US3788462A - Unitized palletless load - Google Patents

Unitized palletless load Download PDF

Info

Publication number
US3788462A
US3788462A US00118664A US3788462DA US3788462A US 3788462 A US3788462 A US 3788462A US 00118664 A US00118664 A US 00118664A US 3788462D A US3788462D A US 3788462DA US 3788462 A US3788462 A US 3788462A
Authority
US
United States
Prior art keywords
layer
load
sheet
heat
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00118664A
Inventor
J Meincer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OI Glass Inc
Original Assignee
Owens Illinois Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Owens Illinois Inc filed Critical Owens Illinois Inc
Application granted granted Critical
Publication of US3788462A publication Critical patent/US3788462A/en
Assigned to OWENS-ILLINOIS GLASS CONTAINER INC. reassignment OWENS-ILLINOIS GLASS CONTAINER INC. ASSIGNS AS OF APRIL 15, 1987 THE ENTIRE INTEREST Assignors: OWENS-ILLINOIS, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D71/00Bundles of articles held together by packaging elements for convenience of storage or transport, e.g. portable segregating carrier for plural receptacles such as beer cans or pop bottles; Bales of material
    • B65D71/0088Palletisable loads, i.e. loads intended to be transported by means of a fork-lift truck
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2571/00Bundles of articles held together by packaging elements for convenience of storage or transport, e.g. portable segregating carrier for plural receptacles such as beer cans, pop bottles; Bales of material
    • B65D2571/00006Palletisable loads, i.e. loads intended to be transported by means of a fork-lift truck
    • B65D2571/00012Bundles surrounded by a film
    • B65D2571/00018Bundles surrounded by a film under tension
    • B65D2571/00024Mechanical characteristics of the shrink film
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2571/00Bundles of articles held together by packaging elements for convenience of storage or transport, e.g. portable segregating carrier for plural receptacles such as beer cans, pop bottles; Bales of material
    • B65D2571/00006Palletisable loads, i.e. loads intended to be transported by means of a fork-lift truck
    • B65D2571/00061Special configuration of the stack
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2571/00Bundles of articles held together by packaging elements for convenience of storage or transport, e.g. portable segregating carrier for plural receptacles such as beer cans, pop bottles; Bales of material
    • B65D2571/00006Palletisable loads, i.e. loads intended to be transported by means of a fork-lift truck
    • B65D2571/00067Local maintaining elements, e.g. partial packaging, shrink packaging, shrink small bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2571/00Bundles of articles held together by packaging elements for convenience of storage or transport, e.g. portable segregating carrier for plural receptacles such as beer cans, pop bottles; Bales of material
    • B65D2571/00006Palletisable loads, i.e. loads intended to be transported by means of a fork-lift truck
    • B65D2571/0008Load supporting elements
    • B65D2571/00092Load supporting elements formed by specially placed articles or parts thereof

Definitions

  • ABSTRACT A unitized, palletless plurality of articles grouped and arranged in transportable or storable units.
  • a first layer of articles is built atop a strip of heat-shrinkable thermoplastic material.
  • Subsequent layers, all of an equal circumference and of greater circumference than the first layer, are built atop the first layer. At least two free ends of the bottommost strip are tucked beneath one of the subsequent layers.
  • a heat-shrinkable thermoplastic material preferably in the form of a bag, is placed around the entire load-The load, so enclosed, is exposed to heat to cause the material to shrink, also causing the bottom strip, to fuse into the overall wrapping.
  • the result is a tightly confined unitized and stabilized load suitable for storage or shipment.
  • the load may be lifted and transported by a fork lift at the ledge defined by the overhang'of all of the upper layers over the first layer.
  • Palletless loads such as the well-known slip sheet loads
  • shrink-wrapped unit loads such as better load stability, product protection and lower cost of stabilizing materials. That is, in some cases, loads are shipped great distances, making return freight costs for pallets prohibitive.
  • customers do not wish to have pallets in their plants, while the shipper desires to have the ease of handling and economies of unit loads inhis plant.
  • the present invention presents a unitized load and a method for making the same which will give a stable, palletless unit load that may be handled in much the same manner as a load built on a pallet, but, since the load is palletless, without the problems attributed to shipping unit loads with pallets.
  • This invention relates generally to shrink-wrapping unit loads. More specifically, this invention relates to a palletless, shrink-wrapped, unit load and the method for making said load.
  • At least one strip of a thermoplastic material is laid on a suitable base.
  • a first layer of articles to be unitized most commonly, multiple individual boxes or cartons.
  • a second layer is then built atop the first layer, the second layer having a slightly larger perimeter than the first layer. The difference in perimeter is equally distributed (although, if the size of the layers, so dictate, the overhang may be distributed over only two opposite sides of the first layer), the second layer thus overhanging the first layer on all four sides.
  • Subsequent layers, of the same circumference are then built atop the second layer until the load is of the desired height.
  • the strip of heat-shrinkable material upon which the first layer was built will be raised vertically and laid horizontally across the top of one of the layers built on top of the first layer. The subsequentlayers will then tend to-secure the strip in position.
  • the entire load is covered with a heat-shrinkable thermoplastic material. This step is accomplished most easily if the heat-shrinkable material is in the form of a bag, although sheets of material could be used.
  • the entire load is subjected to heat sufficient to cause the overall thermoplastic wrap to shrink and also cause the lower strip to both shrinkand fuse into the overall wrap.
  • the result is a very stable unitized load which does not require a pallet for handling.
  • the load may be picked up by inserting the forks of a fork lift truck under the ledge defined by the overhang of the upper layers over the first layer. The load may be handled in this manner for both storage and shipment.
  • FIG. 1 is a perspective view illustrating the first step of placing lower load strips to begin the building pro cess
  • FIG. 2 is a perspective view, similar to FIG. 1, illustrating the building to a height of two layers;
  • FIG. 3 is a perspective view showing a stabilizing strip or shelf in place on the load
  • FIG. 4 is a perspective view of the completed load before the overall plastic wrap is applied
  • FIG. 5 illustrates the method of handling the completed load after the shrinking process
  • FIG. 6 is a perspective view showing the completed load of the invention in the form it assumes for storage or shipment.
  • FIGS. 1, 2, 3, 4 and 6 are a series of views illustrating the various stages of the process of making the palletless load of the invention.
  • the load is built on a conventional material handling pallet 10.
  • the pallet 10 is used to handle the load until the completed load has been through the final heating process to shrink the plastic film and thus make the load stable. Until this process is completed, the load is very unstable and must be handled on the pallet 10. After the process, the load is removed from the pallet 10, allowing immediate reuse of the pallet 10.
  • FIG. 1 illustrates how the load is begun. Two strips 12 and 14 of a thermoplastic material are laid atop the pallet 10 in an overlying manner to form a cross having arms of substantially equal length. While FIG.
  • a suitable load could be constructed using either the strip 12 or the strip 14.
  • a preferred material for the strips 12, 14, is heat-shrinkable polyethylene of from 0.002 inch to 0.005 inch in thickness.
  • any heat-shrinkable thermoplastic material of from 0.001 inch to 0.015 inch in thickness could be successfully utilized.
  • the length of the strips is not a critical factor, but the length of each of the arms of the cross formed by the overlying strips 12, 14, should be greater than the height of two'of the articles to be unitized.
  • the objects to be unitized will most typically be boxes or cartons.
  • a first layer 16 consisting of a plurality of objects is assembled on the pallet 10 on top of the strips 12, 14.
  • a second layer 18 of a plurality of objects is then assembled atop the first layer 16.
  • the second layer 18 contains more of the objects to be unitized than does the first layer 16, and, consequently, the second layer 18 has a larger perimeter than the first layer 16.
  • the difference in perimeters is on only two sides, and is equally distributed to form ledges 20 overhanging the first layer 16.
  • the perimeter of the second layer 18 could be larger than that of the first layer 16 on all four sides, thereby giving four overhanging ledges 20.
  • the arms of the strips l2, 14, are raised to the top of the second layer 18 and laid one atop another as shown in FIG. 2.
  • the arms of the strips 12, 14, could be retained in their raised position by means other than placing them on the second layer and holding them in place with subsequent layers.
  • the arms of the strips 12, 14, could be taped to the exterior of the layers and not laid over the top of the second layer.
  • the arms of the strips 12, 14, could be left lying flat until the completed load is ready to be enclosed with a heat-shrinkable thermoplastic material, as discussed later.
  • the arms of the strips 12, 14, in that case, would be raised to the desired vertical position and, for example, taped in place in touching relationship with the load-enclosing wrap.
  • subsequent layers 22 are assembled atop the second layer 18.
  • the subsequent layers 22 are identical in size to the second layer 18.
  • a straight up stack of objects is shown in FIG. 3, the objects could be arranged in an interlocking pattern for additional stability.
  • An added measure of stability may be imparted to the completed load if a stabilizing strip 24 is placed as shown in FIG. 3.
  • the stabilizing strip 24 should be no wider than the width of a subsequent layer 22 and should be long enough to lie completely across the top of a subsequent layer 22 and hang down at either end at least the height of a subsequent layer 22.
  • the strip 24, while serving as a latera'lfitensioning member to aid in load stabilization also has the function of being a shelf.
  • the unitized load may tend to sag in the center when elevated as a unit.
  • the strip 24, particularly when several additional tiers of objects are positioned thereabove, will serve as a shelf and transfer some of the load or weight thereabove to the edges with the outside objects acting as columns, therefore lessening the load concentration supported by the forks on the center of the unitized load.
  • the material of the stabilizing strip 24 should be the same as that of the strips 12, 14.
  • the subsequent layer 22 upon which the stabilizing strip 24' is placed is not critical, but, as shown in FIG. 4, at least one subsequent layer 22 must be placed on top of the stabilizing strip 24 to hold it in position.
  • thermoplastic material should be the same as that used for the strips l2, l4, and the stabilizing strip 24, although the thickness may be varied as desired.
  • the encapsulation or covering step is most easily accomplished with the thermoplastic material being in the form of a bag which can be slipped over the entire load. Alternatively, the load could be over-wrapped with the use of sheets of heat-shrinkable thermoplastic material. It should be kept in mind that the load-enclosing thermoplastic material should not be allowed to drape over the edges of the pallet 10, for reasons to be explained later.
  • the pallet 10, still supporting the now covered load, is next placed in a conventional shrink oven of a size sufficient to receive such loads.
  • a conventional shrink oven of a size sufficient to receive such loads.
  • sufficient heat is applied to cause the load-enclosing wrap to shrink and tightly hold the objects making up the load.
  • the strips 12, 14, will experience some degree of shrinkage and thus tend to grip and hold the first and second layers 16 and 18.
  • the strips l2, l4, and stabilizing strip 24 will become fused, by the heat, into the load-enclosing wrap resulting in a strong unitized load. It is important during the shrink process that the load-enclosing wrap not extend over or below the edge of the pallet 10. If this occurs, the load-enclosing wrap may shrink around and grip the edges of the pallet 10 and cause incomplete fusion of the strips 12, 14, thereby creating an unstable load. Furthermore, removal of the load from the pallet 10 would be impossible without partial destruction of the unitized load.
  • FIG. 5 illustrates the removal of the unitized load 26 from the pallet 20 after the heating step.
  • the unitized load 26 is suitable for storage or shipment and no longer needs to be carried on the pallet 10.
  • a commercial lift type truck 28 having horizontally extending forks 30 would typically be utilized to move the unitized load 26.
  • the forks 30 may be inserted under the ledges 20, and the unitized load lifted with the ledges 20 resting on the top of the forks 30. If care is used in this step, the forks 30 will not puncture the load-enclosing wrap.
  • the load-enclosing wrap maintains a certain degree of flexibility even after having been shrunk.
  • the forks 30, when being lifted, will normally force the load-enclosing wrap lying under the ledges 20 upward until the forks 30 contact the ledges 20 with the now stretched load-enclosing wrap trapped between the ledges 20 and the forks 30.
  • the forks 30, by first lowering and then retracting the load-enclosing wrap will return to substantially its original shape.
  • FIG. 6 shows the unitized load 26 after removal from the pallet 10.
  • the first or bottom layer 16, the second layer 18 and subsequent layers 22 are supported and stabilized in part by the tension provided by the shrunk, load-enclosing wrap and in part by the fusion of the strips 12, 14, to the load-enclosing wrap.
  • the load-enclosing wrap may occasionally be torn under the ledges 20 by the forks 30.
  • These torn edges, designated as 32 in FIG. 6, do not appreciably weaken the unitized load 26, and will not disturb the inherent moisture barrier properties of the plastic strips. It should be noted, though, that before the unitized load 26 is lifted from the pallet 10, it is completely encapsulated. It is preferable to use care in removing the load 26 from the pallet 10 as discussed previously with reference to FIG. 5 to avoid the torn edges 32.
  • the method of forming a unitized, stable load of a plurality of objects comprising, placing at least one elongated sheet of thermoplastic material on a support, assembling a first layer of objects on said sheet in a regular pattern, said sheet having ends thereof which extend beyond the perimeter of said layer, assembling a second layer of objects on said first layer, said second layer having a perimeter greater than said first layer to provide overhangs at opposed sides thereof, assembling a plurality of additional layers having a perimeter equal to that of said second layer in overlying relation thereto to form a complete load, enclosing the side walls of said load with a continuous sheet of heat-shrinkable thermo-plastic material, positioning the extending ends of said elongate sheet in Contacting relation to said continuous sheet, retaining said sheet in contacting relationship, heat-shrinking said sheet material about said load and simultaneously therewith fusing said enclosing material to said first sheet to thereby form a stabilized, unitized load capable of being handled by a fork lift engaging the over
  • the method of claim 1 further including, the step of placing an additional elongated sheet of thermoplastic material in cross-wise, overlying relationship to said first sheet prior to assembling said first layer, said additional sheet having ends extending beyond the perimeter of said first layer, positioning the ends of said second sheet in contacting relation to said continuous sheet and retaining said second sheet in contacting relationship.
  • the method of claim 1 further comprising, the step of placing at least one stabilizing strip of a thermoplastic material across the top of at least one of said additional layers prior to enclosing and heat-shrinking, said stabilizing strip being of sufficient length to hang vertically downward to an extent sufficient to provide a fused connection with the enclosing material during said heat shrinking.
  • the method of claim 4 further including, the step of placing an additional elongated sheet of thermoplastic material in cross-wise, overlying relationship to said first sheet prior to assembling said first layer, said additional sheet having ends extending beyond the perimeter of said first layer, raising the extending ends of said additional elongated sheet into generally parallel relationship to the sides of said load, and retaining said ends in their raised position.
  • the method of claim 4 further comprising, the step of placing at least one stabilizing strip of a thermoplastic material across the top of at least one of said additional layers prior to enclosing and heat-shrinking, said stabilizing strip being of sufficient length to hang vertically downward to an extent sufficient to provide a fused connection with the enclosing material during said heat shrinking.
  • a method for unitizing a plurality of articles into a load suitable for storage and shipment comprising the steps of positioning at least one strip of a heatshrinkable thermoplastic material of from 0.001 inch to 0.015 inch in thickness on a suitable base, placing a first layer of articles to be unitized on top of said strip, said strip having portions thereof extending beyond said first layer on either side of said first layer, placing at least one additional layer of said articles atop said first layer, said additional layer having a perimeter greater than the perimeter of said first layer, said additional layer being centered with respect to said first layer, and positioned with an overhang provided at at least two opposed sides of said first layer, raising and placing the free ends of said strip horizontally across the top of said additional layer, adding subsequent layers of articles having a perimeter equal to the perimeter of said additional layer until the desired height of load is reached, said first, additional and subsequent layers of articles serving to define the sidewalls of said load, enclosing at least the sidewalls of said load with a heatshrinkable thermoplastic material of from 0.00
  • the method of claim 7 further comprising the step of placing at least one stabilizing strip of a thermoplastic material across the top of at least one of said additional layers prior to enclosing and heat shrinking, said stabilizing strip being of sufficient length to hang vertically downwardto an extent sufficient to provide a fused connection with the enclosing material during said heat shrinking.
  • thermoplastic material is polyethylene
  • a unitized, palletless load of articles comprising, a stack of articles formed of a plurality of layers of a plurality of articles, the lowermost layer of said stack being formed of lesser horizontal dimension than the other layers and providing access to opposed lifting ledges, a strip of heatshrunk thermoplastic material underlying said lowermost layer and having opposed ends folded up and interposed said overlying layers, and a heat shrunk thermoplastic material completely enclosing said stack of articles and fused to said strip.
  • a unitized palletless load of a plurality of articles suitable for storage and shipment comprising, a substantially rectangular first layer of said articles, a second, substantially rectangular layer of said articles, having a perimeter greater than that of said first layer, overlying said first layer, a third, substantially rectangular layer of said articles, having a perimeter substantially equal to that of said second layer, overlying said second layer, a strip of heat shrunk thermoplastic material underlying said first layer, extending up the side and interposed said second and third layers, a plurality of substantially rectangular subsequent layers of substantially equal perimeter overlying said third layer, and a heat shrunk thermoplastic material completely enclosing said first, second, third and subsequent layers and fused to said underly-' ing strip.

Abstract

A unitized, palletless plurality of articles grouped and arranged in transportable or storable units. A first layer of articles is built atop a strip of heat-shrinkable thermoplastic material. Subsequent layers, all of an equal circumference and of greater circumference than the first layer, are built atop the first layer. At least two free ends of the bottommost strip are tucked beneath one of the subsequent layers. When the layers have reached the desired height, a heat-shrinkable thermoplastic material, preferably in the form of a bag, is placed around the entire load. The load, so enclosed, is exposed to heat to cause the material to shrink, also causing the bottom strip to fuse into the overall wrapping. The result is a tightly confined unitized and stabilized load suitable for storage or shipment. The load may be lifted and transported by a fork lift at the ledge defined by the overhang of all of the upper layers over the first layer.

Description

United States Patent [1 1 Jan. 29, 1974 Meincer UNITIZED PALLETLESS LOAD [75] Inventor: John H. Meincer, Toledo, Ohio [73] Assignee: Owens-Illinois, Inc., Toledo, Ohio [22] Filed: Feb. 25, 1971 [21] Appl. No.: 118,664
[52] US. Cl. 206/65 S, 53/30, 206/45.33, 214/105 R, 229/DIG. 12
[51] Int. Cl... 865d 65/20, B65d 71/00, B65d 85/62 [58] Field of Search 206/65 S, 65 B, 45.33; 53/30,
53/184; 229/D1G. 12, 87 R; 214/105 R [56] References Cited UNITED STATES PATENTS 3,389,813 6/1968 Kat et al. 2l4/10.5 R 3,618,755 ll/l97l Kean, Sr. 206/65 S 2,979,871 4/1961 Kieckhefer 206/65 B 3,392,851 7/1968 Pearne et al. 214/105 R 3,640,048 2/1972 Zelnick 1 .1 206/65 S 3,667,598 6/1972 Zelnick 206/65 S FOREIGN PATENTS OR APPLICATIQNS Netherlands 206/65 S Primary Examiner-William T. Dixson, Jr. Attorney, Agent, or FirmSteve M. McLary; E. J. Holler [5 7] ABSTRACT A unitized, palletless plurality of articles grouped and arranged in transportable or storable units. A first layer of articles is built atop a strip of heat-shrinkable thermoplastic material. Subsequent layers, all of an equal circumference and of greater circumference than the first layer, are built atop the first layer. At least two free ends of the bottommost strip are tucked beneath one of the subsequent layers. When the layers have reached the desired height, a heat-shrinkable thermoplastic material, preferably in the form of a bag, is placed around the entire load-The load, so enclosed, is exposed to heat to cause the material to shrink, also causing the bottom strip, to fuse into the overall wrapping. The result is a tightly confined unitized and stabilized load suitable for storage or shipment. The load may be lifted and transported by a fork lift at the ledge defined by the overhang'of all of the upper layers over the first layer.
12 Claims, 6 Drawing Figures PATENTED JAN 2 9 I974 SHEET 1 BF 3 INVENTOR. Jo/Tn H. fie/nae? BY ATT'YS.
PATENTEDJAH 29 um SHEU 0F 3 INVENTOR. J04); H. Meihcer @3. Q A M (A 7* UNITIZED PALLETLESS LOAD BACKGROUND OF THE INVENTION The use of heat-shrinkable plastic films such as polyethylene and polyvinyl chloride to stabilize and protect loads of articles, particularly stacks of boxes, has become an important method of material handling. Such stacks of articles are commonly referred to in the industry as unit loads. To date, unit loads, which have been shrink-wrapped (the term applied to loads which have been covered with the heat-shrinkable plastic films mentioned), have been built on pallets. Palletless loads, such as the well-known slip sheet loads, have not been shrink-wrapped because of the problems'involved in handling such loads when encased in plastic film. However, it is often desirableto avoid the use of pallets but still retain the advantages of shrink-wrapped unit loads, such as better load stability, product protection and lower cost of stabilizing materials. That is, in some cases, loads are shipped great distances, making return freight costs for pallets prohibitive. Often, customers do not wish to have pallets in their plants, while the shipper desires to have the ease of handling and economies of unit loads inhis plant. Finally, there is frequently an unexplained and nearly uncontrollable shrinkage in the quantity of pallets returned, thus causing the shipper losses in the cost of replacing pallets thus lost. The present invention presents a unitized load and a method for making the same which will give a stable, palletless unit load that may be handled in much the same manner as a load built on a pallet, but, since the load is palletless, without the problems attributed to shipping unit loads with pallets.
SUMMARY OF THE INVENTION This invention relates generally to shrink-wrapping unit loads. More specifically, this invention relates to a palletless, shrink-wrapped, unit load and the method for making said load.
In practicing the invention, at least one strip of a thermoplastic material is laid on a suitable base. On this 4 strip is built a first layer of articles to be unitized, most commonly, multiple individual boxes or cartons. A second layer is then built atop the first layer, the second layer having a slightly larger perimeter than the first layer. The difference in perimeter is equally distributed (although, if the size of the layers, so dictate, the overhang may be distributed over only two opposite sides of the first layer), the second layer thus overhanging the first layer on all four sides. Subsequent layers, of the same circumference, are then built atop the second layer until the load is of the desired height. The strip of heat-shrinkable material upon which the first layer was built will be raised vertically and laid horizontally across the top of one of the layers built on top of the first layer. The subsequentlayers will then tend to-secure the strip in position. After the load has been built to the desired height, the entire load is covered with a heat-shrinkable thermoplastic material. This step is accomplished most easily if the heat-shrinkable material is in the form of a bag, although sheets of material could be used. As a final step, the entire load is subjected to heat sufficient to cause the overall thermoplastic wrap to shrink and also cause the lower strip to both shrinkand fuse into the overall wrap. The result is a very stable unitized load which does not require a pallet for handling. The load may be picked up by inserting the forks of a fork lift truck under the ledge defined by the overhang of the upper layers over the first layer. The load may be handled in this manner for both storage and shipment.
IN THE DRAWINGS FIG. 1 is a perspective view illustrating the first step of placing lower load strips to begin the building pro cess;
FIG. 2 is a perspective view, similar to FIG. 1, illustrating the building to a height of two layers;
FIG. 3 is a perspective view showing a stabilizing strip or shelf in place on the load;
FIG. 4 is a perspective view of the completed load before the overall plastic wrap is applied;
FIG. 5 illustrates the method of handling the completed load after the shrinking process; and
FIG. 6 is a perspective view showing the completed load of the invention in the form it assumes for storage or shipment.
DETAILED DESCRIPTION OF THE DRAWINGS It should be apparent that FIGS. 1, 2, 3, 4 and 6 are a series of views illustrating the various stages of the process of making the palletless load of the invention. The load is built on a conventional material handling pallet 10. The pallet 10 is used to handle the load until the completed load has been through the final heating process to shrink the plastic film and thus make the load stable. Until this process is completed, the load is very unstable and must be handled on the pallet 10. After the process, the load is removed from the pallet 10, allowing immediate reuse of the pallet 10. FIG. 1 illustrates how the load is begun. Two strips 12 and 14 of a thermoplastic material are laid atop the pallet 10 in an overlying manner to form a cross having arms of substantially equal length. While FIG. 1 illustrates the preferred embodiment of the invention in the use of two strips 12, 14, a suitable load could be constructed using either the strip 12 or the strip 14. A preferred material for the strips 12, 14, is heat-shrinkable polyethylene of from 0.002 inch to 0.005 inch in thickness. However, any heat-shrinkable thermoplastic material of from 0.001 inch to 0.015 inch in thickness could be successfully utilized. The length of the strips is not a critical factor, but the length of each of the arms of the cross formed by the overlying strips 12, 14, should be greater than the height of two'of the articles to be unitized.
The objects to be unitized will most typically be boxes or cartons. As seen in FIG. 2, a first layer 16 consisting of a plurality of objects is assembled on the pallet 10 on top of the strips 12, 14. A second layer 18 of a plurality of objects is then assembled atop the first layer 16. The second layer 18 contains more of the objects to be unitized than does the first layer 16, and, consequently, the second layer 18 has a larger perimeter than the first layer 16. In-the preferred embodiment, as shown in FIG. 2, the difference in perimeters is on only two sides, and is equally distributed to form ledges 20 overhanging the first layer 16. However, the perimeter of the second layer 18 could be larger than that of the first layer 16 on all four sides, thereby giving four overhanging ledges 20. As a final step in this initial portion of the preferred load building process, the arms of the strips l2, 14, are raised to the top of the second layer 18 and laid one atop another as shown in FIG. 2. It should be kept in mind, however, that the arms of the strips 12, 14, could be retained in their raised position by means other than placing them on the second layer and holding them in place with subsequent layers. For example, the arms of the strips 12, 14, could be taped to the exterior of the layers and not laid over the top of the second layer. Furthermore, the arms of the strips 12, 14, could be left lying flat until the completed load is ready to be enclosed with a heat-shrinkable thermoplastic material, as discussed later. The arms of the strips 12, 14, in that case, would be raised to the desired vertical position and, for example, taped in place in touching relationship with the load-enclosing wrap.
Turning now to FIG. 3, it can be seen that subsequent layers 22 are assembled atop the second layer 18. The subsequent layers 22 are identical in size to the second layer 18. Although a straight up stack of objects is shown in FIG. 3, the objects could be arranged in an interlocking pattern for additional stability. An added measure of stability may be imparted to the completed load if a stabilizing strip 24 is placed as shown in FIG. 3. Preferably, the stabilizing strip 24 should be no wider than the width of a subsequent layer 22 and should be long enough to lie completely across the top of a subsequent layer 22 and hang down at either end at least the height of a subsequent layer 22. Furthermore, the strip 24, while serving as a latera'lfitensioning member to aid in load stabilization, also has the function of being a shelf. It can readily be seen that the unitized load may tend to sag in the center when elevated as a unit. The strip 24, particularly when several additional tiers of objects are positioned thereabove, will serve as a shelf and transfer some of the load or weight thereabove to the edges with the outside objects acting as columns, therefore lessening the load concentration supported by the forks on the center of the unitized load. The material of the stabilizing strip 24 should be the same as that of the strips 12, 14. The subsequent layer 22 upon which the stabilizing strip 24' is placed is not critical, but, as shown in FIG. 4, at least one subsequent layer 22 must be placed on top of the stabilizing strip 24 to hold it in position.
With specific reference to FIG. 4, there is shown a completed load ready to be enclosed with a heatshrinkable thermoplastic material. This material should be the same as that used for the strips l2, l4, and the stabilizing strip 24, although the thickness may be varied as desired. The encapsulation or covering step is most easily accomplished with the thermoplastic material being in the form of a bag which can be slipped over the entire load. Alternatively, the load could be over-wrapped with the use of sheets of heat-shrinkable thermoplastic material. It should be kept in mind that the load-enclosing thermoplastic material should not be allowed to drape over the edges of the pallet 10, for reasons to be explained later.
The pallet 10, still supporting the now covered load, is next placed in a conventional shrink oven of a size sufficient to receive such loads. In the oven, sufficient heat is applied to cause the load-enclosing wrap to shrink and tightly hold the objects making up the load. The strips 12, 14, will experience some degree of shrinkage and thus tend to grip and hold the first and second layers 16 and 18. In addition, the strips l2, l4, and stabilizing strip 24 will become fused, by the heat, into the load-enclosing wrap resulting in a strong unitized load. It is important during the shrink process that the load-enclosing wrap not extend over or below the edge of the pallet 10. If this occurs, the load-enclosing wrap may shrink around and grip the edges of the pallet 10 and cause incomplete fusion of the strips 12, 14, thereby creating an unstable load. Furthermore, removal of the load from the pallet 10 would be impossible without partial destruction of the unitized load.
FIG. 5 illustrates the removal of the unitized load 26 from the pallet 20 after the heating step. At this point, the unitized load 26 is suitable for storage or shipment and no longer needs to be carried on the pallet 10. A commercial lift type truck 28 having horizontally extending forks 30 would typically be utilized to move the unitized load 26. The forks 30 may be inserted under the ledges 20, and the unitized load lifted with the ledges 20 resting on the top of the forks 30. If care is used in this step, the forks 30 will not puncture the load-enclosing wrap. The load-enclosing wrap maintains a certain degree of flexibility even after having been shrunk. Consequently, the forks 30, when being lifted, will normally force the load-enclosing wrap lying under the ledges 20 upward until the forks 30 contact the ledges 20 with the now stretched load-enclosing wrap trapped between the ledges 20 and the forks 30. Upon removal of the forks 30, by first lowering and then retracting the load-enclosing wrap will return to substantially its original shape.
FIG. 6 shows the unitized load 26 after removal from the pallet 10. The first or bottom layer 16, the second layer 18 and subsequent layers 22 are supported and stabilized in part by the tension provided by the shrunk, load-enclosing wrap and in part by the fusion of the strips 12, 14, to the load-enclosing wrap. When the unitized load 26 is picked up using a fork lift truck 28, the load-enclosing wrap may occasionally be torn under the ledges 20 by the forks 30. These torn edges, designated as 32 in FIG. 6, do not appreciably weaken the unitized load 26, and will not disturb the inherent moisture barrier properties of the plastic strips. It should be noted, though, that before the unitized load 26 is lifted from the pallet 10, it is completely encapsulated. It is preferable to use care in removing the load 26 from the pallet 10 as discussed previously with reference to FIG. 5 to avoid the torn edges 32.
I claim:
l. The method of forming a unitized, stable load of a plurality of objects comprising, placing at least one elongated sheet of thermoplastic material on a support, assembling a first layer of objects on said sheet in a regular pattern, said sheet having ends thereof which extend beyond the perimeter of said layer, assembling a second layer of objects on said first layer, said second layer having a perimeter greater than said first layer to provide overhangs at opposed sides thereof, assembling a plurality of additional layers having a perimeter equal to that of said second layer in overlying relation thereto to form a complete load, enclosing the side walls of said load with a continuous sheet of heat-shrinkable thermo-plastic material, positioning the extending ends of said elongate sheet in Contacting relation to said continuous sheet, retaining said sheet in contacting relationship, heat-shrinking said sheet material about said load and simultaneously therewith fusing said enclosing material to said first sheet to thereby form a stabilized, unitized load capable of being handled by a fork lift engaging the overhang, and removing said unitized load from said support.
2. The method of claim 1 further including, the step of placing an additional elongated sheet of thermoplastic material in cross-wise, overlying relationship to said first sheet prior to assembling said first layer, said additional sheet having ends extending beyond the perimeter of said first layer, positioning the ends of said second sheet in contacting relation to said continuous sheet and retaining said second sheet in contacting relationship.
3. The method of claim 1 further comprising, the step of placing at least one stabilizing strip of a thermoplastic material across the top of at least one of said additional layers prior to enclosing and heat-shrinking, said stabilizing strip being of sufficient length to hang vertically downward to an extent sufficient to provide a fused connection with the enclosing material during said heat shrinking.
4. The'method of forming a unitized, stable load of a plurality of objects comprising, placing at least one elongated sheet of thermoplastic material on a support, assembling a first layer of objects on said sheet in a regular pattern, said sheet having ends thereof which extend beyond the perimeter of said layer, assembling a second layer of objects on said first layer, said second layer having a perimeter greater than said first layer to provide overhangs at opposed sides thereof, assembling a plurality of additional layers having a perimeter equal to that of said second layer in overlying relation thereto to form a complete load, raising the extending ends of said elongated sheet in'to generally parallel relationship to the sides of said load, retaining said ends in their raised position, enclosing the side walls of said load with a continuous sheet of heat-shrinkable thermoplastic material, heat-shrinking said sheet material about said load and simultaneously therewith fusing said enclosing material to said first sheet to thereby form a stabilized, unitized load capable of being handled by a fork lift engaging the overhang, and removing said unitized load from said support.
5. The method of claim 4 further including, the step of placing an additional elongated sheet of thermoplastic material in cross-wise, overlying relationship to said first sheet prior to assembling said first layer, said additional sheet having ends extending beyond the perimeter of said first layer, raising the extending ends of said additional elongated sheet into generally parallel relationship to the sides of said load, and retaining said ends in their raised position.
6. The method of claim 4 further comprising, the step of placing at least one stabilizing strip of a thermoplastic material across the top of at least one of said additional layers prior to enclosing and heat-shrinking, said stabilizing strip being of sufficient length to hang vertically downward to an extent sufficient to provide a fused connection with the enclosing material during said heat shrinking.
7. A method for unitizing a plurality of articles into a load suitable for storage and shipment comprising the steps of positioning at least one strip of a heatshrinkable thermoplastic material of from 0.001 inch to 0.015 inch in thickness on a suitable base, placing a first layer of articles to be unitized on top of said strip, said strip having portions thereof extending beyond said first layer on either side of said first layer, placing at least one additional layer of said articles atop said first layer, said additional layer having a perimeter greater than the perimeter of said first layer, said additional layer being centered with respect to said first layer, and positioned with an overhang provided at at least two opposed sides of said first layer, raising and placing the free ends of said strip horizontally across the top of said additional layer, adding subsequent layers of articles having a perimeter equal to the perimeter of said additional layer until the desired height of load is reached, said first, additional and subsequent layers of articles serving to define the sidewalls of said load, enclosing at least the sidewalls of said load with a heatshrinkable thermoplastic material of from 0.001 inch to 0.015 inch in thickness, heat-shrinking said heat shrinkable thermoplastic material about said load and fusing said underlying strip to said enclosing material, to thereby form a unitized load capable of being handled with lifting means positioned under the overhang, and removing said unitized load from said base for storage or shipment independently of said base.
8. The method of claim 7 further comprising the step of placing at least one stabilizing strip of a thermoplastic material across the top of at least one of said additional layers prior to enclosing and heat shrinking, said stabilizing strip being of sufficient length to hang vertically downwardto an extent sufficient to provide a fused connection with the enclosing material during said heat shrinking.
9. The method of claim 7, wherein said heatshrinkable thermoplastic material is polyethylene.
10. A unitized, palletless load of articles comprising, a stack of articles formed of a plurality of layers of a plurality of articles, the lowermost layer of said stack being formed of lesser horizontal dimension than the other layers and providing access to opposed lifting ledges, a strip of heatshrunk thermoplastic material underlying said lowermost layer and having opposed ends folded up and interposed said overlying layers, and a heat shrunk thermoplastic material completely enclosing said stack of articles and fused to said strip.
11. As an article of manufacture, a unitized palletless load of a plurality of articles suitable for storage and shipment comprising, a substantially rectangular first layer of said articles, a second, substantially rectangular layer of said articles, having a perimeter greater than that of said first layer, overlying said first layer, a third, substantially rectangular layer of said articles, having a perimeter substantially equal to that of said second layer, overlying said second layer, a strip of heat shrunk thermoplastic material underlying said first layer, extending up the side and interposed said second and third layers, a plurality of substantially rectangular subsequent layers of substantially equal perimeter overlying said third layer, and a heat shrunk thermoplastic material completely enclosing said first, second, third and subsequent layers and fused to said underly-' ing strip.
12. The article of manufacture as defined in claim 11 further comprising, at least one strip of thermoplastic material laid horizontally across the top of at least one of said subsequent layers, having sufficient length to hang vertically at least the height of said subsequent layer and fused to said enclosing material.

Claims (12)

1. The method of forming a unitized, stable load of a plurality of objects comprising, placing at least one elongated sheet of thermoplastic material on a support, assembling a first layer of objects on said sheet in a regular pattern, said sheet having ends thereof which extend beyond the perimeter of said layer, assembling a second layer of objects on said first layer, said second layer having a perimeter greater than said first layer to provide overhangs at opposed sides thereof, assembling a plurality of additional layers having a perimeter equal to that of said second layer in overlying relation thereto to form a complete load, enclosing the side walls of said load with a continuous sheet of heat-shrinkable thermo-plastic material, positioning the extending ends of said elongate sheet in contacting relation to said continuous sheet, retaining said sheet in contacting relationship, heat-shrinking said sheet material about said load and simultaneously therewith fusing said enclosing material to said first sheet to thereby form a stabilized, unitized load capable of being handled by a fork lift engaging the overhang, and removing said unitized load from said support.
2. The method of claim 1 further including, the step of placing an additional elongated sheet of thermoplastic material in cross-wise, overlying relationship to said first sheet prior to assembling said first layer, said additional sheet having eNds extending beyond the perimeter of said first layer, positioning the ends of said second sheet in contacting relation to said continuous sheet and retaining said second sheet in contacting relationship.
3. The method of claim 1 further comprising, the step of placing at least one stabilizing strip of a thermoplastic material across the top of at least one of said additional layers prior to enclosing and heat-shrinking, said stabilizing strip being of sufficient length to hang vertically downward to an extent sufficient to provide a fused connection with the enclosing material during said heat shrinking.
4. The method of forming a unitized, stable load of a plurality of objects comprising, placing at least one elongated sheet of thermoplastic material on a support, assembling a first layer of objects on said sheet in a regular pattern, said sheet having ends thereof which extend beyond the perimeter of said layer, assembling a second layer of objects on said first layer, said second layer having a perimeter greater than said first layer to provide overhangs at opposed sides thereof, assembling a plurality of additional layers having a perimeter equal to that of said second layer in overlying relation thereto to form a complete load, raising the extending ends of said elongated sheet into generally parallel relationship to the sides of said load, retaining said ends in their raised position, enclosing the side walls of said load with a continuous sheet of heat-shrinkable thermoplastic material, heat-shrinking said sheet material about said load and simultaneously therewith fusing said enclosing material to said first sheet to thereby form a stabilized, unitized load capable of being handled by a fork lift engaging the overhang, and removing said unitized load from said support.
5. The method of claim 4 further including, the step of placing an additional elongated sheet of thermoplastic material in cross-wise, overlying relationship to said first sheet prior to assembling said first layer, said additional sheet having ends extending beyond the perimeter of said first layer, raising the extending ends of said additional elongated sheet into generally parallel relationship to the sides of said load, and retaining said ends in their raised position.
6. The method of claim 4 further comprising, the step of placing at least one stabilizing strip of a thermoplastic material across the top of at least one of said additional layers prior to enclosing and heat-shrinking, said stabilizing strip being of sufficient length to hang vertically downward to an extent sufficient to provide a fused connection with the enclosing material during said heat shrinking.
7. A method for unitizing a plurality of articles into a load suitable for storage and shipment comprising the steps of positioning at least one strip of a heat-shrinkable thermoplastic material of from 0.001 inch to 0.015 inch in thickness on a suitable base, placing a first layer of articles to be unitized on top of said strip, said strip having portions thereof extending beyond said first layer on either side of said first layer, placing at least one additional layer of said articles atop said first layer, said additional layer having a perimeter greater than the perimeter of said first layer, said additional layer being centered with respect to said first layer, and positioned with an overhang provided at at least two opposed sides of said first layer, raising and placing the free ends of said strip horizontally across the top of said additional layer, adding subsequent layers of articles having a perimeter equal to the perimeter of said additional layer until the desired height of load is reached, said first, additional and subsequent layers of articles serving to define the sidewalls of said load, enclosing at least the sidewalls of said load with a heat-shrinkable thermoplastic material of from 0.001 inch to 0.015 inch in thickness, heat-shrinking said heat-shrinkable thermoplastic mateRial about said load and fusing said underlying strip to said enclosing material, to thereby form a unitized load capable of being handled with lifting means positioned under the overhang, and removing said unitized load from said base for storage or shipment independently of said base.
8. The method of claim 7 further comprising the step of placing at least one stabilizing strip of a thermoplastic material across the top of at least one of said additional layers prior to enclosing and heat shrinking, said stabilizing strip being of sufficient length to hang vertically downward to an extent sufficient to provide a fused connection with the enclosing material during said heat shrinking.
9. The method of claim 7, wherein said heat-shrinkable thermoplastic material is polyethylene.
10. A unitized, palletless load of articles comprising, a stack of articles formed of a plurality of layers of a plurality of articles, the lowermost layer of said stack being formed of lesser horizontal dimension than the other layers and providing access to opposed lifting ledges, a strip of heat shrunk thermoplastic material underlying said lowermost layer and having opposed ends folded up and interposed said overlying layers, and a heat shrunk thermoplastic material completely enclosing said stack of articles and fused to said strip.
11. As an article of manufacture, a unitized palletless load of a plurality of articles suitable for storage and shipment comprising, a substantially rectangular first layer of said articles, a second, substantially rectangular layer of said articles, having a perimeter greater than that of said first layer, overlying said first layer, a third, substantially rectangular layer of said articles, having a perimeter substantially equal to that of said second layer, overlying said second layer, a strip of heat shrunk thermoplastic material underlying said first layer, extending up the side and interposed said second and third layers, a plurality of substantially rectangular subsequent layers of substantially equal perimeter overlying said third layer, and a heat shrunk thermoplastic material completely enclosing said first, second, third and subsequent layers and fused to said underlying strip.
12. The article of manufacture as defined in claim 11 further comprising, at least one strip of thermoplastic material laid horizontally across the top of at least one of said subsequent layers, having sufficient length to hang vertically at least the height of said subsequent layer and fused to said enclosing material.
US00118664A 1971-02-25 1971-02-25 Unitized palletless load Expired - Lifetime US3788462A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11866471A 1971-02-25 1971-02-25

Publications (1)

Publication Number Publication Date
US3788462A true US3788462A (en) 1974-01-29

Family

ID=22379997

Family Applications (1)

Application Number Title Priority Date Filing Date
US00118664A Expired - Lifetime US3788462A (en) 1971-02-25 1971-02-25 Unitized palletless load

Country Status (1)

Country Link
US (1) US3788462A (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3853218A (en) * 1973-01-30 1974-12-10 Gilbert G Load of goods comprising a plurality of layers, and a method and a machine for producing said load
US3884935A (en) * 1972-11-06 1975-05-20 Iii Henry Knox Burns Shrink-film package
US3903673A (en) * 1972-02-11 1975-09-09 Platmanufaktur Ab Machine for producing a load of goods comprising a plurality of layers
US3994114A (en) * 1975-02-05 1976-11-30 Matsuo Nishimura Packing process and apparatus for stacking loads
US3997054A (en) * 1973-09-05 1976-12-14 Berghgracht Marius Leopold Hyp Watertight package apparatus
US3999357A (en) * 1973-03-01 1976-12-28 American Can Company Method of making double wrap package
US4036364A (en) * 1976-04-08 1977-07-19 Monsanto Company Unitized palletless load and method of forming same
FR2346229A1 (en) * 1976-04-03 1977-10-28 Moellers E Fa METHOD AND DEVICE FOR MAKING UP PACKAGES WITHOUT PALLET
US4142471A (en) * 1974-01-02 1979-03-06 United States Gypsum Company Pallet having reinforced gypsum structural members
EP0001941A1 (en) * 1977-10-28 1979-05-16 LOGISAC Groupement d'Intérêt Economique régi par l'Ordonnance du 23 Septembre 1967 Société en cours de formation dite: Pack comprising several superposed layers of unit loads, method and machine for its assembly
EP0017213A1 (en) * 1979-04-07 1980-10-15 BASF Aktiengesellschaft Palletless loading unit
US4304332A (en) * 1979-10-26 1981-12-08 Danti Bernard R Package
US4396122A (en) * 1980-05-06 1983-08-02 S.A. Thimon Package for a pallet-less, multi-layer load comprising a layer of reduced width defining lateral spaces for gripping purposes
FR2527167A1 (en) * 1982-05-19 1983-11-25 Ballereau Jean Method of wrapping load of scrap metal - uses wire mesh panels around pallet to form basket supporting wrapper whilst filled
US4492071A (en) * 1983-09-23 1985-01-08 Ford Motor Company Method for preparing blocks of glass for shipment
US4846077A (en) * 1983-04-14 1989-07-11 Mobil Oil Corporation Industrial pallet
US4907515A (en) * 1984-10-17 1990-03-13 Mobil Oil Corporation Shipping pallet and the like and method of forming same
US5090177A (en) * 1989-05-17 1992-02-25 A.C.X., Inc. Method for unitization of cargo
US5111931A (en) * 1989-05-17 1992-05-12 A.C.X., Inc. Unitized palletless multiple bale cargo unit
US5238104A (en) * 1989-05-17 1993-08-24 A.C.X., Inc. Non-palletized unit of cargo having towing attachment
US5630510A (en) * 1995-09-07 1997-05-20 Polaroid Corporation Packaging and loading solid ink nuggets for ink jet apparatus
US5676064A (en) * 1996-04-22 1997-10-14 Shuert; Lyle H. Pallet and pallet package
US5725089A (en) * 1996-10-02 1998-03-10 Anderson Hay & Grain Co., Inc. Strap towing system
US20020170270A1 (en) * 2001-04-03 2002-11-21 Borchard James A. Methods and apparatus for sealing a load placed on a pallet
WO2003057570A2 (en) * 2001-12-26 2003-07-17 Coors Brewing Company System and method for producing a disposable/recyclable pallet
WO2003080455A1 (en) * 2002-03-20 2003-10-02 Coors Brewing Company Disposable/recyclable pallet and method
AT411992B (en) * 1994-05-20 2004-08-26 Rockwool Mineralwolle TRANSPORT UNIT, CONSISTING OF A NUMBER OF MINERAL WOOL PANELS
GB2437509A (en) * 2006-04-28 2007-10-31 3 S S Ltd Forming a load for transportation by fork lift truck
US20080022905A1 (en) * 2006-07-26 2008-01-31 Trickett Howard J Slip sheet for transporting goods
US20090016867A1 (en) * 2005-01-20 2009-01-15 Saint-Gobain Isover Panel Transport Unit
DE102008020300A1 (en) * 2008-04-22 2009-10-29 Krones Ag Liner when packaging large beverage containers and large container pallets
EP2248722A1 (en) * 2009-05-08 2010-11-10 Maschinenfabrik Möllers GmbH Method and device for manufacturing a palletless packaging unit and palletless packaging unit
US20130026061A1 (en) * 2011-01-31 2013-01-31 Lehn Ian M Compartmentalized pallet packaging system for perishable products
USRE44178E1 (en) * 1999-03-15 2013-04-30 Howard J. Trickett Device and method for transporting materials
US20130263841A1 (en) * 2012-04-10 2013-10-10 Mortarless Technologies Llc Fire Pit Shipping and Packaging Systems and Methods
US20180105298A1 (en) * 2016-10-18 2018-04-19 Maschinenfabrik Mollers Gmbh Method for producing a pallet-less packaging unit and a packaging unit produced according to the method
US9975678B2 (en) 2014-09-29 2018-05-22 Shmuel Dovid Newman System and method for palletless shipment of gas cylinder arrays
US20180282003A1 (en) * 2016-03-18 2018-10-04 Corelex Shin-Ei Co., Ltd. Method of producing packing body
US20220161981A1 (en) * 2019-03-08 2022-05-26 The Procter & Gamble Company Rolled paper product cargo assemblages and method for making rolled paper product cargo assemblages
US11345496B2 (en) 2018-06-14 2022-05-31 Corelex Shin-Ei Co., Ltd. Packed body production method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2979871A (en) * 1957-01-07 1961-04-18 Weyerhaeuser Co Method of banding cardboard cartons
US3389813A (en) * 1965-08-06 1968-06-25 Meuwissen Ind N V Pallets
US3392851A (en) * 1965-03-22 1968-07-16 Pearne And Lacy Machine Compan Brick stacker
NL6818876A (en) * 1968-12-31 1970-07-02
US3618755A (en) * 1970-05-04 1971-11-09 Libbey Owens Ford Co Unitized package for sheet materials and method for packaging same
US3640048A (en) * 1968-10-07 1972-02-08 Weldotron Corp Method and apparatus for a pallet load
US3667598A (en) * 1971-02-18 1972-06-06 Weldotron Corp Wrapped pallet load

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2979871A (en) * 1957-01-07 1961-04-18 Weyerhaeuser Co Method of banding cardboard cartons
US3392851A (en) * 1965-03-22 1968-07-16 Pearne And Lacy Machine Compan Brick stacker
US3389813A (en) * 1965-08-06 1968-06-25 Meuwissen Ind N V Pallets
US3640048A (en) * 1968-10-07 1972-02-08 Weldotron Corp Method and apparatus for a pallet load
NL6818876A (en) * 1968-12-31 1970-07-02
US3618755A (en) * 1970-05-04 1971-11-09 Libbey Owens Ford Co Unitized package for sheet materials and method for packaging same
US3667598A (en) * 1971-02-18 1972-06-06 Weldotron Corp Wrapped pallet load

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3903673A (en) * 1972-02-11 1975-09-09 Platmanufaktur Ab Machine for producing a load of goods comprising a plurality of layers
US3884935A (en) * 1972-11-06 1975-05-20 Iii Henry Knox Burns Shrink-film package
US3853218A (en) * 1973-01-30 1974-12-10 Gilbert G Load of goods comprising a plurality of layers, and a method and a machine for producing said load
US3999357A (en) * 1973-03-01 1976-12-28 American Can Company Method of making double wrap package
US3997054A (en) * 1973-09-05 1976-12-14 Berghgracht Marius Leopold Hyp Watertight package apparatus
US4142471A (en) * 1974-01-02 1979-03-06 United States Gypsum Company Pallet having reinforced gypsum structural members
US3994114A (en) * 1975-02-05 1976-11-30 Matsuo Nishimura Packing process and apparatus for stacking loads
FR2346229A1 (en) * 1976-04-03 1977-10-28 Moellers E Fa METHOD AND DEVICE FOR MAKING UP PACKAGES WITHOUT PALLET
US4060957A (en) * 1976-04-03 1977-12-06 Firma E. Mollers Method and apparatus for forming palletless packages
US4036364A (en) * 1976-04-08 1977-07-19 Monsanto Company Unitized palletless load and method of forming same
EP0001941A1 (en) * 1977-10-28 1979-05-16 LOGISAC Groupement d'Intérêt Economique régi par l'Ordonnance du 23 Septembre 1967 Société en cours de formation dite: Pack comprising several superposed layers of unit loads, method and machine for its assembly
EP0017213A1 (en) * 1979-04-07 1980-10-15 BASF Aktiengesellschaft Palletless loading unit
US4304332A (en) * 1979-10-26 1981-12-08 Danti Bernard R Package
US4396122A (en) * 1980-05-06 1983-08-02 S.A. Thimon Package for a pallet-less, multi-layer load comprising a layer of reduced width defining lateral spaces for gripping purposes
FR2527167A1 (en) * 1982-05-19 1983-11-25 Ballereau Jean Method of wrapping load of scrap metal - uses wire mesh panels around pallet to form basket supporting wrapper whilst filled
US4846077A (en) * 1983-04-14 1989-07-11 Mobil Oil Corporation Industrial pallet
US4492071A (en) * 1983-09-23 1985-01-08 Ford Motor Company Method for preparing blocks of glass for shipment
US4907515A (en) * 1984-10-17 1990-03-13 Mobil Oil Corporation Shipping pallet and the like and method of forming same
US5090177A (en) * 1989-05-17 1992-02-25 A.C.X., Inc. Method for unitization of cargo
US5111931A (en) * 1989-05-17 1992-05-12 A.C.X., Inc. Unitized palletless multiple bale cargo unit
US5238104A (en) * 1989-05-17 1993-08-24 A.C.X., Inc. Non-palletized unit of cargo having towing attachment
AT411992B (en) * 1994-05-20 2004-08-26 Rockwool Mineralwolle TRANSPORT UNIT, CONSISTING OF A NUMBER OF MINERAL WOOL PANELS
US5630510A (en) * 1995-09-07 1997-05-20 Polaroid Corporation Packaging and loading solid ink nuggets for ink jet apparatus
US5676064A (en) * 1996-04-22 1997-10-14 Shuert; Lyle H. Pallet and pallet package
US5725089A (en) * 1996-10-02 1998-03-10 Anderson Hay & Grain Co., Inc. Strap towing system
US5944370A (en) * 1996-10-02 1999-08-31 Anderson Hay & Grain Co., Inc. Strap towing system
USRE44178E1 (en) * 1999-03-15 2013-04-30 Howard J. Trickett Device and method for transporting materials
US6668734B2 (en) * 2001-03-14 2003-12-30 Coors Brewing Company Disposable/recyclable pallet and method
US20020170270A1 (en) * 2001-04-03 2002-11-21 Borchard James A. Methods and apparatus for sealing a load placed on a pallet
US6962037B2 (en) * 2001-04-03 2005-11-08 Borchard James A Methods for sealing a load placed on a pallet
WO2003057570A2 (en) * 2001-12-26 2003-07-17 Coors Brewing Company System and method for producing a disposable/recyclable pallet
WO2003057570A3 (en) * 2001-12-26 2003-11-27 Coors Brewing Co System and method for producing a disposable/recyclable pallet
GB2399558B (en) * 2001-12-26 2005-11-09 Coors Brewing Co System and method for producing a disposable/recyclable pallet
GB2399558A (en) * 2001-12-26 2004-09-22 Coors Brewing Co System and method for producing a disposable/recyclable pallet
GB2402381A (en) * 2002-03-20 2004-12-08 Coors Brewing Co Disposable/recyclable pallet and method
GB2402381B (en) * 2002-03-20 2006-04-19 Coors Brewing Co Disposable/recyclable pallet and method
WO2003080455A1 (en) * 2002-03-20 2003-10-02 Coors Brewing Company Disposable/recyclable pallet and method
US7900775B2 (en) * 2005-01-20 2011-03-08 Saint-Gobain Isover Panel transport unit
US20090016867A1 (en) * 2005-01-20 2009-01-15 Saint-Gobain Isover Panel Transport Unit
GB2437509A (en) * 2006-04-28 2007-10-31 3 S S Ltd Forming a load for transportation by fork lift truck
US8146515B2 (en) 2006-07-26 2012-04-03 Trickett Howard J Slip sheet for transporting goods
US20080022905A1 (en) * 2006-07-26 2008-01-31 Trickett Howard J Slip sheet for transporting goods
DE102008020300A1 (en) * 2008-04-22 2009-10-29 Krones Ag Liner when packaging large beverage containers and large container pallets
EP2248722A1 (en) * 2009-05-08 2010-11-10 Maschinenfabrik Möllers GmbH Method and device for manufacturing a palletless packaging unit and palletless packaging unit
US20130026061A1 (en) * 2011-01-31 2013-01-31 Lehn Ian M Compartmentalized pallet packaging system for perishable products
US20130263841A1 (en) * 2012-04-10 2013-10-10 Mortarless Technologies Llc Fire Pit Shipping and Packaging Systems and Methods
US9975678B2 (en) 2014-09-29 2018-05-22 Shmuel Dovid Newman System and method for palletless shipment of gas cylinder arrays
US20180282003A1 (en) * 2016-03-18 2018-10-04 Corelex Shin-Ei Co., Ltd. Method of producing packing body
US20180105298A1 (en) * 2016-10-18 2018-04-19 Maschinenfabrik Mollers Gmbh Method for producing a pallet-less packaging unit and a packaging unit produced according to the method
US11345496B2 (en) 2018-06-14 2022-05-31 Corelex Shin-Ei Co., Ltd. Packed body production method
US20220161981A1 (en) * 2019-03-08 2022-05-26 The Procter & Gamble Company Rolled paper product cargo assemblages and method for making rolled paper product cargo assemblages
US11667446B2 (en) * 2019-03-08 2023-06-06 The Procter & Gamble Company Rolled paper product cargo assemblages and method for making rolled paper product cargo assemblages

Similar Documents

Publication Publication Date Title
US3788462A (en) Unitized palletless load
US3638790A (en) Palletized packaging of cylindrical objects
US4042107A (en) Returnable roll shipping container
US4042127A (en) Slip pallet and divider sheet
US4799350A (en) Process for packaging panels of a compressible material and the packages produced by this process
US4535587A (en) Multi-roll package of compressible materials
US4036364A (en) Unitized palletless load and method of forming same
US4244471A (en) Packaging system
US4079835A (en) Enclosed shipping container for rolls
US3371462A (en) Method of packing a number of containers in one unit
US3895476A (en) Shrink-film packaging method
US3695426A (en) Shrink-on package for stacked goods
US3529717A (en) Palletized load of film-enclosed articles
US5647284A (en) Method and apparatus for shipping knobbed glass cookware covers
US3384229A (en) Method and apparatus for packaging and shipping gable topped containers
US3825113A (en) Packing assembly and method of its manufacture
IE50003B1 (en) Bales of compressible materials
US8910790B2 (en) Separators for unitized loads
US3246744A (en) Method and means for producing unitized load package
WO1993017911A1 (en) Method for packaging of bulk goods into a unit-load package and a unit-load package for bulk goods
US4177895A (en) Moisture stabilized package
US3884935A (en) Shrink-film package
KR100197303B1 (en) Multiple packaging for magnetic tapes wound cores
US3883000A (en) Shipping package
US4690281A (en) Assembly for storing, transporting and distributing objects of the bottle, flask or similar types and process for manufacturing same

Legal Events

Date Code Title Description
AS Assignment

Owner name: OWENS-ILLINOIS GLASS CONTAINER INC.,OHIO

Free format text: ASSIGNS AS OF APRIL 15, 1987 THE ENTIRE INTEREST;ASSIGNOR:OWENS-ILLINOIS, INC.;REEL/FRAME:004869/0922

Effective date: 19870323

Owner name: OWENS-ILLINOIS GLASS CONTAINER INC., ONE SEAGATE,

Free format text: ASSIGNS AS OF APRIL 15, 1987 THE ENTIRE INTEREST;ASSIGNOR:OWENS-ILLINOIS, INC.;REEL/FRAME:004869/0922

Effective date: 19870323