US20110060346A1 - Surgical manipulator for a telerobotic system - Google Patents

Surgical manipulator for a telerobotic system Download PDF

Info

Publication number
US20110060346A1
US20110060346A1 US12/894,913 US89491310A US2011060346A1 US 20110060346 A1 US20110060346 A1 US 20110060346A1 US 89491310 A US89491310 A US 89491310A US 2011060346 A1 US2011060346 A1 US 2011060346A1
Authority
US
United States
Prior art keywords
instrument
shaft
surgical instrument
manipulator assembly
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/894,913
Inventor
Joel F. Jensen
Philip S. Green
John W. Hill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SRI International Inc
Original Assignee
SRI International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SRI International Inc filed Critical SRI International Inc
Priority to US12/894,913 priority Critical patent/US20110060346A1/en
Publication of US20110060346A1 publication Critical patent/US20110060346A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/02Arms extensible
    • B25J18/04Arms extensible rotatable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/76Manipulators having means for providing feel, e.g. force or tactile feedback
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/04Gripping heads and other end effectors with provision for the remote detachment or exchange of the head or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/106Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
    • B25J9/1065Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links with parallelograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • A61B2017/00464Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable for use with different instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2932Transmission of forces to jaw members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • A61B2090/506Supports for surgical instruments, e.g. articulated arms using a parallelogram linkage, e.g. panthograph
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B2200/00Constructional details of connections not covered for in other groups of this subclass
    • F16B2200/69Redundant disconnection blocking means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B2200/00Constructional details of connections not covered for in other groups of this subclass
    • F16B2200/69Redundant disconnection blocking means
    • F16B2200/71Blocking disengagement of catches or keys

Definitions

  • This invention relates to surgical manipulators and more particularly to robotic assisted apparatus for use in surgery.
  • the laparoscopic surgical instruments generally include a laparoscope for viewing the surgical field, and working tools such as clamps, graspers, scissors, staplers, and needle holders.
  • the working tools are similar to those used in conventional (open) surgery, except that the working end of each tool is separated from its handle by an approximately 12 inch long extension tube.
  • the surgeon passes instruments through the trocar sleeves and manipulates them inside the abdomen by sliding them in and out through the sleeves, rotating them in the sleeves, levering (e.g., pivoting) the sleeves in the abdominal wall, and actuating end effectors on the distal end of the instruments.
  • the position of the surgical instruments is controlled by servo motors rather than directly by hand or with fixed clamps.
  • the servo motors follow the motions of a surgeon's hands as he/she manipulates input control devices at a location that may be remote from the patient.
  • Position, force, and tactile feedback sensors may be employed to transmit position, force, and tactile sensations from the surgical instrument back to the surgeon's hands as he/she operates the telerobotic system.
  • the servo motors are typically part of an electromechanical device that supports and controls the surgical instruments that have been introduced directly into an open surgical site or through trocar sleeves into the patient's abdomen becomes a body cavity.
  • the electromechanical device or instrument holder provides mechanical actuation and control of a variety of surgical instruments, such as tissue graspers, needle drivers, etc, that each perform various functions for the surgeon, i.e., holding or driving a needle, grasping a blood vessel or dissecting tissue.
  • This new method of performing telesurgery through remote manipulation will create many new challenges.
  • One such challenge is that different surgical instruments will be attached and detached from the same instrument holder a number of times during an operation.
  • the number of entry ports into the patient's abdomen is generally limited during the operation because of space constraints as well as a desire to avoid unnecessary incisions in the patient.
  • a number of different surgical instruments will typically be introduced through the same trocar sleeve during the operation.
  • the system should be configured to quickly and easily engage and disengage the instrument from the holder to minimize the instrument exchange time during endoscopic surgery.
  • the system is part of an electromechanical device that can be coupled to a controller mechanism to form a telerobotic system for operating the surgical instrument by remote control.
  • a system and method provide for releasably holding a surgical instrument during conventional open surgery or endoscopic procedures, such as laparoscopy.
  • the instrument comprises an elongate shaft with proximal and distal ends and a mounting means having a protrusion extending radially from the shaft between the proximal and distal ends.
  • An instrument holder comprises a support having a body with an axial passage for receiving the instrument shaft and a first hole in communication with the axial passage for receiving the protrusion. A second hole is cut into the body transversely to and in communication with the first hole so that the protrusion can be rotated within the second hole.
  • the holder further includes a locking means coupled to the body for automatically locking the protrusion within the second hole thereby releasably locking the instrument to the instrument holder.
  • the protrusion of the mounting means comprises a pair of opposing arms, such as mounting pins, extending outward from the instrument shaft.
  • the first hole is an axially extending slot for receiving the mounting pins and the second hole is a perpendicular locking slot having a first portion aligned with the axial slot and a second portion extending circumferentially around the body of the instrument support.
  • the locking means preferably comprises a releasable latch assembly for locking the mounting pins to the instrument holder.
  • the latch assembly includes a spring-loaded plunger coupled to a latch that normally locks the instrument in place by capturing the mounting pin in the locking slot.
  • the plunger has a button extending outward from the instrument holder for moving the latch away from the locking slot. The button can be depressed manually or automatically to release the mounting pins and allow instrument exchange when the instrument is easily accessible to the surgeon.
  • the invention is particularly useful for releasably holding an endoscopic instrument configured for introduction through a small percutaneous penetration into a body cavity, e.g., the abdominal or thoracic cavity.
  • the instrument preferably includes an end effector, such as a pair of jaws, —coupled to the distal end for engaging a tissue structure within the body cavity.
  • the instrument has a second pair of arms, such as actuator pins, laterally extending from the shaft and operatively coupled to the end effector.
  • the actuator pins are axially displaceable with respect to the shaft to actuate the end effector (e.g., open and close the jaws).
  • the instrument holder further includes an actuator driver releasably coupled to the actuator arms and to an external driver for actuating the end effector.
  • the actuator driver preferably includes a twist-lock interface having transverse slots similar to that described for the instrument support so that-the instrument can be simultaneously engaged or disengaged from both the instrument support and the actuator driver.
  • FIG. 1 is a partial sectional elevational view of a robotic endoscopic surgical instrument mounted to a manipulator assembly according to the present invention
  • FIG. 1A is a partial sectional elevational view of the manipulator assembly of FIG. 1 illustrating the removal of an instrument holder from the rest of the assembly;
  • FIGS. 2A and 2B are enlarged side and front cross-sectional views, respectively, of the surgical instrument of FIG. 1 ;
  • FIGS. 3A and 3B are perspective views of an instrument support and an actuator pin catch, respectively, for releasably mounting the surgical instrument to the manipulator assembly;
  • FIG. 4 is a front elevational view of the surgical instrument mounted within the instrument support and actuator pin catch of FIGS. 3A and 3B ;
  • FIG. 5 is a front elevational view of an actuator driver for providing axial movement of the actuator pin catch of FIG. 3B ;
  • FIGS. 6A and 6B are enlarged cross-sectional views of an actuator carriage assembly and a helical actuator of the actuator driver of FIG. 5 ;
  • FIG. 7 is an enlarged detail of a portion of the frame of the manipulator assembly of FIG. 1 illustrating a coupling mechanism for removing the shafts from the frame;
  • FIG. 8 is a partial cross-sectional view of the instrument support of FIG. 3A illustrating a locking mechanism for a twist lock interface according to the present invention.
  • FIG. 9 is an elevational view of a remote center positioner for holding the manipulator assembly of FIG. 1 .
  • FIG. 10 shows a fragmentary portion of the insertion portion of an endoscope for use with the present invention.
  • Manipulator assembly 2 generally includes an instrument holder 4 removably mounted to a base 6 and a drive assembly 7 for manipulating a surgical instrument 14 releasably coupled to instrument holder 4 .
  • base 6 comprises a frame 16 having proximal and distal elongate support members 17 , 19 and first and second ball-spline shafts 18 , 20 rotatably coupled to support members 17 , 19 via bearings 22 .
  • Frame 16 further includes a support bracket 24 for attaching manipulator assembly 2 to a remote center positioner 300 , as discussed in more detail below (see FIG. 9 ).
  • Drive assembly 7 comprises first, second and third drives 8 , 10 , 12 , which are mounted to frame 16 and configured to provide three degrees of freedom to surgical instrument 14 .
  • first drive 8 rotates instrument 14 around its own axis
  • second drive 10 actuates an end effector 120 on the distal end of instrument 14
  • third drive 12 axially displaces instrument 14 with respect to frame 16 .
  • assembly 2 may include additional drives for providing additional degrees of freedom to surgical instrument 14 , such as rotation and flexion of an instrument wrist.
  • First drive 8 comprises a rotation drive motor 26 fixed to frame 16 and coupled to first shaft 18 by a drive belt 28 for rotating first shaft 18 with respect to frame 16 .
  • Second drive 10 comprises a gripper drive motor 30 fixed to frame 16 , and coupled to second shaft 20 by a drive belt- 32 for rotating second shaft 20 with respect to frame 16 .
  • Third drive 12 comprises a vertical drive motor 34 coupled to instrument holder 4 via a drive belt 36 and two pulleys 38 for axially displacing instrument holder 4 with respect to frame 16 .
  • Drive motors 26 , 30 , 34 are preferably coupled to a controller mechanism via servo-control electronics (not shown) to form a telerobotic system for operating surgical instrument 14 by remote control.
  • the drive motors follow the motions of a surgeon's hands as he/she manipulates input control devices at a location that may be remote from the patient.
  • a suitable telerobotic system for controlling the drive motors is described in commonly assigned co-pending application Ser. No. 08/623,932 filed Jan. 21, 1992 TELEOPERATOR SYSTEM AND METHOD WITH TELEPRESENCE, which is incorporated herein by reference.
  • the above described telerobotic servo system preferably has a servo bandwidth with a 3 dB cut off frequency of at least 10 hz so that the system can quickly and accurately respond to the rapid hand motions used by the surgeon.
  • instrument holder 4 has a relatively low inertia and drive motors 26 , 30 , 34 have relatively low ratio gear or pulley couplings.
  • surgical instrument 14 is an endoscopic instrument configured for introduction through a percutaneous penetration into a body cavity, such as the abdominal or thoracic cavity.
  • manipulator assembly 2 supports a cannula 50 on distal support member 19 of frame 16 for placement in the entry incision during an endoscopic surgical procedure (note that cannula 50 is illustrated schematically in FIG. 1 and will typically be much longer).
  • Cannula 50 is preferably a conventional gas sealing trocar sleeve adapted for laparoscopic surgery, such as colon resection and Nissen fundoplication.
  • cannula 50 preferably includes a force sensing element 52 , such as a strain gauge or force-sensing resistor, mounted to an annular bearing 54 within cannula 50 .
  • a force sensing element 52 such as a strain gauge or force-sensing resistor
  • Bearing 54 supports instrument 14 during surgery, allowing the instrument to rotate and move axially through the central bore of bearing 54 .
  • Bearing 54 transmits lateral forces exerted by the instrument 14 to force sensing element 52 , which is operably connected to the controller mechanism for transmitting these forces to the input control devices (not shown) held by the surgeon in the telerobotic system.
  • forces acting on instrument 14 can be detected without disturbances from forces acting on cannula 50 , such as the tissue surrounding the surgical incision, or by gravity and inertial forces acting on manipulator assembly 2 .
  • This facilitates the use of manipulator assembly in a robotic system because the surgeon will directly sense the forces acting against the end of instrument 14 .
  • the gravitational forces acting on the distal end of instrument 14 will also be detected by force sensing element 52 .
  • these forces would also be sensed by the surgeon during direct manipulation of the instrument.
  • instrument holder 4 comprises a chassis 60 mounted on shafts 18 , via ball-spline bearings 62 , 64 so that chassis 60 may move axially with respect to shafts 18 , 20 , but is prevented from rotating with shafts 18 , 20 .
  • Chassis 60 is preferably constructed of a material that will withstand exposure to high temperature sterilization processes, such as stainless steel, so that chassis 60 can be sterilized after a surgical procedure.
  • Chassis 60 includes a central cavity 66 for receiving surgical instrument 14 and an arm 68 laterally extending from chassis 60 . Arm 68 is fixed to drive belt 36 so that rotation of drive belt 36 moves instrument holder 4 in the axial direction along shafts 18 ; 20 .
  • Instrument holder 4 is removably coupled to base 6 and the drive motors so that the entire holder 4 can be removed and sterilized by conventional methods, such as steam, heat and pressure, chemicals, etc.
  • arm 68 includes a toggle switch 69 that can be rotated to release arm 68 from drive belt 36 ( FIG. 1 ).
  • shafts 18 , 20 are removably coupled to bearings 22 so that the shafts can be axially withdrawn from support members 17 , 19 of frame 16 , as shown in FIG. 1A .
  • the distal bearings 22 preferably include a coupling mechanism for allowing the removal of shafts 18 , 20 . As shown in FIG.
  • distal support member 19 includes a support collar 71 within each distal bearing 22 having an inner bore 72 for passage of one of the shafts 18 , 20 .
  • Each support collar 71 has an internal groove 73 and shafts 18 , 20 each have an annular groove 74 (see FIG. 1A ) near their lower ends that is aligned with internal grooves 73 when the shafts are suitably mounted within frame 16 ( FIG. 1 ).
  • a spring clip 75 is positioned within each internal groove 73 to hold each shaft 18 , 20 within the respective support collar 71 .
  • Spring clip 74 has a discontinuity (not shown) to allow removal of shafts 18 , 20 upon the application of a threshold axial force on the shafts.
  • distal support member 19 may be removably coupled to the rest of frame 16 so that the surgeon simply removes member 19 and slides holder down and off shafts 18 , 20 .
  • Proximal support member 17 may be removably coupled to frame 16 in a similar manner.
  • the drive motors may be housed in a separate servo-box (not shown) that is removably attached to base 6 . In this configuration, the servo-box would be removed from base 6 so that the entire base 6 , together with holder 4 , can be sterilized.
  • the lower portion of base 6 may also be sterilized to decontaminate those parts that come into contact with holder 4 or instrument 14 (e.g., by dipping the lower portion of base 6 into a sterilizing bath).
  • shafts 18 , 20 will preferably be somewhat longer than shown in FIG. 1 so that the upper portion of base 6 , including drive assembly 7 , is disposed sufficiently away from holder 4 and instrument 14 . In this manner, the surgical manipulator can be easily sterilized after a surgical procedure without damaging the drive motors or the electrical connections required for the telerobotic system.
  • Instrument holder 4 further includes an instrument support 70 (see detail in FIG. 3A ), for releasably coupling surgical instrument 14 to the manipulator assembly.
  • Instrument support 70 is rotatably mounted within chassis 60 via mounting bearings 74 so that support 70 and the instrument can be rotated therein.
  • support 70 is circumscribed by an annular ring gear 76 having teeth that mesh with the teeth of a drive gear 78 mounted to first shaft 18 .
  • Drive gear 78 is configured around first shaft 18 such that it will rotate with first shaft 18 , thereby rotating instrument support 70 and the surgical instrument therewith.
  • Drive gear 78 is also configured to move axially with respect to first shaft 18 to allow axial movement of instrument holder 4 with respect to frame 16 .
  • Instrument holder 4 further includes an actuator driver 80 (see detail in FIG. 5 ) movably mounted within axial guide slots 82 on either side of chassis 60 .
  • Actuator driver 80 comprises a helical actuator 84 (see detail in FIG. 6B ) having a ring gear 86 that meshes with a gripper drive gear 88 mounted to second shaft 20 . Rotation of second shaft 20 causes rotation of gripper drive gear 88 , thereby rotating ring gear 86 and helical actuator 84 within chassis 60 .
  • Actuator driver 80 further includes an actuator carriage assembly 90 (see detail in FIG. 6A ) for releasably coupling an end effector actuator of surgical instrument 14 to instrument holder 4 (see FIG. 2 ).
  • Carriage assembly 90 is mounted within helical actuator 84 and chassis 60 such that rotation of helical actuator 84 causes. a corresponding axial movement of carriage assembly 90 with respect to chassis 60 , as discussed in greater detail below.
  • FIGS. 2A and 2B illustrate a specific embodiment of an endoscopic surgical instrument 14 capable of being operated by a motorized manipulator, such as manipulator assembly 2 , for telerobotic surgery.
  • Surgical instrument 14 can be a variety of conventional endoscopic instruments adapted for delivery through a percutaneous penetration into a body cavity, such as tissue graspers, needle drivers, microscissors, electrocautery dissectors, etc.
  • instrument 14 is a tissue grasper comprising a shaft 100 having a proximal end 102 , a distal end 104 and a longitudinal axis 106 therebetween.
  • a knurled handle 114 is attached to proximal end 102 of shaft 100 to facilitate manipulation of instrument 14 .
  • Shaft 100 is preferably a stainless steel tube having an outer diameter in the range of 2-10 mm, usually 4-8 mm, so as to fit within a cannula having an internal diameter in the range of 2-15 mm. Shaft 100 can also be introduced directly through a percutaneous incision in the patient. Shaft 100 has a length selected to reach a target site in a body cavity, such as the abdomen, and to extend sufficiently out of the body cavity to facilitate easy manipulation of surgical instrument 14 . Thus, shaft 100 should be at least between 10 cm and 40 cm and is preferably between 17 cm and 30 cm. It should be noted that although shaft 100 is shown as having a circular cross-sectional shape in the drawings, shaft 100 could alternatively have a rectangular, triangular, oval or channel cross-sectional shape.
  • shaft 100 includes a mounting means for releasably coupling surgical instrument 14 to instrument support 70 and first drive 8 of manipulator assembly 2 .
  • mounting means comprises a pair of opposed mounting pins 116 extending laterally outward from shaft 100 .
  • Mounting pins 116 are rigidly connected to shaft 100 and are adapted for engaging a twist-lock interface on instrument support 70 , as discussed in detail below. It should be understood that the invention is not limited to a pair of opposing pins and mounting means can include a single mounting pin or a plurality of pins extending circumferentially around shaft. Alternatively, pins 116 may have a variety of other shapes, such as spherical or annular, if desired.
  • Instrument 14 includes an end effector 120 extending from distal end 104 for engaging a tissue structure on the patient, such as the abdomen during laparoscopic surgery.
  • end effector 120 comprises a pair of jaws 122 , 124 that are movable between open and closed positions for grasping a blood vessel, holding a suture, etc.
  • Jaws 122 , 124 preferably have transverse grooves or other textural features (not shown) on opposing surfaces to facilitate gripping of the tissue structure.
  • the jaws may also include atraumatic means (not shown), such as elastomeric sleeves made of rubber, foam or surgical gauze wrapped around jaws 122 , 124 .
  • instrument 14 includes an end effector actuator releasably coupled to actuator driver 80 and second drive 10 of manipulation assembly 2 (see FIG. 4 ).
  • end effector actuator comprises a pair of opposed actuator pins 132 laterally protruding from axially extending slots 134 in shaft 100 .
  • Actuator pins 132 are coupled to an elongate rod 136 slidably disposed within an inner lumen 138 of shaft 100 .
  • Actuator pins 132 are slidable within slots 134 so that rod 136 is axially movable with respect to shaft 100 and mounting pins 116 to open and close jaws 122 , 124 , as is conventional in the art.
  • Elongate rod 136 has a proximal portion 140 that is disposed within an inner lumen 142 within shaft 100 to prevent actuator pins 132 from moving in the laterally direction and to ensure that rod 136 remains generally centered within shaft 100 during a surgical procedure.
  • Jaws 122 , 124 are preferably biased into the closed positioned by an annular compression spring 144 positioned within shaft 100 between actuator pins 132 and an annular disc 146 fixed to the inside surface of shaft 100 .
  • an annular compression spring 144 positioned within shaft 100 between actuator pins 132 and an annular disc 146 fixed to the inside surface of shaft 100 .
  • this allows the surgical team to introduce jaws 122 , 124 through cannula 50 (or any other type of percutaneous penetration) and into the body cavity without getting stuck within cannula 50 or damaging surrounding tissue.
  • FIGS. 3A , 3 B and 4 illustrate a twist lock mechanism for releasably connecting surgical instrument 14 to manipulator assembly 2 so that different instruments may be rapidly changed during an endoscopic surgical procedure.
  • instrument support 70 comprises an annular collar 200 defining a. central bore 202 for receiving shaft 100 of surgical instrument 14 .
  • Collar 200 further defines an axially extending slot 204 in communication with bore 202 and sized to allow mounting and actuator pins 116 , 132 of instrument 14 to slide therethrough (see FIG. 4 ).
  • Two locking slots 20 ′ 6 are cut into annular collar 200 at a transverse angle, preferably about 90°, to axially extending slot 204 (note that only one of the locking slots are shown in FIG. 3A ).
  • Locking slots 206 intersect slot 2 . 04 near the center of annular collar 200 and extend circumferentially around bore 202 , preferably about 90°, to allow rotation of both mounting pins 116 therethrough, as discussed below.
  • instrument support 70 further comprises means for locking mounting pins 116 into locking slots 206 so that the instrument cannot be accidently twisted and thereby disengaged from instrument support 70 during surgery.
  • the locking means comprises a latch assembly having a plunger 210 slidably disposed within a hole 212 in collar 200 , as shown in FIG. 3A .
  • Plunger 210 comprises an L-shaped latch 213 coupled to a release button 214 by a rod 215 extending through hole 212 .
  • Plunger 210 is movable between a first position, where latch 213 is not disposed within locking slots 206 so that mounting pins 116 are free to rotate therethrough, and a second position, where latch 213 is at least partially disposed within one of the locking slots 206 so as to prevent rotation of mounting pins 116 :
  • Latch 213 is preferably biased into the second or locked position by a compression spring 216 .
  • Button 214 is disposed on the upper surface of support 70 for manual actuation by the surgeon or automatic actuation by base 6 .
  • proximal support member 17 of frame 16 depresses release switch 214 to move latch 213 into the first or open position.
  • the intersecting axial and locking slots 204 , 206 form an interface for releasably coupling mounting pins 116 of surgical instrument 14 to instrument holder 4 .
  • the surgeon aligns mounting pins 116 with axial slot 204 and slides the instrument through bore 202 of annular collar 200 until mounting pins 116 are aligned with locking slots 206 , as shown in FIG. 4 .
  • the instrument is then rotated a sufficient distance, preferably about a 1 ⁇ 4 turn, through locking slots 206 so that the pins are no longer aligned with axial slot 204 .
  • switch 214 is released ( FIG.
  • latch 213 moves into locking slots 206 to prevent mounting pins 116 from rotating back into alignment with axial slot 204 so that instrument 14 is secured to instrument support 70 .
  • a single mounting pin may be utilized with the above described configuration to lock the surgical instrument to the support.
  • two opposing pins are preferred because this configuration reduces torsional forces on the inner surface of locking slots 206 .
  • the locking means preferably includes a ball detent 217 disposed within collar 200 .
  • Ball detent 217 is biased upward into one of the locking slots 206 by a spring 218 .
  • Ball detent 217 serves to temporarily capture mounting pins 116 in a position rotated about 90° from alignment with axial slot 204 . This ensures that the mounting pins will be completely rotated into the proper position (i.e., out of the way of latch 213 ) when instrument 14 is twisted into instrument holder. Otherwise, when switch 214 is released, latch 213 could become engaged with mounting pins 216 so that the latch is unable to move completely into the locked position, thereby potentially causing the accidental release of instrument 14 during surgery.
  • actuator driver 80 of instrument holder 4 further comprises an actuator pin catch 220 for releasably holding and moving actuator pins 132 of instrument 14 .
  • Actuator pin catch 220 is constructed similarly to instrument support 70 ( FIG. 3A ), comprising an annular collar 222 that defines a bore 224 for receiving shaft 100 and an axially extending slot 226 for receiving actuator pins 132 .
  • a locking slot 228 is cut into actuator pin catch 220 at a 90° angle so that actuator pins can be rotated into the lock slot to couple actuator pins 132 to actuator driver 66 , as discussed above in reference to the mounting pins.
  • slot 226 need not extend completely through collar 222 since actuator pins 132 are located distally of mounting pins 116 (the instrument is preferably inserted jaws first). Of course, actuator and mounting pins 132 , 116 may be reversed so that the mounting pins are distal to the actuator pins, if desired.
  • actuator pin catch 220 is rotatably mounted on a ball bearing 230 in actuator carriage assembly 90 .
  • Bearing 230 allows the pin catch 220 to rotate freely in carriage assembly 90 while preventing relative axial motion. Therefore, when instrument 14 is rotated by first drive 8 , actuator pins 132 will rotate within carriage assembly 90 .
  • Carriage assembly 90 further comprises two sets of axles 232 for rotatably supporting a pair of inner rollers 236 and a pair of outer rollers 238 . As shown in FIG. 1 , outer rollers 238 are slidably disposed within axial guide slots 82 of chassis 60 to prevent rotation of carriage assembly 90 with respect to chassis 60 .
  • Inner and outer rollers 236 , 238 cooperate with helical actuator 84 and chassis 60 of instrument holder 4 to move axially with respect to the holder, thereby axially moving pin catch 220 and actuator pins 132 therewith relative to shaft 100 of instrument 14 (which actuates jaws 122 , 124 , as discussed above).
  • helical actuator 84 includes a central bore 240 for receiving carriage assembly 90 and surgical instrument 14 and two opposing helical tracks 242 , 244 each extending circumferentially around helical actuator 84 (preferably slightly less than 180°) for receiving inner rollers 236 of carriage assembly 90 , as shown in FIG. 5 .
  • rotation of helical actuator 84 causes carriage assembly 90 (and actuator pin catch 220 ) to move up or down, depending on the sense of the rotation.
  • helical actuator 84 Because of the symmetrical design of helical actuator 84 , the actuation force applied by second driver 10 will not generate any effective side loads on instrument 14 , which avoids frictional coupling with other degrees of freedom such as axial (third driver 12 ) and rotation (first driver 8 ).
  • helical tracks 242 , 244 have a pitch selected such that the mechanism can be easily back-driven, allowing grip forces to be sensed in a position-served teleoperation system.
  • instrument holder 4 further includes a pair of axial guide pins 250 , 252 fixed to instrument support 70 .
  • Actuator pin catch 220 has a pair of openings 254 , 256 for receiving guide pins 250 , 252 .
  • Guide pins 250 , 252 prevent relative rotation between pin catch 220 and support 70 (so that actuator and mounting pins 116 , 132 can both rotate with the instrument) and allow axial movement relative to each other (so that end effector 120 can be actuated by axial movement of actuator pins 132 ).
  • FIG. 9 is an elevational view of a remote center positioner 300 which can be used to support manipulator assembly 2 above the patient (note that support manipulator 2 is not shown in FIG. 8 ).
  • Remote center positioner 300 provides two degrees of freedom for positioning manipulator assembly 2 , constraining it to rotate about a point 308 coincident with the entry incision.
  • point 308 will be approximately the center of bearing 54 in cannula 50 ( FIG. 1 ).
  • a more complete description of remote center positioner 300 is described in commonly assigned co-pending application Ser. No. 08/062,404 filed May 14, 1993 REMOTE CENTER POSITIONER, which is incorporated herein by reference.
  • a first linkage means is indicated generally by the numeral 321 and a second linkage in the form of a parallelogram is indicated by the numeral 323 .
  • the first linkage means is pivotally mounted on a base plate for rotation about an x-x axis.
  • the second linkage means is pivotally connected to the first linkage means and is adapted to move in a plane parallel to the first linkage.
  • Five link members (including extensions thereof), 311 , 312 , 313 , 314 , and 315 are connected together with pivot joints 316 - 320 .
  • a portion of element 313 extends beyond pivot 320 of the parallelogram linkage.
  • the parallelogram linkage has an operating end at link member 313 and a driving end at link member 312 .
  • the elongated element 313 may, as desired later, carry a surgical instrument or other device, such as support bracket 24 of manipulator assembly 2 .
  • the pivot joints allow relative motion of the link members only in the plane containing them.
  • a parallelogram linkage is formed by corresponding link members 314 , 315 and link members 312 and 313 .
  • the portions of link members 314 and 315 of the parallelogram are of equal length as are the portions of members 312 and 313 of the parallelogram.
  • These members are connected together in a parallelogram for relative movement only in the plane formed by the members.
  • a rotatable joint generally indicated by the numeral 322 is connected to a suitable base 324 .
  • the rotatable joint 322 is mounted on a base plate 326 adapted to be fixedly mounted to the base support means 324 .
  • a pivot plate 328 is pivotally mounted to base plate 326 by suitable means at, such as, pivots 330 , 332 .
  • pivot plate 328 may be rotated about axis x-x through a desired angle 62 . This may be accomplished manually or by a suitable pivot drive motor 334 .
  • a first linkage is pivotally mounted on the pivot plate 328 of the rotatable joint 322 .
  • the linkage elements 311 , 312 and the link members are relatively stiff or inflexible so that they may adequately support an instrument used in surgical operations. Rods made of aluminum or other metal are useful as such links.
  • the linkage elements 311 and 312 are pivotally mounted on base plate 328 for rotation with respect to the rotatable joint by pivots 336 and 338 . At least one of the -pivots 336 , 338 is positioned so that its axis of rotation is normal to and intersects the x-x axis. Movement may occur manually or may occur using a linkage drive motor 340 .
  • the first linkage is also shaped in the form of a parallelogram formed by linkage elements 311 , and 312 ; the portion of link member 315 connected thereto by pivots 316 , 318 ; and base plate 328 .
  • One of the link members 315 is thus utilized in both the first 321 and second 323 linkage means.
  • Linkage element 312 also forms a common link of both the first linkage means 321 and the second linkage means 323 .
  • a remote center of spherical rotation 308 is provided by the above described embodiment of apparatus when the linkage element 311 is rotated and/or when pivot plate 328 is rotated about axis x-x.
  • the end of element 313 can be moved through desired angles 81 and 92 or rotated about its own axis, while the remote center of rotation remains at the same location.
  • FIG. 9 also shows an inclinometer 350 attached to the base of remote center positioner 300 .
  • the remote center positioner may be mounted at an arbitrary orientation with respect to vertical depending on the particular surgery to be performed, and inclinometer 350 can be used to measure this orientation.
  • the measured orientation can be used to calculate and implement servo control signals necessary to control the telerobotic system so as to prevent gravitational forces acting on the system mechanisms from being felt by the surgeon.
  • FIG. 10 wherein the distal end portion or tip, 260 of the insertion section of an endoscope is shown which is a substantially the same type as shown in the above-mentioned publication entitled “Introduction to a New Project for National Research and Development Program (Large-Scale Project) in FY 1991” which endoscope may be used in the practice of the present invention.
  • the insertion end of the endoscope includes a pair of spaced viewing windows 262 R and 262 L and an illumination source 264 for viewing and illuminating a workspace to be observed. Light received at the windows is focused by objective lens means, not shown, and transmitted through fiber-optic bundles to a pair of cameras at the operating end of the endoscope, now shown.
  • the camera outputs are converted to a three-dimensional image of the workspace which image is located adjacent hand-operated means at the operator's station, now shown.
  • Right and left steerable catheters 268 R and 268 L pass through accessory channels in the endoscope body, which catheters are adapted for extension form the distal end portion, as illustrated.
  • End effectors 270 R and 270 L are provided at the ends of the catheters which may comprise conventional endoscopic instruments. Force sensors, not shown, also are inserted through the endoscope channels.
  • Steerable catheters which include control wires for controlling bending of the catheters and operation of an end effector suitable for use with this invention are well known.
  • Control motors for operation of the control wires are provided at the operating end of the endoscope, which motors are included in a servomechanism of a type described in U.S. patent application Ser. No. 07/823,932 for operation of the steerable catheters and associated end effectors from a remote operator's station.
  • the interfacing computer in the servomechanism system remaps the operator's hand motion into the coordinate system of the end effectors, and images of the end effectors are viewable adjacent the hand-operated controllers. With this embodiment, the operator has the sensation of reaching through the endoscope to put his hands directly on the end effectors for control thereof.
  • Endoscopes of different types may be employed in this embodiment of the invention so long as they include one or more accessory channels for use in control of end effectors means, and suitable viewing means for use in providing a visual display of the workspace.
  • suitable viewing means for use in providing a visual display of the workspace.
  • gastric, colonscopic, and like type, endoscopes may be employed.
  • instrument holder 4 along with a telerobotic control mechanism, would be particularly useful during open surgical procedures, allowing a surgeon to perform an operation from a remote location, such as a different room or a completely different hospital.

Abstract

The invention is directed to a system and method for releasably holding a surgical instrument (14), such as an endoscopic instrument configured for delivery through a small percutaneous penetration in a patient. The instrument comprises an elongate shaft (100) with a pair of mounting pins (116) laterally extending from the shaft between its proximal and distal ends. An instrument holder comprises a support having a central bore (202) and an axially extending slot (204) for receiving the instrument shaft and the mounting pins. A pair of locking slots (206) are cut into the support transversely to and in communication with the axial slot so that the mounting pins can be rotated within the locking slots. The instrument support further includes a latch assembly for automatically locking the mounting pins within the locking slots to releasably couple the instrument to the instrument holder. With this twist-lock motion, the surgeon can rapidly engage and disengage various instruments from the holder during a surgical procedure, such as open surgery, laparoscopy or thoracoscopy.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 10/265,285 filed Oct. 4, 2002, which is a continuation of U.S. application Ser. No. 09/521,253 filed on Mar. 8, 2000, now U.S. Pat. No. 6,461,372, which is a continuation of U.S. application Ser. No. 09/105,706 filed on Jun. 26, 1998, now U.S. Pat. No. 6,080,181, which is a division of U.S. application Ser. No. 08/848,934, filed on May 1, 1997, now U.S. Pat. No. 5,810,880, which is a division of application Ser. No. 08/485,587, filed on Jun. 7, 1995, now U.S. Pat. No. 5,649,956, all of which are incorporated herein by reference.
  • STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • This invention was made with Government support under contract awarded by the National Institute for Health (NIH) under grant number 5 R01GM-44902-02. The Government has certain rights in this invention.
  • REFERENCE TO A “SEQUENCE LISTING,” A TABLE, OR A COMPUTER PROGRAM LISTING APPENDIX SUBMITTED ON A COMPACT DISK
  • Not Applicable
  • BACKGROUND OF THE INVENTION
  • This invention relates to surgical manipulators and more particularly to robotic assisted apparatus for use in surgery.
  • In standard laparoscopic surgery, a patient's abdomen is insufflated with gas, and trocar sleeves are passed through small (approximately ½ inch) incisions to provide entry ports for laparoscopic surgical instruments. The laparoscopic surgical instruments generally include a laparoscope for viewing the surgical field, and working tools such as clamps, graspers, scissors, staplers, and needle holders. The working tools are similar to those used in conventional (open) surgery, except that the working end of each tool is separated from its handle by an approximately 12 inch long extension tube. To perform surgical procedures, the surgeon passes instruments through the trocar sleeves and manipulates them inside the abdomen by sliding them in and out through the sleeves, rotating them in the sleeves, levering (e.g., pivoting) the sleeves in the abdominal wall, and actuating end effectors on the distal end of the instruments.
  • In robotically-assisted and telerobotic surgery (both open surgery and endoscopic procedures), the position of the surgical instruments is controlled by servo motors rather than directly by hand or with fixed clamps. The servo motors follow the motions of a surgeon's hands as he/she manipulates input control devices at a location that may be remote from the patient. Position, force, and tactile feedback sensors may be employed to transmit position, force, and tactile sensations from the surgical instrument back to the surgeon's hands as he/she operates the telerobotic system.
  • The servo motors are typically part of an electromechanical device that supports and controls the surgical instruments that have been introduced directly into an open surgical site or through trocar sleeves into the patient's abdomen becomes a body cavity. During the operation, the electromechanical device or instrument holder provides mechanical actuation and control of a variety of surgical instruments, such as tissue graspers, needle drivers, etc, that each perform various functions for the surgeon, i.e., holding or driving a needle, grasping a blood vessel or dissecting tissue.
  • This new method of performing telesurgery through remote manipulation will create many new challenges. One such challenge is that different surgical instruments will be attached and detached from the same instrument holder a number of times during an operation. In laparoscopic procedures, for example, the number of entry ports into the patient's abdomen is generally limited during the operation because of space constraints as well as a desire to avoid unnecessary incisions in the patient. Thus, a number of different surgical instruments will typically be introduced through the same trocar sleeve during the operation. Likewise, in open surgery, there is typically not enough room around the surgical site to position more than one or two surgical manipulators, and so the surgeon's assistant will be compelled to frequently remove instruments from the holder and exchange them with other surgical tools.
  • What is needed, therefore, is an improved system and method for releasably coupling a surgical instrument to an instrument holder. The system should be configured to quickly and easily engage and disengage the instrument from the holder to minimize the instrument exchange time during endoscopic surgery. Preferably, the system is part of an electromechanical device that can be coupled to a controller mechanism to form a telerobotic system for operating the surgical instrument by remote control.
  • BRIEF SUMMARY OF THE INVENTION
  • According to the invention, a system and method provide for releasably holding a surgical instrument during conventional open surgery or endoscopic procedures, such as laparoscopy. The instrument comprises an elongate shaft with proximal and distal ends and a mounting means having a protrusion extending radially from the shaft between the proximal and distal ends. An instrument holder comprises a support having a body with an axial passage for receiving the instrument shaft and a first hole in communication with the axial passage for receiving the protrusion. A second hole is cut into the body transversely to and in communication with the first hole so that the protrusion can be rotated within the second hole. To prevent the instrument from being accidently twisted and thereby disengaged from the instrument holder during surgery, the holder further includes a locking means coupled to the body for automatically locking the protrusion within the second hole thereby releasably locking the instrument to the instrument holder.
  • In a preferred configuration, the protrusion of the mounting means comprises a pair of opposing arms, such as mounting pins, extending outward from the instrument shaft. The first hole is an axially extending slot for receiving the mounting pins and the second hole is a perpendicular locking slot having a first portion aligned with the axial slot and a second portion extending circumferentially around the body of the instrument support. With this configuration, the mounting pins can be slid through the axial slot and rotated into the locking slot to attach the instrument to the holder. The instrument can be removed by performing the same two steps in reverse order. With this twist-lock motion, the surgeon can rapidly engage and disengage various instruments from the instrument holder during a surgical procedure.
  • The locking means preferably comprises a releasable latch assembly for locking the mounting pins to the instrument holder. The latch assembly includes a spring-loaded plunger coupled to a latch that normally locks the instrument in place by capturing the mounting pin in the locking slot. The plunger has a button extending outward from the instrument holder for moving the latch away from the locking slot. The button can be depressed manually or automatically to release the mounting pins and allow instrument exchange when the instrument is easily accessible to the surgeon.
  • The invention is particularly useful for releasably holding an endoscopic instrument configured for introduction through a small percutaneous penetration into a body cavity, e.g., the abdominal or thoracic cavity. To that end, the instrument preferably includes an end effector, such as a pair of jaws, —coupled to the distal end for engaging a tissue structure within the body cavity. To actuate the end effector, the instrument has a second pair of arms, such as actuator pins, laterally extending from the shaft and operatively coupled to the end effector. Preferably, the actuator pins are axially displaceable with respect to the shaft to actuate the end effector (e.g., open and close the jaws). The instrument holder further includes an actuator driver releasably coupled to the actuator arms and to an external driver for actuating the end effector. The actuator driver preferably includes a twist-lock interface having transverse slots similar to that described for the instrument support so that-the instrument can be simultaneously engaged or disengaged from both the instrument support and the actuator driver.
  • Other features and advantages of the invention will appear from the following description in which the preferred embodiment has been set forth in detail in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a partial sectional elevational view of a robotic endoscopic surgical instrument mounted to a manipulator assembly according to the present invention;
  • FIG. 1A is a partial sectional elevational view of the manipulator assembly of FIG. 1 illustrating the removal of an instrument holder from the rest of the assembly;
  • FIGS. 2A and 2B are enlarged side and front cross-sectional views, respectively, of the surgical instrument of FIG. 1;
  • FIGS. 3A and 3B are perspective views of an instrument support and an actuator pin catch, respectively, for releasably mounting the surgical instrument to the manipulator assembly;
  • FIG. 4 is a front elevational view of the surgical instrument mounted within the instrument support and actuator pin catch of FIGS. 3A and 3B;
  • FIG. 5 is a front elevational view of an actuator driver for providing axial movement of the actuator pin catch of FIG. 3B;
  • FIGS. 6A and 6B are enlarged cross-sectional views of an actuator carriage assembly and a helical actuator of the actuator driver of FIG. 5;
  • FIG. 7 is an enlarged detail of a portion of the frame of the manipulator assembly of FIG. 1 illustrating a coupling mechanism for removing the shafts from the frame;
  • FIG. 8 is a partial cross-sectional view of the instrument support of FIG. 3A illustrating a locking mechanism for a twist lock interface according to the present invention; and
  • FIG. 9 is an elevational view of a remote center positioner for holding the manipulator assembly of FIG. 1.
  • FIG. 10 shows a fragmentary portion of the insertion portion of an endoscope for use with the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring to the drawings in detail, wherein like numerals indicate like elements, a manipulator assembly 2 is illustrated according to the principles of the invention. Manipulator assembly 2 generally includes an instrument holder 4 removably mounted to a base 6 and a drive assembly 7 for manipulating a surgical instrument 14 releasably coupled to instrument holder 4.
  • Referring to FIG. 1, base 6 comprises a frame 16 having proximal and distal elongate support members 17, 19 and first and second ball- spline shafts 18, 20 rotatably coupled to support members 17, 19 via bearings 22. Frame 16 further includes a support bracket 24 for attaching manipulator assembly 2 to a remote center positioner 300, as discussed in more detail below (see FIG. 9). Drive assembly 7 comprises first, second and third drives 8, 10, 12, which are mounted to frame 16 and configured to provide three degrees of freedom to surgical instrument 14. In the preferred embodiment, first drive 8 rotates instrument 14 around its own axis, second drive 10 actuates an end effector 120 on the distal end of instrument 14 and third drive 12 axially displaces instrument 14 with respect to frame 16. Of course, it will be readily recognized by those skilled in the art that other configurations are possible. For example, assembly 2 may include additional drives for providing additional degrees of freedom to surgical instrument 14, such as rotation and flexion of an instrument wrist.
  • First drive 8 comprises a rotation drive motor 26 fixed to frame 16 and coupled to first shaft 18 by a drive belt 28 for rotating first shaft 18 with respect to frame 16. Second drive 10 comprises a gripper drive motor 30 fixed to frame 16, and coupled to second shaft 20 by a drive belt-32 for rotating second shaft 20 with respect to frame 16. Third drive 12 comprises a vertical drive motor 34 coupled to instrument holder 4 via a drive belt 36 and two pulleys 38 for axially displacing instrument holder 4 with respect to frame 16. Drive motors 26, 30, 34 are preferably coupled to a controller mechanism via servo-control electronics (not shown) to form a telerobotic system for operating surgical instrument 14 by remote control. The drive motors follow the motions of a surgeon's hands as he/she manipulates input control devices at a location that may be remote from the patient. A suitable telerobotic system for controlling the drive motors is described in commonly assigned co-pending application Ser. No. 08/623,932 filed Jan. 21, 1992 TELEOPERATOR SYSTEM AND METHOD WITH TELEPRESENCE, which is incorporated herein by reference.
  • The above described telerobotic servo system preferably has a servo bandwidth with a 3 dB cut off frequency of at least 10 hz so that the system can quickly and accurately respond to the rapid hand motions used by the surgeon. To operate effectively with this system, instrument holder 4 has a relatively low inertia and drive motors 26, 30, 34 have relatively low ratio gear or pulley couplings.
  • In a specific embodiment, surgical instrument 14 is an endoscopic instrument configured for introduction through a percutaneous penetration into a body cavity, such as the abdominal or thoracic cavity. In this embodiment, manipulator assembly 2 supports a cannula 50 on distal support member 19 of frame 16 for placement in the entry incision during an endoscopic surgical procedure (note that cannula 50 is illustrated schematically in FIG. 1 and will typically be much longer). Cannula 50 is preferably a conventional gas sealing trocar sleeve adapted for laparoscopic surgery, such as colon resection and Nissen fundoplication.
  • As shown in FIG. 1, cannula 50 preferably includes a force sensing element 52, such as a strain gauge or force-sensing resistor, mounted to an annular bearing 54 within cannula 50. Bearing 54 supports instrument 14 during surgery, allowing the instrument to rotate and move axially through the central bore of bearing 54. Bearing 54 transmits lateral forces exerted by the instrument 14 to force sensing element 52, which is operably connected to the controller mechanism for transmitting these forces to the input control devices (not shown) held by the surgeon in the telerobotic system. In this manner, forces acting on instrument 14 can be detected without disturbances from forces acting on cannula 50, such as the tissue surrounding the surgical incision, or by gravity and inertial forces acting on manipulator assembly 2. This facilitates the use of manipulator assembly in a robotic system because the surgeon will directly sense the forces acting against the end of instrument 14. Of course, the gravitational forces acting on the distal end of instrument 14 will also be detected by force sensing element 52. However, these forces would also be sensed by the surgeon during direct manipulation of the instrument.
  • As shown in FIG. 1, instrument holder 4 comprises a chassis 60 mounted on shafts 18, via ball- spline bearings 62, 64 so that chassis 60 may move axially with respect to shafts 18, 20, but is prevented from rotating with shafts 18, 20. Chassis 60 is preferably constructed of a material that will withstand exposure to high temperature sterilization processes, such as stainless steel, so that chassis 60 can be sterilized after a surgical procedure. Chassis 60 includes a central cavity 66 for receiving surgical instrument 14 and an arm 68 laterally extending from chassis 60. Arm 68 is fixed to drive belt 36 so that rotation of drive belt 36 moves instrument holder 4 in the axial direction along shafts 18; 20.
  • Instrument holder 4 is removably coupled to base 6 and the drive motors so that the entire holder 4 can be removed and sterilized by conventional methods, such as steam, heat and pressure, chemicals, etc. In the preferred configuration, arm 68 includes a toggle switch 69 that can be rotated to release arm 68 from drive belt 36 (FIG. 1). In addition, shafts 18, 20 are removably coupled to bearings 22 so that the shafts can be axially withdrawn from support members 17, 19 of frame 16, as shown in FIG. 1A. To this end, the distal bearings 22 preferably include a coupling mechanism for allowing the removal of shafts 18, 20. As shown in FIG. 7, distal support member 19 includes a support collar 71 within each distal bearing 22 having an inner bore 72 for passage of one of the shafts 18, 20. Each support collar 71 has an internal groove 73 and shafts 18, 20 each have an annular groove 74 (see FIG. 1A) near their lower ends that is aligned with internal grooves 73 when the shafts are suitably mounted within frame 16 (FIG. 1). A spring clip 75 is positioned within each internal groove 73 to hold each shaft 18, 20 within the respective support collar 71. Spring clip 74 has a discontinuity (not shown) to allow removal of shafts 18, 20 upon the application of a threshold axial force on the shafts.
  • To remove instrument holder 4 from base 6, the operator rotates toggle switch 69 to release arm 68 from drive belt 36 and removes drive belts 28, 32 from drives 8, 10. As shown in FIG. 1A, the operator holds instrument holder 4 and pulls shafts 18, 20 upwards, providing enough force to release spring clips 75. Shafts 18, 20 will disengage from distal bearings 22 and slide through ball- spline bearings 62, 64 so that instrument holder 4 is disconnected from base 6. It should be understood that the invention is not limited to the above described means for removably coupling instrument holder 4 to base 6 and drive assembly 7. For example, distal support member 19 may be removably coupled to the rest of frame 16 so that the surgeon simply removes member 19 and slides holder down and off shafts 18, 20. Proximal support member 17 may be removably coupled to frame 16 in a similar manner. Alternatively, the drive motors may be housed in a separate servo-box (not shown) that is removably attached to base 6. In this configuration, the servo-box would be removed from base 6 so that the entire base 6, together with holder 4, can be sterilized.
  • The lower portion of base 6 (including distal support member 19) may also be sterilized to decontaminate those parts that come into contact with holder 4 or instrument 14 (e.g., by dipping the lower portion of base 6 into a sterilizing bath). To facilitate this type of sterilization, shafts 18, 20 will preferably be somewhat longer than shown in FIG. 1 so that the upper portion of base 6, including drive assembly 7, is disposed sufficiently away from holder 4 and instrument 14. In this manner, the surgical manipulator can be easily sterilized after a surgical procedure without damaging the drive motors or the electrical connections required for the telerobotic system.
  • Instrument holder 4 further includes an instrument support 70 (see detail in FIG. 3A), for releasably coupling surgical instrument 14 to the manipulator assembly. Instrument support 70 is rotatably mounted within chassis 60 via mounting bearings 74 so that support 70 and the instrument can be rotated therein. As shown in FIG. 1, support 70 is circumscribed by an annular ring gear 76 having teeth that mesh with the teeth of a drive gear 78 mounted to first shaft 18. Drive gear 78 is configured around first shaft 18 such that it will rotate with first shaft 18, thereby rotating instrument support 70 and the surgical instrument therewith. Drive gear 78 is also configured to move axially with respect to first shaft 18 to allow axial movement of instrument holder 4 with respect to frame 16.
  • Instrument holder 4 further includes an actuator driver 80 (see detail in FIG. 5) movably mounted within axial guide slots 82 on either side of chassis 60. Actuator driver 80 comprises a helical actuator 84 (see detail in FIG. 6B) having a ring gear 86 that meshes with a gripper drive gear 88 mounted to second shaft 20. Rotation of second shaft 20 causes rotation of gripper drive gear 88, thereby rotating ring gear 86 and helical actuator 84 within chassis 60. Actuator driver 80 further includes an actuator carriage assembly 90 (see detail in FIG. 6A) for releasably coupling an end effector actuator of surgical instrument 14 to instrument holder 4 (see FIG. 2). Carriage assembly 90 is mounted within helical actuator 84 and chassis 60 such that rotation of helical actuator 84 causes. a corresponding axial movement of carriage assembly 90 with respect to chassis 60, as discussed in greater detail below.
  • FIGS. 2A and 2B illustrate a specific embodiment of an endoscopic surgical instrument 14 capable of being operated by a motorized manipulator, such as manipulator assembly 2, for telerobotic surgery. Surgical instrument 14 can be a variety of conventional endoscopic instruments adapted for delivery through a percutaneous penetration into a body cavity, such as tissue graspers, needle drivers, microscissors, electrocautery dissectors, etc. In the preferred embodiment, instrument 14 is a tissue grasper comprising a shaft 100 having a proximal end 102, a distal end 104 and a longitudinal axis 106 therebetween. A knurled handle 114 is attached to proximal end 102 of shaft 100 to facilitate manipulation of instrument 14.
  • Shaft 100 is preferably a stainless steel tube having an outer diameter in the range of 2-10 mm, usually 4-8 mm, so as to fit within a cannula having an internal diameter in the range of 2-15 mm. Shaft 100 can also be introduced directly through a percutaneous incision in the patient. Shaft 100 has a length selected to reach a target site in a body cavity, such as the abdomen, and to extend sufficiently out of the body cavity to facilitate easy manipulation of surgical instrument 14. Thus, shaft 100 should be at least between 10 cm and 40 cm and is preferably between 17 cm and 30 cm. It should be noted that although shaft 100 is shown as having a circular cross-sectional shape in the drawings, shaft 100 could alternatively have a rectangular, triangular, oval or channel cross-sectional shape.
  • In a specific configuration, shaft 100 includes a mounting means for releasably coupling surgical instrument 14 to instrument support 70 and first drive 8 of manipulator assembly 2. In the preferred embodiment, mounting means comprises a pair of opposed mounting pins 116 extending laterally outward from shaft 100. Mounting pins 116 are rigidly connected to shaft 100 and are adapted for engaging a twist-lock interface on instrument support 70, as discussed in detail below. It should be understood that the invention is not limited to a pair of opposing pins and mounting means can include a single mounting pin or a plurality of pins extending circumferentially around shaft. Alternatively, pins 116 may have a variety of other shapes, such as spherical or annular, if desired.
  • Instrument 14 includes an end effector 120 extending from distal end 104 for engaging a tissue structure on the patient, such as the abdomen during laparoscopic surgery. In the preferred embodiment, end effector 120 comprises a pair of jaws 122, 124 that are movable between open and closed positions for grasping a blood vessel, holding a suture, etc. Jaws 122, 124 preferably have transverse grooves or other textural features (not shown) on opposing surfaces to facilitate gripping of the tissue structure. To avoid the possibility of damaging the tissue to which jaws 122, 124 are applied, the jaws may also include atraumatic means (not shown), such as elastomeric sleeves made of rubber, foam or surgical gauze wrapped around jaws 122, 124.
  • To move jaws 122, 124 between the open and closed positions, instrument 14 includes an end effector actuator releasably coupled to actuator driver 80 and second drive 10 of manipulation assembly 2 (see FIG. 4). In the preferred embodiment, end effector actuator comprises a pair of opposed actuator pins 132 laterally protruding from axially extending slots 134 in shaft 100. Actuator pins 132 are coupled to an elongate rod 136 slidably disposed within an inner lumen 138 of shaft 100. Actuator pins 132 are slidable within slots 134 so that rod 136 is axially movable with respect to shaft 100 and mounting pins 116 to open and close jaws 122, 124, as is conventional in the art. Elongate rod 136 has a proximal portion 140 that is disposed within an inner lumen 142 within shaft 100 to prevent actuator pins 132 from moving in the laterally direction and to ensure that rod 136 remains generally centered within shaft 100 during a surgical procedure.
  • Jaws 122, 124 are preferably biased into the closed positioned by an annular compression spring 144 positioned within shaft 100 between actuator pins 132 and an annular disc 146 fixed to the inside surface of shaft 100. Dining endoscopic procedures, this allows the surgical team to introduce jaws 122, 124 through cannula 50 (or any other type of percutaneous penetration) and into the body cavity without getting stuck within cannula 50 or damaging surrounding tissue.
  • FIGS. 3A, 3B and 4 illustrate a twist lock mechanism for releasably connecting surgical instrument 14 to manipulator assembly 2 so that different instruments may be rapidly changed during an endoscopic surgical procedure. As shown in FIG. 3A, instrument support 70 comprises an annular collar 200 defining a. central bore 202 for receiving shaft 100 of surgical instrument 14. Collar 200 further defines an axially extending slot 204 in communication with bore 202 and sized to allow mounting and actuator pins 116, 132 of instrument 14 to slide therethrough (see FIG. 4). Two locking slots 206 are cut into annular collar 200 at a transverse angle, preferably about 90°, to axially extending slot 204 (note that only one of the locking slots are shown in FIG. 3A). Locking slots 206 intersect slot 2.04 near the center of annular collar 200 and extend circumferentially around bore 202, preferably about 90°, to allow rotation of both mounting pins 116 therethrough, as discussed below.
  • As shown in FIGS. 3A and 8, instrument support 70 further comprises means for locking mounting pins 116 into locking slots 206 so that the instrument cannot be accidently twisted and thereby disengaged from instrument support 70 during surgery. Preferably, the locking means comprises a latch assembly having a plunger 210 slidably disposed within a hole 212 in collar 200, as shown in FIG. 3A. Plunger 210 comprises an L-shaped latch 213 coupled to a release button 214 by a rod 215 extending through hole 212. Plunger 210 is movable between a first position, where latch 213 is not disposed within locking slots 206 so that mounting pins 116 are free to rotate therethrough, and a second position, where latch 213 is at least partially disposed within one of the locking slots 206 so as to prevent rotation of mounting pins 116: Latch 213 is preferably biased into the second or locked position by a compression spring 216.
  • Button 214 is disposed on the upper surface of support 70 for manual actuation by the surgeon or automatic actuation by base 6. Preferably, when instrument holder 4 is moved to its most proximal position (see FIG. 1), proximal support member 17 of frame 16 depresses release switch 214 to move latch 213 into the first or open position. With this configuration, instruments can be exchanged only when the instrument holder 4 is in the most proximal position, where shaft 100 of instrument 14 is easily accessible. In addition, this prevents the accidental release of the instrument when its distal end has penetrated cannula 50 and is disposed within the body cavity.
  • The intersecting axial and locking slots 204, 206 form an interface for releasably coupling mounting pins 116 of surgical instrument 14 to instrument holder 4. To insert instrument 14, the surgeon aligns mounting pins 116 with axial slot 204 and slides the instrument through bore 202 of annular collar 200 until mounting pins 116 are aligned with locking slots 206, as shown in FIG. 4. The instrument is then rotated a sufficient distance, preferably about a ¼ turn, through locking slots 206 so that the pins are no longer aligned with axial slot 204. When instrument 14 is moved distally, switch 214 is released (FIG. 1) and latch 213 moves into locking slots 206 to prevent mounting pins 116 from rotating back into alignment with axial slot 204 so that instrument 14 is secured to instrument support 70. It should be noted that a single mounting pin may be utilized with the above described configuration to lock the surgical instrument to the support. However, two opposing pins are preferred because this configuration reduces torsional forces on the inner surface of locking slots 206.
  • As shown in FIG. 8, the locking means preferably includes a ball detent 217 disposed within collar 200. Ball detent 217 is biased upward into one of the locking slots 206 by a spring 218. Ball detent 217 serves to temporarily capture mounting pins 116 in a position rotated about 90° from alignment with axial slot 204. This ensures that the mounting pins will be completely rotated into the proper position (i.e., out of the way of latch 213) when instrument 14 is twisted into instrument holder. Otherwise, when switch 214 is released, latch 213 could become engaged with mounting pins 216 so that the latch is unable to move completely into the locked position, thereby potentially causing the accidental release of instrument 14 during surgery.
  • As shown in FIGS. 3B, 4 and 5, actuator driver 80 of instrument holder 4 further comprises an actuator pin catch 220 for releasably holding and moving actuator pins 132 of instrument 14. Actuator pin catch 220 is constructed similarly to instrument support 70 (FIG. 3A), comprising an annular collar 222 that defines a bore 224 for receiving shaft 100 and an axially extending slot 226 for receiving actuator pins 132. A locking slot 228 is cut into actuator pin catch 220 at a 90° angle so that actuator pins can be rotated into the lock slot to couple actuator pins 132 to actuator driver 66, as discussed above in reference to the mounting pins. It should be noted that slot 226 need not extend completely through collar 222 since actuator pins 132 are located distally of mounting pins 116 (the instrument is preferably inserted jaws first). Of course, actuator and mounting pins 132, 116 may be reversed so that the mounting pins are distal to the actuator pins, if desired.
  • Referring to FIG. 6A, actuator pin catch 220 is rotatably mounted on a ball bearing 230 in actuator carriage assembly 90. Bearing 230 allows the pin catch 220 to rotate freely in carriage assembly 90 while preventing relative axial motion. Therefore, when instrument 14 is rotated by first drive 8, actuator pins 132 will rotate within carriage assembly 90. Carriage assembly 90 further comprises two sets of axles 232 for rotatably supporting a pair of inner rollers 236 and a pair of outer rollers 238. As shown in FIG. 1, outer rollers 238 are slidably disposed within axial guide slots 82 of chassis 60 to prevent rotation of carriage assembly 90 with respect to chassis 60. Inner and outer rollers 236, 238 cooperate with helical actuator 84 and chassis 60 of instrument holder 4 to move axially with respect to the holder, thereby axially moving pin catch 220 and actuator pins 132 therewith relative to shaft 100 of instrument 14 (which actuates jaws 122, 124, as discussed above).
  • As shown in FIG. 6B, helical actuator 84 includes a central bore 240 for receiving carriage assembly 90 and surgical instrument 14 and two opposing helical tracks 242, 244 each extending circumferentially around helical actuator 84 (preferably slightly less than 180°) for receiving inner rollers 236 of carriage assembly 90, as shown in FIG. 5. With outer rollers 238 constrained in axial guide slots 82 of chassis 60, rotation of helical actuator 84 causes carriage assembly 90 (and actuator pin catch 220) to move up or down, depending on the sense of the rotation. Because of the symmetrical design of helical actuator 84, the actuation force applied by second driver 10 will not generate any effective side loads on instrument 14, which avoids frictional coupling with other degrees of freedom such as axial (third driver 12) and rotation (first driver 8). In the preferred embodiment; helical tracks 242, 244 have a pitch selected such that the mechanism can be easily back-driven, allowing grip forces to be sensed in a position-served teleoperation system.
  • As shown in FIGS. 3A and 3B, instrument holder 4 further includes a pair of axial guide pins 250, 252 fixed to instrument support 70. Actuator pin catch 220 has a pair of openings 254, 256 for receiving guide pins 250, 252. Guide pins 250, 252 prevent relative rotation between pin catch 220 and support 70 (so that actuator and mounting pins 116, 132 can both rotate with the instrument) and allow axial movement relative to each other (so that end effector 120 can be actuated by axial movement of actuator pins 132).
  • FIG. 9 is an elevational view of a remote center positioner 300 which can be used to support manipulator assembly 2 above the patient (note that support manipulator 2 is not shown in FIG. 8). Remote center positioner 300 provides two degrees of freedom for positioning manipulator assembly 2, constraining it to rotate about a point 308 coincident with the entry incision. Preferably, point 308 will be approximately the center of bearing 54 in cannula 50 (FIG. 1). A more complete description of remote center positioner 300 is described in commonly assigned co-pending application Ser. No. 08/062,404 filed May 14, 1993 REMOTE CENTER POSITIONER, which is incorporated herein by reference.
  • A first linkage means is indicated generally by the numeral 321 and a second linkage in the form of a parallelogram is indicated by the numeral 323. The first linkage means is pivotally mounted on a base plate for rotation about an x-x axis. The second linkage means is pivotally connected to the first linkage means and is adapted to move in a plane parallel to the first linkage. Five link members (including extensions thereof), 311, 312, 313, 314, and 315 are connected together with pivot joints 316-320. A portion of element 313 extends beyond pivot 320 of the parallelogram linkage. The parallelogram linkage has an operating end at link member 313 and a driving end at link member 312. The elongated element 313 may, as desired later, carry a surgical instrument or other device, such as support bracket 24 of manipulator assembly 2. The pivot joints allow relative motion of the link members only in the plane containing them.
  • A parallelogram linkage is formed by corresponding link members 314, 315 and link members 312 and 313. The portions of link members 314 and 315 of the parallelogram are of equal length as are the portions of members 312 and 313 of the parallelogram. These members are connected together in a parallelogram for relative movement only in the plane formed by the members. A rotatable joint generally indicated by the numeral 322 is connected to a suitable base 324. The rotatable joint 322 is mounted on a base plate 326 adapted to be fixedly mounted to the base support means 324. A pivot plate 328 is pivotally mounted to base plate 326 by suitable means at, such as, pivots 330, 332. Thus pivot plate 328 may be rotated about axis x-x through a desired angle 62. This may be accomplished manually or by a suitable pivot drive motor 334.
  • A first linkage is pivotally mounted on the pivot plate 328 of the rotatable joint 322. The linkage elements 311, 312 and the link members are relatively stiff or inflexible so that they may adequately support an instrument used in surgical operations. Rods made of aluminum or other metal are useful as such links. The linkage elements 311 and 312 are pivotally mounted on base plate 328 for rotation with respect to the rotatable joint by pivots 336 and 338. At least one of the - pivots 336, 338 is positioned so that its axis of rotation is normal to and intersects the x-x axis. Movement may occur manually or may occur using a linkage drive motor 340. The first linkage is also shaped in the form of a parallelogram formed by linkage elements 311, and 312; the portion of link member 315 connected thereto by pivots 316, 318; and base plate 328. One of the link members 315 is thus utilized in both the first 321 and second 323 linkage means. Linkage element 312 also forms a common link of both the first linkage means 321 and the second linkage means 323. In accordance with the invention, a remote center of spherical rotation 308 is provided by the above described embodiment of apparatus when the linkage element 311 is rotated and/or when pivot plate 328 is rotated about axis x-x. Thus, the end of element 313 can be moved through desired angles 81 and 92 or rotated about its own axis, while the remote center of rotation remains at the same location.
  • FIG. 9 also shows an inclinometer 350 attached to the base of remote center positioner 300. The remote center positioner may be mounted at an arbitrary orientation with respect to vertical depending on the particular surgery to be performed, and inclinometer 350 can be used to measure this orientation. The measured orientation can be used to calculate and implement servo control signals necessary to control the telerobotic system so as to prevent gravitational forces acting on the system mechanisms from being felt by the surgeon.
  • Reference now is made to FIG. 10 wherein the distal end portion or tip, 260 of the insertion section of an endoscope is shown which is a substantially the same type as shown in the above-mentioned publication entitled “Introduction to a New Project for National Research and Development Program (Large-Scale Project) in FY 1991” which endoscope may be used in the practice of the present invention. The insertion end of the endoscope includes a pair of spaced viewing windows 262R and 262L and an illumination source 264 for viewing and illuminating a workspace to be observed. Light received at the windows is focused by objective lens means, not shown, and transmitted through fiber-optic bundles to a pair of cameras at the operating end of the endoscope, now shown. The camera outputs are converted to a three-dimensional image of the workspace which image is located adjacent hand-operated means at the operator's station, now shown. Right and left steerable catheters 268R and 268L pass through accessory channels in the endoscope body, which catheters are adapted for extension form the distal end portion, as illustrated. End effectors 270R and 270L are provided at the ends of the catheters which may comprise conventional endoscopic instruments. Force sensors, not shown, also are inserted through the endoscope channels. Steerable catheters which include control wires for controlling bending of the catheters and operation of an end effector suitable for use with this invention are well known. Control motors for operation of the control wires are provided at the operating end of the endoscope, which motors are included in a servomechanism of a type described in U.S. patent application Ser. No. 07/823,932 for operation of the steerable catheters and associated end effectors from a remote operator's station. As with the other embodiments described in U.S. patent application Ser. No. 07/823,932, the interfacing computer in the servomechanism system remaps the operator's hand motion into the coordinate system of the end effectors, and images of the end effectors are viewable adjacent the hand-operated controllers. With this embodiment, the operator has the sensation of reaching through the endoscope to put his hands directly on the end effectors for control thereof. Endoscopes of different types may be employed in this embodiment of the invention so long as they include one or more accessory channels for use in control of end effectors means, and suitable viewing means for use in providing a visual display of the workspace. For example, gastric, colonscopic, and like type, endoscopes may be employed.
  • Variations and changes may be made by others without departing from the spirit of the present invention. For example, it should be understood that the present invention is not limited to endoscopic surgery. In fact, instrument holder 4, along with a telerobotic control mechanism, would be particularly useful during open surgical procedures, allowing a surgeon to perform an operation from a remote location, such as a different room or a completely different hospital.

Claims (22)

1. A manipulator assembly comprising:
a base,
an instrument holder removably mounted on the base, and
a drive assembly for manipulating a surgical instrument releasably coupled to the instrument holder through the instrument holder in at least two degrees of freedom comprising rotating the surgical instrument about a longitudinal axis and actuating an end effector of the surgical instrument.
2. The manipulator assembly according to claim 1, wherein the surgical instrument is releasably coupled to the instrument holder through a twist lock mechanism.
3. The manipulator assembly according to claim 1, wherein the surgical instrument comprises:
an elongate shaft with one or more mounting pins laterally extending from the shaft; and
the instrument holder comprises a support having a central bore, an axially extending slot for receiving the elongate shaft and the one or more mounting pins of the surgical instrument, and one or more locking slots cut into the support transversely to and in communication with the axial slot so that the one or more mounting pins can be rotated within corresponding of the one or more locking slots when received therein.
4. The manipulator assembly according to claim 3, wherein the support further has a latch assembly for automatically locking the one or more mounting pins with the corresponding one or more locking slots to releasably couple the surgical instrument to the instrument holder.
5. The manipulator assembly according to claim 4, wherein the latch assembly includes a latch element that is at least partially disposed within at least one of the locking slots so as to prevent rotation of the mounting pin received therein when the latch element is in a biased position, and is not disposed within any one the locking slots so that the one or more mounting pins received therein are free to rotate therethrough when latch element is in a release position.
6. The manipulator assembly according to claim 5, wherein the latch element is maintained in the biased position by a compression spring and moved into the release position by compressing the compression spring.
7. The manipulator assembly according to claim 1, wherein the surgical instrument comprises a shaft having a proximal end and a distal end, and a longitudinal axis defined therebetween; and the drive assembly comprises a first drive for rotating the surgical instrument around the longitudinal axis, a second drive for actuating an end effector on the distal end of the surgical instrument, and a third drive for displacing the surgical instrument along the longitudinal axis.
8. The manipulator assembly according to claim 7, wherein the first drive, second drive and third drive are coupled to a controller mechanism via servo-control electronics for form a telerobotic system for operating the surgical instrument by remote control.
9. The manipulator assembly according to claim 7, wherein the base comprises a frame; and the first drive comprises a rotation drive motor fixed to the frame and coupled to a first shaft by a first drive belt for rotating the first shaft with respect to the frame.
10. The manipulator assembly according to claim 9, wherein the second drive comprises a gripper drive motor fixed to the frame and coupled to a second shaft by a second drive belt for rotating the second shaft with respect to the frame.
11. The manipulator assembly according to claim 9, wherein the third drive comprises a vertical drive motor coupled to the instrument holder via a third drive belt and at least one pulley for axially displacing the instrument holder with respect to the frame.
12. The manipulator assembly according to claim 10, wherein the instrument holder comprises a chassis mounted on the first shaft and the second shaft respectively via first bearings and second bearings so that the chassis may move axially with respect to the first shaft and the second shaft, but is prevented from rotating with the first shaft and the second shaft.
13. The manipulator assembly according to claim 12, wherein the chassis includes a central cavity for receiving the surgical instrument, and a chassis arm laterally extending from the chassis and coupled to the third drive belt so that rotation of the third drive belt moves the instrument holder in the axial direction along the first shaft and the second shaft.
14. The manipulator assembly according to claim 13, wherein the chassis arm includes a toggle switch that can be rotated to release the chassis arm from the third drive belt.
15. The manipulator assembly according to claim 14, wherein the first bearings includes a first coupling mechanism for coupling and decoupling of the first shaft from the first bearings, and the second bearings includes a second coupling mechanism for coupling and decoupling of the second shaft from the second bearings.
16. The manipulator assembly according to claim 15, wherein the first coupling mechanism includes a first spring clip inserted between an annular groove formed on a distal end of the first shaft and an internal groove formed in a first support collar of the first bearings so as to hold the first shaft within the first support collar, and the second coupling mechanism includes a second spring clip inserted between an annular groove formed on a distal end of the second shaft and an internal groove formed in a second support collar of the second bearings so as to hold the second shaft within the second support collar.
17. A manipulator assembly comprising:
a surgical instrument,
an instrument holder releasably coupled through a twist lock mechanism to the surgical instrument, and
a drive assembly coupled to the surgical instrument through the instrument holder for manipulating the surgical instrument in at least two degrees of freedom comprising rotating the surgical instrument about a longitudinal axis and actuating an end effector of the surgical instrument.
18. The manipulator assembly according to claim 17, wherein the surgical instrument comprises an elongate shaft with one or more mounting pins laterally extending from the shaft; and the instrument holder comprises a support having a central bore, an axially extending slot for receiving the elongate shaft and the one or more mounting pins of the surgical instrument, and one or more locking slots cut into the support transversely to and in communication with the axial slot so that the one or more mounting pins can be rotated within corresponding of the one or more locking slots when received therein.
19. The manipulator assembly according to claim 18, wherein the support further has a latch assembly for automatically locking the one or more mounting pins with the corresponding one or more locking slots to releasably couple the surgical instrument to the instrument holder.
20. The manipulator assembly according to claim 19, wherein the latch assembly includes a latch element that is at least partially disposed within at least one of the locking slots so as to prevent rotation of the mounting pin received therein when the latch element is in a biased position, and is not disposed within any one the locking slots so that the one or more mounting pins received therein are free to rotate therethrough when latch element is in a release position.
21. The manipulator assembly according to claim 20, wherein the latch element is maintained in the biased position by a compression spring and moved into the release position by compressing the compression spring.
22. (canceled)
US12/894,913 1995-06-07 2010-09-30 Surgical manipulator for a telerobotic system Abandoned US20110060346A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/894,913 US20110060346A1 (en) 1995-06-07 2010-09-30 Surgical manipulator for a telerobotic system

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US08/485,587 US5649956A (en) 1995-06-07 1995-06-07 System and method for releasably holding a surgical instrument
US08/848,934 US5810880A (en) 1995-06-07 1997-05-01 System and method for releasably holding a surgical instrument
US09/105,706 US6080181A (en) 1995-06-07 1998-06-26 System and method for releasably holding a surgical instrument
US09/521,253 US6461372B1 (en) 1995-06-07 2000-03-08 System and method for releasably holding a surgical instrument
US10/265,285 US7204844B2 (en) 1995-06-07 2002-10-04 System and method for releasably holding a surgical instrument
US11/195,494 US7824424B2 (en) 1995-06-07 2005-08-01 System and method for releasably holding a surgical instrument
US12/894,913 US20110060346A1 (en) 1995-06-07 2010-09-30 Surgical manipulator for a telerobotic system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/195,494 Continuation US7824424B2 (en) 1995-06-07 2005-08-01 System and method for releasably holding a surgical instrument

Publications (1)

Publication Number Publication Date
US20110060346A1 true US20110060346A1 (en) 2011-03-10

Family

ID=23928711

Family Applications (9)

Application Number Title Priority Date Filing Date
US08/485,587 Expired - Lifetime US5649956A (en) 1995-06-07 1995-06-07 System and method for releasably holding a surgical instrument
US08/848,934 Expired - Lifetime US5810880A (en) 1995-06-07 1997-05-01 System and method for releasably holding a surgical instrument
US09/105,706 Expired - Lifetime US6080181A (en) 1995-06-07 1998-06-26 System and method for releasably holding a surgical instrument
US09/521,253 Expired - Lifetime US6461372B1 (en) 1995-06-07 2000-03-08 System and method for releasably holding a surgical instrument
US10/265,285 Expired - Fee Related US7204844B2 (en) 1995-06-07 2002-10-04 System and method for releasably holding a surgical instrument
US11/195,494 Expired - Fee Related US7824424B2 (en) 1995-06-07 2005-08-01 System and method for releasably holding a surgical instrument
US11/522,576 Expired - Fee Related US8012160B2 (en) 1995-06-07 2006-09-18 System and method for releasably holding a surgical instrument
US12/894,913 Abandoned US20110060346A1 (en) 1995-06-07 2010-09-30 Surgical manipulator for a telerobotic system
US13/198,876 Abandoned US20110295315A1 (en) 1995-06-07 2011-08-05 System and method for releasably holding a surgical instrument

Family Applications Before (7)

Application Number Title Priority Date Filing Date
US08/485,587 Expired - Lifetime US5649956A (en) 1995-06-07 1995-06-07 System and method for releasably holding a surgical instrument
US08/848,934 Expired - Lifetime US5810880A (en) 1995-06-07 1997-05-01 System and method for releasably holding a surgical instrument
US09/105,706 Expired - Lifetime US6080181A (en) 1995-06-07 1998-06-26 System and method for releasably holding a surgical instrument
US09/521,253 Expired - Lifetime US6461372B1 (en) 1995-06-07 2000-03-08 System and method for releasably holding a surgical instrument
US10/265,285 Expired - Fee Related US7204844B2 (en) 1995-06-07 2002-10-04 System and method for releasably holding a surgical instrument
US11/195,494 Expired - Fee Related US7824424B2 (en) 1995-06-07 2005-08-01 System and method for releasably holding a surgical instrument
US11/522,576 Expired - Fee Related US8012160B2 (en) 1995-06-07 2006-09-18 System and method for releasably holding a surgical instrument

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/198,876 Abandoned US20110295315A1 (en) 1995-06-07 2011-08-05 System and method for releasably holding a surgical instrument

Country Status (1)

Country Link
US (9) US5649956A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013123329A1 (en) * 2012-02-15 2013-08-22 Intuitive Surgical Operations, Inc. Compact rotary actuator with internal planetary
US8840628B2 (en) 1995-06-07 2014-09-23 Intuitive Surgical Operations, Inc. Surgical manipulator for a telerobotic system
WO2015175200A1 (en) * 2014-05-13 2015-11-19 Covidien Lp Robotic surgical systems and instrument drive units
WO2016057778A1 (en) * 2014-10-08 2016-04-14 SALMELA, Amy, M. System for catheter manipulation
WO2016144937A1 (en) * 2015-03-10 2016-09-15 Covidien Lp Measuring health of a connector member of a robotic surgical system
US9527207B2 (en) 2011-03-23 2016-12-27 Sri International Dexterous telemanipulator system
WO2017205481A1 (en) * 2016-05-26 2017-11-30 Covidien Lp Robotic surgical assemblies and instrument drive units thereof
WO2018005750A1 (en) * 2016-07-01 2018-01-04 Intuitive Surgical Operations, Inc. Computer-assisted medical systems and methods
WO2018052806A1 (en) * 2016-09-15 2018-03-22 Intuitive Surgical Operations, Inc. Medical device drive system
US10591032B2 (en) 2016-09-15 2020-03-17 Intuitive Surgical Operations, Inc. Split nut drive
US10675442B2 (en) 2016-02-08 2020-06-09 Nextern, Inc. Robotically augmented catheter manipulation handle
US11020193B2 (en) 2016-09-15 2021-06-01 Intuitive Surgical Operations, Inc. Medical device drive system

Families Citing this family (1012)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6963792B1 (en) * 1992-01-21 2005-11-08 Sri International Surgical method
US6788999B2 (en) 1992-01-21 2004-09-07 Sri International, Inc. Surgical system
US5762458A (en) * 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US6646541B1 (en) 1996-06-24 2003-11-11 Computer Motion, Inc. General purpose distributed operating room control system
US5649956A (en) 1995-06-07 1997-07-22 Sri International System and method for releasably holding a surgical instrument
US6714841B1 (en) 1995-09-15 2004-03-30 Computer Motion, Inc. Head cursor control interface for an automated endoscope system for optimal positioning
US7445594B1 (en) 1995-09-20 2008-11-04 Medtronic, Inc. Method and apparatus for temporarily immobilizing a local area of tissue
US5624398A (en) * 1996-02-08 1997-04-29 Symbiosis Corporation Endoscopic robotic surgical tools and methods
US6436107B1 (en) 1996-02-20 2002-08-20 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5855583A (en) 1996-02-20 1999-01-05 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US6699177B1 (en) 1996-02-20 2004-03-02 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US6063095A (en) * 1996-02-20 2000-05-16 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US6786896B1 (en) * 1997-09-19 2004-09-07 Massachusetts Institute Of Technology Robotic apparatus
US6132441A (en) 1996-11-22 2000-10-17 Computer Motion, Inc. Rigidly-linked articulating wrist with decoupled motion transmission
US8206406B2 (en) 1996-12-12 2012-06-26 Intuitive Surgical Operations, Inc. Disposable sterile surgical adaptor
US6331181B1 (en) * 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US6132368A (en) * 1996-12-12 2000-10-17 Intuitive Surgical, Inc. Multi-component telepresence system and method
US8529582B2 (en) 1996-12-12 2013-09-10 Intuitive Surgical Operations, Inc. Instrument interface of a robotic surgical system
US7727244B2 (en) 1997-11-21 2010-06-01 Intuitive Surgical Operation, Inc. Sterile surgical drape
US8182469B2 (en) 1997-11-21 2012-05-22 Intuitive Surgical Operations, Inc. Surgical accessory clamp and method
US7666191B2 (en) 1996-12-12 2010-02-23 Intuitive Surgical, Inc. Robotic surgical system with sterile surgical adaptor
US6714839B2 (en) 1998-12-08 2004-03-30 Intuitive Surgical, Inc. Master having redundant degrees of freedom
US20040236352A1 (en) * 1997-09-22 2004-11-25 Yulun Wang Method and apparatus for performing minimally invasive cardiac procedures
US7789875B2 (en) * 1998-02-24 2010-09-07 Hansen Medical, Inc. Surgical instruments
US7758569B2 (en) 1998-02-24 2010-07-20 Hansen Medical, Inc. Interchangeable surgical instrument
US20080177285A1 (en) * 1998-02-24 2008-07-24 Hansen Medical, Inc. Surgical instrument
US7090683B2 (en) 1998-02-24 2006-08-15 Hansen Medical, Inc. Flexible instrument
US7371210B2 (en) * 1998-02-24 2008-05-13 Hansen Medical, Inc. Flexible instrument
US20020095175A1 (en) 1998-02-24 2002-07-18 Brock David L. Flexible instrument
US6810281B2 (en) 2000-12-21 2004-10-26 Endovia Medical, Inc. Medical mapping system
US6860878B2 (en) * 1998-02-24 2005-03-01 Endovia Medical Inc. Interchangeable instrument
US8303576B2 (en) * 1998-02-24 2012-11-06 Hansen Medical, Inc. Interchangeable surgical instrument
US7775972B2 (en) * 1998-02-24 2010-08-17 Hansen Medical, Inc. Flexible instrument
US7713190B2 (en) 1998-02-24 2010-05-11 Hansen Medical, Inc. Flexible instrument
US7901399B2 (en) * 1998-02-24 2011-03-08 Hansen Medical, Inc. Interchangeable surgical instrument
US8414598B2 (en) 1998-02-24 2013-04-09 Hansen Medical, Inc. Flexible instrument
US6692485B1 (en) 1998-02-24 2004-02-17 Endovia Medical, Inc. Articulated apparatus for telemanipulator system
US7297142B2 (en) * 1998-02-24 2007-11-20 Hansen Medical, Inc. Interchangeable surgical instrument
US20020128662A1 (en) * 1998-02-24 2002-09-12 Brock David L. Surgical instrument
WO2002065933A2 (en) * 2001-02-15 2002-08-29 Endovia Medical Inc. Surgical master/slave system
WO2000007503A1 (en) 1998-08-04 2000-02-17 Intuitive Surgical, Inc. Manipulator positioning linkage for robotic surgery
US8600551B2 (en) * 1998-11-20 2013-12-03 Intuitive Surgical Operations, Inc. Medical robotic system with operatively couplable simulator unit for surgeon training
US8527094B2 (en) 1998-11-20 2013-09-03 Intuitive Surgical Operations, Inc. Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures
US6951535B2 (en) 2002-01-16 2005-10-04 Intuitive Surgical, Inc. Tele-medicine system that transmits an entire state of a subsystem
US6852107B2 (en) 2002-01-16 2005-02-08 Computer Motion, Inc. Minimally invasive surgical training using robotics and tele-collaboration
US6659939B2 (en) 1998-11-20 2003-12-09 Intuitive Surgical, Inc. Cooperative minimally invasive telesurgical system
US6468265B1 (en) 1998-11-20 2002-10-22 Intuitive Surgical, Inc. Performing cardiac surgery without cardioplegia
US6398726B1 (en) * 1998-11-20 2002-06-04 Intuitive Surgical, Inc. Stabilizer for robotic beating-heart surgery
US6620173B2 (en) 1998-12-08 2003-09-16 Intuitive Surgical, Inc. Method for introducing an end effector to a surgical site in minimally invasive surgery
US6394998B1 (en) 1999-01-22 2002-05-28 Intuitive Surgical, Inc. Surgical tools for use in minimally invasive telesurgical applications
US8944070B2 (en) 1999-04-07 2015-02-03 Intuitive Surgical Operations, Inc. Non-force reflecting method for providing tool force information to a user of a telesurgical system
US6424885B1 (en) 1999-04-07 2002-07-23 Intuitive Surgical, Inc. Camera referenced control in a minimally invasive surgical apparatus
US6689142B1 (en) * 1999-04-26 2004-02-10 Scimed Life Systems, Inc. Apparatus and methods for guiding a needle
EP1176921B1 (en) 1999-05-10 2011-02-23 Hansen Medical, Inc. Surgical instrument
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
US6788018B1 (en) * 1999-08-03 2004-09-07 Intuitive Surgical, Inc. Ceiling and floor mounted surgical robot set-up arms
US6312435B1 (en) * 1999-10-08 2001-11-06 Intuitive Surgical, Inc. Surgical instrument with extended reach for use in minimally invasive surgery
DE10004409A1 (en) * 2000-02-02 2001-09-06 Siemens Ag Method for computer-aided processing of a structure comprising a first element and a second element
DE60134236D1 (en) * 2000-07-20 2008-07-10 Kinetic Surgical Llc MANUALLY CONTROLLED SURGICAL TOOL WITH JOINT
US6837892B2 (en) * 2000-07-24 2005-01-04 Mazor Surgical Technologies Ltd. Miniature bone-mounted surgical robot
US6726699B1 (en) 2000-08-15 2004-04-27 Computer Motion, Inc. Instrument guide
WO2002017810A2 (en) * 2000-08-30 2002-03-07 Johns Hopkins University Controllable motorized device for percutaneous needle placement in soft tissue target and methods and systems related thereto
US7494494B2 (en) * 2000-08-30 2009-02-24 Johns Hopkins University Controllable motorized device for percutaneous needle placement in soft tissue target and methods and systems related thereto
US6860877B1 (en) 2000-09-29 2005-03-01 Computer Motion, Inc. Heart stabilizer support arm
US6554764B1 (en) * 2000-11-13 2003-04-29 Cardica, Inc. Graft vessel preparation device and methods for using the same
EP2932884B1 (en) * 2000-11-28 2020-09-09 Intuitive Surgical Operations, Inc. Endoscopic beating-heart stabilizer and vessel occlusion fastener
US6840938B1 (en) 2000-12-29 2005-01-11 Intuitive Surgical, Inc. Bipolar cauterizing instrument
US7699835B2 (en) 2001-02-15 2010-04-20 Hansen Medical, Inc. Robotically controlled surgical instruments
US20030135204A1 (en) 2001-02-15 2003-07-17 Endo Via Medical, Inc. Robotically controlled medical instrument with a flexible section
US8414505B1 (en) 2001-02-15 2013-04-09 Hansen Medical, Inc. Catheter driver system
US7766894B2 (en) * 2001-02-15 2010-08-03 Hansen Medical, Inc. Coaxial catheter system
US20090182226A1 (en) * 2001-02-15 2009-07-16 Barry Weitzner Catheter tracking system
US6994708B2 (en) * 2001-04-19 2006-02-07 Intuitive Surgical Robotic tool with monopolar electro-surgical scissors
US6783524B2 (en) * 2001-04-19 2004-08-31 Intuitive Surgical, Inc. Robotic surgical tool with ultrasound cauterizing and cutting instrument
US7824401B2 (en) * 2004-10-08 2010-11-02 Intuitive Surgical Operations, Inc. Robotic tool with wristed monopolar electrosurgical end effectors
US7367973B2 (en) 2003-06-30 2008-05-06 Intuitive Surgical, Inc. Electro-surgical instrument with replaceable end-effectors and inhibited surface conduction
US8398634B2 (en) * 2002-04-18 2013-03-19 Intuitive Surgical Operations, Inc. Wristed robotic surgical tool for pluggable end-effectors
US20020165524A1 (en) 2001-05-01 2002-11-07 Dan Sanchez Pivot point arm for a robotic system used to perform a surgical procedure
US20040054355A1 (en) * 2001-05-31 2004-03-18 Intuitive Surgical, Inc. Tool guide and method for introducing an end effector to a surgical site in minimally invasive surgery
US6817974B2 (en) 2001-06-29 2004-11-16 Intuitive Surgical, Inc. Surgical tool having positively positionable tendon-actuated multi-disk wrist joint
US20060178556A1 (en) 2001-06-29 2006-08-10 Intuitive Surgical, Inc. Articulate and swapable endoscope for a surgical robot
JP3926119B2 (en) * 2001-08-10 2007-06-06 株式会社東芝 Medical manipulator
NL1018874C2 (en) * 2001-09-03 2003-03-05 Michel Petronella Hub Vleugels Surgical instrument.
US6728599B2 (en) 2001-09-07 2004-04-27 Computer Motion, Inc. Modularity system for computer assisted surgery
US10285694B2 (en) 2001-10-20 2019-05-14 Covidien Lp Surgical stapler with timer and feedback display
US7464847B2 (en) 2005-06-03 2008-12-16 Tyco Healthcare Group Lp Surgical stapler with timer and feedback display
US6793653B2 (en) 2001-12-08 2004-09-21 Computer Motion, Inc. Multifunctional handle for a medical robotic system
US6723088B2 (en) 2001-12-20 2004-04-20 Board Of Regents, The University Of Texas Laparoscopic porting
KR20040065278A (en) * 2001-12-21 2004-07-21 노보 노르디스크 에이/에스 Liquid composition of modified factor vii polypeptides
US8010180B2 (en) 2002-03-06 2011-08-30 Mako Surgical Corp. Haptic guidance system and method
US7164968B2 (en) * 2002-04-05 2007-01-16 The Trustees Of Columbia University In The City Of New York Robotic scrub nurse
WO2003092523A1 (en) * 2002-05-02 2003-11-13 Gmp Surgical Solutions, Inc. Apparatus for positioning a medical instrument
US6805664B2 (en) 2002-07-31 2004-10-19 Tiva Medical, Inc. Clutch for stabilizing and adjusting a probe in laparoscopic surgery
US20040176751A1 (en) * 2002-08-14 2004-09-09 Endovia Medical, Inc. Robotic medical instrument system
US7331967B2 (en) * 2002-09-09 2008-02-19 Hansen Medical, Inc. Surgical instrument coupling mechanism
US20040068273A1 (en) * 2002-10-02 2004-04-08 Ibionics Corporation Automatic laparoscopic incision closing apparatus
JP3912251B2 (en) * 2002-10-02 2007-05-09 株式会社日立製作所 manipulator
CN100389730C (en) 2002-12-06 2008-05-28 直观外科手术公司 Flexible wrist for surgical tool
US7386365B2 (en) * 2004-05-04 2008-06-10 Intuitive Surgical, Inc. Tool grip calibration for robotic surgery
US20040236178A1 (en) * 2003-02-14 2004-11-25 Cardica, Inc. Method for preparing a graft vessel for anastomosis
US7083615B2 (en) * 2003-02-24 2006-08-01 Intuitive Surgical Inc Surgical tool having electrocautery energy supply conductor with inhibited current leakage
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US8007511B2 (en) * 2003-06-06 2011-08-30 Hansen Medical, Inc. Surgical instrument design
US7398116B2 (en) 2003-08-11 2008-07-08 Veran Medical Technologies, Inc. Methods, apparatuses, and systems useful in conducting image guided interventions
US8150495B2 (en) 2003-08-11 2012-04-03 Veran Medical Technologies, Inc. Bodily sealants and methods and apparatus for image-guided delivery of same
US10022123B2 (en) 2012-07-09 2018-07-17 Covidien Lp Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
US11311291B2 (en) 2003-10-17 2022-04-26 Covidien Lp Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
US10041822B2 (en) 2007-10-05 2018-08-07 Covidien Lp Methods to shorten calibration times for powered devices
EP1562099A1 (en) * 2004-02-09 2005-08-10 SAP Aktiengesellschaft Method and computer system for document encryption
US8046049B2 (en) 2004-02-23 2011-10-25 Biosense Webster, Inc. Robotically guided catheter
US7976539B2 (en) * 2004-03-05 2011-07-12 Hansen Medical, Inc. System and method for denaturing and fixing collagenous tissue
JP4755638B2 (en) 2004-03-05 2011-08-24 ハンセン メディカル,インク. Robotic guide catheter system
US8727987B2 (en) * 2004-05-06 2014-05-20 Nanyang Technological University Mechanical manipulator for HIFU transducers
US7731652B2 (en) * 2004-05-14 2010-06-08 Wilson-Cook Medical Inc. Scope dock
US7241290B2 (en) 2004-06-16 2007-07-10 Kinetic Surgical, Llc Surgical tool kit
US8353897B2 (en) * 2004-06-16 2013-01-15 Carefusion 2200, Inc. Surgical tool kit
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
WO2006015319A2 (en) 2004-07-30 2006-02-09 Power Medical Interventions, Inc. Flexible shaft extender and method of using same
US7670281B2 (en) * 2004-10-07 2010-03-02 Kronner Richard F Instrument support apparatus
US20060184155A1 (en) * 2004-12-31 2006-08-17 Rafael Fernandez-Sein Manipulator and end effector for catheter manufacture
US20060196299A1 (en) * 2005-01-27 2006-09-07 John Taboada Seven Axis End Effector Articulating Mechanism
US7369899B2 (en) * 2005-02-22 2008-05-06 Boston Scientific Neuromodulation Corporation Minimally invasive systems for locating an optimal location for deep brain stimulation
US8430888B2 (en) 2005-02-22 2013-04-30 Boston Scientific Neuromodulation Corporation Minimally invasive methods for locating an optimal location for deep brain stimulation
US20080007517A9 (en) * 2005-02-23 2008-01-10 Northwestern University Electrical damping system
US9789608B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US11291443B2 (en) 2005-06-03 2022-04-05 Covidien Lp Surgical stapler with timer and feedback display
CA2609970C (en) 2005-06-03 2014-08-12 Tyco Healthcare Group Lp Battery powered surgical instrument
US8273076B2 (en) 2005-06-30 2012-09-25 Intuitive Surgical Operations, Inc. Indicator for tool state and communication in multi-arm robotic telesurgery
EP3398728B1 (en) 2005-06-30 2019-11-27 Intuitive Surgical Operations Inc. Indicator for tool state communication in multi-arm robotic telesurgery
JP2009500086A (en) 2005-07-01 2009-01-08 ハンセン メディカル,インク. Robotic guide catheter system
EP1907041B1 (en) * 2005-07-11 2019-02-20 Catheter Precision, Inc. Remotely controlled catheter insertion system
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US7673781B2 (en) 2005-08-31 2010-03-09 Ethicon Endo-Surgery, Inc. Surgical stapling device with staple driver that supports multiple wire diameter staples
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US20070066881A1 (en) 2005-09-13 2007-03-22 Edwards Jerome R Apparatus and method for image guided accuracy verification
WO2007033206A2 (en) 2005-09-13 2007-03-22 Veran Medical Technologies, Inc. Apparatus and method for image guided accuracy verification
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US9198569B2 (en) * 2005-11-30 2015-12-01 Cook Medical Technologies Llc Scope dock with fluid reservoir
WO2007075864A1 (en) * 2005-12-20 2007-07-05 Intuitive Surgical, Inc. Instrument interface of a robotic surgical system
US20070178767A1 (en) * 2006-01-30 2007-08-02 Harshman E S Electrical connector
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US20060253109A1 (en) * 2006-02-08 2006-11-09 David Chu Surgical robotic helping hand system
US8219178B2 (en) 2007-02-16 2012-07-10 Catholic Healthcare West Method and system for performing invasive medical procedures using a surgical robot
US10653497B2 (en) 2006-02-16 2020-05-19 Globus Medical, Inc. Surgical tool systems and methods
US10893912B2 (en) 2006-02-16 2021-01-19 Globus Medical Inc. Surgical tool systems and methods
US10357184B2 (en) 2012-06-21 2019-07-23 Globus Medical, Inc. Surgical tool systems and method
US8236010B2 (en) 2006-03-23 2012-08-07 Ethicon Endo-Surgery, Inc. Surgical fastener and cutter with mimicking end effector
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US7794387B2 (en) 2006-04-26 2010-09-14 Medtronic, Inc. Methods and devices for stabilizing tissue
JP2009535158A (en) * 2006-05-03 2009-10-01 ウィルソン−クック・メディカル・インコーポレーテッド Endoscope rotation and positioning apparatus and method
US8986196B2 (en) 2006-06-13 2015-03-24 Intuitive Surgical Operations, Inc. Minimally invasive surgery instrument assembly with reduced cross section
US8560047B2 (en) 2006-06-16 2013-10-15 Board Of Regents Of The University Of Nebraska Method and apparatus for computer aided surgery
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US10008017B2 (en) 2006-06-29 2018-06-26 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US9718190B2 (en) 2006-06-29 2017-08-01 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US20090192523A1 (en) 2006-06-29 2009-07-30 Intuitive Surgical, Inc. Synthetic representation of a surgical instrument
US10258425B2 (en) 2008-06-27 2019-04-16 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US7506791B2 (en) 2006-09-29 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
US7935130B2 (en) * 2006-11-16 2011-05-03 Intuitive Surgical Operations, Inc. Two-piece end-effectors for robotic surgical tools
US20100241136A1 (en) * 2006-12-05 2010-09-23 Mark Doyle Instrument positioning/holding devices
BRPI0719934A2 (en) * 2006-12-05 2014-03-11 Allegiance Corp DEVICE FOR USE IN POSITIONING AN INSTRUMENT FOR USE IN A SURGICAL PROCEDURE AND METHOD FOR POSITIONING WITH AN PATIENT AN INSTRUMENT FOR USE IN A SURGICAL PROCEDURE
US8257267B2 (en) * 2007-01-09 2012-09-04 Boston Scientific Scimed, Inc. Self-aligning IVUS catheter rotational core connector
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US20080169332A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Surgical stapling device with a curved cutting member
US7431188B1 (en) 2007-03-15 2008-10-07 Tyco Healthcare Group Lp Surgical stapling apparatus with powered articulation
US20090001130A1 (en) 2007-03-15 2009-01-01 Hess Christopher J Surgical procedure using a cutting and stapling instrument having releasable staple-forming pockets
US7422136B1 (en) 2007-03-15 2008-09-09 Tyco Healthcare Group Lp Powered surgical stapling device
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8800837B2 (en) 2007-04-13 2014-08-12 Covidien Lp Powered surgical instrument
US7950560B2 (en) * 2007-04-13 2011-05-31 Tyco Healthcare Group Lp Powered surgical instrument
US20080255413A1 (en) 2007-04-13 2008-10-16 Michael Zemlok Powered surgical instrument
US11259801B2 (en) 2007-04-13 2022-03-01 Covidien Lp Powered surgical instrument
AU2013202242B2 (en) * 2007-04-13 2014-09-11 Covidien Lp Powered surgical instrument
US7823760B2 (en) 2007-05-01 2010-11-02 Tyco Healthcare Group Lp Powered surgical stapling device platform
US7931660B2 (en) 2007-05-10 2011-04-26 Tyco Healthcare Group Lp Powered tacker instrument
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US9469034B2 (en) 2007-06-13 2016-10-18 Intuitive Surgical Operations, Inc. Method and system for switching modes of a robotic system
US9089256B2 (en) 2008-06-27 2015-07-28 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US8620473B2 (en) 2007-06-13 2013-12-31 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US9084623B2 (en) 2009-08-15 2015-07-21 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US9138129B2 (en) 2007-06-13 2015-09-22 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US20110046659A1 (en) * 2007-07-09 2011-02-24 Immersion Corporation Minimally Invasive Surgical Tools With Haptic Feedback
US20090024140A1 (en) * 2007-07-20 2009-01-22 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Surgical feedback system
US7556185B2 (en) * 2007-08-15 2009-07-07 Tyco Healthcare Group Lp Surgical instrument with flexible drive mechanism
AU2014200544B2 (en) * 2007-08-21 2014-12-11 Covidien Lp Powered surgical instrument
EP3097869B1 (en) 2007-09-21 2020-03-11 Covidien LP Surgical device
AU2008302039B2 (en) * 2007-09-21 2013-07-18 Covidien Lp Surgical device
US20090090201A1 (en) * 2007-10-05 2009-04-09 Tyco Healthcare Group Lp Nutating Gear Drive Mechanism for Surgical Devices
US10779818B2 (en) 2007-10-05 2020-09-22 Covidien Lp Powered surgical stapling device
US10498269B2 (en) 2007-10-05 2019-12-03 Covidien Lp Powered surgical stapling device
US8517241B2 (en) 2010-04-16 2013-08-27 Covidien Lp Hand-held surgical devices
US8960520B2 (en) 2007-10-05 2015-02-24 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
US8967443B2 (en) 2007-10-05 2015-03-03 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
US7922063B2 (en) 2007-10-31 2011-04-12 Tyco Healthcare Group, Lp Powered surgical instrument
US20090157059A1 (en) * 2007-12-14 2009-06-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Surgical instrument navigation system
JP5478511B2 (en) 2008-01-16 2014-04-23 カセター・ロボティクス・インコーポレーテッド Remote control catheter insertion system
US7905381B2 (en) 2008-09-19 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with cutting member arrangement
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
JP5410110B2 (en) 2008-02-14 2014-02-05 エシコン・エンド−サージェリィ・インコーポレイテッド Surgical cutting / fixing instrument with RF electrode
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
DE102008020585B4 (en) * 2008-04-24 2011-03-24 Multitest Elektronische Systeme Gmbh Plunger with quick locking system
US10406026B2 (en) * 2008-05-16 2019-09-10 The Johns Hopkins University System and method for macro-micro distal dexterity enhancement in micro-surgery of the eye
WO2009158708A1 (en) * 2008-06-27 2009-12-30 Allegiance Corporation Flexible wrist-type element and methods of manufacture and use thereof
US8864652B2 (en) 2008-06-27 2014-10-21 Intuitive Surgical Operations, Inc. Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip
US20100016883A1 (en) * 2008-07-18 2010-01-21 Christoudias George C Double grasper and trigger control mechanism
EP2361563A4 (en) * 2008-09-11 2015-04-08 Ntn Toyo Bearing Co Ltd Remote control actuator
US9679499B2 (en) * 2008-09-15 2017-06-13 Immersion Medical, Inc. Systems and methods for sensing hand motion by measuring remote displacement
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8313070B2 (en) * 2008-10-31 2012-11-20 Kronner Richard F Base-clamp assembly
WO2010061567A1 (en) * 2008-11-27 2010-06-03 Ntn株式会社 Remote control actuator
US8602031B2 (en) 2009-01-12 2013-12-10 Hansen Medical, Inc. Modular interfaces and drive actuation through barrier
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8453907B2 (en) 2009-02-06 2013-06-04 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with cutting member reversing mechanism
CN102341048A (en) 2009-02-06 2012-02-01 伊西康内外科公司 Driven surgical stapler improvements
JP5464892B2 (en) * 2009-04-15 2014-04-09 Ntn株式会社 Remote control type actuator
US9254123B2 (en) 2009-04-29 2016-02-09 Hansen Medical, Inc. Flexible and steerable elongate instruments with shape control and support elements
US9138207B2 (en) 2009-05-19 2015-09-22 Teleflex Medical Incorporated Methods and devices for laparoscopic surgery
US20100298845A1 (en) * 2009-05-25 2010-11-25 Kidd Brian L Remote manipulator device
US8821514B2 (en) 2009-06-08 2014-09-02 Covidien Lp Powered tack applier
US8918212B2 (en) 2009-06-24 2014-12-23 Intuitive Surgical Operations, Inc. Arm with a combined shape and force sensor
US9492927B2 (en) 2009-08-15 2016-11-15 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US8918211B2 (en) 2010-02-12 2014-12-23 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US8733612B2 (en) 2009-08-17 2014-05-27 Covidien Lp Safety method for powered surgical instruments
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8721539B2 (en) 2010-01-20 2014-05-13 EON Surgical Ltd. Rapid laparoscopy exchange system and method of use thereof
EP2525720A1 (en) 2010-01-20 2012-11-28 EON Surgical Ltd. System of deploying an elongate unit in a body cavity
BR112012022242A2 (en) 2010-03-03 2016-10-25 Basel S Hassoun surgical instrument
JP2011217787A (en) * 2010-04-05 2011-11-04 Ntn Corp Remotely operated actuator
US8485484B2 (en) 2010-04-30 2013-07-16 Richard F Kronner Instrument assembly support apparatus
CN103118596B (en) 2010-05-04 2015-11-25 开创治疗股份有限公司 For the system using pseudo-characteristic to carry out abdominal surface coupling
US9241693B2 (en) * 2010-07-20 2016-01-26 The Johns Hopkins University Interferometric force sensor for surgical instruments
CA2806278C (en) 2010-07-28 2020-08-04 Medrobotics Corporation Surgical positioning and support system
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
EP2417925B1 (en) 2010-08-12 2016-12-07 Immersion Corporation Electrosurgical tool having tactile feedback
EP3659490A1 (en) 2010-08-20 2020-06-03 Veran Medical Technologies, Inc. Apparatus and method for four dimensional soft tissue navigation
CA2811730C (en) 2010-09-19 2017-12-05 EON Surgical Ltd. Micro laparoscopy devices and deployments thereof
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US8777004B2 (en) 2010-09-30 2014-07-15 Ethicon Endo-Surgery, Inc. Compressible staple cartridge comprising alignment members
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
AU2011308701B2 (en) 2010-09-30 2013-11-14 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix and an alignment matrix
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9301752B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising a plurality of capsules
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
EP3675082B1 (en) 2010-10-01 2022-03-16 Applied Medical Resources Corporation Portable laparoscopic trainer
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
WO2012049623A1 (en) 2010-10-11 2012-04-19 Ecole Polytechnique Federale De Lausanne (Epfl) Mechanical manipulator for surgical instruments
US8992421B2 (en) 2010-10-22 2015-03-31 Medrobotics Corporation Highly articulated robotic probes and methods of production and use of such probes
AU2011338931B2 (en) 2010-11-11 2017-02-09 Medrobotics Corporation Introduction devices for highly articulated robotic probes and methods of production and use of such probes
US8523043B2 (en) 2010-12-07 2013-09-03 Immersion Corporation Surgical stapler having haptic feedback
US8801710B2 (en) 2010-12-07 2014-08-12 Immersion Corporation Electrosurgical sealing tool having haptic feedback
BRDI7102978S (en) * 2010-12-23 2013-11-12 CONFIGURATION APPLIED IN MEDICAL INSTRUMENT
US9921712B2 (en) 2010-12-29 2018-03-20 Mako Surgical Corp. System and method for providing substantially stable control of a surgical tool
US9119655B2 (en) 2012-08-03 2015-09-01 Stryker Corporation Surgical manipulator capable of controlling a surgical instrument in multiple modes
US20120191086A1 (en) 2011-01-20 2012-07-26 Hansen Medical, Inc. System and method for endoluminal and translumenal therapy
WO2012131660A1 (en) 2011-04-01 2012-10-04 Ecole Polytechnique Federale De Lausanne (Epfl) Robotic system for spinal and other surgeries
EP3488802A1 (en) 2011-04-06 2019-05-29 Medrobotics Corporation Articulating surgical tools and tool sheaths, and methods of deploying the same
BR112013027794B1 (en) 2011-04-29 2020-12-15 Ethicon Endo-Surgery, Inc CLAMP CARTRIDGE SET
US8852185B2 (en) 2011-05-19 2014-10-07 Covidien Lp Apparatus for performing an electrosurgical procedure
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9498231B2 (en) 2011-06-27 2016-11-22 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US11911117B2 (en) 2011-06-27 2024-02-27 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
CN106913366B (en) 2011-06-27 2021-02-26 内布拉斯加大学评议会 On-tool tracking system and computer-assisted surgery method
US8845667B2 (en) 2011-07-18 2014-09-30 Immersion Corporation Surgical tool having a programmable rotary module for providing haptic feedback
JP5715304B2 (en) 2011-07-27 2015-05-07 エコール ポリテクニーク フェデラル デ ローザンヌ (イーピーエフエル) Mechanical remote control device for remote control
US9138166B2 (en) 2011-07-29 2015-09-22 Hansen Medical, Inc. Apparatus and methods for fiber integration and registration
JP6081061B2 (en) * 2011-08-04 2017-02-15 オリンパス株式会社 Surgery support device
JP6009840B2 (en) 2011-08-04 2016-10-19 オリンパス株式会社 Medical equipment
EP2740434A4 (en) 2011-08-04 2015-03-18 Olympus Corp Medical manipulator and method for controlling same
EP2740435B8 (en) 2011-08-04 2018-12-19 Olympus Corporation Surgical support apparatus
JP5841451B2 (en) 2011-08-04 2016-01-13 オリンパス株式会社 Surgical instrument and control method thereof
JP6021484B2 (en) 2011-08-04 2016-11-09 オリンパス株式会社 Medical manipulator
WO2013018897A1 (en) 2011-08-04 2013-02-07 オリンパス株式会社 Surgical implement and medical treatment manipulator
JP5953058B2 (en) 2011-08-04 2016-07-13 オリンパス株式会社 Surgery support device and method for attaching and detaching the same
JP6000641B2 (en) 2011-08-04 2016-10-05 オリンパス株式会社 Manipulator system
JP6021353B2 (en) 2011-08-04 2016-11-09 オリンパス株式会社 Surgery support device
JP6005950B2 (en) 2011-08-04 2016-10-12 オリンパス株式会社 Surgery support apparatus and control method thereof
JP5936914B2 (en) 2011-08-04 2016-06-22 オリンパス株式会社 Operation input device and manipulator system including the same
JP5931497B2 (en) 2011-08-04 2016-06-08 オリンパス株式会社 Surgery support apparatus and assembly method thereof
JP6395605B2 (en) 2011-09-13 2018-09-26 メドロボティクス コーポレイション Highly articulated probe having anti-twist link arrangement, formation method thereof, and medical procedure execution method
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
CA2852269C (en) 2011-10-21 2022-02-22 Applied Medical Resources Corporation Simulated tissue structure for surgical training
US8672206B2 (en) 2011-10-25 2014-03-18 Covidien Lp Apparatus for endoscopic procedures
US9480492B2 (en) 2011-10-25 2016-11-01 Covidien Lp Apparatus for endoscopic procedures
US8899462B2 (en) 2011-10-25 2014-12-02 Covidien Lp Apparatus for endoscopic procedures
US11207089B2 (en) 2011-10-25 2021-12-28 Covidien Lp Apparatus for endoscopic procedures
US9492146B2 (en) 2011-10-25 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
US8657177B2 (en) 2011-10-25 2014-02-25 Covidien Lp Surgical apparatus and method for endoscopic surgery
US9364231B2 (en) 2011-10-27 2016-06-14 Covidien Lp System and method of using simulation reload to optimize staple formation
CA2859967A1 (en) 2011-12-20 2013-06-27 Applied Medical Resources Corporation Advanced surgical simulation
CN108262741A (en) 2011-12-21 2018-07-10 美的洛博迪克斯公司 The application method of the securing device of probe, the forming method of the device and the device is hinged for the height with chain regulating device
EP2809245B1 (en) 2012-02-02 2020-04-29 Great Belief International Limited Mechanized multi-instrument surgical system
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9972082B2 (en) 2012-02-22 2018-05-15 Veran Medical Technologies, Inc. Steerable surgical catheter having biopsy devices and related systems and methods for four dimensional soft tissue navigation
MX353040B (en) 2012-03-28 2017-12-18 Ethicon Endo Surgery Inc Retainer assembly including a tissue thickness compensator.
RU2014143258A (en) 2012-03-28 2016-05-20 Этикон Эндо-Серджери, Инк. FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS
CN104334098B (en) 2012-03-28 2017-03-22 伊西康内外科公司 Tissue thickness compensator comprising capsules defining a low pressure environment
KR101800189B1 (en) * 2012-04-30 2017-11-23 삼성전자주식회사 Apparatus and method for controlling power of surgical robot
US10080563B2 (en) 2012-06-01 2018-09-25 Covidien Lp Loading unit detection assembly and surgical device for use therewith
US9868198B2 (en) 2012-06-01 2018-01-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use
US9597104B2 (en) 2012-06-01 2017-03-21 Covidien Lp Handheld surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9364220B2 (en) 2012-06-19 2016-06-14 Covidien Lp Apparatus for endoscopic procedures
US11857149B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. Surgical robotic systems with target trajectory deviation monitoring and related methods
US10136954B2 (en) 2012-06-21 2018-11-27 Globus Medical, Inc. Surgical tool systems and method
US11116576B2 (en) 2012-06-21 2021-09-14 Globus Medical Inc. Dynamic reference arrays and methods of use
US11045267B2 (en) 2012-06-21 2021-06-29 Globus Medical, Inc. Surgical robotic automation with tracking markers
US10231791B2 (en) 2012-06-21 2019-03-19 Globus Medical, Inc. Infrared signal based position recognition system for use with a robot-assisted surgery
US11395706B2 (en) 2012-06-21 2022-07-26 Globus Medical Inc. Surgical robot platform
US11317971B2 (en) 2012-06-21 2022-05-03 Globus Medical, Inc. Systems and methods related to robotic guidance in surgery
JP2015528713A (en) 2012-06-21 2015-10-01 グローバス メディカル インコーポレイティッド Surgical robot platform
US10350013B2 (en) 2012-06-21 2019-07-16 Globus Medical, Inc. Surgical tool systems and methods
US10758315B2 (en) 2012-06-21 2020-09-01 Globus Medical Inc. Method and system for improving 2D-3D registration convergence
US11607149B2 (en) 2012-06-21 2023-03-21 Globus Medical Inc. Surgical tool systems and method
US11253327B2 (en) 2012-06-21 2022-02-22 Globus Medical, Inc. Systems and methods for automatically changing an end-effector on a surgical robot
US11298196B2 (en) 2012-06-21 2022-04-12 Globus Medical Inc. Surgical robotic automation with tracking markers and controlled tool advancement
US11399900B2 (en) 2012-06-21 2022-08-02 Globus Medical, Inc. Robotic systems providing co-registration using natural fiducials and related methods
US11864745B2 (en) 2012-06-21 2024-01-09 Globus Medical, Inc. Surgical robotic system with retractor
US10624710B2 (en) 2012-06-21 2020-04-21 Globus Medical, Inc. System and method for measuring depth of instrumentation
US11793570B2 (en) 2012-06-21 2023-10-24 Globus Medical Inc. Surgical robotic automation with tracking markers
US11864839B2 (en) 2012-06-21 2024-01-09 Globus Medical Inc. Methods of adjusting a virtual implant and related surgical navigation systems
US11857266B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. System for a surveillance marker in robotic-assisted surgery
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US20140005718A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Multi-functional powered surgical device with external dissection features
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9839480B2 (en) 2012-07-09 2017-12-12 Covidien Lp Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
US10492814B2 (en) 2012-07-09 2019-12-03 Covidien Lp Apparatus for endoscopic procedures
US9955965B2 (en) 2012-07-09 2018-05-01 Covidien Lp Switch block control assembly of a medical device
US9402604B2 (en) 2012-07-20 2016-08-02 Covidien Lp Apparatus for endoscopic procedures
JP2015525904A (en) 2012-08-03 2015-09-07 アプライド メディカル リソーシーズ コーポレイション Simulated stapling and energy-based ligation for surgical training
US9820818B2 (en) 2012-08-03 2017-11-21 Stryker Corporation System and method for controlling a surgical manipulator based on implant parameters
US9226796B2 (en) 2012-08-03 2016-01-05 Stryker Corporation Method for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path
CN112932672A (en) 2012-08-03 2021-06-11 史赛克公司 Systems and methods for robotic surgery
WO2014026104A1 (en) 2012-08-09 2014-02-13 Castro Michael Salvatore Surgical tool positioning systems
KR102283182B1 (en) 2012-08-15 2021-07-29 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 User initiated break-away clutching of a surgical mounting platform
US9700310B2 (en) 2013-08-23 2017-07-11 Ethicon Llc Firing member retraction devices for powered surgical instruments
US10492876B2 (en) 2012-09-17 2019-12-03 Omniguide, Inc. Devices and methods for laser surgery
JP2015532450A (en) 2012-09-26 2015-11-09 アプライド メディカル リソーシーズ コーポレイション Surgical training model for laparoscopic procedures
US10679520B2 (en) 2012-09-27 2020-06-09 Applied Medical Resources Corporation Surgical training model for laparoscopic procedures
CA2880482C (en) 2012-09-27 2020-03-10 Applied Medical Resources Corporation Surgical training model for laparoscopic procedures
CA2885302C (en) 2012-09-27 2022-08-02 Applied Medical Resources Corporation Surgical training model for laparoscopic procedures
AU2013323289B2 (en) 2012-09-28 2017-03-16 Applied Medical Resources Corporation Surgical training model for transluminal laparoscopic procedures
WO2014052868A1 (en) 2012-09-28 2014-04-03 Applied Medical Resources Corporation Surgical training model for laparoscopic procedures
US9421014B2 (en) 2012-10-18 2016-08-23 Covidien Lp Loading unit velocity and position feedback
US20140148673A1 (en) 2012-11-28 2014-05-29 Hansen Medical, Inc. Method of anchoring pullwire directly articulatable region in catheter
US9782187B2 (en) 2013-01-18 2017-10-10 Covidien Lp Adapter load button lockout
US10918364B2 (en) 2013-01-24 2021-02-16 Covidien Lp Intelligent adapter assembly for use with an electromechanical surgical system
CN105101903B (en) 2013-02-04 2018-08-24 儿童国家医疗中心 Mixing control surgical robot systems
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US10507066B2 (en) 2013-02-15 2019-12-17 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
US9216013B2 (en) 2013-02-18 2015-12-22 Covidien Lp Apparatus for endoscopic procedures
US9421003B2 (en) 2013-02-18 2016-08-23 Covidien Lp Apparatus for endoscopic procedures
US9533121B2 (en) 2013-02-26 2017-01-03 Catheter Precision, Inc. Components and methods for accommodating guidewire catheters on a catheter controller system
EP3660816B1 (en) 2013-03-01 2021-10-13 Applied Medical Resources Corporation Advanced surgical simulation constructions and methods
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
US9326767B2 (en) 2013-03-01 2016-05-03 Ethicon Endo-Surgery, Llc Joystick switch assemblies for surgical instruments
JP6345707B2 (en) 2013-03-01 2018-06-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with soft stop
EP2996611B1 (en) 2013-03-13 2019-06-26 Stryker Corporation Systems and software for establishing virtual constraint boundaries
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9402687B2 (en) * 2013-03-13 2016-08-02 Ethicon Endo-Surgery, Llc Robotic electrosurgical device with disposable shaft
KR102274277B1 (en) 2013-03-13 2021-07-08 스트리커 코포레이션 System for arranging objects in an operating room in preparation for surgical procedures
US9492189B2 (en) 2013-03-13 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
US9687230B2 (en) 2013-03-14 2017-06-27 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9326822B2 (en) 2013-03-14 2016-05-03 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US20140277334A1 (en) 2013-03-14 2014-09-18 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US20140276936A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Active drive mechanism for simultaneous rotation and translation
KR102505589B1 (en) 2013-03-15 2023-03-03 스트리커 코포레이션 End effector of a surgical robotic manipulator
US9408669B2 (en) 2013-03-15 2016-08-09 Hansen Medical, Inc. Active drive mechanism with finite range of motion
US10105149B2 (en) 2013-03-15 2018-10-23 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9775610B2 (en) 2013-04-09 2017-10-03 Covidien Lp Apparatus for endoscopic procedures
US9700318B2 (en) 2013-04-09 2017-07-11 Covidien Lp Apparatus for endoscopic procedures
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US9913695B2 (en) 2013-05-02 2018-03-13 Medrobotics Corporation Robotic system including a cable interface assembly
KR102216609B1 (en) 2013-05-15 2021-02-17 어플라이드 메디컬 리소시스 코포레이션 Hernia model
US9517059B2 (en) 2013-05-20 2016-12-13 Medrobotics Corporation Articulating surgical instruments and method of deploying the same
EP2999419B1 (en) 2013-05-22 2020-12-23 Covidien LP Apparatus for controlling surgical instruments using a port assembly
US9801646B2 (en) 2013-05-30 2017-10-31 Covidien Lp Adapter load button decoupled from loading unit sensor
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
EP3011550B1 (en) 2013-06-18 2018-01-03 Applied Medical Resources Corporation Gallbladder model
US9797486B2 (en) 2013-06-20 2017-10-24 Covidien Lp Adapter direct drive with manual retraction, lockout and connection mechanisms
US9782223B2 (en) * 2013-06-21 2017-10-10 Christopher Daniel Ross Surgical trajectory alignment device
US9757129B2 (en) 2013-07-08 2017-09-12 Covidien Lp Coupling member configured for use with surgical devices
AU2014293036B2 (en) 2013-07-24 2017-12-21 Applied Medical Resources Corporation First entry model
CA2918879A1 (en) * 2013-07-24 2015-01-29 Centre For Surgical Invention & Innovation Multi-function mounting interface for an image-guided robotic system and quick release interventional toolset
US10198966B2 (en) 2013-07-24 2019-02-05 Applied Medical Resources Corporation Advanced first entry model for surgical simulation
KR101506932B1 (en) * 2013-07-29 2015-04-07 한국과학기술연구원 Tube insertion device having an end effector capable of adjustment of direction
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
US9993614B2 (en) 2013-08-27 2018-06-12 Catheter Precision, Inc. Components for multiple axis control of a catheter in a catheter positioning system
US9724493B2 (en) 2013-08-27 2017-08-08 Catheter Precision, Inc. Components and methods for balancing a catheter controller system with a counterweight
US9999751B2 (en) 2013-09-06 2018-06-19 Catheter Precision, Inc. Adjustable nose cone for a catheter positioning system
US9750577B2 (en) 2013-09-06 2017-09-05 Catheter Precision, Inc. Single hand operated remote controller for remote catheter positioning system
US9955966B2 (en) 2013-09-17 2018-05-01 Covidien Lp Adapter direct drive with manual retraction, lockout, and connection mechanisms for improper use prevention
US10271840B2 (en) 2013-09-18 2019-04-30 Covidien Lp Apparatus and method for differentiating between tissue and mechanical obstruction in a surgical instrument
US9795764B2 (en) 2013-09-27 2017-10-24 Catheter Precision, Inc. Remote catheter positioning system with hoop drive assembly
US9700698B2 (en) 2013-09-27 2017-07-11 Catheter Precision, Inc. Components and methods for a catheter positioning system with a spreader and track
US9283048B2 (en) 2013-10-04 2016-03-15 KB Medical SA Apparatus and systems for precise guidance of surgical tools
US9974540B2 (en) 2013-10-18 2018-05-22 Covidien Lp Adapter direct drive twist-lock retention mechanism
US9295522B2 (en) 2013-11-08 2016-03-29 Covidien Lp Medical device adapter with wrist mechanism
US10236616B2 (en) 2013-12-04 2019-03-19 Covidien Lp Adapter assembly for interconnecting surgical devices and surgical attachments, and surgical systems thereof
US10561417B2 (en) 2013-12-09 2020-02-18 Covidien Lp Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
ES2755485T3 (en) 2013-12-09 2020-04-22 Covidien Lp Adapter assembly for the interconnection of electromechanical surgical devices and surgical load units, and surgical systems thereof
CN110074844B (en) 2013-12-11 2023-02-17 柯惠Lp公司 Wrist assembly and jaw assembly for robotic surgical system
CN105813580B (en) 2013-12-12 2019-10-15 柯惠Lp公司 Gear train for robotic surgical system
US9808245B2 (en) 2013-12-13 2017-11-07 Covidien Lp Coupling assembly for interconnecting an adapter assembly and a surgical device, and surgical systems thereof
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9968354B2 (en) 2013-12-23 2018-05-15 Ethicon Llc Surgical staples and methods for making the same
AU2014374201A1 (en) 2013-12-30 2016-07-07 Medrobotics Corporation Articulated robotic probes
WO2015107099A1 (en) 2014-01-15 2015-07-23 KB Medical SA Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery
US9839424B2 (en) 2014-01-17 2017-12-12 Covidien Lp Electromechanical surgical assembly
US9655616B2 (en) 2014-01-22 2017-05-23 Covidien Lp Apparatus for endoscopic procedures
CN106659540B (en) 2014-02-03 2019-03-05 迪斯塔莫申股份公司 Mechanical remote control operating device including distal end instrument can be exchanged
US10039605B2 (en) 2014-02-11 2018-08-07 Globus Medical, Inc. Sterile handle for controlling a robotic surgical system from a sterile field
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US10226305B2 (en) 2014-02-12 2019-03-12 Covidien Lp Surgical end effectors and pulley assemblies thereof
US9301691B2 (en) 2014-02-21 2016-04-05 Covidien Lp Instrument for optically detecting tissue attributes
JP6462004B2 (en) 2014-02-24 2019-01-30 エシコン エルエルシー Fastening system with launcher lockout
US20140166725A1 (en) 2014-02-24 2014-06-19 Ethicon Endo-Surgery, Inc. Staple cartridge including a barbed staple.
US9597153B2 (en) * 2014-03-17 2017-03-21 Intuitive Surgical Operations, Inc. Positions for multiple surgical mounting platform rotation clutch buttons
US20150272571A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Surgical instrument utilizing sensor adaptation
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
KR102438168B1 (en) 2014-03-26 2022-08-31 어플라이드 메디컬 리소시스 코포레이션 Simulated dissectible tissue
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US20150272557A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Modular surgical instrument system
CN106132322B (en) 2014-03-31 2019-11-08 柯惠Lp公司 The wrist units and clamp assemblies of robotic surgical system
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
CN106456158B (en) 2014-04-16 2019-02-05 伊西康内外科有限责任公司 Fastener cartridge including non-uniform fastener
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
BR112016023807B1 (en) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc CARTRIDGE SET OF FASTENERS FOR USE WITH A SURGICAL INSTRUMENT
US10164466B2 (en) 2014-04-17 2018-12-25 Covidien Lp Non-contact surgical adapter electrical interface
US10046140B2 (en) 2014-04-21 2018-08-14 Hansen Medical, Inc. Devices, systems, and methods for controlling active drive systems
US10080552B2 (en) 2014-04-21 2018-09-25 Covidien Lp Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US20150305650A1 (en) 2014-04-23 2015-10-29 Mark Hunter Apparatuses and methods for endobronchial navigation to and confirmation of the location of a target tissue and percutaneous interception of the target tissue
US20150305612A1 (en) 2014-04-23 2015-10-29 Mark Hunter Apparatuses and methods for registering a real-time image feed from an imaging device to a steerable catheter
WO2015162256A1 (en) 2014-04-24 2015-10-29 KB Medical SA Surgical instrument holder for use with a robotic surgical system
US10687906B2 (en) * 2014-04-29 2020-06-23 Covidien Lp Surgical instruments, instrument drive units, and surgical assemblies thereof
US9861366B2 (en) 2014-05-06 2018-01-09 Covidien Lp Ejecting assembly for a surgical stapler
US9713466B2 (en) 2014-05-16 2017-07-25 Covidien Lp Adaptor for surgical instrument for converting rotary input to linear output
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US9839425B2 (en) 2014-06-26 2017-12-12 Covidien Lp Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US9987095B2 (en) 2014-06-26 2018-06-05 Covidien Lp Adapter assemblies for interconnecting electromechanical handle assemblies and surgical loading units
US10163589B2 (en) 2014-06-26 2018-12-25 Covidien Lp Adapter assemblies for interconnecting surgical loading units and handle assemblies
US10561418B2 (en) 2014-06-26 2020-02-18 Covidien Lp Adapter assemblies for interconnecting surgical loading units and handle assemblies
US9763661B2 (en) 2014-06-26 2017-09-19 Covidien Lp Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US10357257B2 (en) 2014-07-14 2019-07-23 KB Medical SA Anti-skid surgical instrument for use in preparing holes in bone tissue
WO2016030767A1 (en) 2014-08-27 2016-03-03 Distalmotion Sa Surgical system for microsurgical techniques
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
WO2016043845A1 (en) 2014-09-15 2016-03-24 Covidien Lp Robotically controlling surgical assemblies
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
MX2017003960A (en) 2014-09-26 2017-12-04 Ethicon Llc Surgical stapling buttresses and adjunct materials.
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
DE102014219930A1 (en) * 2014-10-01 2016-04-07 Richard Wolf Gmbh Medical device
US10603128B2 (en) 2014-10-07 2020-03-31 Covidien Lp Handheld electromechanical surgical system
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10729443B2 (en) 2014-10-21 2020-08-04 Covidien Lp Adapter, extension, and connector assemblies for surgical devices
US10226254B2 (en) 2014-10-21 2019-03-12 Covidien Lp Adapter, extension, and connector assemblies for surgical devices
US10085750B2 (en) 2014-10-22 2018-10-02 Covidien Lp Adapter with fire rod J-hook lockout
US9949737B2 (en) 2014-10-22 2018-04-24 Covidien Lp Adapter assemblies for interconnecting surgical loading units and handle assemblies
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
KR102518089B1 (en) 2014-11-13 2023-04-05 어플라이드 메디컬 리소시스 코포레이션 Simulated tissue models and methods
US11103316B2 (en) 2014-12-02 2021-08-31 Globus Medical Inc. Robot assisted volume removal during surgery
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
BR112017012996B1 (en) 2014-12-18 2022-11-08 Ethicon Llc SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
WO2016097868A1 (en) 2014-12-19 2016-06-23 Distalmotion Sa Reusable surgical instrument for minimally invasive procedures
EP3232974B1 (en) 2014-12-19 2018-10-24 DistalMotion SA Articulated handle for mechanical telemanipulator
US11039820B2 (en) 2014-12-19 2021-06-22 Distalmotion Sa Sterile interface for articulated surgical instruments
DK3232951T3 (en) 2014-12-19 2024-01-15 Distalmotion Sa SURGICAL INSTRUMENT WITH ARTICULATED END-EFFECTOR
WO2016097871A1 (en) 2014-12-19 2016-06-23 Distalmotion Sa Docking system for mechanical telemanipulator
US10013808B2 (en) 2015-02-03 2018-07-03 Globus Medical, Inc. Surgeon head-mounted display apparatuses
WO2016131903A1 (en) 2015-02-18 2016-08-25 KB Medical SA Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique
KR20230143198A (en) 2015-02-19 2023-10-11 어플라이드 메디컬 리소시스 코포레이션 Simulated tissue structures and methods
US10111665B2 (en) 2015-02-19 2018-10-30 Covidien Lp Electromechanical surgical systems
US10226250B2 (en) 2015-02-27 2019-03-12 Ethicon Llc Modular stapling assembly
JP6353796B2 (en) * 2015-02-27 2018-07-04 株式会社コスメック Output device and output system
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US20160249910A1 (en) 2015-02-27 2016-09-01 Ethicon Endo-Surgery, Llc Surgical charging system that charges and/or conditions one or more batteries
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10190888B2 (en) 2015-03-11 2019-01-29 Covidien Lp Surgical stapling instruments with linear position assembly
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
EP3280337B1 (en) 2015-04-09 2019-11-13 DistalMotion SA Articulated hand-held instrument
EP3280343A1 (en) 2015-04-09 2018-02-14 DistalMotion SA Mechanical teleoperated device for remote manipulation
US10327779B2 (en) 2015-04-10 2019-06-25 Covidien Lp Adapter, extension, and connector assemblies for surgical devices
US10226239B2 (en) 2015-04-10 2019-03-12 Covidien Lp Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US11432902B2 (en) 2015-04-10 2022-09-06 Covidien Lp Surgical devices with moisture control
US11278286B2 (en) 2015-04-22 2022-03-22 Covidien Lp Handheld electromechanical surgical system
ES2950459T3 (en) 2015-04-22 2023-10-10 Covidien Lp Portable electromechanical surgical system
US10653489B2 (en) 2015-05-11 2020-05-19 Covidien Lp Coupling instrument drive unit and robotic surgical instrument
CA2980776A1 (en) 2015-05-14 2016-11-17 Applied Medical Resources Corporation Synthetic tissue structures for electrosurgical training and simulation
WO2016196238A1 (en) * 2015-06-03 2016-12-08 Covidien Lp Offset instrument drive unit
KR20180016553A (en) 2015-06-09 2018-02-14 어플라이드 메디컬 리소시스 코포레이션 Hysterectomy model
US10335149B2 (en) 2015-06-18 2019-07-02 Ethicon Llc Articulatable surgical instruments with composite firing beam structures with center firing support member for articulation support
WO2016205452A1 (en) * 2015-06-19 2016-12-22 Covidien Lp Controlling robotic surgical instruments with bidirectional coupling
WO2016205481A1 (en) 2015-06-19 2016-12-22 Covidien Lp Robotic surgical assemblies
ES2824529T3 (en) 2015-07-16 2021-05-12 Applied Med Resources Simulated dissectable tissue
ES2883261T3 (en) 2015-07-22 2021-12-07 Applied Med Resources Appendectomy model
US10751058B2 (en) 2015-07-28 2020-08-25 Covidien Lp Adapter assemblies for surgical devices
US10646298B2 (en) 2015-07-31 2020-05-12 Globus Medical, Inc. Robot arm and methods of use
US10058394B2 (en) 2015-07-31 2018-08-28 Globus Medical, Inc. Robot arm and methods of use
US10321963B2 (en) * 2015-08-04 2019-06-18 Vanderbilt University Apparatus and method for moving an elongate rod
US10080615B2 (en) 2015-08-12 2018-09-25 Globus Medical, Inc. Devices and methods for temporary mounting of parts to bone
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
CN108348233B (en) 2015-08-26 2021-05-07 伊西康有限责任公司 Surgical staple strip for allowing changing staple characteristics and achieving easy cartridge loading
US10213203B2 (en) 2015-08-26 2019-02-26 Ethicon Llc Staple cartridge assembly without a bottom cover
WO2017037532A1 (en) 2015-08-28 2017-03-09 Distalmotion Sa Surgical instrument with increased actuation force
JP6894431B2 (en) 2015-08-31 2021-06-30 ケービー メディカル エスアー Robotic surgical system and method
US10238390B2 (en) 2015-09-02 2019-03-26 Ethicon Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
MX2022006191A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
US10034716B2 (en) 2015-09-14 2018-07-31 Globus Medical, Inc. Surgical robotic systems and methods thereof
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
WO2017053363A1 (en) 2015-09-25 2017-03-30 Covidien Lp Robotic surgical assemblies and instrument drive connectors thereof
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
CA3025540A1 (en) 2015-10-02 2017-04-06 Applied Medical Resources Corporation Hysterectomy model
US10371238B2 (en) 2015-10-09 2019-08-06 Covidien Lp Adapter assembly for surgical device
US9771092B2 (en) 2015-10-13 2017-09-26 Globus Medical, Inc. Stabilizer wheel assembly and methods of use
US10413298B2 (en) 2015-10-14 2019-09-17 Covidien Lp Adapter assembly for surgical devices
US10939952B2 (en) 2015-11-06 2021-03-09 Covidien Lp Adapter, extension, and connector assemblies for surgical devices
US10292705B2 (en) 2015-11-06 2019-05-21 Covidien Lp Surgical apparatus
US10729435B2 (en) 2015-11-06 2020-08-04 Covidien Lp Adapter assemblies for interconnecting surgical loading units and handle assemblies
EP4235632A3 (en) 2015-11-20 2024-01-24 Applied Medical Resources Corporation Simulated dissectible tissue
US10617411B2 (en) 2015-12-01 2020-04-14 Covidien Lp Adapter assembly for surgical device
US10433841B2 (en) 2015-12-10 2019-10-08 Covidien Lp Adapter assembly for surgical device
GB201521808D0 (en) * 2015-12-10 2016-01-27 Cambridge Medical Robotics Ltd Interfacing a surgical robot and instrument
US10420554B2 (en) 2015-12-22 2019-09-24 Covidien Lp Personalization of powered surgical devices
US10253847B2 (en) 2015-12-22 2019-04-09 Covidien Lp Electromechanical surgical devices with single motor drives and adapter assemblies therfor
CN108463185B (en) 2015-12-29 2021-12-14 柯惠Lp公司 Robotic surgical system and instrument drive assembly
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
JP6944939B2 (en) 2015-12-31 2021-10-06 ストライカー・コーポレイション Systems and methods for performing surgery on a patient's target site as defined by a virtual object
US10314579B2 (en) 2016-01-07 2019-06-11 Covidien Lp Adapter assemblies for interconnecting surgical loading units and handle assemblies
US10524797B2 (en) 2016-01-13 2020-01-07 Covidien Lp Adapter assembly including a removable trocar assembly
US10660623B2 (en) 2016-01-15 2020-05-26 Covidien Lp Centering mechanism for articulation joint
US10508720B2 (en) 2016-01-21 2019-12-17 Covidien Lp Adapter assembly with planetary gear drive for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US11058378B2 (en) 2016-02-03 2021-07-13 Globus Medical, Inc. Portable medical imaging system
US11883217B2 (en) 2016-02-03 2024-01-30 Globus Medical, Inc. Portable medical imaging system and method
US10117632B2 (en) 2016-02-03 2018-11-06 Globus Medical, Inc. Portable medical imaging system with beam scanning collimator
US10448910B2 (en) 2016-02-03 2019-10-22 Globus Medical, Inc. Portable medical imaging system
US10842453B2 (en) 2016-02-03 2020-11-24 Globus Medical, Inc. Portable medical imaging system
JP6911054B2 (en) 2016-02-09 2021-07-28 エシコン エルエルシーEthicon LLC Surgical instruments with asymmetric joint composition
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10398439B2 (en) 2016-02-10 2019-09-03 Covidien Lp Adapter, extension, and connector assemblies for surgical devices
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
CN108697474B (en) 2016-02-16 2021-10-22 柯惠Lp公司 Robot surgical assembly and surgical instrument holder thereof
EP3422986B1 (en) * 2016-03-04 2023-12-27 Covidien LP Robotic surgical assemblies
US10866119B2 (en) 2016-03-14 2020-12-15 Globus Medical, Inc. Metal detector for detecting insertion of a surgical device into a hollow tube
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10433840B2 (en) 2016-04-18 2019-10-08 Ethicon Llc Surgical instrument comprising a replaceable cartridge jaw
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10799239B2 (en) 2016-05-09 2020-10-13 Covidien Lp Adapter assembly with pulley system and worm gear drive for interconnecting electromechanical surgical devices and surgical end effectors
US10588610B2 (en) 2016-05-10 2020-03-17 Covidien Lp Adapter assemblies for surgical devices
US10736637B2 (en) 2016-05-10 2020-08-11 Covidien Lp Brake for adapter assemblies for surgical devices
US10702302B2 (en) 2016-05-17 2020-07-07 Covidien Lp Adapter assembly including a removable trocar assembly
US10463374B2 (en) 2016-05-17 2019-11-05 Covidien Lp Adapter assembly for a flexible circular stapler
AU2017269262B2 (en) 2016-05-26 2021-09-09 Covidien Lp Robotic surgical assemblies
CN114767266A (en) * 2016-06-09 2022-07-22 直观外科手术操作公司 Computer-assisted teleoperation surgical system and method
US10675024B2 (en) 2016-06-24 2020-06-09 Ethicon Llc Staple cartridge comprising overdriven staples
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
JP6957532B2 (en) 2016-06-24 2021-11-02 エシコン エルエルシーEthicon LLC Staple cartridges including wire staples and punched staples
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
WO2018005301A1 (en) 2016-06-27 2018-01-04 Applied Medical Resources Corporation Simulated abdominal wall
US10653398B2 (en) 2016-08-05 2020-05-19 Covidien Lp Adapter assemblies for surgical devices
JP6474366B2 (en) * 2016-08-05 2019-02-27 株式会社メディカロイド Manipulator arm, patient side system, and surgical system
KR20180020033A (en) * 2016-08-17 2018-02-27 한화테크윈 주식회사 Method and apparatus for allocating resources
US10463439B2 (en) 2016-08-26 2019-11-05 Auris Health, Inc. Steerable catheter with shaft load distributions
US11241559B2 (en) 2016-08-29 2022-02-08 Auris Health, Inc. Active drive for guidewire manipulation
US11116594B2 (en) 2016-11-08 2021-09-14 Covidien Lp Surgical systems including adapter assemblies for interconnecting electromechanical surgical devices and end effectors
US11202682B2 (en) 2016-12-16 2021-12-21 Mako Surgical Corp. Techniques for modifying tool operation in a surgical robotic system based on comparing actual and commanded states of the tool relative to a surgical site
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US20180168647A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments having end effectors with positive opening features
JP2020501779A (en) 2016-12-21 2020-01-23 エシコン エルエルシーEthicon LLC Surgical stapling system
US10980536B2 (en) 2016-12-21 2021-04-20 Ethicon Llc No-cartridge and spent cartridge lockout arrangements for surgical staplers
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US10524789B2 (en) 2016-12-21 2020-01-07 Ethicon Llc Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US20180168608A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
JP6983893B2 (en) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC Lockout configuration for surgical end effectors and replaceable tool assemblies
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US20180168598A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Staple forming pocket arrangements comprising zoned forming surface grooves
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US10835246B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
JP7233841B2 (en) 2017-01-18 2023-03-07 ケービー メディカル エスアー Robotic Navigation for Robotic Surgical Systems
US11030922B2 (en) 2017-02-14 2021-06-08 Applied Medical Resources Corporation Laparoscopic training system
US10847057B2 (en) 2017-02-23 2020-11-24 Applied Medical Resources Corporation Synthetic tissue structures for electrosurgical training and simulation
US10631945B2 (en) 2017-02-28 2020-04-28 Covidien Lp Autoclavable load sensing device
US11272929B2 (en) 2017-03-03 2022-03-15 Covidien Lp Dynamically matching input and output shaft speeds of articulating adapter assemblies for surgical instruments
US10299790B2 (en) 2017-03-03 2019-05-28 Covidien Lp Adapter with centering mechanism for articulation joint
US11071594B2 (en) 2017-03-16 2021-07-27 KB Medical SA Robotic navigation of robotic surgical systems
US10660641B2 (en) 2017-03-16 2020-05-26 Covidien Lp Adapter with centering mechanism for articulation joint
US11324502B2 (en) 2017-05-02 2022-05-10 Covidien Lp Surgical loading unit including an articulating end effector
US10390858B2 (en) 2017-05-02 2019-08-27 Covidien Lp Powered surgical device with speed and current derivative motor shut off
US10603035B2 (en) 2017-05-02 2020-03-31 Covidien Lp Surgical loading unit including an articulating end effector
US11058503B2 (en) 2017-05-11 2021-07-13 Distalmotion Sa Translational instrument interface for surgical robot and surgical robot systems comprising the same
GB2562291B (en) * 2017-05-11 2023-02-01 Freehand 2010 Ltd A tool holder and system
US11311295B2 (en) 2017-05-15 2022-04-26 Covidien Lp Adaptive powered stapling algorithm with calibration factor
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11141154B2 (en) 2017-06-27 2021-10-12 Cilag Gmbh International Surgical end effectors and anvils
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
EP4070740A1 (en) 2017-06-28 2022-10-12 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US20190000461A1 (en) 2017-06-28 2019-01-03 Ethicon Llc Surgical cutting and fastening devices with pivotable anvil with a tissue locating arrangement in close proximity to an anvil pivot axis
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10675094B2 (en) 2017-07-21 2020-06-09 Globus Medical Inc. Robot surgical platform
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US10772700B2 (en) 2017-08-23 2020-09-15 Covidien Lp Contactless loading unit detection
EP3678573A4 (en) 2017-09-06 2021-06-02 Covidien LP Boundary scaling of surgical robots
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10987104B2 (en) 2017-10-30 2021-04-27 Covidien Lp Apparatus for endoscopic procedures
US11207066B2 (en) 2017-10-30 2021-12-28 Covidien Lp Apparatus for endoscopic procedures
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US11794338B2 (en) 2017-11-09 2023-10-24 Globus Medical Inc. Robotic rod benders and related mechanical and motor housings
US11357548B2 (en) 2017-11-09 2022-06-14 Globus Medical, Inc. Robotic rod benders and related mechanical and motor housings
EP3492032B1 (en) 2017-11-09 2023-01-04 Globus Medical, Inc. Surgical robotic systems for bending surgical rods
US11134862B2 (en) 2017-11-10 2021-10-05 Globus Medical, Inc. Methods of selecting surgical implants and related devices
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
EP3735195A4 (en) 2018-01-04 2021-10-27 Covidien LP Robotic surgical systems and instrument drive assemblies
JP7005773B2 (en) 2018-01-04 2022-01-24 コヴィディエン リミテッド パートナーシップ Robotic surgical instruments including high range of motion wrist assembly with torque transmission and mechanical manipulation
USD874655S1 (en) 2018-01-05 2020-02-04 Medrobotics Corporation Positioning arm for articulating robotic surgical system
EP3743003A1 (en) 2018-01-26 2020-12-02 Mako Surgical Corp. End effectors and methods for driving tools guided by surgical robotic systems
AU2019218707A1 (en) 2018-02-07 2020-08-13 Distalmotion Sa Surgical robot systems comprising robotic telemanipulators and integrated laparoscopy
US20190254753A1 (en) 2018-02-19 2019-08-22 Globus Medical, Inc. Augmented reality navigation systems for use with robotic surgical systems and methods of their use
US10573023B2 (en) 2018-04-09 2020-02-25 Globus Medical, Inc. Predictive visualization of medical imaging scanner component movement
US11160556B2 (en) 2018-04-23 2021-11-02 Covidien Lp Threaded trocar for adapter assemblies
US11896230B2 (en) 2018-05-07 2024-02-13 Covidien Lp Handheld electromechanical surgical device including load sensor having spherical ball pivots
US11399839B2 (en) 2018-05-07 2022-08-02 Covidien Lp Surgical devices including trocar lock and trocar connection indicator
US11534172B2 (en) 2018-05-07 2022-12-27 Covidien Lp Electromechanical surgical stapler including trocar assembly release mechanism
CN112153930A (en) 2018-06-06 2020-12-29 直观外科手术操作公司 System and method for high speed data transmission across an electrical isolation barrier
US20190388091A1 (en) 2018-06-21 2019-12-26 Covidien Lp Powered surgical devices including strain gauges incorporated into flex circuits
US11497490B2 (en) 2018-07-09 2022-11-15 Covidien Lp Powered surgical devices including predictive motor control
US11241233B2 (en) 2018-07-10 2022-02-08 Covidien Lp Apparatus for ensuring strain gauge accuracy in medical reusable device
US11596496B2 (en) 2018-08-13 2023-03-07 Covidien Lp Surgical devices with moisture control
US11076858B2 (en) 2018-08-14 2021-08-03 Covidien Lp Single use electronics for surgical devices
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11510669B2 (en) 2020-09-29 2022-11-29 Covidien Lp Hand-held surgical instruments
US11197734B2 (en) 2018-10-30 2021-12-14 Covidien Lp Load sensing devices for use in surgical instruments
US11717276B2 (en) 2018-10-30 2023-08-08 Covidien Lp Surgical devices including adapters and seals
US11337742B2 (en) 2018-11-05 2022-05-24 Globus Medical Inc Compliant orthopedic driver
US11278360B2 (en) 2018-11-16 2022-03-22 Globus Medical, Inc. End-effectors for surgical robotic systems having sealed optical components
US11369372B2 (en) 2018-11-28 2022-06-28 Covidien Lp Surgical stapler adapter with flexible cable assembly, flexible fingers, and contact clips
US11744655B2 (en) 2018-12-04 2023-09-05 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11602402B2 (en) 2018-12-04 2023-03-14 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11202635B2 (en) 2019-02-04 2021-12-21 Covidien Lp Programmable distal tilt position of end effector for powered surgical devices
US11376006B2 (en) 2019-02-06 2022-07-05 Covidien Lp End effector force measurement with digital drive circuit
US11219461B2 (en) 2019-03-08 2022-01-11 Covidien Lp Strain gauge stabilization in a surgical device
US11571265B2 (en) 2019-03-22 2023-02-07 Globus Medical Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11317978B2 (en) 2019-03-22 2022-05-03 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11382549B2 (en) 2019-03-22 2022-07-12 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11419616B2 (en) 2019-03-22 2022-08-23 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11806084B2 (en) 2019-03-22 2023-11-07 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11241228B2 (en) 2019-04-05 2022-02-08 Covidien Lp Surgical instrument including an adapter assembly and an articulating surgical loading unit
US11369378B2 (en) 2019-04-18 2022-06-28 Covidien Lp Surgical instrument including an adapter assembly and an articulating surgical loading unit
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11045179B2 (en) 2019-05-20 2021-06-29 Global Medical Inc Robot-mounted retractor system
US11446035B2 (en) 2019-06-24 2022-09-20 Covidien Lp Retaining mechanisms for trocar assemblies
US11123101B2 (en) 2019-07-05 2021-09-21 Covidien Lp Retaining mechanisms for trocar assemblies
US11426168B2 (en) 2019-07-05 2022-08-30 Covidien Lp Trocar coupling assemblies for a surgical stapler
US11058429B2 (en) 2019-06-24 2021-07-13 Covidien Lp Load sensing assemblies and methods of manufacturing load sensing assemblies
US11464541B2 (en) 2019-06-24 2022-10-11 Covidien Lp Retaining mechanisms for trocar assembly
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11628023B2 (en) 2019-07-10 2023-04-18 Globus Medical, Inc. Robotic navigational system for interbody implants
US11571171B2 (en) 2019-09-24 2023-02-07 Globus Medical, Inc. Compound curve cable chain
US11426178B2 (en) 2019-09-27 2022-08-30 Globus Medical Inc. Systems and methods for navigating a pin guide driver
US11890066B2 (en) 2019-09-30 2024-02-06 Globus Medical, Inc Surgical robot with passive end effector
US11864857B2 (en) 2019-09-27 2024-01-09 Globus Medical, Inc. Surgical robot with passive end effector
US11510684B2 (en) 2019-10-14 2022-11-29 Globus Medical, Inc. Rotary motion passive end effector for surgical robots in orthopedic surgeries
EP4054460A4 (en) 2019-11-05 2022-12-07 Sirona Medical Technologies, Inc. Multi-modal catheter for improved electrical mapping and ablation
US11076850B2 (en) 2019-11-26 2021-08-03 Covidien Lp Surgical instrument including an adapter assembly and an articulating surgical loading unit
US11737747B2 (en) 2019-12-17 2023-08-29 Covidien Lp Hand-held surgical instruments
US11291446B2 (en) 2019-12-18 2022-04-05 Covidien Lp Surgical instrument including an adapter assembly and an articulating surgical loading unit
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11583275B2 (en) 2019-12-27 2023-02-21 Covidien Lp Surgical instruments including sensor assembly
US11458244B2 (en) 2020-02-07 2022-10-04 Covidien Lp Irrigating surgical apparatus with positive pressure fluid
US11382699B2 (en) 2020-02-10 2022-07-12 Globus Medical Inc. Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery
US11553913B2 (en) 2020-02-11 2023-01-17 Covidien Lp Electrically-determining tissue cut with surgical stapling apparatus
US11207150B2 (en) 2020-02-19 2021-12-28 Globus Medical, Inc. Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment
US11504117B2 (en) 2020-04-02 2022-11-22 Covidien Lp Hand-held surgical instruments
US11253216B2 (en) 2020-04-28 2022-02-22 Globus Medical Inc. Fixtures for fluoroscopic imaging systems and related navigation systems and methods
US11153555B1 (en) 2020-05-08 2021-10-19 Globus Medical Inc. Extended reality headset camera system for computer assisted navigation in surgery
US11510750B2 (en) 2020-05-08 2022-11-29 Globus Medical, Inc. Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications
US11382700B2 (en) 2020-05-08 2022-07-12 Globus Medical Inc. Extended reality headset tool tracking and control
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
US11317973B2 (en) 2020-06-09 2022-05-03 Globus Medical, Inc. Camera tracking bar for computer assisted navigation during surgery
US11382713B2 (en) 2020-06-16 2022-07-12 Globus Medical, Inc. Navigated surgical system with eye to XR headset display calibration
US11622827B2 (en) * 2020-06-18 2023-04-11 Cilag Gmbh International Clamping mechanisms for robotic surgical tools
US11877807B2 (en) 2020-07-10 2024-01-23 Globus Medical, Inc Instruments for navigated orthopedic surgeries
US11622768B2 (en) 2020-07-13 2023-04-11 Covidien Lp Methods and structure for confirming proper assembly of powered surgical stapling systems
US11793588B2 (en) 2020-07-23 2023-10-24 Globus Medical, Inc. Sterile draping of robotic arms
US20220031351A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with differential articulation joint arrangements for accommodating flexible actuators
US11737831B2 (en) 2020-09-02 2023-08-29 Globus Medical Inc. Surgical object tracking template generation for computer assisted navigation during surgical procedure
US11660091B2 (en) 2020-09-08 2023-05-30 Covidien Lp Surgical device with seal assembly
US11523785B2 (en) 2020-09-24 2022-12-13 Globus Medical, Inc. Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement
US11571192B2 (en) 2020-09-25 2023-02-07 Covidien Lp Adapter assembly for surgical devices
US11911112B2 (en) 2020-10-27 2024-02-27 Globus Medical, Inc. Robotic navigational system
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11653919B2 (en) 2020-11-24 2023-05-23 Covidien Lp Stapler line reinforcement continuity
US11744580B2 (en) 2020-11-24 2023-09-05 Covidien Lp Long stapler reloads with continuous cartridge
US11717350B2 (en) 2020-11-24 2023-08-08 Globus Medical Inc. Methods for robotic assistance and navigation in spinal surgery and related systems
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US20220378424A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a firing lockout
US11684362B2 (en) 2021-06-07 2023-06-27 Covidien Lp Handheld electromechanical surgical system
US11771432B2 (en) 2021-06-29 2023-10-03 Covidien Lp Stapling and cutting to default values in the event of strain gauge data integrity loss
US11857273B2 (en) 2021-07-06 2024-01-02 Globus Medical, Inc. Ultrasonic robotic surgical navigation
US11786248B2 (en) 2021-07-09 2023-10-17 Covidien Lp Surgical stapling device including a buttress retention assembly
US11439444B1 (en) 2021-07-22 2022-09-13 Globus Medical, Inc. Screw tower and rod reduction tool
US11819209B2 (en) 2021-08-03 2023-11-21 Covidien Lp Hand-held surgical instruments
US11862884B2 (en) 2021-08-16 2024-01-02 Covidien Lp Surgical instrument with electrical connection
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11911115B2 (en) 2021-12-20 2024-02-27 Globus Medical Inc. Flat panel registration fixture and method of using same
IT202200001418A1 (en) * 2022-01-28 2023-07-28 Azionaria Costruzioni Acma Spa Device for wrapping product wrappers
US11832823B2 (en) 2022-02-08 2023-12-05 Covidien Lp Determination of anvil release during anastomosis
CN115040056B (en) * 2022-08-12 2022-10-28 北京云力境安科技有限公司 Flexible endoscope conveying device capable of laterally taking out endoscope body
US11844585B1 (en) 2023-02-10 2023-12-19 Distalmotion Sa Surgical robotics systems and devices having a sterile restart, and methods thereof
CN117357040B (en) * 2023-12-05 2024-03-08 北京云力境安科技有限公司 Conveying device and robot equipment

Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1418184A (en) * 1920-08-12 1922-05-30 Trunick Charles Screw driver
US1583117A (en) * 1925-11-25 1926-05-04 Bragg Kliesrath Corp Power actuator
US1664210A (en) * 1923-07-16 1928-03-27 Gen Electric Vibration recorder
US3171549A (en) * 1961-07-21 1965-03-02 Molins Machine Co Ltd Mechanical handling apparatus
US3818125A (en) * 1971-10-26 1974-06-18 J Butterfield Stereo television microscope
US3923166A (en) * 1973-10-11 1975-12-02 Nasa Remote manipulator system
US3934201A (en) * 1974-03-22 1976-01-20 Majefski Richard L Low power consumption stereo transmitter and receiver system
US4150326A (en) * 1977-09-19 1979-04-17 Unimation, Inc. Trajectory correlation and error detection method and apparatus
US4260319A (en) * 1978-07-28 1981-04-07 Motoda Denshi Kogyo Kabushiki Kaisha End position control robot
US4264266A (en) * 1979-04-20 1981-04-28 Tl Systems Corporation Manipulator apparatus
US4367998A (en) * 1979-09-13 1983-01-11 United Kingdom Atomic Energy Authority Manipulators
US4436684A (en) * 1982-06-03 1984-03-13 Contour Med Partners, Ltd. Method of forming implantable prostheses for reconstructive surgery
US4506393A (en) * 1983-03-29 1985-03-26 Murphy Stephen B Method of prosthesis design
US4510574A (en) * 1981-09-09 1985-04-09 Commissariat A L'energie Atomique Servosystem between a master actuator and a slave actuator
US4517963A (en) * 1983-01-04 1985-05-21 Harold Unger Image-erecting barrel rotator for articulated optical arm
US4563567A (en) * 1982-06-08 1986-01-07 Commissariat A L'energie Atomique Apparatus for transmitting a laser beam
US4582067A (en) * 1983-02-14 1986-04-15 Washington Research Foundation Method for endoscopic blood flow detection by the use of ultrasonic energy
US4636138A (en) * 1982-02-05 1987-01-13 American Robot Corporation Industrial robot
US4638799A (en) * 1985-06-13 1987-01-27 Moore Robert R Needle guide apparatus for discolysis procedures
US4651201A (en) * 1984-06-01 1987-03-17 Arnold Schoolman Stereoscopic endoscope arrangement
US4655257A (en) * 1985-03-25 1987-04-07 Kabushiki Kaisha Machida Seisakusho Guide tube assembly for industrial endoscope
US4672963A (en) * 1985-06-07 1987-06-16 Israel Barken Apparatus and method for computer controlled laser surgery
US4676243A (en) * 1984-10-31 1987-06-30 Aldebaran Xiii Consulting Company Automated anterior capsulectomy instrument
US4722056A (en) * 1986-02-18 1988-01-26 Trustees Of Dartmouth College Reference display systems for superimposing a tomagraphic image onto the focal plane of an operating microscope
US4728974A (en) * 1985-05-31 1988-03-01 Yaskawa Electric Manufacturing Co., Ltd. Apparatus for supporting an imaging device
US4744363A (en) * 1986-07-07 1988-05-17 Hasson Harrith M Intra-abdominal organ stabilizer, retractor and tissue manipulator
US4750487A (en) * 1986-11-24 1988-06-14 Zanetti Paul H Stereotactic frame
US4750475A (en) * 1985-08-14 1988-06-14 Kabushiki Kaisha Machida Seisakusho Operating instrument guide mechanism for endoscope apparatus
US4751925A (en) * 1984-12-28 1988-06-21 Reinhold Tontarra Gripper for surgical purposes
US4794912A (en) * 1987-08-17 1989-01-03 Welch Allyn, Inc. Borescope or endoscope with fluid dynamic muscle
US4806066A (en) * 1982-11-01 1989-02-21 Microbot, Inc. Robotic arm
US4808898A (en) * 1987-09-30 1989-02-28 Keith Pearson Gripper assembly for robot arm
US4815006A (en) * 1986-09-29 1989-03-21 Asea Aktiebolag Method and device for calibrating a sensor on an industrial robot
US4826392A (en) * 1986-03-31 1989-05-02 California Institute Of Technology Method and apparatus for hybrid position/force control of multi-arm cooperating robots
US4833383A (en) * 1987-08-13 1989-05-23 Iowa State University Research Foundation, Inc. Means and method of camera space manipulation
US4837703A (en) * 1986-06-26 1989-06-06 Toshiba Kikai Kabushiki Kaisha Method for generating tool path
US4837734A (en) * 1986-02-26 1989-06-06 Hitachi, Ltd. Method and apparatus for master-slave manipulation supplemented by automatic control based on level of operator skill
US4899730A (en) * 1987-12-11 1990-02-13 Richard Wolf Gmbh Holder for medical instruments
US4921393A (en) * 1988-03-09 1990-05-01 Sri International Articulatable structure with adjustable end-point compliance
US4922338A (en) * 1989-03-02 1990-05-01 Arpino Ronald G Line-of-sight inspection system
US4930494A (en) * 1988-03-09 1990-06-05 Olympus Optical Co., Ltd. Apparatus for bending an insertion section of an endoscope using a shape memory alloy
US4989253A (en) * 1988-04-15 1991-01-29 The Montefiore Hospital Association Of Western Pennsylvania Voice activated microscope
US4996975A (en) * 1989-06-01 1991-03-05 Kabushiki Kaisha Toshiba Electronic endoscope apparatus capable of warning lifetime of electronic scope
US5002418A (en) * 1988-12-09 1991-03-26 Vsi Corporation Hold down device with extended capture pawl mechanism
US5020001A (en) * 1988-09-19 1991-05-28 Toyoda Koki Kabushiki Kaisha Robot controller
US5020933A (en) * 1989-09-01 1991-06-04 Andronic Devices, Ltd. Locking mechanism for medical devices
US5024236A (en) * 1988-10-05 1991-06-18 Advanced Medical Technology, Inc. Photoprobe assembly
US5078142A (en) * 1989-11-21 1992-01-07 Fischer Imaging Corporation Precision mammographic needle biopsy system
US5078140A (en) * 1986-05-08 1992-01-07 Kwoh Yik S Imaging device - aided robotic stereotaxis system
US5086401A (en) * 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US5090401A (en) * 1988-09-06 1992-02-25 U.S. Philips Corporation Method of positioning a patient arranged on a table top of a patient table, and apparatus for performing the method
US5096236A (en) * 1988-01-25 1992-03-17 Thoeny Hans Joerg Apparatus for detachably connecting two parts
US5098426A (en) * 1989-02-06 1992-03-24 Phoenix Laser Systems, Inc. Method and apparatus for precision laser surgery
US5097839A (en) * 1987-11-10 1992-03-24 Allen George S Apparatus for imaging the anatomy
US5125888A (en) * 1990-01-10 1992-06-30 University Of Virginia Alumni Patents Foundation Magnetic stereotactic system for treatment delivery
US5182641A (en) * 1991-06-17 1993-01-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Composite video and graphics display for camera viewing systems in robotics and teleoperation
US5184601A (en) * 1991-08-05 1993-02-09 Putman John M Endoscope stabilizer
US5187796A (en) * 1988-03-29 1993-02-16 Computer Motion, Inc. Three-dimensional vector co-processor having I, J, and K register files and I, J, and K execution units
US5187574A (en) * 1990-08-24 1993-02-16 Kanda Tsushin Kogyo Co., Ltd. Method for automatically adjusting field of view of television monitor system and apparatus for carrying out the same
US5188111A (en) * 1991-01-18 1993-02-23 Catheter Research, Inc. Device for seeking an area of interest within a body
US5201325A (en) * 1989-09-01 1993-04-13 Andronic Devices Ltd. Advanced surgical retractor
US5201743A (en) * 1992-05-05 1993-04-13 Habley Medical Technology Corp. Axially extendable endoscopic surgical instrument
US5209747A (en) * 1990-12-13 1993-05-11 Knoepfler Dennis J Adjustable angle medical forceps
US5216596A (en) * 1987-04-30 1993-06-01 Corabi International Telemetrics, Inc. Telepathology diagnostic network
US5217003A (en) * 1991-03-18 1993-06-08 Wilk Peter J Automated surgical system and apparatus
US5219351A (en) * 1990-10-24 1993-06-15 General Electric Cgr S.A. Mammograph provided with an improved needle carrier
US5221283A (en) * 1992-05-15 1993-06-22 General Electric Company Apparatus and method for stereotactic surgery
US5222499A (en) * 1989-11-15 1993-06-29 Allen George S Method and apparatus for imaging the anatomy
US5280427A (en) * 1989-11-27 1994-01-18 Bard International, Inc. Puncture guide for computer tomography
US5281220A (en) * 1992-01-13 1994-01-25 Blake Joseph W Iii Endoscopic instrument
US5282606A (en) * 1992-12-17 1994-02-01 Praiss Arthur V Reconfigurable safety fence
US5284130A (en) * 1992-06-03 1994-02-08 Ratliff Jack L Surgical instrument positioning and securing apparatus
US5289273A (en) * 1989-09-20 1994-02-22 Semborg-Recrob, Corp. Animated character system with real-time control
US5313306A (en) * 1991-05-13 1994-05-17 Telerobotics International, Inc. Omniview motionless camera endoscopy system
US5377683A (en) * 1989-07-31 1995-01-03 Barken; Israel Ultrasound-laser surgery apparatus and method
US5382885A (en) * 1993-08-09 1995-01-17 The University Of British Columbia Motion scaling tele-operating system with force feedback suitable for microsurgery
US5397323A (en) * 1992-10-30 1995-03-14 International Business Machines Corporation Remote center-of-motion robot for surgery
US5396685A (en) * 1994-01-14 1995-03-14 Wilk; Peter J. Zipper-type closure method
US5398685A (en) * 1992-01-10 1995-03-21 Wilk; Peter J. Endoscopic diagnostic system and associated method
US5402801A (en) * 1991-06-13 1995-04-04 International Business Machines Corporation System and method for augmentation of surgery
US5417210A (en) * 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5480409A (en) * 1994-05-10 1996-01-02 Riza; Erol D. Laparoscopic surgical instrument
US5515478A (en) * 1992-08-10 1996-05-07 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5571072A (en) * 1995-04-28 1996-11-05 Kronner; Richard F. Dual-axis endoscope holder
US5619992A (en) * 1995-04-06 1997-04-15 Guthrie; Robert B. Methods and apparatus for inhibiting contamination of reusable pulse oximetry sensors
US5626594A (en) * 1993-11-15 1997-05-06 Smith; Alan D. Keratoscopic surgical instrument for making radial and arcuate corneal incisions
US5631973A (en) * 1994-05-05 1997-05-20 Sri International Method for telemanipulation with telepresence
US5735290A (en) * 1993-02-22 1998-04-07 Heartport, Inc. Methods and systems for performing thoracoscopic coronary bypass and other procedures
US5754741A (en) * 1992-08-10 1998-05-19 Computer Motion, Inc. Automated endoscope for optimal positioning
US5855583A (en) * 1996-02-20 1999-01-05 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5878193A (en) * 1992-08-10 1999-03-02 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5876325A (en) * 1993-11-02 1999-03-02 Olympus Optical Co., Ltd. Surgical manipulation system
US5907664A (en) * 1992-08-10 1999-05-25 Computer Motion, Inc. Automated endoscope system for optimal positioning
US6017358A (en) * 1997-05-01 2000-01-25 Inbae Yoon Surgical instrument with multiple rotatably mounted offset end effectors
US6042599A (en) * 1997-11-12 2000-03-28 Bionix Development Corp. Tissue approximation forceps
US6063095A (en) * 1996-02-20 2000-05-16 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US6889116B2 (en) * 2000-09-29 2005-05-03 Kabushiki Kaisha Toshiba Manipulator
US20070021776A1 (en) * 1995-06-07 2007-01-25 Sri International System and method for releasably holding a surgical instrument

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB494943A (en) 1937-04-29 1938-10-31 Albert Edward Shorter Improvements in machines for surface hardening metal articles
US2815697A (en) * 1950-06-06 1957-12-10 Saunders-Singer Arthur Edward Microscope manipulators or dissection manipulators
US2901258A (en) * 1957-09-30 1959-08-25 Brandafi Gabriel Drill press spindle
US3145333A (en) * 1962-10-29 1964-08-18 Pardini John Anthony Force limiting device for motor control
US3463329A (en) * 1967-05-18 1969-08-26 Sylvania Electric Prod Material transfer device with parallel link frame
CH482439A (en) * 1968-02-20 1969-12-15 Contraves Ag Observation device
US3921445A (en) * 1973-10-15 1975-11-25 Stanford Research Inst Force and torque sensing method and means for manipulators and the like
JPS52155765A (en) * 1976-06-18 1977-12-24 Yachiyo Kougiyou Kenkiyuushiyo Industrial robot
US4058001A (en) 1976-08-02 1977-11-15 G. D. Searle & Co. Ultrasound imaging system with improved scan conversion
US5133727A (en) * 1990-05-10 1992-07-28 Symbiosis Corporation Radial jaw biopsy forceps
DE2819976C2 (en) * 1978-05-08 1984-03-08 Fritz 5882 Meinerzhagen Sträter Articulated arm with wrapped parallelogram function
GB2040134A (en) * 1978-11-09 1980-08-20 Marconi Co Ltd Stereoscopic television systems
US4221997A (en) 1978-12-18 1980-09-09 Western Electric Company, Incorporated Articulated robot arm and method of moving same
DE3045295A1 (en) 1979-05-21 1982-02-18 American Cystoscope Makers Inc Surgical instrument for an endoscope
US4349837A (en) * 1979-07-03 1982-09-14 Spar Aerospace Limited Satellite servicing
FR2460762A1 (en) * 1979-07-12 1981-01-30 Technigaz Tool orienting control system - effects positioning by deforming articulated parallelogram on carriage supporting tool
US4562463A (en) * 1981-05-15 1985-12-31 Stereographics Corp. Stereoscopic television system with field storage for sequential display of right and left images
US4419041A (en) * 1981-06-26 1983-12-06 Rose Stanley E Spacial mechanism and method
US4490022A (en) 1982-01-04 1984-12-25 Reynolds Alvin E Apparatus for corneal corrective techniques
FR2519690A1 (en) 1982-01-11 1983-07-18 Montabert Ets ELECTRO-HYDRAULIC ARM-SUPPORT ARRANGEMENT DEVICE FOR DRILLING DEVICE SLIDER
US4456961A (en) 1982-03-05 1984-06-26 Texas Instruments Incorporated Apparatus for teaching and transforming noncoincident coordinate systems
DE3211688C2 (en) * 1982-03-30 1986-10-09 Binder, Karl-Franz, 8077 Reichertshofen Industrial robots for manufacturing and / or assembly purposes
US4503854A (en) 1983-06-16 1985-03-12 Jako Geza J Laser surgery
CA1233222A (en) 1984-03-09 1988-02-23 Nobuhiko Onda Movable apparatus driving system
US4583117A (en) * 1984-07-17 1986-04-15 Stereographics Corporation Stereoscopic video camera
FR2593106B1 (en) * 1986-01-22 1990-03-30 Royer Jacques DEVICE FOR MOVING A TOOL OR THE LIKE OVERHEAD, ESPECIALLY AROUND AN OBJECT.
EP0239409A1 (en) 1986-03-28 1987-09-30 Life Technology Research Foundation Robot for surgical operation
US4764944A (en) 1986-06-18 1988-08-16 University Of Florida Methods for positioning an internal portion of a body relative to an extracorporeal referent
JPS6327904A (en) 1986-07-22 1988-02-05 Hitachi Ltd Position correcting control system for servo mechanism device
US4791934A (en) 1986-08-07 1988-12-20 Picker International, Inc. Computer tomography assisted stereotactic surgery system and method
US4750476A (en) * 1986-09-19 1988-06-14 Baxter Travenol Laboratories, Inc. Endoscope with multiple section image transmitting rod
US4854301A (en) 1986-11-13 1989-08-08 Olympus Optical Co., Ltd. Endoscope apparatus having a chair with a switch
JPH0829509B2 (en) 1986-12-12 1996-03-27 株式会社日立製作所 Control device for manipulator
US4873572A (en) * 1987-02-27 1989-10-10 Olympus Optical Co., Ltd. Electronic endoscope apparatus
US4860215A (en) 1987-04-06 1989-08-22 California Institute Of Technology Method and apparatus for adaptive force and position control of manipulators
US5065741A (en) 1987-04-16 1991-11-19 Olympus Optical Co. Ltd. Extracoporeal ultrasonic lithotripter with a variable focus
JPS63278674A (en) * 1987-05-11 1988-11-16 Shinko Electric Co Ltd Offset mechanism for rotating center
NL8701183A (en) * 1987-05-18 1988-12-16 Philips Nv DRIVE MECHANISM AND MANIPULATOR WITH SUCH DRIVE MECHANISM.
US4863133A (en) 1987-05-26 1989-09-05 Leonard Medical Arm device for adjustable positioning of a medical instrument or the like
JPS63294509A (en) * 1987-05-27 1988-12-01 Olympus Optical Co Ltd Stereoscopic endoscope device
US4762455A (en) * 1987-06-01 1988-08-09 Remote Technology Corporation Remote manipulator
FR2620961B1 (en) * 1987-09-30 1990-01-19 Euritech TELESCOPIC HANDLING ARM
US5170347A (en) 1987-11-27 1992-12-08 Picker International, Inc. System to reformat images for three-dimensional display using unique spatial encoding and non-planar bisectioning
DE3741632A1 (en) * 1987-12-05 1989-06-22 Noell Gmbh METHOD AND DEVICE FOR DETECTING AND CONTROLLING A SPACE TARGET
US4855822A (en) * 1988-01-26 1989-08-08 Honeywell, Inc. Human engineered remote driving system
US5251127A (en) 1988-02-01 1993-10-05 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US4964062A (en) 1988-02-16 1990-10-16 Ubhayakar Shivadev K Robotic arm systems
US5046022A (en) 1988-03-10 1991-09-03 The Regents Of The University Of Michigan Tele-autonomous system and method employing time/position synchrony/desynchrony
US4979949A (en) 1988-04-26 1990-12-25 The Board Of Regents Of The University Of Washington Robot-aided system for surgery
US4979933A (en) 1988-04-27 1990-12-25 Kraft, Inc. Reclosable bag
JP2664205B2 (en) 1988-06-10 1997-10-15 株式会社日立製作所 Manipulator control system
JPH01316184A (en) * 1988-06-14 1989-12-21 Mitsubishi Electric Corp Industrial robot
US5050608A (en) 1988-07-12 1991-09-24 Medirand, Inc. System for indicating a position to be operated in a patient's body
GB8817672D0 (en) * 1988-07-25 1988-09-01 Sira Ltd Optical apparatus
US4883400A (en) 1988-08-24 1989-11-28 Martin Marietta Energy Systems, Inc. Dual arm master controller for a bilateral servo-manipulator
US5056031A (en) 1988-11-12 1991-10-08 Kabushiki Kaisha Toyota Chuo Kenyusho Apparatus for detecting the collision of moving objects
US5036463A (en) 1988-11-23 1991-07-30 University Of Florida Angioscopic system and method for dimensional measurement including measurement of the distance from angioscopic ends to designated planes
US4942539A (en) * 1988-12-21 1990-07-17 Gmf Robotics Corporation Method and system for automatically determining the position and orientation of an object in 3-D space
US5077506A (en) 1989-02-03 1991-12-31 Dyonics, Inc. Microprocessor controlled arthroscopic surgical system
US5257203A (en) 1989-06-09 1993-10-26 Regents Of The University Of Minnesota Method and apparatus for manipulating computer-based representations of objects of complex and unique geometry
US4980626A (en) 1989-08-10 1990-12-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for positioning a robotic end effector
US5271384A (en) 1989-09-01 1993-12-21 Mcewen James A Powered surgical retractor
US5257998A (en) * 1989-09-20 1993-11-02 Mitaka Kohki Co., Ltd. Medical three-dimensional locating apparatus
US5273039A (en) * 1989-10-16 1993-12-28 Olympus Optical Co., Ltd. Surgical microscope apparatus having a function to display coordinates of observation point
US5181823A (en) 1989-10-27 1993-01-26 Grumman Aerospace Corporation Apparatus and method for producing a video display
ES2085885T3 (en) * 1989-11-08 1996-06-16 George S Allen MECHANICAL ARM FOR INTERACTIVE SURGERY SYSTEM DIRECTED BY IMAGES.
US5240011A (en) 1991-11-27 1993-08-31 Fischer Imaging Corporation Motorized biopsy needle positioner
US5260319A (en) * 1989-12-26 1993-11-09 Hoechst-Roussel Pharmaceuticals Incorporated Thienobenzoxepins and naphthothiophenes
US5343391A (en) 1990-04-10 1994-08-30 Mushabac David R Device for obtaining three dimensional contour data and for operating on a patient and related method
US5060532A (en) * 1990-08-23 1991-10-29 Barker Sidney L Universal joint boom
JP2642776B2 (en) * 1990-09-10 1997-08-20 三田工業株式会社 Information recording medium and information recording method
JPH04157889A (en) 1990-10-20 1992-05-29 Fujitsu Ltd Automatic adjusting method for person image pickup position
DE69131681T2 (en) 1990-11-22 2000-06-08 Toshiba Kawasaki Kk Computerized diagnostic system for medical use
GB9028185D0 (en) * 1990-12-29 1991-02-13 Well Equip Ltd A release mechanism
US5145227A (en) 1990-12-31 1992-09-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electromagnetic attachment mechanism
US5228429A (en) 1991-01-14 1993-07-20 Tadashi Hatano Position measuring device for endoscope
US5217453A (en) 1991-03-18 1993-06-08 Wilk Peter J Automated surgical system and apparatus
US5339799A (en) * 1991-04-23 1994-08-23 Olympus Optical Co., Ltd. Medical system for reproducing a state of contact of the treatment section in the operation unit
US5261404A (en) 1991-07-08 1993-11-16 Mick Peter R Three-dimensional mammal anatomy imaging system and method
US5452733A (en) 1993-02-22 1995-09-26 Stanford Surgical Technologies, Inc. Methods for performing thoracoscopic coronary artery bypass
US5458574A (en) 1994-03-16 1995-10-17 Heartport, Inc. System for performing a cardiac procedure
US5188610A (en) * 1991-10-18 1993-02-23 Vetrisystems, Inc. Fluid dispensing apparatus
ATE238140T1 (en) 1992-01-21 2003-05-15 Stanford Res Inst Int SURGICAL SYSTEM
US5357962A (en) 1992-01-27 1994-10-25 Sri International Ultrasonic imaging system and method wtih focusing correction
DE9204118U1 (en) 1992-03-27 1992-05-21 Fa. Carl Zeiss, 7920 Heidenheim, De
DE9204116U1 (en) 1992-03-27 1992-06-25 Dental-Kosmetik Gmbh Dresden, O-8060 Dresden, De
US5377310A (en) 1992-04-03 1994-12-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlling under-actuated robot arms using a high speed dynamics
US5273309A (en) 1992-06-19 1993-12-28 General Motors Corporation Air bag for side impact
US5762458A (en) * 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5629594A (en) * 1992-12-02 1997-05-13 Cybernet Systems Corporation Force feedback system
CA2102855A1 (en) * 1992-12-29 1994-06-30 Albon E. Gilbert Jumper cable selection and routing system
JP2648274B2 (en) * 1993-01-28 1997-08-27 三鷹光器株式会社 Medical position detection device
US5325866A (en) * 1993-04-20 1994-07-05 Jacek Krzyzanowski Flexible biopsy forceps
WO1994026167A1 (en) * 1993-05-14 1994-11-24 Sri International Remote center positioner
CA2097232C (en) * 1993-05-28 1999-01-19 Phillip J. Beaudet Displaying partial graphs by expanding and collapsing nodes
CA2167367A1 (en) 1993-07-21 1995-02-02 Charles H. Klieman Surgical instrument for endoscopic and general surgery
US5779623A (en) 1993-10-08 1998-07-14 Leonard Medical, Inc. Positioner for medical instruments
WO1995016396A1 (en) * 1993-12-15 1995-06-22 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5474566A (en) * 1994-05-05 1995-12-12 United States Surgical Corporation Self-contained powered surgical apparatus
US5695501A (en) * 1994-09-30 1997-12-09 Ohio Medical Instrument Company, Inc. Apparatus for neurosurgical stereotactic procedures
US5645520A (en) * 1994-10-12 1997-07-08 Computer Motion, Inc. Shape memory alloy actuated rod for endoscopic instruments
US5814038A (en) * 1995-06-07 1998-09-29 Sri International Surgical manipulator for a telerobotic system
NL1000907C2 (en) 1995-07-31 1997-02-04 Mcc Nederland Divisible chain wheel.
US5825982A (en) * 1995-09-15 1998-10-20 Wright; James Head cursor control interface for an automated endoscope system for optimal positioning
US5971976A (en) * 1996-02-20 1999-10-26 Computer Motion, Inc. Motion minimization and compensation system for use in surgical procedures
US5954746A (en) * 1997-10-09 1999-09-21 Ethicon Endo-Surgery, Inc. Dual cam trigger for a surgical instrument
US7297142B2 (en) 1998-02-24 2007-11-20 Hansen Medical, Inc. Interchangeable surgical instrument
US20020087048A1 (en) 1998-02-24 2002-07-04 Brock David L. Flexible instrument
US20020128662A1 (en) 1998-02-24 2002-09-12 Brock David L. Surgical instrument
EP1176921B1 (en) 1999-05-10 2011-02-23 Hansen Medical, Inc. Surgical instrument
JP4755638B2 (en) 2004-03-05 2011-08-24 ハンセン メディカル,インク. Robotic guide catheter system
US7500974B2 (en) * 2005-06-28 2009-03-10 Covidien Ag Electrode with rotatably deployable sheath

Patent Citations (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1418184A (en) * 1920-08-12 1922-05-30 Trunick Charles Screw driver
US1664210A (en) * 1923-07-16 1928-03-27 Gen Electric Vibration recorder
US1583117A (en) * 1925-11-25 1926-05-04 Bragg Kliesrath Corp Power actuator
US3171549A (en) * 1961-07-21 1965-03-02 Molins Machine Co Ltd Mechanical handling apparatus
US3818125A (en) * 1971-10-26 1974-06-18 J Butterfield Stereo television microscope
US3923166A (en) * 1973-10-11 1975-12-02 Nasa Remote manipulator system
US3934201A (en) * 1974-03-22 1976-01-20 Majefski Richard L Low power consumption stereo transmitter and receiver system
US4150326A (en) * 1977-09-19 1979-04-17 Unimation, Inc. Trajectory correlation and error detection method and apparatus
US4260319A (en) * 1978-07-28 1981-04-07 Motoda Denshi Kogyo Kabushiki Kaisha End position control robot
US4264266A (en) * 1979-04-20 1981-04-28 Tl Systems Corporation Manipulator apparatus
US4367998A (en) * 1979-09-13 1983-01-11 United Kingdom Atomic Energy Authority Manipulators
US4510574A (en) * 1981-09-09 1985-04-09 Commissariat A L'energie Atomique Servosystem between a master actuator and a slave actuator
US4636138A (en) * 1982-02-05 1987-01-13 American Robot Corporation Industrial robot
US4436684A (en) * 1982-06-03 1984-03-13 Contour Med Partners, Ltd. Method of forming implantable prostheses for reconstructive surgery
US4436684B1 (en) * 1982-06-03 1988-05-31
US4563567A (en) * 1982-06-08 1986-01-07 Commissariat A L'energie Atomique Apparatus for transmitting a laser beam
US4806066A (en) * 1982-11-01 1989-02-21 Microbot, Inc. Robotic arm
US4517963A (en) * 1983-01-04 1985-05-21 Harold Unger Image-erecting barrel rotator for articulated optical arm
US4582067A (en) * 1983-02-14 1986-04-15 Washington Research Foundation Method for endoscopic blood flow detection by the use of ultrasonic energy
US4506393A (en) * 1983-03-29 1985-03-26 Murphy Stephen B Method of prosthesis design
US4651201A (en) * 1984-06-01 1987-03-17 Arnold Schoolman Stereoscopic endoscope arrangement
US4676243A (en) * 1984-10-31 1987-06-30 Aldebaran Xiii Consulting Company Automated anterior capsulectomy instrument
US4751925A (en) * 1984-12-28 1988-06-21 Reinhold Tontarra Gripper for surgical purposes
US4655257A (en) * 1985-03-25 1987-04-07 Kabushiki Kaisha Machida Seisakusho Guide tube assembly for industrial endoscope
US4728974A (en) * 1985-05-31 1988-03-01 Yaskawa Electric Manufacturing Co., Ltd. Apparatus for supporting an imaging device
US4672963A (en) * 1985-06-07 1987-06-16 Israel Barken Apparatus and method for computer controlled laser surgery
US4638799A (en) * 1985-06-13 1987-01-27 Moore Robert R Needle guide apparatus for discolysis procedures
US4750475A (en) * 1985-08-14 1988-06-14 Kabushiki Kaisha Machida Seisakusho Operating instrument guide mechanism for endoscope apparatus
US4722056A (en) * 1986-02-18 1988-01-26 Trustees Of Dartmouth College Reference display systems for superimposing a tomagraphic image onto the focal plane of an operating microscope
US4837734A (en) * 1986-02-26 1989-06-06 Hitachi, Ltd. Method and apparatus for master-slave manipulation supplemented by automatic control based on level of operator skill
US4826392A (en) * 1986-03-31 1989-05-02 California Institute Of Technology Method and apparatus for hybrid position/force control of multi-arm cooperating robots
US5078140A (en) * 1986-05-08 1992-01-07 Kwoh Yik S Imaging device - aided robotic stereotaxis system
US4837703A (en) * 1986-06-26 1989-06-06 Toshiba Kikai Kabushiki Kaisha Method for generating tool path
US4744363A (en) * 1986-07-07 1988-05-17 Hasson Harrith M Intra-abdominal organ stabilizer, retractor and tissue manipulator
US4815006A (en) * 1986-09-29 1989-03-21 Asea Aktiebolag Method and device for calibrating a sensor on an industrial robot
US4750487A (en) * 1986-11-24 1988-06-14 Zanetti Paul H Stereotactic frame
US5216596A (en) * 1987-04-30 1993-06-01 Corabi International Telemetrics, Inc. Telepathology diagnostic network
US4833383A (en) * 1987-08-13 1989-05-23 Iowa State University Research Foundation, Inc. Means and method of camera space manipulation
US4794912A (en) * 1987-08-17 1989-01-03 Welch Allyn, Inc. Borescope or endoscope with fluid dynamic muscle
US4808898A (en) * 1987-09-30 1989-02-28 Keith Pearson Gripper assembly for robot arm
US5097839A (en) * 1987-11-10 1992-03-24 Allen George S Apparatus for imaging the anatomy
US4899730A (en) * 1987-12-11 1990-02-13 Richard Wolf Gmbh Holder for medical instruments
US5096236A (en) * 1988-01-25 1992-03-17 Thoeny Hans Joerg Apparatus for detachably connecting two parts
US4921393A (en) * 1988-03-09 1990-05-01 Sri International Articulatable structure with adjustable end-point compliance
US4930494A (en) * 1988-03-09 1990-06-05 Olympus Optical Co., Ltd. Apparatus for bending an insertion section of an endoscope using a shape memory alloy
US5187796A (en) * 1988-03-29 1993-02-16 Computer Motion, Inc. Three-dimensional vector co-processor having I, J, and K register files and I, J, and K execution units
US4989253A (en) * 1988-04-15 1991-01-29 The Montefiore Hospital Association Of Western Pennsylvania Voice activated microscope
US5090401A (en) * 1988-09-06 1992-02-25 U.S. Philips Corporation Method of positioning a patient arranged on a table top of a patient table, and apparatus for performing the method
US5020001A (en) * 1988-09-19 1991-05-28 Toyoda Koki Kabushiki Kaisha Robot controller
US5024236A (en) * 1988-10-05 1991-06-18 Advanced Medical Technology, Inc. Photoprobe assembly
US5002418A (en) * 1988-12-09 1991-03-26 Vsi Corporation Hold down device with extended capture pawl mechanism
US5098426A (en) * 1989-02-06 1992-03-24 Phoenix Laser Systems, Inc. Method and apparatus for precision laser surgery
US4922338A (en) * 1989-03-02 1990-05-01 Arpino Ronald G Line-of-sight inspection system
US4996975A (en) * 1989-06-01 1991-03-05 Kabushiki Kaisha Toshiba Electronic endoscope apparatus capable of warning lifetime of electronic scope
US5377683A (en) * 1989-07-31 1995-01-03 Barken; Israel Ultrasound-laser surgery apparatus and method
US5020933A (en) * 1989-09-01 1991-06-04 Andronic Devices, Ltd. Locking mechanism for medical devices
US5201325A (en) * 1989-09-01 1993-04-13 Andronic Devices Ltd. Advanced surgical retractor
US5289273A (en) * 1989-09-20 1994-02-22 Semborg-Recrob, Corp. Animated character system with real-time control
US5222499A (en) * 1989-11-15 1993-06-29 Allen George S Method and apparatus for imaging the anatomy
US5078142A (en) * 1989-11-21 1992-01-07 Fischer Imaging Corporation Precision mammographic needle biopsy system
US5280427A (en) * 1989-11-27 1994-01-18 Bard International, Inc. Puncture guide for computer tomography
US5125888A (en) * 1990-01-10 1992-06-30 University Of Virginia Alumni Patents Foundation Magnetic stereotactic system for treatment delivery
US5299288A (en) * 1990-05-11 1994-03-29 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US5086401A (en) * 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US5187574A (en) * 1990-08-24 1993-02-16 Kanda Tsushin Kogyo Co., Ltd. Method for automatically adjusting field of view of television monitor system and apparatus for carrying out the same
US5219351A (en) * 1990-10-24 1993-06-15 General Electric Cgr S.A. Mammograph provided with an improved needle carrier
US5209747A (en) * 1990-12-13 1993-05-11 Knoepfler Dennis J Adjustable angle medical forceps
US5188111A (en) * 1991-01-18 1993-02-23 Catheter Research, Inc. Device for seeking an area of interest within a body
US5217003A (en) * 1991-03-18 1993-06-08 Wilk Peter J Automated surgical system and apparatus
US5313306A (en) * 1991-05-13 1994-05-17 Telerobotics International, Inc. Omniview motionless camera endoscopy system
US5630431A (en) * 1991-06-13 1997-05-20 International Business Machines Corporation System and method for augmentation of surgery
US5402801A (en) * 1991-06-13 1995-04-04 International Business Machines Corporation System and method for augmentation of surgery
US5182641A (en) * 1991-06-17 1993-01-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Composite video and graphics display for camera viewing systems in robotics and teleoperation
US5184601A (en) * 1991-08-05 1993-02-09 Putman John M Endoscope stabilizer
US5398685A (en) * 1992-01-10 1995-03-21 Wilk; Peter J. Endoscopic diagnostic system and associated method
US5281220A (en) * 1992-01-13 1994-01-25 Blake Joseph W Iii Endoscopic instrument
US5201743A (en) * 1992-05-05 1993-04-13 Habley Medical Technology Corp. Axially extendable endoscopic surgical instrument
US5221283A (en) * 1992-05-15 1993-06-22 General Electric Company Apparatus and method for stereotactic surgery
US5417210A (en) * 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5284130A (en) * 1992-06-03 1994-02-08 Ratliff Jack L Surgical instrument positioning and securing apparatus
US5515478A (en) * 1992-08-10 1996-05-07 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5878193A (en) * 1992-08-10 1999-03-02 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5907664A (en) * 1992-08-10 1999-05-25 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5754741A (en) * 1992-08-10 1998-05-19 Computer Motion, Inc. Automated endoscope for optimal positioning
US5397323A (en) * 1992-10-30 1995-03-14 International Business Machines Corporation Remote center-of-motion robot for surgery
US5282606A (en) * 1992-12-17 1994-02-01 Praiss Arthur V Reconfigurable safety fence
US5735290A (en) * 1993-02-22 1998-04-07 Heartport, Inc. Methods and systems for performing thoracoscopic coronary bypass and other procedures
US5382885A (en) * 1993-08-09 1995-01-17 The University Of British Columbia Motion scaling tele-operating system with force feedback suitable for microsurgery
US5876325A (en) * 1993-11-02 1999-03-02 Olympus Optical Co., Ltd. Surgical manipulation system
US5626594A (en) * 1993-11-15 1997-05-06 Smith; Alan D. Keratoscopic surgical instrument for making radial and arcuate corneal incisions
US5396685A (en) * 1994-01-14 1995-03-14 Wilk; Peter J. Zipper-type closure method
US5631973A (en) * 1994-05-05 1997-05-20 Sri International Method for telemanipulation with telepresence
US5480409A (en) * 1994-05-10 1996-01-02 Riza; Erol D. Laparoscopic surgical instrument
US5619992A (en) * 1995-04-06 1997-04-15 Guthrie; Robert B. Methods and apparatus for inhibiting contamination of reusable pulse oximetry sensors
US5571072A (en) * 1995-04-28 1996-11-05 Kronner; Richard F. Dual-axis endoscope holder
US20070021776A1 (en) * 1995-06-07 2007-01-25 Sri International System and method for releasably holding a surgical instrument
US7204844B2 (en) * 1995-06-07 2007-04-17 Sri, International System and method for releasably holding a surgical instrument
US5855583A (en) * 1996-02-20 1999-01-05 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US6063095A (en) * 1996-02-20 2000-05-16 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US6017358A (en) * 1997-05-01 2000-01-25 Inbae Yoon Surgical instrument with multiple rotatably mounted offset end effectors
US6042599A (en) * 1997-11-12 2000-03-28 Bionix Development Corp. Tissue approximation forceps
US6889116B2 (en) * 2000-09-29 2005-05-03 Kabushiki Kaisha Toshiba Manipulator

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8840628B2 (en) 1995-06-07 2014-09-23 Intuitive Surgical Operations, Inc. Surgical manipulator for a telerobotic system
US9527207B2 (en) 2011-03-23 2016-12-27 Sri International Dexterous telemanipulator system
WO2013123329A1 (en) * 2012-02-15 2013-08-22 Intuitive Surgical Operations, Inc. Compact rotary actuator with internal planetary
US20170265951A1 (en) * 2014-05-13 2017-09-21 Covidien Lp Robotic surgical systems and instrument drive units
WO2015175200A1 (en) * 2014-05-13 2015-11-19 Covidien Lp Robotic surgical systems and instrument drive units
US10639113B2 (en) * 2014-05-13 2020-05-05 Covidien Lp Robotic surgical systems and instrument drive units
US10441374B2 (en) 2014-10-08 2019-10-15 Mohammad Ali Tavallaei System for catheter manipulation
WO2016057778A1 (en) * 2014-10-08 2016-04-14 SALMELA, Amy, M. System for catheter manipulation
US11596489B2 (en) 2015-03-10 2023-03-07 Covidien Lp Measuring health of a connector member of a robotic surgical system
US10716639B2 (en) 2015-03-10 2020-07-21 Covidien Lp Measuring health of a connector member of a robotic surgical system
WO2016144937A1 (en) * 2015-03-10 2016-09-15 Covidien Lp Measuring health of a connector member of a robotic surgical system
US10675442B2 (en) 2016-02-08 2020-06-09 Nextern, Inc. Robotically augmented catheter manipulation handle
US11717644B2 (en) 2016-02-08 2023-08-08 Nextern Innovation, Llc Robotically augmented catheter manipulation handle
US11918763B2 (en) 2016-02-08 2024-03-05 Nextern Innovation, Llc Robotically augmented catheter manipulation handle
WO2017205481A1 (en) * 2016-05-26 2017-11-30 Covidien Lp Robotic surgical assemblies and instrument drive units thereof
US10939973B2 (en) 2016-07-01 2021-03-09 Intuitive Surgical Operations, Inc. Computer-assisted medical systems and methods
WO2018005750A1 (en) * 2016-07-01 2018-01-04 Intuitive Surgical Operations, Inc. Computer-assisted medical systems and methods
US11903664B2 (en) 2016-07-01 2024-02-20 Intuitive Surgical Operations, Inc. Computer-assisted medical systems and methods
US10591032B2 (en) 2016-09-15 2020-03-17 Intuitive Surgical Operations, Inc. Split nut drive
WO2018052806A1 (en) * 2016-09-15 2018-03-22 Intuitive Surgical Operations, Inc. Medical device drive system
US11020193B2 (en) 2016-09-15 2021-06-01 Intuitive Surgical Operations, Inc. Medical device drive system
US11039835B2 (en) 2016-09-15 2021-06-22 Intuitive Surgical Operations, Inc. Medical device drive system

Also Published As

Publication number Publication date
US20030130648A1 (en) 2003-07-10
US20070021776A1 (en) 2007-01-25
US7204844B2 (en) 2007-04-17
US6461372B1 (en) 2002-10-08
US5649956A (en) 1997-07-22
US6080181A (en) 2000-06-27
US7824424B2 (en) 2010-11-02
US8012160B2 (en) 2011-09-06
US5810880A (en) 1998-09-22
US20050283140A1 (en) 2005-12-22
US20110295315A1 (en) 2011-12-01

Similar Documents

Publication Publication Date Title
US7824424B2 (en) System and method for releasably holding a surgical instrument
US8840628B2 (en) Surgical manipulator for a telerobotic system
EP2135561B1 (en) Surgical manipulator for a telerobotic system

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION