US20080234686A1 - Intervertebral disc prosthesis, surgical methods, and fitting tools - Google Patents

Intervertebral disc prosthesis, surgical methods, and fitting tools Download PDF

Info

Publication number
US20080234686A1
US20080234686A1 US12/025,677 US2567708A US2008234686A1 US 20080234686 A1 US20080234686 A1 US 20080234686A1 US 2567708 A US2567708 A US 2567708A US 2008234686 A1 US2008234686 A1 US 2008234686A1
Authority
US
United States
Prior art keywords
intervertebral prosthesis
support
instrumentation
prosthesis
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/025,677
Other versions
US9333095B2 (en
Inventor
Jacques Beaurain
Joel Delecrin
Michel Onimus
Herve Chataignier
Jerome Allain
Jean-Paul Frederic Steib
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LDR Medical SAS
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/025,677 priority Critical patent/US9333095B2/en
Assigned to LDR MEDICAL reassignment LDR MEDICAL ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALLAIN, JEROME, ONIMUS, MICHEL, DELECRIN, JOEL, CHATAIGNER, HERVE, BEAURAIN, JACQUES, STEIB, JEAN-PAUL FREDERIC
Publication of US20080234686A1 publication Critical patent/US20080234686A1/en
Assigned to AUSTIN VENTURES VIII L.P. reassignment AUSTIN VENTURES VIII L.P. SECURITY AGREEMENT Assignors: LDR HOLDING CORPORATION, LDR SPINE USA, INC.
Assigned to LDR SPINE USA, INC., LDR MEDICAL, S.A.S., LDR HOLDING CORPORATION reassignment LDR SPINE USA, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: AUSTIN VENTURES VIII, L.P.
Priority to US15/150,316 priority patent/US9788964B2/en
Application granted granted Critical
Publication of US9333095B2 publication Critical patent/US9333095B2/en
Priority to US15/784,559 priority patent/US20180098859A1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2/4425Intervertebral or spinal discs, e.g. resilient made of articulated components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4611Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1739Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
    • A61B17/1757Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/025Joint distractors
    • A61B2017/0256Joint distractors for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • A61F2002/30113Rounded shapes, e.g. with rounded corners circular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • A61F2002/30125Rounded shapes, e.g. with rounded corners elliptical or oval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • A61F2002/30354Cylindrically-shaped protrusion and recess, e.g. cylinder of circular basis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • A61F2002/30362Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit with possibility of relative movement between the protrusion and the recess
    • A61F2002/30369Limited lateral translation of the protrusion within a larger recess
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • A61F2002/30362Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit with possibility of relative movement between the protrusion and the recess
    • A61F2002/3037Translation along the common longitudinal axis, e.g. piston
    • A61F2002/30372Translation along the common longitudinal axis, e.g. piston with additional means for limiting said translation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30383Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
    • A61F2002/3039Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove with possibility of relative movement of the rib within the groove
    • A61F2002/30398Sliding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30639Features concerning the anatomical functioning or articulation of the prosthetic joint having rolling elements between both articulating surfaces
    • A61F2002/30642Features concerning the anatomical functioning or articulation of the prosthetic joint having rolling elements between both articulating surfaces having a single rolling (or sliding) ball articulating between two cups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • A61F2002/30662Ball-and-socket joints with rotation-limiting means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • A61F2002/30663Ball-and-socket joints multiaxial, e.g. biaxial; multipolar, e.g. bipolar or having an intermediate shell articulating between the ball and the socket
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30841Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • A61F2002/30884Fins or wings, e.g. longitudinal wings for preventing rotation within the bone cavity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2/4425Intervertebral or spinal discs, e.g. resilient made of articulated components
    • A61F2002/443Intervertebral or spinal discs, e.g. resilient made of articulated components having two transversal endplates and at least one intermediate component
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2002/4625Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use
    • A61F2002/4627Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use with linear motion along or rotating motion about the instrument axis or the implantation direction, e.g. telescopic, along a guiding rod, screwing inside the instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4635Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor using minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4687Mechanical guides for implantation instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0033Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementary-shaped recess, e.g. held by friction fit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0006Rounded shapes, e.g. with rounded corners circular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0008Rounded shapes, e.g. with rounded corners elliptical or oval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00029Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium

Definitions

  • the present invention concerns an intervertebral disc prosthesis designed to be substituted for fibrocartilaginous discs ensuring connection between the vertebra of the vertebral column or the end of the latter.
  • the intervertebral discs are formed from a deformable but noncompressible element called “nucleus pulposus” containing approximately 80% water, surrounded by several elastic fibrous layers converging to maintain the nucleus, absorb part of the forces applied to the entire disc and stabilize the articulation. These elements may often be broken down or damaged by compression, displacement or wear and tear, following shocks, infections, exaggerated forces or simply over time.
  • this articulation element may cause intense pain and significant constraint in the patient.
  • a therapeutic route for the last twenty or so years consists of surgically replacing the defective disc with a functional prosthesis.
  • the use of such a prosthesis requires a device that is not very cumbersome, that supports significant forces, or has a great sturdiness over time.
  • the comfort of the patients already affected by great and acute pain makes it desirable to arrange for a prosthesis that most faithfully reproduces the natural possibilities of movements and at the same time ensures the best stability possibility to the spinal column that is sometimes already damaged.
  • a certain number of prostheses have been proposed with a compressible material base, with the goal of reproducing the kinematics of natural movement while reproducing its components and their characteristics of shape or plasticity, as described in the patent FR 2 124 815 which proposes a disc from elastomer material reinforced by a textile material.
  • These devices present the drawback of a lifetime that is often too limited and also suffer from drawbacks indeed due to this elasticity.
  • the prosthesis since the prosthesis is entirely compressible, a progressive sliding of the prosthesis may be produced relative to the vertebra between which it is placed, which too often leads it to leave its housing.
  • the addition of anchoring pins does not allow sufficient remedy for this problem, because the micromovements permitted by the compressibility of the material of the prosthesis also include a vertical component, which too easily allows the pins to leave their housing with each movement.
  • the plates are articulated by their internal cavity on the edge of the nucleus of the side in question, but according to a rotation movement which, on the other side makes their edges move apart more than they were at rest.
  • This separating has a tendency to detach the vertebral plates on which they are supported, which damages the surface of the vertebra at the sites where the plates have just anchored and again allows progressive displacement with risk of complete ejection of the prosthesis.
  • Another type of prosthesis described in patent FR 2 659 226 consists of an upper plate presenting a concave face that comes to slide on a nucleus in the form of a segment of a sphere, this nucleus being immobilized in a cavity of the lower plate.
  • the rotation is done more satisfactorily from the point of view of space of the plates, but the sliding of the upper plate on a sphere whose centre is located on the exterior of the prosthesis also causes lateral displacement which may be harmful as much to the kinematics of movement as to the organs present in the vicinity.
  • a solution is proposed in the patent FR 2 730 159 in the form of a nucleus presenting two spherical faces, oriented in the same direction, and with different radius.
  • the nucleus with cylindrical exterior slides on a convex surface belonging the lower plate and itself presents a convex surface on the top, on which the upper plate slides. Because the nucleus is movable horizontally, it is in a position to move apart from one side when the plates approach the other.
  • this device presents the drawback of risking the complete ejection of the nucleus outside the prosthesis, this drawback also existing in the device described by the patent DE 30 23 353).
  • a translation stop in the form of a relief protruding from one contact surface of the nucleus and movable in a recess in the plate or inversely.
  • This type of internal stop is therefore located on the interior of a contact or support surface between nucleus and plate, and therefore decreases the available surface considerably. This decrease in support surface increases the stresses undergone by the materials, therefore the risks of wear and tear or strain in creep or exceeding elastic limits. The separation between the support surface and housing receiving the stop may also risk marking the piece which is supported above and damaging the latter.
  • such a central stop is provided with a noncircular shape, which in a certain extent allows the rotations of the nucleus to be limited relative to the plate that provides it.
  • this noncircular forms additional constraint which again limits the surface available for support.
  • the angles of this shape themselves form fragile zones, which only ensures low sturdiness to this stop operation in rotation.
  • a collar protrudes from the nucleus and surrounds it in the space between the two plates. In its exterior part this collar widens at a certain height along the axis of the spinal column towards each of the plates, which forms two interior borders that may be supported on the exterior border of contact surfaces of these same plates.
  • this type of external peripheral stop presents certain drawbacks, in particular in terms of obstruction.
  • this collar represents considerable vertical obstruction (along the spinal column axis) and the contact surfaces of the plates must also present a certain height to be able to stop this collar in translation.
  • the peripheral shape of this type of stop also occupies considerable radial space, in particular in a section plane where the spinal column presents the smallest width, as in sagittal plane.
  • this obstruction may occupy a space that would be useful for the configuration of the rest of the prosthesis, which may limit the results in terms of kinematics or reliability.
  • this type of external peripheral stop requires a nucleus with biconvex shape to be used, to allow for provision of sufficient height for the contact surfaces of the plates to form an exterior border usable by this stop. Therefore, this type of stop is difficult to produce for a nucleus presenting one or more concave surfaces, while such forms of nucleus may allow the kinematics of the prosthesis to be made more comfortable with use by the patient.
  • such a collar may also be able to limit the clearance in rotation of the nucleus relative to the plates, for example by peripheral contact between two concentric ellipses and with different radii.
  • such contact is done according to a very tight angle between the surfaces being supported on each other, which makes the position of this limit not very precise and increases the risks of wear and tear or blockage by clamping.
  • the clearance in rotation permitted by such kinematics is directly dependent on the clearance permitted in translation, and may not be chosen independently of the latter during design of the prosthesis.
  • a goal of the invention is to propose a prosthesis allowing the spinal column better stability by a greater precision and sturdiness in relative positions of pieces that compose it.
  • the damages undergone by the spinal column because of the different pathologies leading to deciding to fit a prosthesis sometimes make useful the re-establishing of stability or posture that the elasticity of the spinal column no longer allows to be provided. According to the pathologies and the history of the patient, it may then be indicated to induce a certain angular correction in the configuration of the intervertebral space for example in the sense of lordosis or that of kyphosis.
  • Another goal of the invention is therefore to propose a prosthesis allowing the prosthesis better stability by the re-establishment of posture adapted to the kinematics of movements that it produces.
  • FIG. 1 represents an exploded view in perspective of a prosthesis according to the invention, in a version including a convex lower plate and providing a central and annular stop;
  • FIG. 2 represents an exploded sectional view of a prosthesis device according to the invention in the same variant
  • FIG. 3 represents an exploded sectional view of the prosthesis device according to the invention in a variant including a nucleus with flat lower surface and lower plate presenting an annular stop;
  • FIG. 4 represents an exploded sectional side view of the prosthesis device according to the invention in a variant including a nucleus with concave lower face, an added block and a lower plate with annular stop;
  • FIG. 6 a represents a sectional side view of the prosthesis device according to the invention in a variant with central, annular and incline stop, in maximum incline position;
  • FIG. 6 b represents a sectional side view of a prosthesis according to the prior arts where the nucleus presents a fixed position
  • FIG. 6 c represents a sectional side view of a prosthesis according to the prior arts where the nucleus is movable and is ejected under the load during a force in the maximum incline position;
  • FIG. 5 represents a sectional exploded side view of the prosthesis device according to a variant including an added block allowing a central stop to appear and a flat lower plate presenting an annular stop;
  • FIG. 7 represents a sectional side view of the prosthesis device according to a variant without annular stop and where the central stop presents a vertical section in the form of a dovetail, in maximum incline position;
  • FIGS. 8 a and 8 b represent sectional side views of the prosthesis device according to the invention according to a variant with inclined axis, including an annular stop and a central stop incorporated in the contact surface supporting the nucleus, in the case of a single piece lower plate and an added block, respectively.
  • FIG. 8 c represents a sectional side view in a sagittal plane of the prosthesis device according to the invention according to a variant with a corrective nucleus presenting two faces in which the contact surfaces are not parallel;
  • FIG. 9 a represents a perspective view of the prosthesis device according to the invention according to a variant with two stops exterior to the nucleus, held in a housing between pillars integral with the lower plate;
  • FIG. 9 b represents a perspective view of the prosthesis device according to the invention according to a variant with two stops exterior to the nucleus, each holding a pillar integral with the lower plate between its arms;
  • FIG. 10 represents a perspective view of a device according to the invention for fitting such a prosthesis
  • FIG. 11 represents a perspective view of a device according to the invention for inserting such a prosthesis, in position during the introduction laterally of the prosthesis between two vertebrae;
  • FIG. 12 represents a perspective view of an assembly tool with an insertion guide according to an embodiment of the invention.
  • FIG. 13 represents a perspective view of a prosthesis according to the invention, presented at the entrance of the insertion guide of the invention
  • FIG. 14 represents a perspective view of the instrumentation according to an embodiment of the invention when the prosthesis is ready to be impacted in the disc space.
  • a prosthesis according to the prior art disclosed by the patent FR 2 730 159, represented in FIG. 6 c , consists of a movable nucleus with two spherical surfaces oriented in the same direction, that may be laterally displaced between two plates and may allow incline without lateral displacement.
  • the nucleus In the extreme position, however, the nucleus is only kept on the exterior side by the furthest border of the spherical surface of the upper plate. Since this edge itself is already raised, there is a great risk that too high a vertical pressure or a horizontal parasitic force causes ejection of the nucleus towards the exterior of the prosthesis, causing intense pain and risks of immediate damage for the tissues surrounding the vertebral column, such as ligaments or spinal marrow.
  • a prosthesis according to the invention consists of a lower plate ( 1 ) being articulated with an upper plate ( 3 ) around a nucleus ( 2 ) presenting two spherical sliding surfaces with the same orientation on both faces.
  • the lower surface ( 21 ) of the nucleus ( 2 ) is concave and slides on a complementary convex surface ( 12 ) provided by the upper face, known as internal, of the lower plate ( 1 ).
  • the upper surface ( 23 ) is convex and slides on a complementary concave surface ( 32 ) provided by the lower face, known as internal, of the upper plate ( 3 ).
  • the radius of the lower contact surface ( 21 ) of the nucleus ( 2 ) is a radius greater then that of its convex upper surface ( 23 ), the centres of the spheres providing its two contact surfaces being located on the same axis of symmetry (d 2 ) of these two surfaces.
  • the two plates present contact surfaces ( 12 , 32 ) the axes of symmetry (d 12 , d 32 ) of which are perpendicular to their external faces ( 10 , 30 ).
  • the horizontal displacement part of the nucleus in one direction due to the rotation on the upper sliding surface around its centre (cs), is compensated by a rotation of the nucleus on its lower sliding surface around its centre (ci) which induces horizontal displacement of the nucleus ( 2 ) and therefore of the centre (cs) of the upper sliding surface.
  • the radii of the two spheres providing these sliding surfaces ( 12 , 21 , 23 , 32 ) are determined so as to modify the lateral displacement of the plates by comparison with each other during their incline.
  • the radii of these sliding surfaces may be chosen so that the movement of the plate is reduced to an incline accompanied with a possible vertical component but without horizontal displacement of the upper plate relative to the lower plate.
  • a central stop formed for example by a cylindrical block ( 4 ) protruding from the convex surface of the lower plate and cooperating with edges of a recess ( 22 ) arranged in the centre of the contact surface ( 21 ) of the lower concave surface of the nucleus.
  • the lower plate also presents on its upper face an approximately cylindrical cavity ( 11 ) in which the edges ( 112 ) protrude from the contact surface ( 12 ) with the nucleus ( 2 ), and cooperate with the approximately cylindrical perimeter ( 20 ) of this nucleus to ensure an operation of annular stop for it while limiting its movement towards the exterior of the contact surface ( 12 ) that provides it.
  • the internal surfaces of the plates, on their parts ( 113 , 331 ) exterior to the sliding surfaces, present a form capable of cooperating among themselves to limit by stop the incline of the plates with each other at a determined angle (a 1 ).
  • the stop ( 4 ) is provided by the convex surface ( 12 ) of the lower plate ( 1 ) and presents approximately the shape of an inverted cone, that is, its section is greater in its end ( 42 ) opposite the surface ( 12 ) that provides it.
  • the interior surface ( 224 ) of the recess ( 22 ) cooperates with the exterior surface ( 40 ) of the stop ( 4 ) to limit the raising of the nucleus when the latter is in furthest position against this stop ( 4 ).
  • the different shapes and dimensions intervening in the stop mechanisms could be determined so as to coordinate the order of arrival at stop of the different parts.
  • These shapes and dimensions could be determined for example, so that the pieces reach stop at the same stage of movement, for example determined by angular incline (a 1 ) between the lower ( 1 ) and upper ( 3 ) plates.
  • the annular stop operation is used very little or not at all, which allows the vertical obstruction of the prosthesis to be decreased.
  • the lower surface ( 21 a ) of the nucleus ( 2 ) may be approximately flat, and then slide on a contact surface ( 12 a ) of the lower plate ( 1 ), also approximately flat.
  • the flatness of the contact surface ( 12 a ) of the lower plate allows the edges ( 112 ) of this plate that protrude from this surface to be particularly effective in their role of annular stop. Therefore, it is possible to manage without the central stop and thus to increase the common contact surface between the lower plate and the nucleus, which on the one hand, decreases the wear and tear of the pieces and on the other hand, the risk of marking the surface of the plate with placement of the contour of the recess ( 22 , FIG. 6 a ) in which is accommodated the central stop ( 4 , FIG. 6 a ) in other embodiments.
  • the lower plate ( 1 ) presents an approximately cylindrical cavity ( 11 ) on its upper face the flat bottom ( 15 ) of which receives an intermediate piece called block ( 5 ).
  • This piece is immobilized in the cavity ( 11 ) for example by the edges ( 112 ) of this cavity and presents on its upper face a convex surface ( 52 ) on which the lower concave surface ( 21 ) of the nucleus slides.
  • This embodiment with the convex surface ( 52 ) on which the nucleus slides for example allows the good qualities of the surface necessary for the fluidity of movement and longevity of the prosthesis to be obtained more easily and at less cost. It also allows several models to be provided with blocks ( 5 ), of different shapes or qualities, that can be chosen in advance or at the time of the surgery according to applications with the same model of lower plate.
  • the lower plate ( 1 ) receives a block ( 5 ) in an approximately cylindrical cavity ( 11 ) presenting a vertical perforation that the stop ( 4 ) integral with the lower plate crosses.
  • this block On its upper surface, this block supports a convex surface ( 52 ), on which the nucleus ( 2 ) and upper plate stack rests.
  • the stop ( 4 ) may be integral with the block ( 5 ) on its convex contact surface ( 52 )( FIG. 8 b ).
  • the prosthesis may be produced in a variant where the axes of symmetry of the contact surfaces ( 12 , 15 , 52 , 21 , 23 , 32 ) or support ( 10 , 30 ) of one or more pieces are not merged.
  • the pressure (F) exerted by the vertebrae on the two plates in the directions perpendicular to their external surfaces ( 10 , 30 ) will then have the tendency to induce and continuously maintain an incline (a 3 , FIGS. 8 a , 8 b et 8 c ) between these plates ( 1 , 3 ), that is not zero, for example in the sense of lordosis.
  • FIG. 8 a An embodiment of such a variant is represented in FIG. 8 a where the axis of symmetry (d 12 ) of the contact surface ( 12 ) of the lower plate ( 1 ) forms an angle (a 2 ) determined with a direction (d 10 ) perpendicular to the external surface of this same lower plate, while the axis of symmetry (d 32 ) of the internal contact face ( 32 ) of the upper plate ( 3 ) is perpendicular to the external surface ( 30 ) of this same upper plate ( 3 ).
  • the lower contact surface of the upper plate ( 3 ) presents an axis of symmetry parallel to a direction perpendicular to the support surface ( 30 ) of the ⁇ of this same upper plate ( 3 ).
  • a device in another variant according to the same principle represented in FIG. 8 b , includes a lower plate ( 1 ) providing a block ( 5 ) the upper contact surface of which ( 52 ) presents an axis of symmetry (d 52 ) forming an angle (a 2 ) determined with a direction (d 51 ) perpendicular to its lower face ( 51 ).
  • the internal contact surfaces ( 15 , 32 ) of the lower ( 1 ) and upper ( 3 ) plates present axes of symmetry perpendicular to the support surface ( 10 , 30 ) of their respective external faces.
  • This block ( 5 ) could be maintained fixed around an axis perpendicular to the lower plate ( 1 ) by any known means (not represented) such as wedge, grooves or complementary accidents of shape between the block ( 5 ) and the lower plate ( 1 ) that provides it.
  • FIG. 8 c it is the nucleus ( 2 ) that presents two contact surfaces ( 21 , 23 ) the axes of symmetry of which (d 21 , d 23 ) form a determined angle (a 2 ) between them.
  • the internal contact surfaces ( 12 , 32 ) of the lower ( 1 ) and upper ( 3 ) plates present axes of symmetry perpendicular to the support surface ( 10 , 30 ) of their respective external faces.
  • the angular correction (a 3 ) induced by the nucleus ( 2 ) could then be kept constantly in the desired direction relative to the body of the patient by a rotation stop mechanism (not represented in FIG. 8 c ) of this same nucleus, such a mechanism being described later ( FIGS. 9 a and 9 b ).
  • the device according to the invention presents an exterior stop mechanism, located outside the perimeter of the contact surfaces of the nucleus ( 2 ).
  • this mechanism is formed of two protruding parts ( 6 ) protruding from the cylindrical exterior surface of the perimeter of the nucleus ( 2 ) in opposite directions.
  • Each of these protruding parts is held in a housing ( 162 ) delimited by two pillars ( 161 ) integral with the lower plate ( 1 ).
  • These pillars cooperate with the protruding part ( 6 ) or with the surface ( 20 ) of the perimeter of the nucleus or both for limiting the movements of this same nucleus in translation as in rotation parallel said plate.
  • the housing is sufficiently large to allow small displacements of the nucleus required for the kinematics of the device, while being sufficiently narrow so that this same nucleus and the lower plate are adjacent in certain positions, for example, positions of maximum incline of the spinal column.
  • the protruding part ( 6 ) or perimeter surface ( 20 ) of the nucleus ( 2 ) then cooperates with the pillars ( 161 ) of the lower plate to retain this same nucleus and avoid any lateral ejection.
  • the pillars ( 161 ) present a larger section at the end than at the base, thus limiting the raising of the nucleus.
  • this mechanism is formed of two protruding parts ( 6 ) protruding from the cylindrical exterior surface ( 20 ) of the perimeter of the nucleus ( 2 ) in opposite directions.
  • Each of these protruding parts presents two arms delimiting a housing ( 66 ) which hold a pillar ( 163 ) integral with the lower plate ( 1 ).
  • the pillars ( 163 ) present a larger section at their end than at their base.
  • stop ( 9 a and 9 b ) may allow the central stop to be disposed of and to thus increase the contact surfaces which decreases the wear and tear.
  • stop ( 6 ) are also particularly valuable because of the limitation of the movements of the nucleus in rotation along an axis approximately parallel to the axis of the spinal column. In fact, this limitation makes it possible to use a corrective nucleus in which the contact surfaces present axes of symmetry that are not parallel, while maintaining in them the correction in a constant direction relative to the body of the patient.
  • the lower ( 1 ) and upper ( 3 ) plates receive means for bony anchoring on their external face, designed to immobilize tile prosthesis between the vertebrae or adjacent elements of the spinal column.
  • These anchoring means may be pins ( 8 ) or wings presenting a small cross section at their end away from the plate that provides them. These pins then are embedded or are impacted by punching in the material of the bony elements (V) between which the prosthesis is fitted, for example under the effect of the pressure exerted by the ligaments when the tools are withdrawn, the tools that kept the vertebrae separated.
  • Driving in the pins in the material of the bony element (V, FIG. 6 ) then prevents the prosthesis from sliding outside its site.
  • the plates ( 1 , 3 ) present one or more accidents of shape such as notches ( 7 ) or perforations (not represented) enabling catching of a grasping tool to remove the prosthesis from its site in case of need.
  • the lower plate ( 1 ) presents a convex upper contact surface ( 12 ) providing a central stop ( 4 ) and a cavity presenting edges ( 112 ) forming an annular stop.
  • an insertion device is presented in the form of an element ( 9 ) called insertion guide, presenting an internal channel ( 90 ) approximately rectangular in section in which the prosthesis (P) can slide.
  • This channel ( 9 ) is formed from two semi-guides ( 91 , 92 ) with a cross section in the shape of a “U”, arranged inversely and fitted into each other.
  • this guide ( 9 ) presents one or more parts called support blocks or edges ( 910 , 920 ) protruding along its longitudinal axis (d 9 ).
  • These support blocks ( 910 , 920 ) form an extension of the walls of the channel called vertical ( 9 ) that form the small sides of the rectangular section of the channel ( 9 ).
  • the instrumentation used for fitting the prosthesis according to the invention comprises an insertion guide ( 93 ) provided with an internal channel ( 90 ).
  • This channel ( 90 ) presents an approximately rectangular cross section, or with a shape approximately complementary to the exterior profile of the prosthesis.
  • This internal channel ( 90 ) is provided with dimensions and shape adequate for allowing the prosthesis to pass and to guide from one of its ends to the other, in a position and along a displacement approximately parallel to the external faces of its plates ( 1 , 3 ).
  • the channel ( 90 ) of the insertion guide ( 93 ) may include scallops in its walls opposite plates of the prosthesis.
  • scallops make it possible to allow the anchoring means ( 8 , 81 ) to pass provided by the plates of the prosthesis, while guiding the latter sufficiently precisely in the channel.
  • these scallops have the shape of grooves ( 934 , 936 ) along the axis (d 9 ) of the channel provided by the internal walls of the channel opposite plates ( 1 , 3 ).
  • the walls ( 931 , 932 ) of the channel ( 90 ) perpendicular to the plates of the prosthesis, that is, located in the plane containing the axis of the spinal column, are extended along the axis (d 9 ) of this channel over a distance determined so as to protrude relative to the walls of this same channel that are parallel to the plates of the prosthesis. Since these extensions thus form the protruding parts, or support edges, that may be inserted in the intervertebral space to maintain the separation of the plates from the two vertebrae surrounding this space.
  • the height of these support edges ( 931 , 932 ) is determined so as to maintain adequate space for allowing the introduction of the prosthesis and its anchoring means ( 8 , 81 ), according to the method of anchoring provided. If the anchoring means are formed from sockets ( 8 ) or wings ( 81 ) before being introduced freely in the space, the support edges will have sufficient height to allow the height of these sockets or wings to pass. If the anchoring means are formed from wings having to penetrate the vertebral plates by a hollowed trench in the surface of these plates and opening laterally, the height of these support edges could be sufficiently low to allow the height of the prosthesis to pass but not the wings.
  • the surgeon begins by removing the vertebral disc or its debris, and then uses distraction tools to increase the disc space available between the two vertebrae having to receive the prosthesis.
  • distraction tools are often formed with an elongated handle providing a flat part at the end. This flat end is introduced between the vertebrae, then it is made to pivot to increase the separation of the vertebrae.
  • the internal channel ( 90 ) of the insertion guide ( 93 ) is provided to be able to be threaded around such distraction tools, once they are in place between the vertebrae.
  • the insertion guide is pushed so as to introduce its edges ( 931 , 932 ) between the vertebrae, in a plane approximately parallel to the spinal column.
  • the distraction tools may then be removed from the spinal column by making them slide in the channel ( 90 ) of the insertion guide, while the height of the support edges preserves sufficient space between the vertebrae to allow fitting of the prosthesis.
  • the insertion guide ( 93 ) presents means for interlocking with a guide assembly tool ( 94 ), used to bring it near the spinal column and facilitating its fitting.
  • This guide assembly tool ( 94 ) is also usable for removing the insertion guide and its support edges, and allowing the vertebrae to tighten on the prosthesis, once the latter is in place.
  • FIGS. 12 a and 12 b Such a guide assembly tool ( 94 ) is illustrated in FIGS. 12 a and 12 b .
  • This tool ( 94 ) consists of two elongated tubes ( 941 , 946 ) articulated to each other by means ( 945 ) located at one end, called assembling, of this tool.
  • These two elongated tubes at their end located opposite the assembling end, each provide interlocking means for insertion guide ( 93 ).
  • These interlocking means may comprise, for example, a hook ( 942 , 947 ) on each tube ( 941 , 946 ) the opening of which is located opposite the other tube.
  • each hook ( 942 , 947 ) When the guide assembly tool ( 94 ) is approached by the insertion guide ( 93 ), the fact of tightening the tubes to each other around their articulation makes it possible for each hook ( 942 , 947 ) to tightly encircle a tongue ( 934 , 936 ) in the shape of a “T” protruding on each groove ( 933 , 935 ) of the insertion guide.
  • a rod ( 943 , 948 ) Within and in the axis of each tube ( 941 , 946 ) is found a rod ( 943 , 948 ) that may be displaced longitudinally relative to the tubes by screwing means comprising a screwing wheel ( 944 , 949 ).
  • These means ( 934 , 936 ) of interlocking the insertion guide ( 93 ) or others provided by said insertion guide also make it possible to guide and interlock means of approach ( 95 ) to this insertion guide.
  • These means ( 95 ) of approach include means for positioning the prosthesis, these means of positioning being provided to position and maintain the assembled prosthesis in a determined position relative to these means ( 95 ) of approach even in the absence of the insertion guide ( 93 ).
  • This positioning of the prosthesis on the approach means makes it possible for the interlocking of tie approach means and the insertion guide to put the prosthesis in a position making it possible for it to be easily displaced from these same means or approach up to in the internal channel ( 90 ) of the insertion guide ( 93 ).
  • these approach means ( 95 ) include two shafts ( 951 , 952 ) connected to each other by articulation ( 955 ) so as to come to pinch the prosthesis (P) between two flattened parts ensuring a determined position of the prosthesis relative to these approach means.
  • the ends of these shafts opposite the articulation including interlocking means ( 953 , 954 ) capable of cooperating with the interlocking means ( 934 , 936 ) of insertion guide ( 93 ) to ensure a determined position of approach means ( 95 ) relative to the insertion guide ( 93 ) as well as certain stability to this assembly.
  • these interlocking means may in particular comprise a scalloping in which the arms come to encircle the exterior of the groove ( 933 , 935 ) of the insertion guide while gliding under the upper bar of the “T” formed by the tongue ( 934 , 936 ) provided by this same insertion guide.
  • the prosthesis is therefore in a stable position relative to the spinal column, and may be inserted in the insertion guide then slide up to the disc space.
  • This displacement is achievable here with the aid of impacting means, or impactor ( 96 ) comprising an impacting end capable of pressing on the assembled prosthesis, distributed on both plates and without touching the nucleus.
  • This impactor includes a central elongated part ( 960 ) that can be inserted in guiding means as an opening in the shape of a “U” provided by approach means ( 95 ) at their articulated end ( 955 ).
  • This impactor includes another end ( 962 ) called assembling or striking, that can act to apply a continuous pressure or repeated shocks, with the hand or by any known tool or apparatus.
  • Such an action, applied on the assembling end ( 962 ) of the impactor in the axis (d 9 ) of the channel ( 90 ) then will be reverberated by the end ( 961 ) on the prosthesis, so as to cause its entrance then sliding in the channel ( 90 ) of the insertion guide ( 93 ), then its insertion or impaction in the intervertebral space.
  • the invention proposes an intervertebral disc prosthesis device comprising at least three pieces, which parts include a plate ( 1 ) called lower and a plate ( 3 ) called upper ( 3 ) producing around at least one intermediate part called nucleus ( 2 ) an articulation by support or sliding between loadbearing surfaces ( 12 , 15 , 21 , 23 , 32 ) of said pieces, one of these pieces including at least one protruding part or accident of shape cooperating with the shape of at least one other of said pieces to form an stop limiting the possibilities of movement of the nucleus, characterized in that this stop operation uses at least one stop external to the loadbearing surfaces comprising at least one part ( 161 , 163 ) protruding from at least one plate ( 1 ), located outside the loadbearing surface ( 12 , 15 ) of said plate and including a face directed towards the interior of the prosthesis, this face cooperating with a peripheral part ( 6 ) of the nucleus ( 21 , 23 ) situated outside its loadbea
  • the loadbearing surfaces ( 21 , 21 a , 23 ) of the nucleus ( 2 ) in contact with the lower plate ( 1 ) and upper plate ( 3 ) present axes of symmetry (d 21 , d 23 , respectively) forming between them a determined angle (a 2 ) that is not zero, so that a pressure (F) exerted on the two plates ( 1 , 3 ) along directions perpendicular to their external surfaces induces an incline (a 3 ) of these plates with each other.
  • this external stop limits the movements in rotation of the nucleus ( 2 ) relative to at least one plate ( 1 ) by contact between parts ( 6 , 161 , 163 ) supporting each other by stop surfaces, this support being done along a direction approximately parallel to the normal of each of these stop surfaces.
  • the external stop includes a tongue ( 6 ) protruding form the nucleus ( 6 ) which cooperates with one of the plates ( 1 ) by confining this tongue ( 6 ) in a housing ( 162 ) delimited by pillars ( 161 ) protruding from the internal race of this same plate( 1 ) or by a recess ( 66 ) separating this tongue into two arms encircling a pillar ( 163 ) protruding from the internal face of this same plate ( 1 ), the internal face of a plate being defined at that oriented on the side of the nucleus.
  • the end of at least one pillar ( 161 , 162 , 163 ) presents a section greater than its base, this enlargement of the pillar cooperating with the shape of the external stop tongue ( 6 ) of the nucleus ( 2 ) to limit the raising of this same nucleus relative to the plate ( 1 ) providing this pillar.
  • the invention also proposes an intervertebral disc prosthesis device comprising at least three pieces, including a plate ( 1 ) called lower and a plate ( 3 ) called upper ( 3 ) producing around at least one intermediate element called nucleus ( 2 ) an articulation by support or sliding between loadbearing surfaces ( 12 , 15 , 21 , 23 , 32 ) of said parts, one of these parts including at least one protruding part or accident of shape cooperating with the shape of at least one other of said pairs to form an stop limiting the possibilities of movement of the nucleus, characterized in that the loadbearing surfaces ( 21 , 21 a , 23 ) of the nucleus ( 2 ) in contact with the lower plate ( 1 ) and upper plate ( 3 ) present axes of symmetry (d 21 , d 23 , respectively) forming between them a determined angle (a 2 ) that is not zero so that a pressure (F) exerted on the two plate ( 1 , 3 ) along directions per
  • this device is characterized in that the operation of the stop uses at least one stop external to the loadbearing surfaces comprising at least one part ( 161 , 163 ) protruding from at least one plate ( 1 ) located outside the loadbearing surface ( 12 , 15 ) of said plate and including a face directed towards the interior of the prosthesis, this face cooperating with a peripheral part ( 6 ) of the nucleus located outside its loadbearing surfaces ( 21 , 23 ) and in which the surface is directed towards the exterior of the nucleus, to limit the displacements of the nucleus in translation or in rotation or both in a plane approximately transverse to the spinal column.
  • the loadbearing surfaces ( 12 , 32 ) provided by the internal face of the lower plate ( 1 ) and the internal face of the upper plate ( 3 ) are each in complementary contact with a supporting surface ( 21 , 23 , respectively) of the nucleus ( 2 ), and each present a shape, convex and concave, respectively, or inversely, this nucleus itself presenting a perimeter ( 20 ) approximately cylindrical along the axis of symmetry of its contact faces ( 21 , 32 ).
  • the internal face of the lower plate ( 1 ) presents a loadbearing surface ( 12 a ) cooperating with a loadbearing surface ( 21 a ) of the lower face of the nucleus ( 2 ), this same nucleus including on its upper face a convex loadbearing surface ( 23 ) in complementary contact with a concave loadbearing surface ( 32 ) of the internal face of the upper plate ( 3 ) the loadbearing surface ( 12 a ) of the internal face of the lower plate being sufficiently extended to allow movement of the nucleus relative to this same lower plate.
  • an intermediate element called block ( 5 ) is added on the internal face of one ( 1 ) of the plates and produces an articulation with the other plate ( 3 ) around the nucleus ( 2 ) which nucleus presents a concave loadbearing surface ( 21 ) and a convex loadbearing surface ( 23 ) these two loadbearing surfaces being in contact in a complementary way with one loadbearing surface ( 52 ) of the block ( 5 ) one, and with a loadbearing surface ( 32 ) of the internal face of the plate ( 3 ) not including block, for the other.
  • the axis of symmetry (d 52 ) of the convex loadbearing surface ( 52 ) of the block ( 5 ) forms a determined angle (a 4 ) with an axis (d 51 ) perpendicular to its surface ( 51 ) with contact of the plate ( 1 ) so that a pressure (F) exerted on the two plates ( 1 , 3 ) along directions perpendicular to their external faces induces an incline (a 5 ) of the plates with each other.
  • At least one of the loadbearing surfaces ( 12 , 52 , 21 , 23 , 32 ) allowing articulation has a shape making up part of a sphere.
  • the loadbearing surfaces of the two faces of the nucleus ( 2 ) have shapes making up parts of a sphere, the face presenting a concave loadbearing surface ( 21 ) having a radius greater than that of the face presenting a convex loadbearing surface ( 23 ).
  • each of the plates ( 1 , 3 ) includes on its external face one or more protruding parts with small section forming a bony anchoring, these protruding parts coming to be embedded or impacted in the surface of contiguous bony elements (V) under the effect of pressure, once the prosthesis is in position between two vertebrae or bony elements.
  • one or more of the pieces of the prosthesis include accidents of shape, notches ( 7 ) or perforations likely to see a tool again to facilitate the extraction of said prosthesis.
  • the plates ( 1 , 3 ) are composed of an alloy with base of stainless steel with cobalt-chromium and the nucleus ( 2 ) has polyethylene base.
  • the invention proposes instrumentation for inserting or fitting the prosthesis according to one of claims 1 to 15 characterized in that it comprises an insertion guide ( 9 , 93 ) including an internal channel ( 90 ) presenting an end in which certain edges or support edges ( 910 , 920 , 931 , 932 ), protrude from the others along the longitudinal axis (d 9 ) of the channel so as to be able to take the place of distraction tools of a known type previously used to increase the opening of the disc space, this channel ( 90 ) presenting an internal section capable of surrounding these same distraction tools while they maintain this opening, then allowing their extraction through said channel while said support edges ( 910 , 920 , 931 , 932 ), for their part, preserve the opening of the disc space by replacing the distraction tools, then receiving and guiding the prosthesis (P) for insertion in this disc space.
  • an insertion guide ( 9 , 93 ) including an internal channel ( 90 ) presenting an end in which certain edges or support edges ( 910 , 920
  • the internal channel ( 90 ) presents an approximately rectangular section or with a shape approximately complementary to the exterior profile of the prosthesis, taken in a section along the plane perpendicular to the direction of insertion.
  • the support edges ( 931 , 932 ) of insertion guide ( 93 ) form an extension of the channel ( 90 ) walls located on a plane containing the axis of the spinal column.
  • the insertion guide ( 9 ) is formed from at least two elements ( 91 , 92 ) separated along one or more planes parallel to the longitudinal axis (d 9 ) of the channel, these parts each including at least one portion of the transverse section of the channel and being able to be spread apart according to a determined angle (a 9 ) and allowing the introduction and sliding of the prosthesis (P) in the channel.
  • the internal surface of the channel ( 90 ) on its walls opposite external faces of the plates ( 1 , 3 ) of the prosthesis (P 1 ), includes at least one groove ( 913 , 914 ) allowing the passage of protruding parts ( 8 , 81 ) for anchoring provided by these plates during displacement of the prosthesis in this channel ( 90 ).
  • the instrumentation comprises approach means ( 95 ) of the prosthesis capable of receiving the prosthesis and of maintaining with it all the different components, these approach means ( 95 ) being able to be connected by interlocking means to the insertion guide ( 93 ) so as to present the prosthesis at the entrance of the channel ( 90 ) in a position appropriate for allowing its entrance into this channel ( 90 ).
  • the instruments comprises insertion means, called impactor ( 96 ) of the prosthesis in the channel ( 90 ) of the insertion guide ( 93 ) then into the disc space, this impactor being guided by the support means ( 95 ) so as to be in contact with the prosthesis in its part opposite the entrance of the channel ( 90 ), this impactor ( 96 ) being able to apply or transmit a pressure or repeated shocks to the prosthesis to cause its sliding in the channel, then its insertion in the disc space.
  • impactor ( 96 ) insertion means, called impactor ( 96 ) of the prosthesis in the channel ( 90 ) of the insertion guide ( 93 ) then into the disc space, this impactor being guided by the support means ( 95 ) so as to be in contact with the prosthesis in its part opposite the entrance of the channel ( 90 ), this impactor ( 96 ) being able to apply or transmit a pressure or repeated shocks to the prosthesis to cause its sliding in the channel, then its insertion in the disc space.
  • the support means include two shafts ( 951 , 952 ) connected by an axis to a assembling end ( 955 ), these shafts being able to be closed up to pinch the prosthesis (P) between them and to maintain it so assembled, these two shafts each providing connection means to the guide for use ( 93 ), this connection then maintaining these two shafts closed up on the prosthesis.

Abstract

An intervertebral disc prosthesis designed to be substituted for fibrocartilaginous discs ensures a connection between the vertebra of the vertebra column or the end of the latter. The prosthesis includes a pair of plates spaced from each other by a nucleus. The prosthesis has increased stability by providing the nucleus with a translation or rotation stop, or by inducing an angular correction between its plates contacting vertebra, or a combination of these characteristics. The stop includes pales external to the nucleus and contact surfaces perpendicular to their contact directions. Surgical methods and instrumentation for implanting the prosthesis are also described.

Description

    RELATED APPLICATIONS
  • The present application is a continuation of U.S. patent application Ser. No. 10/476,565 filed Nov. 4, 2003, and issuing Feb. 5, 2008, as U.S. Pat. No. 7,326,250, which is a 35 U.S.C. § 371 application of PCT/IB02/002998 filed May 3, 2002, which claims priority to FR 01/05982 filed May 4, 2001. All of the foregoing documents are hereby incorporated by reference.
  • BACKGROUND
  • The present invention concerns an intervertebral disc prosthesis designed to be substituted for fibrocartilaginous discs ensuring connection between the vertebra of the vertebral column or the end of the latter.
  • The intervertebral discs are formed from a deformable but noncompressible element called “nucleus pulposus” containing approximately 80% water, surrounded by several elastic fibrous layers converging to maintain the nucleus, absorb part of the forces applied to the entire disc and stabilize the articulation. These elements may often be broken down or damaged by compression, displacement or wear and tear, following shocks, infections, exaggerated forces or simply over time.
  • The breakdown of this articulation element may cause intense pain and significant constraint in the patient. Beyond the surgery that consisted of blocking the deficient articulation and possibly purely and simply removing the damaged disc, a therapeutic route for the last twenty or so years consists of surgically replacing the defective disc with a functional prosthesis. However, the use of such a prosthesis requires a device that is not very cumbersome, that supports significant forces, or has a great sturdiness over time. Furthermore, the comfort of the patients already affected by great and acute pain makes it desirable to arrange for a prosthesis that most faithfully reproduces the natural possibilities of movements and at the same time ensures the best stability possibility to the spinal column that is sometimes already damaged.
  • The use of such a prosthesis therefore crucially depends on the stability that it allows the spinal column, as much during movements as during static forces or lengthy constant position.
  • A certain number of prostheses have been proposed with a compressible material base, with the goal of reproducing the kinematics of natural movement while reproducing its components and their characteristics of shape or plasticity, as described in the patent FR 2 124 815 which proposes a disc from elastomer material reinforced by a textile material. These devices present the drawback of a lifetime that is often too limited and also suffer from drawbacks indeed due to this elasticity. In fact, since the prosthesis is entirely compressible, a progressive sliding of the prosthesis may be produced relative to the vertebra between which it is placed, which too often leads it to leave its housing. The addition of anchoring pins does not allow sufficient remedy for this problem, because the micromovements permitted by the compressibility of the material of the prosthesis also include a vertical component, which too easily allows the pins to leave their housing with each movement.
  • Among the prostheses nor resting on the deformation of materials, a type of prosthesis frequently used is described by the patent DE 30 23 353 and is formed of a nucleus with the shape of a biconvex lens forming articulation between two plates each presenting a cavity with a shape approximately complementary to the nucleus in their centre and on their perimeter a shoulder retaining this nucleus. This arrangement presents the advantage by comparison to a more limited ball-and-socket joint of using significant contact surface, which largely decreases the wear and tear.
  • To incline one with the other on one side, the plates are articulated by their internal cavity on the edge of the nucleus of the side in question, but according to a rotation movement which, on the other side makes their edges move apart more than they were at rest. This separating has a tendency to detach the vertebral plates on which they are supported, which damages the surface of the vertebra at the sites where the plates have just anchored and again allows progressive displacement with risk of complete ejection of the prosthesis.
  • Another type of prosthesis described in patent FR 2 659 226 consists of an upper plate presenting a concave face that comes to slide on a nucleus in the form of a segment of a sphere, this nucleus being immobilized in a cavity of the lower plate. In this case, the rotation is done more satisfactorily from the point of view of space of the plates, but the sliding of the upper plate on a sphere whose centre is located on the exterior of the prosthesis also causes lateral displacement which may be harmful as much to the kinematics of movement as to the organs present in the vicinity.
  • A solution is proposed in the patent FR 2 730 159 in the form of a nucleus presenting two spherical faces, oriented in the same direction, and with different radius. The nucleus with cylindrical exterior slides on a convex surface belonging the lower plate and itself presents a convex surface on the top, on which the upper plate slides. Because the nucleus is movable horizontally, it is in a position to move apart from one side when the plates approach the other. However, this device presents the drawback of risking the complete ejection of the nucleus outside the prosthesis, this drawback also existing in the device described by the patent DE 30 23 353).
  • In the goal of limiting the risks of ejection of the nucleus, the patents WO 00 53 127, as well as U.S. Pat. No. 5,401,269 and U.S. Pat. No. 4,759,766 propose to provide a translation stop, produced in different ways.
  • In certain variants, a translation stop is disclosed in the form of a relief protruding from one contact surface of the nucleus and movable in a recess in the plate or inversely. This type of internal stop is therefore located on the interior of a contact or support surface between nucleus and plate, and therefore decreases the available surface considerably. This decrease in support surface increases the stresses undergone by the materials, therefore the risks of wear and tear or strain in creep or exceeding elastic limits. The separation between the support surface and housing receiving the stop may also risk marking the piece which is supported above and damaging the latter.
  • In certain cases, such a central stop is provided with a noncircular shape, which in a certain extent allows the rotations of the nucleus to be limited relative to the plate that provides it. However, this noncircular forms additional constraint which again limits the surface available for support. Furthermore, the angles of this shape themselves form fragile zones, which only ensures low sturdiness to this stop operation in rotation.
  • In other variants, a collar protrudes from the nucleus and surrounds it in the space between the two plates. In its exterior part this collar widens at a certain height along the axis of the spinal column towards each of the plates, which forms two interior borders that may be supported on the exterior border of contact surfaces of these same plates. However, this type of external peripheral stop presents certain drawbacks, in particular in terms of obstruction.
  • In fact, the configuration of this collar represents considerable vertical obstruction (along the spinal column axis) and the contact surfaces of the plates must also present a certain height to be able to stop this collar in translation. Furthermore, the peripheral shape of this type of stop also occupies considerable radial space, in particular in a section plane where the spinal column presents the smallest width, as in sagittal plane. Given the limited space available in the disc, or intervertebral, space, this obstruction may occupy a space that would be useful for the configuration of the rest of the prosthesis, which may limit the results in terms of kinematics or reliability.
  • Moreover, this type of external peripheral stop requires a nucleus with biconvex shape to be used, to allow for provision of sufficient height for the contact surfaces of the plates to form an exterior border usable by this stop. Therefore, this type of stop is difficult to produce for a nucleus presenting one or more concave surfaces, while such forms of nucleus may allow the kinematics of the prosthesis to be made more comfortable with use by the patient.
  • In the case where the contact surfaces between nucleus and plates are not circular, such a collar may also be able to limit the clearance in rotation of the nucleus relative to the plates, for example by peripheral contact between two concentric ellipses and with different radii. However, such contact is done according to a very tight angle between the surfaces being supported on each other, which makes the position of this limit not very precise and increases the risks of wear and tear or blockage by clamping. Furthermore, the clearance in rotation permitted by such kinematics is directly dependent on the clearance permitted in translation, and may not be chosen independently of the latter during design of the prosthesis.
  • SUMMARY
  • A goal of the invention is to propose a prosthesis allowing the spinal column better stability by a greater precision and sturdiness in relative positions of pieces that compose it.
  • This goal is reached by a vertebral prosthesis device according to claim 1.
  • Moreover to ensure stability of the spinal column after fitting such a prosthesis, the damages undergone by the spinal column because of the different pathologies leading to deciding to fit a prosthesis sometimes make useful the re-establishing of stability or posture that the elasticity of the spinal column no longer allows to be provided. According to the pathologies and the history of the patient, it may then be indicated to induce a certain angular correction in the configuration of the intervertebral space for example in the sense of lordosis or that of kyphosis.
  • Certain types of existing prostheses use a variation in thickness of one of the plates to induce such a correction. Such a correction is not however always very stable, in particular because the position of supports of the nucleus on the plates varies too much during movements.
  • Another goal of the invention is therefore to propose a prosthesis allowing the prosthesis better stability by the re-establishment of posture adapted to the kinematics of movements that it produces.
  • This goal is reached by a vertebral prosthesis device according to claim 5.
  • Additional developments of the invention are described in the dependent claims.
  • The invention with its characteristics and advantages will be more clearly evident with reading the description made in reference to the attached drawings in which:
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 represents an exploded view in perspective of a prosthesis according to the invention, in a version including a convex lower plate and providing a central and annular stop;
  • FIG. 2 represents an exploded sectional view of a prosthesis device according to the invention in the same variant;
  • FIG. 3 represents an exploded sectional view of the prosthesis device according to the invention in a variant including a nucleus with flat lower surface and lower plate presenting an annular stop;
  • FIG. 4 represents an exploded sectional side view of the prosthesis device according to the invention in a variant including a nucleus with concave lower face, an added block and a lower plate with annular stop;
  • FIG. 6 a represents a sectional side view of the prosthesis device according to the invention in a variant with central, annular and incline stop, in maximum incline position;
  • FIG. 6 b represents a sectional side view of a prosthesis according to the prior arts where the nucleus presents a fixed position;
  • FIG. 6 c represents a sectional side view of a prosthesis according to the prior arts where the nucleus is movable and is ejected under the load during a force in the maximum incline position;
  • FIG. 5 represents a sectional exploded side view of the prosthesis device according to a variant including an added block allowing a central stop to appear and a flat lower plate presenting an annular stop;
  • FIG. 7 represents a sectional side view of the prosthesis device according to a variant without annular stop and where the central stop presents a vertical section in the form of a dovetail, in maximum incline position;
  • FIGS. 8 a and 8 b represent sectional side views of the prosthesis device according to the invention according to a variant with inclined axis, including an annular stop and a central stop incorporated in the contact surface supporting the nucleus, in the case of a single piece lower plate and an added block, respectively.
  • FIG. 8 c represents a sectional side view in a sagittal plane of the prosthesis device according to the invention according to a variant with a corrective nucleus presenting two faces in which the contact surfaces are not parallel;
  • FIG. 9 a represents a perspective view of the prosthesis device according to the invention according to a variant with two stops exterior to the nucleus, held in a housing between pillars integral with the lower plate;
  • FIG. 9 b represents a perspective view of the prosthesis device according to the invention according to a variant with two stops exterior to the nucleus, each holding a pillar integral with the lower plate between its arms;
  • FIG. 10 represents a perspective view of a device according to the invention for fitting such a prosthesis;
  • FIG. 11 represents a perspective view of a device according to the invention for inserting such a prosthesis, in position during the introduction laterally of the prosthesis between two vertebrae;
  • FIG. 12 represents a perspective view of an assembly tool with an insertion guide according to an embodiment of the invention;
  • FIG. 13 represents a perspective view of a prosthesis according to the invention, presented at the entrance of the insertion guide of the invention;
  • FIG. 14 represents a perspective view of the instrumentation according to an embodiment of the invention when the prosthesis is ready to be impacted in the disc space.
  • DETAILED DESCRIPTION
  • A prosthesis according to the prior art disclosed by the patent FR 2 659 226, consisting of a concave upper plate (3AA) sliding on a nucleus (2AA) presenting a spherical upper cap (23M) itself immobilized in a housing of the lower plate (1AA), is represented in FIG. 6 b; in horizontal position and in maximum incline position. Because the centre of the sphere (csAA) providing the contact surface with the nucleus is located outside this same upper plate (3AA), its incline is combined with considerable lateral displacement (d1). This displacement creates a break in the continuity of the vertical profile of the vertebral column which may hamper the overall functionality of the movement and risk damaging the tissues surrounding the vertebrae, such as ligaments and spinal marrow, which may be immediately or in the long run.
  • A prosthesis according to the prior art disclosed by the patent FR 2 730 159, represented in FIG. 6 c, consists of a movable nucleus with two spherical surfaces oriented in the same direction, that may be laterally displaced between two plates and may allow incline without lateral displacement. In the extreme position, however, the nucleus is only kept on the exterior side by the furthest border of the spherical surface of the upper plate. Since this edge itself is already raised, there is a great risk that too high a vertical pressure or a horizontal parasitic force causes ejection of the nucleus towards the exterior of the prosthesis, causing intense pain and risks of immediate damage for the tissues surrounding the vertebral column, such as ligaments or spinal marrow.
  • In an embodiment represented in FIG. 6 a, a prosthesis according to the invention consists of a lower plate (1) being articulated with an upper plate (3) around a nucleus (2) presenting two spherical sliding surfaces with the same orientation on both faces. The lower surface (21) of the nucleus (2) is concave and slides on a complementary convex surface (12) provided by the upper face, known as internal, of the lower plate (1). The upper surface (23) is convex and slides on a complementary concave surface (32) provided by the lower face, known as internal, of the upper plate (3). In this embodiment, the radius of the lower contact surface (21) of the nucleus (2) is a radius greater then that of its convex upper surface (23), the centres of the spheres providing its two contact surfaces being located on the same axis of symmetry (d2) of these two surfaces. On their side, the two plates present contact surfaces (12, 32) the axes of symmetry (d12, d32) of which are perpendicular to their external faces (10, 30). The horizontal displacement part of the nucleus in one direction, due to the rotation on the upper sliding surface around its centre (cs), is compensated by a rotation of the nucleus on its lower sliding surface around its centre (ci) which induces horizontal displacement of the nucleus (2) and therefore of the centre (cs) of the upper sliding surface. The radii of the two spheres providing these sliding surfaces (12, 21, 23, 32) are determined so as to modify the lateral displacement of the plates by comparison with each other during their incline. In one embodiment, the radii of these sliding surfaces (12, 21, 23, 32) may be chosen so that the movement of the plate is reduced to an incline accompanied with a possible vertical component but without horizontal displacement of the upper plate relative to the lower plate.
  • To avoid any risk of ejection of the nucleus (2) during forces in the inclined position, the latter is kept in its clearance by a central stop: formed for example by a cylindrical block (4) protruding from the convex surface of the lower plate and cooperating with edges of a recess (22) arranged in the centre of the contact surface (21) of the lower concave surface of the nucleus.
  • In one embodiment (FIG. 6 a) the lower plate also presents on its upper face an approximately cylindrical cavity (11) in which the edges (112) protrude from the contact surface (12) with the nucleus (2), and cooperate with the approximately cylindrical perimeter (20) of this nucleus to ensure an operation of annular stop for it while limiting its movement towards the exterior of the contact surface (12) that provides it.
  • In one embodiment (FIG. 6 a) the internal surfaces of the plates, on their parts (113, 331) exterior to the sliding surfaces, present a form capable of cooperating among themselves to limit by stop the incline of the plates with each other at a determined angle (a1).
  • In one embodiment represented in FIG. 7, the stop (4) is provided by the convex surface (12) of the lower plate (1) and presents approximately the shape of an inverted cone, that is, its section is greater in its end (42) opposite the surface (12) that provides it. By presenting an undercut shape, the interior surface (224) of the recess (22) cooperates with the exterior surface (40) of the stop (4) to limit the raising of the nucleus when the latter is in furthest position against this stop (4).
  • According to the criteria connected for example to the resistance of the materials, to the wear and tear or to the kinematics sought, the different shapes and dimensions intervening in the stop mechanisms, for example exterior (FIGS. 9 a and 9 b), annular, central or incline, could be determined so as to coordinate the order of arrival at stop of the different parts. These shapes and dimensions could be determined for example, so that the pieces reach stop at the same stage of movement, for example determined by angular incline (a1) between the lower (1) and upper (3) plates.
  • In an embodiment illustrated in FIGS. 7 and 8 a, the annular stop operation is used very little or not at all, which allows the vertical obstruction of the prosthesis to be decreased.
  • In an embodiment presented in FIG. 3, the lower surface (21 a) of the nucleus (2) may be approximately flat, and then slide on a contact surface (12 a) of the lower plate (1), also approximately flat. In this embodiment, the flatness of the contact surface (12 a) of the lower plate allows the edges (112) of this plate that protrude from this surface to be particularly effective in their role of annular stop. Therefore, it is possible to manage without the central stop and thus to increase the common contact surface between the lower plate and the nucleus, which on the one hand, decreases the wear and tear of the pieces and on the other hand, the risk of marking the surface of the plate with placement of the contour of the recess (22, FIG. 6 a) in which is accommodated the central stop (4, FIG. 6 a) in other embodiments.
  • In an embodiment represented in FIG. 4, the lower plate (1) presents an approximately cylindrical cavity (11) on its upper face the flat bottom (15) of which receives an intermediate piece called block (5). This piece is immobilized in the cavity (11) for example by the edges (112) of this cavity and presents on its upper face a convex surface (52) on which the lower concave surface (21) of the nucleus slides. This embodiment with the convex surface (52) on which the nucleus slides for example allows the good qualities of the surface necessary for the fluidity of movement and longevity of the prosthesis to be obtained more easily and at less cost. It also allows several models to be provided with blocks (5), of different shapes or qualities, that can be chosen in advance or at the time of the surgery according to applications with the same model of lower plate.
  • In an embodiment represented in FIG. 5, the lower plate (1) receives a block (5) in an approximately cylindrical cavity (11) presenting a vertical perforation that the stop (4) integral with the lower plate crosses. On its upper surface, this block supports a convex surface (52), on which the nucleus (2) and upper plate stack rests.
  • As a variant, the stop (4) may be integral with the block (5) on its convex contact surface (52)(FIG. 8 b).
  • Within the goal of obtaining at rest a corrective effect of the relative position of two vertebrae, the prosthesis may be produced in a variant where the axes of symmetry of the contact surfaces (12, 15, 52, 21, 23, 32) or support (10, 30) of one or more pieces are not merged. The pressure (F) exerted by the vertebrae on the two plates in the directions perpendicular to their external surfaces (10, 30) will then have the tendency to induce and continuously maintain an incline (a3, FIGS. 8 a, 8 b et 8 c) between these plates (1, 3), that is not zero, for example in the sense of lordosis.
  • An embodiment of such a variant is represented in FIG. 8 a where the axis of symmetry (d12) of the contact surface (12) of the lower plate (1) forms an angle (a2) determined with a direction (d10) perpendicular to the external surface of this same lower plate, while the axis of symmetry (d32) of the internal contact face (32) of the upper plate (3) is perpendicular to the external surface (30) of this same upper plate (3). The lower contact surface of the upper plate (3) presents an axis of symmetry parallel to a direction perpendicular to the support surface (30) of the ¶ of this same upper plate (3).
  • In another variant according to the same principle represented in FIG. 8 b, a device is used that includes a lower plate (1) providing a block (5) the upper contact surface of which (52) presents an axis of symmetry (d52) forming an angle (a2) determined with a direction (d51) perpendicular to its lower face (51). The internal contact surfaces (15, 32) of the lower (1) and upper (3) plates present axes of symmetry perpendicular to the support surface (10, 30) of their respective external faces. Thus, at the time of the surgery it is possible to choose between several blocks (5) with different inclines, according to the desired degree of correction. This block (5) could be maintained fixed around an axis perpendicular to the lower plate (1) by any known means (not represented) such as wedge, grooves or complementary accidents of shape between the block (5) and the lower plate (1) that provides it.
  • In another variant according to the same principle, represented in FIG. 8 c, it is the nucleus (2) that presents two contact surfaces (21, 23) the axes of symmetry of which (d21, d23) form a determined angle (a2) between them. The internal contact surfaces (12, 32) of the lower (1) and upper (3) plates present axes of symmetry perpendicular to the support surface (10, 30) of their respective external faces. The angular correction (a3) induced by the nucleus (2) could then be kept constantly in the desired direction relative to the body of the patient by a rotation stop mechanism (not represented in FIG. 8 c) of this same nucleus, such a mechanism being described later (FIGS. 9 a and 9 b).
  • In one embodiment the device according to the invention presents an exterior stop mechanism, located outside the perimeter of the contact surfaces of the nucleus (2).
  • In a variant represented in FIG. 9 a, this mechanism is formed of two protruding parts (6) protruding from the cylindrical exterior surface of the perimeter of the nucleus (2) in opposite directions. Each of these protruding parts is held in a housing (162) delimited by two pillars (161) integral with the lower plate (1). These pillars cooperate with the protruding part (6) or with the surface (20) of the perimeter of the nucleus or both for limiting the movements of this same nucleus in translation as in rotation parallel said plate. The housing is sufficiently large to allow small displacements of the nucleus required for the kinematics of the device, while being sufficiently narrow so that this same nucleus and the lower plate are adjacent in certain positions, for example, positions of maximum incline of the spinal column. The protruding part (6) or perimeter surface (20) of the nucleus (2) then cooperates with the pillars (161) of the lower plate to retain this same nucleus and avoid any lateral ejection.
  • The pillars (161) present a larger section at the end than at the base, thus limiting the raising of the nucleus.
  • In another operating variant according to the same principle and represented in FIG. 9 b, this mechanism is formed of two protruding parts (6) protruding from the cylindrical exterior surface (20) of the perimeter of the nucleus (2) in opposite directions. Each of these protruding parts presents two arms delimiting a housing (66) which hold a pillar (163) integral with the lower plate (1). The pillars (163) present a larger section at their end than at their base.
  • These embodiments of stop (9 a and 9 b) may allow the central stop to be disposed of and to thus increase the contact surfaces which decreases the wear and tear. These types of stop (6) are also particularly valuable because of the limitation of the movements of the nucleus in rotation along an axis approximately parallel to the axis of the spinal column. In fact, this limitation makes it possible to use a corrective nucleus in which the contact surfaces present axes of symmetry that are not parallel, while maintaining in them the correction in a constant direction relative to the body of the patient.
  • In an embodiment represented in FIG. 6 a, the lower (1) and upper (3) plates receive means for bony anchoring on their external face, designed to immobilize tile prosthesis between the vertebrae or adjacent elements of the spinal column. These anchoring means may be pins (8) or wings presenting a small cross section at their end away from the plate that provides them. These pins then are embedded or are impacted by punching in the material of the bony elements (V) between which the prosthesis is fitted, for example under the effect of the pressure exerted by the ligaments when the tools are withdrawn, the tools that kept the vertebrae separated. Driving in the pins in the material of the bony element (V, FIG. 6) then prevents the prosthesis from sliding outside its site.
  • In an embodiment represented in FIG. 1, the plates (1, 3) present one or more accidents of shape such as notches (7) or perforations (not represented) enabling catching of a grasping tool to remove the prosthesis from its site in case of need. The lower plate (1) presents a convex upper contact surface (12) providing a central stop (4) and a cavity presenting edges (112) forming an annular stop.
  • In an embodiment represented in FIG. 10, an insertion device according to the invention is presented in the form of an element (9) called insertion guide, presenting an internal channel (90) approximately rectangular in section in which the prosthesis (P) can slide. This channel (9) is formed from two semi-guides (91, 92) with a cross section in the shape of a “U”, arranged inversely and fitted into each other. At one of the ends, this guide (9) presents one or more parts called support blocks or edges (910, 920) protruding along its longitudinal axis (d9). These support blocks (910, 920) form an extension of the walls of the channel called vertical (9) that form the small sides of the rectangular section of the channel (9).
  • In an application method illustrated in FIGS. 10 and 11, the fitting of the prosthesis device according to the invention is carried out according to the following steps:
  • separating the vertebrae with the aid of known instruments, for example distraction tools;
  • sliding the insertion guide (9)around the distraction tools so as to introduce the support edges (910, 920) between the vertebrae (V);
  • release and extraction of the distraction tools, the vertebrae being kept spread apart by the support edges of the insertion guide;
  • introduction of the prosthesis ready for fitting into the channel, and sliding to near the spinal column;
  • adjustment of the incline of the prosthesis according to conformation of the space available between the vertebrae with possible separating of the two parts (91, 92) of the channel according to a corresponding angle (a9) to help with this adjustment;
  • positioning of the prosthesis in the intervertebral space by pushing by the interior of the channel;
  • extraction of the support blocks (910, 920) of the channel outside the intervertebral space and impacting blocks for bony anchoring in the vertebrae (V).
  • In an embodiment illustrated in FIGS. 12 a to 14, the instrumentation used for fitting the prosthesis according to the invention comprises an insertion guide (93) provided with an internal channel (90). This channel (90) presents an approximately rectangular cross section, or with a shape approximately complementary to the exterior profile of the prosthesis. This internal channel (90) is provided with dimensions and shape adequate for allowing the prosthesis to pass and to guide from one of its ends to the other, in a position and along a displacement approximately parallel to the external faces of its plates (1, 3). According to the applications, the channel (90) of the insertion guide (93) may include scallops in its walls opposite plates of the prosthesis. Such scallops make it possible to allow the anchoring means (8, 81) to pass provided by the plates of the prosthesis, while guiding the latter sufficiently precisely in the channel. In the embodiment illustrated here these scallops have the shape of grooves (934, 936) along the axis (d9) of the channel provided by the internal walls of the channel opposite plates (1, 3).
  • At one of its ends, called the working end, the walls (931, 932) of the channel (90) perpendicular to the plates of the prosthesis, that is, located in the plane containing the axis of the spinal column, are extended along the axis (d9) of this channel over a distance determined so as to protrude relative to the walls of this same channel that are parallel to the plates of the prosthesis. Since these extensions thus form the protruding parts, or support edges, that may be inserted in the intervertebral space to maintain the separation of the plates from the two vertebrae surrounding this space.
  • The height of these support edges (931, 932) is determined so as to maintain adequate space for allowing the introduction of the prosthesis and its anchoring means (8, 81), according to the method of anchoring provided. If the anchoring means are formed from sockets (8) or wings (81) before being introduced freely in the space, the support edges will have sufficient height to allow the height of these sockets or wings to pass. If the anchoring means are formed from wings having to penetrate the vertebral plates by a hollowed trench in the surface of these plates and opening laterally, the height of these support edges could be sufficiently low to allow the height of the prosthesis to pass but not the wings.
  • During surgery for fitting such a prosthesis, the surgeon begins by removing the vertebral disc or its debris, and then uses distraction tools to increase the disc space available between the two vertebrae having to receive the prosthesis. Such tools are often formed with an elongated handle providing a flat part at the end. This flat end is introduced between the vertebrae, then it is made to pivot to increase the separation of the vertebrae.
  • In the instrument according to the invention, the internal channel (90) of the insertion guide (93) is provided to be able to be threaded around such distraction tools, once they are in place between the vertebrae. Once brought near the spinal column while surrounding the distraction tools, the insertion guide is pushed so as to introduce its edges (931, 932) between the vertebrae, in a plane approximately parallel to the spinal column. The distraction tools may then be removed from the spinal column by making them slide in the channel (90) of the insertion guide, while the height of the support edges preserves sufficient space between the vertebrae to allow fitting of the prosthesis. In the embodiment illustrated here, the insertion guide (93) presents means for interlocking with a guide assembly tool (94), used to bring it near the spinal column and facilitating its fitting. This guide assembly tool (94) is also usable for removing the insertion guide and its support edges, and allowing the vertebrae to tighten on the prosthesis, once the latter is in place.
  • Such a guide assembly tool (94) is illustrated in FIGS. 12 a and 12 b. This tool (94) consists of two elongated tubes (941, 946) articulated to each other by means (945) located at one end, called assembling, of this tool. These two elongated tubes at their end located opposite the assembling end, each provide interlocking means for insertion guide (93). These interlocking means may comprise, for example, a hook (942, 947) on each tube (941, 946) the opening of which is located opposite the other tube. When the guide assembly tool (94) is approached by the insertion guide (93), the fact of tightening the tubes to each other around their articulation makes it possible for each hook (942, 947) to tightly encircle a tongue (934, 936) in the shape of a “T” protruding on each groove (933, 935) of the insertion guide. Within and in the axis of each tube (941, 946) is found a rod (943, 948) that may be displaced longitudinally relative to the tubes by screwing means comprising a screwing wheel (944, 949). The screwing of these wheels causes the advance of the rod in the tube and the end of the rod opposite the screwing wheel then comes to lean and block the tongue (934, 936) of the insertion guide (93) within the hook (942, 947) provided by the tube receiving this same rod, This blockage thus makes it possible to interlock the guide to its assembling tool sufficiently stably to make it possible to position said guide around the distraction tools at the spinal column.
  • These means (934, 936) of interlocking the insertion guide (93) or others provided by said insertion guide also make it possible to guide and interlock means of approach (95) to this insertion guide. These means (95) of approach include means for positioning the prosthesis, these means of positioning being provided to position and maintain the assembled prosthesis in a determined position relative to these means (95) of approach even in the absence of the insertion guide (93). This positioning of the prosthesis on the approach means makes it possible for the interlocking of tie approach means and the insertion guide to put the prosthesis in a position making it possible for it to be easily displaced from these same means or approach up to in the internal channel (90) of the insertion guide (93). Thus, it is possible to prepare the prosthesis in the approach means (95) independently of the rest of the operation. Then it is possible to fit the insertion guide on the spinal column without being preoccupied with the prosthesis, then easily and rapidly inserting this prosthesis in the insertion guide (93) while the latter is already in position against the spinal column.
  • As well as illustrated in FIG. 14, these approach means (95) include two shafts (951, 952) connected to each other by articulation (955) so as to come to pinch the prosthesis (P) between two flattened parts ensuring a determined position of the prosthesis relative to these approach means. The ends of these shafts opposite the articulation including interlocking means (953, 954) capable of cooperating with the interlocking means (934, 936) of insertion guide (93) to ensure a determined position of approach means (95) relative to the insertion guide (93) as well as certain stability to this assembly. At the end of each shaft (951, 952), these interlocking means (953, 954) may in particular comprise a scalloping in which the arms come to encircle the exterior of the groove (933, 935) of the insertion guide while gliding under the upper bar of the “T” formed by the tongue (934, 936) provided by this same insertion guide.
  • Once the insertion guide (93) fitted instead of the distraction tools and the approach means (95) interlocked to this guide, the prosthesis is therefore in a stable position relative to the spinal column, and may be inserted in the insertion guide then slide up to the disc space. This displacement is achievable here with the aid of impacting means, or impactor (96) comprising an impacting end capable of pressing on the assembled prosthesis, distributed on both plates and without touching the nucleus. This impactor includes a central elongated part (960) that can be inserted in guiding means as an opening in the shape of a “U” provided by approach means (95) at their articulated end (955). This impactor includes another end (962) called assembling or striking, that can act to apply a continuous pressure or repeated shocks, with the hand or by any known tool or apparatus. Such an action, applied on the assembling end (962) of the impactor in the axis (d9) of the channel (90) then will be reverberated by the end (961) on the prosthesis, so as to cause its entrance then sliding in the channel (90) of the insertion guide (93), then its insertion or impaction in the intervertebral space.
  • In all the prosthesis devices according to the invention described here, it is necessary to understand that the distinctions of “lower plate” (represented on the bottom of the figures and referenced 1) and “upper plate” (represented on the top of the figures and referenced 3) are above all conventional, the device being able to be used in a different position, even inverse of that consisting of placing the lower plate toward the bottom of the vertebral column.
  • Thus, the invention proposes an intervertebral disc prosthesis device comprising at least three pieces, which parts include a plate (1) called lower and a plate (3) called upper (3) producing around at least one intermediate part called nucleus (2) an articulation by support or sliding between loadbearing surfaces (12, 15, 21, 23, 32) of said pieces, one of these pieces including at least one protruding part or accident of shape cooperating with the shape of at least one other of said pieces to form an stop limiting the possibilities of movement of the nucleus, characterized in that this stop operation uses at least one stop external to the loadbearing surfaces comprising at least one part (161, 163) protruding from at least one plate (1), located outside the loadbearing surface (12, 15) of said plate and including a face directed towards the interior of the prosthesis, this face cooperating with a peripheral part (6) of the nucleus (21, 23) situated outside its loadbearing surfaces (21, 23) and in which the surface is directed towards the exterior of the nucleus, to limit displacements of the nucleus in translation or in rotation or both in a plane approximately transverse to the spinal column.
  • According to a particular aspect, the loadbearing surfaces (21, 21 a, 23) of the nucleus (2) in contact with the lower plate (1) and upper plate (3) present axes of symmetry (d21, d23, respectively) forming between them a determined angle (a2) that is not zero, so that a pressure (F) exerted on the two plates (1, 3) along directions perpendicular to their external surfaces induces an incline (a3) of these plates with each other.
  • According to a particular aspect, this external stop limits the movements in rotation of the nucleus (2) relative to at least one plate (1) by contact between parts (6, 161, 163) supporting each other by stop surfaces, this support being done along a direction approximately parallel to the normal of each of these stop surfaces.
  • According to a particular aspect, the external stop includes a tongue (6) protruding form the nucleus (6) which cooperates with one of the plates (1) by confining this tongue (6) in a housing (162) delimited by pillars (161) protruding from the internal race of this same plate(1) or by a recess (66) separating this tongue into two arms encircling a pillar (163) protruding from the internal face of this same plate (1), the internal face of a plate being defined at that oriented on the side of the nucleus.
  • According to a particular aspect, the end of at least one pillar (161, 162, 163) presents a section greater than its base, this enlargement of the pillar cooperating with the shape of the external stop tongue (6) of the nucleus (2) to limit the raising of this same nucleus relative to the plate (1) providing this pillar.
  • In the same spirit, the invention also proposes an intervertebral disc prosthesis device comprising at least three pieces, including a plate (1) called lower and a plate (3) called upper (3) producing around at least one intermediate element called nucleus (2) an articulation by support or sliding between loadbearing surfaces (12, 15, 21, 23, 32) of said parts, one of these parts including at least one protruding part or accident of shape cooperating with the shape of at least one other of said pairs to form an stop limiting the possibilities of movement of the nucleus, characterized in that the loadbearing surfaces (21, 21 a, 23) of the nucleus (2) in contact with the lower plate (1) and upper plate (3) present axes of symmetry (d21, d23, respectively) forming between them a determined angle (a2) that is not zero so that a pressure (F) exerted on the two plate (1, 3) along directions perpendicular to their external surfaces induces an incline (a3) of these plates with each other.
  • According to a particular aspect this device is characterized in that the operation of the stop uses at least one stop external to the loadbearing surfaces comprising at least one part (161, 163) protruding from at least one plate (1) located outside the loadbearing surface (12, 15) of said plate and including a face directed towards the interior of the prosthesis, this face cooperating with a peripheral part (6) of the nucleus located outside its loadbearing surfaces (21, 23) and in which the surface is directed towards the exterior of the nucleus, to limit the displacements of the nucleus in translation or in rotation or both in a plane approximately transverse to the spinal column.
  • According to a particular aspect, when the two plates have their external faces (10, 30) parallel to each other, their loadbearing surfaces (12, 12 a, 32) cooperate with the loadbearing surfaces (21, 21 a, 23) of the nucleus (2) present axes of symmetry (d1 2, d32) forming a determined angle (a4) between them so that a pressure (F) exerted on the two plates (1, 3) along directions perpendicular to their external faces induces an incline (a5) of these plates with each other.
  • According to a particular aspect, the loadbearing surfaces (12, 32) provided by the internal face of the lower plate (1) and the internal face of the upper plate (3) are each in complementary contact with a supporting surface (21, 23, respectively) of the nucleus (2), and each present a shape, convex and concave, respectively, or inversely, this nucleus itself presenting a perimeter (20) approximately cylindrical along the axis of symmetry of its contact faces (21, 32).
  • According to a particular aspect, the internal face of the lower plate (1) presents a loadbearing surface (12 a) cooperating with a loadbearing surface (21 a) of the lower face of the nucleus (2), this same nucleus including on its upper face a convex loadbearing surface (23) in complementary contact with a concave loadbearing surface (32) of the internal face of the upper plate (3) the loadbearing surface (12 a) of the internal face of the lower plate being sufficiently extended to allow movement of the nucleus relative to this same lower plate.
  • According to a particular aspect, an intermediate element called block (5) is added on the internal face of one (1) of the plates and produces an articulation with the other plate (3) around the nucleus (2) which nucleus presents a concave loadbearing surface (21) and a convex loadbearing surface (23) these two loadbearing surfaces being in contact in a complementary way with one loadbearing surface (52) of the block (5) one, and with a loadbearing surface (32) of the internal face of the plate (3) not including block, for the other.
  • According to a particular aspect, the axis of symmetry (d52) of the convex loadbearing surface (52) of the block (5) forms a determined angle (a4) with an axis (d51) perpendicular to its surface (51) with contact of the plate (1) so that a pressure (F) exerted on the two plates (1, 3) along directions perpendicular to their external faces induces an incline (a5) of the plates with each other.
  • According to a particular aspect, at least one of the loadbearing surfaces (12, 52, 21, 23, 32) allowing articulation has a shape making up part of a sphere.
  • According to a particular aspect, the loadbearing surfaces of the two faces of the nucleus (2) have shapes making up parts of a sphere, the face presenting a concave loadbearing surface (21) having a radius greater than that of the face presenting a convex loadbearing surface (23).
  • According to a particular aspect, each of the plates (1, 3) includes on its external face one or more protruding parts with small section forming a bony anchoring, these protruding parts coming to be embedded or impacted in the surface of contiguous bony elements (V) under the effect of pressure, once the prosthesis is in position between two vertebrae or bony elements.
  • According to a particular aspect, one or more of the pieces of the prosthesis include accidents of shape, notches (7) or perforations likely to see a tool again to facilitate the extraction of said prosthesis.
  • According to a particular aspect, the plates (1, 3) are composed of an alloy with base of stainless steel with cobalt-chromium and the nucleus (2) has polyethylene base.
  • In the same spirit, the invention proposes instrumentation for inserting or fitting the prosthesis according to one of claims 1 to 15 characterized in that it comprises an insertion guide (9,93) including an internal channel (90) presenting an end in which certain edges or support edges (910, 920, 931, 932), protrude from the others along the longitudinal axis (d9) of the channel so as to be able to take the place of distraction tools of a known type previously used to increase the opening of the disc space, this channel (90) presenting an internal section capable of surrounding these same distraction tools while they maintain this opening, then allowing their extraction through said channel while said support edges (910, 920, 931, 932), for their part, preserve the opening of the disc space by replacing the distraction tools, then receiving and guiding the prosthesis (P) for insertion in this disc space.
  • According to a particular aspect, the internal channel (90) presents an approximately rectangular section or with a shape approximately complementary to the exterior profile of the prosthesis, taken in a section along the plane perpendicular to the direction of insertion.
  • According to a particular aspect, the support edges (931, 932) of insertion guide (93) form an extension of the channel (90) walls located on a plane containing the axis of the spinal column.
  • According to a particular aspect, the insertion guide (9) is formed from at least two elements (91, 92) separated along one or more planes parallel to the longitudinal axis (d9) of the channel, these parts each including at least one portion of the transverse section of the channel and being able to be spread apart according to a determined angle (a9) and allowing the introduction and sliding of the prosthesis (P) in the channel.
  • According to a particular aspect, the internal surface of the channel (90) on its walls opposite external faces of the plates (1, 3) of the prosthesis (P1), includes at least one groove (913, 914) allowing the passage of protruding parts (8, 81) for anchoring provided by these plates during displacement of the prosthesis in this channel (90).
  • According to a particular aspect, the instrumentation comprises approach means (95) of the prosthesis capable of receiving the prosthesis and of maintaining with it all the different components, these approach means (95) being able to be connected by interlocking means to the insertion guide (93) so as to present the prosthesis at the entrance of the channel (90) in a position appropriate for allowing its entrance into this channel (90).
  • According to a particular aspect, the instruments comprises insertion means, called impactor (96) of the prosthesis in the channel (90) of the insertion guide (93) then into the disc space, this impactor being guided by the support means (95) so as to be in contact with the prosthesis in its part opposite the entrance of the channel (90), this impactor (96) being able to apply or transmit a pressure or repeated shocks to the prosthesis to cause its sliding in the channel, then its insertion in the disc space.
  • According to a particular aspect, the support means include two shafts (951, 952) connected by an axis to a assembling end (955), these shafts being able to be closed up to pinch the prosthesis (P) between them and to maintain it so assembled, these two shafts each providing connection means to the guide for use (93), this connection then maintaining these two shafts closed up on the prosthesis.
  • It must be obvious for those skilled in the art that the present invention allows embodiments in numerous other specific forms without going far from the field of application of the invention as claimed. As a result, the present embodiments must be considered by way of illustration, but may be modified in the field defined by the scope of the attached claims, and the invention must not be limited to details given above.

Claims (48)

1 . A method of surgically inserting an intervertebral prosthesis between two adjacent vertebrae comprising the steps of:
separating two adjacent vertebrae to form a gap between the two adjacent vertebrae;
placing at least one support block at least partially into the gap;
maintaining the gap with the support block;
introducing the intervertebral prosthesis into a channel formed by an insertion guide;
moving the intervertebral prosthesis through the channel;
positioning the intervertebral prosthesis in the gap; and
removing the support block.
2. The method of claim 1 in which the step of moving the intervertebral prosthesis comprises a step of adjusting a first angle of incline associated with two opposing plates of the intervertebral prosthesis by adjusting a second angle of incline between two semi-guides.
3. The method of claim 1 in which the at least one support block comprises two support blocks formed by extensions of opposing lateral sides of a semi-guide.
4. The method of claim 3 in which the step of placing the at least one support block comprises placing the two support blocks at least partially into the gap around a distraction tool.
5. The method of claim 4 further comprising a step of removing the distraction tool through the channel.
6. The method of claim 1 in which the intervertebral prosthesis comprises plates and a nucleus, and the step of moving the intervertebral prosthesis through the channel comprises providing an insertion tool and using the insertion tool to push the plates of the intervertebral prosthesis without contacting the nucleus of the intervertebral prosthesis.
7. The method of claim 6 in which the insertion tool provided is an impactor.
8. The method of claim 1 in which:
the insertion guide comprises two semi-guides and the at least one support block comprises support edges disposed at an end of one of the semi-guides;
the step of placing at the least one support block at least partially into the gap comprises placing at least a part of the support edges into the gap; and
the step of maintaining the gap with the support block comprises using the support edges to keep the vertebrae apart.
9. A method of surgically inserting an intervertebral prosthesis between two adjacent vertebrae comprising the steps of:
separating the adjacent vertebrae to form a gap between the adjacent vertebrae;
moving at least one support block of an insertion guide into the gap;
placing the intervertebral prosthesis in a channel in the insertion guide;
moving the intervertebral prosthesis along the channel toward the gap;
positioning the intervertebral prosthesis in the gap; and
removing the support block of the insertion guide from the gap.
10. The method of claim 9 in which the support block comprises two support blocks formed by extensions of opposing lateral sides of the insertion guide.
11. The method of claim 10 in which the step of separating the adjacent vertebrae comprises using a distraction tool and the step of moving the at least one support block comprises moving the two support blocks of the insertion guide around the distraction tool, the method further comprising the step of removing the distraction tool along the channel.
12. The method of claim 9 in which the step of moving the intervertebral prosthesis along the channel comprises using at least one scallop of the insertion guide to guide at least one anchor on the intervertebral prosthesis.
13. The method of claim 12 in which the step of positioning the intervertebral prosthesis in the gap comprises moving the at least one anchor into a trench formed in at least one of the vertebrae.
14. The method of claim 9 in which the step of moving the least one support block into the gap or the step of removing the support block from the gap, or both, are performed using an assembly tool having at least one interlocking part which interlocks with the insertion guide.
15. The method of claim 9 in which the step of placing the intervertebral prosthesis in a channel in the insertion guide is performed at least in part using an elongated support having at least one interlocking part which interlocks with the insertion guide.
16. The method of claim 15 in which the step of moving at least one support block into the gap or the step of removing the support block, or both, comprise using the elongated support.
17. A method of surgically inserting an intervertebral prosthesis between two adjacent vertebrae comprising the steps of:
providing an insertion guide having a first and a second longitudinal element each having a support block configured to support one of the adjacent vertebrae and a pathway between the first and the second longitudinal elements configured for passage of the intervertebral prosthesis into a gap formed between the two adjacent vertebrae;
supporting the vertebrae with the support blocks of the first and second longitudinal elements;
placing an impactor between the first and second longitudinal elements; and
using the impactor to move the intervertebral prosthesis along the pathway into the gap.
18. The method of claim 17 in which the insertion guide further comprises an articulation of the first and second longitudinal elements.
19. The method of claim 18 in which the articulation comprises a pivot.
20. The method of claim 17 in which the insertion guide further comprises a guide for the impactor the guide located proximate to the articulation, and the step of placing the impactor between the first and second longitudinal elements comprises inserting the impactor in the guide.
21. Instrumentation for surgically inserting an intervertebral prosthesis in a gap between two adjacent vertebrae comprising:
an insertion guide having a longitudinal axis and comprising
an end having an opening through which the intervertebral prosthesis may pass and through which a distraction tool may be received;
a channel arranged and configured for passage along the longitudinal axis of the intervertebral prosthesis and the distraction tool; and
edges protruding from the end along the longitudinal axis, the edges configured and arranged to maintain the gap during insertion of the intervertebral prosthesis.
22. Instrumentation of claim 21 in which the channel has an approximately rectangular cross section that is approximately complementary to the exterior profile of the prosthesis.
23. Instrumentation of claim 21 in which the edges are formed by extensions of walls of the channel.
24. Instrumentation of claim 21 further comprising plural elements forming the channel, which elements are adjustable to form a determined angle.
25. Instrumentation of claim 21 in which at least one surface of the channel has a groove configured and arranged for passage of an anchor of the intervertebral prosthesis.
26. Instrumentation of claim 21 further comprising a support configured to hold the intervertebral prosthesis stable during approach to the channel.
27. Instrumentation of claim 26 further comprising an impactor cooperating with a guide of the support, the impactor having a striking end configured for application of a force and an impacting end configured to transmit the force to the intervertebral prosthesis.
28. Instrumentation for surgically inserting an intervertebral prosthesis between two adjacent vertebrae comprising an insertion guide comprising plural semi-guides forming a channel along a longitudinal axis of the insertion guide, at least one semi-guide having plural support blocks.
29. Instrumentation of claim 28 in which the support blocks comprise edges of extensions of walls of the at least one semi-guide having plural support blocks.
30. Instrumentation for insertion of an intervertebral prosthesis into a space between adjacent vertebrae comprising:
a first and a second longitudinal element each having a support block configured to support one of the adjacent vertebrae;
a pathway between the first and the second longitudinal elements configured for passage of the intervertebral prosthesis into the space between the adjacent vertebrae; and
an impactor configured to move the intervertebral prosthesis along the pathway into the space between the adjacent vertebrae.
31. Instrumentation of claim 30 further comprising an articulation of the first and second longitudinal elements.
32. Instrumentation of claim 31 in which the articulation comprises a pivot.
33. Instrumentation of claim 30 further comprising a guide for the impactor, the guide located proximate to the articulation.
34. Instrumentation for surgically inserting an intervertebral prosthesis in a gap between two adjacent vertebrae comprising an insertion guide comprising:
a longitudinal axis;
an end having an opening through which the intervertebral prosthesis may pass and through which a distraction tool may extend;
a channel arranged and configured for passage along the longitudinal axis of the intervertebral prosthesis and the distraction tool; and
vertebral support walls of the channel configured to support the adjacent vertebrae during insertion of the intervertebral prosthesis.
35. Instrumentation of claim 34 in which the channel comprises scallops configured and arranged to permit passage of an anchor of the intervertebral prosthesis.
36. Instrumentation of claim 34 further comprising an assembly tool having at least one interlock configured for engagement with a cooperating interlock of the insertion guide.
37. Instrumentation of claim 36 in which the interlock of the assembly tool comprises a hook and the interlock of the insertion guide comprises a tongue.
38. Instrumentation of claim 36 in which a rod operates the interlock of the assembly tool.
39. Instrumentation of claim 36 in which the assembly tool comprises at least one tube.
40. Instrumentation of claim 34 further comprising a support configured to position and support the intervertebral prosthesis during its approach to the gap.
41. Instrumentation of claim 40 in which the support comprises shafts connected by an articulation.
42. Instrumentation of claim 40 in which the support has positioners configured to stabilize an assembled intervertebral prosthesis during its approach to the gap.
43. Instrumentation of claim 42 in which the positioners are flattened parts disposed along shafts of the support.
44. Instrumentation of claim 40 in which the support comprises an interlock configured to engage a complementary interlock of the insertion guide.
45. Instrumentation of claim 44 in which the interlock of the support comprises a scallop and the interlock of the insertion guide comprises a tongue.
46. Instrumentation of claim 34 further comprising an impactor having a striking end for the application of force and an impacting end for transmitting the force to the intervertebral prosthesis.
47. Instrumentation of claim 46 in which the impacting end is configured and arranged to transmit the force to plates of the intervertebral prosthesis but not a nucleus of the intervertebral prosthesis.
48. Instrumentation of claim 46 in which impactor comprises an elongated part cooperating with a guide of a support.
US12/025,677 2001-05-04 2008-02-04 Intervertebral disc prosthesis, surgical methods, and fitting tools Active 2025-02-21 US9333095B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/025,677 US9333095B2 (en) 2001-05-04 2008-02-04 Intervertebral disc prosthesis, surgical methods, and fitting tools
US15/150,316 US9788964B2 (en) 2001-05-04 2016-05-09 Intervertebral disc prosthesis, surgical methods, and fitting tools
US15/784,559 US20180098859A1 (en) 2001-05-04 2017-10-16 Intervertebral disc prosthesis, surgical methods, and fitting tools

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR0105982A FR2824261B1 (en) 2001-05-04 2001-05-04 INTERVERTEBRAL DISC PROSTHESIS AND IMPLEMENTATION METHOD AND TOOLS
FR0105982 2001-05-04
PCT/IB2002/002998 WO2002089701A2 (en) 2001-05-04 2002-05-03 Intervertebral disc prosthesis and fitting tools
US10/476,565 US7326250B2 (en) 2001-05-04 2002-05-03 Intervertebral disc prosthesis and fitting tools
US12/025,677 US9333095B2 (en) 2001-05-04 2008-02-04 Intervertebral disc prosthesis, surgical methods, and fitting tools

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
US10476565 Continuation 2002-05-03
US10/476,565 Continuation US7326250B2 (en) 2001-05-04 2002-05-03 Intervertebral disc prosthesis and fitting tools
PCT/IB2002/002998 Continuation WO2002089701A2 (en) 2001-05-04 2002-05-03 Intervertebral disc prosthesis and fitting tools

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/150,316 Continuation US9788964B2 (en) 2001-05-04 2016-05-09 Intervertebral disc prosthesis, surgical methods, and fitting tools

Publications (2)

Publication Number Publication Date
US20080234686A1 true US20080234686A1 (en) 2008-09-25
US9333095B2 US9333095B2 (en) 2016-05-10

Family

ID=8862982

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/476,565 Expired - Lifetime US7326250B2 (en) 2001-05-04 2002-05-03 Intervertebral disc prosthesis and fitting tools
US12/025,677 Active 2025-02-21 US9333095B2 (en) 2001-05-04 2008-02-04 Intervertebral disc prosthesis, surgical methods, and fitting tools
US15/150,316 Expired - Lifetime US9788964B2 (en) 2001-05-04 2016-05-09 Intervertebral disc prosthesis, surgical methods, and fitting tools
US15/784,559 Abandoned US20180098859A1 (en) 2001-05-04 2017-10-16 Intervertebral disc prosthesis, surgical methods, and fitting tools

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/476,565 Expired - Lifetime US7326250B2 (en) 2001-05-04 2002-05-03 Intervertebral disc prosthesis and fitting tools

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/150,316 Expired - Lifetime US9788964B2 (en) 2001-05-04 2016-05-09 Intervertebral disc prosthesis, surgical methods, and fitting tools
US15/784,559 Abandoned US20180098859A1 (en) 2001-05-04 2017-10-16 Intervertebral disc prosthesis, surgical methods, and fitting tools

Country Status (15)

Country Link
US (4) US7326250B2 (en)
EP (3) EP2335602B1 (en)
JP (1) JP4226907B2 (en)
KR (2) KR101007597B1 (en)
CN (3) CN1720878B (en)
AT (1) ATE515986T1 (en)
BR (1) BR0209351B1 (en)
CA (2) CA2602540C (en)
ES (2) ES2367685T3 (en)
FR (1) FR2824261B1 (en)
IL (2) IL158740A0 (en)
MX (1) MXPA03010083A (en)
RU (1) RU2296540C2 (en)
WO (1) WO2002089701A2 (en)
ZA (1) ZA200308355B (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050216086A1 (en) * 2004-03-23 2005-09-29 Sdgi Holdings, Inc. Constrained artificial spinal disc
US20070250170A1 (en) * 2006-04-21 2007-10-25 Depuy Spine, Inc. Disc prosthesis having remote flexion/extension center of rotation
US20080015699A1 (en) * 2003-11-28 2008-01-17 Gilles Voydeville Postero-Lateral Intervertebral Disc Prosthesis
US20080015694A1 (en) * 2006-01-13 2008-01-17 Clifford Tribus Spine reduction and stabilization device
US20100292799A1 (en) * 2009-05-15 2010-11-18 Noah Hansell Method for Inserting and Positioning an Artificial Disc
US7896919B2 (en) * 2003-08-04 2011-03-01 Zimmer Spine S.A.S. Method of implanting intervertebral disk prosthesis
US20110270393A1 (en) * 2008-06-04 2011-11-03 James Marvel Buffer for a human joint and method of arthroscopically inserting
US20110276142A1 (en) * 2008-10-13 2011-11-10 Marcin Niemiec Articulating Spacer
US20120172988A1 (en) * 2011-01-04 2012-07-05 Synthes Usa, Llc Intervertebral implant with multiple radii
US8257439B2 (en) 2004-12-22 2012-09-04 Ldr Medical Intervertebral disc prosthesis
US8267999B2 (en) 2002-11-05 2012-09-18 Ldr Medical Intervertebral disc prosthesis
US8343219B2 (en) 2007-06-08 2013-01-01 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US8465546B2 (en) 2007-02-16 2013-06-18 Ldr Medical Intervertebral disc prosthesis insertion assemblies
US20130184828A1 (en) * 2010-10-06 2013-07-18 Karin Buettner-Janz Prosthesis for Cervical and Lumbar Spine
US8771284B2 (en) 2005-11-30 2014-07-08 Ldr Medical Intervertebral disc prosthesis and instrumentation for insertion of the prosthesis between the vertebrae
US8858635B2 (en) 2004-02-04 2014-10-14 Ldr Medical Intervertebral disc prosthesis
US8974532B2 (en) 2004-04-28 2015-03-10 Ldr Medical Intervertebral disc prosthesis
US8979932B2 (en) 2005-09-23 2015-03-17 Ldr Medical Intervertebral disc prosthesis
US20150142113A1 (en) * 1999-07-02 2015-05-21 DePuy Synthes Products, LLC Intervertebral Implant
EP2869790A4 (en) * 2012-07-06 2015-10-14 Truemotion Spine Inc A shock absorbing, total disc replacement prosthetic
US9278004B2 (en) 2009-08-27 2016-03-08 Cotera, Inc. Method and apparatus for altering biomechanics of the articular joints
US9333095B2 (en) 2001-05-04 2016-05-10 Ldr Medical Intervertebral disc prosthesis, surgical methods, and fitting tools
US9408715B2 (en) 2009-04-15 2016-08-09 DePuy Synthes Products, Inc. Arcuate fixation member
US9445913B2 (en) 2009-04-15 2016-09-20 DePuy Synthes Products, Inc. Arcuate fixation member
US9468466B1 (en) 2012-08-24 2016-10-18 Cotera, Inc. Method and apparatus for altering biomechanics of the spine
US9668868B2 (en) 2009-08-27 2017-06-06 Cotera, Inc. Apparatus and methods for treatment of patellofemoral conditions
US9707100B2 (en) 2015-06-25 2017-07-18 Institute for Musculoskeletal Science and Education, Ltd. Interbody fusion device and system for implantation
US9795410B2 (en) 2009-08-27 2017-10-24 Cotera, Inc. Method and apparatus for force redistribution in articular joints
US9808287B2 (en) 2007-08-01 2017-11-07 Jeffrey Halbrecht Method and system for patella tendon realignment
US9861408B2 (en) 2009-08-27 2018-01-09 The Foundry, Llc Method and apparatus for treating canine cruciate ligament disease
US9883950B2 (en) 2006-07-24 2018-02-06 Centinel Spine Llc Intervertebral implant with keel
US9987142B2 (en) 2012-08-31 2018-06-05 Institute for Musculoskeletal Science and Education, Ltd. Fixation devices for anterior lumbar or cervical interbody fusion
US10195046B2 (en) 2009-12-31 2019-02-05 Ldr Medical Instruments and methods for removing fixation devices from intervertebral implants
US10349980B2 (en) 2009-08-27 2019-07-16 The Foundry, Llc Method and apparatus for altering biomechanics of the shoulder
US10603185B2 (en) 2004-02-04 2020-03-31 Ldr Medical Intervertebral disc prosthesis
US10687958B2 (en) * 2011-02-23 2020-06-23 Globus Medical, Inc. Six degree spine stabilization devices and methods
US10758363B2 (en) 2006-02-15 2020-09-01 Ldr Medical Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US10765531B2 (en) 2013-09-11 2020-09-08 Ldr Medical, S.A.S. Cage having spike
US11246716B2 (en) 2016-10-18 2022-02-15 Institute for Musculoskeletal Science and Education, Ltd. Implant with deployable blades
US11413157B2 (en) 2016-10-25 2022-08-16 Institute for Musculoskeletal Science and Education, Ltd. Spinal fusion implant
US11872143B2 (en) 2016-10-25 2024-01-16 Camber Spine Technologies, LLC Spinal fusion implant

Families Citing this family (222)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7575576B2 (en) 2001-07-16 2009-08-18 Spinecore, Inc. Wedge ramp distractor and related methods for use in implanting artificial intervertebral discs
US7169182B2 (en) 2001-07-16 2007-01-30 Spinecore, Inc. Implanting an artificial intervertebral disc
US8940047B2 (en) 2001-02-15 2015-01-27 Spinecore, Inc. Intervertebral spacer device having recessed notch pairs for manipulation using a surgical tool
US8858564B2 (en) 2001-02-15 2014-10-14 Spinecore, Inc. Wedge plate inserter/impactor and related methods for use in implanting an artificial intervertebral disc
US6673113B2 (en) * 2001-10-18 2004-01-06 Spinecore, Inc. Intervertebral spacer device having arch shaped spring elements
FR2827156B1 (en) 2001-07-13 2003-11-14 Ldr Medical VERTEBRAL CAGE DEVICE WITH MODULAR FASTENING
US7713302B2 (en) 2001-10-01 2010-05-11 Spinecore, Inc. Intervertebral spacer device utilizing a spirally slotted belleville washer having radially spaced concentric grooves
US7771477B2 (en) 2001-10-01 2010-08-10 Spinecore, Inc. Intervertebral spacer device utilizing a belleville washer having radially spaced concentric grooves
US20080027548A9 (en) 2002-04-12 2008-01-31 Ferree Bret A Spacerless artificial disc replacements
US8038713B2 (en) 2002-04-23 2011-10-18 Spinecore, Inc. Two-component artificial disc replacements
US6706068B2 (en) 2002-04-23 2004-03-16 Bret A. Ferree Artificial disc replacements with natural kinematics
US8388684B2 (en) 2002-05-23 2013-03-05 Pioneer Signal Technology, Inc. Artificial disc device
US7001433B2 (en) 2002-05-23 2006-02-21 Pioneer Laboratories, Inc. Artificial intervertebral disc device
DE10242329B4 (en) * 2002-09-12 2005-03-17 Biedermann Motech Gmbh Disc prosthesis
JP4429909B2 (en) 2002-09-19 2010-03-10 ビリアーズ, マラン デ Intervertebral prosthesis
US20060100715A1 (en) * 2002-09-19 2006-05-11 De Villiers Malan Arthroplasty implant
US7833246B2 (en) 2002-10-29 2010-11-16 Kyphon SÀRL Interspinous process and sacrum implant and method
US7273496B2 (en) * 2002-10-29 2007-09-25 St. Francis Medical Technologies, Inc. Artificial vertebral disk replacement implant with crossbar spacer and method
US20040133278A1 (en) * 2002-10-31 2004-07-08 Marino James F. Spinal disc implant
CA2502292C (en) * 2002-10-31 2011-07-26 Spinal Concepts, Inc. Movable disc implant
CN100400015C (en) * 2002-12-17 2008-07-09 斯恩蒂斯有限公司 Intervertebral implant with tiltable joint parts
ATE394087T1 (en) * 2002-12-17 2008-05-15 Synthes Gmbh INTERVERBARY IMPLANT
WO2004066884A1 (en) 2003-01-31 2004-08-12 Spinalmotion, Inc. Intervertebral prosthesis placement instrument
JP4398975B2 (en) * 2003-01-31 2010-01-13 スパイナルモーション, インコーポレイテッド Spinal cord midline indicator
US7828849B2 (en) 2003-02-03 2010-11-09 Warsaw Orthopedic, Inc. Expanding interbody implant and articulating inserter and method
US20040158254A1 (en) * 2003-02-12 2004-08-12 Sdgi Holdings, Inc. Instrument and method for milling a path into bone
AU2004220634B2 (en) 2003-03-06 2009-09-17 Spinecore, Inc. Instrumentation and methods for use in implanting a cervical disc replacement device
US6908484B2 (en) 2003-03-06 2005-06-21 Spinecore, Inc. Cervical disc replacement
US7407513B2 (en) * 2003-05-02 2008-08-05 Smart Disc, Inc. Artificial spinal disk
US7291173B2 (en) 2003-05-06 2007-11-06 Aesculap Ii, Inc. Artificial intervertebral disc
US7105024B2 (en) 2003-05-06 2006-09-12 Aesculap Ii, Inc. Artificial intervertebral disc
US20050143824A1 (en) * 2003-05-06 2005-06-30 Marc Richelsoph Artificial intervertebral disc
DE20308171U1 (en) * 2003-05-21 2003-07-31 Aesculap Ag & Co Kg Vertebral body replacement implant
US10052211B2 (en) 2003-05-27 2018-08-21 Simplify Medical Pty Ltd. Prosthetic disc for intervertebral insertion
US7575599B2 (en) 2004-07-30 2009-08-18 Spinalmotion, Inc. Intervertebral prosthetic disc with metallic core
ZA200509644B (en) 2003-05-27 2007-03-28 Spinalmotion Inc Prosthetic disc for intervertebral insertion
US7722673B2 (en) * 2003-07-22 2010-05-25 Cervitech, Inc. Intervertebral disc prosthesis
EP1646336B1 (en) * 2003-07-22 2009-07-08 Synthes GmbH Intervertebral implant comprising dome-shaped joint surfaces
US7621956B2 (en) * 2003-07-31 2009-11-24 Globus Medical, Inc. Prosthetic spinal disc replacement
US7713304B2 (en) 2003-07-31 2010-05-11 Globus Medical, Inc. Transforaminal prosthetic spinal disc replacement
US7811329B2 (en) 2003-07-31 2010-10-12 Globus Medical Transforaminal prosthetic spinal disc replacement and methods thereof
US9844442B2 (en) * 2003-07-31 2017-12-19 Globus Medical, Inc. Prosthetic spinal disc replacement and methods thereof
US7153325B2 (en) * 2003-08-01 2006-12-26 Ultra-Kinetics, Inc. Prosthetic intervertebral disc and methods for using the same
US7785351B2 (en) 2003-08-05 2010-08-31 Flexuspine, Inc. Artificial functional spinal implant unit system and method for use
US7909869B2 (en) 2003-08-05 2011-03-22 Flexuspine, Inc. Artificial spinal unit assemblies
US7753958B2 (en) * 2003-08-05 2010-07-13 Gordon Charles R Expandable intervertebral implant
DE20313183U1 (en) * 2003-08-22 2003-10-16 Aesculap Ag & Co Kg Intervertebral implant
FR2860974B1 (en) * 2003-10-17 2006-06-16 Scient X PROSTHESIS LUMBAR DISC
JP2007519429A (en) * 2003-10-17 2007-07-19 スパインコア,インコーポレイテッド Intervertebral disc replacement trial
US9445916B2 (en) 2003-10-22 2016-09-20 Pioneer Surgical Technology, Inc. Joint arthroplasty devices having articulating members
DE502004006648D1 (en) 2003-11-18 2008-05-08 Zimmer Gmbh Intervertebral disc implant
US7670377B2 (en) 2003-11-21 2010-03-02 Kyphon Sarl Laterally insertable artifical vertebral disk replacement implant with curved spacer
US7588600B2 (en) 2003-12-10 2009-09-15 Axiomed Spine Corporation Method for replacing a damaged spinal disc
DE10361772B4 (en) * 2003-12-31 2006-10-12 Henning Kloss Intervertebral disc implant
US20050171608A1 (en) 2004-01-09 2005-08-04 Sdgi Holdings, Inc. Centrally articulating spinal device and method
US7771479B2 (en) 2004-01-09 2010-08-10 Warsaw Orthopedic, Inc. Dual articulating spinal device and method
US7235103B2 (en) * 2004-01-13 2007-06-26 Rivin Evgeny I Artificial intervertebral disc
ES2387569T3 (en) * 2004-01-13 2012-09-26 The University Of Toledo Polarimeter sensor compensated for non-invasive birefringence
US20050216092A1 (en) * 2004-03-23 2005-09-29 Sdgi Holdings, Inc. Constrained artificial implant for orthopaedic applications
US8070816B2 (en) * 2004-03-29 2011-12-06 3Hbfm, Llc Arthroplasty spinal prosthesis and insertion device
DE102004016032B4 (en) * 2004-03-30 2006-07-13 Hjs Gelenk System Gmbh Artificial intervertebral disc
DE102004028967B4 (en) * 2004-06-16 2006-05-24 Aesculap Ag & Co. Kg Intervertebral implant
US8172904B2 (en) * 2004-06-30 2012-05-08 Synergy Disc Replacement, Inc. Artificial spinal disc
BRPI0512736B1 (en) 2004-06-30 2022-04-12 Synergy Disc Replacement, Inc Core for an artificial disc to replace the natural disc of a human spine
US8894709B2 (en) * 2004-06-30 2014-11-25 Synergy Disc Replacement, Inc. Systems and methods for vertebral disc replacement
US9237958B2 (en) 2004-06-30 2016-01-19 Synergy Disc Replacement Inc. Joint prostheses
US7585326B2 (en) 2004-08-06 2009-09-08 Spinalmotion, Inc. Methods and apparatus for intervertebral disc prosthesis insertion
WO2006016384A1 (en) * 2004-08-12 2006-02-16 Sintea Biotech S.P.A. Disc prosthesis
US20060036261A1 (en) * 2004-08-13 2006-02-16 Stryker Spine Insertion guide for a spinal implant
AU2004324223A1 (en) * 2004-09-08 2006-04-27 Ignacio Abad Rico Universal intervertebral disc prosthesis
US7582115B2 (en) * 2004-09-30 2009-09-01 Helmut Weber Intervertebral prosthesis
WO2006042484A1 (en) * 2004-10-18 2006-04-27 Buettner-Janz Karin Bent sliding core as part of an intervertebral disk endoprosthesis
US8721722B2 (en) 2004-10-18 2014-05-13 Ebi, Llc Intervertebral implant and associated method
WO2006042487A1 (en) * 2004-10-18 2006-04-27 Buettner-Janz Karin Intervertebral disc endoprosthesis having cylindrical articulation surfaces
ATE524121T1 (en) 2004-11-24 2011-09-15 Abdou Samy DEVICES FOR PLACING AN ORTHOPEDIC INTERVERTEBRAL IMPLANT
DE202004019044U1 (en) * 2004-12-09 2005-02-17 Aesculap Ag & Co. Kg Implant replacing intervertebral disk, comprising two kinds of modules for individual use
CH697330B1 (en) 2004-12-28 2008-08-29 Synthes Gmbh Intervertebral prosthesis.
EP1685811A1 (en) * 2005-01-26 2006-08-02 Cervitech, Inc. Cervical intervertebral prostheses
US8083797B2 (en) 2005-02-04 2011-12-27 Spinalmotion, Inc. Intervertebral prosthetic disc with shock absorption
US20080286194A1 (en) * 2005-03-02 2008-11-20 Tom Eriksson Metal-Vanadium-Oxide Product and Producing Process
WO2006099270A2 (en) * 2005-03-14 2006-09-21 Topez Orthopedics, Inc. Ankle replacement system
MX2007012258A (en) 2005-04-06 2007-12-07 Peter Francis Mccombe Vertebral disc prosthesis.
AU2006230808B2 (en) * 2005-04-06 2012-01-19 Nuvasive, Inc. Vertebral disc prosthesis
US7942903B2 (en) 2005-04-12 2011-05-17 Moskowitz Ahmnon D Bi-directional fixating transvertebral body screws and posterior cervical and lumbar interarticulating joint calibrated stapling devices for spinal fusion
US11903849B2 (en) 2005-04-12 2024-02-20 Moskowitz Family Llc Intervertebral implant and tool assembly
EP1712207B1 (en) 2005-04-15 2012-05-09 Eden Spine Europe SA Intervertebral disc
GB0508678D0 (en) * 2005-04-28 2005-06-08 Cope Aiden Motion segment intervertebral disc prosthesis
EP1879528B1 (en) * 2005-05-02 2012-06-06 Kinetic Spine Technologies Inc. Intervertebral disc prosthesis
FR2885294B1 (en) * 2005-05-03 2008-04-04 Jerome Levieux INTERVERTEBRAL DISC PROSTHESIS
US8777959B2 (en) 2005-05-27 2014-07-15 Spinecore, Inc. Intervertebral disc and insertion methods therefor
FR2887138B1 (en) * 2005-06-15 2007-08-10 Hassan Razian DEVICE THAT CAN BE INTERCALE BETWEEN TWO CONSECUTIVE VERTEBERS
FR2887762B1 (en) * 2005-06-29 2007-10-12 Ldr Medical Soc Par Actions Si INTERVERTEBRAL DISC PROSTHESIS INSERTION INSTRUMENTATION BETWEEN VERTEBRATES
WO2007016247A2 (en) * 2005-07-28 2007-02-08 Nuvasive, Inc. Total disc replacement system and related methods
US8486145B2 (en) * 2005-09-19 2013-07-16 Premia Spine Ltd. Flexure limiter for spinal prosthesis
US8435295B2 (en) * 2005-09-26 2013-05-07 Infinity Orthopaedics Company System and method for intervertebral implant delivery and removal
US20070179611A1 (en) * 2005-12-22 2007-08-02 Dipoto Gene P Methods and devices for replacement of intervertebral discs
US7867279B2 (en) * 2006-01-23 2011-01-11 Depuy Spine, Inc. Intervertebral disc prosthesis
US20070173942A1 (en) * 2006-01-26 2007-07-26 Sdgi Holdings, Inc. Intervertebral prosthetic disc
US7811326B2 (en) 2006-01-30 2010-10-12 Warsaw Orthopedic Inc. Posterior joint replacement device
JP5224528B2 (en) * 2006-02-01 2013-07-03 シンテス ゲーエムベーハー Whole disc substitute device
US7708777B2 (en) * 2006-02-03 2010-05-04 Depuy Spine, Inc. Modular intervertebral disc replacements
WO2007095333A2 (en) * 2006-02-15 2007-08-23 Abdou M S Devices and methods for inter-vertebral orthopedic device placement
US8118869B2 (en) 2006-03-08 2012-02-21 Flexuspine, Inc. Dynamic interbody device
FR2898487B1 (en) * 2006-03-14 2008-11-14 Spineart Sa Sa PROSTHETICS OF INTERVERTEBRAL DISCS
US20070233262A1 (en) * 2006-03-31 2007-10-04 Uri Arnin Articulating spinal prosthesis
EP2007322A4 (en) 2006-04-12 2011-10-26 Spinalmotion Inc Posterior spinal device and method
US8303660B1 (en) 2006-04-22 2012-11-06 Samy Abdou Inter-vertebral disc prosthesis with variable rotational stop and methods of use
US8771355B2 (en) * 2006-05-26 2014-07-08 M. S. Abdou Inter-vertebral disc motion devices and methods of use
US7780676B2 (en) 2006-07-11 2010-08-24 Ebi, Llc Intervertebral implantation apparatus
US20080058940A1 (en) * 2006-08-22 2008-03-06 Shing Sheng Wu Artificial intervertebral disc
US8377133B2 (en) 2006-09-15 2013-02-19 Pioneer Surgical Technology, Inc. Systems and methods for sizing, inserting and securing an implant in intervertebral space
WO2008034140A2 (en) * 2006-09-15 2008-03-20 Pioneer Surgical Technology, Inc. Systems and methods for sizing, inserting and securing an implant intervertebral space
US8715350B2 (en) 2006-09-15 2014-05-06 Pioneer Surgical Technology, Inc. Systems and methods for securing an implant in intervertebral space
ATE472986T1 (en) * 2006-09-21 2010-07-15 Spinecore Inc DISC IMPLANTS AND TOOLS THEREOF
US9381098B2 (en) * 2006-09-28 2016-07-05 Spinal Kinetics, Inc. Tool systems for implanting prosthetic intervertebral discs
US20110166671A1 (en) 2006-11-07 2011-07-07 Kellar Franz W Prosthetic joint
US8308812B2 (en) 2006-11-07 2012-11-13 Biomedflex, Llc Prosthetic joint assembly and joint member therefor
US8512413B2 (en) 2006-11-07 2013-08-20 Biomedflex, Llc Prosthetic knee joint
US9005307B2 (en) 2006-11-07 2015-04-14 Biomedflex, Llc Prosthetic ball-and-socket joint
EP2081520B1 (en) 2006-11-07 2017-07-12 Biomedflex, LLC Medical implants
US8070823B2 (en) 2006-11-07 2011-12-06 Biomedflex Llc Prosthetic ball-and-socket joint
US8029574B2 (en) 2006-11-07 2011-10-04 Biomedflex Llc Prosthetic knee joint
US7914580B2 (en) * 2006-11-07 2011-03-29 Biomedflex Llc Prosthetic ball-and-socket joint
US7905919B2 (en) 2006-11-07 2011-03-15 Biomedflex Llc Prosthetic joint
FR2910267B1 (en) 2006-12-21 2009-01-23 Ldr Medical Soc Par Actions Si VERTEBRAL SUPPORT DEVICE
US8597358B2 (en) 2007-01-19 2013-12-03 Flexuspine, Inc. Dynamic interbody devices
US10335288B2 (en) 2007-03-10 2019-07-02 Spinesmith Partners, L.P. Surgical implant secured by pegs and associated methods
US9358121B2 (en) * 2007-03-10 2016-06-07 Spinesmith Partners, L.P. Artificial disc with unique articulating geometry and associated methods
US9289310B2 (en) * 2007-03-10 2016-03-22 Spinesmith Partners, L.P. Artificial disc with post and modular collar
US8864832B2 (en) 2007-06-20 2014-10-21 Hh Spinal Llc Posterior total joint replacement
CA2690540A1 (en) * 2007-06-12 2008-12-18 Kinetic Spine Technologies Inc. Artificial intervertebral disc
FR2917287B1 (en) 2007-06-15 2010-09-03 Ldr Medical INTERVERTEBRAL PROSTHESIS
US10821003B2 (en) 2007-06-20 2020-11-03 3Spline Sezc Spinal osteotomy
US8956412B2 (en) * 2007-06-22 2015-02-17 Axiomed, LLC Artificial disc
FR2918555B1 (en) 2007-07-12 2010-04-02 Ldr Medical DEVICE AND SYSTEM FOR TRANSVERSE SPINACH CONNECTION
US8486081B2 (en) 2007-07-23 2013-07-16 DePuy Synthes Products, LLC Implant insertion device and method
US20090043391A1 (en) 2007-08-09 2009-02-12 Spinalmotion, Inc. Customized Intervertebral Prosthetic Disc with Shock Absorption
US20090076608A1 (en) * 2007-09-17 2009-03-19 Vermillion Technologies, Llc Intervertebral disc replacement prosthesis
US8231676B2 (en) * 2007-09-17 2012-07-31 Pioneer Surgical Technology, Inc. Motion preserving artificial intervertebral disc device
US8523912B2 (en) 2007-10-22 2013-09-03 Flexuspine, Inc. Posterior stabilization systems with shared, dual dampener systems
US8187330B2 (en) 2007-10-22 2012-05-29 Flexuspine, Inc. Dampener system for a posterior stabilization system with a variable length elongated member
EP2209444A4 (en) * 2007-10-22 2013-03-27 Spinalmotion Inc Dynamic spacer device and method for spanning a space formed upon removal of an intervertebral disc
US8162994B2 (en) 2007-10-22 2012-04-24 Flexuspine, Inc. Posterior stabilization system with isolated, dual dampener systems
US8157844B2 (en) 2007-10-22 2012-04-17 Flexuspine, Inc. Dampener system for a posterior stabilization system with a variable length elongated member
US8182514B2 (en) 2007-10-22 2012-05-22 Flexuspine, Inc. Dampener system for a posterior stabilization system with a fixed length elongated member
US8267965B2 (en) 2007-10-22 2012-09-18 Flexuspine, Inc. Spinal stabilization systems with dynamic interbody devices
AU2009205679B2 (en) 2008-01-18 2013-12-05 Spinecore, Inc. Instruments and methods for inserting artificial intervertebral implants
WO2009094477A1 (en) * 2008-01-25 2009-07-30 Spinalmotion, Inc. Compliant implantable prosthetic joint with preloaded spring
US8267939B2 (en) 2008-02-28 2012-09-18 Stryker Spine Tool for implanting expandable intervertebral implant
US8083796B1 (en) 2008-02-29 2011-12-27 Nuvasive, Inc. Implants and methods for spinal fusion
US8764833B2 (en) 2008-03-11 2014-07-01 Spinalmotion, Inc. Artificial intervertebral disc with lower height
US9034038B2 (en) * 2008-04-11 2015-05-19 Spinalmotion, Inc. Motion limiting insert for an artificial intervertebral disc
WO2009137514A1 (en) 2008-05-05 2009-11-12 Spinalmotion, Inc. Polyaryletherketone artificial intervertebral disc
CH702239B1 (en) * 2008-06-17 2011-05-31 Kai-Uwe Lorenz An apparatus for external fixation of bone fractures.
US9220603B2 (en) * 2008-07-02 2015-12-29 Simplify Medical, Inc. Limited motion prosthetic intervertebral disc
DE102008032691A1 (en) * 2008-07-03 2010-01-07 Aesculap Ag Intervertebral disc prosthesis system
EP2299944A4 (en) * 2008-07-17 2013-07-31 Spinalmotion Inc Artificial intervertebral disc placement system
WO2010009153A1 (en) 2008-07-18 2010-01-21 Spinalmotion, Inc. Posterior prosthetic intervertebral disc
EP2303196B1 (en) * 2008-07-23 2018-10-24 Marc I. Malberg Modular nucleus pulposus prosthesis
US9364338B2 (en) 2008-07-23 2016-06-14 Resspond Spinal Systems Modular nucleus pulposus prosthesis
US8287571B2 (en) * 2008-08-12 2012-10-16 Blackstone Medical, Inc. Apparatus for stabilizing vertebral bodies
WO2010056355A2 (en) * 2008-11-14 2010-05-20 Spinal Integrity, Llc Spinal fusion device
US8545567B1 (en) 2008-11-14 2013-10-01 David Krueger Spinal fusion device
US9526628B2 (en) 2008-11-14 2016-12-27 David Krueger Spinal fusion device
ES2659063T3 (en) 2009-09-17 2018-03-13 Ldr Holding Corporation Intervertebral implant incorporating expandable bone fixation members
CN102049785A (en) * 2009-10-27 2011-05-11 任首旺 Ball connection type anti-vibration synarthrosis
US20110112644A1 (en) * 2009-11-12 2011-05-12 Zilberstein Boris Disc prosthetic implant device
US8277509B2 (en) * 2009-12-07 2012-10-02 Globus Medical, Inc. Transforaminal prosthetic spinal disc apparatus
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
WO2012094001A2 (en) * 2011-01-04 2012-07-12 Synthes Usa, Llc Intervertebral implant with multiple radii
RU2465870C1 (en) * 2011-02-28 2012-11-10 Общество с ограниченной ответственностью "Эндокарбон" Intervertebral disc prosthesis
CN103561689B (en) 2011-03-11 2016-01-20 Fbc设备有限公司 Spinal implant
US8388687B2 (en) 2011-03-25 2013-03-05 Flexuspine, Inc. Interbody device insertion systems and methods
FR2974003B1 (en) 2011-04-15 2013-12-20 Lemaire Valerie INTERVERTEBRAL DISC PROSTHESIS AND INTERVERTEBRAL PROTHETIC ASSEMBLY.
US8500749B2 (en) * 2011-04-19 2013-08-06 Prescient Surgical Designs, Llc Apparatus and method for inserting intervertebral implants
EP2729092B1 (en) 2011-08-16 2016-09-21 Stryker European Holdings I, LLC Expandable implant
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
FR2981264B1 (en) * 2011-10-17 2013-11-29 Osteal Medical Lab INTERVERTEBRAL IMPLANT GRIPPER, KIT AND MANIPULATION ASSEMBLY THEREFOR
US9017410B2 (en) 2011-10-26 2015-04-28 Globus Medical, Inc. Artificial discs
US9526627B2 (en) 2011-11-17 2016-12-27 Exactech, Inc. Expandable interbody device system and method
US9198769B2 (en) 2011-12-23 2015-12-01 Pioneer Surgical Technology, Inc. Bone anchor assembly, bone plate system, and method
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
FR2987256B1 (en) 2012-02-24 2014-08-08 Ldr Medical ANCHORING DEVICE FOR INTERVERTEBRAL IMPLANT, INTERVERTEBRAL IMPLANT AND IMPLANTATION INSTRUMENTATION
CN102727329B (en) * 2012-06-28 2015-01-07 深圳清华大学研究院 Artificial cervical intervertebral disc
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US9492288B2 (en) 2013-02-20 2016-11-15 Flexuspine, Inc. Expandable fusion device for positioning between adjacent vertebral bodies
US10342675B2 (en) 2013-03-11 2019-07-09 Stryker European Holdings I, Llc Expandable implant
KR101272233B1 (en) 2013-03-19 2013-06-11 손상규 An artificial disc for vertebra
FR3005569B1 (en) 2013-05-16 2021-09-03 Ldr Medical VERTEBRAL IMPLANT, VERTEBRAL IMPLANT FIXATION DEVICE AND IMPLANTATION INSTRUMENTATION
WO2015001197A1 (en) * 2013-07-01 2015-01-08 Biospine Implants Dynamic intervertebral stabilisation device
US9198770B2 (en) 2013-07-31 2015-12-01 Globus Medical, Inc. Artificial disc devices and related methods of use
US10398565B2 (en) 2014-04-24 2019-09-03 Choice Spine, Llc Limited profile intervertebral implant with incorporated fastening and locking mechanism
US9517144B2 (en) 2014-04-24 2016-12-13 Exactech, Inc. Limited profile intervertebral implant with incorporated fastening mechanism
FR3020756B1 (en) 2014-05-06 2022-03-11 Ldr Medical VERTEBRAL IMPLANT, VERTEBRAL IMPLANT FIXATION DEVICE AND IMPLANT INSTRUMENTATION
US9889016B2 (en) * 2014-12-04 2018-02-13 Ben Cannon Adjustable total disc replacement device
CN105105890A (en) * 2015-08-31 2015-12-02 北京市春立正达医疗器械股份有限公司 Cervical vertebrae inter-vertebral disc prosthesis
US20180353302A1 (en) * 2015-09-18 2018-12-13 The Board Of Trustees Of The University Of Illinoi Adjustable, Implantable Spinal Disc Device for Deformity Correction in Intervertebral Fusion Procedures
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
EP3463201B1 (en) 2016-05-25 2023-12-06 Genesys Spine Stand alone interbody spinal system
CN106236332B (en) * 2016-08-31 2018-07-20 北京爱康宜诚医疗器材有限公司 Intervertebral disk prosthesis
CN106580525A (en) * 2016-09-29 2017-04-26 万邦德医疗科技有限公司 Combined artificial intervertebral disc
CN106236334A (en) * 2016-09-30 2016-12-21 深圳清华大学研究院 Artificial cervical intervertebral disk prosthesis
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
RU2636852C1 (en) * 2016-12-05 2017-11-28 Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН) Intervertebral disk endoprosthesis
RU2677058C2 (en) * 2017-01-19 2019-01-15 Станислав Владимирович Басов Lumbar extensible cage
US10111755B2 (en) 2017-02-24 2018-10-30 Warsaw, Orthopedic, Inc. Expanding interbody implant and articulating inserter and methods of use
US10470894B2 (en) 2017-04-06 2019-11-12 Warsaw Orthopedic, Inc. Expanding interbody implant and articulating inserter and methods of use
CN107049563B (en) * 2017-04-19 2020-02-07 北京爱康宜诚医疗器材有限公司 Intervertebral disc prosthesis
AU2018327353A1 (en) 2017-09-08 2020-03-19 Pioneer Surgical Technology, Inc. Intervertebral implants, instruments, and methods
USD907771S1 (en) 2017-10-09 2021-01-12 Pioneer Surgical Technology, Inc. Intervertebral implant
US10736753B2 (en) * 2017-12-06 2020-08-11 Zygofix Ltd. Implant delivery system
CN108836580A (en) * 2018-07-06 2018-11-20 北京爱康宜诚医疗器材有限公司 Artificial intervertebral disk frame body
CN108969162A (en) * 2018-07-27 2018-12-11 深圳清华大学研究院 A kind of intervertebral motion retaining device
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
CN110025408B (en) * 2019-04-17 2023-04-25 福州大学 Non-fusion cervical intervertebral disc prosthesis and assembly method thereof
US11452618B2 (en) 2019-09-23 2022-09-27 Dimicron, Inc Spinal artificial disc removal tool
US11896476B2 (en) 2020-01-02 2024-02-13 Zkr Orthopedics, Inc. Patella tendon realignment implant with changeable shape
US11839554B2 (en) 2020-01-23 2023-12-12 Robert S. Bray, Jr. Method of implanting an artificial disc replacement device
US11642226B2 (en) * 2020-05-01 2023-05-09 Ensemble Orthopedics, Inc. Implantable interpositional orthopedic pain management
TWI789143B (en) * 2021-12-03 2023-01-01 財團法人工業技術研究院 Aritificial intervertebral disk

Citations (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074542A (en) * 1976-11-03 1978-02-21 Rockwell International Corporation Coupling
US4085466A (en) * 1974-11-18 1978-04-25 National Research Development Corporation Prosthetic joint device
US4309777A (en) * 1980-11-13 1982-01-12 Patil Arun A Artificial intervertebral disc
US4655778A (en) * 1985-08-12 1987-04-07 Harrington Arthritis Research Center Joint prosthesis
US4892545A (en) * 1988-07-14 1990-01-09 Ohio Medical Instrument Company, Inc. Vertebral lock
US4911718A (en) * 1988-06-10 1990-03-27 University Of Medicine & Dentistry Of N.J. Functional and biocompatible intervertebral disc spacer
US4997432A (en) * 1988-03-23 1991-03-05 Waldemar Link Gmbh & Co. Surgical instrument set
US5002576A (en) * 1988-06-06 1991-03-26 Mecron Medizinische Produkte Gmbh Intervertebral disk endoprosthesis
US5192327A (en) * 1991-03-22 1993-03-09 Brantigan John W Surgical prosthetic implant for vertebrae
US5197986A (en) * 1990-04-11 1993-03-30 Mikhail Michael W E Recessed patellar prosthesis
US5290312A (en) * 1991-09-03 1994-03-01 Alphatec Artificial vertebral body
US5306309A (en) * 1992-05-04 1994-04-26 Calcitek, Inc. Spinal disk implant and implantation kit
US5397364A (en) * 1993-10-12 1995-03-14 Danek Medical, Inc. Anterior interbody fusion device
US5401269A (en) * 1992-03-13 1995-03-28 Waldemar Link Gmbh & Co. Intervertebral disc endoprosthesis
US5507816A (en) * 1991-12-04 1996-04-16 Customflex Limited Spinal vertebrae implants
US5609636A (en) * 1994-05-23 1997-03-11 Spine-Tech, Inc. Spinal implant
US5722977A (en) * 1996-01-24 1998-03-03 Danek Medical, Inc. Method and means for anterior lumbar exact cut with quadrilateral osteotome and precision guide/spacer
US5741253A (en) * 1988-06-13 1998-04-21 Michelson; Gary Karlin Method for inserting spinal implants
US5865848A (en) * 1997-09-12 1999-02-02 Artifex, Ltd. Dynamic intervertebral spacer and method of use
US5888224A (en) * 1993-09-21 1999-03-30 Synthesis (U.S.A.) Implant for intervertebral space
US5888226A (en) * 1997-11-12 1999-03-30 Rogozinski; Chaim Intervertebral prosthetic disc
US5893889A (en) * 1997-06-20 1999-04-13 Harrington; Michael Artificial disc
US5895428A (en) * 1996-11-01 1999-04-20 Berry; Don Load bearing spinal joint implant
US6010502A (en) * 1995-12-19 2000-01-04 Spine-Tech, Inc. Method and apparatus for conjoining bone bodies
US6033438A (en) * 1997-06-03 2000-03-07 Sdgi Holdings, Inc. Open intervertebral spacer
US6039763A (en) * 1998-10-27 2000-03-21 Disc Replacement Technologies, Inc. Articulating spinal disc prosthesis
US6045552A (en) * 1998-03-18 2000-04-04 St. Francis Medical Technologies, Inc. Spine fixation plate system
US6179874B1 (en) * 1998-04-23 2001-01-30 Cauthen Research Group, Inc. Articulating spinal implant
US6193757B1 (en) * 1998-10-29 2001-02-27 Sdgi Holdings, Inc. Expandable intervertebral spacers
US6206922B1 (en) * 1995-03-27 2001-03-27 Sdgi Holdings, Inc. Methods and instruments for interbody fusion
US6210412B1 (en) * 1988-06-13 2001-04-03 Gary Karlin Michelson Method for inserting frusto-conical interbody spinal fusion implants
US6221077B1 (en) * 2000-02-28 2001-04-24 Beere Precision Medical Instruments, Inc. Human spine fixation template and method of making same
US6344057B1 (en) * 1994-11-22 2002-02-05 Sdgi Holdings, Inc. Adjustable vertebral body replacement
US6364880B1 (en) * 1994-03-28 2002-04-02 Gary Karlin Michelson Spinal implant with bone screws
US6368350B1 (en) * 1999-03-11 2002-04-09 Sulzer Spine-Tech Inc. Intervertebral disc prosthesis and method
US6371988B1 (en) * 1996-10-23 2002-04-16 Sdgi Holdings, Inc. Bone grafts
US6375655B1 (en) * 1995-03-27 2002-04-23 Sdgi Holdings, Inc. Interbody fusion device and method for restoration of normal spinal anatomy
US6506216B1 (en) * 1998-05-13 2003-01-14 Depuy Products, Inc. Tibial tray with adjustable keel
US6514260B1 (en) * 2000-03-15 2003-02-04 Sdgi Holdings, Inc. Methods and instruments for laparoscopic spinal surgery
US20030028249A1 (en) * 1999-10-18 2003-02-06 Stryker Spine Intervertebral implant with toothed faces
US6517580B1 (en) * 2000-03-03 2003-02-11 Scient'x Societe A Responsabilite Limited Disk prosthesis for cervical vertebrae
US6520996B1 (en) * 1999-06-04 2003-02-18 Depuy Acromed, Incorporated Orthopedic implant
US6520967B1 (en) * 1999-10-20 2003-02-18 Cauthen Research Group, Inc. Spinal implant insertion instrument for spinal interbody prostheses
US6524312B2 (en) * 2000-01-06 2003-02-25 Spinal Concepts, Inc. Instrument and method for implanting an interbody fusion device
US6527804B1 (en) * 1998-12-11 2003-03-04 Dimso (Distribution Medicale Du Sud-Quest) Intervertebral disk prosthesis
US6527806B2 (en) * 2001-07-16 2003-03-04 Third Millennium Engineering, Llc Intervertebral spacer device having a spiral wave washer force restoring element
US20030055503A1 (en) * 2001-09-19 2003-03-20 O'neil Michael J. Alignment verification device and method of use
US6540785B1 (en) * 1998-10-22 2003-04-01 Sdgi Holdings, Inc. Artificial intervertebral joint permitting translational and rotational motion
US20040002761A1 (en) * 2002-06-27 2004-01-01 Christopher Rogers Intervertebral disc having translation
US20040002758A1 (en) * 2002-03-11 2004-01-01 Landry Michael E. Spinal implant including a compressible connector
US6673113B2 (en) * 2001-10-18 2004-01-06 Spinecore, Inc. Intervertebral spacer device having arch shaped spring elements
US20040010316A1 (en) * 2002-03-30 2004-01-15 Lytton William Intervertebral device and method of use
US6679915B1 (en) * 1998-04-23 2004-01-20 Sdgi Holdings, Inc. Articulating spinal implant
US6682562B2 (en) * 2000-03-10 2004-01-27 Eurosurgical Sa Intervertebral disc prosthesis
US20040034423A1 (en) * 2002-04-25 2004-02-19 Matthew Lyons Artificial intervertebral disc
US6706068B2 (en) * 2002-04-23 2004-03-16 Bret A. Ferree Artificial disc replacements with natural kinematics
US6709439B2 (en) * 2001-10-30 2004-03-23 Depuy Spine, Inc. Slaphammer tool
US6719794B2 (en) * 2001-05-03 2004-04-13 Synthes (U.S.A.) Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US20040073311A1 (en) * 2002-04-23 2004-04-15 Ferree Bret A. Two-component artificial disc replacements
US6723127B2 (en) * 2001-07-16 2004-04-20 Spine Core, Inc. Artificial intervertebral disc having a wave washer force restoring element
US20040083000A1 (en) * 2002-03-12 2004-04-29 Waldemar Link Gmbh & Co. Cervical intervertebral prosthesis
US20050010215A1 (en) * 2001-10-18 2005-01-13 Joel Delecrin Plate for osteosynthesis device and preassembling method
US20050015094A1 (en) * 2003-07-15 2005-01-20 Cervitech, Inc. Arrangement of a cervical prosthesis and insertion instrument
US20050021042A1 (en) * 2003-07-21 2005-01-27 Theirry Marnay Instruments and method for inserting an intervertebral implant
US20050027359A1 (en) * 2003-07-31 2005-02-03 Mashburn M. Laine Spinal interbody fusion device and method
US20050027363A1 (en) * 1999-05-17 2005-02-03 Gordon Jeffrey D. Intervertebral disc replacement prosthesis
US20050033438A1 (en) * 2003-07-08 2005-02-10 Robert Schultz Intervertebral implant
US20050033305A1 (en) * 2003-07-08 2005-02-10 Robert Schultz Surgical instrument for handling an implant
US20050033437A1 (en) * 2002-05-23 2005-02-10 Pioneer Laboratories, Inc. Artificial disc device
US20050043804A1 (en) * 1999-05-17 2005-02-24 Vanderbilt University Intervertebral disc replacement prosthesis
US20050043800A1 (en) * 2003-07-31 2005-02-24 Paul David C. Prosthetic spinal disc replacement
US20050043798A1 (en) * 2002-01-17 2005-02-24 Concept Matrix, Llc Intervertebral disk prosthesis methods of use
US20050060034A1 (en) * 2003-09-15 2005-03-17 Sdgi Holdings, Inc. Revisable prosthetic device
US20050065611A1 (en) * 2001-11-06 2005-03-24 Jean Huppert Osseous achoring device for a prosthesis
US20050071009A1 (en) * 2000-09-08 2005-03-31 Nabil L. Muhanna, M.D. System and methods for inserting a vertebral spacer
US6984245B2 (en) * 2000-02-22 2006-01-10 Sdgi Holdings, Inc. Anterior impacted bone graft and driver instruments
US6986789B2 (en) * 2003-08-22 2006-01-17 Aesculap Ag & Co. Kg Intervertebral implant
US20060015183A1 (en) * 2004-07-09 2006-01-19 Pioneer Laboratories, Inc. Skeletal reconstruction device
US20060020341A1 (en) * 2004-06-16 2006-01-26 Susanne Schneid Intervertebral implant
US6994727B2 (en) * 2002-12-17 2006-02-07 Amedica Corporation Total disc implant
US20060030860A1 (en) * 2004-07-23 2006-02-09 Sdgi Holdings, Inc. Artificial disc inserter
US20060036326A1 (en) * 2002-09-02 2006-02-16 Mathys Medizinaltechnik Ag Intervertebral implant comprising a three-part articulation
US7001432B2 (en) * 2002-03-12 2006-02-21 Cervitech, Inc. Intervertebral prosthesis
US20060041313A1 (en) * 2004-08-19 2006-02-23 Sdgi Holdings, Inc. Intervertebral disc system
US20060041314A1 (en) * 2004-08-20 2006-02-23 Thierry Millard Artificial disc prosthesis
US20060069441A1 (en) * 2004-09-29 2006-03-30 Zucherman James F Posterior approach implant method for assembly of multi-piece artificial spinal disk replacement device in situ
US20070016299A1 (en) * 2002-01-17 2007-01-18 Concept Matrix, Llc Vertebral Defect Device
US20070016217A1 (en) * 2005-06-29 2007-01-18 Ldr Medical Instrumentation and methods for inserting an intervertebral disc prosthesis
US7169153B2 (en) * 2002-06-10 2007-01-30 Depuy Spine Surgical instrument for inserting intervertebral prosthesis
US7175662B2 (en) * 2004-04-01 2007-02-13 Cervitech, Inc. Cervical intervertebral prosthesis
US20070055378A1 (en) * 2003-07-31 2007-03-08 Ankney David W Transforaminal prosthetic spinal disc replacement and methods thereof
US20070073403A1 (en) * 2005-09-22 2007-03-29 Alan Lombardo Artificial intervertebral disc
US20070073404A1 (en) * 2005-09-23 2007-03-29 Ralph Rashbaum Intervertebral disc prosthesis

Family Cites Families (516)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US566360A (en) 1896-08-25 Adjustable support
US1436573A (en) 1921-07-28 1922-11-21 Choppinet Joseph Joint
US2836442A (en) 1955-07-19 1958-05-27 Milton A Moskovitz Dust seals for ball joints
US3325197A (en) 1964-06-12 1967-06-13 Moog Industries Inc Ball joint
US3374786A (en) 1964-12-15 1968-03-26 George R. Callender Jr. Fractured bone setting fastener assembly
US3486505A (en) 1967-05-22 1969-12-30 Gordon M Morrison Orthopedic surgical instrument
CA992255A (en) * 1971-01-25 1976-07-06 Cutter Laboratories Prosthesis for spinal repair
US3791380A (en) 1971-12-13 1974-02-12 G Dawidowski Method and apparatus of immobilizing a fractured femur
DE2263842A1 (en) 1972-12-28 1974-07-04 Hoffmann Daimler Siegfried Dr DISC PROTHESIS
US3857642A (en) 1973-02-26 1974-12-31 Ingersoll Rand Co Flexible or universal coupling means
US3892232A (en) 1973-09-24 1975-07-01 Alonzo J Neufeld Method and apparatus for performing percutaneous bone surgery
GB1509194A (en) * 1974-04-22 1978-05-04 Nat Res Dev Endoprosthetic devices
US4009712A (en) 1975-08-07 1977-03-01 The Sampson Corporation Fluted hip nail implant system for orthopaedic surgery
CH612341A5 (en) 1976-03-16 1979-07-31 Max Bernhard Ulrich
FR2372622A1 (en) 1976-12-03 1978-06-30 Fassio Bernard Intervertebral prosthesis for surgical use - has flat semicircular disc with hemispherical boss each side to support between vertebrae
GB1565178A (en) 1977-02-24 1980-04-16 Interfix Ltd Bone screw
CH624573A5 (en) 1978-02-01 1981-08-14 Sulzer Ag Intervertebral prosthesis
US4237875A (en) 1979-02-23 1980-12-09 Towmotor Corporation Dynamic intramedullary compression nailing
CH640131A5 (en) * 1979-10-03 1983-12-30 Sulzer Ag Complete intervertebral prosthesis
CA1146301A (en) 1980-06-13 1983-05-17 J. David Kuntz Intervertebral disc prosthesis
US4379451A (en) 1980-11-04 1983-04-12 Getscher Philip E Intramedullary hip pin and cortical plate
US4494535A (en) 1981-06-24 1985-01-22 Haig Armen C Hip nail
US4409974A (en) 1981-06-29 1983-10-18 Freedland Jeffrey A Bone-fixating surgical implant device
FR2519857A1 (en) 1982-01-19 1983-07-22 Butel Jean DEVICE FOR OSTEOSYNTHESIS OF THE FRACTURES OF THE END OF THE FEMUR
US4432358A (en) 1982-01-22 1984-02-21 Fixel Irving E Compression hip screw apparatus
US4519100A (en) 1982-09-30 1985-05-28 Orthopedic Equipment Co. Inc. Distal locking intramedullary nail
US4561432A (en) 1983-09-15 1985-12-31 Floyd A. Coard, M.D. Fractured femur fixation system
CA1227902A (en) 1984-04-02 1987-10-13 Raymond G. Tronzo Fenestrated hip screw and method of augmented internal fixation
US4657001A (en) 1984-07-25 1987-04-14 Fixel Irving E Antirotational hip screw
EP0176728B1 (en) 1984-09-04 1989-07-26 Humboldt-Universität zu Berlin Intervertebral-disc prosthesis
DD248018A3 (en) * 1984-09-04 1987-07-29 Univ Berlin Humboldt intervertebral disc prosthesis
DD239524B3 (en) * 1985-07-19 1993-02-18 Buettner Janz Karin intervertebral disc prosthesis
US4612920A (en) 1984-11-06 1986-09-23 Zimmer, Inc. Compression hip screw
US4721103A (en) 1985-01-31 1988-01-26 Yosef Freedland Orthopedic device
US4632101A (en) 1985-01-31 1986-12-30 Yosef Freedland Orthopedic fastener
US4991432A (en) * 1985-05-02 1991-02-12 Measurex Sensor and system for continuous determination of sheet characteristics
US4621629A (en) 1985-08-12 1986-11-11 Harrington Arthritis Research Center Compression hip screw
US4973333A (en) 1985-09-20 1990-11-27 Richards Medical Company Resorbable compressing screw and method
DE3534747A1 (en) 1985-09-28 1987-04-09 Hasselbach Christoph Von THIGH NECK IMPLANT
FR2591885B1 (en) 1985-12-24 1990-06-15 Mai Christian SELF-LOCKING PROSTHESIS, METHODS OF MAKING AND IMPLEMENTING SAME
US4776330A (en) 1986-06-23 1988-10-11 Pfizer Hospital Products Group, Inc. Modular femoral fixation system
GB8620937D0 (en) 1986-08-29 1986-10-08 Shepperd J A N Spinal implant
US4787378A (en) 1986-09-08 1988-11-29 Sodhi Jitendra S Self-retaining nail for fracture of neck of femur
US4969887A (en) 1986-09-08 1990-11-13 Sodhi Jitendra S Self-retaining nail kit for repairing a fractured neck of femur
US4759352A (en) 1986-11-10 1988-07-26 Zimmer, Inc. Instrument for inserting a locking pin
SU1651778A3 (en) 1986-12-19 1991-05-23 Хута Баильдон, Пшедсембиорство Паньствове (Инопредприятие) Appliance for ostheosynthesis of fractures of the femoral neck
CA1283501C (en) * 1987-02-12 1991-04-30 Thomas P. Hedman Artificial spinal disc
US4714469A (en) 1987-02-26 1987-12-22 Pfizer Hospital Products Group, Inc. Spinal implant
US4787908A (en) 1987-04-30 1988-11-29 Queen's University At Kingston Metatarsal-phalangeal replacement joint
US4898156A (en) 1987-05-18 1990-02-06 Mitek Surgical Products, Inc. Suture anchor
CH672589A5 (en) 1987-07-09 1989-12-15 Sulzer Ag
CH672588A5 (en) 1987-07-09 1989-12-15 Sulzer Ag
GB8725921D0 (en) 1987-11-05 1987-12-09 Precision Proc Textiles Ltd Treatment of wool
JPH01136655A (en) 1987-11-24 1989-05-29 Asahi Optical Co Ltd Movable type pyramid spacer
US4874389A (en) 1987-12-07 1989-10-17 Downey Ernest L Replacement disc
US5176681A (en) 1987-12-14 1993-01-05 Howmedica International Inc. Intramedullary intertrochanteric fracture fixation appliance and fitting device
US4968315A (en) 1987-12-15 1990-11-06 Mitek Surgical Products, Inc. Suture anchor and suture anchor installation tool
FR2632516B1 (en) 1988-06-10 1991-02-01 Guy Esteve MONOCOMPARTIMENTAL KNEE PROSTHESIS COMPRISING A TIBIAL TRAY WITH A METAL SEAT
AU7139994A (en) 1988-06-13 1995-01-03 Karlin Technology, Inc. Apparatus and method of inserting spinal implants
US5593409A (en) * 1988-06-13 1997-01-14 Sofamor Danek Group, Inc. Interbody spinal fusion implants
US5484437A (en) 1988-06-13 1996-01-16 Michelson; Gary K. Apparatus and method of inserting spinal implants
US5772661A (en) * 1988-06-13 1998-06-30 Michelson; Gary Karlin Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
US6770074B2 (en) 1988-06-13 2004-08-03 Gary Karlin Michelson Apparatus for use in inserting spinal implants
US7452359B1 (en) 1988-06-13 2008-11-18 Warsaw Orthopedic, Inc. Apparatus for inserting spinal implants
CA1333209C (en) 1988-06-28 1994-11-29 Gary Karlin Michelson Artificial spinal fusion implants
US5609635A (en) 1988-06-28 1997-03-11 Michelson; Gary K. Lordotic interbody spinal fusion implants
US5545229A (en) 1988-08-18 1996-08-13 University Of Medicine And Dentistry Of Nj Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
AU624627B2 (en) 1988-08-18 1992-06-18 Johnson & Johnson Orthopaedics, Inc. Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
US4973332A (en) 1988-09-12 1990-11-27 Hospital For Joint Diseases Attachment for femur sliding screw plate
DE8900121U1 (en) 1989-01-04 1990-02-15 Mecron Medizinische Produkte Gmbh, 1000 Berlin, De
CA1318469C (en) 1989-02-15 1993-06-01 Acromed Corporation Artificial disc
DE3911610A1 (en) 1989-04-08 1990-10-18 Bosch Gmbh Robert ARTIFICIAL DISC
US5098433A (en) 1989-04-12 1992-03-24 Yosef Freedland Winged compression bolt orthopedic fastener
SE466937B (en) 1989-04-25 1992-05-04 Branemark Per Ingvar ANCHORING DEVICE FOR BONE WOVEN APPLICABLE PROTESTES, SPEC LED MECHANISMS
SE466936B (en) 1989-04-25 1992-05-04 Branemark Per Ingvar ANCHORING ELEMENT FOR PROCESSING
US4955916A (en) 1989-05-01 1990-09-11 Techmedica, Inc. Thumb joint prosthesis
US4946468A (en) 1989-06-06 1990-08-07 Mitek Surgical Products, Inc. Suture anchor and suture anchor installation tool
US5002550A (en) 1989-06-06 1991-03-26 Mitek Surgical Products, Inc. Suture anchor installation tool
US5895427A (en) 1989-07-06 1999-04-20 Sulzer Spine-Tech Inc. Method for spinal fixation
US4932975A (en) * 1989-10-16 1990-06-12 Vanderbilt University Vertebral prosthesis
DE8912648U1 (en) 1989-10-23 1990-11-22 Mecron Medizinische Produkte Gmbh, 1000 Berlin, De
SE8904036L (en) 1989-11-29 1991-05-30 Volvo Ab LED PROTES, IN PARTICULAR, FOOT LEADER
US5032125A (en) 1990-02-06 1991-07-16 Smith & Nephew Richards Inc. Intramedullary hip screw
FR2659226B1 (en) * 1990-03-07 1992-05-29 Jbs Sa PROSTHESIS FOR INTERVERTEBRAL DISCS AND ITS IMPLEMENTATION INSTRUMENTS.
CH681595A5 (en) 1990-03-19 1993-04-30 Synthes Ag
US5057103A (en) 1990-05-01 1991-10-15 Davis Emsley A Compressive intramedullary nail
US5342394A (en) 1990-05-16 1994-08-30 Olympus Optical Co., Ltd. Apparatus for blocking a vein branch and method of blocking a vein branch
US5041116A (en) 1990-05-21 1991-08-20 Wilson James T Compression hip screw system
CH682300A5 (en) 1990-12-17 1993-08-31 Synthes Ag
US5123926A (en) * 1991-02-22 1992-06-23 Madhavan Pisharodi Artificial spinal prosthesis
US5108442A (en) 1991-05-09 1992-04-28 Boehringer Mannheim Corporation Prosthetic implant locking assembly
US5129901A (en) 1991-06-10 1992-07-14 Decoste Vern X Cannulated orthopedic screw
FR2678823B1 (en) 1991-07-11 1995-07-07 Legrand Jean Jacques DEVICE FOR REINFORCING A LIGAMENT DURING A LIGAMENT PLASTY.
US5306307A (en) 1991-07-22 1994-04-26 Calcitek, Inc. Spinal disk implant
US5242448A (en) 1991-08-01 1993-09-07 Pettine Kenneth A Bone probe
US5207679A (en) 1991-09-26 1993-05-04 Mitek Surgical Products, Inc. Suture anchor and installation tool
ATE176998T1 (en) 1991-12-03 1999-03-15 Boston Scient Ireland Ltd INSTRUMENT FOR PASSING A SEWING THREAD
US5356410A (en) 1991-12-13 1994-10-18 Dietmar Pennig Adjuvant for osteosynthesis in the case of pertrochanteric fracture of the neck of the femur
FR2685633B1 (en) 1991-12-27 1998-02-27 Tornier Sa MODULAR HUMER PROSTHESIS.
US5425773A (en) * 1992-01-06 1995-06-20 Danek Medical, Inc. Intervertebral disk arthroplasty device
US5258031A (en) 1992-01-06 1993-11-02 Danek Medical Intervertebral disk arthroplasty
US5217486A (en) 1992-02-18 1993-06-08 Mitek Surgical Products, Inc. Suture anchor and installation tool
DE4208115A1 (en) * 1992-03-13 1993-09-16 Link Waldemar Gmbh Co DISC ENDOPROTHESIS
DE59206917D1 (en) 1992-04-21 1996-09-19 Sulzer Medizinaltechnik Ag Artificial intervertebral disc body
FR2694882B1 (en) 1992-08-24 1994-10-21 Sofamor Intervertebral disc prosthesis.
FR2695026B1 (en) 1992-08-25 1994-10-28 Alexandre Worcel Device for maintaining compression of a fractured bone.
US5246458A (en) 1992-10-07 1993-09-21 Graham Donald V Artificial disk
US5417699A (en) 1992-12-10 1995-05-23 Perclose Incorporated Device and method for the percutaneous suturing of a vascular puncture site
JPH06178787A (en) * 1992-12-14 1994-06-28 Shima Yumiko Centrum spacer with joint, intervertebral cavity measuring device and centrum spacer pattern
US5676701A (en) 1993-01-14 1997-10-14 Smith & Nephew, Inc. Low wear artificial spinal disc
US5702472A (en) 1996-12-26 1997-12-30 Huebner; Randall J. Phalangeal finger joint prosthesis and method
DE69428143T2 (en) 1993-02-09 2002-05-29 Depuy Acromed Inc disc
AU683243B2 (en) 1993-02-10 1997-11-06 Zimmer Spine, Inc. Spinal stabilization surgical tool set
US5324292A (en) 1993-02-10 1994-06-28 Zimmer, Inc. Fracture fixation assembly with selectively removable protrusion
US5372599A (en) 1993-03-12 1994-12-13 Mitek Surgical Products, Inc. Surgical anchor and method for deploying the same
US5356413A (en) 1993-03-12 1994-10-18 Mitek Surgical Products, Inc. Surgical anchor and method for deploying the same
IL105183A (en) 1993-03-28 1996-07-23 Yehiel Gotfried Surgical device for connection of fractured bones
US5505735A (en) 1993-06-10 1996-04-09 Mitek Surgical Products, Inc. Surgical anchor and method for using the same
FR2707480B1 (en) 1993-06-28 1995-10-20 Bisserie Michel Intervertebral disc prosthesis.
DE4423826B4 (en) * 1993-07-07 2007-01-04 Pentax Corp. Ceramic vertebral prosthesis
EP0636346A1 (en) 1993-07-23 1995-02-01 Massimo Santangelo Device for preventive support of the femur
CA2124651C (en) 1993-08-20 2004-09-28 David T. Green Apparatus and method for applying and adjusting an anchoring device
US5507754A (en) 1993-08-20 1996-04-16 United States Surgical Corporation Apparatus and method for applying and adjusting an anchoring device
DE4328690B4 (en) 1993-08-26 2006-08-17 SDGI Holdings, Inc., Wilmington Intervertebral implant for vertebral body blocking and implantation instrument for positioning the intervertebral implant
FR2709949B1 (en) 1993-09-14 1995-10-13 Commissariat Energie Atomique Intervertebral disc prosthesis.
FR2711505B1 (en) 1993-10-25 1995-12-29 Tornier Sa Device for synthesizing fractures of the upper end of the femur.
US5417692A (en) 1994-01-04 1995-05-23 Goble; E. Marlowe Bone fixation and fusion system
FR2715293B1 (en) 1994-01-26 1996-03-22 Biomat Vertebral interbody fusion cage.
US5417712A (en) 1994-02-17 1995-05-23 Mitek Surgical Products, Inc. Bone anchor
FR2716619B1 (en) 1994-02-25 1998-04-24 Lepine Groupe Knee prosthesis.
US5458601A (en) 1994-03-28 1995-10-17 Medical University Of South Carolina Adjustable ligament anchor
FR2718635B1 (en) 1994-04-15 1996-07-05 Axcyl Medical Cervical prosthesis.
US5489210A (en) 1994-05-13 1996-02-06 Hanosh; Frederick N. Expanding dental implant and method for its use
US5571189A (en) 1994-05-20 1996-11-05 Kuslich; Stephen D. Expandable fabric implant for stabilizing the spinal motion segment
US5531792A (en) 1994-06-14 1996-07-02 Huene; Donald R. Bone plug fixation assembly, expansible plug assembly therefor, and method of fixation
US5478342A (en) 1994-06-30 1995-12-26 Spinetech, Inc. Reversible bone screw lock
US5980522A (en) 1994-07-22 1999-11-09 Koros; Tibor Expandable spinal implants
DE9413471U1 (en) 1994-08-20 1995-12-21 Schaefer Micomed Gmbh Ventral intervertebral implant
FR2723841B1 (en) 1994-08-23 1998-11-06 Fabien Gauchet INTERVERTEBRAL DISK PROSTHESIS.
US5472452A (en) 1994-08-30 1995-12-05 Linvatec Corporation Rectilinear anchor for soft tissue fixation
FR2724108B1 (en) 1994-09-02 1997-01-17 Jbs Sa JOINT PROSTHESIS
US5522845A (en) 1994-09-27 1996-06-04 Mitek Surgical Products, Inc. Bone anchor and bone anchor installation
US5643321A (en) 1994-11-10 1997-07-01 Innovasive Devices Suture anchor assembly and methods
US5674296A (en) 1994-11-14 1997-10-07 Spinal Dynamics Corporation Human spinal disc prosthesis
FR2728159B1 (en) 1994-12-16 1997-06-27 Tornier Sa ELASTIC DISC PROSTHESIS
US5766252A (en) * 1995-01-24 1998-06-16 Osteonics Corp. Interbody spinal prosthetic implant and method
FR2730159B1 (en) * 1995-02-06 1997-04-25 Teule Jean Germain PROSTHESIS FOR INTERVERTEBRAL DISC
ES2287636T3 (en) 1995-03-27 2007-12-16 Warsaw Orthopedic, Inc. IMPLANT FOR VERTEBRAL FUSION.
US6245072B1 (en) * 1995-03-27 2001-06-12 Sdgi Holdings, Inc. Methods and instruments for interbody fusion
DE59508063D1 (en) 1995-04-20 2000-04-27 Sulzer Orthopaedie Ag Baar Tibial platform to a knee prosthesis
US5578035A (en) 1995-05-16 1996-11-26 Lin; Chih-I Expandable bone marrow cavity fixation device
US5702449A (en) 1995-06-07 1997-12-30 Danek Medical, Inc. Reinforced porous spinal implants
FR2737656B1 (en) * 1995-08-09 1997-10-17 Jbs Sa IMPACTOR DEVICE FOR PLACING A PROSTHESIS FOR INTERVERTEBRAL DISCS
DE19529605C2 (en) 1995-08-11 1997-10-09 Bernhard Zientek Intervertebral implant
US6423095B1 (en) 1995-10-16 2002-07-23 Sdgi Holdings, Inc. Intervertebral spacers
US5766253A (en) 1996-01-16 1998-06-16 Surgical Dynamics, Inc. Spinal fusion device
US5800550A (en) 1996-03-13 1998-09-01 Sertich; Mario M. Interbody fusion cage
US5683465A (en) 1996-03-18 1997-11-04 Shinn; Gary Lee Artificial intervertebral disk prosthesis
CN2266442Y (en) * 1996-07-05 1997-11-05 李旭亮 Folding modle
FR2753368B1 (en) 1996-09-13 1999-01-08 Chauvin Jean Luc EXPANSIONAL OSTEOSYNTHESIS CAGE
US5782832A (en) * 1996-10-01 1998-07-21 Surgical Dynamics, Inc. Spinal fusion implant and method of insertion thereof
US5968098A (en) 1996-10-22 1999-10-19 Surgical Dynamics, Inc. Apparatus for fusing adjacent bone structures
US6063088A (en) 1997-03-24 2000-05-16 United States Surgical Corporation Method and instrumentation for implant insertion
US5827328A (en) 1996-11-22 1998-10-27 Buttermann; Glenn R. Intervertebral prosthetic device
US6712819B2 (en) 1998-10-20 2004-03-30 St. Francis Medical Technologies, Inc. Mating insertion instruments for spinal implants and methods of use
DE59707850D1 (en) 1997-01-10 2002-09-05 Sulzer Orthopaedie Ag Baar Tibial platform for an artificial knee joint
US6306170B2 (en) 1997-04-25 2001-10-23 Tegementa, L.L.C. Threaded fusion cage anchoring device and method
US6641614B1 (en) 1997-05-01 2003-11-04 Spinal Concepts, Inc. Multi-variable-height fusion device
GB9713330D0 (en) 1997-06-25 1997-08-27 Bridport Gundry Plc Surgical implant
CA2298652A1 (en) * 1997-08-04 1999-02-11 Dennis P. Gordon Multiple axis intervertebral prosthesis
US6146421A (en) * 1997-08-04 2000-11-14 Gordon, Maya, Roberts And Thomas, Number 1, Llc Multiple axis intervertebral prosthesis
FR2767675B1 (en) 1997-08-26 1999-12-03 Materiel Orthopedique En Abreg INTERSOMATIC IMPLANT AND ANCILLARY OF PREPARATION SUITABLE FOR ALLOWING ITS POSITION
WO1999009914A1 (en) 1997-08-27 1999-03-04 University Of Florida Tissue Bank, Inc. Cortical bone cervical smith-robinson fusion implant
FR2768613B1 (en) 1997-09-23 1999-12-17 Tornier Sa KNEE PROSTHESIS WITH ROTATABLE PLATFORM
US5824094A (en) 1997-10-17 1998-10-20 Acromed Corporation Spinal disc
US5899941A (en) * 1997-12-09 1999-05-04 Chubu Bearing Kabushiki Kaisha Artificial intervertebral disk
FR2772594B1 (en) 1997-12-19 2000-05-05 Henry Graf REAR PARTIAL DISCAL PROSTHESIS
DE59801514D1 (en) * 1998-03-13 2001-10-25 Link Waldemar Gmbh Co Set of intervertebral disc prostheses
WO1999049818A1 (en) 1998-03-30 1999-10-07 Marchosky J Alexander Prosthetic system
US6019792A (en) 1998-04-23 2000-02-01 Cauthen Research Group, Inc. Articulating spinal implant
DE19818143A1 (en) 1998-04-23 1999-10-28 Medinorm Ag Device for connecting vertebrae of the spine
US6241769B1 (en) 1998-05-06 2001-06-05 Cortek, Inc. Implant for spinal fusion
US6800093B2 (en) 1998-05-06 2004-10-05 Cortek, Inc. Device for spinal fusion
CN2333369Y (en) * 1998-05-29 1999-08-18 中山医科大学孙逸仙纪念医院 Artificial lumbar intervertebral disc
US6296664B1 (en) 1998-06-17 2001-10-02 Surgical Dynamics, Inc. Artificial intervertebral disc
US6136031A (en) 1998-06-17 2000-10-24 Surgical Dynamics, Inc. Artificial intervertebral disc
WO1999065412A1 (en) 1998-06-18 1999-12-23 Pioneer Laboratories, Inc. Spinal fixation system
US6126692A (en) 1998-06-25 2000-10-03 New York Society For The Relief Of The Ruptured And Crippled Maintaining The Hospital For Special Surgery Retaining mechanism for a modular tibial component of a knee prosthesis
US6231609B1 (en) * 1998-07-09 2001-05-15 Hamid M. Mehdizadeh Disc replacement prosthesis
US6063121A (en) * 1998-07-29 2000-05-16 Xavier; Ravi Vertebral body prosthesis
DE29814174U1 (en) 1998-08-07 1999-12-16 Howmedica Gmbh Instruments for inserting an implant into the human spine
US6099531A (en) 1998-08-20 2000-08-08 Bonutti; Peter M. Changing relationship between bones
FR2782632B1 (en) 1998-08-28 2000-12-29 Materiel Orthopedique En Abreg EXPANSIBLE INTERSOMATIC FUSION CAGE
US6749635B1 (en) * 1998-09-04 2004-06-15 Sdgi Holdings, Inc. Peanut spectacle multi discoid thoraco-lumbar disc prosthesis
US6500208B1 (en) 1998-10-16 2002-12-31 Biomet, Inc. Nonmodular joint prosthesis convertible in vivo to a modular prosthesis
JP4230666B2 (en) * 1998-10-20 2009-02-25 ジンテーズ ゲゼルシャフト ミト ベシュレンクテル ハフツング Strain adjustment fixture for vertebral fixation surgery
US6174311B1 (en) 1998-10-28 2001-01-16 Sdgi Holdings, Inc. Interbody fusion grafts and instrumentation
FR2787019B1 (en) 1998-12-11 2001-03-02 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH IMPROVED MECHANICAL BEHAVIOR
FR2787017B1 (en) * 1998-12-11 2001-04-27 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH IMPROVED MECHANICAL BEHAVIOR
FR2787015B1 (en) * 1998-12-11 2001-04-27 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH COMPRESSIBLE BODY
US6102950A (en) 1999-01-19 2000-08-15 Vaccaro; Alex Intervertebral body fusion device
EP1217961B1 (en) 1999-01-25 2010-04-21 Warsaw Orthopedic, Inc. Instrument for creating an intervertebral space for receiving an implant
US6146422A (en) 1999-01-25 2000-11-14 Lawson; Kevin Jon Prosthetic nucleus replacement for surgical reconstruction of intervertebral discs and treatment method
DE29901611U1 (en) * 1999-01-30 1999-04-22 Aesculap Ag & Co Kg Surgical instrument for inserting intervertebral implants
US6113638A (en) 1999-02-26 2000-09-05 Williams; Lytton A. Method and apparatus for intervertebral implant anchorage
US6267763B1 (en) 1999-03-31 2001-07-31 Surgical Dynamics, Inc. Method and apparatus for spinal implant insertion
AU4238700A (en) * 1999-04-16 2000-11-02 Nuvasive, Inc. Segmented linked intervertebral implant systems
CA2363562C (en) 1999-05-05 2010-08-03 Gary Karlin Michelson Nested interbody spinal fusion implants
US7094239B1 (en) 1999-05-05 2006-08-22 Sdgi Holdings, Inc. Screws of cortical bone and method of manufacture thereof
US6558423B1 (en) 1999-05-05 2003-05-06 Gary K. Michelson Interbody spinal fusion implants with multi-lock for locking opposed screws
US6607530B1 (en) 1999-05-10 2003-08-19 Highgate Orthopedics, Inc. Systems and methods for spinal fixation
US6214050B1 (en) 1999-05-11 2001-04-10 Donald R. Huene Expandable implant for inter-bone stabilization and adapted to extrude osteogenic material, and a method of stabilizing bones while extruding osteogenic material
US6283998B1 (en) 1999-05-13 2001-09-04 Board Of Trustees Of The University Of Arkansas Alloplastic vertebral disk replacement
US20050234553A1 (en) 1999-05-17 2005-10-20 Vanderbilt University Intervertebral disc replacement prothesis
ATE235863T1 (en) 1999-05-21 2003-04-15 Link Waldemar Gmbh Co INTERVERBARY ENDOPROSTHESIS WITH A TOOTHED CONNECTION PLATE
US6419704B1 (en) 1999-10-08 2002-07-16 Bret Ferree Artificial intervertebral disc replacement methods and apparatus
ES2238290T3 (en) * 1999-06-04 2005-09-01 Sdgi Holdings, Inc. IMPLANT OF ARTIFICIAL DISK.
US6277149B1 (en) 1999-06-08 2001-08-21 Osteotech, Inc. Ramp-shaped intervertebral implant
US6770096B2 (en) 1999-07-01 2004-08-03 Spinevision S.A. Interbody spinal stabilization cage and spinal stabilization method
BR9917397A (en) * 1999-07-02 2002-03-05 Spine Solutions Inc Intervertebral Implant
US7824445B2 (en) 1999-07-26 2010-11-02 Ladislau Biro Corpectomy vertebral body replacement implant system
FR2797179B1 (en) 1999-08-03 2002-03-08 Michel Gau INTERVERTEBRAL NUCLEAR PROSTHESIS AND SURGICAL IMPLANTATION METHOD
FR2897259B1 (en) 2006-02-15 2008-05-09 Ldr Medical Soc Par Actions Si INTERSOMATIC TRANSFORAMINAL CAGE WITH INTERBREBAL FUSION GRAFT AND CAGE IMPLANTATION INSTRUMENT
US7972337B2 (en) 2005-12-28 2011-07-05 Intrinsic Therapeutics, Inc. Devices and methods for bone anchoring
WO2009033100A1 (en) 2007-09-07 2009-03-12 Intrinsic Therapeutics, Inc. Bone anchoring systems
US6080158A (en) * 1999-08-23 2000-06-27 Lin; Chih-I Intervertebral fusion device
MXPA02002672A (en) 1999-09-14 2003-10-14 Spine Solutions Inc Instrument for inserting intervertebral implants.
US6527773B1 (en) * 1999-10-07 2003-03-04 Osteotech, Inc. Cervical dowel and insertion tool
US6436101B1 (en) 1999-10-13 2002-08-20 James S. Hamada Rasp for use in spine surgery
US6811567B2 (en) 1999-10-22 2004-11-02 Archus Orthopedics Inc. Facet arthroplasty devices and methods
US6432106B1 (en) 1999-11-24 2002-08-13 Depuy Acromed, Inc. Anterior lumbar interbody fusion cage with locking plate
US6592624B1 (en) 1999-11-24 2003-07-15 Depuy Acromed, Inc. Prosthetic implant element
US6379388B1 (en) 1999-12-08 2002-04-30 Ortho Development Corporation Tibial prosthesis locking system and method of repairing knee joint
US6319257B1 (en) 1999-12-20 2001-11-20 Kinamed, Inc. Inserter assembly
US6709458B2 (en) 2000-02-04 2004-03-23 Gary Karlin Michelson Expandable push-in arcuate interbody spinal fusion implant with tapered configuration during insertion
US6716247B2 (en) 2000-02-04 2004-04-06 Gary K. Michelson Expandable push-in interbody spinal fusion implant
EP1645248B8 (en) 2000-02-04 2010-06-16 Warsaw Orthopedic, Inc. Expandable interbody spinal fusion implant having pivotally attached blocker
US6814756B1 (en) 2000-02-04 2004-11-09 Gary K. Michelson Expandable threaded arcuate interbody spinal fusion implant with lordotic configuration during insertion
US6500205B1 (en) 2000-04-19 2002-12-31 Gary K. Michelson Expandable threaded arcuate interbody spinal fusion implant with cylindrical configuration during insertion
EP1142544B1 (en) 2000-04-04 2008-03-26 Link Spine Group, Inc. Intervertebral implant
US6402750B1 (en) * 2000-04-04 2002-06-11 Spinlabs, Llc Devices and methods for the treatment of spinal disorders
US6579291B1 (en) * 2000-10-10 2003-06-17 Spinalabs, Llc Devices and methods for the treatment of spinal disorders
US6821298B1 (en) 2000-04-18 2004-11-23 Roger P. Jackson Anterior expandable spinal fusion cage system
US6482234B1 (en) 2000-04-26 2002-11-19 Pearl Technology Holdings, Llc Prosthetic spinal disc
US6478800B1 (en) * 2000-05-08 2002-11-12 Depuy Acromed, Inc. Medical installation tool
FR2808995B1 (en) 2000-05-18 2003-02-21 Aesculap Sa INTERSOMATIC CAGE WITH UNIFIED GRAFT
US6808537B2 (en) 2000-07-07 2004-10-26 Gary Karlin Michelson Expandable implant with interlocking walls
AU2001273356A1 (en) 2000-07-10 2002-01-21 Gary K. Michelson Flanged interbody spinal fusion implants
FR2811543B1 (en) * 2000-07-12 2003-07-04 Spine Next Sa INTERSOMATIC IMPLANT
US6610093B1 (en) 2000-07-28 2003-08-26 Perumala Corporation Method and apparatus for stabilizing adjacent vertebrae
US6447546B1 (en) 2000-08-11 2002-09-10 Dale G. Bramlet Apparatus and method for fusing opposing spinal vertebrae
US7204851B2 (en) 2000-08-30 2007-04-17 Sdgi Holdings, Inc. Method and apparatus for delivering an intervertebral disc implant
US6723128B2 (en) 2000-10-17 2004-04-20 Chang Jong Uk Prosthetic device for correcting deformity of spine
US6648893B2 (en) 2000-10-27 2003-11-18 Blackstone Medical, Inc. Facet fixation devices
US7445634B2 (en) 2000-10-27 2008-11-04 Warsaw Orthopedic, Inc. Annulus repair systems and methods
US20050080486A1 (en) 2000-11-29 2005-04-14 Fallin T. Wade Facet joint replacement
US6579319B2 (en) 2000-11-29 2003-06-17 Medicinelodge, Inc. Facet joint replacement
US6419703B1 (en) 2001-03-01 2002-07-16 T. Wade Fallin Prosthesis for the replacement of a posterior element of a vertebra
US6565605B2 (en) 2000-12-13 2003-05-20 Medicinelodge, Inc. Multiple facet joint replacement
DE10065232C2 (en) 2000-12-27 2002-11-14 Ulrich Gmbh & Co Kg Implant for insertion between the vertebral body and surgical instrument for handling the implant
US6520993B2 (en) 2000-12-29 2003-02-18 Depuy Acromed, Inc. Spinal implant
EP1222903B1 (en) 2001-01-12 2005-01-19 Link Spine Group, Inc. Surgical instrument for implanting an intervertebral prosthesis
US6972019B2 (en) 2001-01-23 2005-12-06 Michelson Gary K Interbody spinal implant with trailing end adapted to receive bone screws
JP4133331B2 (en) 2001-02-04 2008-08-13 ウォーソー・オーソペディック・インコーポレーテッド Apparatus and method for inserting and deploying an expandable interbody spinal fusion implant
US6669730B2 (en) 2001-02-15 2003-12-30 Spinecore, Inc. Intervertebral spacer device utilizing a spirally slotted belleville washer having radially extending grooves
US7575576B2 (en) 2001-07-16 2009-08-18 Spinecore, Inc. Wedge ramp distractor and related methods for use in implanting artificial intervertebral discs
US6740117B2 (en) * 2001-02-15 2004-05-25 Spinecore, Inc. Intervertebral spacer device having a radially thinning slotted belleville spring
US7169182B2 (en) 2001-07-16 2007-01-30 Spinecore, Inc. Implanting an artificial intervertebral disc
US6764515B2 (en) 2001-02-15 2004-07-20 Spinecore, Inc. Intervertebral spacer device utilizing a spirally slotted belleville washer and a rotational mounting
US6607559B2 (en) 2001-07-16 2003-08-19 Spine Care, Inc. Trial intervertebral distraction spacers
US7090698B2 (en) 2001-03-02 2006-08-15 Facet Solutions Method and apparatus for spine joint replacement
US6849093B2 (en) 2001-03-09 2005-02-01 Gary K. Michelson Expansion constraining member adapted for use with an expandable interbody spinal fusion implant and method for use thereof
FR2822051B1 (en) 2001-03-13 2004-02-27 Spine Next Sa INTERVERTEBRAL IMPLANT WITH SELF-LOCKING ATTACHMENT
US7128760B2 (en) 2001-03-27 2006-10-31 Warsaw Orthopedic, Inc. Radially expanding interbody spinal fusion implants, instrumentation, and methods of insertion
US20020143343A1 (en) 2001-03-27 2002-10-03 Surgical Dynamics, Inc. Method and apparatus for spinal implant insertion
US6749636B2 (en) 2001-04-02 2004-06-15 Gary K. Michelson Contoured spinal fusion implants made of bone or a bone composite material
US6890355B2 (en) 2001-04-02 2005-05-10 Gary K. Michelson Artificial contoured spinal fusion implants made of a material other than bone
DE10116412C1 (en) 2001-04-02 2003-01-16 Ulrich Gmbh & Co Kg Implant to be inserted between the vertebral body of the spine
EP1250898A1 (en) 2001-04-05 2002-10-23 Waldemar Link (GmbH & Co.) Intervertebral disc prosthesis system
FR2823095B1 (en) 2001-04-06 2004-02-06 Ldr Medical RACHIS OSTEOSYNTHESIS DEVICE AND PLACEMENT METHOD
US6440142B1 (en) 2001-04-27 2002-08-27 Third Millennium Engineering, Llc Femoral ring loader
JP3629557B2 (en) 2001-04-28 2005-03-16 李 春澤 Spinal fusion transfer
US20030149438A1 (en) 2001-04-30 2003-08-07 Howmedica Osteonics Corp. Insertion instrument
FR2824261B1 (en) * 2001-05-04 2004-05-28 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS AND IMPLEMENTATION METHOD AND TOOLS
TW571720U (en) 2001-05-04 2004-01-11 Chih-I Lin Spine fastener with support component
US6607558B2 (en) 2001-07-03 2003-08-19 Axiomed Spine Corporation Artificial disc
FR2827156B1 (en) 2001-07-13 2003-11-14 Ldr Medical VERTEBRAL CAGE DEVICE WITH MODULAR FASTENING
US6468310B1 (en) 2001-07-16 2002-10-22 Third Millennium Engineering, Llc Intervertebral spacer device having a wave washer force restoring element
US7182784B2 (en) * 2001-07-18 2007-02-27 Smith & Nephew, Inc. Prosthetic devices employing oxidized zirconium and other abrasion resistant surfaces contacting surfaces of cross-linked polyethylene
US6652586B2 (en) 2001-07-18 2003-11-25 Smith & Nephew, Inc. Prosthetic devices employing oxidized zirconium and other abrasion resistant surfaces contacting surfaces of cross-linked polyethylene
FR2828398B1 (en) 2001-08-08 2003-09-19 Jean Taylor VERTEBRA STABILIZATION ASSEMBLY
ATE398431T1 (en) 2001-08-24 2008-07-15 Zimmer Gmbh ARTIFICIAL DISC
EP1437989A2 (en) 2001-08-27 2004-07-21 James C. Thomas, Jr. Expandable implant for partial disc replacement and reinforcement of a disc partially removed in a discectomy and for reduction and maintenance of alignment of cancellous bone fractures and methods and apparatuses for same.
TW545211U (en) * 2001-08-29 2003-08-01 Jung-Chiuan Ye Device for fastening spine
US6652533B2 (en) 2001-09-20 2003-11-25 Depuy Acromed, Inc. Medical inserter tool with slaphammer
CA2461407A1 (en) 2001-09-28 2003-04-03 Sulzer Spine-Tech Inc. Skeletal stabilization implant
FR2831048B1 (en) 2001-10-18 2004-09-17 Ldr Medical PROGRESSIVE APPROACH OSTEOSYNTHESIS DEVICE AND PRE-ASSEMBLY PROCESS
US7963971B2 (en) 2001-10-29 2011-06-21 Depuy Spine, Inc. Instrumentation for insertion of an inter-vertebral prosthesis
US7025787B2 (en) 2001-11-26 2006-04-11 Sdgi Holdings, Inc. Implantable joint prosthesis and associated instrumentation
FR2832917B1 (en) 2001-11-30 2004-09-24 Spine Next Sa ELASTICALLY DEFORMABLE INTERVERTEBRAL IMPLANT
US6572653B1 (en) 2001-12-07 2003-06-03 Rush E. Simonson Vertebral implant adapted for posterior insertion
FR2833151B1 (en) 2001-12-12 2004-09-17 Ldr Medical BONE ANCHORING IMPLANT WITH POLYAXIAL HEAD
AU2002362220A1 (en) 2001-12-27 2003-07-24 Osteotech Inc. Bone fasteners and method for stabilizing vertebral bone facets using the bone fasteners
US6736850B2 (en) * 2001-12-28 2004-05-18 Spinal Concepts, Inc. Vertebral pseudo arthrosis device and method
US6740118B2 (en) 2002-01-09 2004-05-25 Sdgi Holdings, Inc. Intervertebral prosthetic joint
US6923830B2 (en) 2002-02-02 2005-08-02 Gary K. Michelson Spinal fusion implant having deployable bone engaging projections
FR2835739B1 (en) 2002-02-11 2004-05-14 Spinevision SYSTEM FOR FIXING A WORKPIECE ON A BONE BODY
AR038680A1 (en) 2002-02-19 2005-01-26 Synthes Ag INTERVERTEBRAL IMPLANT
EP1344508B1 (en) 2002-03-12 2007-06-06 Cervitech, Inc. Intervertebral prosthesis especially for the cervical spine
EP1482875B1 (en) 2002-03-12 2009-03-11 Cervitech Inc. Intravertebral prosthesis
EP1344506A1 (en) 2002-03-12 2003-09-17 Waldemar Link (GmbH & Co.) Intervertebral prosthesis for the cervical spine
US6726720B2 (en) * 2002-03-27 2004-04-27 Depuy Spine, Inc. Modular disc prosthesis
US20030187509A1 (en) 2002-04-01 2003-10-02 Lemole G. Michael Modulus plating system and method
US7223289B2 (en) 2002-04-16 2007-05-29 Warsaw Orthopedic, Inc. Annulus repair systems and techniques
US20040093082A1 (en) * 2002-04-19 2004-05-13 Ferree Bret A. Mobile-bearing artificial disc replacement
US7179294B2 (en) 2002-04-25 2007-02-20 Warsaw Orthopedic, Inc. Articular disc prosthesis and method for implanting the same
US20030201237A1 (en) 2002-04-26 2003-10-30 Grichar Charles Newton Shale shakers
US7001433B2 (en) 2002-05-23 2006-02-21 Pioneer Laboratories, Inc. Artificial intervertebral disc device
US6770095B2 (en) 2002-06-18 2004-08-03 Depuy Acroned, Inc. Intervertebral disc
EP1534194A2 (en) 2002-06-26 2005-06-01 Nuvasive, Inc. Total disc replacement system and related methods
US20040010312A1 (en) 2002-07-09 2004-01-15 Albert Enayati Intervertebral prosthesis
FR2843293B1 (en) 2002-08-08 2005-07-01 Didier Capon PROTHETIC IMPLANT FOR THE JOINT OF AN ANATOMIC MEMBER
WO2004016217A2 (en) 2002-08-15 2004-02-26 David Gerber Controlled artificial intervertebral disc implant
US6899735B2 (en) 2002-10-02 2005-05-31 Sdgi Holdings, Inc. Modular intervertebral prosthesis system
DE10247762A1 (en) 2002-10-14 2004-04-22 Waldemar Link (Gmbh & Co.) Intervertebral prosthesis
US7232463B2 (en) 2002-10-23 2007-06-19 U.S. Spinal Technologies, Llc Intervertebral cage designs
WO2004039291A1 (en) 2002-10-29 2004-05-13 Spinecore, Inc. Instrumentation, methods, and features for use in implanting an artificial intervertebral disc
US6966929B2 (en) 2002-10-29 2005-11-22 St. Francis Medical Technologies, Inc. Artificial vertebral disk replacement implant with a spacer
US7931674B2 (en) 2005-03-21 2011-04-26 Kyphon Sarl Interspinous process implant having deployable wing and method of implantation
US20040133278A1 (en) 2002-10-31 2004-07-08 Marino James F. Spinal disc implant
CA2502292C (en) 2002-10-31 2011-07-26 Spinal Concepts, Inc. Movable disc implant
FR2846550B1 (en) 2002-11-05 2006-01-13 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
US6685742B1 (en) 2002-11-12 2004-02-03 Roger P. Jackson Articulated anterior expandable spinal fusion cage system
FR2846876B1 (en) 2002-11-12 2005-07-29 Hassan Razian INTERVENIAL CAGE WITH MEDIAN ANCHOR BLADE
US7204852B2 (en) * 2002-12-13 2007-04-17 Spine Solutions, Inc. Intervertebral implant, insertion tool and method of inserting same
ATE394087T1 (en) 2002-12-17 2008-05-15 Synthes Gmbh INTERVERBARY IMPLANT
NZ540228A (en) 2002-12-17 2006-04-28 Synthes Gmbh Intervertebral implant comprising joint parts that are mounted to form a universal joint
CN100400015C (en) 2002-12-17 2008-07-09 斯恩蒂斯有限公司 Intervertebral implant with tiltable joint parts
EP2457541A1 (en) 2003-02-06 2012-05-30 Synthes GmbH Implant between vertebrae
US20040158254A1 (en) 2003-02-12 2004-08-12 Sdgi Holdings, Inc. Instrument and method for milling a path into bone
WO2004071360A2 (en) 2003-02-12 2004-08-26 Sdgi Holdings Inc. Instruments and methods for aligning implants for insertion
US20050049590A1 (en) 2003-03-07 2005-03-03 Neville Alleyne Spinal implant with securement spikes
US6893465B2 (en) 2003-03-31 2005-05-17 Shi, Tain-Yew Vividly simulated prosthetic intervertebral disc
US7819903B2 (en) 2003-03-31 2010-10-26 Depuy Spine, Inc. Spinal fixation plate
US7060097B2 (en) 2003-03-31 2006-06-13 Depuy Spine, Inc. Method and apparatus for implant stability
EP1610740A4 (en) 2003-04-04 2009-04-08 Theken Disc Llc Artificial disc prosthesis
US7628815B2 (en) 2003-04-11 2009-12-08 Synthes Usa, Llc Intervertebral implant with moveable endcaps
US9278009B2 (en) 2003-04-21 2016-03-08 Rsb Spine Llc Spine implants
US7985255B2 (en) 2003-04-21 2011-07-26 Rsb Spine Llc Implant subsidence control
US7419505B2 (en) 2003-04-22 2008-09-02 Fleischmann Lewis W Collapsible, rotatable, and tiltable hydraulic spinal disc prosthesis system with selectable modular components
US20050143824A1 (en) 2003-05-06 2005-06-30 Marc Richelsoph Artificial intervertebral disc
US7105024B2 (en) 2003-05-06 2006-09-12 Aesculap Ii, Inc. Artificial intervertebral disc
US7291173B2 (en) 2003-05-06 2007-11-06 Aesculap Ii, Inc. Artificial intervertebral disc
DE10323363A1 (en) 2003-05-21 2004-12-09 Ulrich Gmbh & Co. Kg Implant for insertion between elements of the vertebral column comprises a hinge which consist of a socket plate and a head element, and is located between the hinge cover plates
WO2004105655A1 (en) 2003-06-02 2004-12-09 Impliant Ltd. Spinal disc prosthesis
FR2856587B1 (en) 2003-06-26 2006-02-24 Scient X DISCRETE PROSTHESIS FOR CERVICAL VERTEBRATES WITH CONTROLLED DEBATMENT
DE20310432U1 (en) 2003-07-08 2003-09-18 Aesculap Ag & Co Kg Artificial intervertebral disc, comprising particularly shaped complementary joint surfaces
US20050015095A1 (en) 2003-07-15 2005-01-20 Cervitech, Inc. Insertion instrument for cervical prostheses
EP1646336B1 (en) 2003-07-22 2009-07-08 Synthes GmbH Intervertebral implant comprising dome-shaped joint surfaces
JP4343904B2 (en) 2003-07-22 2009-10-14 ジンテーズ ゲゼルシャフト ミト ベシュレンクテル ハフツング Endoprosthesis
ES2329897T3 (en) 2003-07-23 2009-12-02 Ebi, Llc EXPANSIBLE SPINAL IMPLANT.
US7153325B2 (en) 2003-08-01 2006-12-26 Ultra-Kinetics, Inc. Prosthetic intervertebral disc and methods for using the same
FR2858546B1 (en) 2003-08-04 2006-04-28 Spine Next Sa INTERVERTEBRAL DISC PROSTHESIS
EP1504733B1 (en) 2003-08-04 2007-06-06 Cervitech Inc. Cervical prosthesis with insertion instrument
US7753958B2 (en) 2003-08-05 2010-07-13 Gordon Charles R Expandable intervertebral implant
FR2859095B1 (en) 2003-09-01 2006-05-12 Ldr Medical BONE ANCHORING IMPLANT WITH A POLYAXIAL HEAD AND METHOD OF PLACING THE IMPLANT
FR2860701B1 (en) 2003-10-09 2006-01-06 Ldr Medical DEVICE AND METHOD FOR SECTIONING THE BLADE OF A VERTEBRA
US7628813B2 (en) 2003-10-20 2009-12-08 Cervitech, Inc. Cervical intervertebral prosthesis system
FR2861581B1 (en) 2003-10-29 2006-01-06 Laurent Salle TOTAL PROSTHESIS OF INTERVERTEBRAL DISC
GB0325421D0 (en) 2003-10-30 2003-12-03 Gill Steven S An intervertebral prosthesis
US7217293B2 (en) 2003-11-21 2007-05-15 Warsaw Orthopedic, Inc. Expandable spinal implant
US6955691B2 (en) 2003-11-21 2005-10-18 Kyungwon Medical Co., Ltd. Expandable interfusion cage
US7670377B2 (en) 2003-11-21 2010-03-02 Kyphon Sarl Laterally insertable artifical vertebral disk replacement implant with curved spacer
US20050154462A1 (en) 2003-12-02 2005-07-14 St. Francis Medical Technologies, Inc. Laterally insertable artificial vertebral disk replacement implant with translating pivot point
US7217291B2 (en) 2003-12-08 2007-05-15 St. Francis Medical Technologies, Inc. System and method for replacing degenerated spinal disks
US8419770B2 (en) 2003-12-10 2013-04-16 Gmedelaware 2 Llc Spinal facet implants with mating articulating bearing surface and methods of use
US7588600B2 (en) 2003-12-10 2009-09-15 Axiomed Spine Corporation Method for replacing a damaged spinal disc
DE20320454U1 (en) 2003-12-22 2004-10-14 Meisel, Hans Jörg, Dr. med. Component for a prosthesis, especially a cervica vertebra, comprises two base parts coupled together by a hinge
DE102004027986A1 (en) 2003-12-22 2005-07-21 Meisel, Hans Jörg, Dr. med. Component for a prosthesis, especially a cervica vertebra, comprises two base parts coupled together by a hinge
FR2864763B1 (en) 2004-01-07 2006-11-24 Scient X PROSTHETIC DISCALE FOR VERTEBRATES
US20050171610A1 (en) 2004-01-09 2005-08-04 Sdgi Holdings, Inc. Mobile bearing spinal device and method
US7235103B2 (en) 2004-01-13 2007-06-26 Rivin Evgeny I Artificial intervertebral disc
US7625379B2 (en) 2004-01-26 2009-12-01 Warsaw Orthopedic, Inc. Methods and instrumentation for inserting intervertebral grafts and devices
US7250060B2 (en) 2004-01-27 2007-07-31 Sdgi Holdings, Inc. Hybrid intervertebral disc system
US20050171605A1 (en) 2004-02-02 2005-08-04 Cervitech, Inc. Cervical prosthesis and instrument set
FR2865629B1 (en) 2004-02-04 2007-01-26 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
US7211112B2 (en) 2004-02-10 2007-05-01 Atlas Spine Spinal fusion device
US7850733B2 (en) 2004-02-10 2010-12-14 Atlas Spine, Inc. PLIF opposing wedge ramp
US7993373B2 (en) 2005-02-22 2011-08-09 Hoy Robert W Polyaxial orthopedic fastening apparatus
EP1570813A1 (en) 2004-03-05 2005-09-07 Cervitech, Inc. Cervical intervertebral disc prosthesis with anti-luxation means, and instrument
ATE387165T1 (en) 2004-03-08 2008-03-15 Impliant Ltd SPINAL PROSTHESIS
US7799053B2 (en) 2004-03-08 2010-09-21 Warsaw Orthopedic, Inc. Occipital and cervical stabilization systems and methods
US7637955B2 (en) 2004-03-23 2009-12-29 Warsaw Orthopedic, Inc. Constrained artificial spinal disc
US20050216092A1 (en) 2004-03-23 2005-09-29 Sdgi Holdings, Inc. Constrained artificial implant for orthopaedic applications
US8070816B2 (en) 2004-03-29 2011-12-06 3Hbfm, Llc Arthroplasty spinal prosthesis and insertion device
FR2869528B1 (en) 2004-04-28 2007-02-02 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
FR2870719B1 (en) 2004-05-27 2007-09-21 Spine Next Sa SPINAL ARTHROPLASTY SYSTEM
US8894709B2 (en) 2004-06-30 2014-11-25 Synergy Disc Replacement, Inc. Systems and methods for vertebral disc replacement
WO2006016384A1 (en) 2004-08-12 2006-02-16 Sintea Biotech S.P.A. Disc prosthesis
US20060036261A1 (en) 2004-08-13 2006-02-16 Stryker Spine Insertion guide for a spinal implant
US7641690B2 (en) 2004-08-23 2010-01-05 Abdou M Samy Bone fixation and fusion device
US7799081B2 (en) 2004-09-14 2010-09-21 Aeolin, Llc System and method for spinal fusion
US7780731B2 (en) 2004-11-26 2010-08-24 Spine Solutions, Inc. Intervertebral implant
US7582115B2 (en) 2004-09-30 2009-09-01 Helmut Weber Intervertebral prosthesis
US20060085076A1 (en) 2004-10-15 2006-04-20 Manoj Krishna Posterior spinal arthroplasty-development of a new posteriorly inserted artificial disc and an artificial facet joint
US20060085077A1 (en) 2004-10-18 2006-04-20 Ebi, L.P. Intervertebral implant and associated method
AU2005299397A1 (en) 2004-10-25 2006-05-04 Alphaspine, Inc. Expandable intervertebral spacer method and apparatus
US9463012B2 (en) 2004-10-26 2016-10-11 P Tech, Llc Apparatus for guiding and positioning an implant
US20060095136A1 (en) 2004-11-03 2006-05-04 Mcluen Design, Inc. Bone fusion device
US20070016297A1 (en) 2004-11-18 2007-01-18 University Of South Florida Prostheses for Spine Facets
US20060149378A1 (en) 2004-11-24 2006-07-06 Brad Chase Articulating spinal disc prosthetic
US20060111783A1 (en) 2004-11-24 2006-05-25 Kamran Aflatoon Articulating spinal disc prosthetic
EP1824430A4 (en) 2004-12-06 2012-10-24 Axiomed Spine Corp Method and apparatus for replacing a spinal disc
US20060149371A1 (en) 2004-12-10 2006-07-06 Sdgi Holdings, Inc. Intervertebral prosthetic device and method with locking mechanism
US7776090B2 (en) 2004-12-13 2010-08-17 Warsaw Orthopedic, Inc. Inter-cervical facet implant and method
US8066749B2 (en) 2004-12-13 2011-11-29 Warsaw Orthopedic, Inc. Implant for stabilizing a bone graft during spinal fusion
FR2879436B1 (en) 2004-12-22 2007-03-09 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
CH697737B1 (en) 2004-12-28 2009-01-30 Synthes Gmbh Kit for assembling an intervertebral implant.
FR2880795B1 (en) 2005-01-17 2008-01-18 Hassan Razian PERFECTED BLADE CUTTER FOR BLADE
US8911498B2 (en) 2005-02-10 2014-12-16 DePuy Synthes Products, LLC Intervertebral prosthetic disc
US7690381B2 (en) 2005-02-10 2010-04-06 Depuy Spine, Inc. Intervertebral prosthetic disc and method for installing using a guidewire
US7575598B2 (en) 2005-03-03 2009-08-18 Cervical Xpand, Llc Anterior lumbar intervertebral stabilizer
US7942903B2 (en) 2005-04-12 2011-05-17 Moskowitz Ahmnon D Bi-directional fixating transvertebral body screws and posterior cervical and lumbar interarticulating joint calibrated stapling devices for spinal fusion
US7972363B2 (en) 2005-04-12 2011-07-05 Moskowitz Ahmnon D Bi-directional fixating/locking transvertebral body screw/intervertebral cage stand-alone constructs and posterior cervical and lumbar interarticulating joint stapling guns and devices for spinal fusion
EP1712207B1 (en) 2005-04-15 2012-05-09 Eden Spine Europe SA Intervertebral disc
US20060235520A1 (en) 2005-04-19 2006-10-19 Pannu Yashdip S Spinal implant apparatus, method and system
US7951198B2 (en) 2005-05-10 2011-05-31 Acumed Llc Bone connector with pivotable joint
US8777959B2 (en) 2005-05-27 2014-07-15 Spinecore, Inc. Intervertebral disc and insertion methods therefor
US20060287728A1 (en) 2005-06-21 2006-12-21 Mokhtar Mourad B System and method for implanting intervertebral disk prostheses
FR2887435B1 (en) 2005-06-24 2007-10-05 Abbott Spine Sa INTERVERTEBRAL DISC PROSTHESIS
US7799057B2 (en) 2005-09-02 2010-09-21 Zimmer Spine, Inc. Translaminar facet augmentation and flexible spinal stabilization
WO2007041648A2 (en) 2005-10-03 2007-04-12 Abdou Samy M Devices and methods for inter-vertebral orthopedic device placement
US7927373B2 (en) 2005-10-31 2011-04-19 Depuy Spine, Inc. Intervertebral disc prosthesis
US8202320B2 (en) 2005-10-31 2012-06-19 Depuy Spine, Inc. Intervertebral disc prosthesis
US7967862B2 (en) 2005-11-23 2011-06-28 Warsaw Orthopedic, Inc. Posterior articular disc and method for implantation
FR2893838B1 (en) 2005-11-30 2008-08-08 Ldr Medical Soc Par Actions Si PROSTHESIS OF INTERVERTEBRAL DISC AND INSTRUMENTATION OF INSERTION OF THE PROSTHESIS BETWEEN VERTEBRATES
US7594932B2 (en) 2005-12-29 2009-09-29 International Spinal Innovations, Llc Apparatus for anterior intervertebral spinal fixation and fusion
US7811326B2 (en) 2006-01-30 2010-10-12 Warsaw Orthopedic Inc. Posterior joint replacement device
WO2007095333A2 (en) 2006-02-15 2007-08-23 Abdou M S Devices and methods for inter-vertebral orthopedic device placement
EP1988855A2 (en) 2006-02-27 2008-11-12 Synthes GmbH Intervertebral implant with fixation geometry
US20070270954A1 (en) 2006-04-05 2007-11-22 Shing-Sheng Wu Human bone substitutional implant
EP2007322A4 (en) 2006-04-12 2011-10-26 Spinalmotion Inc Posterior spinal device and method
US20070270961A1 (en) 2006-04-25 2007-11-22 Sdgi Holdings, Inc. Spinal implant with deployable and retractable barbs
EP1849437B1 (en) 2006-04-28 2009-09-30 Concept Matrix, LLC Dual composition vertebral fixation device
US7658766B2 (en) 2006-05-01 2010-02-09 Warsaw Orthopedic, Inc. Intervertebral implants with covered inner chamber and methods of use
US7905906B2 (en) 2006-06-08 2011-03-15 Disc Motion Technologies, Inc. System and method for lumbar arthroplasty
US7771473B2 (en) 2006-07-06 2010-08-10 Lanx, Inc. Expandable spinal fusion cage
US20080027547A1 (en) 2006-07-27 2008-01-31 Warsaw Orthopedic Inc. Prosthetic device for spinal joint reconstruction
US7850731B2 (en) 2006-10-04 2010-12-14 Seaspine, Inc. Articulating spinal implant
US8275594B2 (en) 2006-10-30 2012-09-25 The Regents Of The University Of Michigan Engineered scaffolds for intervertebral disc repair and regeneration and for articulating joint repair and regeneration
GB0623801D0 (en) 2006-11-29 2007-01-10 Surgicraft Ltd Orthopaedic implants and prosthesis
US7850732B2 (en) 2006-12-11 2010-12-14 Warsaw Orthopedic, Inc. Sacral prosthesis and surgical method
US20080161930A1 (en) 2007-01-03 2008-07-03 Warsaw Orthopedic, Inc. Spinal Prosthesis Systems
US8465546B2 (en) 2007-02-16 2013-06-18 Ldr Medical Intervertebral disc prosthesis insertion assemblies
US8268000B2 (en) 2007-04-03 2012-09-18 Warsaw Orthopedic, Inc. Composite interbody spacer
US8425607B2 (en) 2007-04-03 2013-04-23 Warsaw Orthopedic, Inc. Anchor member locking features
US20080249569A1 (en) 2007-04-03 2008-10-09 Warsaw Orthopedic, Inc. Implant Face Plates
WO2008128067A2 (en) 2007-04-11 2008-10-23 Eduardo Gonzalez-Hernandez Curved assembly for reattachment of fragmented bone segments
US8043334B2 (en) 2007-04-13 2011-10-25 Depuy Spine, Inc. Articulating facet fusion screw
US8075593B2 (en) 2007-05-01 2011-12-13 Spinal Simplicity Llc Interspinous implants and methods for implanting same
US8480715B2 (en) 2007-05-22 2013-07-09 Zimmer Spine, Inc. Spinal implant system and method
US8216312B2 (en) 2007-05-31 2012-07-10 Zimmer Spine, Inc. Spinal interbody system and method
US8864832B2 (en) 2007-06-20 2014-10-21 Hh Spinal Llc Posterior total joint replacement
US8882813B2 (en) 2007-10-19 2014-11-11 Spinesmith Partners, L.P. Locking mechanisms and associated methods
US8273127B2 (en) 2007-06-06 2012-09-25 Spinesmith Partners, L.P. Interbody fusion device and associated methods
FR2916956B1 (en) 2007-06-08 2012-12-14 Ldr Medical INTERSOMATIC CAGE, INTERVERTEBRAL PROSTHESIS, ANCHORING DEVICE AND IMPLANTATION INSTRUMENTATION
WO2009004625A2 (en) 2007-07-02 2009-01-08 Scorpion Surgical Technologies Ltd. Bone anchoring system
ES2404883T3 (en) 2007-07-26 2013-05-29 Biedermann Technologies Gmbh & Co. Kg Bone fixation device
US8167950B2 (en) 2007-10-11 2012-05-01 International Spinal Innovations, Llc Minimally invasive lateral intervertbral fixation system, device and method
US20090125071A1 (en) 2007-10-23 2009-05-14 Skinlo David M Shape-changing anatomical anchor
US8267997B2 (en) 2007-11-12 2012-09-18 Theken Spine, Llc Vertebral interbody compression implant
EP2217179A1 (en) 2007-11-16 2010-08-18 Synthes GmbH Low profile intervertebral implant
US8888850B2 (en) 2007-11-19 2014-11-18 Linares Medical Devices, Llc Combination spacer insert and support for providing inter-cervical vertebral support
US20090164020A1 (en) 2007-11-28 2009-06-25 Pioneer Surgical Technology, Inc. Device for Securing an Implant to Tissue
US8540769B2 (en) 2007-11-28 2013-09-24 Pioneer Surgical Technology, Inc. Device for securing an implant to tissue
US8414651B2 (en) 2008-01-16 2013-04-09 Aesculap Implant Systems, Llc Dynamic interbody
US8118873B2 (en) 2008-01-16 2012-02-21 Warsaw Orthopedic, Inc. Total joint replacement
US8377132B2 (en) 2008-01-16 2013-02-19 Aesculap Implant Systems, Llc Standalone dynamic interbody
US8167949B2 (en) 2008-01-25 2012-05-01 Aesculap Implant Systems, Llc Hydrostatic interbody
US20090210062A1 (en) 2008-02-20 2009-08-20 John Thalgott Orthopaedic Implants and Prostheses
US8267939B2 (en) 2008-02-28 2012-09-18 Stryker Spine Tool for implanting expandable intervertebral implant
US8328872B2 (en) 2008-09-02 2012-12-11 Globus Medical, Inc. Intervertebral fusion implant
US8709083B2 (en) 2009-06-04 2014-04-29 William E. Duffield Intervertebral fusion implant
US20100082109A1 (en) 2008-09-22 2010-04-01 Stout Medical Group, L.P. Expandable intervertebral implant
US8137405B2 (en) 2008-10-08 2012-03-20 K2M, Inc. Spinal interbody spacer
US8182539B2 (en) 2008-10-23 2012-05-22 Aesculap Implant Systems, Llc Dynamic interbody with motion control mechanisms
BRPI0921486A2 (en) 2008-11-07 2019-09-10 Synthes Gmbh vertebral intercorporeal unit of spacer and coupled plate
US20100211176A1 (en) 2008-11-12 2010-08-19 Stout Medical Group, L.P. Fixation device and method
US8252059B2 (en) 2008-12-17 2012-08-28 Synthes Usa, Llc Full-metal dampening intervertebral implant
US10045860B2 (en) 2008-12-19 2018-08-14 Amicus Design Group, Llc Interbody vertebral prosthetic device with self-deploying screws
US8721723B2 (en) 2009-01-12 2014-05-13 Globus Medical, Inc. Expandable vertebral prosthesis
US8968405B2 (en) 2009-01-20 2015-03-03 Incite Innovation Llc Interbody fusion device and method of operation
US8287572B2 (en) 2009-02-11 2012-10-16 Howmedica Osteonics Corp. Intervertebral implant with integrated fixation
US8257443B2 (en) 2009-02-19 2012-09-04 Aflatoon Kamran Open body box form interbody fusion cage
US8187329B2 (en) 2009-02-20 2012-05-29 Spartan Cage Holding, Llc Interbody fusion system with intervertebral implant retention assembly
US20110144703A1 (en) 2009-02-24 2011-06-16 Krause William R Flexible Screw
US9220547B2 (en) 2009-03-27 2015-12-29 Spinal Elements, Inc. Flanged interbody fusion device
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US20100286777A1 (en) 2009-05-08 2010-11-11 Stryker Spine Stand alone anterior cage
US8343223B2 (en) 2009-07-14 2013-01-01 Life Spine, Inc. Combined spinal interbody and plate assemblies
US8328870B2 (en) 2009-08-06 2012-12-11 Alphatec Spine, Inc. Stand-alone interbody fixation system
US8641765B2 (en) 2009-08-12 2014-02-04 Nabil L. Muhanna Posterior spinal implant system
PL215752B1 (en) 2009-09-28 2014-01-31 Lfc Spolka Z Ograniczona Odpowiedzialnoscia Equipment for surgical vertebra movement
US8062375B2 (en) 2009-10-15 2011-11-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
AU2010314954B2 (en) 2009-11-09 2016-01-07 Centinel Spine, Llc Spinal implant configured for lateral insertion
US8870961B2 (en) 2009-11-09 2014-10-28 Centinal Spine, Inc. Spinal implant configured for midline insertion
ES2555390T3 (en) 2009-11-09 2015-12-30 Centinel Spine Inc. Spinal implant with fixation system
US20110196494A1 (en) 2009-12-04 2011-08-11 Osteo Innovations Llc Percutaneous interbody spine fusion devices, nuclear support device, spine fracture support device, delivery tools, percutaneous off-angle bone stapling/nailing fixation device and methods of use
US8945226B2 (en) 2009-12-31 2015-02-03 Rhausler Vertebral spacer
CA3003975A1 (en) 2009-12-31 2011-07-07 Ldr Medical Anchoring device, intervertebral implant and implantation instrument
US8795366B2 (en) 2010-01-11 2014-08-05 Innova Spinal Technologies, Llc Expandable intervertebral implant and associated surgical method
BRPI1002012A2 (en) 2010-02-11 2011-06-14 M D T Ind E Com De Implantes Ortopedicos Ltda anterior intervertebral fusion system of the lumbar spine
EP2361572B1 (en) 2010-02-26 2013-04-17 Biedermann Technologies GmbH & Co. KG Implant for stabilizing bones or vertebrae
WO2011153537A1 (en) 2010-06-04 2011-12-08 Spartan Cage, LLC Intervertebral implant and face plate combination
WO2011153536A1 (en) 2010-06-04 2011-12-08 Spartan Cage, Llc. Expandable intervertebral implant
US8377139B2 (en) 2010-06-17 2013-02-19 Aesculap Implant Systems, Llc Standalone interbody fusion device with locking and release mechanism

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4085466A (en) * 1974-11-18 1978-04-25 National Research Development Corporation Prosthetic joint device
US4074542A (en) * 1976-11-03 1978-02-21 Rockwell International Corporation Coupling
US4309777A (en) * 1980-11-13 1982-01-12 Patil Arun A Artificial intervertebral disc
US4655778A (en) * 1985-08-12 1987-04-07 Harrington Arthritis Research Center Joint prosthesis
US4997432A (en) * 1988-03-23 1991-03-05 Waldemar Link Gmbh & Co. Surgical instrument set
US5002576A (en) * 1988-06-06 1991-03-26 Mecron Medizinische Produkte Gmbh Intervertebral disk endoprosthesis
US4911718A (en) * 1988-06-10 1990-03-27 University Of Medicine & Dentistry Of N.J. Functional and biocompatible intervertebral disc spacer
US6210412B1 (en) * 1988-06-13 2001-04-03 Gary Karlin Michelson Method for inserting frusto-conical interbody spinal fusion implants
US5741253A (en) * 1988-06-13 1998-04-21 Michelson; Gary Karlin Method for inserting spinal implants
US4892545A (en) * 1988-07-14 1990-01-09 Ohio Medical Instrument Company, Inc. Vertebral lock
US5197986A (en) * 1990-04-11 1993-03-30 Mikhail Michael W E Recessed patellar prosthesis
US5192327A (en) * 1991-03-22 1993-03-09 Brantigan John W Surgical prosthetic implant for vertebrae
US5290312A (en) * 1991-09-03 1994-03-01 Alphatec Artificial vertebral body
US5507816A (en) * 1991-12-04 1996-04-16 Customflex Limited Spinal vertebrae implants
US5401269A (en) * 1992-03-13 1995-03-28 Waldemar Link Gmbh & Co. Intervertebral disc endoprosthesis
US5306309A (en) * 1992-05-04 1994-04-26 Calcitek, Inc. Spinal disk implant and implantation kit
US5888224A (en) * 1993-09-21 1999-03-30 Synthesis (U.S.A.) Implant for intervertebral space
US5397364A (en) * 1993-10-12 1995-03-14 Danek Medical, Inc. Anterior interbody fusion device
US6364880B1 (en) * 1994-03-28 2002-04-02 Gary Karlin Michelson Spinal implant with bone screws
US5609636A (en) * 1994-05-23 1997-03-11 Spine-Tech, Inc. Spinal implant
US6344057B1 (en) * 1994-11-22 2002-02-05 Sdgi Holdings, Inc. Adjustable vertebral body replacement
US6206922B1 (en) * 1995-03-27 2001-03-27 Sdgi Holdings, Inc. Methods and instruments for interbody fusion
US6695851B2 (en) * 1995-03-27 2004-02-24 Sdgi Holdings, Inc. Methods and instruments for interbody fusion
US6375655B1 (en) * 1995-03-27 2002-04-23 Sdgi Holdings, Inc. Interbody fusion device and method for restoration of normal spinal anatomy
US6010502A (en) * 1995-12-19 2000-01-04 Spine-Tech, Inc. Method and apparatus for conjoining bone bodies
US5722977A (en) * 1996-01-24 1998-03-03 Danek Medical, Inc. Method and means for anterior lumbar exact cut with quadrilateral osteotome and precision guide/spacer
US6371988B1 (en) * 1996-10-23 2002-04-16 Sdgi Holdings, Inc. Bone grafts
US5895428A (en) * 1996-11-01 1999-04-20 Berry; Don Load bearing spinal joint implant
US6033438A (en) * 1997-06-03 2000-03-07 Sdgi Holdings, Inc. Open intervertebral spacer
US6695882B2 (en) * 1997-06-03 2004-02-24 Sdgi Holdings, Inc. Open intervertebral spacer
US20040073309A1 (en) * 1997-06-03 2004-04-15 Bianchi John R. Open intervertebral spacer
US5893889A (en) * 1997-06-20 1999-04-13 Harrington; Michael Artificial disc
US5865848A (en) * 1997-09-12 1999-02-02 Artifex, Ltd. Dynamic intervertebral spacer and method of use
US5888226A (en) * 1997-11-12 1999-03-30 Rogozinski; Chaim Intervertebral prosthetic disc
US6045552A (en) * 1998-03-18 2000-04-04 St. Francis Medical Technologies, Inc. Spine fixation plate system
US6179874B1 (en) * 1998-04-23 2001-01-30 Cauthen Research Group, Inc. Articulating spinal implant
US6679915B1 (en) * 1998-04-23 2004-01-20 Sdgi Holdings, Inc. Articulating spinal implant
US6506216B1 (en) * 1998-05-13 2003-01-14 Depuy Products, Inc. Tibial tray with adjustable keel
US6540785B1 (en) * 1998-10-22 2003-04-01 Sdgi Holdings, Inc. Artificial intervertebral joint permitting translational and rotational motion
US6039763A (en) * 1998-10-27 2000-03-21 Disc Replacement Technologies, Inc. Articulating spinal disc prosthesis
US6193757B1 (en) * 1998-10-29 2001-02-27 Sdgi Holdings, Inc. Expandable intervertebral spacers
US6527804B1 (en) * 1998-12-11 2003-03-04 Dimso (Distribution Medicale Du Sud-Quest) Intervertebral disk prosthesis
US6368350B1 (en) * 1999-03-11 2002-04-09 Sulzer Spine-Tech Inc. Intervertebral disc prosthesis and method
US20050027363A1 (en) * 1999-05-17 2005-02-03 Gordon Jeffrey D. Intervertebral disc replacement prosthesis
US20050043804A1 (en) * 1999-05-17 2005-02-24 Vanderbilt University Intervertebral disc replacement prosthesis
US6520996B1 (en) * 1999-06-04 2003-02-18 Depuy Acromed, Incorporated Orthopedic implant
US20030028249A1 (en) * 1999-10-18 2003-02-06 Stryker Spine Intervertebral implant with toothed faces
US6520967B1 (en) * 1999-10-20 2003-02-18 Cauthen Research Group, Inc. Spinal implant insertion instrument for spinal interbody prostheses
US6524312B2 (en) * 2000-01-06 2003-02-25 Spinal Concepts, Inc. Instrument and method for implanting an interbody fusion device
US6984245B2 (en) * 2000-02-22 2006-01-10 Sdgi Holdings, Inc. Anterior impacted bone graft and driver instruments
US6221077B1 (en) * 2000-02-28 2001-04-24 Beere Precision Medical Instruments, Inc. Human spine fixation template and method of making same
US6517580B1 (en) * 2000-03-03 2003-02-11 Scient'x Societe A Responsabilite Limited Disk prosthesis for cervical vertebrae
US6682562B2 (en) * 2000-03-10 2004-01-27 Eurosurgical Sa Intervertebral disc prosthesis
US6514260B1 (en) * 2000-03-15 2003-02-04 Sdgi Holdings, Inc. Methods and instruments for laparoscopic spinal surgery
US20050071009A1 (en) * 2000-09-08 2005-03-31 Nabil L. Muhanna, M.D. System and methods for inserting a vertebral spacer
US6719794B2 (en) * 2001-05-03 2004-04-13 Synthes (U.S.A.) Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US6527806B2 (en) * 2001-07-16 2003-03-04 Third Millennium Engineering, Llc Intervertebral spacer device having a spiral wave washer force restoring element
US6723127B2 (en) * 2001-07-16 2004-04-20 Spine Core, Inc. Artificial intervertebral disc having a wave washer force restoring element
US20030055503A1 (en) * 2001-09-19 2003-03-20 O'neil Michael J. Alignment verification device and method of use
US6673113B2 (en) * 2001-10-18 2004-01-06 Spinecore, Inc. Intervertebral spacer device having arch shaped spring elements
US20050010215A1 (en) * 2001-10-18 2005-01-13 Joel Delecrin Plate for osteosynthesis device and preassembling method
US6709439B2 (en) * 2001-10-30 2004-03-23 Depuy Spine, Inc. Slaphammer tool
US20050065611A1 (en) * 2001-11-06 2005-03-24 Jean Huppert Osseous achoring device for a prosthesis
US7011684B2 (en) * 2002-01-17 2006-03-14 Concept Matrix, Llc Intervertebral disk prosthesis
US20070016299A1 (en) * 2002-01-17 2007-01-18 Concept Matrix, Llc Vertebral Defect Device
US20050043798A1 (en) * 2002-01-17 2005-02-24 Concept Matrix, Llc Intervertebral disk prosthesis methods of use
US20040002758A1 (en) * 2002-03-11 2004-01-01 Landry Michael E. Spinal implant including a compressible connector
US20040030387A1 (en) * 2002-03-11 2004-02-12 Landry Michael E. Instrumentation and procedure for implanting spinal implant devices
US20040083000A1 (en) * 2002-03-12 2004-04-29 Waldemar Link Gmbh & Co. Cervical intervertebral prosthesis
US7001432B2 (en) * 2002-03-12 2006-02-21 Cervitech, Inc. Intervertebral prosthesis
US20070010887A1 (en) * 2002-03-30 2007-01-11 Williams Lytton A Intervertebral Device and Method of Use
US20040010316A1 (en) * 2002-03-30 2004-01-15 Lytton William Intervertebral device and method of use
US20040073311A1 (en) * 2002-04-23 2004-04-15 Ferree Bret A. Two-component artificial disc replacements
US6706068B2 (en) * 2002-04-23 2004-03-16 Bret A. Ferree Artificial disc replacements with natural kinematics
US20040034423A1 (en) * 2002-04-25 2004-02-19 Matthew Lyons Artificial intervertebral disc
US20050033437A1 (en) * 2002-05-23 2005-02-10 Pioneer Laboratories, Inc. Artificial disc device
US7169153B2 (en) * 2002-06-10 2007-01-30 Depuy Spine Surgical instrument for inserting intervertebral prosthesis
US20040002761A1 (en) * 2002-06-27 2004-01-01 Christopher Rogers Intervertebral disc having translation
US20060036326A1 (en) * 2002-09-02 2006-02-16 Mathys Medizinaltechnik Ag Intervertebral implant comprising a three-part articulation
US6994727B2 (en) * 2002-12-17 2006-02-07 Amedica Corporation Total disc implant
US20050033305A1 (en) * 2003-07-08 2005-02-10 Robert Schultz Surgical instrument for handling an implant
US20050033438A1 (en) * 2003-07-08 2005-02-10 Robert Schultz Intervertebral implant
US20050015094A1 (en) * 2003-07-15 2005-01-20 Cervitech, Inc. Arrangement of a cervical prosthesis and insertion instrument
US20050021042A1 (en) * 2003-07-21 2005-01-27 Theirry Marnay Instruments and method for inserting an intervertebral implant
US20070055378A1 (en) * 2003-07-31 2007-03-08 Ankney David W Transforaminal prosthetic spinal disc replacement and methods thereof
US20050043800A1 (en) * 2003-07-31 2005-02-24 Paul David C. Prosthetic spinal disc replacement
US20050027359A1 (en) * 2003-07-31 2005-02-03 Mashburn M. Laine Spinal interbody fusion device and method
US6986789B2 (en) * 2003-08-22 2006-01-17 Aesculap Ag & Co. Kg Intervertebral implant
US20050060034A1 (en) * 2003-09-15 2005-03-17 Sdgi Holdings, Inc. Revisable prosthetic device
US7175662B2 (en) * 2004-04-01 2007-02-13 Cervitech, Inc. Cervical intervertebral prosthesis
US20060020341A1 (en) * 2004-06-16 2006-01-26 Susanne Schneid Intervertebral implant
US20060015183A1 (en) * 2004-07-09 2006-01-19 Pioneer Laboratories, Inc. Skeletal reconstruction device
US20060030860A1 (en) * 2004-07-23 2006-02-09 Sdgi Holdings, Inc. Artificial disc inserter
US20060041313A1 (en) * 2004-08-19 2006-02-23 Sdgi Holdings, Inc. Intervertebral disc system
US20060041314A1 (en) * 2004-08-20 2006-02-23 Thierry Millard Artificial disc prosthesis
US20060069441A1 (en) * 2004-09-29 2006-03-30 Zucherman James F Posterior approach implant method for assembly of multi-piece artificial spinal disk replacement device in situ
US20070016217A1 (en) * 2005-06-29 2007-01-18 Ldr Medical Instrumentation and methods for inserting an intervertebral disc prosthesis
US20070073403A1 (en) * 2005-09-22 2007-03-29 Alan Lombardo Artificial intervertebral disc
US20070073404A1 (en) * 2005-09-23 2007-03-29 Ralph Rashbaum Intervertebral disc prosthesis

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9526624B2 (en) * 1999-07-02 2016-12-27 DePuy Synthes Products, Inc. Intervertebral implant
US20150142113A1 (en) * 1999-07-02 2015-05-21 DePuy Synthes Products, LLC Intervertebral Implant
US9333095B2 (en) 2001-05-04 2016-05-10 Ldr Medical Intervertebral disc prosthesis, surgical methods, and fitting tools
US8267999B2 (en) 2002-11-05 2012-09-18 Ldr Medical Intervertebral disc prosthesis
US8226721B2 (en) 2003-08-04 2012-07-24 Zimmer Spine S.A.S. Method of implanting intervertebral disk prosthesis
US7896919B2 (en) * 2003-08-04 2011-03-01 Zimmer Spine S.A.S. Method of implanting intervertebral disk prosthesis
US20080015699A1 (en) * 2003-11-28 2008-01-17 Gilles Voydeville Postero-Lateral Intervertebral Disc Prosthesis
US8858635B2 (en) 2004-02-04 2014-10-14 Ldr Medical Intervertebral disc prosthesis
US10603185B2 (en) 2004-02-04 2020-03-31 Ldr Medical Intervertebral disc prosthesis
US7637955B2 (en) * 2004-03-23 2009-12-29 Warsaw Orthopedic, Inc. Constrained artificial spinal disc
US20050216086A1 (en) * 2004-03-23 2005-09-29 Sdgi Holdings, Inc. Constrained artificial spinal disc
US8974532B2 (en) 2004-04-28 2015-03-10 Ldr Medical Intervertebral disc prosthesis
US8257439B2 (en) 2004-12-22 2012-09-04 Ldr Medical Intervertebral disc prosthesis
US10226355B2 (en) 2004-12-22 2019-03-12 Ldr Medical Intervertebral disc prosthesis
US11872138B2 (en) 2005-09-23 2024-01-16 Ldr Medical Intervertebral disc prosthesis
US10492919B2 (en) 2005-09-23 2019-12-03 Ldr Medical Intervertebral disc prosthesis
US8979932B2 (en) 2005-09-23 2015-03-17 Ldr Medical Intervertebral disc prosthesis
US8771284B2 (en) 2005-11-30 2014-07-08 Ldr Medical Intervertebral disc prosthesis and instrumentation for insertion of the prosthesis between the vertebrae
US8430929B2 (en) * 2006-01-13 2013-04-30 Clifford Tribus Spine reduction and stabilization device
US20080015694A1 (en) * 2006-01-13 2008-01-17 Clifford Tribus Spine reduction and stabilization device
US10758363B2 (en) 2006-02-15 2020-09-01 Ldr Medical Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US8414652B2 (en) 2006-04-21 2013-04-09 Depuy Spine, Inc. Disc prosthesis having remote flexion/extension center of rotation
US20070250170A1 (en) * 2006-04-21 2007-10-25 Depuy Spine, Inc. Disc prosthesis having remote flexion/extension center of rotation
US8043379B2 (en) * 2006-04-21 2011-10-25 Depuy Spine, Inc. Disc prosthesis having remote flexion/extension center of rotation
US9883950B2 (en) 2006-07-24 2018-02-06 Centinel Spine Llc Intervertebral implant with keel
US8465546B2 (en) 2007-02-16 2013-06-18 Ldr Medical Intervertebral disc prosthesis insertion assemblies
US10188528B2 (en) 2007-02-16 2019-01-29 Ldr Medical Interveterbral disc prosthesis insertion assemblies
US10398574B2 (en) 2007-02-16 2019-09-03 Ldr Medical Intervertebral disc prosthesis insertion assemblies
US10751187B2 (en) 2007-06-08 2020-08-25 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US8343219B2 (en) 2007-06-08 2013-01-01 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US9808287B2 (en) 2007-08-01 2017-11-07 Jeffrey Halbrecht Method and system for patella tendon realignment
US20110270393A1 (en) * 2008-06-04 2011-11-03 James Marvel Buffer for a human joint and method of arthroscopically inserting
US8764829B2 (en) * 2008-06-04 2014-07-01 James Marvel Buffer for a human joint and method of arthroscopically inserting
US8545566B2 (en) * 2008-10-13 2013-10-01 Globus Medical, Inc. Articulating spacer
US20190209337A1 (en) * 2008-10-13 2019-07-11 Globus Medical, Inc. Articulating spacer
US10271957B2 (en) * 2008-10-13 2019-04-30 Globus Medical, Inc. Articulating spacer
US20170290679A1 (en) * 2008-10-13 2017-10-12 Globus Medical, Inc. Articulating spacer
US20110276142A1 (en) * 2008-10-13 2011-11-10 Marcin Niemiec Articulating Spacer
US9445913B2 (en) 2009-04-15 2016-09-20 DePuy Synthes Products, Inc. Arcuate fixation member
US9408715B2 (en) 2009-04-15 2016-08-09 DePuy Synthes Products, Inc. Arcuate fixation member
US10806592B2 (en) 2009-04-15 2020-10-20 DePuy Synthes Products, Inc. Arcuate fixation member
US11617654B2 (en) 2009-04-15 2023-04-04 DePuy Synthes Products, Inc. Arcuate fixation member
US9925056B2 (en) 2009-04-15 2018-03-27 DePuy Synthes Products, Inc. Arcuate fixation member
US10716680B2 (en) 2009-04-15 2020-07-21 DePuy Synthes Products, Inc. Arcuate fixation member
US10105236B2 (en) 2009-04-15 2018-10-23 DePuy Synthes Products, Inc. Arcuate fixation member
US9724204B2 (en) * 2009-05-15 2017-08-08 Globus Medical, Inc. Method for inserting and positioning an artificial disc
US20150328012A1 (en) * 2009-05-15 2015-11-19 Globus Medical, Inc. Method for inserting and positioning an artificial disc
US20100292799A1 (en) * 2009-05-15 2010-11-18 Noah Hansell Method for Inserting and Positioning an Artificial Disc
US9066809B2 (en) * 2009-05-15 2015-06-30 Globus Medical Inc. Method for inserting and positioning an artificial disc
US10349980B2 (en) 2009-08-27 2019-07-16 The Foundry, Llc Method and apparatus for altering biomechanics of the shoulder
US9931136B2 (en) 2009-08-27 2018-04-03 The Foundry, Llc Method and apparatus for altering biomechanics of articular joints
US11730519B2 (en) 2009-08-27 2023-08-22 The Foundry, Llc Method and apparatus for force redistribution in articular joints
US9668868B2 (en) 2009-08-27 2017-06-06 Cotera, Inc. Apparatus and methods for treatment of patellofemoral conditions
US9861408B2 (en) 2009-08-27 2018-01-09 The Foundry, Llc Method and apparatus for treating canine cruciate ligament disease
US9278004B2 (en) 2009-08-27 2016-03-08 Cotera, Inc. Method and apparatus for altering biomechanics of the articular joints
US9795410B2 (en) 2009-08-27 2017-10-24 Cotera, Inc. Method and apparatus for force redistribution in articular joints
US11517360B2 (en) 2009-08-27 2022-12-06 The Foundry, Llc Method and apparatus for treating canine cruciate ligament disease
US10695094B2 (en) 2009-08-27 2020-06-30 The Foundry, Llc Method and apparatus for altering biomechanics of articular joints
US11246715B2 (en) 2009-12-31 2022-02-15 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US10195046B2 (en) 2009-12-31 2019-02-05 Ldr Medical Instruments and methods for removing fixation devices from intervertebral implants
US10531961B2 (en) 2009-12-31 2020-01-14 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US9265617B2 (en) * 2010-10-06 2016-02-23 Karin Buettner-Janz Prosthesis for cervical and lumbar spine
US20130184828A1 (en) * 2010-10-06 2013-07-18 Karin Buettner-Janz Prosthesis for Cervical and Lumbar Spine
US9101485B2 (en) * 2011-01-04 2015-08-11 DePuy Synthes Products, Inc. Intervertebral implant with multiple radii
US20120172988A1 (en) * 2011-01-04 2012-07-05 Synthes Usa, Llc Intervertebral implant with multiple radii
US20220273457A1 (en) * 2011-02-23 2022-09-01 Globus Medical, Inc. Six degree spine stabilization devices and methods
US11857433B2 (en) * 2011-02-23 2024-01-02 Globus Medical, Inc. Six degree spine stabilization devices and methods
US11357639B2 (en) * 2011-02-23 2022-06-14 Globus Medical, Inc. Six degree spine stabilization devices and methods
US10687958B2 (en) * 2011-02-23 2020-06-23 Globus Medical, Inc. Six degree spine stabilization devices and methods
EP2869790A4 (en) * 2012-07-06 2015-10-14 Truemotion Spine Inc A shock absorbing, total disc replacement prosthetic
US10898237B2 (en) 2012-08-24 2021-01-26 The Foundry, Llc Method and apparatus for altering biomechanics of the spine
US9468466B1 (en) 2012-08-24 2016-10-18 Cotera, Inc. Method and apparatus for altering biomechanics of the spine
US11013612B2 (en) 2012-08-31 2021-05-25 Institute for Musculoskeletal Science and Education, Ltd. Fixation devices for anterior lumbar or cervical interbody fusion
US9987142B2 (en) 2012-08-31 2018-06-05 Institute for Musculoskeletal Science and Education, Ltd. Fixation devices for anterior lumbar or cervical interbody fusion
US11484415B2 (en) 2013-09-11 2022-11-01 Ldr Medical S.A.S. Cage having spike
US10765531B2 (en) 2013-09-11 2020-09-08 Ldr Medical, S.A.S. Cage having spike
US9707100B2 (en) 2015-06-25 2017-07-18 Institute for Musculoskeletal Science and Education, Ltd. Interbody fusion device and system for implantation
US11241256B2 (en) 2015-10-15 2022-02-08 The Foundry, Llc Method and apparatus for altering biomechanics of the shoulder
US11246716B2 (en) 2016-10-18 2022-02-15 Institute for Musculoskeletal Science and Education, Ltd. Implant with deployable blades
US11877935B2 (en) 2016-10-18 2024-01-23 Camber Spine Technologies, LLC Implant with deployable blades
US11413157B2 (en) 2016-10-25 2022-08-16 Institute for Musculoskeletal Science and Education, Ltd. Spinal fusion implant
US11872143B2 (en) 2016-10-25 2024-01-16 Camber Spine Technologies, LLC Spinal fusion implant

Also Published As

Publication number Publication date
RU2296540C2 (en) 2007-04-10
WO2002089701A3 (en) 2003-12-24
RU2003135212A (en) 2005-03-10
MXPA03010083A (en) 2005-03-07
JP2004525727A (en) 2004-08-26
US20040243240A1 (en) 2004-12-02
CN100401996C (en) 2008-07-16
KR20090018221A (en) 2009-02-19
EP1399086A2 (en) 2004-03-24
KR101007597B1 (en) 2011-01-12
FR2824261B1 (en) 2004-05-28
IL158740A0 (en) 2004-05-12
ZA200308355B (en) 2004-07-01
ES2367685T3 (en) 2011-11-07
CA2446095C (en) 2008-12-02
US9788964B2 (en) 2017-10-17
WO2002089701A2 (en) 2002-11-14
ATE515986T1 (en) 2011-07-15
CA2602540C (en) 2010-11-09
US7326250B2 (en) 2008-02-05
FR2824261A1 (en) 2002-11-08
KR100941116B1 (en) 2010-02-10
CN1720873A (en) 2006-01-18
ES2632545T3 (en) 2017-09-14
EP2335602A3 (en) 2011-11-02
JP4226907B2 (en) 2009-02-18
CA2602540A1 (en) 2002-11-14
EP2335602B1 (en) 2017-04-19
EP2335602A2 (en) 2011-06-22
US20160324655A1 (en) 2016-11-10
EP1399086B1 (en) 2011-07-13
CA2446095A1 (en) 2002-11-14
US9333095B2 (en) 2016-05-10
KR20030094375A (en) 2003-12-11
CN1522128A (en) 2004-08-18
IL158740A (en) 2008-06-05
CN1720878A (en) 2006-01-18
BR0209351B1 (en) 2011-11-01
EP3195832A1 (en) 2017-07-26
BR0209351A (en) 2004-10-13
CN100360091C (en) 2008-01-09
CN1720878B (en) 2010-09-29
US20180098859A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
US9788964B2 (en) Intervertebral disc prosthesis, surgical methods, and fitting tools
US20200375754A1 (en) Expandable intervertebral implant
US7632281B2 (en) Instrumentation for manipulating artificial intervertebral disc trials having a cylindrical engagement surface
US7850697B2 (en) Method and apparatus for replacing a spinal disc
US8858564B2 (en) Wedge plate inserter/impactor and related methods for use in implanting an artificial intervertebral disc
US8303659B2 (en) Intervertebral spacer device having engagement hole pairs
US20070162138A1 (en) Vertebral implant and insertion tool
US20100036494A9 (en) Intervertebral spacer device having an engagement hole for a tool with an extendable post
AU2002319861B2 (en) Intervertebral disc prosthesis and fitting tools
AU2002319861A1 (en) Intervertebral disc prosthesis and fitting tools

Legal Events

Date Code Title Description
AS Assignment

Owner name: LDR MEDICAL, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BEAURAIN, JACQUES;DELECRIN, JOEL;ONIMUS, MICHEL;AND OTHERS;SIGNING DATES FROM 20031205 TO 20040110;REEL/FRAME:021091/0953

Owner name: LDR MEDICAL, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BEAURAIN, JACQUES;DELECRIN, JOEL;ONIMUS, MICHEL;AND OTHERS;REEL/FRAME:021091/0953;SIGNING DATES FROM 20031205 TO 20040110

AS Assignment

Owner name: AUSTIN VENTURES VIII L.P., TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNORS:LDR HOLDING CORPORATION;LDR SPINE USA, INC.;REEL/FRAME:028174/0149

Effective date: 20120425

AS Assignment

Owner name: LDR SPINE USA, INC., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:AUSTIN VENTURES VIII, L.P.;REEL/FRAME:035506/0091

Effective date: 20150427

Owner name: LDR HOLDING CORPORATION, TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:AUSTIN VENTURES VIII, L.P.;REEL/FRAME:035506/0091

Effective date: 20150427

Owner name: LDR MEDICAL, S.A.S., FRANCE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:AUSTIN VENTURES VIII, L.P.;REEL/FRAME:035506/0091

Effective date: 20150427

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY