is, two equal length valleys of any set of three or more may straddle L. The term “corner” as applied to this aspect of the invention is to be interpreted as embracing a region of the deck, rather than a point. When corrugations are said to run from one corner of the deck to the other corner, that means the corrugations run substantially to the portion of the deck which is in proximity to the right angle intersection of two edges of the deck. Thus, when the deck has a preferred flange, the three corrugations nearest line L run to the corners, even though the outer portion of the corner near the edge intersect is an un-textured flange. While the analysis simulated a metal deck, the invention will be useful with decks which are made of non-metals. Logic suggests that two, or even one, continuous diagonal corrugations would suffice, although providing less strength but that has not yet been proved.
  • There is a benefit of having a deck with a flange in combination with corrugations. Stated simplistically, the oblong or cupped end of each corrugation provides strength to the edge of the deck, and helps inhibits bending of the deck about the length axis of the corrugation at the deck edge.
  • The combination of features of the invention provides another unexpected advantage, namely, a heretofore unattainable low profile, or total height, for a pallet which meets the many requirements which have been mentioned above for a GMA pallet. When invention pallets are stacked on top of each other, more pallets can be contained within a stack of a given height, than heretofore; i.e., the stacking density is significantly higher than heretofore.
  • A significant economic benefit results from higher stacking density, since more GMA pallets can be carried on a standard transport truck.
  • FIG. 12 is used to illustrate dimensions associated with pallets. FIG. 12 is analogous to FIG. 2 and shows a vertical cross section of a simplified prior art pallet 220 having metal beams 275, 274, respectively in the top and base. To meet the aforementioned standards, the fork opening 234 (also sometimes called the window) must have a height FO of at least 3.1 inches and a width WO of at least 12.5 inches wide. As an example of a difficulty associated with a prior art plastic deck pallet, in the pallet of the Moore U.S. Pat. No. 6,705,237 patent, the hollow square AISI 1018 steel beams 275, 274 have a vertical height of about 0.875 inches. That produces a base rail height DB of about 1.1 inches. The top frame has a similar beams and similar height DT. The resultant total height of the pallet is near the maximum 5.56 inch height allowed.
  • The present invention which comprises a corrugated metal deck, in particular an aluminum deck, having the corrugations of Type INV or Type I, enables both omitting metal beams in the top and reducing the height of the beams in the base, while meeting the dimensional, load bearing and weight requirements attending a GMA pallet. Leaving the beam out of the top means the top can be made thinner than heretofore has been possible. In the invention, a top frame height, DT of about 0.7 inches is achieved. As mentioned, the effective height of the deck is 0.5 inches, and that fits easily within the frame profile. The corrugated deck is sufficiently stiff and supported at the center column. Thus, when it deflects under a load of goods, it does not deflect below the elevation of the bottom of the frame.
  • The strong metal deck and thermoplastic elements of the top cooperate with the base to provide good racking strength. The pallet construction enables a reduction in the size of the beams used in the base. For example, the vertical height (also called “depth”) of the steel beams in the base of a preferred embodiment pallet is about 0.5 inches, which is about 60% of the previously required beam height of 0.875 inches. Thus, in the present invention, the thicknesses of both the top and both parts of the pallet are thinner than was heretofore possible. The use of the corrugated metal deck enables a surprising and significant reduction in height and associated stacking density, compared to what could be done in the past.
  • Exemplary pallets of the invention have heights of less than 5.4 inches. In a preferred embodiment a pallet is 4.7 to 4.9 inches high. As a fraction of the height of the pallet, the required minimum 3.1 inch fork opening height is more than about 60 percent; the 0.7 inch top height is less than about 15 percent; and the 0.9 inch base height is less than about 20 percent. Those percentages are a measure of the efficiency and uniqueness of the design.
  • A quadrant of an exemplary pallet 320 which has features of the present invention is shown in FIG. 13. The exploded view of FIG. 14 shows how it is constructed. With reference to FIG. 13, pallet 320 has most elements like those previously described. The corrugated deck is of the type INV and all the corrugations are parallel to the deck diagonal. Pallet 320 is different from other embodiments described up to this point in the following way: The deck 322 is attached to a subframe 66 which is supported within the frame by attachment to cantilever brackets 68, 78. The deck is also fastened to center column 329 which preferably has vertical fins on top rather than a mirror-fit corrugation contour pattern. The subframe 66 and attached deck are spaced apart from the inner edge 72 of the frame. Preferably, the subframe, brackets and frame are integrally molded. Each bridge 325 has impact absorber construction across its whole width. Since the edge of the deck is spaced apart from the inner edge of the bridge, the bridge can deform compliantly and inwardly under horizontal impact loads without damaging the deck. The construction of the pallet of FIG. 13 is further described in a patent application entitled “Plastic pallet having impact resisting top”, bearing Atty. No. EPC-2437, and an application entitled “Plastic pallet having deck suspension system”, bearing Atty. No. EPC-2439, both filed on even date herewith by R. Moore et al., the disclosures of which is hereby incorporated by reference.
  • A pallet of the present invention like that shown in FIG. 13, when made of polypropylene or comparable density plastic, and when having corrugated aluminum alloy deck and steel beams only in the base, is by weight about 30-45 percent metal, balance thermoplastic. In a preferred embodiment pallet, the metal is about 32-40 weight percent. On a volume percent basis the preferred embodiment pallet is approximately 90 percent plastic. Therefore, on both bases, the invention pallet is characterized as predominately plastic. In an exemplary a pallet, the total weight is about less than 55 pounds, preferably about 51 pounds, according to the particular height. The aluminum deck weighs about 6 lb and the steel reinforcing beams weigh about 12.5 lb, which are respectively about 11-12% and 23-25% of the total pallet weight. Such pallet is 34-37% percent metal by weight. Some or all of the metal parts may be replaced by non-metal parts, such as with engineered plastics or ceramics which provide comparable section moduli and strengths to the metal parts.
  • In the present invention, the new technology makes possible the construction of GMA-load rated pallets which are predominately plastic, but at the same time they have a total height which is 10-15% less than GMA-rated pallets in the prior art. For example, a pallet which has a 4.7 inch height has about 15% less height than a 5.56 inch high prior art pallet. That means that about 20% more pallets can be carried within the volume of a typical large truck or other vehicle, which is explained now.
  • A typical stack of pallets for carrying within a familiar U.S. over-the-road enclosed semi-trailer cannot exceed about 109 inch. Obviously, if the remaining space above an uppermost pallet is less than the height of a full pallet, that space must remain empty. In the invention, a stack of 23 most preferred embodiment 4.7 inch high pallets will be about 108 inches high. A stack of 19 prior art 5.56 inch pallets will be about 106 inches high. Normalizing those numbers, a stack of 5.56 inch pallets has a vertical density of 2.15 pallets per foot. In the invention, the most preferred embodiment 4.7 inch high pallet has a stack density of 2.55 pallets per foot. Table 1 shows data for different models, or embodiments of the invention. The pallet height and density data of Table 1 are plotted in FIG. 15. When certain cost considerations are weighed, the design Model A, having a 4.9 inch height, is most preferred at the present time; and a substantial advantage is obtained.
  • Of course, increased stacking density is only of interest when the pallet also meets the diverse other requirements which have been stated. Creep test performance is a demanding and critical parameter and it is used here as a measure of successful design. The creep test behavior of 40×48 pallets having the construction described in connection with FIG. 13 was found to have the required creep properties, as well as meeting other requirements. A uniformly distributed load of 2800 pounds was applied to the deck for a period of 720 hours at a temperature of 115° F. The pallet was simply supported by its opposing base edges on open beam warehouse rack fixture. The span between the rail supports of the fixture was 4 inches less than the length of the pallet side which spanned the space between the support. In passing the test, a 4.9 inch high pallet did not deform downwardly more than 0.8 inches. Reference should be made to the Background here and the Virginia Tech Test Protocol for Plastic Pallet and proposed UL 2417 standard, the disclosures of which are hereby incorporated by reference. See especially “Bending Tests,” Section 1.2 of the Virginia Tech document, and the comparable Section 5.5 of the proposed UL 2417 standard. A pallet which passes the aforementioned 30 day creep test is said here to be GMA creep-rated. The exemplary pallet was capable of passing the other structural tests which are required for commercial usage and is thus said here to be GMA structurally rated.
    TABLE 1
    Dimensional and stacking properties of pallets
    Pallet Stacking
    Pallet height Maximum Stack Density
    Embodiment inches quantity height(inches) units/foot
    D 4.7 23 108 2.55
    A 4.9 22 108 2.44
    B 5.15 21 108 2.33
    C 5.45 20 109 2.2
    Prior Art 5.56 19 106 2.15
  • Prototype GMA pallets which had the features of most preferred embodiments of the invention passed the test of UL 2335. The pallets were made of polypropylene containing fire retardants and had a corrugated aluminum deck with drain holes over the base rails, collapsible steel beams in the base rails, and thermoset foam within the hollows of the columns.
  • While the above described combinations of aluminum and steel and polypropylene materials are presently preferred, other materials can be used. For example, while the aforementioned 5000 series aluminum alloy is the preferred metal deck material, other wrought metals can be equivalently used within the scope of invention. The 5052 aluminum alloy has an elastic modulus in tension of 10.3×106 psi (7.1×104 MPa) and a specific stiffness of about 105×106 inch (26×105 m). In an alternate embodiment, AISI 300 series stainless steel may be used. Such steel alloy has about three times the density of the aluminum alloy, but it also has an elastic modulus which is about three times that of the aluminum alloy. The two classes of metals have about the same specific stiffness. Thus, in a GMA creep rated pallet, the steel deck could be about one-third of the thickness of an aluminum deck. Thus a deck may alternately be made of any of a number of steels which have mechanical properties comparable to the 300 series stainless steels. Alternately, a deck may be made of alloys of magnesium or titanium, although they have poor fire test characteristics. Sheet of fiber reinforced thermoset plastic may be used. Pallets may be alternately constructed using beams which are not metal, such as those made of graphite or glass or metal fibers. The rails of bases may be constructed wholly of engineered plastics.
  • As will be understood from the foregoing and as is understood in the art, when a pallet is termed “plastic” or “thermoplastic,” unless qualified, the term does not exclude the presence of other materials such as metal reinforcing members, fillers, fibers, fire retardants, and the like; and it means that the pallet is mostly or predominately plastic or thermoplastic, as applies. A thermoplastic pallet or member may also be comprised of lesser fraction thermoset and or elastomer materials. Such terminology compares to a reference to a wholly or purely plastic or thermoplastic pallet or article. In the invention, commercially available fire retardants are ordinarily included with thermoplastics, to help meet the UL 2335 requirements, as is known in the art. See a related application entitled “Thermoplastic pallet having portions with different fire resistances”, bearing Atty. No. EPC-25 14, filed on even date herewith by R. Moore et al., and U.S. Pat. No. 6,807,910, the disclosures of which are hereby incorporated by reference.
  • While the invention is described and in some respects claimed in terms of a 40 inch×48 inch U.S. GMA pallet, those dimensions may vary within a several percent; and thus, the dimensions will comprehend a 1000 mm×1200 mm European pallet. The features of the invention can be applied to pallets which have other dimensions, different numbers of columns, and which meet other performance specifications. For example, the base of a pallet may have cross rails which run in a different pattern from that described. For instance, the cross rails may run between diagonally opposed corners. For instance, there may only be one cross rail. The cross rails may be wholly metal. Likewise, the columns might be wholly or part metal. For another example, a corrugated deck of the invention can be used with pallets which have no reinforcing beams in the base, or with pallets which have no base rails, but which are supported by resting the lower ends of the columns on a flat surface, in which case the columns might more accurately be called feet.
  • The inventions will be useful as improvements for pallets which are not GMA dimensioned or structurally rated. The deck corrugation patterns can be used in other pallets having sheet material decks, including where the deck material is any kind of plastic, including engineered plastics, such as those reinforced with graphite fibers and fiberglass. The invention may be applied to wholly plastic pallets and pallets having wood bases.
  • Although this invention has been shown and described with respect to a preferred embodiment, it will be understood by those skilled in this art that various changes in form and detail thereof may be made without departing from the spirit and scope of the claimed invention.

Claims (19)

1. A pallet comprising: a rectangular base comprised of interconnected outer rails; a plurality of spaced apart outer columns extending upwardly from the base; a top, for receiving goods placed on the pallet, attached to said outer columns and comprising a rectangular sheet deck; wherein the deck is textured with a first set multiplicity of substantially parallel continuous corrugations which run from one corner to the other corner of a first pair of diagonally opposed corners of the deck.
2. The pallet of claim 1 said first set comprises three or more corrugations.
3. The pallet of claim 1 wherein the deck texturing further comprises: additional continuous corrugations running substantially parallel to said first set, so that the preponderance of the deck is textured with corrugations.
4. The pallet of claim 1 further comprising: a second set multiplicity of substantially parallel corrugations which run from one corner to the other corner of the second pair of diagonally opposed corners of the deck; wherein the second set corrugations are continuous other than where the corrugations intersect the first set corrugations.
5. The pallet of claim 4 further comprising: four additional sets of multiple parallel corrugations, each of which set is substantially parallel to a different edge of the deck.
6. The pallet of claim 1 wherein the lengthwise axes of the corrugations of the first set run within plus or minus 10 degrees of a line L connecting the deck edge intersects of said first pair of diagonally opposed corners.
7. The pallet of claim 1 wherein said first set axes run within plus or minus 3 degrees of said line L.
8. The pallet of claim 1 wherein the corrugations have flat top peaks and flat bottom valleys.
9. The pallet of claim 1 wherein the deck further comprises a circumscribing flange, for attaching the deck to the top of the pallet,
10. The pallet of claim 1 wherein the deck is made of metal sheet.
11. The pallet of claim 1 further comprising: cross rails connecting the centers of opposing side outer rails of the base; reinforcing beams in the rails; and a center column extending upwardly from the base at the center of the pallet; wherein the deck is attached to the center column.
12. The pallet of claim 11 wherein the top further comprises: a frame which forms the periphery of the top; wherein the deck is attached to the frame; and, wherein the deck edges are inset from the outside edges of the frame.
13. The pallet of claim 11 wherein the top further comprises: a frame which forms the periphery of the top; and, a subframe, spaced apart from the inside edge of the frame; and, wherein the edges of the deck is attached to the frame.
14. The pallet of claim 11 wherein the deck texturing further comprises: additional continuous corrugations running substantially parallel to said first set, so that the preponderance of the deck is textured; and wherein the deck is made of a metal alloy.
15. The pallet of claim 14, wherein the corrugations have a pitch of about two inches, flat top peaks and flat bottom valleys, and valleys of at least 0.5 inch in depth.
16. The pallet of claim 14 wherein the frame is free of reinforcing members.
17. The pallet of claim 16 wherein the deck texturing further comprises: additional continuous corrugations running substantially parallel to said first set, so that the preponderance of the deck area is textured.
18. The pallet of claim 11 which is of the GMA type, for use with a fork lift device, the pallet having a top which is 48 inches long and 40 inches wide and fork entry openings on each side of the pallet; wherein the deck is made of metal and has a circumscribing flange; wherein the edges of the deck are inset at least about 3 inches from the outside edges of the top; wherein the reinforcing beams of the base are made of steel, and wherein the pallet is between 30 and 45 weight percent metal.
19. The pallet of claim 18 wherein the deck texturing further comprises: additional continuous corrugations running substantially parallel to said first set, so that the preponderance of the deck is textured with corrugations.
US11/358,333 2005-02-18 2006-02-21 Plastic pallet having diagonally corrugated deck Abandoned US20060201398A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/358,333 US20060201398A1 (en) 2005-02-18 2006-02-21 Plastic pallet having diagonally corrugated deck

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US65476805P 2005-02-18 2005-02-18
US65476005P 2005-02-18 2005-02-18
US65476505P 2005-02-18 2005-02-18
US65476105P 2005-02-18 2005-02-18
US11/358,333 US20060201398A1 (en) 2005-02-18 2006-02-21 Plastic pallet having diagonally corrugated deck

Publications (1)

Publication Number Publication Date
US20060201398A1 true US20060201398A1 (en) 2006-09-14

Family

ID=36917174

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/358,362 Abandoned US20070022919A1 (en) 2005-02-18 2006-02-21 Low profile plastic pallet
US11/358,332 Abandoned US20060185565A1 (en) 2005-02-18 2006-02-21 Plastic pallet having metal deck
US11/358,333 Abandoned US20060201398A1 (en) 2005-02-18 2006-02-21 Plastic pallet having diagonally corrugated deck

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/358,362 Abandoned US20070022919A1 (en) 2005-02-18 2006-02-21 Low profile plastic pallet
US11/358,332 Abandoned US20060185565A1 (en) 2005-02-18 2006-02-21 Plastic pallet having metal deck

Country Status (2)

Country Link
US (3) US20070022919A1 (en)
WO (2) WO2006089302A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090114129A1 (en) * 2006-04-20 2009-05-07 Victor Smith Pallet

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006089302A2 (en) * 2005-02-18 2006-08-24 The Engineered Pallet Company, Llc Plastic pallet having diagonally corrugated deck
US8302736B1 (en) * 2007-09-28 2012-11-06 Integris Rentals, L.L.C. Containment work platform with protruding connection
US10072465B1 (en) * 2013-03-15 2018-09-11 Integris Rentals, L.L.C. Containment work platform
JP6547932B2 (en) * 2013-12-27 2019-07-24 ローム株式会社 Chip component and method for manufacturing the same, and circuit assembly and electronic device provided with the chip component
CA2902087A1 (en) * 2014-08-27 2016-02-27 Rehrig Pacific Company Stack and fold dairy shelves
WO2016040300A1 (en) * 2014-09-08 2016-03-17 Green Ox Pallet Technology, Llc Lightweight and rigid pallet
US10070720B2 (en) * 2016-10-04 2018-09-11 Jason Currie Variable-support-point span-aligned-grid framing system
CN113830397A (en) * 2021-09-23 2021-12-24 业成科技(成都)有限公司 Bearing plate and bearing plate stack structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3610173A (en) * 1969-04-04 1971-10-05 John W Mcilwraith Plastic pallet
US3720176A (en) * 1970-08-13 1973-03-13 Moraine Box Co Molded pallet
US5549056A (en) * 1994-03-31 1996-08-27 Cadillac Products, Inc. Load distributor for pallets
US5829364A (en) * 1993-11-23 1998-11-03 Oeco-Team Unternehemens- Und Umweltberatung Gmbh Transport and storage system
US6186078B1 (en) * 1999-10-29 2001-02-13 Alltrista Corporation Low profile material handling platform
US20020078863A1 (en) * 2000-12-21 2002-06-27 Marr Ronald J. Metal Pallet
US20020112653A1 (en) * 2000-08-24 2002-08-22 Moore Roy E. Plastic pallet design
US6622642B2 (en) * 1998-10-07 2003-09-23 Harout Ohanesian Thermoplastic pallet

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1910781A (en) * 1931-03-05 1933-05-23 Harry C Way Packaging or crating structure
US2699912A (en) * 1953-10-06 1955-01-18 Walton W Cushman Knockdown pallet
US2828933A (en) * 1955-11-21 1958-04-01 Arrowhead Products Inc Pallet tiering frames
US2908464A (en) * 1956-01-26 1959-10-13 Bird & Son Pallet
US2925978A (en) * 1957-11-27 1960-02-23 Marso Ernest Platform
US3187689A (en) * 1961-10-20 1965-06-08 Kunststoffwerk Erbach G M B H Pallet
GB1186491A (en) * 1967-12-20 1970-04-02 Press End Stanzwerke Paul Crae Pallets
US3481285A (en) * 1968-03-07 1969-12-02 Bernard Yellin Pallet which is integrally molded of a plastic material or the like
US3602157A (en) * 1968-09-30 1971-08-31 Abie Cohen Pallet
US3602151A (en) * 1968-11-20 1971-08-31 Grant W Walker Energy dissipating construction for trains
US3678868A (en) * 1969-04-03 1972-07-25 Kyowa Electric Pallet
US3606844A (en) * 1969-10-30 1971-09-21 Standard Oil Co Pallet having guiding means in all sides
US3664271A (en) * 1969-12-15 1972-05-23 Ernest Harold Wolder Plastic molded pallet
US3613605A (en) * 1970-02-01 1971-10-19 Allastics Inc Four-way, double-face general purpose pallet
US3675595A (en) * 1970-04-20 1972-07-11 Sullifoam Inc Pallet
US3654874A (en) * 1970-04-28 1972-04-11 Vulcan Inc Pallet constructions
US3757704A (en) * 1970-05-05 1973-09-11 Owens Illinois Inc Pallet
US3638586A (en) * 1970-06-05 1972-02-01 Crown Zellerbach Corp Pallet
US3680496A (en) * 1970-06-08 1972-08-01 Edward B Westlake Jr Plastic pallet
US3699901A (en) * 1970-07-23 1972-10-24 Oakland Plastics Corp Pallet
US3685461A (en) * 1970-10-30 1972-08-22 Owens Illinois Inc Pallet
USD246296S (en) * 1970-10-30 1977-11-08 Dainippon Ink And Chemicals, Inc. Pallet
US3759194A (en) * 1970-12-19 1973-09-18 Dainippon Ink & Chemicals Plastic pallet
US3685463A (en) * 1971-01-18 1972-08-22 Packaging Specialties Inc Pallet
US3710733A (en) * 1971-03-02 1973-01-16 Plasteel Ind Inc Integrated reinforced plastic unit and method and apparatus for making the same
US3683823A (en) * 1971-04-01 1972-08-15 Donald E Schmid Pallet
BE793313A (en) * 1971-12-29 1973-04-16 Hafner Erich SYNTHETIC MATERIAL PALLET
US3814031A (en) * 1972-05-26 1974-06-04 Monsanto Co Plastic pallets
US3824933A (en) * 1972-09-14 1974-07-23 Jaw Bar Plastics Corp Load bearing pallet and interlock
US4146205A (en) * 1973-02-05 1979-03-27 Westmoreland Plastics Company Assembly skid
US3917066A (en) * 1973-03-22 1975-11-04 Nosco Plastics Palletized load with compression frame
ES195791Y (en) * 1973-10-02 1975-07-01 Miguel Garcia PERFECTED CHARGING PLATFORM.
US3878796A (en) * 1973-12-05 1975-04-22 Econopal Inc Plastic pallet assembly
US3921279A (en) * 1974-08-20 1975-11-25 Thomas G Daley Method for making a support for an object
US4002126A (en) * 1974-11-11 1977-01-11 Said Thomas N. Depew, By Said Ferris Andrew Bell Pallet construction
US3994241A (en) * 1975-10-06 1976-11-30 Keyrack Company, Inc. Removable stacking frame assembly for pallets
GB1571190A (en) * 1975-12-09 1980-07-09 Wavin Bv Pallets
US4050664A (en) * 1976-05-27 1977-09-27 Daley Thomas G Object support with strapping means
IT1070478B (en) * 1976-07-06 1985-03-29 Stars Spa PLATFORM FOR THE LIFTING AND HANDLING OF GOODS
DE2732675C2 (en) * 1976-07-22 1982-12-09 Delpack Ltd., Hawkwell, Hockley, Essex Pallet transport crate made of one-piece or multi-piece packaging material, e.g. corrugated cardboard
US4159681A (en) * 1977-10-03 1979-07-03 Vandament Daniel D Reinforced, light-weight pallet
US4183491A (en) * 1978-05-11 1980-01-15 Pinckney Molded Plastics, Inc. Reinforced pallet
US4220100A (en) * 1979-02-28 1980-09-02 Kitchen Michael B Symmetrical pallets
US4359948A (en) * 1980-04-07 1982-11-23 Paul Judy & Associates Knock-down pallet and stringer attaching mechanism
USRE32344E (en) * 1981-01-28 1987-02-03 Bigelow-Sanford, Inc. Shipping pallet and a package formed therefrom
US4403555A (en) * 1981-06-11 1983-09-13 Forrest John E Pallet for use in handling material
US4606278A (en) * 1984-09-28 1986-08-19 Shuert Lyle H Twin sheet pallet
US4742781A (en) * 1984-12-03 1988-05-10 Shuert Lyle H Twin sheet pallet with sleeve retaining construction
FR2590870B1 (en) * 1985-12-04 1988-06-24 Allibert Sa REINFORCED LOADING PALLET AND METHOD FOR REINFORCING SUCH A PALLET
US5205221A (en) * 1986-03-14 1993-04-27 Ulf Melin Board with cellular structure
US4799433A (en) * 1987-02-06 1989-01-24 Menasha Corporation Large capacity shipping pallet assembly
US4869456A (en) * 1987-11-16 1989-09-26 Carson Industries, Inc. Load supporting pad
US5401347A (en) * 1992-12-18 1995-03-28 Shuert; Lyle H. Method of making a panel structure and pallet utilizing same
US4838178A (en) * 1988-06-02 1989-06-13 Haz Pal, Inc. Hazardous material shipping pallet
USD346681S (en) * 1993-04-21 1994-05-03 Pigott Brandon L Two part interlocking plastic pallet
US4843976A (en) * 1988-08-09 1989-07-04 Pigott Maurice J Plastic pallet
USD354606S (en) * 1993-11-24 1995-01-17 Pigott Brandon L Connector for a pallet assembly
US5197395A (en) * 1988-08-09 1993-03-30 Pigott Maurice J Plastic pallet with deck assembly
USD347511S (en) * 1993-09-02 1994-05-31 Pigott Brandon L Two part interlocking plastic pallet assembly
USD364030S (en) * 1994-06-07 1995-11-07 Pigott Brandon L Plastic pallet assembly
US5020667A (en) * 1989-09-05 1991-06-04 Harry Bush Portable hazardous waste pallet structure
US4998619A (en) * 1989-06-23 1991-03-12 Signode Corporation Close-pack, vertical-stack webbing roll packaging
US5391251A (en) * 1990-05-15 1995-02-21 Shuert; Lyle H. Method of forming a pallet
US5090336A (en) * 1990-10-15 1992-02-25 Golden Technologies Company, Inc. Plastic shipping platform blank and shipping platform
JPH04267736A (en) * 1991-02-22 1992-09-24 Okimune Kanazawa Knockdown pallet for forklift
US5413052A (en) * 1991-08-05 1995-05-09 Trienda Corporation Plastic pallet with two decks
CH686504A5 (en) * 1992-04-10 1996-04-15 Antal Trading Ltd Transportation pallet
US5337681A (en) * 1992-07-24 1994-08-16 Schrage David A Recyclable plastic pallet
US5349749A (en) * 1992-08-27 1994-09-27 Fiedler Leslie C Process for forming a monolithic composite plate
US5470641A (en) * 1992-12-18 1995-11-28 Shuert; Lyle H. Panel structure
FR2705084B1 (en) * 1993-05-10 1995-07-28 Delacour Frederic Handling pallet and its manufacturing process.
US5392911A (en) * 1993-06-03 1995-02-28 Eagle Manufacturing Company Two barrel hazardous material spill skid
US5687652A (en) * 1993-06-28 1997-11-18 Ruma; Joseph G. Oriented fiber reinforced monolithic plastic foam pallet
US5359955A (en) * 1993-07-16 1994-11-01 Enpac Corporation Spill pallet with improved load bearing capability
US5791262A (en) * 1994-02-14 1998-08-11 The Fabri-Form Co. Reinforced plastic pallet
US5596933A (en) * 1994-02-14 1997-01-28 The Fabri-Form Co. Reinforced plastic pallet
US5666886A (en) * 1994-07-18 1997-09-16 E. I. Du Pont De Nemours And Company Pallett assembly
USD371882S (en) * 1994-12-15 1996-07-16 Perstorp Ab Pallet
USD378458S (en) * 1995-01-17 1997-03-11 Nucon Corporation Connector for a pallet assembly
US5546872A (en) * 1995-01-23 1996-08-20 Young; Joseph R. Plastic pallet
US5562047A (en) * 1995-05-19 1996-10-08 New Pig Corporation Modular spill deck
US5560141A (en) * 1995-06-15 1996-10-01 Inspiration Lures, Inc. Fishing lure assembly
US5579700A (en) * 1995-08-07 1996-12-03 Enpac Corporation Interlocking spill pallet system
US5566624A (en) * 1995-08-15 1996-10-22 Trienda Corporation Twin-sheet thermoformed pallet with high stiffness deck
US5550141A (en) * 1995-08-31 1996-08-27 Natural Resources - Canada Method for inhibiting the formation of acid mine drainage
NO306205B1 (en) * 1996-01-11 1999-10-04 Borealis As plastic pallet
US5836255A (en) * 1996-04-08 1998-11-17 Uitz; Mark O. Pallet for erected and collapsible container/pallet system
US5868080A (en) * 1996-11-18 1999-02-09 Engineered Polymers Corp. Reinforced plastic pallets and methods of fabrication
USD398732S (en) * 1997-09-30 1998-09-22 Nucon Corporation Connector attachment for a pallet assembly
USD398731S (en) * 1997-09-30 1998-09-22 Nucon Corporation Connector for a pallet assembly
US6199488B1 (en) * 1997-10-07 2001-03-13 James Favaron Reinforced plastic pallets
US6283044B1 (en) * 1998-07-01 2001-09-04 Rehrig Pacific Company Pallet assembly
US6357366B1 (en) * 1999-02-05 2002-03-19 Menasha Corporation Rackable molded pallet
US6354229B1 (en) * 1999-12-06 2002-03-12 Bruce T. Heidtke Shipping platform
EP1302404B1 (en) * 2000-05-31 2009-03-25 DIC Corporation Synthetic resin pallet
US20070051283A1 (en) * 2000-08-24 2007-03-08 Moore Roy E Jr Plastic pallet with sealed deck to frame joint
US20060254478A1 (en) * 2000-08-24 2006-11-16 Kurt Kruger Pallet with a lifting strap
US20060249058A1 (en) * 2000-08-24 2006-11-09 Moore Roy E Jr Fire resistant thermoplastic pallet
US20060254477A1 (en) * 2000-08-24 2006-11-16 Moore Roy E Jr Non-skid pallet plastic surface component
US6389989B1 (en) * 2001-01-05 2002-05-21 Pl Eagle, Llc Twin sheet pressure formed pallet
US6807910B2 (en) * 2001-10-19 2004-10-26 Rehrig Pacific Company Pallet assembly
WO2006089302A2 (en) * 2005-02-18 2006-08-24 The Engineered Pallet Company, Llc Plastic pallet having diagonally corrugated deck
US20060201401A1 (en) * 2005-02-18 2006-09-14 Moore Roy E Jr Impact-resisting pallet having metal stay
US20060201399A1 (en) * 2005-02-18 2006-09-14 Swistak Daniel J Pallet having impact resisting plastic top

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3610173A (en) * 1969-04-04 1971-10-05 John W Mcilwraith Plastic pallet
US3720176A (en) * 1970-08-13 1973-03-13 Moraine Box Co Molded pallet
US5829364A (en) * 1993-11-23 1998-11-03 Oeco-Team Unternehemens- Und Umweltberatung Gmbh Transport and storage system
US5549056A (en) * 1994-03-31 1996-08-27 Cadillac Products, Inc. Load distributor for pallets
US6622642B2 (en) * 1998-10-07 2003-09-23 Harout Ohanesian Thermoplastic pallet
US6186078B1 (en) * 1999-10-29 2001-02-13 Alltrista Corporation Low profile material handling platform
US20020112653A1 (en) * 2000-08-24 2002-08-22 Moore Roy E. Plastic pallet design
US20020078863A1 (en) * 2000-12-21 2002-06-27 Marr Ronald J. Metal Pallet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090114129A1 (en) * 2006-04-20 2009-05-07 Victor Smith Pallet
US8397649B2 (en) * 2006-04-20 2013-03-19 Yah Corp Industries Limited Pallet

Also Published As

Publication number Publication date
WO2006089308A2 (en) 2006-08-24
WO2006089302A2 (en) 2006-08-24
US20060185565A1 (en) 2006-08-24
WO2006089308A3 (en) 2007-09-20
WO2006089302A3 (en) 2007-05-18
US20070022919A1 (en) 2007-02-01

Similar Documents

Publication Publication Date Title
US20060201398A1 (en) Plastic pallet having diagonally corrugated deck
US7308857B2 (en) Pallet substructure and pallet design
US6389990B1 (en) Method of reinforcing a plastic pallet
US5813355A (en) Twin-sheet thermoformed pallet with high stiffness deck
CA2702957C (en) Plastic pallet system
US20060201401A1 (en) Impact-resisting pallet having metal stay
US20060201399A1 (en) Pallet having impact resisting plastic top
CN114206739A (en) Shipping pallet and/or pallet therefor
DK153753B (en) MATERIALS HANDLING PALL
KR101115606B1 (en) Structure for reinforcing strength in pallet
WO2006089299A2 (en) Low profile plastic pallet
US20060201400A1 (en) Plastic pallet having deck suspension system
KR200413675Y1 (en) Steel pallet
WO2007123423A9 (en) Pallet having a low density core upper deck.
KR200341618Y1 (en) Pallet for transporting goods
WO2006089242A2 (en) Pallet having impact resisting plastic top
KR100340558B1 (en) Steel pallet and manufacturing method thereof
CA2599764A1 (en) Impact-resisting pallet having metal stay
KR200345551Y1 (en) a prefabricated Pallet keeping a parts of an automobile
EP1853487A2 (en) Plastic pallet having deck suspension system
KR20130070495A (en) Pallet for stacking articles
JPH02180149A (en) Synthetic resin pallet
KR20060100865A (en) Pallet for article loading

Legal Events

Date Code Title Description
AS Assignment

Owner name: ENGINEERED PALLET COMPANY, THE LLC, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOORE, ROY E. JR;BROCHU, RONALD P.;REEL/FRAME:019689/0559;SIGNING DATES FROM 20060310 TO 20060517

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION