US20110237461A1 - Using phage epitopes to profile the immune response - Google Patents

Using phage epitopes to profile the immune response Download PDF

Info

Publication number
US20110237461A1
US20110237461A1 US13/050,544 US201113050544A US2011237461A1 US 20110237461 A1 US20110237461 A1 US 20110237461A1 US 201113050544 A US201113050544 A US 201113050544A US 2011237461 A1 US2011237461 A1 US 2011237461A1
Authority
US
United States
Prior art keywords
seq
cancer
antibody
polypeptide
probes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/050,544
Inventor
Arul M. Chinnaiyan
Xiaoju Wang
Alex Tsodikov
Jeanne Ohrnberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howard Hughes Medical Institute
University of Michigan
Exact Sciences Development Co LLC
Original Assignee
University of Michigan
Armune Biosciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Michigan, Armune Biosciences Inc filed Critical University of Michigan
Priority to US13/050,544 priority Critical patent/US20110237461A1/en
Assigned to Armune Biosciences, Inc. reassignment Armune Biosciences, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OHRNBERGER, JEANNE
Assigned to THE REGENTS OF THE UNIVERSITY OF MICHIGAN, Armune Biosciences, Inc. reassignment THE REGENTS OF THE UNIVERSITY OF MICHIGAN ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TSODIKOV, ALEX
Assigned to THE REGENTS OF THE UNIVERSITY OF MICHIGAN reassignment THE REGENTS OF THE UNIVERSITY OF MICHIGAN ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WANG, XIAOJU
Assigned to HOWARD HUGHES MEDICAL INSTITUTE ("HHMI") reassignment HOWARD HUGHES MEDICAL INSTITUTE ("HHMI") ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHINNAIYAN, ARUL M.
Assigned to THE REGENTS OF THE UNIVERSITY OF MICHIGAN reassignment THE REGENTS OF THE UNIVERSITY OF MICHIGAN ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOWARD HUGHES MEDICAL INSTITUTE ("HHMI")
Publication of US20110237461A1 publication Critical patent/US20110237461A1/en
Priority to US14/822,045 priority patent/US9658231B2/en
Assigned to EXACT SCIENCES DEVELOPMENT COMPANY, LLC reassignment EXACT SCIENCES DEVELOPMENT COMPANY, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARMUNE BIOSCIENCE, INC.
Priority to US15/933,574 priority patent/US11307203B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57434Specifically defined cancers of prostate
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/005Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies constructed by phage libraries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57415Specifically defined cancers of breast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57419Specifically defined cancers of colon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57423Specifically defined cancers of lung
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57488Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds identifable in body fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4703Regulators; Modulating activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4703Regulators; Modulating activity
    • G01N2333/4704Inhibitors; Supressors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/91Transferases (2.)
    • G01N2333/912Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)

Definitions

  • PCA prostate cancer
  • Prostate cancer is typically diagnosed with a digital rectal exam and/or prostate specific antigen (PSA) screening.
  • PSA prostate specific antigen
  • An elevated serum PSA level can indicate the presence of PCA.
  • PSA is used as a marker for prostate cancer because it is secreted only by prostate cells.
  • a healthy prostate will produce a stable amount—typically below 4 nanograms per milliliter (ng/ml), or a PSA reading of “4” or less—whereas cancer cells produce escalating amounts that correspond with the severity of the cancer.
  • a level between 4 and 10 ng/ml may raise a doctor's suspicion that a patient has prostate cancer, while amounts above 50 ng/ml may show that the tumor has spread elsewhere in the body.
  • PSA prostate specific antigen
  • an antibody profiling panel comprising: a plurality of polypeptide probes, wherein at least one of the polypeptide probes comprises a full-length or fragment of a protein encoded by a gene listed in Tables 1, 2, 3, or 4; and each of the probes in the plurality of polypeptide probes is capable of being specifically bound by an antibody, is disclosed herein.
  • an antibody profiling panel comprising: a plurality of polypeptide probes, wherein at least one of the polypeptide probes comprises a sequence listed in Tables 1, 2, 3, or 4 or a sequence encoded by a sequence listed in Tables 1, 2, 3, or 4; and each of the probes in the plurality of polypeptide probes is capable of being specifically bound by an antibody, is disclosed herein.
  • the subject is a human.
  • the antibody is an autoantibody.
  • the antibody is a human autoantibody.
  • the presence of a human autoantibody that binds to a polypeptide probe is indicative of cancer (e.g. an expression level for one or more autoantibodies is indicative of the presence, absence, or stage of the cancer).
  • the quantity or level of a human autoantinbody that binds to a polypeptide probe is indicative of cancer.
  • the cancer is a prostate, lung, breast or colon cancer.
  • the polypeptide probe comprises a polypeptide sequence selected from SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, or a fragment thereof.
  • the polypeptide probe comprises a polypeptide sequence encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, or a fragment thereof.
  • the polypeptide probe comprises the full-length or a fragment of a protein that is encoded by DCHS1 (SEQ ID NO: 29), Centrosomal Protein (CEP 164) (SEQ ID NO: 30), KBTBD6 (SEQ ID NO: 31), RPS19 (SEQ ID NO: 32), RPL34 (SEQ ID NO: 33), Hemk1 (SEQ ID NO: 34), eIF4G1 (SEQ ID NO: 35), BMI1 (SEQ ID NO: 36), BRD2 (SEQ ID NO: 37), RP3-323M22 (Nucleolin) (SEQ ID NO: 38), SFRS14 (SEQ ID NO: 39), LOC388789 (SEQ ID NO: 40), RNA binding motif protein 6 (genomic DNA sequence) (SEQ ID NO: 41), BRMSL1 (SEQ ID NO: 42), NKX3-1 (SEQ ID NO: 43), RPSA (SEQ ID NO: 44), Cytochrome C Oxidase 5 subunit (SEQ ID NO:
  • UBE2I (SEQ ID NO: 52), TIMP2 (SEQ ID NO: 53), WDR77 (SEQ ID NO: 54), a fragment of Deaminase Domain Cont 1 (Human DNA sequence from clone RP1-20N2 on chromosome 6q24 Contains the gene for a novel protein similar to yeast and bacterial cytosine deaminase, NTs 48121-50100) (SEQ ID NO: 55), Lamin A/C (SEQ ID NO: 85), Lsm3 (SEQ ID NO: 86), a fragment of cDNA clone Chromosome 19, which encompasses the nucleic acid sequence for DAZ associated protein ( Homo sapiens chromosome 19 clone CTB-25B13, NTs 20521-22500) (SEQ ID NO: 87), ADAM metallopetidase domain 9 (SEQ ID NO: 88), AZGP1 (SEQ ID NO: 89), Desmocolin 3 (SEQ ID NO: 90
  • the antibody profiling panel comprises a plurality of polypeptide probes, wherein at least one of the polypeptide probes comprises a full-length or fragment of a protein listed in Table 1, or a polypeptide sequence selected from SEQ ID NO: 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, or 141, and each of said probes in said plurality of polypeptide probes is capable of being specifically bound by an antibody.
  • one or more of the polypeptide probes can comprise SEQ ID NO: 1, 2, 3, 4, 5, 6, or 7. In another embodiment, one or more of the polypeptide probes can comprise a polypeptide encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, or 21. In one embodiment, the antibody profiling panel can further comprise a full-length or fragment of a protein listed in Tables 2, 3, or 4. In another embodiment, the antibody profiling panel, one of the polypeptide probes can comprise SEQ ID NO: 8, 9, 10, 11, 12, 13, or 14. In another embodiment, one or more of the polypeptide probes can comprise a polypeptide encoded by SEQ ID NO: 22, 23, 24, 25, 26, 27, or 28. In one embodiment the antibody is an autoantibody.
  • the antibody is a human autoantibody.
  • the presence of a human autoantinbody that binds to a polypeptide probe is indicative of cancer (e.g. an expression level for one or more autoantibodies is indicative of the presence, absence, or stage of the cancer).
  • the quantity or level of a human autoantibody that binds to a polypeptide probe is indicative of cancer.
  • the cancer is a prostate, lung, breast or colon cancer.
  • the plurality of probes comprise a polypeptide probe comprising a full-length or fragment of a protein encoded by CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR — 113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, Deaminase Domain, FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789.
  • the polypeptide probe comprises SEQ ID NO: 2, 5, 9, 11, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or a fragment thereof.
  • the polypeptide probe comprises a polypeptide sequence encoded by SEQ ID NO: 16, 19, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, or a fragment thereof.
  • the plurality of probes comprise a polypeptide probe comprising a full-length or fragment of a protein encoded by CEP164, RPL34, BRMSL1, NKX31, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR — 113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, or Deaminase Domain.
  • the plurality of probes comprise a polypeptide probe comprising a polypeptide sequence selected from SEQ ID NOs.
  • the plurality of probes comprises a polypeptide probe comprising a polypeptide sequence encoded by SEQ ID NO: 16, 19, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, or 84.
  • the plurality of probes comprise a polypeptide probe comprising a full-length or fragment of a protein encoded by FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789. In one embodiment, the plurality of probes comprise a polypeptide probe comprising a polypeptide sequence selected from SEQ ID NO: 9, 11, 14, or 60. In one embodiment, the plurality of probes comprises a polypeptide probe comprising a polypeptide sequence encoded by SEQ ID NO: 23, 25, 28, 71, or 75.
  • an antibody profiling panel comprising: a plurality of polypeptide probes, wherein at least one of the polypeptide probes comprises a full-length or fragment of a protein that is DCHS1, CEP164, KBTBD6, RPS19, RPL34, RNA binding protein 6, or Hemk1; and each of the probes in the plurality of polypeptide probes is capable of being specifically bound by an antibody, is disclosed herein.
  • the plurality of probes further comprise a polypeptide probe comprising a full-length or fragment of a protein encoded by eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789.
  • the polypeptide probe comprises a sequence listed in Table 1 or 2, such as SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or a fragment thereof.
  • the antibody is an autoantibody.
  • the antibody is a human autoantibody.
  • the presence of a human autoantinbody that binds to a polypeptide probe is indicative of cancer (e.g. an expression level for one or more autoantibodies is indicative of the presence, absence, or stage of the cancer).
  • the quantity or level of a human autoantibody that binds to a polypeptide probe is indicative of cancer.
  • the cancer is a prostate, lung, breast or colon cancer.
  • one or more of the probes is displayed by a phage.
  • the one or more probes is attached to a substrate, such as attached via a phage.
  • the substrate is an array.
  • the panel comprises at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 different probes.
  • the panel characterizes a cancer, such as prostate cancer, with at least 80% sensitivity and specificity.
  • the panel screens for a cancer, such as prostate cancer, with at least 80% sensitivity and specificity.
  • the method comprises detecting in a sample obtained from a subject a presence or level of one or more antibodies to one or more polypeptide probes comprising a full-length or a fragment of a protein encoded by DCHS1, CEP164, KBTBD6, RPS19, RPL34, SFRS14, RNA binding protein 6, or Hemk1; and characterizing or identifying, the prostate cancer based on a presence or level of the one or more antibodies.
  • the method further comprises detecting a presence, absence or level of one or more antibodies to one or more polypeptide probe comprising a full-length or a fragment of a protein encoded by eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789.
  • the antibody is an autoantibody. In another embodiment the antibody is a human autoantibody.
  • the method comprises detecting in a sample obtained from a subject a presence or level of one or more antibodies to one or more polypeptide probes comprising a full-length or a fragment of a protein encoded by CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR — 113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, or Deaminase Domain; and characterizing the prostate cancer based on a presence or level of the one or more antibodies.
  • the method further comprises detecting a presence, absence or level of one or more antibodies to one or more polypeptide probe comprising a full-length or a fragment of a protein encoded by FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789.
  • the subject is a human.
  • the antibody is an autoantibody.
  • the antibody is a human autoantibody.
  • the presence of a human autoantibody that binds to a polypeptide probe is indicative of cancer (e.g. an expression level for one or more autoantibodies is indicative of the presence, absence, or stage of the cancer).
  • the quantity or level of a human autoantinbody that binds to a polypeptide probe is indicative of cancer.
  • the cancer is a prostate, lung, breast or colon cancer.
  • a method of obtaining a biopsy wherein a determiniation of whether a biopsy should be obtained is based on detecting an expression level for an antibody.
  • a subject suspected of having cancer based on an expression level of an antibody is recommended to have a biopsy obtained.
  • a biological sample is obtained from a subject with a PSA level of greater than about 2.5 ng/ml, and the sample is contacted with one or more probes for an antibody, and based on the expression level of an antibody, a biopsy is obtained or recommended for the subject.
  • the subject has a PSA level between about 2.5 ng/mL and about 10 ng/mL.
  • the subject is a human.
  • the antibody is an autoantibody.
  • the antibody is a human autoantibody.
  • the method further comprises contacting a biological sample obtained from the subject with one or more probes for a second antibody when the biopsy provides a positive result for a cancer, such as prostate cancer, and based on the expression level of the second antibody, a prognosis or theranosis is provided.
  • a cancer such as prostate cancer
  • the subject is a human.
  • the second antibody is an autoantibody.
  • the second antibody is a human autoantibody.
  • the method comprises detecting an expression level for one or more antibodies, wherein the expression level of the one or more antibodies is indicative of the presence, absence, or stage of the cancer.
  • the indication is whether the cancer is aggressive or indolent.
  • the method of identifying a cancer as aggressive or indolent comprises: obtaining a positive biopsy result for cancer from the subject; contacting a biological sample obtained from the subject with one or more probes for an antibody; detecting an expression level for the antibody; and characterizing or identifying the cancer as aggressive or indolent based on the expression level of the antibody.
  • the subject is a human.
  • the antibody is an autoantibody. In another embodiment the antibody is a human autoantibody. In one embodiment the presence of a human autoantibody that binds to a polypeptide probe is indicative of cancer (e.g. an expression level for one or more autoantibodies is indicative of the presence, absence, or stage of the cancer). In another embodiment the quantity or level of a human autoantinbody that binds to a polypeptide probe is indicative of cancer. In one embodiment the cancer is a prostate, lung, breast or colon cancer.
  • FIG. 1 is a schematic depicting detecting in a sample from a subject with PSA levels greater than 2.5 ng/mL the expression of one or more autoantibodies (“Autoantibody Test I”). If the result of the Autoantibody Test I is negative, a biopsy is not recommended to be obtained from the subject for further analysis. If result of the Autoantibody Test II is positive, then a biopsy is obtained. If the biopsy is positive for prostate cancer, expression of one or more autoantibodies is detected from a sample from the subject to characterize the cancer as aggressive or indolent, and a prognosis or theranosis provided.
  • FIG. 2 lists the nucleic acid sequence for DCHS 1 (SEQ ID NO: 29).
  • FIG. 3 lists the nucleic acid sequence for Centrosomal Protein (CEP 164) (SEQ ID NO: 30).
  • FIG. 4 lists the nucleic acid sequence for KBTBD6 (SEQ ID NO: 31).
  • FIG. 5 lists the nucleic acid sequence for RPS19 (SEQ ID NO: 32).
  • FIG. 6 lists the nucleic acid sequence for RPL34 (SEQ ID NO: 33).
  • FIG. 7 lists the nucleic acid sequence for Hemk1 (SEQ ID NO: 34).
  • FIG. 8 lists the nucleic acid sequence for eIF4G1 (SEQ ID NO: 35).
  • FIG. 9 lists the nucleic acid sequence for BMI1 (SEQ ID NO: 36).
  • FIG. 10 lists the nucleic acid sequence for BRD2 (SEQ ID NO: 37).
  • FIG. 11 lists the nucleic acid sequence for RP3-323M22 (Nucleolin) (SEQ ID NO: 38).
  • FIG. 12 lists the nucleic acid sequence for SFRS14 (SEQ ID NO: 39).
  • FIG. 13 lists the nucleic acid sequence for LOC388789 (SEQ ID NO: 40).
  • FIG. 14 lists the nucleic acid sequence for RNA binding motif protein 6 (genomic DNA sequence) (SEQ ID NO: 41).
  • FIG. 15 lists the nucleic acid sequence for BRMSL1 (SEQ ID NO: 42).
  • FIG. 16 lists the nucleic acid sequence for NKX3-1 (SEQ ID NO: 43).
  • FIG. 17 lists the nucleic acid sequence for RPSA (SEQ ID NO: 44).
  • FIG. 18 lists the nucleic acid sequence for Cytochrome C Oxidase 5 subunit (SEQ ID NO: 45).
  • FIG. 19 lists the nucleic acid sequence for FAM53B (SEQ ID NO: 46).
  • FIG. 20 lists the nucleic acid sequence for a fragment of the UTR region of chromosome 11 (Homo sapiens genomic DNA, chromosome 11 clone: CTD-2579L12, NTs 149521-151500) (SEQ ID NO: 47).
  • FIG. 21 lists the nucleic acid sequence for MAPKKK9 (SEQ ID NO: 48).
  • FIG. 22 lists the nucleic acid sequence for cDNA clone XR — 113641.1 ( Homo sapiens hypothetical LOC643783, transcript variant 2 (LOC643783), partial miscRNA) (SEQ ID NO: 49).
  • FIG. 23 lists the nucleic acid sequence for PSA (SEQ ID NO: 50).
  • FIG. 24 lists the nucleic acid sequence for H2aa4 (SEQ ID NO: 51).
  • FIG. 25 lists the nucleic acid sequence for UBE2I (SEQ ID NO: 52).
  • FIG. 26 lists the nucleic acid sequence for TIMP2 (SEQ ID NO: 53).
  • FIG. 27 lists the nucleic acid sequence for WDR77 (SEQ ID NO: 54).
  • FIG. 28 lists the nucleic acid sequence for a fragment of Deaminase Domain Cont 1 (Human DNA sequence from clone RP1-20N2 on chromosome 6q24 Contains the gene for a novel protein similar to yeast and bacterial cytosine deaminase, NTs 48121-50100) (SEQ ID NO: 55).
  • FIG. 29 lists the nucleic acid sequence for Lamin A/C (SEQ ID NO: 85).
  • FIG. 30 lists the nucleic acid sequence Lsm3 (SEQ ID NO: 86).
  • FIG. 31 lists the nucleic acid sequence for a fragment of cDNA clone Chromosome 19, which encompasses the nucleic acid sequence for DAZ associated protein ( Homo sapiens chromosome 19 clone CTB-25B13, NTs 20521-22500) (SEQ ID NO: 87).
  • FIG. 32 lists the nucleic acid sequence for ADAM metallopetidase domain 9 (SEQ ID NO: 88).
  • FIG. 33 lists the nucleic acid sequence for AZGP1 (SEQ ID NO: 89).
  • FIG. 34 lists the nucleic acid sequence for Desmocolin 3 (SEQ ID NO: 90).
  • FIG. 35 lists the nucleic acid sequence for PERP (SEQ ID NO: 91).
  • FIG. 36 lists the nucleic acid sequence for Chromosome 3 UTR region ropporin/RhoEGF (Homo sapiens 3 BAC RP11-783D3 (Roswell Park Cancer Institute Human BAC Library) NTs 178621-180600) (SEQ ID NO: 92).
  • FIG. 37 lists the nucleic acid sequence for Cox5a (SEQ ID NO: 93).
  • FIG. 38 lists the nucleic acid sequence for a Mitochondrion sequence ( Homo sapiens isolate PD047 mitochondrion, NTs 4801-6780) (SEQ ID NO: 94).
  • FIG. 39 lists the nucleic acid sequence for MYH9 (SEQ ID NO: 95).
  • FIG. 40 lists the nucleic acid sequence for ASND1 (SEQ ID NO: 96).
  • FIG. 41 lists the nucleic acid sequence for Cathepsin F (SEQ ID NO: 97).
  • FIG. 42 lists the nucleic acid sequence for Mastermind-like 2 ( Homo sapiens genomic DNA, chromosome 1 lq clone:RP11-82212, NTs 157801-159780) (SEQ ID NO: 98).
  • FIG. 43 lists the nucleic acid sequence for CSNK2A2 (SEQ ID NO: 99).
  • FIG. 44 lists the nucleic acid sequence for AURKAIP1 (SEQ ID NO: 100).
  • FIG. 45 lists the nucleic acid sequence for a fragment of Chromosome 4 ( Homo sapiens BAC clone RP11-327017 from 4, NTs 107401-109380) (SEQ ID NO: 101).
  • FIG. 46 lists the nucleic acid sequence for ARF6 (SEQ ID NO: 102).
  • FIG. 47 lists the nucleic acid sequence for JAG1 (Human DNA sequence from clone RP1-278022 on chromosome 20 Contains two novel genes, NTs 26161-26140) (SEQ ID NO: 103).
  • FIG. 48 lists the nucleic acid sequence for a Mitochondrion sequence ( Homo sapiens isolate PD047 mitochondrion, NTs 2041-4020) (SEQ ID NO: 104).
  • FIG. 49 lists the nucleic acid sequence for a fragment of Chromosome 20 (Human DNA sequence from clone RP1-278O22 on chromosome 20 Contains two novel genes, NTs 25321-27300) (SEQ ID NO:105).
  • FIG. 50 lists the nucleic acid sequence for a fragment of Chromosome 6 UTR region (Human DNA sequence from clone RP3-523G1 on chromosome 6p22.3-24.1, NTs 34621-36600) (SEQ ID NO: 106).
  • FIG. 51 lists the nucleic acid sequence for a fragment of MAPKKK5 (SEQ ID NO: 107).
  • FIG. 52 lists the nucleic acid sequence for RASA1 (SEQ ID NO: 108).
  • FIG. 53 lists the nucleic acid sequence for Hsp90b (SEQ ID NO: 109).
  • FIG. 54 lists the nucleic acid sequence for ribosomal protein S6 (RPS6) (SEQ ID NO: 110).
  • FIG. 55 lists the nucleic acid sequence for a fragment of Homo sapiens chromosome 3 (Homo sapiens 3 BAC RP13-616I3 (Roswell Park Cancer Institute Human BAC Library) NTs 22921-24900) (SEQ ID NO: 111).
  • compositions and methods of the present disclosure relate to compositions and methods for characterizing a cancer or screening for a cancer.
  • tests which can be used to analyze a presence or absence of an antibody from a subject, such as a subject being tested or screened for a cancer.
  • an antibody is an autoantibody.
  • the test comprises a single antigen, thus detecting only an antibody that binds to that antigen.
  • a panel of antigens is constructed such that the panel tests for a presence of one or more antibodies which specifically bind to two or more antigens derived from proteins associated with a specific cancer, such as lung cancer, prostate cancer, or ovarian cancer.
  • a cancer is characterized for a subject using a composition or method disclosed herein.
  • a subject is an individual or patient.
  • a subject is a human.
  • a subject is a cancer patient.
  • a subject exhibits no symptom of cancer, such as no symptoms of prostate cancer.
  • a subject has no detectable symptom of cancer, such as no detectable symptoms for prostate cancer.
  • a subject exhibits a symptom of cancer, such as a symptom for prostate cancer.
  • a subject is a human.
  • a subject is an individual.
  • a subject is a patient, such as a cancer patient.
  • Characterizing a cancer, or screening for a cancer can include detecting the cancer (including pre-symptomatic early stage detecting), determining the prognosis, diagnosis, or theranosis of the cancer, or determining the stage or progression of the cancer.
  • a prognosis is predicting or giving a likelihood of outcome of a disease or condition, such as an extent of malignancy of a cancer, a likelihood of survival, or expected life expectancy, such as in an individual with prostate cancer.
  • a prognosis is a prediction or likelihood analysis of cancer progression, cancer recurrence, or metastatic spread or relapse.
  • the diagnosis is prediction or likelihood an individual or subject has a disease or condition, such as prostate cancer.
  • the individual is an asymptomatic individual. In another embodiment, the individual is a symptomatic individual.
  • a theranosis is a therapy selected based on an outcome of determining a binding of one or more antibodies from a sample from a subject to an antigen or polypeptide probe as described herein. In one embodiment, a theranosis is identifying an appropriate treatment or treatment efficacy for a cancer. In one embodiment, a theranosis is modifying a treatment. In another embodiment, a theranosis is selecting a treatment regimen. In yet another embodiment, a theranosis is discontinuing or not selecting a particular treatment regimen. In one embodiment a treatment regimen or therapeutic agent is selected based on the presence or absence of an autoantibody that binds to polypeptide probes described herein.
  • the autoantibody is a human aautoantibody. In one embodiment a treatment regimen or therapeutic agent is excluded based on the presence or absence of an autoantibody that binds to polypeptide probes described herein. In one embodiment the autoantibody is a human aautoantibody.
  • characterizing or screening for a cancer is detecting the cancer, such as pre-symptomatic early stage detecting.
  • characterizing a cancer is determining the stage or progression of the cancer, such as early-stage, late-stage or advanced stage of cancer.
  • Characterizing or screening for a cancer can also be determining the likelihood or possibility an individual has a cancer.
  • Characterizing or screening for a cancer can also be identification of a cancer, such as determining whether expression of one or more antibodies is indicative of the cancer.
  • an antigen panel is used to detect a presence of one or more antibodies to one or more proteins, antigens, mimotopes, or epitopes.
  • one or more polypeptide probes described herein is a protein or fragment thereof.
  • one or more polypeptide probes described herein comprises an antigen, mimotope, or epitope.
  • a “mimotope” can mimic the epitope of a protein or peptide.
  • the mimotope is structurally similar to an antigen or epitope of an expressed protein, but is unrelated or weakly related at the protein sequence level.
  • the antigen panel comprises one or more polypeptide probes comprising a polypeptide sequence selected from SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, or a fragment thereof.
  • the antigen panel comprises one or more polypeptide probes comprising a sequence encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, or a fragment thereof.
  • the polypeptide probe comprises the full-length or a fragment of a protein that is encoded by SEQ ID NO: 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,102, 103, 104, 105, 106, 107, 108, 109, 110, 111, or a fragment thereof.
  • the antigen panel comprises one or more polypeptide probes derived from one or more proteins encoded by one or more genes selected from: CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR — 113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, Deaminase Domain, FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789.
  • detection of one or more antibodies is used to detect a presence of prostate cancer in a subject.
  • the antigen panel comprises one or more polypeptide probes derived from one or more proteins encoded by one or more genes selected from: DCHS1, CEP164, KBTBD6, RPS19, RPL34, RNA binding protein 6, Hemk1, eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, and LOC388789.
  • detection of one or more antibodies is used to detect a presence of prostate cancer in a subject.
  • a cancer can also be characterized by determining a presence or absence, or level, of one or more antibodies in a sample.
  • a sample is obtained from a subject.
  • the subject can be a mammal, including, but not limited to, humans, non-human primates, rodents, and the like.
  • a sample is a biological fluid.
  • the biological fluid can be, but not limited to, peripheral blood, sera, or plasma.
  • the sample can be ascites, urine, cerebrospinal fluid (CSF), sputum, saliva, bone marrow, synovial fluid, aqueous humor, amniotic fluid, cerumen, breast milk, broncheoalveolar lavage fluid, semen, prostatic fluid, cowper's fluid or pre-ejaculatory fluid, female ejaculate, sweat, fecal matter, hair, tears, cyst fluid, pleural and peritoneal fluid, pericardial fluid, lymph, chyme, chyle, bile, interstitial fluid, menses, pus, sebum, vomit, vaginal secretions, mucosal secretion, stool water, pancreatic juice, lavage fluids from sinus cavities, or bronchopulmonary aspirates.
  • CSF cerebrospinal fluid
  • an antibody is an autoantibody.
  • An autoantibody refers to an antibody produced by a host (with or without immunization) and directed to a host antigen (such as a tumor antigen). Tumor-associated antigens recognized by humoral effectors of the immune system are an attractive target for diagnostic and therapeutic approaches to human cancer.
  • the binding of an antibody with a polypeptide probe can be specific, such that the interaction of the autoantibody with the polypeptide probe is dependent upon a presence of a particular structure (i.e., the antigenic determinant or epitope) of the polypeptide probe.
  • Antigenic determinates or epitopes can comprise amino acids in linear or non-linear sequence in a polypeptide probe and can also comprise one or more amino acids which are in proximity to each other via protein folding (e.g., conformational epitopes).
  • a single polypeptide or protein can potentially be bound by multiple antibodies which recognize different epitopes.
  • known epitopes of a particular polypeptide can be used as a probe to detect for a presence, absence or level of autoantibodies which bind a particular epitope
  • the polypeptide probe can be an antigen identified through serologic identification of antigens, for example by recombinant expression cloning (SEREX), such as described by Kim et al., Biotech. Lett . (2004); 26: 585-588.
  • SEREX recombinant expression cloning
  • an antigen can be identified by screening expression cDNA libraries from human solid tumors with sera of autologous patients. This type of screening of a cDNA expression library by conventional methods typically requires the preparation of a large number of membrane filters blotted with bacteriophage plaques that are then searched with a specific probe. In the case of the SEREX experiments, the screening is performed using sera from cancer patients, which can be in very limited quantities.
  • a polypeptide probe for detecting an antibody can also be identified by phage-display technology, which can be based on the insertion of foreign nucleotide sequences into genes encoding for various capsid proteins of T7 phage, resulting in a heterogeneous mixture of phages, each displaying the different peptide sequence encoded by a corresponding insert.
  • a physical link between a displayed fusion protein and DNA encoded for it make this phage target selectable.
  • the phage target can express or display a polypeptide probe, which can be used to detect antibodies that are produced by a subject, or autoantibodies, which can then be used to detect or characterize a cancer.
  • the polypeptide probe can be displayed by a phage and used to detect an antibody from a sample obtained from a subject.
  • an antibody is an autoantibody.
  • Polypeptide is used in its broadest sense and can include a sequence of subunit amino acids, amino acid analogs, or peptidomimetics. The subunits can be linked by peptide bonds.
  • the polypeptides can be naturally occurring, processed forms of naturally occurring polypeptides (such as by enzymatic digestion), chemically synthesized or recombinantly expressed.
  • the polypeptides for use in the methods of the present invention can be chemically synthesized using standard techniques.
  • the polypeptides can comprise D-amino acids (which are resistant to L- amino acid-specific proteases), a combination of D- and L-amino acids, ⁇ amino acids, or various other designer or non-naturally occurring amino acids (e.g., ⁇ -methyl amino acids, C ⁇ - methyl amino acids, and N ⁇ -methyl amino acids, etc.) to convey special properties.
  • Synthetic amino acids can include ornithine for lysine, and norleucine for leucine or isoleucine.
  • the polypeptides can have peptidomimetic bonds, such as ester bonds, to prepare polypeptides with novel properties.
  • a polypeptide can be generated that incorporates a reduced peptide bond, i.e., R 1 —CH 2 —NH-R 2 , where R 1 and R 2 are amino acid residues or sequences.
  • a reduced peptide bond can be introduced as a dipeptide subunit.
  • Such a polypeptide can be resistant to protease activity, and can possess an extended half-life in vivo.
  • a polypeptide can also include a peptoid (N-substituted glycines), in which the one or more side chains are appended to nitrogen atoms along the molecule's backbone, rather than to the ⁇ -carbons, as in amino acids.
  • Polypeptide and peptide are intended to be used interchangeably throughout this application, i.e. where the term peptide is used, it can also include polypeptide and where the term polypeptides is used, it can also include peptide.
  • a polypeptide probe can be a fragment or portion of a larger protein.
  • a fragment can range in size from two amino acid residues to the entire amino acid sequence minus one amino acid.
  • a polypeptide probe is a fragment of an untranslated region (UTR) of a protein, such as a fragment that is encoded by a nucleic sequence that is a UTR region of a gene, such as the 5′ or 3′ UTR of a gene.
  • UTR untranslated region
  • the fragment can be 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 amino acids in size.
  • the fragment is less than about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 amino acids in size.
  • a polypeptide probe useful in the compositions and methods herein, regardless of size, is capable of specific interaction with an antibody, such as an autoantibody.
  • a polypeptide probe can be a fragment of a protein encoded by a gene, or a region upstream or downstream of a coding sequence, such as a UTR region, of a gene listed in Table 1, Table 2, Table 3 or Table 4.
  • the polypeptide probe comprises a polypeptide sequence selected from SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, or a fragment thereof.
  • the polypeptide probe comprises a polypeptide sequence encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, or a fragment thereof.
  • the polypeptide probe comprises the full-length or a fragment of a protein that is encoded by SEQ ID NO: 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,102, 103, 104, 105, 106, 107, 108, 109, 110, 111, or a fragment thereof.
  • a polypeptide probe is a fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene.
  • the gene can be CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR — 113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, or Deaminase Domain.
  • the gene is FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789.
  • a polypeptide probe comprises SEQ ID NO: 2, 5, 9, 11, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or a fragment thereof.
  • a polypeptide probe comprises a polypeptide encoded by SEQ ID NO: 16, 19, 23, 25, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, or a fragment thereof.
  • the gene can be DCHS1, CEP164, KBTBD6, RPS19, RPL34, RNA binding protein 6, or Hemk1.
  • the gene is eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789.
  • a polypeptide probe can comprise a peptide sequence, or fragment thereof, such as those listed in Tables 1, 2, 3 or 4.
  • a polypeptide probe comprises SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or a fragment thereof.
  • a polypeptide probe comprises a polypeptide encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or a fragment thereof.
  • FIG. 2 PQTTAPRRAR AGCTTTCGCTAGAGACGCCTCCATA (proto- (SEQ ID PRRS (SEQ AGTCACTTGCCCGTTGGCCCCCACG cadherin-16 NO: 29) ID NO: 1) ATCGGGGTCGGTTGCTCGCAGGGC precursor) TGAGCAGAGATGTGCCAGGAGGGT TGTTCTCACGCAAGAGGACGCTGT ACTCCTGCTGCTGGAAAGTAGGCG CCTCGTCGTTGACGTCAGCGACACT GACGGTCAGGACCTGCGTGGCCGA GCGCGGCGGGGAGCCGTGGTCTGA GG (SEQ ID NO: 15) 1B4A Centrosomal NM_014956.4 FIG.
  • FIG. 8 IRDPNQGG TTCTTCTACAGACATTTGTATAGT (SEQ ID KDITEEIMS TGTCATAGTGTCCCCAGGAATAG NO: 35) GARTASTP AGAGGACTGCGAGATTAGGCTCA TPPQTGGG GACCCCGGTTCCAAGACTGGGGA LEPQANGE TGGTGATGGGGTCGGAGAAGGCG TPQVAVIV ACGAAGGCTGGGATTCTGAAGGG RPDDRSQG CTATGCTCTGGGCCAGGCAGCCC AIIADRPGL TGGCCGGTCAGCAATGATTGCTC PGPEHSPSE CCTGTGACCGGTCATCTGGCCGG SQPSSPSPT ACAATGACAGCAACCTGGGGCGT PSPVLEP CTCCCCATTAGCTTGAGGCTCCAG GSEPNLAV ACC
  • FIG. 15 APRTRTLR TCGTCGAGGCTCCTGCTCCTGTGA (SEQ ID ARRSPRME CTCTCGAGCAGCCAGAGGCTCCT NO: 42) IAQKWMM ACCTCTATCGAGTCTTTACCTACT KTVKEEEW ACTTCTGACACTTTCTTCTTCTTA NVWMKCPI CCTTACAAACCTACTTTACAGGTT LKNSLPIS AGAACTTTTTGTCAAATGGCTAG KINFIKND AGTTTCTAGTTGAAATATTTCTTG (SEQ ID CTAATTCAGTCCACCTACGTTTTG NO: 56) ATGTTCTTCAGTATCGACCTTTTC GTGGTCTTATGAACCTTGGCGACC GTTGAAATGTCCTTTTATACGTTT AAGCATGTTTCCATCGTCCTTAGA TATCTCTCGACGAATCTTAGAC
  • GGRGGGG GGAGGTCGAGGCGGAGGCGGAG (SEQ ID GGGGRGA GAGGAGGAGGCCGAGGCGCCGG No: 36) GGGRGAG AGGAGGCCGAGGCGCCGGAGCA AGGGRPEA GGAGGAGGCCGGCCGGAGGCGG A (SEQ ID CATGAGACGAGCGTGGCGGCCGC NO: 9) GGCTGCTCGGGGCCGCGCTGGTT GNCCATTGACAGCGGCGTCTGCA GCTCGCTTCAAGATGGCCGCTTG GCTCGCATTCATTTTCTGCTGAAC GACTTTTAACTTTCATTGTCTTTTC CGCCCGCTTCGATCGCCTCGCGCC GGCTGCTCTTTCCGGGATTTTTTA TCAAGCAGAAATGCATCGAACAA CGAGAATCAAGATCACTGAGCTA AATCCCCNCCTGATGTGTGTGCTT TGTGGAGGGTACTTCATTGATGCC ACAACCATAATAGAATGTCTACA TTCCTTCTGTAAAACGTGTATTGT TCGTTACCTGGA
  • An antibody such as an autoantibody, to one or more of a protein, or a fragment of a protein, encoded by a gene such as listed in Tables 1, 2, 3 or 4, or a polypeptide encoded by a UTR sequence of a gene such as one listed in Tables 1, 2, 3 or 4, can be detected according to one or more methods described herein and used to characterize a cancer, such as prostate cancer.
  • a cancer such as prostate cancer.
  • Many of the proteins may have a role in various cancers, including prostate cancer.
  • the human DCHS 1 protein protocadherin-16 precursor
  • DCHS1 is a cadherin, a class of type-1 transmembrane proteins. Cadherins typically play important roles in cellular adhesion, for example, by binding cells expressing similar cadherins to each other. Structurally, DCHS 1 is thought to contain 27 cadherin repeats (extracellular calcium ion-binding domains). DCHS 1 expression has been associated with certain cancers, potentially playing a role in tumor adherence (see, e.g., Sjöblom, et. al. Science , (2006) 314:268-274).
  • CEP164 is believed to be a centrosomal protein which binds chromatin and plays a role in the DNA damage-activated signaling cascade. It is known to interact with ataxia telangiectasia mutated (ATM) and ATM/Rad3-related (ATR) kinases which phosphorylate CEP164 upon replication stress, ultraviolet radiation (UV), and ionizing radiation (IR). CEP164 also plays a role in cell cycle regulation, specifically at the G2/M checkpoint and in nuclear division (see, e.g., Sivasubramaniam et al., Genes & Dev . (2008); 22(5):687-600). As CEP 164 plays a role in genome stabilization, misregulation or mutation of this gene and/or protein can play a role in certain cancers.
  • ATM ataxia telangiectasia mutated
  • ATR ATM/Rad3-related kinases which phosphorylate CEP164 upon replication stress, ultraviolet radiation (UV), and
  • the human KBTBD6 (kelch repeat and BTB (POZ) domain containing 6) is a protein expressed in a wide variety of normal tissues. Its expression and/or misregulation has also been noted in multiple cancer types, including prostate, ovarian, kidney and lung tumors. The function of the protein is not currently known, however, the presence of the kelch repeat and BTB domain suggest that the protein is involved in protein-protein interactions and actin filament organization.
  • RPS19 ribosomal protein S19
  • RPS19 encodes a ribosomal protein that is a component of the 40S subunit. Located in the cytoplasm as part of the ribosomal complex, mutations in this gene are associated with Diamond-Blackfan anemia, suggesting a non-ribosomal function for the protein in erythropoietic differentiation.
  • RPS19 protein is also known to interact with fibroblast growth factor-2 (see, e.g., Soulet et al., Biochem. Biophys. Res. Commun . (2001); 289:591-596).
  • RPL34 60S Ribosomal protein L34
  • c-MYC c-MYC
  • c-MYC c-MYC
  • RBM6 RNA binding protein 6
  • ATR ATM or ATR
  • HEMK1 HEMK methyltransferase family protein 1
  • HEMK1 S-adenosylmethionine-dependent methyltransferase and is also thought to bind nucleic acids.
  • HEMK1 is considered a tumor-suppressor, misregulation of which is associated with various cancers, including prostate cancer, pancreatic cancer and liver cancer (see, e.g., U.S. Pat. App. Pub. No. 2008/0213791).
  • polypeptide probes such as a fragment of a protein encoded by a gene, or a polypeptide encoded by a sequence of a UTR region of a gene, such as a gene listed in Tables 1, 2, 3 or 4, can be used to detect one or more antibodies, such as autoantibodies, from a sample from a subject.
  • the polypeptide probe comprises a polypeptide sequence selected from SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, or a fragment thereof.
  • the polypeptide probe comprises a polypeptide sequence encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, or a fragment thereof.
  • the polypeptide probe comprises the full-length or a fragment of a protein that is encoded by SEQ ID NO: 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,102, 103, 104, 105, 106, 107, 108, 109, 110, 111, or a fragment thereof.
  • a polypeptide probe is a fragment of a protein encoded by CEP 164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR — 113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, or Deaminase Domain, or may be a polypeptide encoded by a UTR sequence of the gene, such as the 5′ or 3′ UTR sequence of CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR — 113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, or Deaminase Domain.
  • a polypeptide probe can be a fragment of a protein encoded by FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789.
  • a polypeptide probe comprises a peptide sequence, or fragment thereof, such as those listed in Tables 1, 2, 3, and 4.
  • the polypeptide probe can comprise SEQ ID NO: 2, 5, 9, 11, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or a fragment thereof, or a fragment thereof.
  • the polypeptide probe comprises a polypeptide encoded by SEQ ID NO: 16, 19, 23, 25, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, or a fragment thereof.
  • a polypeptide probe is a fragment of a protein encoded by DCHS1, CEP164, KBTBD6, RPS 19, RPL34, RNA binding protein 6, or Hemk1, or may be a polypeptide encoded by a UTR sequence of the gene, such as the 5′ or 3′ UTR sequence of DCHS1, CEP164, KBTBD6, RPS19, RPL34, RNA binding protein 6, or Hemk1.
  • a polypeptide probe can be a fragment of a protein encoded by eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789.
  • a polypeptide probe comprises a peptide sequence, or fragment thereof, such as those listed in Tables 1 and 2.
  • the polypeptide probe can comprise SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14, or a fragment thereof.
  • the polypeptide probe comprises a polypeptide encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or a fragment thereof.
  • a panel as provided herein can be used to analyze one or more antibodies to a plurality of polypeptide probes, such as one or more autoantibodies.
  • a panel allows for the simultaneous analysis of multiple antibodies, such as autoantibodies, to a plurality of polypeptide probes correlating with carcinogenesis and/or metastasis.
  • a panel can include markers identified as correlating with cancerous tissue, metastatic cancer, localized cancer that is likely to metastasize, pre-cancerous tissue that is likely to become cancerous, and pre-cancerous tissue that is not likely to become cancerous.
  • panels may be analyzed alone or in combination in order to provide the best possible diagnosis and/or prognosis.
  • an antibody profiling panel can comprise a plurality of polypeptide probes, wherein one or more of the probes is capable of binding an antibody.
  • an antibody profiling panel can comprise a plurality of probes, wherein one or more of the probes is capable of binding an antibody that targets a foreign antigen.
  • an antibody profiling panel can comprise a plurality of probes, wherein each of the probes is capable of binding an autoantibody.
  • an antibody profiling panel comprises 2-100 probes, 50-200 probes, 100-500 probes 200-750 probes, 200-1000 probes, 2-5,000 probes or 2-10,000 probes.
  • an antibody profiling panel comprises at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 polypeptide probes.
  • an antibody profiling panel comprises at least about 50, 100, 150, 200, 250, 500, 750, 1000, 5000, 10,000, 15,000, 20,000, 25,000, 30,000, 40,000, 50,000, 60,000, 70,000, 75,000, or 100,000 polypeptide probes.
  • the probes are polypeptide probes.
  • the probes are molecules that mimic an epitope bound by a particular antibody.
  • An antibody profiling panel can comprise at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 polypeptide probes, wherein the polypeptide probes are a fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, such as genes listed in Tables 1, 2, 3, or 4.
  • the polypeptide probe comprises a polypeptide sequence selected from SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, or a fragment thereof.
  • the polypeptide probe comprises a polypeptide sequence encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, or a fragment thereof.
  • the polypeptide probe comprises the full-length or a fragment of a protein that is encoded by SEQ ID NO: 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,102, 103, 104, 105, 106, 107, 108, 109, 110, 111, or a fragment thereof.
  • an antibody profiling panel comprises a plurality of polypeptide probes, wherein at least a subset of the polypeptide probes is a fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR — 113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, or Deaminase Domain.
  • the polypeptide probe can comprise a fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789.
  • an antibody profiling panel comprises a plurality of polypeptide probes, wherein at least a subset of the polypeptide probes is a fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is DCHS1, CEP164, KBTBD6, RPS19, RPL34, RNA binding protein 6, or Hemk1.
  • the polypeptide probe can comprise a fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789.
  • an antibody profiling panel comprises a plurality of polypeptide probes, wherein at least a subset of the polypeptide probes is a peptide sequence, or fragment thereof, as listed in Tables 1, 2, 3, or 4.
  • an antibody profiling panel comprises a plurality of polypeptide probes, wherein at least a subset of the polypeptide probes comprises a polypeptide sequence selected from SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, or a fragment thereof.
  • an antibody profiling panel comprises a plurality of polypeptide probes, wherein at least a subset of the polypeptide probes comprises a polypeptide sequence encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, or a fragment thereof.
  • the polypeptide probe comprises the full-length or a fragment of a protein that is encoded by SEQ ID NO: 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,102, 103, 104, 105, 106, 107, 108, 109, 110, 111, or a fragment thereof.
  • an antibody profiling panel comprises a plurality of polypeptide probes, wherein at least a subset of the polypeptide probes comprises SEQ ID NO: 2, 5, 9, 11, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or a fragment thereof, or a fragment thereof.
  • an antibody profiling panel comprises a plurality of polypeptide probes, wherein at least a subset of the polypeptide probes is encoded by SEQ ID NO: 16, 19, 23, 25, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, or a fragment thereof.
  • an antibody profiling panel comprises a plurality of polypeptide probes, wherein at least a subset of the polypeptide probes comprises SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14, or a fragment thereof.
  • an antibody profiling panel comprises a plurality of polypeptide probes, wherein at least a subset of the polypeptide probes is encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or a fragment thereof.
  • an antibody profiling panel can also comprise one or more polypeptide probes of the protein PSA, or fragment of PSA, in combination with one or more of the polypeptide probes discussed herein.
  • an antibody profiling panel can comprise polypeptide probes including a full-length protein or fragment of PSA and one or more polypeptide probes comprising SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, or a fragment thereof.
  • an antibody profiling panel can comprise polypeptide probes including a full-length protein or fragment of PSA and one or more polypeptide probes comprising a polypeptide sequence encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, or a fragment thereof.
  • the polypeptide probe comprises the full-length or a fragment of a protein that is encoded by SEQ ID NO: 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,102, 103, 104, 105, 106, 107, 108, 109, 110, 111, or a fragment thereof.
  • an antibody profiling panel can comprise polypeptide probes including a full-length protein or fragment of PSA and a full-length protein encoded by a gene, fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR — 113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, or Deaminase Domain.
  • an antibody profiling panel can comprise a plurality of polypeptide probes, wherein the probes include a full-length protein or fragment of PSA and a full-length protein encoded by a gene, fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789.
  • an antibody profiling panel can comprise polypeptide probes including a full-length protein or fragment of PSA and a full-length protein encoded by a gene, fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is DCHS1, CEP164, KBTBD6, RPS19, RPL34, RNA binding protein 6, or Hemk1.
  • an antibody profiling panel can comprise a plurality of polypeptide probes, wherein the probes include a full-length protein or fragment of PSA and a full-length protein encoded by a gene, fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789.
  • an autoantibody profiling panel can comprise a plurality of polypeptide probes, wherein the probes includes a full-length protein or fragment of PSA and one or probes comprising a peptide sequence, or fragment thereof, as listed in Tables 1, 2, 3 and 4.
  • an autoantibody profiling panel can comprise a plurality of polypeptide probes, wherein the probes includes a full-length protein or fragment of PSA and one or more probes comprising SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, or a fragment thereof.
  • an autoantibody profiling panel can comprise a plurality of polypeptide probes, wherein the probes includes a full-length protein or fragment of PSA and one or more probes comprising a polypeptide sequence encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, or a fragment thereof.
  • an autoantibody profiling panel can comprise a plurality of polypeptide probes, wherein the probes includes a full-length protein or fragment of PSA and one or more probes comprising the full-length or a fragment of a protein that is encoded by SEQ ID NO: 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,102, 103, 104, 105, 106, 107, 108, 109, 110, 111, or a fragment thereof.
  • an autoantibody profiling panel can comprise a plurality of polypeptide probes, wherein the probes includes a full-length protein or fragment of PSA and one or more probes comprising SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or a fragment thereof.
  • an autoantibody profiling panel can comprise a plurality of polypeptide probes, wherein the probes includes a full-length protein or fragment of PSA and one or more probes comprising SEQ ID NO: 2, 5, 9, 11, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or a fragment thereof, or a fragment thereof; or a polypeptide sequence encoded by a sequence selected from SEQ ID NOs. 16, 19, 23, 25, 28, 70, 71, 72, 73, 74, 75,76, 77, 78, 79, 80, 81, 82, 83, 84, or a fragment thereof.
  • a PSA polypeptide probe can be combined with any two or more of the polypeptide probes described herein, such as a polypeptide probe derived from a protein encoded by a gene, fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR — 113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, Deaminase Domain, FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789.
  • a polypeptide probe derived from a protein encoded by a gene fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a
  • a PSA polypeptide probe can be combined with any two or more of the polypeptide probes described herein, such as a polypeptide probe derived from a protein encoded by a gene, fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is DCHS1, CEP164, KBTBD6, RPS19, RPL34, RNA binding protein 6, Hemk1, eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789.
  • a PSA polypeptide probe can be combined with at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 of polypeptide probes disclosed herein, such as listed in Tables 1, 2, 3, and 4.
  • a polypeptide probe comprises SEQ ID NO: 2, 5, 9, 11, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or a fragment thereof, or a fragment thereof.
  • a polypeptide probe comprises SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14, or a fragment thereof.
  • a polypeptide probe comprises SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, or a fragment thereof.
  • a polypeptide probe comprises a polypeptide encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or a fragment thereof.
  • a polypeptide probe comprises a polypeptide encoded by SEQ ID NO: 16, 19, 23, 25, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, or a fragment thereof.
  • a polypeptide probe comprises a polypeptide encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, or a fragment thereof.
  • a polypeptide probe disclosed herein is attached to a substrate (e.g., glass slide chip or nanowell chip).
  • a polypeptide probe can be directly or indirectly attached to the substrate.
  • a polypeptide probe is attached to a substrate via a phage.
  • the substrate can be any physically separable solid to which a polypeptide probe can be directly or indirectly attached including, but not limited to, surfaces provided by microarrays and wells, particles such as beads, columns, optical fibers, wipes, glass and modified or functionalized glass, quartz, mica, diazotized membranes (paper or nylon), polyformaldehyde, cellulose, cellulose acetate, paper, ceramics, metals, metalloids, semiconductive materials, quantum dots, coated beads or particles, other chromatographic materials, magnetic particles; plastics (including acrylics, polystyrene, copolymers of styrene or other materials, polypropylene, polyethylene, polybutylene, polyurethanes, TEFLONTM, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silica-based materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, ceramics, conducting polymers (including polymers such as polypyrole and polyindole); micro
  • the polypeptide probe can bound to a planar surface or to a particle, such as a bead or microsphere.
  • the polypeptide probe is attached to a bead.
  • the bead can be a polystyrene, brominated polystyrene, polyacrylic acid, polyacrylonitrile, polyacrylamide, polyacrolein, polydimethylsiloxane, polybutadiene, polyisoprene, polyurethane, polyvinyl acetate, polyvinylchloride, polyvinylpyridine, polyvinylbenzylchloride, polyvinyltoluene, polyvinylidene chloride, polydivinylbenzene, polyglycidylmethacrylate, polymethylmethacrylate, or copolymers, blends, composites, or combination thereof.
  • the bead can have a diameter of between about 1 nm-1000 ⁇ m, 1 nm-500 ⁇ m, 5 nm-500 ⁇ m, or 10 nm-100 ⁇ m. In one embodiment, the bead has a diameter of between about 10 nm and 100 ⁇ m. In yet another embodiment, the bead has a diameter of less than about 1000 ⁇ m, 500 ⁇ m, 400 ⁇ m, 300 ⁇ m, 200 ⁇ m, or 100 ⁇ m.
  • the bead is labeled or stained with more than one dye, such as at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 different dyes.
  • the bead is labeled or stained with two dyes.
  • the two dyes are hydrophobic.
  • the two dyes are fluorescent dyes, such as squaric acid-based dyes.
  • the squaric acid-based dyes are selected from cyclobutenedione derivatives, symmetrical and unsymmetrical squaraines, substituted cephalosporin compounds, fluorinated squaraine compositions, alkylalkoxy squaraines, or squarylium compounds.
  • the squaric acid-based dyes are selected from a red fluorescent dye and an orange fluorescent dye, such as the red fluorescent dye comprising 1,3-bis(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)methyl]-2,4-dihydro xycyclobutenediylium, bis(inner salt) and the orange fluorescent dye comprising 2-(3,5-dimethylpyrrol-2-yl)-4-(3,5-dimethyl-2H-pyrrol-2-ylidene)-3-hydroxy-2-cyclobuten-1-one.
  • the red fluorescent dye comprising 1,3-bis(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)methyl]-2,4-dihydro xycyclobutenediylium, bis(inner salt)
  • the orange fluorescent dye comprising 2-(3,5-dimethylpyrrol-2-yl)-4-(3,5-dimethyl-2H-pyr
  • the substrate is coated using passive or chemically-derivatized coatings with any number of materials, including polymers, such as dextrans, acrylamides, gelatins or agarose. Such coatings can facilitate the use of the array with a biological sample.
  • a presence of an immune response to a specific protein expressed in cancerous cells can be indicative of a presence of cancer.
  • the present invention provides a method (e.g., diagnostic or screening method) for detecting a presence of an antibody, such as an autoantibody, to a tumor or tumor-associated antigen.
  • an antibody such as an autoantibody
  • the presence of an antibody in cancerous but not cancerous cells is indicative of the presence of cancer.
  • the antibody is an antibody to a tumor antigen.
  • a method or composition disclosed herein can find utility in the diagnosis, screening, or characterization of a cancer.
  • a presence of an antibody, such as an autoantibody, to a specific protein can be indicative of a cancer.
  • detection of an antibody in a sample, such as an autoantibody can be indicative of a specific stage or sub-type of the same cancer.
  • the information obtained by detecting an antibody as described herein can be used to determine a prognosis or theranosis, wherein an appropriate course of treatment can be determined.
  • a subject with a specific antibody or stage of cancer can respond differently to a given treatment than individuals lacking the antibody. The information obtained from a method disclosed herein can thus provide for the personalization of diagnosis and treatment.
  • a cancer is characterized by detecting the level or presence or absence of an antibody, such as an autoantibody, in a sample.
  • the cancer can be, but is not limited to, breast cancer, ovarian cancer, lung cancer, colon cancer, hyperplastic polyp, adenoma, colorectal cancer, high grade dysplasia, low grade dysplasia, prostatic hyperplasia, prostate cancer, melanoma, pancreatic cancer, brain cancer (such as a glioblastoma), hematological malignancy, hepatocellular carcinoma, cervical cancer, endometrial cancer, head and neck cancer, esophageal cancer, gastrointestinal stromal tumor (GIST), renal cell carcinoma (RCC) or gastric cancer.
  • GIST gastrointestinal stromal tumor
  • RRCC renal cell carcinoma
  • the colorectal cancer can be CRC Dukes B or Dukes C-D.
  • the hematological malignancy can be B-Cell Chronic Lymphocytic Leukemia, B-Cell Lymphoma-DLBCL, B-Cell Lymphoma-DLBCL-germinal center-like, B-Cell Lymphoma-DLBCL-activated B-cell-like, and Burkitt's lymphoma.
  • the cancer can also be a premalignant condition, such as Barrett's Esophagus.
  • a method for screening or characterizing a prostate cancer can comprise detecting in a sample obtained from a subject a presence and/or level of one or more autoantibodies to one or more polypeptide probes comprising a polypeptide probe is a fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR — 113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, Deaminase Domain, FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789.
  • a polypeptide probe can also comprise a polypeptide sequence, or a fragment thereof, selected from Table 1, 2, 3 and 4, such as a polypeptide probe comprising polypeptide probe comprises SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14, or a fragment thereof, or a polypeptide probe comprising a polypeptide encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or a fragment thereof.
  • a polypeptide probe can also comprise SEQ ID NO: 12, 5, 9, 11, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or a fragment thereof, or a fragment thereof, or a polypeptide encoded by SEQ ID NO: 16, 19, 23, 25, 28, 70, 71, 72, 73, 74, 75,76, 77, 78, 79, 80, 81, 82, 83, 84, or a fragment thereof.
  • the method can comprise detecting in a sample obtained from a subject a presence and/or level of one or more autoantibodies to one or more polypeptide probes comprising a polypeptide probe is a fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is DCHS1, CEP164, KBTBD6, RPS19, RPL34, SFRS14, RNA binding protein 6, Hemk1, eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789.
  • a polypeptide probe can also comprise a polypeptide sequence, or a fragment thereof, selected from Table 1 or Table 2, such as a polypeptide probe comprising SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14, or a fragment thereof, or a polypeptide probe encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or a fragment thereof.
  • the method can comprise detecting in a sample obtained from a subject a presence and/or level of one or more autoantibodies to one or more polypeptide probes comprising SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, or a fragment thereof., or a fragment thereof; or polypeptide probe encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
  • a cancer (or absence of cancer) can be characterized.
  • a presence or level of DCHS1, CEP164 and/or RPS19 autoantibodies is detected, indicating a presence of prostate cancer in the subject.
  • a method further comprises detecting a presence or level of one or more autoantibodies to one or more polypeptide probe comprising a fragment of eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789.
  • the fragment of a protein encoded by eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789 can comprise a polypeptide sequence selected from Table 2.
  • a method disclosed herein can comprise detecting a plurality of antibodies, such as through the detection of binding of one or more antibodies that bind to a plurality of polypeptide probes.
  • the antibodies are autoantibodies.
  • the antibodies are antibodies to foreign antigens.
  • the method comprises detecting in a sample one or more antibodies that binds to a panel of polypeptide probes, wherein the panel comprises 2-100 probes, 50-200 probes, 100-500 probes 200-750 probes, 200-1000 probes, 2-5,000 probes or 2-10,000 probes.
  • the panel of polypeptide probes comprises at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 polypeptide probes.
  • the panel comprises at least about 50, 100, 150, 200, 250, 500, 750, 1000, 5000, 10,000, 15,000, 20,000, 25,000, 30,000, 40,000, 50,000, 60,000, 70,000, 75,000, or 100,000 polypeptide probes.
  • the panels comprises a plurality of polypeptide probes, wherein a subset of the probes comprise fragments of the same full-length protein, such that autoantibodies to different epitopes bind to the different probes and indicate a presence of an immune response, or antibody, to the full-length protein.
  • a panel comprising multiple polypeptide probes allow for the simultaneous analysis of multiple markers correlating with carcinogenesis and/or metastasis.
  • a panel includes markers identified as correlating with cancerous tissue, metastatic cancer, localized cancer that is likely to metastasize, pre-cancerous tissue that is likely to become cancerous, pre-cancerous tissue that is not likely to become cancerous, or any combination thereof.
  • a panel can be analyzed alone or in combination in order to provide a diagnosis, prognosis, or theranosis.
  • One or more markers for inclusion on a panel can be selected by screening for their diagnostic, prognostic, or theranostic value.
  • any of the proteins listed in Tables 1, 2, 3 or 4, or proteins encoded by the genes listed in Tables 1, 2, 3 or 4, in any combination, can be utilized to detect a presence of an antibody, such as an autoantibody, in a subject.
  • the protein is encoded SEQ ID NO: 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,102, 103, 104, 105, 106, 107, 108, 109, 110, 111, or a fragment thereof.
  • any combination of two or more proteins (e.g., cancer markers) or fragments thereof is used to detect one or more autoantibodies (e.g., a panel consisting of one or more full-length or fragments of the polypeptides listed in Tables 1, 2, 3, and/or 4).
  • one or more autoantibodies e.g., a panel consisting of one or more full-length or fragments of the polypeptides listed in Tables 1, 2, 3, and/or 4).
  • any combination of two or more proteins (e.g., cancer markers) or fragments thereof is used to detect one or more autoantibodies (e.g., a panel consisting of one or more full-length or fragments of the polypeptides listed in Tables 1 and 2).
  • the method comprises detecting one or more antibodies that bind to at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 polypeptide probes, wherein the polypeptide probes are full-length or fragments of proteins encoded by the genes listed in Tables 1, 2, 3, and/or 4, or polypeptides encoded by the UTR sequence of the gene.
  • the antibody profiling panel comprises a plurality of polypeptide probes, wherein one or more polypeptide probes is a protein or fragment of a protein encoded by CEP 164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR — 113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, Deaminase Domain, FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789, or any combination thereof.
  • the antibody profiling panel comprises a plurality of polypeptide probes, wherein one or more polypeptide probes is a protein or fragment of a protein encoded by DCHS1, CEP164, KBTBD6, RPS19, RPL34, RNA binding protein 6, Hemk1, eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, LOC388789, or any combination thereof.
  • the cancer can be characterized with increased accuracy, such as with increased specificity, sensitivity, or both.
  • the sensitivity can be determined by: (number of true positives)/(number of true positives+number of false negatives), whereas the specificity can be determined by: (number of true negatives)/(number of true negatives+number of false positives).
  • the cancer can be characterized (e.g., detected, prognosed, etc.) with at least 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55,60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% sensitivity.
  • the cancer can be characterized (e.g., detected, prognosed, etc.) with at least 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55,60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% specificity.
  • Specificity or sensitivity of detection can be altered by altering the polypeptide probe make-up of a panel.
  • sensitivity of a diagnostic, prognostic, or theranosstic assay e.g., an antibody detection assay, such as an autoantibody detection assay
  • an antibody detection assay such as an autoantibody detection assay
  • tailoring the probes to a particular subject or cancer to be diagnosed/prognosed can be increased by increasing the number of probes, increasing the diversity of probes (e.g, utilizing probes comprising distinct epitopes from the same and/or different markers), or tailoring the probes to a particular subject or cancer to be diagnosed/prognosed.
  • the confidence level for determining the specificity, sensitivity, or both may be with at least 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55,60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% confidence.
  • a method and system disclosed herein can also comprise detecting a plurality of antibodies, such as through the detection of antibodies binding to a plurality of polypeptide probes, and characterizing or screening for a cancer with increased or greater specificity as compared to a characterization based on detection of antibodies that bind to less than the plurality of polypeptide probes.
  • the antibodies are autoantibodies.
  • the antibodies are to foreign antigens.
  • Two or more polypeptide probes can be used to diagnose a particular cancer.
  • a cancer can be diagnosed by measuring the binding of autoantibodies to two polypeptide probe.
  • the number of polypeptide useful for diagnosing a cancer includes, but is not limited to, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 polypeptide probes.
  • prostate cancer is diagnosed with 5 or more polypeptide probes.
  • prostate cancer is diagnosed with 5 polypeptide probes, which provides a diagnosis that has a higher sensitivity as compared to using less than the 5 polypeptide probes.
  • prostate cancer is diagnosed with 10 or more polypeptide probes.
  • a prostate cancer is diagnosed with 10 polypeptide probes, which provides a diagnosis that has a higher specificity as compared to using less than the 10 polypeptide probes.
  • the level, presence or absence of an antibody can be determined by detecting the binding of one or more autoantibodies to a polypeptide probe. Detection of an antibody can be either quantitative or qualitative. For quantitative assays, the amount of antibody detected can be compared to a control or reference to determine whether an antibody is overexpressed or underexpressed in a sample.
  • the control or reference can be a normal sample or a sample from a known disease state, such as a cancer sample.
  • Antibody binding to a polypeptide probe can be detected by techniques known in the art, such as, but not limited to, radioimmunoassay, ELISA (enzyme-linked immunosorbant assay), “sandwich” immunoassays, immunoradiometric assays, gel diffusion precipitation reactions, immunodiffusion assays, in situ immunoassays (e.g., using colloidal gold, enzyme or radioisotope labels, for example), Western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays, etc.), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays. Any of the assays used can be quantitative or qualitative, as desired.
  • Detection of an antibody bound to a polypeptide probe can be detected using labeling technology.
  • one or more antibodies in a sample collected from a subject to be tested can be directly labeled (e.g., with a fluorescent or radioactive label) and exposed to a polypeptide probe or probe panel.
  • Detection of a signal from the interaction can be achieved using methodology appropriate to the type of label used (e.g., fluorescent microscopy can be used to detect binding of a fluorescently labeled autoantibody to a polypeptide probe).
  • an autoantibody is detected by detecting binding of a labeled secondary antibody or other antibody-binding reagent which specifically binds to the antibody bound to the polypeptide probe (e.g., a “sandwich immunoassay”).
  • a labeled secondary antibody or other antibody-binding reagent which specifically binds to the antibody bound to the polypeptide probe.
  • Many methods are known in the art for detecting binding in an immunoassay and are within the scope of the present invention.
  • the immunoassay described in U.S. Pat. Nos. 5,599,677, 5,672,480, or both, each of which is herein incorporated by reference, is used.
  • automation is utilized to detect binding of one or more autoantibodies to a polypeptide probe or probe panels.
  • Methods for the automation of immunoassays include those described in U.S. Pat. Nos. 5,885,530, 4,981,785, 6,159,750, and 5,358,691, each of which is herein incorporated by reference. Analysis and/or presentation of results can also be automated.
  • a computer with software that analyzes raw data and generates a prognosis, diagnosis, or theranosis based on the level, presence or absence of antibody binding to one or more polypeptide probes is used.
  • a computer-based analysis program can be used to translate the raw data generated by the detection assay (e.g., a presence, absence, or amount of antibody binding to one or more polypeptide probes) into data of predictive value for a clinician.
  • the clinician can access the predictive data using any suitable means.
  • the data is transmitted over a network.
  • the data is accessible by a clinician.
  • a sample e.g., a biopsy or a serum or urine sample
  • a profiling service e.g., clinical lab at a medical facility, genomic profiling business, etc.
  • the sample comprises a tissue or other biological sample and the subject visits a medical center to have the sample obtained and sent to the profiling center.
  • a subject collects the sample themself (e.g., a buccal swab) and directly sends it to a profiling center.
  • the sample comprises previously determined biological information.
  • the information can be directly sent to the profiling service by the subject (e.g., an information card containing the information may be scanned by a computer and the data transmitted to a computer of the profiling center using an electronic communication system).
  • a sample Upon being received by the profiling service, a sample can be processed and a profile produced (i.e., antibody level, presence or absence of antibody).
  • a profile generated can be specific for the diagnostic, prognostic, or theranostic information desired for a subject.
  • a sample from a subject is analyzed for a presence or expression level of one or more antibodies to one or more proteins encoded by a gene, fragment of one or more proteins encoded by a gene, or fragment encoded by aUTR region of a gene, wherein the gene is CEP 164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR — 113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, Deaminase Domain, FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789.
  • the antibodies are autoantibodies.
  • a sample from a subject is analyzed for a presence or expression level of one or more antibodies to one or more proteins encoded by a gene, fragment of one or more proteins encoded by a gene, or fragment encoded by aUTR region of a gene, wherein the gene is DCHS1, CEP164, KBTBD6, RPS19, RPL34, RNA binding protein 6, Hemk1, eIF4G1, BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789.
  • the antibodies are autoantibodies.
  • Profile data can be prepared in a format suitable for interpretation by a treating clinician.
  • the prepared format represents a diagnosis, screening or risk assessment (e.g., likelihood of metastasis or PSA failure or the development of high prostate specific antigen levels in a patient following prostate cancer therapy (e.g., surgery)) for the subject, along with recommendations for particular treatment options.
  • the data can be displayed to the clinician by any suitable method.
  • the profiling service generates a report that is printed for the clinician (e.g., at the point of care). In another embodiment, the report is displayed to the clinician on a computer monitor.
  • the information is first analyzed at the point of care or at a regional facility.
  • the raw data is then sent to a central processing facility for further analysis.
  • further analysis comprises converting the raw data to information useful for a clinician or subject, such as a patient.
  • the central processing facility can provide the advantage of privacy (all data is stored in a central facility with uniform security protocols), speed, and uniformity of data analysis.
  • the central processing facility can also control the fate of the data following treatment of a subject.
  • using an electronic communication system the central facility provides data to the clinician, the subject, researchers, or any other individual.
  • a subject is able to directly access the data using the electronic communication system.
  • a subject chooses further intervention or counseling based on the result.
  • the data is used for research use.
  • the data can be used to further optimize the inclusion or elimination of markers as useful indicators of a particular condition or stage of disease.
  • the detection of one or more antibodies from a sample can be used in conjunction with one or more other tests used for detecting or screening for cancer.
  • the antibody detection can be used prior to, concurrent with, or subsequent to one or more other tests.
  • a genetic test for a mutation or expression level of one or more genes can be used in conjunction with determining the antibody profile of a subject.
  • Antibody detection can provide a non-invasive, inexpensive means for detecting or screening for a cancer.
  • the detection of a level, presence or absence of one or more antibodies can be used to determine whether a second sample or additional analysis of a sample from a subject is to be performed.
  • a biopsy after detecting an expression level of one or more antibodies of sample obtained from subject to one or more polypeptide probes comprising a fragment of a protein encoded by, or a polypeptide encoded by a UTR sequence of, CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR — 113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, Deaminase Domain, FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789, a biopsy can be recommended for the subject.
  • a biopsy after detecting an expression level of one or more antibodies of sample obtained from subject to one or more polypeptide probes comprising a fragment of a protein encoded by, or a polypeptide encoded by a UTR sequence of, DCHS1, CEP164, KBTBD6, RPS19, RPL34, SFRS14, RNA binding protein 6, Hemk1, eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789, a biopsy can be recommended for the subject.
  • an expression level for one or more antibodies from a subject can be detected, and based on the expression level of the one or more antibodies, the subject can be identified as suspected of having cancer. In one embodiment, the subject is characterized as having a high probability or likelihood of having cancer. Based on the detection or expression level of the one or more antibodies, a recommendation that a biopsy be obtained can be made for the subject. In another embodiment, if there is a lack of detection or expression of the one or more antibodies, further analysis is not recommended and a biopsy not be obtained. (see for example, FIG. 1 , “Autoantibody Test I”)
  • the subject prior to detecting one or more antibodies from a subject, the subject is suspected of having cancer.
  • the subject can have had a genetic test for a mutation or gene expression analysis, image analysis (such as magnetic resonance imaging (MRI), positron emission tomography (PET) scan, computerized tomography (CT) scan, nuclear magnetic resonance (NMR)), or biopsy, and have inconclusive or uncertain results.
  • image analysis such as magnetic resonance imaging (MRI), positron emission tomography (PET) scan, computerized tomography (CT) scan, nuclear magnetic resonance (NMR)
  • biopsy a genetic test for a mutation or gene expression analysis
  • MRI magnetic resonance imaging
  • PET positron emission tomography
  • CT computerized tomography
  • NMR nuclear magnetic resonance
  • an antibody profiling panel described herein can be used in conjunction with a separate test which determines a presence or level of PSA (e.g., a serum PSA test).
  • the panels is utilized to diagnose or prognose a presence of a cancer (e.g., prostate cancer) in a subject.
  • a subject is suspected of having prostate cancer based on their PSA level, age, or both.
  • a subject can be male and over 30, 35, 40, 45, 50, 55, 60, 65, 70 or 75 years of age.
  • the subject is between 30-80 , 40-75, 45-75, or 50-75 years of age.
  • the subject had a PSA blood test, digital rectal exam, or both.
  • the subject may have a PSA level of at least about 1.0, 1.5, 2.0, 2.5, or 4.0 ng/ml.
  • the subject can have a PSA level of between about 1.0-15 ng/ml, 2.0-15 ng/ml, or 2.5-10 ng/ml.
  • a biological sample from a subject such as a subject with a PSA level greater than about 2.5 ng/ml
  • one or more probes for an antibody such as one or more probes for an autoantibody.
  • a biopsy for the subject can be recommended (see for example FIG. 1 , “Autoantibody Test I”).
  • the antibody test can comprise detecting one or more antibodies in a sample that bind to a polypeptide probe as described herein.
  • the antibody test is an autoantibody test.
  • the antibody binds a polypeptide probe comprising SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, or a fragment thereof.
  • the antibody binds a polypeptide probe comprising a polypeptide sequence encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, or a fragment thereof.
  • the antibody binds a polypeptide probe comprising full-length or a fragment of a protein that is encoded by SEQ ID NO: 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,102, 103, 104, 105, 106, 107, 108, 109, 110, 111, or a fragment thereof.
  • the antibody binds a polypeptide probe comprising a full-length or fragment of a protein encoded by, or a polypeptide encoded by a CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR — 113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, Deaminase Domain, FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789.
  • a polypeptide probe comprises SEQ ID NO: 2, 5, 9, 11, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or a fragment thereof, or a fragment thereof.
  • a polypeptide probe comprises a polypeptide encoded by SEQ ID NO: 16, 19, 23, 25, 28, 70, 71, 72, 73, 74, 75,76, 77, 78, 79, 80, 81, 82, 83, 84, or a fragment thereof.
  • the antibody binds a polypeptide probe comprising a full-length or fragment of a protein encoded by, or a polypeptide encoded by a UTR of, DCHS 1, CEP 164, KBTBD6, RPS 19, RPL34, RNA binding protein 6, Hemk1, eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789.
  • a polypeptide probe comprises SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or a fragment thereof.
  • a polypeptide probe comprises a polypeptide encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or a fragment thereof.
  • a biological sample obtained from the subject can be contacted with one or more probes for an antibody, which can be the same or different, as those used in deciding whether to obtain a biopsy. Based on the expression level of antibodies in the sample, a prognosis for the cancer can be provided. (see for example, FIG. 1 , “Autoantibody Test II”)
  • a method of characterizing or screening for a cancer from a subject with a positive biopsy result is provided.
  • the subject has not yet provided a sample for detecting one or more antibodies.
  • the subject has provided an initial sample for detecting one or more antibodies and detection of the one or more antibodies is used in deciding whether a biopsy is obtained.
  • detection of one or more antibodies is used for a diagnosis, prognosis or theranosis of a cancer, such as prostate cancer.
  • the method comprises detecting an expression level for one or more antibodies, wherein the expression level of the one or more antibodies is indicative of the presence, absence, or stage of the cancer.
  • the indication is whether the cancer is aggressive or indolent.
  • a cancer is classified based on the detection of one or more antibodies to one or more polypeptide probes disclosed herein. In one embodiment, the cancer is classified as aggressive or malignant. In another embodiment, the cancer is classified as indolent or benign. Furthermore, after classification, detection of one or more antibodies from a sample from the subject can be used to select a treatment or therapeutic for the cancer.
  • RNA was isolated from total RNA following Novogen's Straight A's mRNA isolation protocol. OrientExpression cDNA synthesis and cloning system were used for the construction of T7 phage prostate cancer cDNA libraries.
  • Protein A/G agarose beads (Pierce Biotechnology, Rockford, Ill.) were used to purify IgGs from the serum of prostate cancer patients. To enhance the selection of epitopes binding to IgGs specifically associated with prostate cancer, a dual procedure was performed.
  • a pre-clearing step was used to remove nonspecific clones by pre-absorbing the phage epitope libraries onto purified IgGs from normal serum pool from 10 control men.
  • the pre-cleared phage libraries were selected onto the pool of IgGs purified from the serum of 6 localized prostate cancer patients.
  • protein-A/G agarose beads provide a purification of the serum of IgGs. Fifty ⁇ l protein-A/G agarose beads were placed into 1.5 ml eppendorf tube and washed two times with 1 ⁇ PBS. Washed beads were blocked with 4% nonfat milk at 4° C. for 1 hr. The beads were then incubated at 4° C.
  • Fifty ⁇ l fresh protein-A/G agarose beads were washed and blocked as same as above. The beads were then incubated at 4° C. for 3 hrs with 500 ml of PBS containing 15 ml patient sera pool at a 1:30 dilution. This amount of serum provides a three-fold molar excess of IgG to calculated number of protein-A/G binding capacity.
  • the beads were washed three times with 1 ⁇ PBS and then incubated with phage library supernatant from above allowed to react with the antibodies on the beads at 4° C. overnight. The mixture was centrifuged at 3000 rpm for 2 min and supernatant was discarded. The beads were then washed three times with 1 ⁇ PBS.
  • Random phage colonies were picked up and amplified in 96-well plates. Fresh phage lysates were spotted onto on FASTTM nitrocellulose coated glass slides (Schleicher & Schuell, Keene, N.H.). Extra T7 empty phage spots were spotted in quadruplicate as negative reference for normalizing the signal value from different slides.
  • the arrays were dried overnight at room temperature. Before processing with serum, the arrays were rinsed briefly in a 4% nonfat milk/PBS with 0.1% tween-20 to remove unbound phage, then transferred immediately to 4% nonfat milk/PBS as a blocking solution for 1 hr at room temperature. Without allowing the array to dry, 2 ml of PBS containing human serum and T7-tag antibody (Novagen) at a dilution of 1:500 and 1:5000 respectively was applied to the surface in a screw-top slide hybridization tube.
  • the arrays were incubated at room temperature for 1 hour, and then washed gently three times in PBS/0.1% Tween-20 solution 10 min each. All washes were performed at room temperature. After washing, the arrays were incubated with 2 ml of PBS containing Cy3-labeled goat anti-mouse antibody and Cy5-labeled goat anti-human antibody (Jackson ImmunoResearch) at a dilution of 1:5,000 for both for 1 hr in the dark. Three washes were performed using PBS/0.1% Tween-20 solution with 10 min each. The arrays were then dried using a stream of compressed air and scanned using 532 nm and 635 nm lasers (Axon Laboratories).
  • the arrays were quantified using GenePix software (Axon Laboratories). Raw ratios of each array were subtracted by median of ratios of the negative control spots with the observation that the signal for negative T7 empty phage on each chip correlates very well with the signal intensity for whole array. Then Z-transformation was applied to clones so that the mean of each clone is zero across arrays and the standard deviation is 1. Due to the fact a presence of antibodies specific to cancer was tested, epitopes with high reactivity in controls and low reactivity in patients were not expected. A GA/KNN algorithm, a machine learning language, was employed to calibrate the system. Briefly, the data set was randomly separated into a training set and a test set.

Abstract

The present disclosure provides compositions and methods for using one or more polypeptide probes to profile an immune response. The polypeptide probe can be used to detect one or more antibodies from a sample. Furthermore, the present disclosure provides methods and compositions for characterizing a cancer based on the detection of one or more antibodies, such as autoantibodies.

Description

    CROSS-REFERENCE
  • This application claims the benefit of U.S. provisional application Ser. No. 61/314,750, filed Mar. 17, 2010, which is incorporated herein by reference in its entirety.
  • BACKGROUND
  • It is desirable to improve cancer detection, prognostic prediction, monitoring, and therapeutic decisions. For example, when cancer is identified at the earliest stages, the probability of cure is very high and therefore diagnostic screening tests that can detect these early stages are crucial.
  • One example in which early detection can be beneficial is prostate cancer (PCA). PCA is a leading cause of male cancer-related death, second only to lung cancer (Abate-Shen and Shen, Genes Dev 14:2410 (2000); Ruijter et al., Endocr Rev, 20:22 (1999)). Prostate cancer is typically diagnosed with a digital rectal exam and/or prostate specific antigen (PSA) screening. An elevated serum PSA level can indicate the presence of PCA. PSA is used as a marker for prostate cancer because it is secreted only by prostate cells. A healthy prostate will produce a stable amount—typically below 4 nanograms per milliliter (ng/ml), or a PSA reading of “4” or less—whereas cancer cells produce escalating amounts that correspond with the severity of the cancer. A level between 4 and 10 ng/ml may raise a doctor's suspicion that a patient has prostate cancer, while amounts above 50 ng/ml may show that the tumor has spread elsewhere in the body.
  • The advent of prostate specific antigen (PSA) screening has led to earlier detection of PCA and significantly reduced PCA-associated fatalities. However, a major limitation of the serum PSA test is a lack of prostate cancer sensitivity and specificity, especially in the intermediate range of PSA detection (4-10 ng/ml). Elevated serum PSA levels are often detected in patients with non-malignant conditions such as benign prostatic hyperplasia (BPH) and prostatitis, and provide little information about the aggressiveness of the cancer detected. Coincident with increased serum PSA testing, there has been a dramatic increase in the number of prostate needle biopsies performed (Jacobsen et al., JAMA 274:1445 (1995)). This has resulted in a surge of equivocal prostate needle biopsies (Epstein and Potter J. Urol., 166:402 (2001)).
  • Thus, development of biomarkers to detect cancer, with improved sensitivity and specificity is advantageous.
  • SUMMARY
  • Provided herein are methods and compositions for screening for, or characterizing, a cancer in a subject. In one embodiment, an antibody profiling panel comprising: a plurality of polypeptide probes, wherein at least one of the polypeptide probes comprises a full-length or fragment of a protein encoded by a gene listed in Tables 1, 2, 3, or 4; and each of the probes in the plurality of polypeptide probes is capable of being specifically bound by an antibody, is disclosed herein. In another embodiment, an antibody profiling panel comprising: a plurality of polypeptide probes, wherein at least one of the polypeptide probes comprises a sequence listed in Tables 1, 2, 3, or 4 or a sequence encoded by a sequence listed in Tables 1, 2, 3, or 4; and each of the probes in the plurality of polypeptide probes is capable of being specifically bound by an antibody, is disclosed herein. In one embodiment the subject is a human. In one embodiment the antibody is an autoantibody. In another embodiment the antibody is a human autoantibody. In one embodiment the presence of a human autoantibody that binds to a polypeptide probe is indicative of cancer (e.g. an expression level for one or more autoantibodies is indicative of the presence, absence, or stage of the cancer). In another embodiment the quantity or level of a human autoantinbody that binds to a polypeptide probe is indicative of cancer. In one embodiment the cancer is a prostate, lung, breast or colon cancer.
  • In one embodiment, the polypeptide probe comprises a polypeptide sequence selected from SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, or a fragment thereof. In another embodiment, the polypeptide probe comprises a polypeptide sequence encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, or a fragment thereof.
  • In yet another embodiment, the polypeptide probe comprises the full-length or a fragment of a protein that is encoded by DCHS1 (SEQ ID NO: 29), Centrosomal Protein (CEP 164) (SEQ ID NO: 30), KBTBD6 (SEQ ID NO: 31), RPS19 (SEQ ID NO: 32), RPL34 (SEQ ID NO: 33), Hemk1 (SEQ ID NO: 34), eIF4G1 (SEQ ID NO: 35), BMI1 (SEQ ID NO: 36), BRD2 (SEQ ID NO: 37), RP3-323M22 (Nucleolin) (SEQ ID NO: 38), SFRS14 (SEQ ID NO: 39), LOC388789 (SEQ ID NO: 40), RNA binding motif protein 6 (genomic DNA sequence) (SEQ ID NO: 41), BRMSL1 (SEQ ID NO: 42), NKX3-1 (SEQ ID NO: 43), RPSA (SEQ ID NO: 44), Cytochrome C Oxidase 5 subunit (SEQ ID NO: 45), FAM53B (SEQ ID NO: 46), a fragment of the UTR region of chromosome 11 (Homo sapiens genomic DNA, chromosome 11 clone: CTD-2579L12, NTs 149521-151500) (SEQ ID NO: 47), MAPKKK9 (SEQ ID NO: 48) cDNA clone XR113641.1 (Homo sapiens hypothetical LOC643783, transcript variant 2 (LOC643783), partial miscRNA) (SEQ ID NO: 49), PSA (SEQ ID NO: 50), H2aa4 (SEQ ID NO: 51). UBE2I (SEQ ID NO: 52), TIMP2 (SEQ ID NO: 53), WDR77 (SEQ ID NO: 54), a fragment of Deaminase Domain Cont 1 (Human DNA sequence from clone RP1-20N2 on chromosome 6q24 Contains the gene for a novel protein similar to yeast and bacterial cytosine deaminase, NTs 48121-50100) (SEQ ID NO: 55), Lamin A/C (SEQ ID NO: 85), Lsm3 (SEQ ID NO: 86), a fragment of cDNA clone Chromosome 19, which encompasses the nucleic acid sequence for DAZ associated protein (Homo sapiens chromosome 19 clone CTB-25B13, NTs 20521-22500) (SEQ ID NO: 87), ADAM metallopetidase domain 9 (SEQ ID NO: 88), AZGP1 (SEQ ID NO: 89), Desmocolin 3 (SEQ ID NO: 90), PERP (SEQ ID NO: 91), Chromosome 3 UTR region ropporin/RhoEGF (Homo sapiens 3 BAC RP11-783D3 (Roswell Park Cancer Institute Human BAC Library) NTs 178621-180600) (SEQ ID NO: 92), Cox5a (SEQ ID NO: 93), a Mitochondrion sequence (Homo sapiens isolate PD047 mitochondrion, NTs 4801-6780) (SEQ ID NO: 94), MYH9 (SEQ ID NO: 95), ASND1 (SEQ ID NO: 96), Cathepsin F (SEQ ID NO: 97), Mastermind-like 2 (Homo sapiens genomic DNA, chromosome llq clone:RP11-82212, NTs 157801-159780) (SEQ ID NO: 98), CSNK2A2 (SEQ ID NO: 99), AURKAIP1 (SEQ ID NO: 100), a fragment of Chromosome 4 (Homo sapiens BAC clone RP11-327017 from 4, NTs 107401-109380) (SEQ ID NO: 101), ARF6 (SEQ ID NO: 102), JAG1 (Human DNA sequence from clone RP1-278O22 on chromosome 20 Contains two novel genes, NTs 26161-26140) (SEQ ID NO: 103), a Mitochondrion sequence (Homo sapiens isolate PD047 mitochondrion, NTs 2041-4020) (SEQ ID NO: 104), a fragment of Chromosome 20 (Human DNA sequence from clone RP1-278O22 on chromosome 20 Contains two novel genes, NTs 25321-27300) (SEQ ID NO:105), a fragment of Chromosome 6 UTR region (Human DNA sequence from clone RP3-523G1 on chromosome 6p22.3-24.1, NTs 34621-36600) (SEQ ID NO: 106), a fragment of MAPKKK5 (SEQ ID NO: 107), RASA1 (SEQ ID NO: 108), Hsp90b (SEQ ID NO: 109), ribosomal protein S6 (RPS6) (SEQ ID NO: 110), or a fragment of Homo sapiens chromosome 3 (Homo sapiens 3 BAC RP13-616I3 (Roswell Park Cancer Institute Human BAC Library) NTs 22921-24900) (SEQ ID NO: 111).
  • In one embodiment, the antibody profiling panel comprises a plurality of polypeptide probes, wherein at least one of the polypeptide probes comprises a full-length or fragment of a protein listed in Table 1, or a polypeptide sequence selected from SEQ ID NO: 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, or 141, and each of said probes in said plurality of polypeptide probes is capable of being specifically bound by an antibody. In one embodiment, one or more of the polypeptide probes can comprise SEQ ID NO: 1, 2, 3, 4, 5, 6, or 7. In another embodiment, one or more of the polypeptide probes can comprise a polypeptide encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, or 21. In one embodiment, the antibody profiling panel can further comprise a full-length or fragment of a protein listed in Tables 2, 3, or 4. In another embodiment, the antibody profiling panel, one of the polypeptide probes can comprise SEQ ID NO: 8, 9, 10, 11, 12, 13, or 14. In another embodiment, one or more of the polypeptide probes can comprise a polypeptide encoded by SEQ ID NO: 22, 23, 24, 25, 26, 27, or 28. In one embodiment the antibody is an autoantibody. In another embodiment the antibody is a human autoantibody. In one embodiment the presence of a human autoantinbody that binds to a polypeptide probe is indicative of cancer (e.g. an expression level for one or more autoantibodies is indicative of the presence, absence, or stage of the cancer). In another embodiment the quantity or level of a human autoantibody that binds to a polypeptide probe is indicative of cancer. In one embodiment the cancer is a prostate, lung, breast or colon cancer.
  • In one embodiment, the plurality of probes comprise a polypeptide probe comprising a full-length or fragment of a protein encoded by CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, Deaminase Domain, FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789. In one embodiment, the polypeptide probe comprises SEQ ID NO: 2, 5, 9, 11, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or a fragment thereof. In another embodiment, the polypeptide probe comprises a polypeptide sequence encoded by SEQ ID NO: 16, 19, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, or a fragment thereof.
  • In one embodiment, the plurality of probes comprise a polypeptide probe comprising a full-length or fragment of a protein encoded by CEP164, RPL34, BRMSL1, NKX31, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, or Deaminase Domain. In one embodiment, the plurality of probes comprise a polypeptide probe comprising a polypeptide sequence selected from SEQ ID NOs. 2, 5, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, or 69. In one embodiment, the plurality of probes comprises a polypeptide probe comprising a polypeptide sequence encoded by SEQ ID NO: 16, 19, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, or 84.
  • In one embodiment, the plurality of probes comprise a polypeptide probe comprising a full-length or fragment of a protein encoded by FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789. In one embodiment, the plurality of probes comprise a polypeptide probe comprising a polypeptide sequence selected from SEQ ID NO: 9, 11, 14, or 60. In one embodiment, the plurality of probes comprises a polypeptide probe comprising a polypeptide sequence encoded by SEQ ID NO: 23, 25, 28, 71, or 75.
  • In another embodiment, an antibody profiling panel comprising: a plurality of polypeptide probes, wherein at least one of the polypeptide probes comprises a full-length or fragment of a protein that is DCHS1, CEP164, KBTBD6, RPS19, RPL34, RNA binding protein 6, or Hemk1; and each of the probes in the plurality of polypeptide probes is capable of being specifically bound by an antibody, is disclosed herein. In another embodiment, the plurality of probes further comprise a polypeptide probe comprising a full-length or fragment of a protein encoded by eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789. In one embodiment, the polypeptide probe comprises a sequence listed in Table 1 or 2, such as SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or a fragment thereof. In one embodiment the antibody is an autoantibody. In another embodiment the antibody is a human autoantibody. In one embodiment the presence of a human autoantinbody that binds to a polypeptide probe is indicative of cancer (e.g. an expression level for one or more autoantibodies is indicative of the presence, absence, or stage of the cancer). In another embodiment the quantity or level of a human autoantibody that binds to a polypeptide probe is indicative of cancer. In one embodiment the cancer is a prostate, lung, breast or colon cancer.
  • In another embodiment, one or more of the probes is displayed by a phage. In one embodiment, the one or more probes is attached to a substrate, such as attached via a phage. In another embodiment, the substrate is an array. In yet another embodiment, the panel comprises at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 different probes. In one embodiment, the panel characterizes a cancer, such as prostate cancer, with at least 80% sensitivity and specificity. In another embodiment, the panel screens for a cancer, such as prostate cancer, with at least 80% sensitivity and specificity.
  • Also provided herein is a method of characterizing or screening a subject for a cancer, such as prostate cancer, lung cancer, breast cancer or colon cancer. In one embodiment, the method comprises detecting in a sample obtained from a subject a presence or level of one or more antibodies to one or more polypeptide probes comprising a full-length or a fragment of a protein encoded by DCHS1, CEP164, KBTBD6, RPS19, RPL34, SFRS14, RNA binding protein 6, or Hemk1; and characterizing or identifying, the prostate cancer based on a presence or level of the one or more antibodies. In one embodiment, the method further comprises detecting a presence, absence or level of one or more antibodies to one or more polypeptide probe comprising a full-length or a fragment of a protein encoded by eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789. In one embodiment the antibody is an autoantibody. In another embodiment the antibody is a human autoantibody.
  • In another embodiment, the method comprises detecting in a sample obtained from a subject a presence or level of one or more antibodies to one or more polypeptide probes comprising a full-length or a fragment of a protein encoded by CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, or Deaminase Domain; and characterizing the prostate cancer based on a presence or level of the one or more antibodies. In one embodiment, the method further comprises detecting a presence, absence or level of one or more antibodies to one or more polypeptide probe comprising a full-length or a fragment of a protein encoded by FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789. In one embodiment the subject is a human. In one embodiment the antibody is an autoantibody. In another embodiment the antibody is a human autoantibody. In one embodiment the presence of a human autoantibody that binds to a polypeptide probe is indicative of cancer (e.g. an expression level for one or more autoantibodies is indicative of the presence, absence, or stage of the cancer). In another embodiment the quantity or level of a human autoantinbody that binds to a polypeptide probe is indicative of cancer. In one embodiment the cancer is a prostate, lung, breast or colon cancer.
  • Also provided herein is a method of obtaining a biopsy, wherein a determiniation of whether a biopsy should be obtained is based on detecting an expression level for an antibody. In one embodiment, a subject suspected of having cancer based on an expression level of an antibody is recommended to have a biopsy obtained. In another embodiment, a biological sample is obtained from a subject with a PSA level of greater than about 2.5 ng/ml, and the sample is contacted with one or more probes for an antibody, and based on the expression level of an antibody, a biopsy is obtained or recommended for the subject. In one embodiment, the subject has a PSA level between about 2.5 ng/mL and about 10 ng/mL. In one embodiment the subject is a human. In one embodiment the antibody is an autoantibody. In another embodiment the antibody is a human autoantibody.
  • In one embodiment, the method further comprises contacting a biological sample obtained from the subject with one or more probes for a second antibody when the biopsy provides a positive result for a cancer, such as prostate cancer, and based on the expression level of the second antibody, a prognosis or theranosis is provided. In one embodiment the subject is a human. In one embodiment the second antibody is an autoantibody. In another embodiment the second antibody is a human autoantibody.
  • Also provided herein is a method of characterizing, identifying, or screening for a cancer in a subject. In one embodiment, the method comprises detecting an expression level for one or more antibodies, wherein the expression level of the one or more antibodies is indicative of the presence, absence, or stage of the cancer. In another embodiment, the indication is whether the cancer is aggressive or indolent. In one embodiment, the method of identifying a cancer as aggressive or indolent comprises: obtaining a positive biopsy result for cancer from the subject; contacting a biological sample obtained from the subject with one or more probes for an antibody; detecting an expression level for the antibody; and characterizing or identifying the cancer as aggressive or indolent based on the expression level of the antibody. In one embodiment the subject is a human. In one embodiment the antibody is an autoantibody. In another embodiment the antibody is a human autoantibody. In one embodiment the presence of a human autoantibody that binds to a polypeptide probe is indicative of cancer (e.g. an expression level for one or more autoantibodies is indicative of the presence, absence, or stage of the cancer). In another embodiment the quantity or level of a human autoantinbody that binds to a polypeptide probe is indicative of cancer. In one embodiment the cancer is a prostate, lung, breast or colon cancer.
  • INCORPORATION BY REFERENCE
  • All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The novel features of the disclosure are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present disclosure will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the disclosure are utilized, and the accompanying drawings of which:
  • FIG. 1 is a schematic depicting detecting in a sample from a subject with PSA levels greater than 2.5 ng/mL the expression of one or more autoantibodies (“Autoantibody Test I”). If the result of the Autoantibody Test I is negative, a biopsy is not recommended to be obtained from the subject for further analysis. If result of the Autoantibody Test II is positive, then a biopsy is obtained. If the biopsy is positive for prostate cancer, expression of one or more autoantibodies is detected from a sample from the subject to characterize the cancer as aggressive or indolent, and a prognosis or theranosis provided.
  • FIG. 2 lists the nucleic acid sequence for DCHS 1 (SEQ ID NO: 29).
  • FIG. 3 lists the nucleic acid sequence for Centrosomal Protein (CEP 164) (SEQ ID NO: 30).
  • FIG. 4 lists the nucleic acid sequence for KBTBD6 (SEQ ID NO: 31).
  • FIG. 5 lists the nucleic acid sequence for RPS19 (SEQ ID NO: 32).
  • FIG. 6 lists the nucleic acid sequence for RPL34 (SEQ ID NO: 33).
  • FIG. 7 lists the nucleic acid sequence for Hemk1 (SEQ ID NO: 34).
  • FIG. 8 lists the nucleic acid sequence for eIF4G1 (SEQ ID NO: 35).
  • FIG. 9 lists the nucleic acid sequence for BMI1 (SEQ ID NO: 36).
  • FIG. 10 lists the nucleic acid sequence for BRD2 (SEQ ID NO: 37).
  • FIG. 11 lists the nucleic acid sequence for RP3-323M22 (Nucleolin) (SEQ ID NO: 38).
  • FIG. 12 lists the nucleic acid sequence for SFRS14 (SEQ ID NO: 39).
  • FIG. 13 lists the nucleic acid sequence for LOC388789 (SEQ ID NO: 40).
  • FIG. 14 lists the nucleic acid sequence for RNA binding motif protein 6 (genomic DNA sequence) (SEQ ID NO: 41).
  • FIG. 15 lists the nucleic acid sequence for BRMSL1 (SEQ ID NO: 42).
  • FIG. 16 lists the nucleic acid sequence for NKX3-1 (SEQ ID NO: 43).
  • FIG. 17 lists the nucleic acid sequence for RPSA (SEQ ID NO: 44).
  • FIG. 18 lists the nucleic acid sequence for Cytochrome C Oxidase 5 subunit (SEQ ID NO: 45).
  • FIG. 19 lists the nucleic acid sequence for FAM53B (SEQ ID NO: 46).
  • FIG. 20 lists the nucleic acid sequence for a fragment of the UTR region of chromosome 11 (Homo sapiens genomic DNA, chromosome 11 clone: CTD-2579L12, NTs 149521-151500) (SEQ ID NO: 47).
  • FIG. 21 lists the nucleic acid sequence for MAPKKK9 (SEQ ID NO: 48).
  • FIG. 22 lists the nucleic acid sequence for cDNA clone XR113641.1 (Homo sapiens hypothetical LOC643783, transcript variant 2 (LOC643783), partial miscRNA) (SEQ ID NO: 49).
  • FIG. 23 lists the nucleic acid sequence for PSA (SEQ ID NO: 50).
  • FIG. 24 lists the nucleic acid sequence for H2aa4 (SEQ ID NO: 51).
  • FIG. 25 lists the nucleic acid sequence for UBE2I (SEQ ID NO: 52).
  • FIG. 26 lists the nucleic acid sequence for TIMP2 (SEQ ID NO: 53).
  • FIG. 27 lists the nucleic acid sequence for WDR77 (SEQ ID NO: 54).
  • FIG. 28 lists the nucleic acid sequence for a fragment of Deaminase Domain Cont 1 (Human DNA sequence from clone RP1-20N2 on chromosome 6q24 Contains the gene for a novel protein similar to yeast and bacterial cytosine deaminase, NTs 48121-50100) (SEQ ID NO: 55).
  • FIG. 29 lists the nucleic acid sequence for Lamin A/C (SEQ ID NO: 85).
  • FIG. 30 lists the nucleic acid sequence Lsm3 (SEQ ID NO: 86).
  • FIG. 31 lists the nucleic acid sequence for a fragment of cDNA clone Chromosome 19, which encompasses the nucleic acid sequence for DAZ associated protein (Homo sapiens chromosome 19 clone CTB-25B13, NTs 20521-22500) (SEQ ID NO: 87).
  • FIG. 32 lists the nucleic acid sequence for ADAM metallopetidase domain 9 (SEQ ID NO: 88).
  • FIG. 33 lists the nucleic acid sequence for AZGP1 (SEQ ID NO: 89).
  • FIG. 34 lists the nucleic acid sequence for Desmocolin 3 (SEQ ID NO: 90).
  • FIG. 35 lists the nucleic acid sequence for PERP (SEQ ID NO: 91).
  • FIG. 36 lists the nucleic acid sequence for Chromosome 3 UTR region ropporin/RhoEGF (Homo sapiens 3 BAC RP11-783D3 (Roswell Park Cancer Institute Human BAC Library) NTs 178621-180600) (SEQ ID NO: 92).
  • FIG. 37 lists the nucleic acid sequence for Cox5a (SEQ ID NO: 93).
  • FIG. 38 lists the nucleic acid sequence for a Mitochondrion sequence (Homo sapiens isolate PD047 mitochondrion, NTs 4801-6780) (SEQ ID NO: 94).
  • FIG. 39 lists the nucleic acid sequence for MYH9 (SEQ ID NO: 95).
  • FIG. 40 lists the nucleic acid sequence for ASND1 (SEQ ID NO: 96).
  • FIG. 41 lists the nucleic acid sequence for Cathepsin F (SEQ ID NO: 97).
  • FIG. 42 lists the nucleic acid sequence for Mastermind-like 2 (Homo sapiens genomic DNA, chromosome 1 lq clone:RP11-82212, NTs 157801-159780) (SEQ ID NO: 98).
  • FIG. 43 lists the nucleic acid sequence for CSNK2A2 (SEQ ID NO: 99).
  • FIG. 44 lists the nucleic acid sequence for AURKAIP1 (SEQ ID NO: 100).
  • FIG. 45 lists the nucleic acid sequence for a fragment of Chromosome 4 (Homo sapiens BAC clone RP11-327017 from 4, NTs 107401-109380) (SEQ ID NO: 101).
  • FIG. 46 lists the nucleic acid sequence for ARF6 (SEQ ID NO: 102).
  • FIG. 47 lists the nucleic acid sequence for JAG1 (Human DNA sequence from clone RP1-278022 on chromosome 20 Contains two novel genes, NTs 26161-26140) (SEQ ID NO: 103).
  • FIG. 48 lists the nucleic acid sequence for a Mitochondrion sequence (Homo sapiens isolate PD047 mitochondrion, NTs 2041-4020) (SEQ ID NO: 104).
  • FIG. 49 lists the nucleic acid sequence for a fragment of Chromosome 20 (Human DNA sequence from clone RP1-278O22 on chromosome 20 Contains two novel genes, NTs 25321-27300) (SEQ ID NO:105).
  • FIG. 50 lists the nucleic acid sequence for a fragment of Chromosome 6 UTR region (Human DNA sequence from clone RP3-523G1 on chromosome 6p22.3-24.1, NTs 34621-36600) (SEQ ID NO: 106).
  • FIG. 51 lists the nucleic acid sequence for a fragment of MAPKKK5 (SEQ ID NO: 107).
  • FIG. 52 lists the nucleic acid sequence for RASA1 (SEQ ID NO: 108).
  • FIG. 53 lists the nucleic acid sequence for Hsp90b (SEQ ID NO: 109).
  • FIG. 54 lists the nucleic acid sequence for ribosomal protein S6 (RPS6) (SEQ ID NO: 110).
  • FIG. 55 lists the nucleic acid sequence for a fragment of Homo sapiens chromosome 3 (Homo sapiens 3 BAC RP13-616I3 (Roswell Park Cancer Institute Human BAC Library) NTs 22921-24900) (SEQ ID NO: 111).
  • DETAILED DESCRIPTION
  • The compositions and methods of the present disclosure relate to compositions and methods for characterizing a cancer or screening for a cancer. Provided herein are tests which can be used to analyze a presence or absence of an antibody from a subject, such as a subject being tested or screened for a cancer. In one embodiment, an antibody is an autoantibody. In another embodiment, the test comprises a single antigen, thus detecting only an antibody that binds to that antigen. In another embodiment, a panel of antigens is constructed such that the panel tests for a presence of one or more antibodies which specifically bind to two or more antigens derived from proteins associated with a specific cancer, such as lung cancer, prostate cancer, or ovarian cancer. By detecting an antibody to a protein associated with a disease state, the compositions and methods provided herein allow for the characterization of a cancer.
  • A cancer is characterized for a subject using a composition or method disclosed herein. In one embodiment, a subject is an individual or patient. In one embodiment, a subject is a human. In another embodiment, a subject is a cancer patient. In one embodiment, a subject exhibits no symptom of cancer, such as no symptoms of prostate cancer. In another embodiment, a subject has no detectable symptom of cancer, such as no detectable symptoms for prostate cancer. In yet another embodiment, a subject exhibits a symptom of cancer, such as a symptom for prostate cancer. In one embodiment, a subject is a human. In another embodiment, a subject is an individual. In yet another embodiment, a subject is a patient, such as a cancer patient.
  • Characterizing a cancer, or screening for a cancer, can include detecting the cancer (including pre-symptomatic early stage detecting), determining the prognosis, diagnosis, or theranosis of the cancer, or determining the stage or progression of the cancer. In one embodiment, a prognosis is predicting or giving a likelihood of outcome of a disease or condition, such as an extent of malignancy of a cancer, a likelihood of survival, or expected life expectancy, such as in an individual with prostate cancer. In another embodiment, a prognosis is a prediction or likelihood analysis of cancer progression, cancer recurrence, or metastatic spread or relapse.
  • In one embodiment, the diagnosis is prediction or likelihood an individual or subject has a disease or condition, such as prostate cancer. In one embodiment, the individual is an asymptomatic individual. In another embodiment, the individual is a symptomatic individual.
  • In one embodiment, a theranosis is a therapy selected based on an outcome of determining a binding of one or more antibodies from a sample from a subject to an antigen or polypeptide probe as described herein. In one embodiment, a theranosis is identifying an appropriate treatment or treatment efficacy for a cancer. In one embodiment, a theranosis is modifying a treatment. In another embodiment, a theranosis is selecting a treatment regimen. In yet another embodiment, a theranosis is discontinuing or not selecting a particular treatment regimen. In one embodiment a treatment regimen or therapeutic agent is selected based on the presence or absence of an autoantibody that binds to polypeptide probes described herein. In one embodiment the autoantibody is a human aautoantibody. In one embodiment a treatment regimen or therapeutic agent is excluded based on the presence or absence of an autoantibody that binds to polypeptide probes described herein. In one embodiment the autoantibody is a human aautoantibody.
  • In yet another embodiment, characterizing or screening for a cancer is detecting the cancer, such as pre-symptomatic early stage detecting. In one embodiment, characterizing a cancer is determining the stage or progression of the cancer, such as early-stage, late-stage or advanced stage of cancer. Characterizing or screening for a cancer can also be determining the likelihood or possibility an individual has a cancer. Characterizing or screening for a cancer can also be identification of a cancer, such as determining whether expression of one or more antibodies is indicative of the cancer.
  • In one embodiment, an antigen panel is used to detect a presence of one or more antibodies to one or more proteins, antigens, mimotopes, or epitopes. In one embodiment, one or more polypeptide probes described herein is a protein or fragment thereof. In another embodiment, one or more polypeptide probes described herein comprises an antigen, mimotope, or epitope. A “mimotope” can mimic the epitope of a protein or peptide. In one embodiment, the mimotope is structurally similar to an antigen or epitope of an expressed protein, but is unrelated or weakly related at the protein sequence level.
  • In one embodiment, the antigen panel comprises one or more polypeptide probes comprising a polypeptide sequence selected from SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, or a fragment thereof. In another embodiment, the antigen panel comprises one or more polypeptide probes comprising a sequence encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, or a fragment thereof. In yet another embodiment, the polypeptide probe comprises the full-length or a fragment of a protein that is encoded by SEQ ID NO: 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,102, 103, 104, 105, 106, 107, 108, 109, 110, 111, or a fragment thereof.
  • In one embodiment, the antigen panel comprises one or more polypeptide probes derived from one or more proteins encoded by one or more genes selected from: CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, Deaminase Domain, FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789. In one embodiment, detection of one or more antibodies is used to detect a presence of prostate cancer in a subject.
  • In one embodiment, the antigen panel comprises one or more polypeptide probes derived from one or more proteins encoded by one or more genes selected from: DCHS1, CEP164, KBTBD6, RPS19, RPL34, RNA binding protein 6, Hemk1, eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, and LOC388789. In one embodiment, detection of one or more antibodies is used to detect a presence of prostate cancer in a subject.
  • A cancer can also be characterized by determining a presence or absence, or level, of one or more antibodies in a sample. In one embodiment, a sample is obtained from a subject. The subject can be a mammal, including, but not limited to, humans, non-human primates, rodents, and the like. In another embodiment, a sample is a biological fluid. The biological fluid can be, but not limited to, peripheral blood, sera, or plasma. The sample can be ascites, urine, cerebrospinal fluid (CSF), sputum, saliva, bone marrow, synovial fluid, aqueous humor, amniotic fluid, cerumen, breast milk, broncheoalveolar lavage fluid, semen, prostatic fluid, cowper's fluid or pre-ejaculatory fluid, female ejaculate, sweat, fecal matter, hair, tears, cyst fluid, pleural and peritoneal fluid, pericardial fluid, lymph, chyme, chyle, bile, interstitial fluid, menses, pus, sebum, vomit, vaginal secretions, mucosal secretion, stool water, pancreatic juice, lavage fluids from sinus cavities, or bronchopulmonary aspirates.
  • In one embodiment, the level, presence, or absence of an antibody can be determined by detecting the binding of one or more antibodies to a polypeptide probe. In one embodiment, an antibody is an autoantibody. An autoantibody refers to an antibody produced by a host (with or without immunization) and directed to a host antigen (such as a tumor antigen). Tumor-associated antigens recognized by humoral effectors of the immune system are an attractive target for diagnostic and therapeutic approaches to human cancer.
  • The binding of an antibody with a polypeptide probe can be specific, such that the interaction of the autoantibody with the polypeptide probe is dependent upon a presence of a particular structure (i.e., the antigenic determinant or epitope) of the polypeptide probe. Antigenic determinates or epitopes can comprise amino acids in linear or non-linear sequence in a polypeptide probe and can also comprise one or more amino acids which are in proximity to each other via protein folding (e.g., conformational epitopes). Thus, a single polypeptide or protein can potentially be bound by multiple antibodies which recognize different epitopes. In some instances, known epitopes of a particular polypeptide can be used as a probe to detect for a presence, absence or level of autoantibodies which bind a particular epitope
  • The polypeptide probe can be an antigen identified through serologic identification of antigens, for example by recombinant expression cloning (SEREX), such as described by Kim et al., Biotech. Lett. (2004); 26: 585-588. Generally, in this method, an antigen can be identified by screening expression cDNA libraries from human solid tumors with sera of autologous patients. This type of screening of a cDNA expression library by conventional methods typically requires the preparation of a large number of membrane filters blotted with bacteriophage plaques that are then searched with a specific probe. In the case of the SEREX experiments, the screening is performed using sera from cancer patients, which can be in very limited quantities.
  • A polypeptide probe for detecting an antibody can also be identified by phage-display technology, which can be based on the insertion of foreign nucleotide sequences into genes encoding for various capsid proteins of T7 phage, resulting in a heterogeneous mixture of phages, each displaying the different peptide sequence encoded by a corresponding insert. A physical link between a displayed fusion protein and DNA encoded for it make this phage target selectable. The phage target can express or display a polypeptide probe, which can be used to detect antibodies that are produced by a subject, or autoantibodies, which can then be used to detect or characterize a cancer. The polypeptide probe can be displayed by a phage and used to detect an antibody from a sample obtained from a subject. In one embodiment, an antibody is an autoantibody.
  • Polypeptide Probes
  • Provided herein is a composition and method for detecting one or more antibodies in a sample using one or more polypeptide probes. Polypeptide is used in its broadest sense and can include a sequence of subunit amino acids, amino acid analogs, or peptidomimetics. The subunits can be linked by peptide bonds. The polypeptides can be naturally occurring, processed forms of naturally occurring polypeptides (such as by enzymatic digestion), chemically synthesized or recombinantly expressed. The polypeptides for use in the methods of the present invention can be chemically synthesized using standard techniques. The polypeptides can comprise D-amino acids (which are resistant to L- amino acid-specific proteases), a combination of D- and L-amino acids, β amino acids, or various other designer or non-naturally occurring amino acids (e.g., β-methyl amino acids, Cα- methyl amino acids, and Nα-methyl amino acids, etc.) to convey special properties. Synthetic amino acids can include ornithine for lysine, and norleucine for leucine or isoleucine. In addition, the polypeptides can have peptidomimetic bonds, such as ester bonds, to prepare polypeptides with novel properties. For example, a polypeptide can be generated that incorporates a reduced peptide bond, i.e., R1—CH2—NH-R2, where R1 and R2 are amino acid residues or sequences. A reduced peptide bond can be introduced as a dipeptide subunit. Such a polypeptide can be resistant to protease activity, and can possess an extended half-life in vivo. A polypeptide can also include a peptoid (N-substituted glycines), in which the one or more side chains are appended to nitrogen atoms along the molecule's backbone, rather than to the α-carbons, as in amino acids. Polypeptide and peptide are intended to be used interchangeably throughout this application, i.e. where the term peptide is used, it can also include polypeptide and where the term polypeptides is used, it can also include peptide.
  • In one embodiment, a polypeptide probe can be a fragment or portion of a larger protein. A fragment can range in size from two amino acid residues to the entire amino acid sequence minus one amino acid. In one embodiment, a polypeptide probe is a fragment of an untranslated region (UTR) of a protein, such as a fragment that is encoded by a nucleic sequence that is a UTR region of a gene, such as the 5′ or 3′ UTR of a gene.
  • The fragment can be 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 amino acids in size. In one embodiment, the fragment is less than about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 amino acids in size. A polypeptide probe useful in the compositions and methods herein, regardless of size, is capable of specific interaction with an antibody, such as an autoantibody.
  • In one embodiment, a polypeptide probe can be a fragment of a protein encoded by a gene, or a region upstream or downstream of a coding sequence, such as a UTR region, of a gene listed in Table 1, Table 2, Table 3 or Table 4. In one embodiment, the polypeptide probe comprises a polypeptide sequence selected from SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, or a fragment thereof. In another embodiment, the polypeptide probe comprises a polypeptide sequence encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, or a fragment thereof. In yet another embodiment, the polypeptide probe comprises the full-length or a fragment of a protein that is encoded by SEQ ID NO: 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,102, 103, 104, 105, 106, 107, 108, 109, 110, 111, or a fragment thereof.
  • In one embodiment, a polypeptide probe is a fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene.
  • In one embodiment, the gene can be CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, or Deaminase Domain. In another embodiment, the gene is FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789.
  • In another embodiment, a polypeptide probe comprises SEQ ID NO: 2, 5, 9, 11, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or a fragment thereof. In another embodiment, a polypeptide probe comprises a polypeptide encoded by SEQ ID NO: 16, 19, 23, 25, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, or a fragment thereof.
  • In one embodiment, the gene can be DCHS1, CEP164, KBTBD6, RPS19, RPL34, RNA binding protein 6, or Hemk1. In another embodiment, the gene is eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789. A polypeptide probe can comprise a peptide sequence, or fragment thereof, such as those listed in Tables 1, 2, 3 or 4.
  • In one embodiment, a polypeptide probe comprises SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or a fragment thereof. In another embodiment, a polypeptide probe comprises a polypeptide encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or a fragment thereof.
  • TABLE 1
    NCBI Gene Peptide Clone DNA Sequence
    Clone ID Gene Designation Sequence Sequence (Encoding Peptide Sequence)
    2E11 DCHS1 AB384634.1 FIG. 2 PQTTAPRRAR AGCTTTCGCTAGAGACGCCTCCATA
    (proto- (SEQ ID PRRS (SEQ AGTCACTTGCCCGTTGGCCCCCACG
    cadherin-16 NO: 29) ID NO: 1) ATCGGGGTCGGTTGCTCGCAGGGC
    precursor) TGAGCAGAGATGTGCCAGGAGGGT
    TGTTCTCACGCAAGAGGACGCTGT
    ACTCCTGCTGCTGGAAAGTAGGCG
    CCTCGTCGTTGACGTCAGCGACACT
    GACGGTCAGGACCTGCGTGGCCGA
    GCGCGGCGGGGAGCCGTGGTCTGA
    GG (SEQ ID NO: 15)
    1B4A Centrosomal NM_014956.4 FIG. 3 PVSSSGSYSTP TGGAGGAGAGGCTGGGCTGCCCCA
    Protein (SEQ ID IRKSLRRAAPP AGCCCCTGCTCAGGGCCTCAGAAG
    (CEP 164)  NO: 30) FRA (SEQ ID CCATACACCTTCACTCTGATTGTGC
    (Minus NO: 2) TCATCAAGGCCCAGCATGCAGGAG
    strand) GCTCAAAGTAGCTTTTGGCTTGGGT
    GTTGACGAGAAGAGAGGTAACCTG
    GGGTCATTCTTGACACGTTCCAGCC
    ACCTCCGGTTGGCCTCAATTATGCC
    CTGAAAGGTGGTGCTGCCCGCCTC
    AGGGACTTGCGAATGGGAGTGCTG
    TAGGAGCCGGAGCTGCTCACTGG
    (SEQ ID NO: 16)
    37A8 KBTBD6 NM_152903.4 FIG. 4 SSFSPLN GAATTCGTCATTCTCACCTTTGAAT
    (SEQ ID (SEQ ID  TAAAGCTTAGACTAAATAGTAATA
    NO: 31) NO: 3) TATCGTGGGAAGGATTTTGGTTTTG
    TGATATTTCTGTGAATTAAGGAATA
    GATGTTAACCATTATTTTGTAGAAA
    AGTGATTTGTATGTGGTTAATTATA
    AATAAAACTGGTACCAGAA (SEQ
    ID NO: 17)
    4H10 RPS19 NM_001022.3 FIG. 5 AARRPHDAW TTTATTAACCCAGCATGGTTTGTTC
    (SEQ ID SYCKRREPAG TAATGCTTCTTGTTGGCAGCTGCCA
    NO: 32) VXQSSGSLPQ CCTGTCCGGCGATTCTGTCCAGATC
    KVREAESPRM TCTTTGTCCCTGAGGTGTCAGTTTG
    GGYRQAGQA CGGCCGCCATCTTGGTCCTTTTCCA
    QRACSLR CCATTTTCAGCCCCTCCAGGGCTTG
    (SEQ ID GAGGACCCGGCGGGCCACACTCTT
    NO: 4) GGAGCCTCGGCTGAAGTGGCTGGG
    CATGACGCCGTTTCTCTGACGTCCC
    CCATAGATCTTGGTCATGGAGCCA
    ACCCCAGCGCCACCCCGGAGGTAC
    AGGTGCCGCGCTGTGNAAGCAGCT
    CGCGTGTAGAACCAGTTCTCATCGT
    AGGGAGCAAGCTCTTTGTGCTTGGC
    CAGCTTGACGGTATCCACCCATTCG
    GGGACTTTCAGCTTCCCGGACTTTT
    TGAGGAAGGCTGCCAGAGCTCTGA
    CNAACTCCTGCTGGTTCACGTCTTT
    TACAGTAACTCCAGGCATCGTGCG
    GCCTCCGCGCTGC (SEQ ID
    NO: 18)
    3D10 RPL34 NM_033625.2 FIG. 6 QARLFIFITQK TTCTCGAGTGCGGCCGCAGCTTGGG
    (SEQ ID SFIFLFSFLTL TATGGAGACATATCATATAAGTAA
    NO: 33) CLCLQHFHNDF TGCTAGGGTCNGTGGTAGGAAGTT
    LLLDKESTLD TTTTCATAGGAGGTGTATGAGTTGG
    PVTNTFSTHG TCGTAGCGGAATCGGGGGTATGCT
    TKTLLLTSLFL GTTCGAATTCATAAGAACAGGGAG
    (SEQ ID GTTAGAAGTAGGGTCTTGGTTCCAT
    NO: 5) GTGTGCTAAATGTGTTCGTGACAGG
    ATCAAGCGTGCTTTCCTTATCGAGG
    AGCAGAAAATCGTTGTGAAAGTGT
    TGAAGGCACAAGCACAGAGTCAGA
    AAGCTAAATAAAAAAATGAAACTT
    TTTTGAGTAATAAAAATGAAAAGA
    CGCGCTTGA (SEQ ID NO: 19)
    40A3 RNA NT_022517.18 FIG. 14 LRGITKNDRNF CTCTGAGGGGCATCACCAAAAATG
    binding (SEQ ID NRKIHLNWISK ACAGGAATTTCAACAGGAAGATAC
    protein 6 NO: 41) (SEQ ID ATCTGAATTGGATCTCGAAATAAG
    (Minus NO: 6) GAGTTTGTGTAAGAGAAAAGGAGG
    strand) ACACAAGCAAGGAGACACAAAAG
    ACAATTTGTCCAAGAGAGTAGTAG
    TAGAAACTGACAAAGGTAAGGCTG
    CTTGGTGGCCGGGTGCAGTGACTC
    ACGCCTGTAATCCCAGCACTTTGGG
    AGGCCAAGGCGGGTGGATCACCTG
    AGGTCAGGAGTTCGAGACCACCCT
    GACCAACAGGTGAAACCCCTCTCT
    ACTAAAAATACAAACATTAGCCCA
    TAGTCCCAGCTACTGGGGAGGCTG
    AGGCAGGAGAATCGCTTGAACCTG
    GGAGGCGGAGGTTGCAGTGAGCCA
    AGATCGTGCCATTGCACTCCAGCCT
    GGGCGACAGAATGAGACTGTCTCA
    AAACAAAAGGAAAAAAAAAA (SEQ
    ID NO: 20)
    25C4 Hemk1 NM_016173.3 FIG. 7 RGCCAGIRCT CACTTCTTCAAGCTCCAACACAAAT
    (minus (SEQ ID (SEQ ID GCTGCCTCCTTTAGGATGCCTGCTC
    strand) NO: 34) NO: 7) TGTGCTCTCCCTGCCTCCCCTAGCC
    CATACCTCTGCTGGCACCTTCTGTA
    CCATGCCTTCAGAAACCTTCTTATC
    CCCCTCATCTCTGGGGCCCCCTGTG
    GATCTGGCATACCCAAGTTCAGTA
    AATGTCTATCAGTAAGCTGATGGTA
    CATGCATTTTCTAGAATAGAGCTGG
    GACTTCCCATGTGGCCCACATCTGA
    CCTGGCAGCCCATGTATTCCGGTCA
    TTAGGGATGGGAAGCCATGAGGAC
    CTGGCCTTCTGCCCGACCCAGGCAG
    CCATTCAAGTTGAGCAATGGCCACT
    TCGAAGACTCAAGTGCACCTGATC
    CCTGCGCAACAGCCAC (SEQ ID
    NO: 21)
  • TABLE 2
    NCBI Gene Peptide Clone DNA Sequence
    Clone Gene Designation Sequence Sequence (Encoding Peptide Sequence)
    24E1 eIF4G1 NM_182917.3 FIG. 8 IRDPNQGG TTCTTCTACAGACATTTGTATAGT
    (SEQ ID KDITEEIMS TGTCATAGTGTCCCCAGGAATAG
    NO: 35) GARTASTP AGAGGACTGCGAGATTAGGCTCA
    TPPQTGGG GACCCCGGTTCCAAGACTGGGGA
    LEPQANGE TGGTGATGGGGTCGGAGAAGGCG
    TPQVAVIV ACGAAGGCTGGGATTCTGAAGGG
    RPDDRSQG CTATGCTCTGGGCCAGGCAGCCC
    AIIADRPGL TGGCCGGTCAGCAATGATTGCTC
    PGPEHSPSE CCTGTGACCGGTCATCTGGCCGG
    SQPSSPSPT ACAATGACAGCAACCTGGGGCGT
    PSPSPVLEP CTCCCCATTAGCTTGAGGCTCCAG
    GSEPNLAV ACCGCCTCCCGTCTGGGGAGGGG
    LSIPGDTM TGGGTGTGGAGGCAGTGCGGGCC
    TTIQMSVE CCAGACATGATCTCCTCTGTGATA
    E (SEQ ID TCCTTTCCTCCTTGGTTTGGATCT
    NO: 8) CGAATTCGGATC (SEQ ID
    NO: 22)
    3C4 5′-UTR BC011652.2 FIG. 9 GGGRGAG ATCACAAATAGGACAATACTTGC
    BMI1 (SEQ ID GGRGAGA TGGTCTCCAGGTAACGAACAATA
    NO: 36) GGGRPEAA CACGTTTTACAGAAGGAATGTAG
    (SEQ ID ACATTCTATTATGGTTGTGGCATC
    NO: 9) AATGAAGTACCCTCCACAAAGCA
    CACACATCAGGTGGGGATTTAGC
    TCAGTGATCTTGATTCTCGTTGTT
    CGATGCATTTCTGCTTGATAAAAA
    ATCCCGGAAAGAGCAGCCGGCGC
    GAGGCGATCGAAGCGGGCGGAA
    AAGACAATGAAAGTTAAAAGTCG
    TTCAGCAGAAAATGAATGCGAGC
    CAAGCGGCCATCTTGAAGCGAGC
    TGCAGACGCCGCTGTCAATGGGC
    AACCAGCGCGGCCCCGAGCAGCC
    GCGGCCGCCACGCTCGTCTCATG
    CCGCCTCCGGCCGGCCTCCTCCTG
    CTCCGGCGCCTCGGCCTCCTCCGG
    CGCCTCGGCCTCCTCCTCCTCCGC
    CTCCGCCTCGACCTCCAACGCCTC
    CTCCTCCGGGGCCTCCTCCTCCTC
    CTCCTCGGC (SEQ ID NO: 23)
    8A6 BRD2 BX908719.9 FIG. 10, ESRPMSYD TGTAGGGCTTCCGGGGTTTCTTAC
    (SEQ ID EKRQLSLDI GTAGGCAGGAAAGGACATAGCGC
    NO: 37) NKLPGEKL TCAAGCTCTCTAAGTGTGGATGG
    GRVVHIIQ CTTGAGTGTTTCAAAATCAATCTC
    AREPSLRD AATCTCTTCTGGGTTTGAATCACG
    SNPEEIEID TAAAGAGGGCTCCCTGGCTTGGA
    FETLKPSTL TTATATGCACAACTCGGCCCAGCT
    RELERYVL TCTCCCCAGGTAATTTGTTGATGT
    SCLRKKPR CCAGGCTCAGCTGCCGCTTCTCAT
    KPYSTYEM CGTAACTCATGGGCCTGCTCTC
    RFISWF (SEQ ID NO: 24)
    (SEQ ID
    NO: 10)
    15F1 RP3-323M22 NM_005381.2 FIG. 11 LVSILLTKT TTACTGTTACCTGATCAATGACAG
    (Nucleolin) (SEQ ID IY (SEQ ID AGCCTTCTGAGGACATTCCAAGA
    NO: 38) NO: 11) CAGTATACAGTCCTGTGGTCTCCT
    TGGAAATCCGTCTAGTTAACATTT
    CAAGGGCAATACCGTGTTGGTTTT
    GACTGGATATTCATATAAACTTTT
    TAAAGAGTTGAGTGATAGAGCTA
    ACCCTTATCTGTAAGTTTTGAATT
    TATATTGTTTCATCCCATGTACAA
    AACCATTTTTTCCTACAAATAGTT
    TGGGTTTTGTTGTTGTTTCTTTTTT
    TTGTTTTGTTTTTGTTTTTTTTTTTT
    TTGCGTTCGTGGGGTTGTAAAAG
    AAAAGAAAGCAGAATGTTTTATC
    ATGGTTTTTGCTTCAGCGGCTTTA
    GGACAAATTAAAAG (SEQ ID
    NO: 25)
    6E2 SFRS14 NM_001017392.3 FIG. 12 KAECFKNL AAGCAGAGTGCTTTAAAAATTTG
    (SEQ ID IVKKQKSL ATAGTAAAAAAGCAAAAATCTCT
    NO: 39) CSGFKEHL GTGCTCTGGTTTTAAGGAACATTT
    NEASILAQ GAATGAGGCAAGCATTTTAGCAC
    VSVSSSKR AGGTTTCTGTTTCAAGTTCAAAGA
    VWKSWEN GAGTCTGGAAAAGTTGGGAAAAT
    LISSFMVW TTAATATCATCTTTTATGGTGTGG
    NPAHLIISIP AATCCTGCCCATTTGATTATTTCT
    NLEKTSDL ATCCCAAATCTTGAAAAAACATC
    SMMSKLA AGACTTATCTATGATGTCAAAGCT
    AALE (SEQ (SEQ ID NO: 26)
    ID NO: 12)
    12B2 5′-UTR BC011652.2 FIG. 9 QRSGRDNG AAGCTTATTATCTCATCATCAGTT
    BMI1 (SEQ ID DVGAGAPF ATAATTCTCTTATCTTCATCTGCA
    NO: 36) RLSSTSQPR ACCTCTCCTCTATCTTCATTAGAG
    RIKPIAPPP CCATTGGCAGCATCAGCAGAAGG
    RAPSPEXG ATGAGCTGCATAAAAATCCCTTCT
    AGGGGGG TCTCTTCATTTCATTTTTGAAAAG
    RGGGGGGP CCCTGGAACTAATTTGTATACAAT
    GGGGVGG ATCTTGGAGAGTTTTATCTGACCT
    RGGGGGG TATATTCAGTAGTGGTCTGGTCTT
    GGRGAGG GTGAACTTGGACATCACAAATAG
    GRGAGAG GACAATACTTGCTGGTCTCCAGGT
    GGRPEAA AACGAACAATACACGTTTTACAG
    (SEQ ID AAGGAATGTAGACATTCTATTAT
    NO: 13) GGTTGTGGCATCAATGAAGTACC
    CTCCACAAAGCACACACATCAGG
    NGGGGATTTAGCTCAGTGATCTT
    GATTCTCGTTGTTCGATGCATTTC
    TGCTTGATAAAAAATCCCGGAAA
    GAGCAGCCGGCGCGAGGCGATCG
    AAGCGGGCGGAAAAGACAATGA
    AAGTTAAAAGTCGTTCAGCAGAA
    AATGAATGCGAGCCAAGCGGCCA
    TCTTGAAGCGAGCTGCAGACGCC
    GCTGTCAATGGNCAACCAGCGCG
    GCCCCGAGCAGCCGCGGCCGCCA
    CGCTCGTCTCATGCCGCCTCCGGC
    CGGCCTCCTCCTGCTCCGGCGCCT
    CGGCCTCCTCCGGCGCCTCGGCCT
    CCTCCTCCTCCGCCTCCGCCTCGA
    CCTCCAACGCCTCCTCCTCCGCTT
    GAATTCGGATCCCCGAGCATCAC
    ACCTGACTGGAATACGAACAGCT
    CCACATNCNGT (SEQ ID
    NO: 27)
    21D10 Homosapiens BC150559.1 FIG. 13 PASASILAG TTGGGCGTTCAGAGAGTTCACTG
    hypothetica1 (SEQ ID VPMYRNEF GGTACTTCACTTGCTGAGCCATCC
    LOC388789 NO: 40) TAWYRRM TTTTGGTCTACTGACGACTTCGCC
    (LOC388789) SVVYGIGT ATTGTCCGGCTATAGTAAAGCAG
    WSVLGSLL TGAGCCCAACACAGACCAGGTGC
    YYSRTMA CGATCCCGTAGACCACCGACATC
    KSSVDQKD CGCCGGTACCAGGCCGTGAACTC
    GSASEVPS ATTTCGATACATGGGTACGCCAG
    ELSERPSLR CGAG (SEQ ID NO: 28)
    PHSSN (SEQ
    ID NO: 14)
  • TABLE 3
    NCBI Gene Peptide Clone DNA Sequence
    Clone Gene Designation Sequence Sequence (Encoding Peptide Seqence)
    8E10 BRMSL1 NM_032352.3 FIG. 15 APRTRTLR TCGTCGAGGCTCCTGCTCCTGTGA
    (SEQ ID ARRSPRME CTCTCGAGCAGCCAGAGGCTCCT
    NO: 42) IAQKWMM ACCTCTATCGAGTCTTTACCTACT
    KTVKEEEW ACTTCTGACACTTTCTTCTTCTTA
    NVWMKCPI CCTTACAAACCTACTTTACAGGTT
    LKNSLPIS AGAACTTTTTGTCAAATGGCTAG
    KINFIKND AGTTTCTAGTTGAAATATTTCTTG
    (SEQ ID CTAATTCAGTCCACCTACGTTTTG
    NO: 56) ATGTTCTTCAGTATCGACCTTTTC
    GTGGTCTTATGAACCTTGGCGACC
    GTTGAAATGTCCTTTTATACGTTT
    AAGCATGTTTCCATCGTCCTTAGA
    TATCTCTCGAGACGAATCTTAGAC
    ATTTCTTGTTTATACTTACACTTT
    AAGTTCGAA (SEQ ID NO: 70)
    1D10 5′-UTR-BMI1 NM_005180.5 FIG. 9 GGRGGGG GGAGGTCGAGGCGGAGGCGGAG
    (SEQ ID GGGGRGA GAGGAGGAGGCCGAGGCGCCGG
    No: 36) GGGRGAG AGGAGGCCGAGGCGCCGGAGCA
    AGGGRPEA GGAGGAGGCCGGCCGGAGGCGG
    A (SEQ ID CATGAGACGAGCGTGGCGGCCGC
    NO: 9) GGCTGCTCGGGGCCGCGCTGGTT
    GNCCATTGACAGCGGCGTCTGCA
    GCTCGCTTCAAGATGGCCGCTTG
    GCTCGCATTCATTTTCTGCTGAAC
    GACTTTTAACTTTCATTGTCTTTTC
    CGCCCGCTTCGATCGCCTCGCGCC
    GGCTGCTCTTTCCGGGATTTTTTA
    TCAAGCAGAAATGCATCGAACAA
    CGAGAATCAAGATCACTGAGCTA
    AATCCCCNCCTGATGTGTGTGCTT
    TGTGGAGGGTACTTCATTGATGCC
    ACAACCATAATAGAATGTCTACA
    TTCCTTCTGTAAAACGTGTATTGT
    TCGTTACCTGGAGACCAGCAAGT
    ATTGTCCTATTTGTGATGTCCAAG
    TTCACAAGACCAGACCACTACTG
    AATATAAGGTCAGATAAAACTCT
    CCAAGATATTGTATACAAATTAG
    TTCCAGGGCTTTTCAAAAATGAA
    ATGAAGAGAAGAAGGGATTTTTA
    TGCAGCTCATCCTTCTGCTGATGC
    TGCCAATGGCTCTAATGAAGATA
    GAGGAGGACGGTTGCAGATGAAG
    ATAAGAGAATTATAANCTGATGA
    TGAGATAATAAGGCTTGCGGCCG
    CACTCGAGAAACAGT (SEQ ID
    NO: 71)
    1H2 NKX3-1 NM_0067167.3 FIG. 16 GTNQRREG GGAGAGAGGGAAAATCAAGTGGT
    (SEQ ID KSSGIFQHF ATTTTCCAGCACTTTGTATGATTT
    NO: 43 V (SEQ ID TGGATGAGTTGTACACCCAAGGA
    NO: 57) TTCTGTTCTGCAACTCCATCCTCC
    TGTGTCACTGAATATCAACTCTGA
    AAGAGCAA (SEQ ID NO: 72)
    4H9 RPSA NM_002295.4 FIG. 17 GKWCHAC CGGGAAATGGTGCCACGCATGCG
    (SEQ ID AELPEPAST CAGAACTTCCCGAGCCAGCATCC
    NO: 44) TSNPLSELP ACCACATCAAACCCACTGAGTGA
    CCCMGWQ GCTCCCTTGTTGTTGCATGGGATG
    CPHSAEEN GCAATGTCCACATAGCGCAGAGG
    LCYTAQW AGAATCTGTGTTACACAGCGCAA
    (SEQ ID TGGTAGGTAGGTTAACATAAGAT
    NO: 58) GCCTCCGTGAGAGGCTGGTGGTC
    AGCCCTGGGGTCAGTAACCACAA
    GAAGCCGTGGCTCCCGGAAGGCT
    GCCTGGATCTGGTTAGTGAAGGT
    TCCAGGAGTGAAGCGGCCAGCAA
    TTGGAGTGGCTCCAGTGGCAGCA
    GCAAACTTCAGCACAGCCCTCTG
    GCCAGTATTCCTGGAGGATATAA
    CACTGACATCAGCAGGGTTTTCA
    ATGGCAACAATTGCACGAGCTGC
    CAGCAGAAGCTT (SEQ ID
    NO: 73)
    5B1 Cytochrome  NM_004255.3 FIG. 18 INTLVTYD GATAAACACACTTGTTACCTATG
    C Oxidase 5 (SEQ ID MVPEPKIID ATATGGTTCCAGAGCCCAAAATC
    Subunit NO: 45) AALRACRR ATTGATGCTGCTTTGCGGGCATGC
    LNDFASTV AGACGGTTAAATGATTTTGCTAGT
    RILEVVKD ACAGTTCGTATCCTAGAGGTTGTT
    KAGPHKEI AAGGACAAAGCAGGACCTCATAA
    YPYVIQEL GGAAATCTACCCCTATGTCATCCA
    RPTLNELGI GGAACTTAGACCAACTTTAAATG
    STPEELGL AACTGGGAATCTCCACTCCGGAG
    DKV (SEQ GAACTGGGCCTTGA
    ID NO: 59) CAAAGTGTAAACCGCATGGATGG
    GCTTCCCCAAGGATTTATTGACAT
    TGCTACTTGAGTGTGAACAGTTAC
    CTGGAAATACTGATGATAACATA
    TTACCTTATTTGAACAAGTTTTCC
    TTTATTGAGTACCAAGCCATGTAA
    TGGTAACTTGGACTTTAATAAAA
    GGGAAATGAGTTTGAACTGAAA
    (SEQ ID NO: 74)
    17B8 FAM53B NM_014661.3 FIG. 19 EVHIKKKT GGGAAGTCCACATTAAAAAGAAA
    (SEQ ID KQTLTNFQ ACAAAACAAACCCTAACTAACTT
    NO: 46) MGLLVRG CCAAATGGGTCTCCTGGTGCGGG
    REWPCPGC GGCGTGAGTGGCCGTGCCCTGGG
    AACLSKLP TGTGCTGCCTGTCTGAGCAAGCTT
    (SEQ ID CCCTAGCTGTGGAACCCCGGGCC
    NO: 60) CCCTGCTGCGGGCTCTGCCTTGGT
    GTCATGCCTGCTGCACCCCCGTTT
    CCACTGACGTGCCGTCTGTGGCTA
    TGGGGGTGGTCACTGGAATGACG
    GTCACTCCAGACGTCAGCCGGCA
    GGGATGCAGCAGGCTGGCCGCGC
    A (SEQ ID NO: 75)
    3C11 UTR-Region AP003173.4 FIG. 20 DHSMVEFP ATTCTATGGTGGAATTTCCAAGA
    Chromosome (SEQ ID RIIVYPQFG ATAATTGTTTATCCTCAGTTTGGA
    11 NO: 47) VGNEG GTAGGAAATGAAGGATAATTTTT
    (SEQ ID TCCATTTCACCTCTATTGCAAATT
    NO: 61) TATTTTTTCAAGCCACACAAAAA
    ATTGTCTAAGATAAAATGAGAAT
    TATTCAGATCAATTCTGCAATGAT
    ACAGGGAAGATGTGAAAGGAGG
    GCTCAATGCAGAGTTGTGAAGTT
    GAAAACCACTATTTCTGTTCTAAA
    GACACAGTAAGCAGAGATCCATC
    TCTCTTCAGGCATCCTGCTTCTCT
    GCAGGTTACTTCTGCTTTAAGGAA
    AGTACATTTTTAGAACAAAGCTT
    (SEQ ID NO: 76)
    3F6 MAPKKK9 NM_033141.2 FIG. 21 SSGSGESRL  TCAAGCGGGAGTGGAGAGAGTCG
    (SEQ ID QHSPSQSY CCTACAGCATTCACCCAGCCAGT
    NO: 48) LCIPFPRGE CCTACCTCTGTATCCCAT
    DGDGPSSD TCCCTCGTGGAGAGGATGGCGAT
    GIHEEPTPV GGCCCCTCCAGTGATGGAATCCA
    NSATSTPQ TGAGGAGCCCACCCCAGTCAACT
    LTPTNSLK CGGCCACGAGT
    RGGAHHR ACCCCTCAGCTGACGCCAACCAA
    RCEVALLG CAGCCTCAAGCGGGGCGGTGCCC
    CGAVLAAT ACCACCGCCGCTGCGAGGTGGCT
    GLGFDLLE CTGCTCGGCTG
    AGKCQLLP TGGGGCTGTTCTGGCAGCCACAG
    LEEPEPPAR GCCTAGGGTTTGACTTGCTGGAA
    EEKKRREG GCTGGCAAGTGCCAGCTGCTTCC
    LFQRSSRPR CCTGGAGGAGC
    RSTSPPSRK CTGAGCCACCAGCCCGGGAGGAG
    LFKKEEHQ AAGAAAAGACGGGAGGGTCTTTT
    ACGRTRVTS TCAGAGGTCCAGCCGTCCTCGTC
    (SEQ ID GGAGCACCAGC
    NO: 62) CCCCCATCCCGAAAGCTTTTCAAG
    AAGGAGGAGCACCAAGCTTGCGG
    CCGCACTCGAGTAACTAGTTAAC
    CCCTTGGGGC
    CTCTAAACGGGTCTTGAGGGGGT
    TANCTNGTTACTCGNGTGCGGCC
    GCNNGCTTGGTGCTCNNCNTTN
    (SEQ ID NO: 77)
    21H4 cDNAb clone XR_113641.1 FIG. 22 QKLCQAKE ATCCCAGCACGGAGGCCCAGAAA
    (SEQ ID KGMCMKK ACTTTAAGATTTGAGTATTAATGT
    NO: 49) LRMLWEC CTCAAGGTCAGGAGCAACCTCAA
    QKLYSLGF GGCTAAAACTCAGATCTCAGGAC
    *(SEQ ID TCAATTTCACAGAAGTTCCACTAT
    NO: 63) AAAGGCAATAATCTAAAGCTTTA
    AATGATATGAAAATTTTGTAATA
    AGAGTTCAGTATTTCTGCCAACAT
    TGGCGCATGGATTGCAAAGTTCA
    CAGGATTGAAAACACCATCGACA
    TAATGGAAATTGAACAGCATCTG
    ATTACTGAGTGCTATATCAGCAA
    GTTAAAAGGATCTTTTGCATACCT
    TTTAATGGTATATATCCTAAAACT
    GAAGTGTTCAATATAGACATCCA
    GATTGAAA (SEQ ID NO: 78)
    4C4 PSA M27274.1 FIG. 23 S E G R T V TGTGTGGGTATGAGGGTATGAGA
    (SEQ ID T N K V S R GGGCCCCTCTCACTCCATTCCTTC
    NO: 50) K Y T G TCCAGGACATCCCTCCACTCTTGG
    (SEQ ID GAGACACAGAGAAGGGCTGGTTC
    NO: 64) CAGCTGGAGCTGGGAGGGGCAAT
    TGAGGGAGGAGGAAGGAGAAGG
    GGGAAGGAAAACAGGGTATGGG
    GGAAAGGACCCTGGGGAGCGAA
    GTGGAGGATACAACCTTGGGCCT
    GCAGGCCAGGCTACCTACCCACT
    TGGAAACCCACGCCAAAGCCGCA
    TCTACAGCTGAGCCACTCTGAGG
    CCTCCCCTCCCCGGCGGTCCCCAC
    TCAGCTCCAAAGTCTCTCTCCCTT
    TTCTCTCCCACACTCTATCATCCC
    CCGGATTCCTCTCTACTTGGTTCT
    CATTCTTCCTTTGACTTCCTGATC
    CTGTGTATTTTCGGCTCACCTTGA
    TTTGTCACTGTTCTCCCCTC (SEQ
    ID NO: 79)
    5A1 H2aa4 NM_001040874.1 FIG. 24 QRGSGQQE ACGCGGCTCGGGGACAACAAGAA
    (SEQ ID DAHHPSSP GACGCGCATCATCCCTCGTCACCT
    NO: 51) PAGHPQRR CCAGCTGGCCATCCGCAACGACG
    GTEQAAGQ AGGAACTGAACAAGCTGCTGGGC
    SHHRPGRR AAAGTCACCATCGCCCAGGGCGG
    LA (SEQ ID CGTCTTGCCTAACATCCAGGCCGT
    NO: 65) ACTGCTCCCTAAGAAGACGGAGA
    GTCACCACAAGGCAAAGGGCAAG
    TGAGGCTGACGTCCGGCCCAAGT
    GGGCCCAGCCCGGCCCGCGTCTC
    GAAG (SEQ ID NO: 80)
    1B4 UBE2I NM_194259.1 FIG. 25 ILYPETLLK TGTGGCATCGTCAAAAGGAAGGG
    (SEQ ID LLISLRRFW ATTGGTTTGGCAAGAACTTGTTTA
    NO: 52) AEMMEFSR CAACATTTTTGCAAATCTAAAGTT
    YTIMSSEN GCTCCATACAATGACTAGTCACCT
    RDNLTSSFP GGGGGGGTTGGGCGGGCGCCATC
    N* (SEQ ID TTCCATTGCCGCCGCGGGTGTGCG
    NO: 66) GTCTCGATTCGCTGAATTGCCCGT
    TTCCATACAGGGTCTCTTCCTTCG
    GTCTTTTGTATTTTTGATTGTTATG
    TAAAACTCGCTTTTATTTTAATAT
    TGATGTCAGTATTTCAACTGCTGT
    AAAATTATAAACTTTTATACTTGG
    GTAAGTCCCCCAGGGGCGAGTTC
    CTCGCTCTGGGATGCAGGCATGC
    TTCTCACCGTGCAGAGCTGCACTT
    GGCCTCAGCTGGCTGTATGGAAA
    (SEQ ID NO: 81)
    18D3 TIMP2 NM_003255.4 FIG. 26 CSKHSSLL ATGTTCTAAGCACAGCTCTCTTCT
    (SEQ ID LFSSCKQL CCTATTTTCATCCTGCAAGCAACT
    NO: 53) KIFKIKFTL CAAAATATTTAAAATAAAGTTTA
    (SEQ ID CATTGTAGTTATTTTCAAATCTTT
    NO: 67) GCTTGATAAGTATTAAGAAATAT
    TGGACTTGCTGCCGTAATTTAAAG
    CTCTGTTGATTTTGTTTCCGTTTG
    GATTTTTGGGGGAGGGGAGCACT
    GTGTTTATGCTGGAATATGAAGTC
    TGAGACCTTCGGTGCTGGGAACA
    CACAAGAGTTGTTGAAAGTTGAC
    AAGCAGACTGCGCATGTCTCTGA
    TGCTTTGTATCATTCTTGAGCAAT
    CGCTCGGTCCGTGGACAATAAAC
    AGTATTATCAAAGAGAAAAAAAA
    (SEQ ID NO: 82)
    2B10  WDR77 NM_024102.2 FIG. 27 NSLPLFPPQ GCCACTTTTCCCACCCCAAAACA
    (SEQ ID NSMGPDIF GCATGGGGCCTGACATCTTCTGCC
    NO: 54) CPGPLSL CTGGTCCCCTTTCTCTTGATGTGG
    DVESLNAV AAAGTCTGAATGCAGTATTTATA
    FIDF* (SEQ GACTTCTAAGGTTTTAAAATCCAG
    ID NO: 68) TATCAAGAAGAAAATCAGAAATA
    CTGGTTGGTGAAATAAAGAGTTT
    AGGCATTGTTGGCCTGTCTTTTTT
    GAAGCATGTGTGTTATGTGTAGTT
    AGATATATTTCACTTATGTGAGTC
    ATCATGGTGTTGGTCTTGTAGCCC
    ATTATTTTTCCTGTGCTTCCCCAG
    CTTCCCAAAGTAGCTAGTTAGAA
    CTTAAGGTAAATATTTATTCTTGG
    GTTGGTGGAGTGGATATTGCCAG
    TTAGGAGTCATGGATCAATTACT
    GATTATATTGAAAGTAAATATAA
    TCAATTATGTACTTTTGAGCTTTG
    CAGGTTCAATTTAGGTAAAAATC
    ACATTATGAAACTGGGAAAGTCT
    GAAGGAATATGGGCAAAATATTT
    CTCAGTAAAGCTT (SEQ ID
    NO: 83)
    5F4 Deaminase  AL031320.1 FIG. 28 VSGSQRVK GAGATGTAAGCGGCTCACAAAGG
    Domain Cont 1 (SEQ ID YLLVNPLQ GTGAAATATTTACTAGTTAACCCC
    NO: 55) KKFINPCY CTTGCAGAAAAAGTTATCAACCC
    RGF (SEQ TTGCTACAGAGGATTTTAAAAAA
    ID NO: 69) TAAAATACAGCTTGTTCTATCTTT
    AGCATCTAACTGGGGAAAAGAAT
    CATAACATGTGAAAGAATAAATA
    AGAAATTGTGCTAACAGTAAGGA
    GTGTTATATGAAATATTACCTGAA
    GAACATGAAACTTGAACTTGCTA
    GAGATAGAGAATATTTAAAGAGG
    CTAAGCAGAGCATTTCAGGGAAA
    GGGCAAGAAGAAGCCTGGGTTGT
    GTGTGAGGAAATCAGCTGACAGA
    GGAGGAGACTATTAAGGAAGCAT
    AAGGAAAGAAAGACAAAAAATT
    GGGGTAAAAATATGTACGGCTTT
    GAAAGCTT (SEQ ID NO: 84)
  • TABLE 4
    NCBI Gene Clone DNA Sequence
    Clone Gene Designation Sequence Peptide Sequence  (Encoding Peptide Sequence)
    1G7 Lamin A/C BC014507.1 FIG. 29 SCGPSMRTRWS AAGCTTCGCCTCCTTGGCTGCCAG
    (SEQ ID SIRRSWRRLILPS CTGCTTCTGGAGCTGGCTGAGCTG
    NO: 85) WTMPGSLLRGT GGCAGAGAGGCTGTCGATGCGGA
    ATWWGLPTRSC TGCGCGACTGCTGCAGCTCCTCGT
    SSRASASTASLP GGGCAGCCCCCACCAGGTTGCTG
    SSASSRSSWQPR TTCCTCTCAGCAGACTGCCTGGCA
    RRSLRPHSS TTGTCCAGCTTGGCAGAATAAGTC
    (SEQ ID NO: 112) TTCTCCAGCTCCTTCTTATACTGC
    TCCACCTGGTCCTCATGCTGGGCC
    CGCAG (SEQ ID NO: 142)
    1B10 Lsm3 AJ238095.1 FIG. 30 MRNDRAASRQIT AATGAGAAATGACCGAGCAGCTT
    (SEQ ID (SEQ ID NO: 113) CGAGGCAGATTACATGACTTATG
    NO: 86) ATCTACATTTAAATATGATCTTGG
    GAGATGTGGAAGAAACTGTGACT
    ACTATAGAAATTGATGAAGAAAC
    ATATGAAGAGATATATAAATCAA
    CGAAACGGAATATTCCAATGCTC
    TTTGTCCGGGGAGATGGCGTTGTC
    CTGGTTGCCCCTCCACTGAGAGTT
    GGCTGAAACAAAGAATTTGTCCT
    GTATGGAAAACGGGAGACTTTGT
    ACAGTGGCCTCTCTAAAAGTACA
    AAACATTCATAAGAGAAACCTGC
    ATACATTTTGATATTAAGAAATAA
    TTCCGGGGATTCTCCACTCCTGAA
    ATGAGTTGATTTGCAGATAACTCT
    ACAACTTCTTAAGCTAAATGGTAT
    TTTCATTTTTCTCAAGCTCTCCAA
    TAAATATGACCACCAA
    (SEQ ID NO: 143)
    2D7 cDNA AC027307.5 FIG. 31 LAHRPPCAEPDP GGAGTTTCACTTTTGTTGCCCAGG
    clone (SEQ ID GQRMELPAPVP ATTGAGTGCAGTGCCCCGATCTTG
    Chromo 19 NO: 87) RPRGASKPRDG GCTCACTACAACCTCTGCCTCCTG
    TSSHCDMPNCQ GGTTCAAGCGACTCTCCTGCCTCA
    HPQGPGPAGEIR GTGTCCTGAGTAGCTGGGATTAC
    SRCRSCWLRAV AGGCGTCTGCCACCACGCCCGGC
    RCNPWLGR TAATTTTGTATTTTTAGTAGAGAA
    (SEQ ID NO: 114) CAGGTTTCACTATGTTGGTCAGGC
    TGGTCTTGAACTCCTGACCTCAGC
    GCATCCAGAATTTTAGACGGGGC
    CCCCAGGGTGAGGTCTTGGCACC
    CTCCAGTAGAGAAGAAGGGACAT
    GGGCCATACGTGGGGTGTCCTTTC
    TGGGAGCCTTGCGTCCCTTACCTG
    CCTAGCCAGGGATTGCACCTCAC
    AGCACGCAGCCAGCAGGAACGGC
    ACCGTGATCTGATTTCACCTGCGG
    GCCCTGGGCCCTGGGGGTGTTGA
    CAATTGGGCATATCACAGTGTGA
    GCTAGTCCCGTCTCGGGGTTTGGA
    GGCTCCACGTGGCCGTGGTACAG
    GAGCAGGCAGTTCCATCCTCTGG
    CCTGGATCAGGCTCTGCACACGG
    AGGCCTGTGGGCCAG
    (SEQ ID NO: 144)
    1H3 ADAM NR_027878.1 FIG. 32 NSGASGSRNFSS TCGGCATAAAGTACCTCCTGGAA
    metallo-  (SEQ ID CSAEDFEK GGAACCGACAGTCTTTACAACAG
    peptidase NO: 88) (SEQ ID NO: 115) TCACCATATGCACACTCAGCAAA
    domain 9 TGATTTAAGCTTACAGGTACTTCC
    TTCGCAGCAAGGGTCCAATTCAC
    ATTCCTTTGGAGTACCACAGTCAC
    ACTCTTCCCCAGCGTCCACCAACT
    TATTACCACAGGAGGGAGCACTA
    TAGGCTTCATCAGGCTTTGGAATA
    TTAAGAAGGCAGTTTCCTCCTTTA
    TTTAAAGTTACTTCTCAAAGTCCT
    CTGCACTGCAACTGCTAAAGTTTC
    TGGAACCCGATGCTCCTGAATTC
    (SEQ ID NO: 145)
    3F5 alpha-2 NM_001185.3 FIG. 33 SSVPPQDTAPYS TCAAGCGTGCCCCCGCAGGACAC
    glyco- (SEQ ID CHVQHSSLAQPL AGCCCCCTACTCCTGCCACGTGCA
    protein1 NO: 89) VVPWEAS GCACAGCAGCCTGGC
    (AZGP1) (SEQ ID NO: 116) CCAGCCCCTCGTGGTGCCCTGGG
    AGGCCAGCTAGGAAGCAAGGGTT
    GGAGGCAATGTGGGATCTCAGAC
    CCAGTAGCTGCCCTTCCTGCCTGA
    TGTGGGAGCTGAACCACAGAAAT
    CACAGTCAATGGATCCACAAGGC
    CTGAGGAGCAGTGTGGGGGGACA
    GACAGGAGGTGGATTTGGAGACC
    GAAGACTGGGATGCCTGTCTTGA
    GTAGACTTGGACCCAAAAAATCA
    TCTCACCTTGAGCCCACCCCCACC
    CCATTGTCTAATCTGTAGAAGCCG
    GAAGCTTGCGGCCGCACTCGAGT
    AACTAGTTAACCCCTTGGGGCCTC
    TAAACGGGTCTTGAGGGGTTANC
    TNGTTNCTCGNGTGCGGCCGCNN
    GCTTCCGGCTTCTNCNGNTTNGNC
    NNTG N
    (SEQ ID NO: 146)
    5F3 Hemk1 NM_016173.3 FIG. 7 VAVAQGSGALE GTGGCTGTTGCGCAGGGATCAGG
    (minus (SEQ ID SSKWPLLNLNG TGCACTTGAGTCTTCGAAGTGGCC
    strand) NO: 34) CLGRAEGQVLM ATTGCTCAACTTGAATGGCTGCCT
    ASHP GGGTCGGGCAGAAGGCCAGGTCC
    (SEQ ID NO: 117) TCATGGCTTCCCATCCCTAATGAC
    CGGAATACATGGGCTGCCAGGTC
    AGATGTGGGCCACATGGGAAGTC
    CCAGCTCTATTCTAGAAAATGCAT
    GTACCATCAGCTTACTGATAGAC
    ATTTACTGAACTTGGGTATGCCAG
    ATCCACAGGGGGCCCCAGAGATG
    AGGGGGATAAGAAGGTTTCTGAA
    GGCATGGTACAGAAGGTGCCAGC
    AGAGGTATGGGCTAGGGGAGGCA
    GGGAGAGCACAGAGCAGGCATCC
    TAAAGGAGGCAGCATTTGTGTTG
    GAGCTTGAAGAAGTG
    (SEQ ID NO: 147)
    5F8 Desmocol- NG_016782.1 FIG. 34 SAFRGYLANNK TAAGCTTTCATCTTCCCCAACCCT
    lin 3 (SEQ ID (SEQ ID NO: 118) GATGTCTTCCTATTCTCACTGATC
    NO: 90) CCCCTACTGACTCAGCTTCACGCT
    TCTTGATTATACCTCTCTCCTGTA
    GAAAAGCCTTGGCTGGCTCTCCTT
    TAGGATGAGAATAAATCCGAAAT
    CCTTAGTGTAGCATTTAGAAGTCC
    TATCTCCCACTTGTTTCTTAATATT
    CTCTTCTCTAACACCGAACTTGTT
    TCAAGCCTCTTTTCCAACACATGA
    TTTCTTCTATTCTAAATCAATTTAT
    TTATTATTTGCTAAATAGCCCCTA
    AAC
    (SEQ ID NO: 148)
    1G12 DAZ Asso- AC027307.5 FIG. 31 SLAHRPPCAEPD GGCTAATTTTGTATTTTTAGTAGA
    ciated (this is for  (SEQ ID PGQRMELPAPV GAACAGGTTTCACTATGTTGGTCA
    protein a chromosome NO: 87) PRPRGASKPPRRD GGCTGGTCTTGAACTCCTGACCTC
    19 clone, not (SEQ ID NO: 119) AGCGCATCCAGAATTTTAGACGG
    the specified GGCCCCCAGGGTGAGGTCTTGGC
    gene) ACCCTCCAGTAGAGAAGAAGGGA
    CATGGGCCATACGTGGGGTGTCC
    TTTCTGGGAGCCTTGCGTCCCTTA
    CCTGCCTAGCCAGGGATTGCACCT
    CACAGCACGCAGCCAGCAGGAAC
    GGCACCGTGATCTGATTTCACCTG
    CGGGCCCTGGGCCCTGGGGGTGT
    TTGACAATTGGGGCATATCACAG
    TGTGAGCTAGTCCCGTCTCGGGG
    GTTTGGAGGCTCCACGTGGCCGT
    GGTACAGGAGCAGGCAGTTCCAT
    CCTCTGGCCTGGATCAGGCTCTGC
    ACACGGAGGCCTGTGGGCCAG
    (SEQ ID NO: 149)
    1G5 RPL34 NM_033625.2 FIG. 6 LFIFITQKSFIFLF GTCTTTTCATTTTTATTACTCAAA
    (Minus (SEQ ID SFLTLCLCLQHF AAAGTTTCATTTTTTTATTTAGCTT
    strand) NO: 33) HNDFLLLDKEST TCTGACTCTGTGCTTGTGCCTTCA
    LDPVTNTFSTHGT ACACTTTCACAACGATTTTCTGCT
    (SEQ ID NO: 120) CCTCGATAAGGAAAGCACGCTTG
    ATCCTGTCACGAACACATTTAGCA
    CACATGGAACCAA
    (SEQ ID NO: 150)
    3C9 PERP NM_022121.4 FIG. 35 PYQIYQVMIN CTTACCAGATCTATCAGGTCATGA
    (Minus (SEQ ID (SEQ ID NO: 121) TAAATTAGACCCAGTCCATCTTTC
    strand) NO: 91) AATCCAGTCTACTCTGGTTCTGAA
    CATATAAACACAAAACACTACAG
    ATTTATTAATATAGCATTTTCCCA
    CACCCTAACCCTATAAAGAACTTT
    AAAAGAGAAAATTTCATCTAAAT
    ATTTCACACTTAAAGGAAAGCCTT
    ACCAACTATGGCAACAGGTTTGG
    ACCATGAAATAGTACTTTCCTAGA
    TGACATATCGAGTCAACATGAAG
    CCTTAGCTGAAATGAATGATTCA
    GGATATTAATGAGAAATTCTCAC
    AAATGATATGCATTTAGGAAATG
    ATTTTGCTTTCCTTAAATAGTTCG
    AAGGCTTGAAAATAAACTTTTTTT
    TTGCATTTCTTTTAAAAGTT
    (SEQ ID NO: 151)
    3D11 Chromo- AC117381.5 FIG. 36 VSTFLSRVGRVS GTTTCCACATTCTTGTCAAGGGTT
    some 3 (Homo (SEQ ID LLNFLPF GGTAGGGTCAGTCTTTTAAATTTC
    UTR region sapiens 3 NO: 92) (SEQ ID NO: 122) TTGCCATTTTAGTGACTGTGCATT
    ropporin/ BAC RP11- GGTATTTCATTGTGGTTTATTTGC
    RhoEGF 783D3) ATGATGACTAATGCTCAACACCA
    ACTAATCATGTTGAGTATTTTTAA
    TGTGCTTATTTGCCACTCATATAT
    CTTCTTTGATGAAGTGTCTCTTCA
    AATATTTTGCCCATTTAAAAACTG
    TATTGATTCTTATTATTGAATTGC
    AATAATTCTTTCTATCCGGATATA
    TATCCTTTGCCAGATATGTGTATT
    ACAAATGTTTTCTCCTAGCCTTCC
    ACCTCAGCCTCCCAAGTAGCTGG
    GAATGCAGGTGTGCACCACCACT
    CCAGGGTTTTTTGTTGTTGTTGTT
    GTTGTTTTTCTGTAGAGACAGGGT
    CTTGCCATGCTGCCGAGGCTGCTC
    TCAAACTCCTGGGATCAAGAAAT
    CCTCCTGCCTCGGCCTCCCAAAGT
    GCTGACATTACAAGCATGAGCCA
    CTGTGCCTGGCTAACTTTTCATCT
    TTTAAAGTAGTGTCTTGCAAAGA
    ACAACATTTTAATGAAGTCCATTT
    ATCAACTTTTTGATTCATTGTCCA
    TGCTTTTTGCATAATAAGAAATCT
    TTGCCTGCCTCAAAATTGCAAAGC
    TT (SEQ ID NO: 152)
    3E4 Cox5a NM_004255.3 FIG. 37 NTLVTYDMVPE AACACACTTGTTACCTATGATATG
    (SEQ ID PKIIDAALRACR GTTCCAGAGCCCAAAATCATTGA
    NO: 93) RLNDFASTVRIL TGCTGCTTTGCGGGCATGCAGAC
    EVVKDKAGPHK GGTTAAATGATTTTGCTAGTACAG
    EIYPYVIQELRPT TTCGTATCCTAGAGGTTGTTAAGG
    LNELGISTPEELG ACAAAGCAGGACCTCATAAGGAA
    LDKV ATCTACCCCTATGTCATCCAGGAA
    (SEQ ID NO: 123) CTTAGACCAACTTTAAATGAACTG
    GGAATCTCCACTCCGGAGGAACT
    GGGCCTTGACAAAGTGTAACCGC
    ATAATAAAAGGGAAATGAGTTTG
    AACTG
    (SEQ ID NO: 153)
    4B11 Mito- HQ113226.2  FIG. 38 PPSHHIPNLSLTK GCCCCCATCTCATCATATACCAAA
    chondrion (SEQ ID RKPSPHSLNLIH TCTCTCCCTCACTAAACGTAAGCC
    sequence NO: 94) HSRQLRWIKPNP TTCTCCTCACTCTCTCAATCTTATC
    ATQNLSILLNYP CATCATAGCAGGCAGTTGAGGTG
    HRMNNSSSTVQP GATTAAACCAAACCCAGCTACGC
    (SEQ ID NO: 124) AAAATCTTAGCATACTCCTCAATT
    ACCCACATAGGATGAATAATAGC
    AGTTCTACCGTACAACCCTAACAT
    AACCATTCTTAATTTAACTATTTA
    TATTATCCTAACTACTACCGCA
    (SEQ ID NO: 154)
    4B3 MYH9 NM_002473.4 FIG. 39 SAGSCSSA GGGTTCGTGTTCCTCAGCGTAGCC
    (Minus (SEQ ID (SEQ ID NO: 125) ATCAGGCTTGGCCAGCTGCTCCTT
    strand) NO: 95) GTAAAGCTGCCCCACAGTGCGGA
    ACATGCCCTTCCGCGTCTTGAAGG
    CCCCGGGCAGTGCGGTCTCCGAC
    ATGCCGGCCACCTGGTCCAGGCC
    GATGATGCGGTCCACATCCTTCCA
    CAGCTCCGAGACAAACTTGTCAG
    AGGACTGGTGGAGCAGTGTGGCG
    ATGTTGTCATTCAGGGGATCCATG
    TTCTTCATCAGCCACTCGTCAGCT
    TTGTAATCCACCTTGCCGGCATAG
    TGGATAATGCAGAAATCAGCTTT
    GTCCTTCAGCTGCTTGGGCTTCTG
    GA
    (SEQ ID NO: 155)
    4D10 ASND1 NM_019048.2 FIG. 40 KLLFALQLWNL AAATTACTTTTCGCCTTGCAGCTG
    (SEQ ID VLQPLLFCPNGP TGGAACTTGGTCTTACAGCCTCTG
    NO: 96) CSLDQELQKWK CTCTTCTGCCCAAACGGGCCATGC
    KLMKRHLINVD AGTTTGGATCAAGAATTGCAAAA
    GSKSCP ATGGAAAAAATTAATGAAAAGGC
    (SEQ ID NO: 126) ATCTGATAAATGTGGACGGCTCC
    AAATCATGTCCTTAGAAAATCTTT
    CTATTGAAAAGGAGACTAAATTG
    TAATGTGATTCACAATGTAACAAT
    ATAAAAATAAGTTTTTATATAATT
    ATATAAAAGTAAGATACTCTGCT
    GCTTTACTATTGTATAATAT
    (SEQ ID NO: 156)
    4D9 Cathepsin NM_003793.3 FIG. 41 EDDYSYQGHMQ CAGAGGATGACTACAGCTACCAG
    F (SEQ ID SCNFSAEKAKV GGTCACATGCAGTCCTGCAACTTC
    NO: 97) YINDSVELSQNE TCAGCAGAGAAGGCCAAGGTCTA
    QKLAAWLAKRG CATCAATGACTCCGTGGAGCTGA
    PISVAINAFGMQ GCCAGAACGAGCAGAAGCTGGCA
    FYRHGISRPLRP GCCTGGCTGGCCAAGAGAGGCCC
    LCSPWLIDHAVL AATCTCCGTGGCCATCAATGCCTT
    LVGYGNRSDVP TGGCATGCAGTTTTACCGCCACGG
    FWAIKNSWGTD GATCTCCCGCCCTCTCCGGCCCCT
    WGEKGYYYLHR CTGCAGCCCTTGGCTCATTGACCA
    GSGACGVNTMA TGCGGTGTTGCTTGTGGGCTACGG
    SSAVVD CAACCGCTCTGACGTTCCCTTTTG
    (SEQ ID NO: 127) GGCCATCAAGAACAGCTGGGGCA
    CTGACTGGGGTGAGAAGGGTTAC
    TACTACTTGCATCGCGGGTCCGGG
    GCCTGTGGCGTGAACACCATGGC
    CAGCTCGGCGGTGGTGGACTGAA
    GAGGGGCCCCCAGCTCGGGACCT
    GGTGCTGATCAGAGTGGCTGCTG
    CCCCAGCCTGACATGTGTCCAGG
    CCCCTCCCCGGGAGGTACAGCTG
    GCAGAGGGAAAGGCACTGGTACC
    TCAGGGTGAGCAGAGGGCACTGG
    GCTGGGGCACAGCCCCTGCTTCCC
    TGCACCCCATTCCCACCCTGAAGT
    TCTGCACCTGCACCTTTGTTGAAT
    TGTGGTAGCTTAGGAGGATGTCA
    GGGTGAAGGGTGGTATCTTGGCA
    GTTGAAGCTGGGGCAAGAACTCT
    GGGCTTGGGTAATGAGCAGGAAG
    AAAATTTTCTGATCTTAAGCCCAG
    CTGTGTTCTGCCCCCGCTTTCCTC
    TGTTTGATACTATAAATTTTCTGG
    TTCCCTTGGATTTAGGGATAGTGT
    CCCCCTCCATGTCCAGGAAACTTG
    TAACCACCCTTTTCTAACAGCAAT
    AAAGAGGGTCCTTGTCCCGAAAA
    AAAAAAAAA
    (SEQ ID NO: 157)
    4F1 Master- AP000779.4 FIG. 42 GTNQRQTMENH GGCAGACAATGGAAAACCATTGA
    mind-like (Homosapiens (SEQ ID (SEQ ID NO: 128) AAAGGATTAAACTGGGAAGTGAT
    2 genomic DNA, NO: 98) ATGTTCTCTTTTGCATTTAAAAAG
    Chromosome ATCACCAATGGGGATATGGAGAA
    11q) TGGTCTGGATAGGTCTTAAGACTA
    GAGCCAGGAAGACATGTTAGAAG
    GCTATCAATTGACCCTAAAGACA
    CTGCTTCAATCCCTTTGATGACAG
    TGAGTTTGCTTTCCCCAGAGATAG
    CTTATTGGACCTCAGGACTGCTGT
    GAGAAACAGAAAATGCTCCTTTA
    CGTGTTGCCTGAAGTTAGGCTCAC
    CGATTTGGGGCATGTTCTAATTCT
    ACCAGCTAGGAACACACAGAATC
    GCTTGTCAAACATTCTGAGTCAGA
    TATGTCCTCCCTATGTCTTTTCTG
    AGAAAGGCATACAGAAATTCCCA
    GCTAAACATCACCAGTTCCCTCAT
    TTGTTCCTCAGATGATATGGTCCA
    TTCAAGTTTTGTAATCATCATGGG
    GGTAGATGGAGGGTCCCAGTCCT
    CACAACCATTCTGGTAATTTACTC
    TTGAATTTACTGGTTCACATGTAT
    CTATTTTGTAGTGTGGCTCCAGAA
    A
    (SEQ ID NO: 158)
    5D11 CSNK2A2 NM_001896.2  FIG. 43 SSCSEYNVRVAS TCATCCTGCTCGGAGTACAATGTT
    (SEQ ID RYFKGPELLVD CGTGTAGCCTCAAGGTACTTCAA
    NO: 99) YQMYDYSLDM GGGACCAGAGCTCCTCGTGGACT
    WSLGCMLASMI ATCAGATGTATGATTATAGCTTGG
    FRREPFFHGQDN ACATGTGGAGTTTGGGCTGTATGT
    YDQLVRIAKVL TAGCAAGCATGATCTTTCGAAGG
    GTEELYGYLKK GAACCATTCTTCCATGGACAGGA
    YHIDLDPHFNDI CAACTATGACCAGCTTGTTCGCAT
    LGQHSRKRWEN TGCCAAGGTTCTGGGTACAGAAG
    LSIVRTDTLSAL AACTGTATGGGTATCTGAAGAAG
    RP TATCACATAGACCTAGATCCACA
    (SEQ ID NO: 129) CTTCAACGATATCCTGGGACAAC
    ATTCACGGAAACGCTGGGAAAAC
    TTATCCATAGTGAGAACAGACAC
    CTTGTCAGCCCTGAGGCCCTAGAT
    CTTCTGGACAAACTTCTGCGATAC
    GACCATCAACAGAGACTGACTGC
    CAAAGAGGCCATGGAGCACCCAT
    ACTTCTACCCTGTGGTGAAGGAG
    CAGTCCCAGCCTTGTGCAGACAA
    TGCTGTGCTTTCCAGTGGTCTCAC
    GGCAGCACGATGAAGACTGGAAA
    GCGACGGGT
    (SEQ ID NO: 159)
    7A9 AURKAIP1 NM_001127230.1; FIG. 44 AARLGPSLECW CGGCCGCCCGCCTTGGCCCGTCTC
    NM_001127229.1; (SEQ ID AAGSAGPFTAH TGGAGTGCTGGGCAGCCGGGTCT
    NM_017900.2 NO: 100) RRPAQVGRPLSL GCGGGCCCCTTTACAGCACATCG
    (transcript ARGPSWSWRRC CCGGCCGGCCCAGGTAGGGCGGC
    variants) WSPGRCPSAPW CTCTCTCCCTCGCAAGGGGGCCCA
    RAGSRPAASCPD GCTGGAGCTGGAGGAGATGCTGG
    WIPGPQGLWLH TCCCCAGGAAGATGTCCGTCAGC
    RNPTSVRPAR CCCCTGGAGAGCTGGCTCACGGC
    (SEQ ID NO: 130) CCGCTGCTTCCTGCCCAGACTGGA
    TACCGGGACCGCAGGGACTGTGG
    CTCCACCGCAATCCTACCAGTGTC
    CGCCCAGCCAGATAGGGGAAGGG
    GCCGAGCAGGGGGATGAAGGCGT
    CGCGGATGCGCCTCAAATTCAGT
    GCAAAAACGTGCTGAAGATCCGC
    CGGCGGAAGATGAA
    (SEQ ID NO: 160)
    3C1 Chromo- AC096741.3 FIG. 45 GKERENIRTNT GGCAGGGAAGGGAGAACATTAGG
    some 4 (Homo (SEQ ID (SEQ ID NO: 131) ACAAATACCTAATGCACGCCAGG
    sapiens BAC NO: 101) CCCTANTAATCGTAGATGATGGG
    clone RP11- TTGATGGGTGTAGCAAACCACCA
    327017) TGGCACATGTATATCTATGTAACA
    AACCTGCACATTCTGTACATGTAT
    CCCAGAACTTCAAGTAAAATTTTA
    AAAAATTCAAAAAAAGTAATAGG
    AAAAGGGGAAACATCCACGTGAG
    CAGTCCAGTTTCCCAATCTGGAAC
    TTGGAGCTGTTCACCTGGTGGGTG
    TTTGTGACTATTCAGACACAGACA
    ACAAAGGCTACTCCAGATTGAAG
    TGCACTGCTTACTTTCAGTGACCT
    CATAGAACTACTCAACATTGTTTT
    TGGTGATTCCTGTGCTATGGTTTG
    AATGGCTCCGCTCCAAAACTCAG
    GTGTTGCCAATGNGATGGTATTA
    AGAAGTAGGGCATTTAAAAAACA
    ACAACAGGCCTGGCGCGGTGGCC
    CACGCCTGTAATCCCAGCACTTTG
    GGAGGCTAAGGCGGGCGGATCAC
    CGGAGGTCAGGAATTCAAAACCA
    GCCTGGCCAACATGGCGAAACCC
    TGTCTCTACTAAAAATACAAAAA
    TTAGCCAGGCATGGTTGCGGGCG
    CCTGTAATCCCGGCTACTCGGGA
    GGCTGAGGCAGGGGAATCCTTGA
    ACCCGGGA
    (SEQ ID NO: 161)
    3C3 ARF6 NM_001663.3 FIG. 46 PKCRLQRQYTG GAAATGTAGACTGCAAAGGCAGT
    (SEQ ID KGGVGFVYEGV ATACAGGAAAAGGTGGAGTGGGT
    NO: 102)  (SEQ ID NO: 132) TTTGTTTATGAGGGTGTCTGAAAA
    CTAAAATTGAGCGGGATATCATG
    GTATAGTTGGACAGTATTGGTCCT
    TCACACTTTGGCCATATTGTATAA
    TGGAGCTTTTACCAAAGATGTATG
    AGAAGTGTAAGACTATAAAAAAA
    TGAACTATTCAAAGTAAAACTCTT
    AACAAACATTTTACTTAAAGCAG
    ATGCAAAAGGGTATTCTCATGTA
    GGCTCCTGTTGGTGCAGAGGGAT
    TTTTTTGATTTCAGGATACAACTA
    AAGTACGAAGTTCTCAGTTTCACT
    TTAGTAGAAAGAGCTCTAGAAAT
    GAGGCTGATAAACACATCTAAGA
    ACACTGGTTGCTTTCTAAAATTTC
    CAAAGCTCCACCATAAATGTAAT
    TTTTAGTGTTTCAAATGATTGCAT
    TTTAAAGTATATAAATATGGGTTA
    TCCAATATCAATGCTATAGTAACA
    TCCTGAAACAAAACAAGCACAAA
    GGTATAAATGCCTAAACTGGAGG
    AAGCTTG
    (SEQ ID NO: 162)
    3D1 3′UTR AL135937.2 FIG. 47 QTQTHTSAPLKC CTCAGACTCAAACACACACCTCC
    region 2 (Human DNA (SEQ ID QPWSFVEARICH GCTCCCTTGAAGTGCCAGCCCTGG
    JAG1 sequence NO: 103)  GSQLVRCPVQH AGCTTTGTTGAGGCTCGCATCTGC
    from clone PSRIS CACGGGAGTCAGCTAGTACGTTG
    RP1-278022 on (SEQ ID NO: 133) CCCAGTTCAACATCCATCCAGGAT
    chromosome 20) TTCATAGGAACTTGAGAATCATTG
    TTTTTGGCTTGAATCCTGGGTTTG
    AGGTTTCTTCGTGTAGGAATCTGA
    AAAAAGGATTTGGAAACGTTGTT
    GTCTCTAATCCCAAAGTATGTATC
    TGGGAGGCTGCCTTCGCCATCACC
    CACCTAATAACTCAGG
    (SEQ ID NO: 163)
    5A5 Mito- HQ113226.2 FIG. 48 PRLHQXKANYI AGACTTCACCAGTCAAAGCGAAC
    chondrion (SEQ ID YSIDPIT TACATATACTCAATTGATCCAATA
    sequence NO: 104) (SEQ ID NO: 134) ACTTGACCAACGGAACAAGTTAC
    CCTAGGGATAACAGCGCAATCCT
    ATTCTAGAGTCCATATCAACAATA
    GGGTTTACGACCTCGATGTTGGAT
    CAGGACATCCCGATGGTGCAGCC
    GCTATTAAAGGTTCGTTTGTTCAA
    CGATTAAAGTCCTACGTGATCTGA
    GTTCAGACCGGAGTAATCCAGGT
    CGGTTTCTATCTACTTCAAATTCC
    TCCCTGTACGAAAGGACAAGAGA
    AATAAGGCCTACTTCACAAAGCG
    CCTTCCCCCGTAAATGATATCATC
    TCAAGCTT
    (SEQ ID NO: 164)
    3E1 Chromo- AL135937.22 FIG. 49 P Q T T A P R R A CTCGCTCAAACACACACCTCCGCT
    some 20 (SEQ ID R P R R S (SEQ ID CCCTTGAAGTGCCAGCCCTGGAG
    NO: 105) NO: 135) CTTTGTTGAGGCTCGCATCTGCCA
    CGGGAGTCAGCTAGTACGTTGCC
    CAGTTCAACATCCATCCAGGATTT
    CATAGGAACTTGAGAATCATTGTT
    TTTGGCTTGAATCCTGGGTTTGAG
    GTTTCTTCGTGTAGGAATCTGAAA
    AAAGGATTTGGAAACGTTGTTGT
    CTCTAATCCCAAAGTATGTATCTG
    GGAGGCTGCCTTCGCCATCACCC
    ACCTAATAACTCAGGC (SEQ ID
    NO: 165)
    5A9 Chromo- AL034375.23 FIG. 50 G T I S I V C C W ATTGTTTGTTGTTGGGGGTGTCTT
    some 6 (SEQ ID G C L C Q H L V TGTCAGCATCTAGTACAGTGCCTG
    clone NO: 106) Q C L A D G C S I GCAGATGGATGCTCAATAAATAT
    UTR region N I D L M G Y E TGATTTAATGGGTTATGAGGGTGT
    (Minus G V N I K L A F I  TAATATAAAATTAGCATTTATTCA
    strand) Q Q L L (SEQ ID GCAACTACTATGAGTCAGCCACT
    NO: 136) GGGCTAAGTGGCTTACATGTTAA
    GAACCTCACAGAAGCCAGGTGTG
    GTGGCTCACGCCTGTAATCCCAGC
    ACTTTGGGAGGCTGAAGCGGGCA
    GATCACCTGAGGTCAGGAGTTTG
    AGTCCAGGCTGGCCAACGTGGTG
    AAACCCCATCTCTACTAAAAATA
    CAAAAATTAGCCAGTTGTGGTGG
    CAGGCGCCTGTAGTCCCAGCCAC
    TCAGGAGGCTAAGGCAGGAGAAT
    AGCTGGAACCCGGGAGGTGGAGA
    TTGCAGTGAGCCAAGATTGCACC
    ACTGCACTCCAGCCTGGGTGACA
    GAGTGAGACTCTGTCTCCAAAAA
    AAAAAGAAAAAGAAAAAGAACC
    TCCAGCAACCTAGTAGGTGAGCC
    CGGTTACTCTTGTTTTACAGGTGA
    GAAAATTGAGCCCTAGAGAAATA
    AAGTAACTTGCTTCAGGTCTCATG
    GTTAAGGGGAACCTGGGCCCTAA
    CAGTCCACTTCCTGTACCTTCAAC
    CACGGTTCTACCGCCTCCGCTAGG
    AAATGGCCCGAGGACATTCCTTA
    GCTGGCTTCAGCTTGCTCTTTTTC
    CCCTGCGGTCCACCCCTG (SEQ ID
    NO: 166)
    5H2 MAPKKK5 NG_011965.1 FIG. 51 G M S H H A W P AGAGGGAGTATAGGGCTGTGCAC
    (SEQ ID R P S F F N T E Y AGAGACTATGATGGCCGTGCTAA
    NO: 107) F (SEQ ID NO: 137) GGTAAGAGTATTGATAATGTAAG
    CATACTTCCTCTATCAACAATAAT
    TGTTAACAGCTGCTTCAAGCACTT
    GATATTACCACTAGTTGTTAACTG
    AATCAAGCATGTGCTCCAAGTTC
    ACATTAATGTGAATTGAACAGCA
    TTGTGTACGTACGAGGAGCTTCAT
    GCAAGTGTTATACACTGCACTCAC
    AAGTATTATGATCTTACTAAGCAT
    TAGAAATACTCTGTGTTAAAGAA
    GCTTGGTCTAGGCCAAGCGTGGT
    GGCTCATGCCT (SEQ ID NO: 167)
    1H5 RAS p21 BC020761.1 FIG. 52 D R R P G S F V L GATCGGAGGCCAGGGTCCTTTGT
    Protein (SEQ ID S F L S Q Met N V  ACTTTCATTTCTTAGCCAGATGAA
    activator NO: 108) V T H F R I I A TGTTGTCACCCATTTTAGGATTAT
    (RASA1) Met C G D Y Y I TGCTATGTGTGGAGATTACTACAT
    G G R R F S S L S TGGTGGAAGACGTTTTTCTTCACT
    D L I G Y Y S H V  GTCAGACCTAATAGGTTATTACA
    S C L L K G E K L GTCATGTTTCTTGTTTGCTTAAAG
    L Y P V A P P E P GAGAAAAATTACTTTACCCAGTT
    V E D R R R V R GCACCACCAGAGCCAGTAGAAGA
    A I L P Y T K V P TAGAAGGCGTGTACGAGCTATTC
    D T D E I S F L K  TACCTTACACAAAAGTACCAGAC
    G D Met F I V H N ACTGATGAAATAAGTTTCTTAAA
    E L E D G W Met AGGAGATATGTTCATTGTTCATAA
    W V T N L R T D TGAATTAGAAGATGGATGGATGT
    E Q G L I V E D L GGGTTACAAATTTAAGAACAGAT
    V E E V G R E E GAACAAGGCCTTATTGTTGAAGA
    D P H E G K I W F CCTAGTAGAAGAGGTGGGCCGGG
    H G K I S K Q E A AAGAAGATCCACATGAAGGAAAA
    (SEQ ID NO: 138) ATATGGTTCCATGGGAAGATTTCC
    AAACAGGAAGCTT (SEQ ID
    NO: 168)
    18H9 Hsp90b Ay359878.1 FIG. 53 YFAYLISEQNEE TGAAGTGGCAGCAGAGGAACCCA
    (SEQ ID NKINHNTQHPIL ATGCTGCAGTTCCTGATGAGATCC
    NO: 109) LSRVREGMGLD CCCCTCTCGAGGGCGATGAGGAT
    TLSLLPSTQGQE GCGTCTCGCATGGAAGAAGTCGA
    REKNTRHQQGE TTAGGTTAGGAGTTCATAGTTGGA
    PGGTGALEAAV AAACTTGTGCCCTTGTATAGTGTC
    GAHGDTIQGHK CCCATGGGCTCCCACTGCAGCCTC
    FSNYELLT (SEQ GAGTGCCCCTGTCCCACCTGGCTC
    ID NO: 139) CCCCTGCTGGTGTCTAGTGTTTTT
    TTCCCTCTCCTGTCCTTGTGTTGA
    AGGCAGTAAACTAAGGGTGTCAA
    GCCCCATTCCCTCTCTCACTCTTG
    ACAGCAGGATTGGATGTTGTGTA
    TTGTGGTTTATTTTATTTTCTTCAT
    TTTGTTCTGAAATTAAGTATGCAA
    AATAA (SEQ ID NO: 169)
    4D7 ribosoma1 NM_001010.2 FIG. 54 C I V D A N L S V GTTGCATTGTGGATGCAAATCTGA
    protein (SEQ ID L N L V I V K K G  GCGTTCTCAACTTGGTTATTGTAA
    S6 (RPS6) NO: 110) E K D I P G L T D AAAAAGGAGAGAAGGATATTCCT
    T T V P R R L G P GGACTGACTGATACTACAGTGCC
    K R A S R I R K L TCGCCGCCTGGGCCCCAAAAGAG
    F N L S K E D D CTAGCAGAATCCGCAAACTTTTCA
    V R Q Y V V R K ATCTCTCTAAAGAAGATGATGTCC
    P L N K E G K K GCCAGTATGTTGTAAGAAAGCCC
    P R T K A P K I Q TTAAATAAAGAAGGTAAGAAACC
    R L V T P R V L Q TAGGACCAAAGCACCCAAGATTC
    H K R R R I A L K AGCGTCTTGTTACTCCACGTGTCC
    K Q R T K K N K TGCAGCACAAACGGCGGCGTATT
    E E A A E Y A K GCTCTGAAGAAGCAGCGTACCAA
    L L A K R Met K GAAAAATAAAGAAGAGGCTGCAG
    E A K E K R Q E AATATGCTAAACTTTTGGCCAAG
    Q I A K R R R L S AGAATGAAGGAGGCTAAGGAGA
    S L R A S T S K S AGCGCCAGGAACAAATTGCGAAG
    E S S Q K (SEQ AGACGCAGACTTTCCTCTCTGCGA
    ID NO: 140) GCTTCTACTTCTAAGTCTGAATCC
    AGTCAGAAATAAGATTTTTTGAGT
    AACAAATAAATAAGATCAGA
    (SEQ ID NO: 170)
    36C4 Homo AC128709 FIG. 55 L I C I S L M A N CCTGGGCAGTGATTAGGTCATAA
    sapiens (Homo sapiens (SEQ ID D V E H L F M F I AGGTGGAGTCCTCATGGATGGGA
    chromo- 3 BAC RP13- NO: 111) C H L S (SEQ ID TTAGTGTCTTTATAAAAGAGACCT
    some 3 616I3) NO: 141) TTGCCATGTGAGGTTACAGTGAG
    genomic AAGACATCTGTCTATGAAGAAAG
    contig TGGGCCCTCACCAAACACAGTCT
    GCTGGCACTTTGCACTTCAACTCC
    CCAGCTTCCAGAACTGTAAGGAA
    TATAAGTCTGTTGTTGGTAAGCCA
    CCCGGTCTATGATATTTTGTTATA
    GCAGCCCAAACAGACTAAGACAG
    GTGACAAATAAACATGAAAAGAT
    GTTCAACATCATTAGCCATTAGGG
    AAATGCAGATTAAAA (SEQ ID
    NO: 171)
  • An antibody, such as an autoantibody, to one or more of a protein, or a fragment of a protein, encoded by a gene such as listed in Tables 1, 2, 3 or 4, or a polypeptide encoded by a UTR sequence of a gene such as one listed in Tables 1, 2, 3 or 4, can be detected according to one or more methods described herein and used to characterize a cancer, such as prostate cancer. Many of the proteins may have a role in various cancers, including prostate cancer. For example, the human DCHS 1 protein (protocadherin-16 precursor) is believed to be a calcium-dependent cell adhesion protein found in the cell membrane of fibroblast cells. Without being bound by theory, DCHS1 is a cadherin, a class of type-1 transmembrane proteins. Cadherins typically play important roles in cellular adhesion, for example, by binding cells expressing similar cadherins to each other. Structurally, DCHS 1 is thought to contain 27 cadherin repeats (extracellular calcium ion-binding domains). DCHS 1 expression has been associated with certain cancers, potentially playing a role in tumor adherence (see, e.g., Sjöblom, et. al. Science, (2006) 314:268-274).
  • Another of the proteins, CEP164 is believed to be a centrosomal protein which binds chromatin and plays a role in the DNA damage-activated signaling cascade. It is known to interact with ataxia telangiectasia mutated (ATM) and ATM/Rad3-related (ATR) kinases which phosphorylate CEP164 upon replication stress, ultraviolet radiation (UV), and ionizing radiation (IR). CEP164 also plays a role in cell cycle regulation, specifically at the G2/M checkpoint and in nuclear division (see, e.g., Sivasubramaniam et al., Genes & Dev. (2008); 22(5):687-600). As CEP 164 plays a role in genome stabilization, misregulation or mutation of this gene and/or protein can play a role in certain cancers.
  • In a further example, the human KBTBD6 (kelch repeat and BTB (POZ) domain containing 6) is a protein expressed in a wide variety of normal tissues. Its expression and/or misregulation has also been noted in multiple cancer types, including prostate, ovarian, kidney and lung tumors. The function of the protein is not currently known, however, the presence of the kelch repeat and BTB domain suggest that the protein is involved in protein-protein interactions and actin filament organization.
  • Certain ribosomal proteins, such as RPS19 and RPL34 have also been associated with certain cancers. RPS19 (ribosomal protein S19) encodes a ribosomal protein that is a component of the 40S subunit. Located in the cytoplasm as part of the ribosomal complex, mutations in this gene are associated with Diamond-Blackfan anemia, suggesting a non-ribosomal function for the protein in erythropoietic differentiation. RPS19 protein is also known to interact with fibroblast growth factor-2 (see, e.g., Soulet et al., Biochem. Biophys. Res. Commun. (2001); 289:591-596). Increased expression of RPS19 has been associated with some cancers, but the role of RPS19 in cancer development is unknown. RPL34 (60S Ribosomal protein L34) is a ribosomal protein that is a component of the 60S subunit and is located in the cytoplasm. Expression of the gene encoding the RPL34 protein is known to be regulated by c-MYC and has been shown to have increased expression in primary invasive and metastatic breast cancer cells and colorectal cancer cells (see, e.g., Zucchi et al., Proc. Nat'l Acad. Sci., (2004); 101:18147-18152; Sjöblom, et. al. Science, (2006) 314:268-274).
  • Certain nucleic acid-binding proteins, such as RMB6 and HEMK1 have also been associated with certain cancers when misregulated and/or mutated. RBM6 (RNA binding protein 6) is a cytosolic protein that binds to poly-G homopolymers in vitro, but its function in vivo is not currently known. The protein thought to be phosphorylated (potentially by ATM or ATR) in its active form. The gene encoding the protein, without being bound by theory, is located in a portion of the genome, modifications of which are associated with cancerous transformation, such as lung carcinomas. Additionally, translocations of the gene which result in aberrant fusion proteins have been reported to be associated with cancer cells (see, e.g., Gu et al., Blood, (2007); 110:323-333). The human HEMK1 (HEMK methyltransferase family protein 1) protein is an S-adenosylmethionine-dependent methyltransferase and is also thought to bind nucleic acids. HEMK1 is considered a tumor-suppressor, misregulation of which is associated with various cancers, including prostate cancer, pancreatic cancer and liver cancer (see, e.g., U.S. Pat. App. Pub. No. 2008/0213791).
  • Thus one or more polypeptide probes, such as a fragment of a protein encoded by a gene, or a polypeptide encoded by a sequence of a UTR region of a gene, such as a gene listed in Tables 1, 2, 3 or 4, can be used to detect one or more antibodies, such as autoantibodies, from a sample from a subject. In one embodiment, the polypeptide probe comprises a polypeptide sequence selected from SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, or a fragment thereof. In another embodiment, the polypeptide probe comprises a polypeptide sequence encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, or a fragment thereof. In yet another embodiment, the polypeptide probe comprises the full-length or a fragment of a protein that is encoded by SEQ ID NO: 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,102, 103, 104, 105, 106, 107, 108, 109, 110, 111, or a fragment thereof.
  • In one embodiment, a polypeptide probe is a fragment of a protein encoded by CEP 164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, or Deaminase Domain, or may be a polypeptide encoded by a UTR sequence of the gene, such as the 5′ or 3′ UTR sequence of CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, or Deaminase Domain. In one embodiment, a polypeptide probe can be a fragment of a protein encoded by FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789. In one embodiment, a polypeptide probe comprises a peptide sequence, or fragment thereof, such as those listed in Tables 1, 2, 3, and 4. The polypeptide probe can comprise SEQ ID NO: 2, 5, 9, 11, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or a fragment thereof, or a fragment thereof. In another embodiment, the polypeptide probe comprises a polypeptide encoded by SEQ ID NO: 16, 19, 23, 25, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, or a fragment thereof.
  • In another embodiment, a polypeptide probe is a fragment of a protein encoded by DCHS1, CEP164, KBTBD6, RPS 19, RPL34, RNA binding protein 6, or Hemk1, or may be a polypeptide encoded by a UTR sequence of the gene, such as the 5′ or 3′ UTR sequence of DCHS1, CEP164, KBTBD6, RPS19, RPL34, RNA binding protein 6, or Hemk1. In one embodiment, a polypeptide probe can be a fragment of a protein encoded by eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789. In one embodiment, a polypeptide probe comprises a peptide sequence, or fragment thereof, such as those listed in Tables 1 and 2. The polypeptide probe can comprise SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14, or a fragment thereof. In another embodiment, the polypeptide probe comprises a polypeptide encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or a fragment thereof.
  • Antibody Profiling Panel
  • Also provided herein is an antibody profiling panel. A panel as provided herein can be used to analyze one or more antibodies to a plurality of polypeptide probes, such as one or more autoantibodies. A panel allows for the simultaneous analysis of multiple antibodies, such as autoantibodies, to a plurality of polypeptide probes correlating with carcinogenesis and/or metastasis. For example, a panel can include markers identified as correlating with cancerous tissue, metastatic cancer, localized cancer that is likely to metastasize, pre-cancerous tissue that is likely to become cancerous, and pre-cancerous tissue that is not likely to become cancerous. Depending on the subject, panels may be analyzed alone or in combination in order to provide the best possible diagnosis and/or prognosis.
  • In one embodiment, an antibody profiling panel can comprise a plurality of polypeptide probes, wherein one or more of the probes is capable of binding an antibody. In another embodiment an antibody profiling panel can comprise a plurality of probes, wherein one or more of the probes is capable of binding an antibody that targets a foreign antigen. In another embodiment an antibody profiling panel can comprise a plurality of probes, wherein each of the probes is capable of binding an autoantibody.
  • In one embodiment, an antibody profiling panel comprises 2-100 probes, 50-200 probes, 100-500 probes 200-750 probes, 200-1000 probes, 2-5,000 probes or 2-10,000 probes. In one embodiment, an antibody profiling panel comprises at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 polypeptide probes. In another embodiment, an antibody profiling panel comprises at least about 50, 100, 150, 200, 250, 500, 750, 1000, 5000, 10,000, 15,000, 20,000, 25,000, 30,000, 40,000, 50,000, 60,000, 70,000, 75,000, or 100,000 polypeptide probes. In one embodiment, the probes are polypeptide probes. In another embodiment, the probes are molecules that mimic an epitope bound by a particular antibody.
  • An antibody profiling panel can comprise at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 polypeptide probes, wherein the polypeptide probes are a fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, such as genes listed in Tables 1, 2, 3, or 4. In one embodiment, the polypeptide probe comprises a polypeptide sequence selected from SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, or a fragment thereof. In another embodiment, the polypeptide probe comprises a polypeptide sequence encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, or a fragment thereof. In yet another embodiment, the polypeptide probe comprises the full-length or a fragment of a protein that is encoded by SEQ ID NO: 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,102, 103, 104, 105, 106, 107, 108, 109, 110, 111, or a fragment thereof.
  • In one embodiment, an antibody profiling panel comprises a plurality of polypeptide probes, wherein at least a subset of the polypeptide probes is a fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, or Deaminase Domain. In one embodiment, the polypeptide probe can comprise a fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789.
  • In another embodiment, an antibody profiling panel comprises a plurality of polypeptide probes, wherein at least a subset of the polypeptide probes is a fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is DCHS1, CEP164, KBTBD6, RPS19, RPL34, RNA binding protein 6, or Hemk1. In one embodiment, the polypeptide probe can comprise a fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789.
  • In one embodiment, an antibody profiling panel comprises a plurality of polypeptide probes, wherein at least a subset of the polypeptide probes is a peptide sequence, or fragment thereof, as listed in Tables 1, 2, 3, or 4. In one embodiment, an antibody profiling panel comprises a plurality of polypeptide probes, wherein at least a subset of the polypeptide probes comprises a polypeptide sequence selected from SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, or a fragment thereof. In another embodiment, an antibody profiling panel comprises a plurality of polypeptide probes, wherein at least a subset of the polypeptide probes comprises a polypeptide sequence encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, or a fragment thereof. In yet another embodiment, the polypeptide probe comprises the full-length or a fragment of a protein that is encoded by SEQ ID NO: 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,102, 103, 104, 105, 106, 107, 108, 109, 110, 111, or a fragment thereof.
  • In another embodiment, an antibody profiling panel comprises a plurality of polypeptide probes, wherein at least a subset of the polypeptide probes comprises SEQ ID NO: 2, 5, 9, 11, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or a fragment thereof, or a fragment thereof. In another embodiment, an antibody profiling panel comprises a plurality of polypeptide probes, wherein at least a subset of the polypeptide probes is encoded by SEQ ID NO: 16, 19, 23, 25, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, or a fragment thereof.
  • In one embodiment, an antibody profiling panel comprises a plurality of polypeptide probes, wherein at least a subset of the polypeptide probes comprises SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14, or a fragment thereof. In another embodiment, an antibody profiling panel comprises a plurality of polypeptide probes, wherein at least a subset of the polypeptide probes is encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or a fragment thereof.
  • In one embodiment, an antibody profiling panel can also comprise one or more polypeptide probes of the protein PSA, or fragment of PSA, in combination with one or more of the polypeptide probes discussed herein.
  • In one embodiment, an antibody profiling panel can comprise polypeptide probes including a full-length protein or fragment of PSA and one or more polypeptide probes comprising SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, or a fragment thereof. In another embodiment, an antibody profiling panel can comprise polypeptide probes including a full-length protein or fragment of PSA and one or more polypeptide probes comprising a polypeptide sequence encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, or a fragment thereof. In yet another embodiment, the polypeptide probe comprises the full-length or a fragment of a protein that is encoded by SEQ ID NO: 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,102, 103, 104, 105, 106, 107, 108, 109, 110, 111, or a fragment thereof.
  • In another embodiment, an antibody profiling panel can comprise polypeptide probes including a full-length protein or fragment of PSA and a full-length protein encoded by a gene, fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, or Deaminase Domain. In yet another embodiment, an antibody profiling panel can comprise a plurality of polypeptide probes, wherein the probes include a full-length protein or fragment of PSA and a full-length protein encoded by a gene, fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789.
  • In another embodiment, an antibody profiling panel can comprise polypeptide probes including a full-length protein or fragment of PSA and a full-length protein encoded by a gene, fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is DCHS1, CEP164, KBTBD6, RPS19, RPL34, RNA binding protein 6, or Hemk1. In yet another embodiment, an antibody profiling panel can comprise a plurality of polypeptide probes, wherein the probes include a full-length protein or fragment of PSA and a full-length protein encoded by a gene, fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789.
  • In another embodiment, an autoantibody profiling panel can comprise a plurality of polypeptide probes, wherein the probes includes a full-length protein or fragment of PSA and one or probes comprising a peptide sequence, or fragment thereof, as listed in Tables 1, 2, 3 and 4. In one embodiment, an autoantibody profiling panel can comprise a plurality of polypeptide probes, wherein the probes includes a full-length protein or fragment of PSA and one or more probes comprising SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, or a fragment thereof. In another embodiment, an autoantibody profiling panel can comprise a plurality of polypeptide probes, wherein the probes includes a full-length protein or fragment of PSA and one or more probes comprising a polypeptide sequence encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, or a fragment thereof. In yet another embodiment, an autoantibody profiling panel can comprise a plurality of polypeptide probes, wherein the probes includes a full-length protein or fragment of PSA and one or more probes comprising the full-length or a fragment of a protein that is encoded by SEQ ID NO: 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,102, 103, 104, 105, 106, 107, 108, 109, 110, 111, or a fragment thereof.
  • In another embodiment, an autoantibody profiling panel can comprise a plurality of polypeptide probes, wherein the probes includes a full-length protein or fragment of PSA and one or more probes comprising SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or a fragment thereof.
  • In another embodiment, an autoantibody profiling panel can comprise a plurality of polypeptide probes, wherein the probes includes a full-length protein or fragment of PSA and one or more probes comprising SEQ ID NO: 2, 5, 9, 11, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or a fragment thereof, or a fragment thereof; or a polypeptide sequence encoded by a sequence selected from SEQ ID NOs. 16, 19, 23, 25, 28, 70, 71, 72, 73, 74, 75,76, 77, 78, 79, 80, 81, 82, 83, 84, or a fragment thereof.
  • In one embodiment, a PSA polypeptide probe can be combined with any two or more of the polypeptide probes described herein, such as a polypeptide probe derived from a protein encoded by a gene, fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, Deaminase Domain, FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789.
  • In another embodiment, a PSA polypeptide probe can be combined with any two or more of the polypeptide probes described herein, such as a polypeptide probe derived from a protein encoded by a gene, fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is DCHS1, CEP164, KBTBD6, RPS19, RPL34, RNA binding protein 6, Hemk1, eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789.
  • In yet another embodiment, a PSA polypeptide probe can be combined with at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 of polypeptide probes disclosed herein, such as listed in Tables 1, 2, 3, and 4. In one embodiment, a polypeptide probe comprises SEQ ID NO: 2, 5, 9, 11, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or a fragment thereof, or a fragment thereof. In one embodiment, a polypeptide probe comprises SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14, or a fragment thereof. In another embodiment, a polypeptide probe comprises SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, or a fragment thereof.
  • In another embodiment, a polypeptide probe comprises a polypeptide encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or a fragment thereof. In another embodiment, a polypeptide probe comprises a polypeptide encoded by SEQ ID NO: 16, 19, 23, 25, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, or a fragment thereof. In yet another embodiment a polypeptide probe comprises a polypeptide encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, or a fragment thereof.
  • In one embodiment, a polypeptide probe disclosed herein is attached to a substrate (e.g., glass slide chip or nanowell chip). A polypeptide probe can be directly or indirectly attached to the substrate. In one embodiment, a polypeptide probe is attached to a substrate via a phage. The substrate can be any physically separable solid to which a polypeptide probe can be directly or indirectly attached including, but not limited to, surfaces provided by microarrays and wells, particles such as beads, columns, optical fibers, wipes, glass and modified or functionalized glass, quartz, mica, diazotized membranes (paper or nylon), polyformaldehyde, cellulose, cellulose acetate, paper, ceramics, metals, metalloids, semiconductive materials, quantum dots, coated beads or particles, other chromatographic materials, magnetic particles; plastics (including acrylics, polystyrene, copolymers of styrene or other materials, polypropylene, polyethylene, polybutylene, polyurethanes, TEFLON™, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silica-based materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, ceramics, conducting polymers (including polymers such as polypyrole and polyindole); micro or nanostructured surfaces such as nucleic acid tiling arrays, nanotube, nanowire, or nanoparticulate decorated surfaces; or porous surfaces or gels such as methacrylates, acrylamides, sugar polymers, cellulose, silicates, or other fibrous or stranded polymers.
  • The polypeptide probe can bound to a planar surface or to a particle, such as a bead or microsphere. In one embodiment, the polypeptide probe is attached to a bead. The bead can be a polystyrene, brominated polystyrene, polyacrylic acid, polyacrylonitrile, polyacrylamide, polyacrolein, polydimethylsiloxane, polybutadiene, polyisoprene, polyurethane, polyvinyl acetate, polyvinylchloride, polyvinylpyridine, polyvinylbenzylchloride, polyvinyltoluene, polyvinylidene chloride, polydivinylbenzene, polyglycidylmethacrylate, polymethylmethacrylate, or copolymers, blends, composites, or combination thereof. The bead can have a diameter of between about 1 nm-1000 μm, 1 nm-500 μm, 5 nm-500 μm, or 10 nm-100 μm. In one embodiment, the bead has a diameter of between about 10 nm and 100 μm. In yet another embodiment, the bead has a diameter of less than about 1000 μm, 500 μm, 400 μm, 300 μm, 200 μm, or 100 μm.
  • In one embodiment, the bead is labeled or stained with more than one dye, such as at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 different dyes. In one embodiment, the bead is labeled or stained with two dyes. In another embodiment, the two dyes are hydrophobic. In another embodiment, the two dyes are fluorescent dyes, such as squaric acid-based dyes. In yet another embodiment, the squaric acid-based dyes are selected from cyclobutenedione derivatives, symmetrical and unsymmetrical squaraines, substituted cephalosporin compounds, fluorinated squaraine compositions, alkylalkoxy squaraines, or squarylium compounds. In another embodiment, the squaric acid-based dyes are selected from a red fluorescent dye and an orange fluorescent dye, such as the red fluorescent dye comprising 1,3-bis(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)methyl]-2,4-dihydro xycyclobutenediylium, bis(inner salt) and the orange fluorescent dye comprising 2-(3,5-dimethylpyrrol-2-yl)-4-(3,5-dimethyl-2H-pyrrol-2-ylidene)-3-hydroxy-2-cyclobuten-1-one.
  • In one embodiment, the substrate is coated using passive or chemically-derivatized coatings with any number of materials, including polymers, such as dextrans, acrylamides, gelatins or agarose. Such coatings can facilitate the use of the array with a biological sample.
  • Cancer Screening
  • A presence of an immune response to a specific protein expressed in cancerous cells can be indicative of a presence of cancer. Accordingly, the present invention provides a method (e.g., diagnostic or screening method) for detecting a presence of an antibody, such as an autoantibody, to a tumor or tumor-associated antigen. In one embodiment, the presence of an antibody in cancerous but not cancerous cells is indicative of the presence of cancer. In one embodiment, the antibody is an antibody to a tumor antigen.
  • A method or composition disclosed herein can find utility in the diagnosis, screening, or characterization of a cancer. In one embodiment, a presence of an antibody, such as an autoantibody, to a specific protein can be indicative of a cancer. In another embodiment, detection of an antibody in a sample, such as an autoantibody, can be indicative of a specific stage or sub-type of the same cancer. The information obtained by detecting an antibody as described herein can be used to determine a prognosis or theranosis, wherein an appropriate course of treatment can be determined. In another embodiment, a subject with a specific antibody or stage of cancer can respond differently to a given treatment than individuals lacking the antibody. The information obtained from a method disclosed herein can thus provide for the personalization of diagnosis and treatment.
  • In one embodiment, a cancer is characterized by detecting the level or presence or absence of an antibody, such as an autoantibody, in a sample. The cancer can be, but is not limited to, breast cancer, ovarian cancer, lung cancer, colon cancer, hyperplastic polyp, adenoma, colorectal cancer, high grade dysplasia, low grade dysplasia, prostatic hyperplasia, prostate cancer, melanoma, pancreatic cancer, brain cancer (such as a glioblastoma), hematological malignancy, hepatocellular carcinoma, cervical cancer, endometrial cancer, head and neck cancer, esophageal cancer, gastrointestinal stromal tumor (GIST), renal cell carcinoma (RCC) or gastric cancer. The colorectal cancer can be CRC Dukes B or Dukes C-D. The hematological malignancy can be B-Cell Chronic Lymphocytic Leukemia, B-Cell Lymphoma-DLBCL, B-Cell Lymphoma-DLBCL-germinal center-like, B-Cell Lymphoma-DLBCL-activated B-cell-like, and Burkitt's lymphoma. The cancer can also be a premalignant condition, such as Barrett's Esophagus.
  • In one embodiment, a method for screening or characterizing a prostate cancer is provided. In one embodiment, the method can comprise detecting in a sample obtained from a subject a presence and/or level of one or more autoantibodies to one or more polypeptide probes comprising a polypeptide probe is a fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, Deaminase Domain, FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789. A polypeptide probe can also comprise a polypeptide sequence, or a fragment thereof, selected from Table 1, 2, 3 and 4, such as a polypeptide probe comprising polypeptide probe comprises SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14, or a fragment thereof, or a polypeptide probe comprising a polypeptide encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or a fragment thereof. A polypeptide probe can also comprise SEQ ID NO: 12, 5, 9, 11, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or a fragment thereof, or a fragment thereof, or a polypeptide encoded by SEQ ID NO: 16, 19, 23, 25, 28, 70, 71, 72, 73, 74, 75,76, 77, 78, 79, 80, 81, 82, 83, 84, or a fragment thereof.
  • In one embodiment, the method can comprise detecting in a sample obtained from a subject a presence and/or level of one or more autoantibodies to one or more polypeptide probes comprising a polypeptide probe is a fragment of a protein encoded by a gene, or a fragment encoded by a sequence of a UTR region of a gene, wherein the gene is DCHS1, CEP164, KBTBD6, RPS19, RPL34, SFRS14, RNA binding protein 6, Hemk1, eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789. A polypeptide probe can also comprise a polypeptide sequence, or a fragment thereof, selected from Table 1 or Table 2, such as a polypeptide probe comprising SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14, or a fragment thereof, or a polypeptide probe encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or a fragment thereof.
  • In yet another embodiment, the method can comprise detecting in a sample obtained from a subject a presence and/or level of one or more autoantibodies to one or more polypeptide probes comprising SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, or a fragment thereof., or a fragment thereof; or polypeptide probe encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, or a fragment thereof.; or polypeptide probe comprising full-length or a fragment of a protein that is encoded by SEQ ID NO: 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,102, 103, 104, 105, 106, 107, 108, 109, 110, 111, or a fragment thereof.
  • Depending on the results, a cancer (or absence of cancer) can be characterized. For example, in a sample from a subject a presence or level of DCHS1, CEP164 and/or RPS19 autoantibodies is detected, indicating a presence of prostate cancer in the subject. Alternately, a method further comprises detecting a presence or level of one or more autoantibodies to one or more polypeptide probe comprising a fragment of eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789. The fragment of a protein encoded by eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789 can comprise a polypeptide sequence selected from Table 2.
  • A method disclosed herein can comprise detecting a plurality of antibodies, such as through the detection of binding of one or more antibodies that bind to a plurality of polypeptide probes. In one embodiment, the antibodies are autoantibodies. In another embodiment, the antibodies are antibodies to foreign antigens. In one embodiment, the method comprises detecting in a sample one or more antibodies that binds to a panel of polypeptide probes, wherein the panel comprises 2-100 probes, 50-200 probes, 100-500 probes 200-750 probes, 200-1000 probes, 2-5,000 probes or 2-10,000 probes. In another embodiment, the panel of polypeptide probes comprises at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 polypeptide probes. In another embodiment, the panel comprises at least about 50, 100, 150, 200, 250, 500, 750, 1000, 5000, 10,000, 15,000, 20,000, 25,000, 30,000, 40,000, 50,000, 60,000, 70,000, 75,000, or 100,000 polypeptide probes. In one embodiment, the panels comprises a plurality of polypeptide probes, wherein a subset of the probes comprise fragments of the same full-length protein, such that autoantibodies to different epitopes bind to the different probes and indicate a presence of an immune response, or antibody, to the full-length protein.
  • A panel comprising multiple polypeptide probes allow for the simultaneous analysis of multiple markers correlating with carcinogenesis and/or metastasis. In one embodiment, a panel includes markers identified as correlating with cancerous tissue, metastatic cancer, localized cancer that is likely to metastasize, pre-cancerous tissue that is likely to become cancerous, pre-cancerous tissue that is not likely to become cancerous, or any combination thereof. Depending on the subject, a panel can be analyzed alone or in combination in order to provide a diagnosis, prognosis, or theranosis. One or more markers for inclusion on a panel can be selected by screening for their diagnostic, prognostic, or theranostic value.
  • Any of the proteins listed in Tables 1, 2, 3 or 4, or proteins encoded by the genes listed in Tables 1, 2, 3 or 4, in any combination, can be utilized to detect a presence of an antibody, such as an autoantibody, in a subject. In one embodiment, the protein is encoded SEQ ID NO: 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,102, 103, 104, 105, 106, 107, 108, 109, 110, 111, or a fragment thereof.
  • In one embodiment, detection of an autoantibody to a protein encoded by a gene, a fragment encoded by a sequence of a UTR region of a gene, or fragment of a protein encoded by a gene, wherein the gene is CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, Deaminase Domain, FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789, or any combination thereof, is indicative of a presence of prostate cancer in a subject. In another embodiment, any combination of two or more proteins (e.g., cancer markers) or fragments thereof is used to detect one or more autoantibodies (e.g., a panel consisting of one or more full-length or fragments of the polypeptides listed in Tables 1, 2, 3, and/or 4).
  • In another embodiment, detection of an autoantibody to a protein encoded by a gene, a fragment encoded by a sequence of a UTR region of a gene, or fragment of a protein encoded by a gene, wherein the gene is CEP164, KBTBD6, RPS19, RPL34, RNA binding protein 6, Hemk1, eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, LOC388789, or any combination thereof, is indicative of a presence of prostate cancer in a subject. In another embodiment, any combination of two or more proteins (e.g., cancer markers) or fragments thereof is used to detect one or more autoantibodies (e.g., a panel consisting of one or more full-length or fragments of the polypeptides listed in Tables 1 and 2).
  • In one embodiment, the method comprises detecting one or more antibodies that bind to at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 polypeptide probes, wherein the polypeptide probes are full-length or fragments of proteins encoded by the genes listed in Tables 1, 2, 3, and/or 4, or polypeptides encoded by the UTR sequence of the gene. In one embodiment, the antibody profiling panel comprises a plurality of polypeptide probes, wherein one or more polypeptide probes is a protein or fragment of a protein encoded by CEP 164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, Deaminase Domain, FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789, or any combination thereof. In another embodiment, the antibody profiling panel comprises a plurality of polypeptide probes, wherein one or more polypeptide probes is a protein or fragment of a protein encoded by DCHS1, CEP164, KBTBD6, RPS19, RPL34, RNA binding protein 6, Hemk1, eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, LOC388789, or any combination thereof.
  • The cancer can be characterized with increased accuracy, such as with increased specificity, sensitivity, or both. The sensitivity can be determined by: (number of true positives)/(number of true positives+number of false negatives), whereas the specificity can be determined by: (number of true negatives)/(number of true negatives+number of false positives).
  • In one embodiment, the cancer can be characterized (e.g., detected, prognosed, etc.) with at least 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55,60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% sensitivity. In another embodiment, the cancer can be characterized (e.g., detected, prognosed, etc.) with at least 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55,60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% specificity.
  • Specificity or sensitivity of detection can be altered by altering the polypeptide probe make-up of a panel. In one embodiment, sensitivity of a diagnostic, prognostic, or theranosstic assay (e.g., an antibody detection assay, such as an autoantibody detection assay) can be increased by increasing the number of probes, increasing the diversity of probes (e.g, utilizing probes comprising distinct epitopes from the same and/or different markers), or tailoring the probes to a particular subject or cancer to be diagnosed/prognosed. Furthermore, the confidence level for determining the specificity, sensitivity, or both, may be with at least 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55,60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% confidence.
  • A method and system disclosed herein can also comprise detecting a plurality of antibodies, such as through the detection of antibodies binding to a plurality of polypeptide probes, and characterizing or screening for a cancer with increased or greater specificity as compared to a characterization based on detection of antibodies that bind to less than the plurality of polypeptide probes. In one embodiment, the antibodies are autoantibodies. In another embodiment, the antibodies are to foreign antigens.
  • Two or more polypeptide probes can be used to diagnose a particular cancer. For example, a cancer can be diagnosed by measuring the binding of autoantibodies to two polypeptide probe. The number of polypeptide useful for diagnosing a cancer includes, but is not limited to, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 polypeptide probes. In another embodiment, prostate cancer is diagnosed with 5 or more polypeptide probes. In one embodiment, prostate cancer is diagnosed with 5 polypeptide probes, which provides a diagnosis that has a higher sensitivity as compared to using less than the 5 polypeptide probes. In another embodiment, prostate cancer is diagnosed with 10 or more polypeptide probes. In another embodiment, a prostate cancer is diagnosed with 10 polypeptide probes, which provides a diagnosis that has a higher specificity as compared to using less than the 10 polypeptide probes.
  • Antibody Detection
  • The level, presence or absence of an antibody can be determined by detecting the binding of one or more autoantibodies to a polypeptide probe. Detection of an antibody can be either quantitative or qualitative. For quantitative assays, the amount of antibody detected can be compared to a control or reference to determine whether an antibody is overexpressed or underexpressed in a sample. For example, the control or reference can be a normal sample or a sample from a known disease state, such as a cancer sample.
  • Antibody binding to a polypeptide probe can be detected by techniques known in the art, such as, but not limited to, radioimmunoassay, ELISA (enzyme-linked immunosorbant assay), “sandwich” immunoassays, immunoradiometric assays, gel diffusion precipitation reactions, immunodiffusion assays, in situ immunoassays (e.g., using colloidal gold, enzyme or radioisotope labels, for example), Western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays, etc.), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays. Any of the assays used can be quantitative or qualitative, as desired.
  • Detection of an antibody bound to a polypeptide probe can be detected using labeling technology. For example, one or more antibodies in a sample collected from a subject to be tested can be directly labeled (e.g., with a fluorescent or radioactive label) and exposed to a polypeptide probe or probe panel. Detection of a signal from the interaction can be achieved using methodology appropriate to the type of label used (e.g., fluorescent microscopy can be used to detect binding of a fluorescently labeled autoantibody to a polypeptide probe). In one embodiment, an autoantibody is detected by detecting binding of a labeled secondary antibody or other antibody-binding reagent which specifically binds to the antibody bound to the polypeptide probe (e.g., a “sandwich immunoassay”). Many methods are known in the art for detecting binding in an immunoassay and are within the scope of the present invention. In one embodiment, the immunoassay described in U.S. Pat. Nos. 5,599,677, 5,672,480, or both, each of which is herein incorporated by reference, is used.
  • In one embodiment, automation is utilized to detect binding of one or more autoantibodies to a polypeptide probe or probe panels. Methods for the automation of immunoassays include those described in U.S. Pat. Nos. 5,885,530, 4,981,785, 6,159,750, and 5,358,691, each of which is herein incorporated by reference. Analysis and/or presentation of results can also be automated. In one embodiment, a computer with software that analyzes raw data and generates a prognosis, diagnosis, or theranosis based on the level, presence or absence of antibody binding to one or more polypeptide probes is used. A computer-based analysis program can be used to translate the raw data generated by the detection assay (e.g., a presence, absence, or amount of antibody binding to one or more polypeptide probes) into data of predictive value for a clinician. The clinician can access the predictive data using any suitable means. In one embodiment, the data is transmitted over a network. In another embodiment, the data is accessible by a clinician.
  • Any method capable of receiving, processing, and transmitting the information to and from a laboratory conducting the assay, medical personnel, and a subject can be used. In one embodiment, a sample (e.g., a biopsy or a serum or urine sample) is obtained from a subject and submitted to a profiling service (e.g., clinical lab at a medical facility, genomic profiling business, etc.), located in any part of the world (e.g., in a country different than the country where the subject resides or where the information is ultimately used) to generate raw data. In one embodiment, the sample comprises a tissue or other biological sample and the subject visits a medical center to have the sample obtained and sent to the profiling center. In another embodiment, a subject collects the sample themself (e.g., a buccal swab) and directly sends it to a profiling center. In another embodiment, the sample comprises previously determined biological information. The information can be directly sent to the profiling service by the subject (e.g., an information card containing the information may be scanned by a computer and the data transmitted to a computer of the profiling center using an electronic communication system). Upon being received by the profiling service, a sample can be processed and a profile produced (i.e., antibody level, presence or absence of antibody). A profile generated can be specific for the diagnostic, prognostic, or theranostic information desired for a subject. In one embodiment, a sample from a subject is analyzed for a presence or expression level of one or more antibodies to one or more proteins encoded by a gene, fragment of one or more proteins encoded by a gene, or fragment encoded by aUTR region of a gene, wherein the gene is CEP 164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, Deaminase Domain, FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789. In one embodiment, the antibodies are autoantibodies. In another embodiment, a sample from a subject is analyzed for a presence or expression level of one or more antibodies to one or more proteins encoded by a gene, fragment of one or more proteins encoded by a gene, or fragment encoded by aUTR region of a gene, wherein the gene is DCHS1, CEP164, KBTBD6, RPS19, RPL34, RNA binding protein 6, Hemk1, eIF4G1, BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789. In one embodiment, the antibodies are autoantibodies.
  • Profile data can be prepared in a format suitable for interpretation by a treating clinician. In one embodiment, rather than providing raw expression data, the prepared format represents a diagnosis, screening or risk assessment (e.g., likelihood of metastasis or PSA failure or the development of high prostate specific antigen levels in a patient following prostate cancer therapy (e.g., surgery)) for the subject, along with recommendations for particular treatment options. The data can be displayed to the clinician by any suitable method. In one embodiment, the profiling service generates a report that is printed for the clinician (e.g., at the point of care). In another embodiment, the report is displayed to the clinician on a computer monitor.
  • In one embodiment, the information is first analyzed at the point of care or at a regional facility. The raw data is then sent to a central processing facility for further analysis. In one embodiment, further analysis comprises converting the raw data to information useful for a clinician or subject, such as a patient. The central processing facility can provide the advantage of privacy (all data is stored in a central facility with uniform security protocols), speed, and uniformity of data analysis. The central processing facility can also control the fate of the data following treatment of a subject. In one embodiment, using an electronic communication system, the central facility provides data to the clinician, the subject, researchers, or any other individual. In one embodiment, a subject is able to directly access the data using the electronic communication system. In another embodiment, a subject chooses further intervention or counseling based on the result. In one embodiment, the data is used for research use. The data can be used to further optimize the inclusion or elimination of markers as useful indicators of a particular condition or stage of disease.
  • Antibody Test
  • The detection of one or more antibodies from a sample, such as described herein, can be used in conjunction with one or more other tests used for detecting or screening for cancer. The antibody detection can be used prior to, concurrent with, or subsequent to one or more other tests. In one embodiment, a genetic test for a mutation or expression level of one or more genes can be used in conjunction with determining the antibody profile of a subject.
  • Antibody detection can provide a non-invasive, inexpensive means for detecting or screening for a cancer. Thus, in one embodiment, the detection of a level, presence or absence of one or more antibodies can be used to determine whether a second sample or additional analysis of a sample from a subject is to be performed. In one embodiment, after detecting an expression level of one or more antibodies of sample obtained from subject to one or more polypeptide probes comprising a fragment of a protein encoded by, or a polypeptide encoded by a UTR sequence of, CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, Deaminase Domain, FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789, a biopsy can be recommended for the subject. In another embodiment, after detecting an expression level of one or more antibodies of sample obtained from subject to one or more polypeptide probes comprising a fragment of a protein encoded by, or a polypeptide encoded by a UTR sequence of, DCHS1, CEP164, KBTBD6, RPS19, RPL34, SFRS14, RNA binding protein 6, Hemk1, eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789, a biopsy can be recommended for the subject.
  • In another embodiment, an expression level for one or more antibodies from a subject can be detected, and based on the expression level of the one or more antibodies, the subject can be identified as suspected of having cancer. In one embodiment, the subject is characterized as having a high probability or likelihood of having cancer. Based on the detection or expression level of the one or more antibodies, a recommendation that a biopsy be obtained can be made for the subject. In another embodiment, if there is a lack of detection or expression of the one or more antibodies, further analysis is not recommended and a biopsy not be obtained. (see for example, FIG. 1, “Autoantibody Test I”)
  • In another embodiment, prior to detecting one or more antibodies from a subject, the subject is suspected of having cancer. The subject can have had a genetic test for a mutation or gene expression analysis, image analysis (such as magnetic resonance imaging (MRI), positron emission tomography (PET) scan, computerized tomography (CT) scan, nuclear magnetic resonance (NMR)), or biopsy, and have inconclusive or uncertain results. Thus, prior to further analysis and treatment for a suspected cancer, the subject can seek further verification of their likelihood of having a cancer, or their diagnosis, prognosis, or theranosis of a cancer.
  • In one embodiment, an antibody profiling panel described herein can be used in conjunction with a separate test which determines a presence or level of PSA (e.g., a serum PSA test). In one embodiment, the panels is utilized to diagnose or prognose a presence of a cancer (e.g., prostate cancer) in a subject. In one embodiment, a subject is suspected of having prostate cancer based on their PSA level, age, or both. A subject can be male and over 30, 35, 40, 45, 50, 55, 60, 65, 70 or 75 years of age. In another embodiment, the subject is between 30-80 , 40-75, 45-75, or 50-75 years of age. In another embodiment, the subject had a PSA blood test, digital rectal exam, or both. In yet another embodiment, the subject may have a PSA level of at least about 1.0, 1.5, 2.0, 2.5, or 4.0 ng/ml. The subject can have a PSA level of between about 1.0-15 ng/ml, 2.0-15 ng/ml, or 2.5-10 ng/ml.
  • In one embodiment, a biological sample from a subject, such as a subject with a PSA level greater than about 2.5 ng/ml, is contacted with one or more probes for an antibody, such as one or more probes for an autoantibody. Based on the expression level of the antibody, a biopsy for the subject can be recommended (see for example FIG. 1, “Autoantibody Test I”). The antibody test can comprise detecting one or more antibodies in a sample that bind to a polypeptide probe as described herein. In another embodiment, the antibody test is an autoantibody test.
  • In one embodiment, the antibody binds a polypeptide probe comprising SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, or a fragment thereof. In another embodiment, the antibody binds a polypeptide probe comprising a polypeptide sequence encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, or a fragment thereof. In yet another embodiment, the antibody binds a polypeptide probe comprising full-length or a fragment of a protein that is encoded by SEQ ID NO: 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,102, 103, 104, 105, 106, 107, 108, 109, 110, 111, or a fragment thereof.
  • In one embodiment, the antibody binds a polypeptide probe comprising a full-length or fragment of a protein encoded by, or a polypeptide encoded by a CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, Deaminase Domain, FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789. In one embodiment, a polypeptide probe comprises SEQ ID NO: 2, 5, 9, 11, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or a fragment thereof, or a fragment thereof. In another embodiment, a polypeptide probe comprises a polypeptide encoded by SEQ ID NO: 16, 19, 23, 25, 28, 70, 71, 72, 73, 74, 75,76, 77, 78, 79, 80, 81, 82, 83, 84, or a fragment thereof.
  • In another embodiment, the antibody binds a polypeptide probe comprising a full-length or fragment of a protein encoded by, or a polypeptide encoded by a UTR of, DCHS 1, CEP 164, KBTBD6, RPS 19, RPL34, RNA binding protein 6, Hemk1, eIF4G1, 5′UTR BMI1, BRD2, RP3-323M22, SFRS14, or LOC388789. In one embodiment, a polypeptide probe comprises SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or a fragment thereof. In another embodiment, a polypeptide probe comprises a polypeptide encoded by SEQ ID NO: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or a fragment thereof.
  • If a biospy is recommended and the biopsy is positive for a cancer such as prostate cancer, a biological sample obtained from the subject can be contacted with one or more probes for an antibody, which can be the same or different, as those used in deciding whether to obtain a biopsy. Based on the expression level of antibodies in the sample, a prognosis for the cancer can be provided. (see for example, FIG. 1, “Autoantibody Test II”)
  • Thus, in one embodiment, a method of characterizing or screening for a cancer from a subject with a positive biopsy result is provided. In another embodiment, the subject has not yet provided a sample for detecting one or more antibodies. In yet another embodiment, the subject has provided an initial sample for detecting one or more antibodies and detection of the one or more antibodies is used in deciding whether a biopsy is obtained. Furthermore, in one embodiment, detection of one or more antibodies is used for a diagnosis, prognosis or theranosis of a cancer, such as prostate cancer. In one embodiment, the method comprises detecting an expression level for one or more antibodies, wherein the expression level of the one or more antibodies is indicative of the presence, absence, or stage of the cancer. In another embodiment, the indication is whether the cancer is aggressive or indolent.
  • In one embodiment, a cancer is classified based on the detection of one or more antibodies to one or more polypeptide probes disclosed herein. In one embodiment, the cancer is classified as aggressive or malignant. In another embodiment, the cancer is classified as indolent or benign. Furthermore, after classification, detection of one or more antibodies from a sample from the subject can be used to select a treatment or therapeutic for the cancer.
  • The present disclosure is not limited to the embodiments described above, but is capable of modification within the scope of the appended claims. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents of the specific embodiments of the present disclosure described herein.
  • EXAMPLES Example 1 Probe Selection
  • Construction of T7 Phage Display Prostate Cancer cDNALibrary
  • mRNA was isolated from total RNA following Novogen's Straight A's mRNA isolation protocol. OrientExpression cDNA synthesis and cloning system were used for the construction of T7 phage prostate cancer cDNA libraries.
  • To eliminate the 3′ bias inherent in oilgo(dT)-primed libraries, two libraries were constructed using directional oligo(dT) primer and random primer in parallel. After amplification, these two libraries were combined in same amount of titer.
  • Enrichment of Cancer Specific T7 Phage Library.
  • Protein A/G agarose beads (Pierce Biotechnology, Rockford, Ill.) were used to purify IgGs from the serum of prostate cancer patients. To enhance the selection of epitopes binding to IgGs specifically associated with prostate cancer, a dual procedure was performed.
  • First, a pre-clearing step was used to remove nonspecific clones by pre-absorbing the phage epitope libraries onto purified IgGs from normal serum pool from 10 control men. Next, the pre-cleared phage libraries were selected onto the pool of IgGs purified from the serum of 6 localized prostate cancer patients. In essence protein-A/G agarose beads provide a purification of the serum of IgGs. Fifty μl protein-A/G agarose beads were placed into 1.5 ml eppendorf tube and washed two times with 1×PBS. Washed beads were blocked with 4% nonfat milk at 4° C. for 1 hr. The beads were then incubated at 4° C. with 15 μl of pooled control sera at 1:30 dilution with 4% nonfat milk. After at least 2 hrs of incubation, the beads were washed three times with 1×PBS and then incubated with phage library (˜1010 phage particles) at 4° C. for at least 2 hrs. The mixture was centrifuged at 3000 rpm for 2 min. The beads with unspecifically bounded phage particles were discarded and the supernatant was collected for further immunoscreening.
  • Fifty μl fresh protein-A/G agarose beads were washed and blocked as same as above. The beads were then incubated at 4° C. for 3 hrs with 500 ml of PBS containing 15 ml patient sera pool at a 1:30 dilution. This amount of serum provides a three-fold molar excess of IgG to calculated number of protein-A/G binding capacity. The beads were washed three times with 1×PBS and then incubated with phage library supernatant from above allowed to react with the antibodies on the beads at 4° C. overnight. The mixture was centrifuged at 3000 rpm for 2 min and supernatant was discarded. The beads were then washed three times with 1×PBS.
  • To elute the bound phage 100 ml 1% SDS was used to strongly break up the antibody-antigen reaction without disrupting the T7 phage particles. The mixture of phage and elution buffer was incubated at room temperature for 10 min. The bound phages were removed from the beads by centrifugation at 8000 rpm for 8 min. Eluted phages were transferred to 10 ml BLT 5403 bacterial cells with OD600=0.6˜0.8 for amplification. Four or five cycles of affinity selections and biopanning were carried out with amplification of phage particles after each biopanning.
  • High Throughput Epitope Detection Using Phage Microarrays.
  • Random phage colonies were picked up and amplified in 96-well plates. Fresh phage lysates were spotted onto on FASTTM nitrocellulose coated glass slides (Schleicher & Schuell, Keene, N.H.). Extra T7 empty phage spots were spotted in quadruplicate as negative reference for normalizing the signal value from different slides. The arrays were dried overnight at room temperature. Before processing with serum, the arrays were rinsed briefly in a 4% nonfat milk/PBS with 0.1% tween-20 to remove unbound phage, then transferred immediately to 4% nonfat milk/PBS as a blocking solution for 1 hr at room temperature. Without allowing the array to dry, 2 ml of PBS containing human serum and T7-tag antibody (Novagen) at a dilution of 1:500 and 1:5000 respectively was applied to the surface in a screw-top slide hybridization tube.
  • The arrays were incubated at room temperature for 1 hour, and then washed gently three times in PBS/0.1% Tween-20 solution 10 min each. All washes were performed at room temperature. After washing, the arrays were incubated with 2 ml of PBS containing Cy3-labeled goat anti-mouse antibody and Cy5-labeled goat anti-human antibody (Jackson ImmunoResearch) at a dilution of 1:5,000 for both for 1 hr in the dark. Three washes were performed using PBS/0.1% Tween-20 solution with 10 min each. The arrays were then dried using a stream of compressed air and scanned using 532 nm and 635 nm lasers (Axon Laboratories).
  • Building Predictor and Validation of Biomarker Profile.
  • The arrays were quantified using GenePix software (Axon Laboratories). Raw ratios of each array were subtracted by median of ratios of the negative control spots with the observation that the signal for negative T7 empty phage on each chip correlates very well with the signal intensity for whole array. Then Z-transformation was applied to clones so that the mean of each clone is zero across arrays and the standard deviation is 1. Due to the fact a presence of antibodies specific to cancer was tested, epitopes with high reactivity in controls and low reactivity in patients were not expected. A GA/KNN algorithm, a machine learning language, was employed to calibrate the system. Briefly, the data set was randomly separated into a training set and a test set. In the training set, genetic algorithm (GA) was used to select optimized solutions (a subset of clones here) which had good fitness. The fitness was assessed by its ability to classify the training samples using the k-nearest neighbor (KNN) analysis (k=3 here). The fitness score was defined as the number of correctly classified training samples divided by the total number of training samples. The fitness score was specificed to be equal or greater than 0.95. After getting 4000 optimized solutions, clones were ranked by their frequency in the solutions and top genes were used to predict the test samples. This cycle of sample partition, solution searching, clone ranking and test sample prediction was repeated 10 times and high-ranked clones were selected as optimized classifier.

Claims (32)

1. An antibody profiling panel comprising:
a plurality of polypeptide probes, wherein at least one of said polypeptide probes comprises:
a full-length or fragment of a protein listed in Table 1 or polypeptide sequence selected from SEQ ID NO: 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, or 141,
wherein each of said probes in said plurality of polypeptide probes is capable of being specifically bound by an antibody.
2. The antibody profiling panel of claim 1, wherein at least one of said polypeptide probes comprises a polypeptide sequence selected from SEQ ID NO: 1, 2, 3, 4, 5, 6, or 7.
3. The antibody profiling panel of claim 1, wherein said panel further comprises a full-length or fragment of a protein listed in Tables 2, 3, or 4.
4. The antibody profiling panel of claim 3, wherein at least one of said polypeptide probes comprises a polypeptide sequence selected from SEQ ID NO: 8, 9, 10, 11, 12, 13, or 14.
5. The antibody profiling panel of claim 1, wherein at least one of said polypeptide probes comprises a full-length or fragment of a protein that is CEP164, RPL34, BRMSL1, NKX3-1, RPSA, Cytochrome C oxidase 5 Subunit, UTR-region of chromosome 11, MAPKKK9, cDNA clone XR113641.1, PSA, H2aa4, UBE2I, TIMP2, WDR77, or Deaminase Domain.
6. The antibody profiling panel of claim 5, wherein at least one of said polypeptide probe comprises a polypeptide sequence selected from SEQ ID NO: 2, 5, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, or 69.
7. The antibody profiling panel of claim 1, wherein at least one of said polypeptide probes comprise a full-length or fragment of a protein that is FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789.
8. The antibody profiling panel of claim 7, wherein said full-length or fragment of a protein that is FAM53B, 5′UTR BMI1, RP3-323M22, or LOC388789 comprises a polypeptide sequence selected from SEQ ID NO: 9, 11, 14, or 60.
9. The antibody profiling panel of claim 1, wherein each of said probes is displayed by a phage.
10. The antibody profiling panel of claim 1, wherein each of said probes is attached to a substrate.
11. The antibody profiling panel of claim 9, wherein each of said probes is attached to a substrate via said phage.
12. The antibody profiling panel of claim 10, wherein said substrate is an array.
13. The antibody profiling panel of claim 1, wherein said panel comprises at least 5 polypeptide probes.
14. The antibody profiling panel of claim 1, wherein said panel screens a subject for a cancer with greater specificity and sensitivity as compared to a panel with less than said plurality of probes.
15. The antibody profiling panel of claim 14, wherein said cancer is prostate, breast or lung cancer.
16. The antibody profiling panel of claim 1, wherein said antibody is an autoantibody.
17. The antibody profiling panel of claim 16, wherein said autoantibody is a human autoantibody.
18. A method for screening a subject for a cancer comprising:
detecting in a sample obtained from a subject an expression level of one or more antibodies with at least one polypeptide probe comprising:
a full-length or fragment of a protein listed in Table 1 or
a polypeptide sequence selected from SEQ ID NO: 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, or 141;
wherein said expression level is indicative of the presence, absence, or stage of said cancer.
19. The method of claim 18, wherein said screening is with greater specificity and sensitivity as compared to a panel with less than said plurality of probes.
20. The method of claim 18, wherein said cancer is prostate, breast or lung cancer.
21. A method of recommending a biopsy be obtained comprising:
(a) contacting a biological sample obtained from a subject with one or more probes for an antibody, wherein said subject has a PSA level greater than about 2.5 ng/mL;
(b) detecting an expression level of an antibody; and
(c) recommending a biopsy be obtained based on said expression level of said antibody.
22. The method of claim 21, wherein said PSA level is between about 2.5 ng/mL and about 10 ng/mL.
23. The method of claim 21, further comprising:
(a) contacting a biological sample obtained from said subject with one or more probes for a second antibody when said biopsy provides a positive result for cancer;
(b) detecting an expression level for said second antibody; and
(c) providing a prognosis or theranosis based on said expression level of said second antibody.
24. A method of screening a subject for a cancer comprising:
(a) contacting a biological sample obtained from said subject with one or more probes for an antibody, wherein said subject has a positive biopsy result for cancer; and
(b) detecting an expression level for said antibody, wherein said expression level is indicative of the presence, absence, or stage of said cancer.
25. The method of claim 24, wherein said cancer is aggressive or indolent.
26. The method of claim 21 or 24, wherein said detecting is with at least one polypeptide probe comprising:
a full-length or fragment of a protein listed in Table 1, 2, 3, or 4; or
a polypeptide sequence selected from SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, or 141.
27. The method of claim 21 or 24, wherein said cancer is prostate cancer, lung cancer or breast cancer.
28. The method of claim 21 or 24, further comprising selecting a treatment for said cancer.
29. The method of claim 21 or 24, wherein said detecting said expression level is by an immunoassay.
30. The method of claim 21 or 24, wherein said subject is a human.
31. The method of claim 21 or 24, wherein said antibody is an autoantibody.
32. The method of claim 31, wherein said autoantibody is a human autoantibody
US13/050,544 2010-03-17 2011-03-17 Using phage epitopes to profile the immune response Abandoned US20110237461A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/050,544 US20110237461A1 (en) 2010-03-17 2011-03-17 Using phage epitopes to profile the immune response
US14/822,045 US9658231B2 (en) 2010-03-17 2015-08-10 Using phage epitopes to profile the immune response
US15/933,574 US11307203B2 (en) 2010-03-17 2018-03-23 Using phage epitopes to profile the immune response

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31475010P 2010-03-17 2010-03-17
US13/050,544 US20110237461A1 (en) 2010-03-17 2011-03-17 Using phage epitopes to profile the immune response

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/822,045 Continuation US9658231B2 (en) 2010-03-17 2015-08-10 Using phage epitopes to profile the immune response
US15/933,574 Continuation US11307203B2 (en) 2010-03-17 2018-03-23 Using phage epitopes to profile the immune response

Publications (1)

Publication Number Publication Date
US20110237461A1 true US20110237461A1 (en) 2011-09-29

Family

ID=44649827

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/050,544 Abandoned US20110237461A1 (en) 2010-03-17 2011-03-17 Using phage epitopes to profile the immune response
US14/822,045 Active US9658231B2 (en) 2010-03-17 2015-08-10 Using phage epitopes to profile the immune response
US15/933,574 Active 2033-11-17 US11307203B2 (en) 2010-03-17 2018-03-23 Using phage epitopes to profile the immune response

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/822,045 Active US9658231B2 (en) 2010-03-17 2015-08-10 Using phage epitopes to profile the immune response
US15/933,574 Active 2033-11-17 US11307203B2 (en) 2010-03-17 2018-03-23 Using phage epitopes to profile the immune response

Country Status (3)

Country Link
US (3) US20110237461A1 (en)
EP (2) EP2548025A4 (en)
WO (1) WO2011116209A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100009382A1 (en) * 2004-06-09 2010-01-14 The Regents Of The University Of Michigan Methods and compositions for diagnosing lung cancer
US20150232931A1 (en) * 2013-09-20 2015-08-20 The Regents Of The University Of Michigan Compositions and methods for the analysis of radiosensitivity
WO2017223533A1 (en) * 2016-06-24 2017-12-28 University Of Southern California Mentsh analogs as therapeutics for diabetes, obesity, and their associated diseases and complications

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104368012B (en) * 2014-08-20 2019-03-22 中国人民解放军第三〇七医院 The purposes and its related drugs of people's RPL34 gene
US10542961B2 (en) 2015-06-15 2020-01-28 The Research Foundation For The State University Of New York System and method for infrasonic cardiac monitoring

Citations (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109496A (en) * 1977-12-20 1978-08-29 Norris Industries Trapped key mechanism
US4323546A (en) * 1978-05-22 1982-04-06 Nuc Med Inc. Method and composition for cancer detection in humans
US4657760A (en) * 1979-03-20 1987-04-14 Ortho Pharmaceutical Corporation Methods and compositions using monoclonal antibody to human T cells
US4873191A (en) * 1981-06-12 1989-10-10 Ohio University Genetic transformation of zygotes
US4968103A (en) * 1988-07-22 1990-11-06 Photofinish Cosmetics Inc. Method of making a brush
US4981785A (en) * 1988-06-06 1991-01-01 Ventrex Laboratories, Inc. Apparatus and method for performing immunoassays
US5034506A (en) * 1985-03-15 1991-07-23 Anti-Gene Development Group Uncharged morpholino-based polymers having achiral intersubunit linkages
US5206344A (en) * 1985-06-26 1993-04-27 Cetus Oncology Corporation Interleukin-2 muteins and polymer conjugation thereof
US5223409A (en) * 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
US5225212A (en) * 1989-10-20 1993-07-06 Liposome Technology, Inc. Microreservoir liposome composition and method
US5283317A (en) * 1987-08-03 1994-02-01 Ddi Pharmaceuticals, Inc. Intermediates for conjugation of polypeptides with high molecular weight polyalkylene glycols
US5358691A (en) * 1992-03-27 1994-10-25 Abbott Laboratories Automated continuous and random access analytical system
US5489677A (en) * 1990-07-27 1996-02-06 Isis Pharmaceuticals, Inc. Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms
US5539082A (en) * 1993-04-26 1996-07-23 Nielsen; Peter E. Peptide nucleic acids
US5599677A (en) * 1993-12-29 1997-02-04 Abbott Laboratories Immunoassays for prostate specific antigen
US5602240A (en) * 1990-07-27 1997-02-11 Ciba Geigy Ag. Backbone modified oligonucleotide analogs
US5614396A (en) * 1990-06-14 1997-03-25 Baylor College Of Medicine Methods for the genetic modification of endogenous genes in animal cells by homologous recombination
US5631169A (en) * 1992-01-17 1997-05-20 Joseph R. Lakowicz Fluorescent energy transfer immunoassay
US5674486A (en) * 1991-06-25 1997-10-07 San Diego Regional Cancer Center Cancer immunotherapy with carrier cells
US5714331A (en) * 1991-05-24 1998-02-03 Buchardt, Deceased; Ole Peptide nucleic acids having enhanced binding affinity, sequence specificity and solubility
US5719262A (en) * 1993-11-22 1998-02-17 Buchardt, Deceased; Ole Peptide nucleic acids having amino acid side chains
US5824544A (en) * 1995-03-24 1998-10-20 Genzyme Corporation Adenovirus vectors for gene therapy
US5830730A (en) * 1997-05-08 1998-11-03 The Regents Of The University Of California Enhanced adenovirus-assisted transfection composition and method
US5872154A (en) * 1995-02-24 1999-02-16 The Trustees Of The University Of Pennsylvania Method of reducing an immune response to a recombinant adenovirus
US5885530A (en) * 1996-06-28 1999-03-23 Dpc Cirrus, Inc. Automated immunoassay analyzer
US5885808A (en) * 1992-11-04 1999-03-23 Imperial Cancer Research Technology Limited Adenovirus with modified binding moiety specific for the target cells
US5904920A (en) * 1991-10-04 1999-05-18 Whitehead Institute For Biomedical Research Regulation of systemic immune responses utilizing cytokines and antigens
US5972334A (en) * 1996-05-01 1999-10-26 Genitope Corporation Vaccines for treatment of lymphoma and leukemia
US5981225A (en) * 1998-04-16 1999-11-09 Baylor College Of Medicine Gene transfer vector, recombinant adenovirus particles containing the same, method for producing the same and method of use of the same
US5994132A (en) * 1996-10-23 1999-11-30 University Of Michigan Adenovirus vectors
US5994069A (en) * 1996-01-24 1999-11-30 Third Wave Technologies, Inc. Detection of nucleic acids by multiple sequential invasive cleavages
US5994523A (en) * 1994-04-22 1999-11-30 The United States Of America As Represented By The Department Of Health And Human Services Melanoma antigens and their use in diagnostic and therapeutic methods
US5994106A (en) * 1994-06-10 1999-11-30 Genvec, Inc. Stocks of recombinant, replication-deficient adenovirus free of replication-competent adenovirus
US5994128A (en) * 1995-06-15 1999-11-30 Introgene B.V. Packaging systems for human recombinant adenovirus to be used in gene therapy
US6001557A (en) * 1994-10-28 1999-12-14 The Trustees Of The University Of Pennsylvania Adenovirus and methods of use thereof
US6019978A (en) * 1995-06-05 2000-02-01 The Wistar Institute Of Anatomy And Biology Replication-defective adenovirus human type 5 recombinant as a vaccine carrier
US6051230A (en) * 1992-03-05 2000-04-18 Board Of Regents, The University Of Texas System Compositions for targeting the vasculature of solid tumors
US6080912A (en) * 1997-03-20 2000-06-27 Wisconsin Alumni Research Foundation Methods for creating transgenic animals
US6159750A (en) * 1995-12-22 2000-12-12 Abbott Laboratories Fluorescence polarization immunoassay diagnostic method
US6180357B1 (en) * 1999-10-08 2001-01-30 Arius Research, Inc. Individualized patient-specific anti-cancer antibodies
US6207147B1 (en) * 1996-10-11 2001-03-27 The Regents Of The University Of California Cancer immunotherapy using tumor cells combined with mixed lymphocytes
US6506559B1 (en) * 1997-12-23 2003-01-14 Carnegie Institute Of Washington Genetic inhibition by double-stranded RNA
US20030028981A1 (en) * 1997-10-14 2003-02-13 Chandler Don J. Precision fluorescently dyed particles and methods of making and using same
US20030092009A1 (en) * 2000-11-16 2003-05-15 Kaia Palm Profiling tumor specific markers for the diagnosis and treatment of neoplastic disease
US6573361B1 (en) * 1999-12-06 2003-06-03 Monsanto Technology Llc Antifungal proteins and methods for their use
US6610508B1 (en) * 1999-03-08 2003-08-26 Anadys Pharmaceuticals, Inc. Translation driver system and methods for use thereof
US20030175736A1 (en) * 2001-08-02 2003-09-18 The Regents Of The University Of Michigan Expression profile of prostate cancer
US20030219760A1 (en) * 2001-09-05 2003-11-27 The Brigham And Women's Hospital, Inc. Diagnostic and prognostic tests
US6686147B1 (en) * 1998-07-15 2004-02-03 Ludwig Institute For Cancer Research Cancer associated antigens and uses therefor
US20040044181A1 (en) * 2001-08-31 2004-03-04 Tang Y. Tom Novel nucleic acids and polypeptides
US6783961B1 (en) * 1999-02-26 2004-08-31 Genset S.A. Expressed sequence tags and encoded human proteins
US20050032065A1 (en) * 2002-06-24 2005-02-10 Afar Daniel E. H. Methods of prognosis of prostate cancer
US20050147961A1 (en) * 2002-04-30 2005-07-07 Esser Mark T. Human papillomavirus multiplexed assay
US6943241B2 (en) * 2001-11-05 2005-09-13 Research Association For Biotechnology Full-length cDNA
US20060014138A1 (en) * 2004-06-09 2006-01-19 The Regents Of The University Of Michigan Phage microarray profiling of the humoral response to disease
US20060024692A1 (en) * 2002-09-30 2006-02-02 Oncotherapy Science, Inc. Method for diagnosing non-small cell lung cancers
US20070037143A1 (en) * 2005-06-02 2007-02-15 Digilab Biovision Gmbh Method for screening for protease modulators
US20070054353A1 (en) * 2002-09-26 2007-03-08 John White Nuclear receptor transcriptional corepressor and uses thereof
US20070082330A1 (en) * 2001-03-21 2007-04-12 Xenoport, Inc. Compounds displayed on icosahedral phage and methods of using same
US7205117B1 (en) * 1998-12-10 2007-04-17 University Of Nottingham Cancer detection method and reagents
US7214498B2 (en) * 2001-03-23 2007-05-08 Benaroya Research Institute At Virginia Mason Tumor associated antigens and methods of using the same
US20070269798A1 (en) * 2001-04-17 2007-11-22 Xenoport, Inc. Epitope-captured antibody display
US7368527B2 (en) * 1999-03-12 2008-05-06 Human Genome Sciences, Inc. HADDE71 polypeptides
US20080153113A1 (en) * 1998-05-11 2008-06-26 Robertson John F R Tumour Markers
US20080213791A1 (en) * 2005-11-08 2008-09-04 Euclid Diagnostics Llc Materials and methods for assaying for methylation of CpG islands associated with genes in the evaluation of cancer
US20080280844A1 (en) * 2007-05-09 2008-11-13 Lessnick Stephen L Methods and compositions for the diagnosis and treatment of ewing's sarcoma
US7541150B2 (en) * 2002-04-08 2009-06-02 University Of Louisville Research Foundation, Inc Method for the diagnosis and prognosis of malignant diseases
US20110237457A1 (en) * 2010-03-26 2011-09-29 Armune Biosciences, Inc. Method and system of particle-coupled phage epitope
US20130130355A1 (en) * 2011-09-28 2013-05-23 Armune Biosciences, Inc. Method and system of particle-phage epitope complex

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8901778D0 (en) 1989-01-27 1989-03-15 Univ Court Of The University O Manipulatory technique
US5527686A (en) 1991-07-29 1996-06-18 Serex, Inc. Differential binding affinities and dissociation assays based thereon
DE69333366T2 (en) 1992-10-30 2004-09-16 The General Hospital Corp., Boston A NEW CELL CYCLE CONTROL PROTEIN
CA2290736A1 (en) 1997-07-11 1999-01-21 Introgene B.V. Interleukin-3 gene therapy for cancer
WO2000009675A1 (en) 1998-08-14 2000-02-24 Aventis Pharmaceuticals Products Inc. Adenovirus formulations for gene therapy
CA2341061A1 (en) 1998-08-27 2000-03-09 Aventis Pharma S.A. Targeted adenovirus vectors for delivery of heterologous genes
EP1074617A3 (en) 1999-07-29 2004-04-21 Research Association for Biotechnology Primers for synthesising full-length cDNA and their use
US20030232399A1 (en) 2000-06-14 2003-12-18 Robertson John Forsyth Russell Cancer detection methods and reagents
US20030138860A1 (en) 2000-06-14 2003-07-24 Robertson John Forsyth Russell Cancer detection methods and reagents
AU2001268513A1 (en) 2000-06-17 2002-01-02 Third Wave Technologies, Inc. Nucleic acid accessible hybridization sites
CA2421122A1 (en) 2000-09-01 2002-03-07 Hyseq, Inc. Novel nucleic acids and polypeptides
US20030143668A1 (en) 2001-06-18 2003-07-31 National Institute Of Advanced Industrial Guanosine triphosphate-binding protein coupled receptors
WO2003010198A1 (en) 2001-07-26 2003-02-06 Kenton Srl Identification of specific tumour antigens by selection of cdna libraries with sera and use of said antigens in diagnostic techniques
EP1451587A4 (en) 2001-11-09 2006-12-06 Benaroya Res Inst At Virginia Antigen panels and methods of using the same
JP4557497B2 (en) 2002-03-03 2010-10-06 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. Method for producing silane monomer and polymer and photoresist composition comprising the same
DE10243778A1 (en) 2002-09-20 2004-03-25 Siemens Ag Final control device for rotary slide valve, e.g. for regulating coolant flow, has reversing drive, and spring effective between first end position and intermediate position
GB2424273B (en) 2002-11-14 2007-06-27 Univ Nottingham Method for preparing tumour marker protein
EP1464709B1 (en) 2003-03-31 2007-12-26 Stichting Researchfonds Pathologie Detection of HPV-induced invasive cancers and their precursor lesions with invasive potential
WO2006100156A2 (en) 2005-03-24 2006-09-28 Nolabs Ab Intravascular, interstitial or intraorgan medical access device, and manufacturing method thereof, involving nitric oxide
GB2426581A (en) 2005-05-27 2006-11-29 Univ Nottingham Immunoassay methods
CN101632020B (en) * 2006-09-13 2013-11-27 昂西免疫有限公司 Improved immunoassay methods
GB0725239D0 (en) 2007-12-24 2008-02-06 Oncimmune Ltd Calibrator for autoantibody assay
PL2252893T3 (en) * 2008-02-21 2014-03-31 Iris Int Inc Method for early determination of recurrence after therapy for prostate cancer
US8392127B2 (en) * 2008-03-22 2013-03-05 Merck Sharp & Dohme Corp. Methods and gene expression signature for assessing growth factor signaling pathway regulation status
WO2009149166A2 (en) * 2008-06-03 2009-12-10 Children's Hospital Medical Center Methods and compositions for the diagnosis and treatment of proliferative disorders
EP2370813A4 (en) * 2008-12-04 2012-05-23 Univ California Materials and methods for determining diagnosis and prognosis of prostate cancer

Patent Citations (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109496A (en) * 1977-12-20 1978-08-29 Norris Industries Trapped key mechanism
US4323546A (en) * 1978-05-22 1982-04-06 Nuc Med Inc. Method and composition for cancer detection in humans
US4657760A (en) * 1979-03-20 1987-04-14 Ortho Pharmaceutical Corporation Methods and compositions using monoclonal antibody to human T cells
US4873191A (en) * 1981-06-12 1989-10-10 Ohio University Genetic transformation of zygotes
US5034506A (en) * 1985-03-15 1991-07-23 Anti-Gene Development Group Uncharged morpholino-based polymers having achiral intersubunit linkages
US5206344A (en) * 1985-06-26 1993-04-27 Cetus Oncology Corporation Interleukin-2 muteins and polymer conjugation thereof
US5283317A (en) * 1987-08-03 1994-02-01 Ddi Pharmaceuticals, Inc. Intermediates for conjugation of polypeptides with high molecular weight polyalkylene glycols
US4981785A (en) * 1988-06-06 1991-01-01 Ventrex Laboratories, Inc. Apparatus and method for performing immunoassays
US4968103A (en) * 1988-07-22 1990-11-06 Photofinish Cosmetics Inc. Method of making a brush
US5223409A (en) * 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
US5225212A (en) * 1989-10-20 1993-07-06 Liposome Technology, Inc. Microreservoir liposome composition and method
US5614396A (en) * 1990-06-14 1997-03-25 Baylor College Of Medicine Methods for the genetic modification of endogenous genes in animal cells by homologous recombination
US5489677A (en) * 1990-07-27 1996-02-06 Isis Pharmaceuticals, Inc. Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms
US5602240A (en) * 1990-07-27 1997-02-11 Ciba Geigy Ag. Backbone modified oligonucleotide analogs
US5714331A (en) * 1991-05-24 1998-02-03 Buchardt, Deceased; Ole Peptide nucleic acids having enhanced binding affinity, sequence specificity and solubility
US5674486A (en) * 1991-06-25 1997-10-07 San Diego Regional Cancer Center Cancer immunotherapy with carrier cells
US5904920A (en) * 1991-10-04 1999-05-18 Whitehead Institute For Biomedical Research Regulation of systemic immune responses utilizing cytokines and antigens
US5631169A (en) * 1992-01-17 1997-05-20 Joseph R. Lakowicz Fluorescent energy transfer immunoassay
US6051230A (en) * 1992-03-05 2000-04-18 Board Of Regents, The University Of Texas System Compositions for targeting the vasculature of solid tumors
US5358691A (en) * 1992-03-27 1994-10-25 Abbott Laboratories Automated continuous and random access analytical system
US5885808A (en) * 1992-11-04 1999-03-23 Imperial Cancer Research Technology Limited Adenovirus with modified binding moiety specific for the target cells
US5539082A (en) * 1993-04-26 1996-07-23 Nielsen; Peter E. Peptide nucleic acids
US5719262A (en) * 1993-11-22 1998-02-17 Buchardt, Deceased; Ole Peptide nucleic acids having amino acid side chains
US5672480A (en) * 1993-12-29 1997-09-30 Abbott Laboratories Immunoassays for prostate specific antigen
US5599677A (en) * 1993-12-29 1997-02-04 Abbott Laboratories Immunoassays for prostate specific antigen
US5994523A (en) * 1994-04-22 1999-11-30 The United States Of America As Represented By The Department Of Health And Human Services Melanoma antigens and their use in diagnostic and therapeutic methods
US5994106A (en) * 1994-06-10 1999-11-30 Genvec, Inc. Stocks of recombinant, replication-deficient adenovirus free of replication-competent adenovirus
US6001557A (en) * 1994-10-28 1999-12-14 The Trustees Of The University Of Pennsylvania Adenovirus and methods of use thereof
US5872154A (en) * 1995-02-24 1999-02-16 The Trustees Of The University Of Pennsylvania Method of reducing an immune response to a recombinant adenovirus
US5824544A (en) * 1995-03-24 1998-10-20 Genzyme Corporation Adenovirus vectors for gene therapy
US6019978A (en) * 1995-06-05 2000-02-01 The Wistar Institute Of Anatomy And Biology Replication-defective adenovirus human type 5 recombinant as a vaccine carrier
US6033908A (en) * 1995-06-15 2000-03-07 Introgene, B.V. Packaging systems for human recombinant adenovirus to be used in gene therapy
US5994128A (en) * 1995-06-15 1999-11-30 Introgene B.V. Packaging systems for human recombinant adenovirus to be used in gene therapy
US6159750A (en) * 1995-12-22 2000-12-12 Abbott Laboratories Fluorescence polarization immunoassay diagnostic method
US5994069A (en) * 1996-01-24 1999-11-30 Third Wave Technologies, Inc. Detection of nucleic acids by multiple sequential invasive cleavages
US5972334A (en) * 1996-05-01 1999-10-26 Genitope Corporation Vaccines for treatment of lymphoma and leukemia
US5885530A (en) * 1996-06-28 1999-03-23 Dpc Cirrus, Inc. Automated immunoassay analyzer
US6207147B1 (en) * 1996-10-11 2001-03-27 The Regents Of The University Of California Cancer immunotherapy using tumor cells combined with mixed lymphocytes
US5994132A (en) * 1996-10-23 1999-11-30 University Of Michigan Adenovirus vectors
US6080912A (en) * 1997-03-20 2000-06-27 Wisconsin Alumni Research Foundation Methods for creating transgenic animals
US5830730A (en) * 1997-05-08 1998-11-03 The Regents Of The University Of California Enhanced adenovirus-assisted transfection composition and method
US20030028981A1 (en) * 1997-10-14 2003-02-13 Chandler Don J. Precision fluorescently dyed particles and methods of making and using same
US6506559B1 (en) * 1997-12-23 2003-01-14 Carnegie Institute Of Washington Genetic inhibition by double-stranded RNA
US5981225A (en) * 1998-04-16 1999-11-09 Baylor College Of Medicine Gene transfer vector, recombinant adenovirus particles containing the same, method for producing the same and method of use of the same
US7402403B1 (en) * 1998-05-11 2008-07-22 Oncimmune Limited Tumour markers
US20080153113A1 (en) * 1998-05-11 2008-06-26 Robertson John F R Tumour Markers
US6686147B1 (en) * 1998-07-15 2004-02-03 Ludwig Institute For Cancer Research Cancer associated antigens and uses therefor
US7205117B1 (en) * 1998-12-10 2007-04-17 University Of Nottingham Cancer detection method and reagents
US6783961B1 (en) * 1999-02-26 2004-08-31 Genset S.A. Expressed sequence tags and encoded human proteins
US7115416B1 (en) * 1999-02-26 2006-10-03 Serono Genetics Institute S.A. Expressed sequence tags and encoded human proteins
US6610508B1 (en) * 1999-03-08 2003-08-26 Anadys Pharmaceuticals, Inc. Translation driver system and methods for use thereof
US7368527B2 (en) * 1999-03-12 2008-05-06 Human Genome Sciences, Inc. HADDE71 polypeptides
US6180357B1 (en) * 1999-10-08 2001-01-30 Arius Research, Inc. Individualized patient-specific anti-cancer antibodies
US6573361B1 (en) * 1999-12-06 2003-06-03 Monsanto Technology Llc Antifungal proteins and methods for their use
US20030092009A1 (en) * 2000-11-16 2003-05-15 Kaia Palm Profiling tumor specific markers for the diagnosis and treatment of neoplastic disease
US20070082330A1 (en) * 2001-03-21 2007-04-12 Xenoport, Inc. Compounds displayed on icosahedral phage and methods of using same
US7214498B2 (en) * 2001-03-23 2007-05-08 Benaroya Research Institute At Virginia Mason Tumor associated antigens and methods of using the same
US20070269798A1 (en) * 2001-04-17 2007-11-22 Xenoport, Inc. Epitope-captured antibody display
US20030175736A1 (en) * 2001-08-02 2003-09-18 The Regents Of The University Of Michigan Expression profile of prostate cancer
US20040044181A1 (en) * 2001-08-31 2004-03-04 Tang Y. Tom Novel nucleic acids and polypeptides
US20030219760A1 (en) * 2001-09-05 2003-11-27 The Brigham And Women's Hospital, Inc. Diagnostic and prognostic tests
US6943241B2 (en) * 2001-11-05 2005-09-13 Research Association For Biotechnology Full-length cDNA
US7541150B2 (en) * 2002-04-08 2009-06-02 University Of Louisville Research Foundation, Inc Method for the diagnosis and prognosis of malignant diseases
US7067258B2 (en) * 2002-04-30 2006-06-27 Merck & Co., Inc. Human papillomavirus multiplexed assay
US20050147961A1 (en) * 2002-04-30 2005-07-07 Esser Mark T. Human papillomavirus multiplexed assay
US20050032065A1 (en) * 2002-06-24 2005-02-10 Afar Daniel E. H. Methods of prognosis of prostate cancer
US20070054353A1 (en) * 2002-09-26 2007-03-08 John White Nuclear receptor transcriptional corepressor and uses thereof
US20060024692A1 (en) * 2002-09-30 2006-02-02 Oncotherapy Science, Inc. Method for diagnosing non-small cell lung cancers
US7858323B2 (en) * 2004-06-09 2010-12-28 The Regents Of The University Of Michigan Phage microarray profiling of the humoral response to disease
US7597890B2 (en) * 2004-06-09 2009-10-06 The Regents Of The University Of Michigan Methods and compositions for diagnosing lung cancer
US20100009382A1 (en) * 2004-06-09 2010-01-14 The Regents Of The University Of Michigan Methods and compositions for diagnosing lung cancer
US20060014138A1 (en) * 2004-06-09 2006-01-19 The Regents Of The University Of Michigan Phage microarray profiling of the humoral response to disease
US20110070652A1 (en) * 2004-06-09 2011-03-24 The Regents Of The University Of Michigan Phage microarray profiling of the humoral response to disease
US8617547B2 (en) * 2004-06-09 2013-12-31 The Regents Of The University Of Michigan Methods and compositions for diagnosing prostate cancer
US20070037143A1 (en) * 2005-06-02 2007-02-15 Digilab Biovision Gmbh Method for screening for protease modulators
US20080213791A1 (en) * 2005-11-08 2008-09-04 Euclid Diagnostics Llc Materials and methods for assaying for methylation of CpG islands associated with genes in the evaluation of cancer
US20080280844A1 (en) * 2007-05-09 2008-11-13 Lessnick Stephen L Methods and compositions for the diagnosis and treatment of ewing's sarcoma
US20110237457A1 (en) * 2010-03-26 2011-09-29 Armune Biosciences, Inc. Method and system of particle-coupled phage epitope
US20130130355A1 (en) * 2011-09-28 2013-05-23 Armune Biosciences, Inc. Method and system of particle-phage epitope complex

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
abcam Anti-methionine antibody product ab6456 downloaded from the internet 2/8/2017 *
Leinonen et al (2002 Clinical Chemistry 48:2208-16) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100009382A1 (en) * 2004-06-09 2010-01-14 The Regents Of The University Of Michigan Methods and compositions for diagnosing lung cancer
US20110070652A1 (en) * 2004-06-09 2011-03-24 The Regents Of The University Of Michigan Phage microarray profiling of the humoral response to disease
US8617547B2 (en) 2004-06-09 2013-12-31 The Regents Of The University Of Michigan Methods and compositions for diagnosing prostate cancer
US9267133B2 (en) 2004-06-09 2016-02-23 The Regents Of The University Of Michigan Phage microarray profiling of the humoral response to disease
US10006023B2 (en) 2004-06-09 2018-06-26 The Regents Of The University Of Michigan Phage microarray profiling of the humoral response to disease
US20150232931A1 (en) * 2013-09-20 2015-08-20 The Regents Of The University Of Michigan Compositions and methods for the analysis of radiosensitivity
WO2017223533A1 (en) * 2016-06-24 2017-12-28 University Of Southern California Mentsh analogs as therapeutics for diabetes, obesity, and their associated diseases and complications
CN109414472A (en) * 2016-06-24 2019-03-01 南加利福尼亚大学 MENTSH analog is as the therapeutic agent for being used for diabetes, obesity and its related disease and complication
US11124551B2 (en) * 2016-06-24 2021-09-21 University Of Southern California MENTSH analogs as therapeutics for diabetes, obesity, and their associated diseases and complications
US20210371479A1 (en) * 2016-06-24 2021-12-02 University Of Southern California Mentsh analogs as therapeutics for diabetes, obesity, and their associated diseases and complications
US11760783B2 (en) * 2016-06-24 2023-09-19 University Of Southern California MENTSH analogs as therapeutics for diabetes, obesity, and their associated diseases and complications

Also Published As

Publication number Publication date
US20160041174A1 (en) 2016-02-11
EP3450979A2 (en) 2019-03-06
US9658231B2 (en) 2017-05-23
EP2548025A2 (en) 2013-01-23
EP2548025A4 (en) 2013-09-25
US20180224455A1 (en) 2018-08-09
EP3450979A3 (en) 2019-04-24
US11307203B2 (en) 2022-04-19
WO2011116209A3 (en) 2012-04-05
WO2011116209A2 (en) 2011-09-22

Similar Documents

Publication Publication Date Title
US11307203B2 (en) Using phage epitopes to profile the immune response
AU2014204510B2 (en) Protein signature/markers for the detection of adrenocarcinoma
WO2008061104A2 (en) Methods and kits for detecting prostate cancer biomarkers
US20080081339A1 (en) Tumor associated markers in the diagnosis of prostate cancer
Qin et al. Development of a “reverse capture” autoantibody microarray for studies of antigen‐autoantibody profiling
US20130130355A1 (en) Method and system of particle-phage epitope complex
CA2706786A1 (en) Diagnostic methods and arrays for use in the same
JP5731488B2 (en) Seselnin-1 as a marker for cancer
Murphy et al. Epitope presentation is an important determinant of the utility of antigens identified from protein arrays in the development of autoantibody diagnostic assays
Gunawardana et al. Identifying novel autoantibody signatures in ovarian cancer using high-density protein microarrays
EP2620772A1 (en) Gastric cancer biomarkers and methods of use thereof
JP2018136122A (en) Blood plasma biomarker panel for diagnosing pancreas cancer
US20110237457A1 (en) Method and system of particle-coupled phage epitope
CA2662012C (en) Boris isoforms and methods of detecting and treating disease
US20190137498A1 (en) Methods and compositions for detecting cancer
EP2619218B1 (en) Kits for detecting breast or ovarian cancer in a body fluid sample and use thereof
KR102131860B1 (en) Biomarker Composition for Diagnosing Colorectal Cancer Specifically Binding to Arginine-methylated Gamma-glutamyl Transferase 1
WO2024057956A1 (en) P53 isoform variant for diagnosing cancer
US20150004621A1 (en) Biological marker for early cancer detection and methods for cancer detection (bf819)
JP6312141B2 (en) Urinary biomarker for prostate cancer test

Legal Events

Date Code Title Description
AS Assignment

Owner name: ARMUNE BIOSCIENCES, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TSODIKOV, ALEX;REEL/FRAME:026627/0454

Effective date: 20110516

Owner name: THE REGENTS OF THE UNIVERSITY OF MICHIGAN, MICHIGA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WANG, XIAOJU;REEL/FRAME:026627/0457

Effective date: 20110323

Owner name: THE REGENTS OF THE UNIVERSITY OF MICHIGAN, MICHIGA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TSODIKOV, ALEX;REEL/FRAME:026627/0454

Effective date: 20110516

Owner name: HOWARD HUGHES MEDICAL INSTITUTE ("HHMI"), MARYLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHINNAIYAN, ARUL M.;REEL/FRAME:026627/0462

Effective date: 20110715

Owner name: ARMUNE BIOSCIENCES, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OHRNBERGER, JEANNE;REEL/FRAME:026627/0427

Effective date: 20110531

AS Assignment

Owner name: THE REGENTS OF THE UNIVERSITY OF MICHIGAN, MICHIGA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOWARD HUGHES MEDICAL INSTITUTE ("HHMI");REEL/FRAME:026632/0895

Effective date: 20110715

AS Assignment

Owner name: EXACT SCIENCES DEVELOPMENT COMPANY, LLC, WISCONSIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ARMUNE BIOSCIENCE, INC.;REEL/FRAME:044568/0634

Effective date: 20171215

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION