US5382639A - Aqueous fluorochemical compositions and coatings therefrom - Google Patents

Aqueous fluorochemical compositions and coatings therefrom Download PDF

Info

Publication number
US5382639A
US5382639A US08/168,344 US16834493A US5382639A US 5382639 A US5382639 A US 5382639A US 16834493 A US16834493 A US 16834493A US 5382639 A US5382639 A US 5382639A
Authority
US
United States
Prior art keywords
sub
ipo
moiety
water
cea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/168,344
Inventor
George G. I. Moore
Dong-Wei Zhu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Priority to US08/168,344 priority Critical patent/US5382639A/en
Application granted granted Critical
Publication of US5382639A publication Critical patent/US5382639A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/10Homopolymers or copolymers of unsaturated ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/10Homopolymers or copolymers of unsaturated ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen

Definitions

  • This invention relates to water-soluble or water-dispersible, crosslinkable, fluorine-containing polymer, aqueous composition comprising said polymer, and methods of making said polymer and composition.
  • this invention relates to coatings and coated articles obtained from said aqueous composition, and methods of making said coating and coated articles.
  • Fluorochemicals are widely used to impart low surface energy to substrates.
  • U.S. Pat. Nos. 4,554,325 and 4,592,930 disclose polymers comprising pendant rearranged oxazoline or oxazine portions linked to a perfluorocarbon moiety. Such polymers are said to provide coating compositions which exhibit critical surface tensions of wetting of less than about 15 dynes/cm.
  • U.S. Pat. Nos. 4,606,973 and 4,764,564 disclose polymers comprising pendant amino-functional portions linked to a perfluorocarbon moiety having a perfluoroalkyl group, and coating compositions comprising said polymers. Such polymers are said to provide coating compositions which exhibit critical surface tensions of wetting of less than about 15 dynes/cm.
  • U.S. Pat. Nos. 4,929,666 and 5,006,624 (Schmidt et al.) describe certain polymeric surfactants having at least one pendant fluorocarbon moiety and at least one pendant ionic moiety.
  • Water-based crosslinkable coating compositions comprising an aqueous solution of said polymer and a polymeric crosslinking agent having an ionic or potentially ionic moiety are also disclosed. Such compositions are said to be capable of forming a uniform, thin film, on a surface to be coated, and the capability, on crosslinking, to form a uniform, thin coating having a critical surface tension less than about 19 dynes/cm.
  • the present invention provides water-soluble or water-dispersible polymer having at least one oxazoline or oxazine moiety and at least one fluoroaliphatic moiety.
  • Such polymers can be illustrated by the following formula: ##STR1##
  • this invention provides a water-based composition
  • a water-based composition comprising an aqueous solution, emulsion, or dispersion of (a) a water-soluble or water-dispersible polymer having at least one fluoroaliphatic moiety and at least one anionic moiety, such as carboxylate, which is capable of reacting with an oxazoline or oxazine moiety and (b) a water-soluble or water-dispersible polymer having at least one oxazoline or oxazine moiety and at least one fluoroaliphatic moiety.
  • Said composition has the capability of forming a uniform, low surface-energy, thin film or coating, on a surface coated with said composition.
  • the weight % of fluorine, based on total weight of the polymers is at least 30%.
  • this invention provides coated articles comprising a surface having a coating or film derived from the water-based composition of this invention. Methods of making said coated articles are also disclosed.
  • anionic means capable of forming anions in aqueous mixtures.
  • polymer or “polymers” includes polymers and oligomers.
  • coated articles of this invention are resistant to wetting because of the low surface-energy film or coating. Possible applications include soil-releasing automotive protective finishes and glazes, anti-soiling carpet and fabric treatments, protective coatings for building walls and other construction surfaces, mold release coatings, fly fishing line coatings, wound dressings, and the like.
  • the anionic moiety-containing polymers useful in this invention preferably have an average of more than two reactive ionic moieties per polymer.
  • the anionic moiety-containing polymers have an average of more than one fluoroaliphatic moiety per polymer.
  • Such polymers include those described, for example, in U.S. Pat. No 4,929,666, supra, which descriptions are hereby incorporated by reference.
  • Useful anionic moieties include carboxy, mercaptan, or sulfonamide moieties which can be reacted with bases to obtain carboxylate, mercaptide, and sulfonamide salts. At lower pH values, these moieties become essentially nonionic.
  • the particularly preferred anionic moiety is carboxylate.
  • the carboxylate anionic polymer can be utilized in the water-based compositions of this invention as its ammonium salt.
  • the anionic moiety-containing polymers useful in the present invention can be prepared, for example, by the addition polymerization of fluoroaliphatic radical-containing ethylenically unsaturated monomer, such as acrylate, e.g. CH 2 ⁇ CHCOOCH 2 CH 2 N(Et)SO 2 C 8 F 17 , vinyl ether, or styrenic monomers, and ethylenically unsaturated carboxylic acid monomer, such as acrylate, e.g. 2-carboxyethyl acrylate, vinyl ether, or styrenic monomers.
  • fluoroaliphatic radical-containing ethylenically unsaturated monomer such as acrylate, e.g. CH 2 ⁇ CHCOOCH 2 CH 2 N(Et)SO 2 C 8 F 17 , vinyl ether, or styrenic monomers
  • ethylenically unsaturated carboxylic acid monomer such as acrylate, e.g.
  • the polymers of this invention having at least one oxazoline or oxazine moiety and at least one fluoroaliphatic moiety, can be prepared by the addition polymerization of fluoroaliphatic radical-containing ethylenically unsaturated monomer, such as acrylate, e.g.
  • R 1 is an organic radical having addition polymerizable unsaturation, such as ⁇ - ⁇ ethylenic unsaturation.
  • R 1 is an isopropenyl group.
  • R 2 is independently hydrogen, halogen, or an substituted organic radical, preferably R 2 is hydrogen.
  • the oxazoline or oxazine containing polymers of the present invention preferably have an average of more than two oxazoline or oxazine moieties per polymer.
  • the oxazoline or oxazine containing polymers have an average of more than one fluoroaliphatic moiety per polymer.
  • the fluoroaliphatic moiety can be a fluorinated, stable, inert, preferably saturated, non-polar, monovalent aliphatic or cycloaliphatic moiety. It can be straight chain, branched chain, cyclic, or combinations thereof. It can contain catenary heteroatoms, bonded only to carbon atoms, such as oxygen, divalent or hexavalent sulfur, or nitrogen. A fully-fluorinated moiety is preferred but hydrogen or chlorine atoms can be present as substituents provided that not more than one atom of either is present for every two carbon atoms.
  • the moiety has at least 3 carbon atoms, preferably 3 to 20 carbon atoms and most preferably about 4 to about 10 carbon atoms.
  • the terminal portion of the moiety is a perfluorinated moiety which will preferably contain at least 7 fluorine atoms, e.g., CF 3 CF 2 CF 2 --, (CF 3 ) 2 CF--, F 5 SCF 2 --, or the like.
  • compositions of the present invention are useful for preparing coated articles such as plastic, glass, metal, or ceramic articles.
  • oxazoline-containing polymers and carboxyl-containing polymers were prepared.
  • Aqueous compositions containing oxazoline-containing polymer and carboxyl-containing polymer were then prepared.
  • the resulting compositions appear to have good stability, with some samples still capable of forming coatings with low surface energy after 6 months aging at room temperature.
  • the aqueous compositions were coated onto substrates and dried, the resulting coatings (or films) were evaluated.
  • Acrylates A and B were prepared as described in U.S. Pat. No. 2,803,615 (Ahlbrecht et al.).
  • Acrylates C and D were prepared as described in U.S. Pat. No. 2,642,416 (Ahlbrecht et al.).
  • Acrylate E was prepared as described in Chem. Abstracts 84(20):136258g.
  • Acrylate F was prepared as described in U.S. Pat. No. 3,277,039 (Marascia et al.).
  • Acrylate G was prepared as described in U.S. Pat. No. 3,699,156 (Holland et al.).
  • Acrylate H was prepared as described in U.S. Pat. No.
  • Vinyl ether I was prepared as described in U.S. Pat. No. 2,732,370 (Codding et al.).
  • Vinyl ether J was prepared as described in U.S. Pat. No. 3,078,245 (Heine et al.).
  • Example 1 an oxazoline-containing polymer of this invention was prepared.
  • a mixture of acrylate A (40.0 g, 67 mmol), 2-isopropenyl-2-oxazoline (“IPO”) (10.0 g, 90 mmol), azobis(isobutyronitrile) (“AIBN”) (0.301 g), and methyl ethyl ketone (MEK) (14 g) was added to a refluxing mixture of 50.0 g each of 2-propanol and MEK in a 3-necked flask, under nitrogen, over 2.5 hours. The resulting solution was stirred at reflux for 18 hours. An additional 0.302 g of AIBN was added and heating was continued for 10 hours.
  • A/IPO copolymer The resulting copolymer (“A/IPO copolymer”) was precipitated out by adding this solution to 600 ml of heptane. The A/IPO copolymer was then further purified by dissolving in acetone and re-precipitation from heptane. 24.5 g of lightly colored solid A/IPO copolymer was obtained after drying in vacuum. Strong absorption band at 1660 cm -1 confirms the presence of 2-oxazoline moiety. Strong absorption band at around 1220 cm -1 confirms the presence of fluorine. Elemental analysis showed the following weight percents: 37.9% carbon, 3.6% hydrogen, 5.2% nitrogen, 35.7% fluorine.
  • the weight ratio of interpolymerized units in the A/IPO copolymer was calculated, based on nitrogen analysis, to be 72% derived from acrylate A and 28% derived from IPO.
  • the weight ratio of interpolymerized units in the A/IPO copolymer was calculated, based on quantitative 13 C NMR, to be 76% derived from acrylate A and 24% derived from IPO.
  • a carboxyl-containing polymer was prepared.
  • a mixture of acrylate A (240 g, 0.40 mole), 2-carboxyethyl acrylate (“CEA”) (160 g, 1.11 mole), AIBN (1.0 g), MEK (100 g), and 2-propanol (100 g) was added to a refluxing mixture of 100 g each MEK and 2-propanol, under nitrogen, over 6 hr.
  • the heating and stirring were continued for 12 hr to produce a solution of copolymer ("A/CEA copolymer”).
  • This organic polymer solution was dispersed into an aqueous system by adding, with stirring, a 50 g portion to 180 g of water containing about 8 g of 30% ammonia.
  • the organic solvents were then stripped off under reduced pressure at 80° to 85° C. No flash point was observed for this sample.
  • a 5.0 gram sample of the above A/IPO copolymer dispersion (13.8% solids) was mixed with a 4.9 g sample of the above A/CEA copolymer dispersion (19.0% solids) and then diluted to 10% solids by addition of water.
  • the molar ratio of the carboxy functionality in the A/CEA copolymer to the oxazoline functionality in the A/IPO copolymer was calculated to be 1.6. In other words, there are 1.6 carboxy groups per oxazoline group.
  • This mixture was allowed to sit at room temperature for at least two weeks after which it was coated onto a glass slide with a #12 Mayer rod to a coating thickness of about 2.7 microns. The resulting coating was then heated in a oven at 120° C. for 30 min.
  • the resulting film was clear and resistant to solvents.
  • the weight % fluorine, based on total solids, of the polymers was calculated from the known fluorine content of the monomers.
  • the resulting film was tested for water contact angle and film critical surface energy by the methods described in Zisman, W. A., "Contact Angle, Wettability, and Adhesion," Advances in Chemistry Series 43, American Chemical Society, Washington, D.C. (1964).
  • the resulting films were also evaluated using a "pen test” consisting of drawing a line on the coated glass slide using a blue SharpieTM fine point permanent marker available from the Sanford company. A number value of 0 to 3 was assigned based on the appearance of the resulting line.
  • Example 2-23 additional IPO copolymers and additional CEA copolymers were prepared and dispersed in water as described in Example 1, utilizing the various monomers listed above. The suspensions were mixed, maintained at room temperature for at least two weeks, coated, heated, and tested as in Example 1. The compositions and results are summarized in Table 1.
  • the monomers used, and the weight ratio of the monomer feed used in each copolymer, are shown in Table 1.
  • D/CEA (80:20) means that a CEA copolymer was prepared as in Example 1 with a monomer feed ratio of 80 weight % acrylate D and 20 weight % CEA.
  • the molar ratio of carboxylate functionality to oxazoline functionality was calculated based on weight % of monomer, and was 1.6 for each Example.
  • a copolymer was prepared by copolymerization of maleic anhydride ("MA”) and vinyl ether J.
  • Maleic anhydride (4.9 g, 50 mmol), vinyl ether J (27.3 g, 50 mmol), AIBN (0.3 g), and carbon tetrabromide (0.019 g) were dissolved in ethyl acetate (30 g) and charged into a flask. The mixture was purged with nitrogen and polymerized at 80° C. for 3 to 4 hours. The resulting polymer was not very soluble in ethyl acetate and the polymer layer separated from solvent upon cooling to room temperature. The solvent was decanted and the polymer was dispersed into 150 g of water containing 7 g of 30% NH 3 . The remaining solvent was stripped off under reduced pressure at 80° C.
  • a coating composition was prepared by mixing the above copolymer dispersion (4.84 g, 12.3% solids) with the A/IPO copolymer dispersion of Example 1 (4.84 g, 12.3% solids).
  • the molar ratio of carboxylate functionality to oxazoline functionality was calculated based on weight % of monomer to be 2.0.
  • the mixture was adjusted to about 10% solids using water.
  • the resulting mixture was maintained at room temperature for at least two weeks, coated, heated, and tested as in Example 1. The results of the test are shown in Table 1.
  • Example 24 a copolymer of vinyl ether J and MA was prepared using the weight ratio of monomers shown in table 1. This copolymer, after being dispersed into an aqueous system using triethylamine, was mixed with the IPO copolymer dispersion of Example 1. The resulting mixture was maintained at room temperature for at least two weeks, coated, heated, and tested as in Example 1. The resulting coating was clear and solvent resistant. The results are shown in Table 1. The molar ratio of carboxylate functionality to oxazoline functionality was calculated based on weight % of monomer to be 2.0.
  • compositions of this invention can form coatings having low surface energy and which are also generally less wettable under the pen test than comparable known compositions.
  • TeflonTM gives a rating of 1 under the pen test.
  • a series of coating compositions was prepared by mixing varying amounts of the two copolymer suspensions of Example 1. The resulting compositions were then maintained at room temperature for at least two weeks, coated, heated, and tested as in Example 1. The compositions and films were tested as above.
  • the molar ratio of carboxylate functionality to oxazoline functionality was calculated based on weight % of monomer and is shown in Table 2 as "CO 2 H:IPO ratio". The results are shown in Table 2.
  • Comparative Examples C1 to C5 were prepared according to the teaching of U.S. Pat. No. '666, supra.
  • An aqueous, 10% solids solution of IPO homopolymer of oxazoline functionality of 9.0 mmol per gram of dry polymer (10.0 g, total reactive functionality of 9.0 mmol) was mixed with an aqueous solution of A/CEA copolymer as in Example 1, functionality: 2.31 mmol per gram of dry polymer by titration, 23.2% solids, (16.8 g, total reactive functional of 9.0 mmol) and diluted with 22.2 g of water to a 10% solution.
  • the above composition was diluted with water to specific concentrations shown in Table 3.
  • the coatings were prepared according to Example 1, except the coating were prepared from freshly prepared mixtures that did not stand at room temperature for two weeks. The static contact angles of water and hexadecane, and the pen test results were obtained as in Example 1. The results are shown in Table 3.
  • An aqueous solution of the A/IPO copolymer of Example 1 (functionality of 2.52 mmol per gram of dry polymer by elemental analysis, 10% solids, 20.0 g, total reactive functional of 5.04 mmol) was mixed with the A/CEA copolymer solution of Comparative Example C1 (9.4 g, total reactive functional: 5.04 mmol) and diluted with 12.4 g of water to a 10% solids solution.
  • Example 3 The above composition was diluted with water to specific % solids shown in Table 3.
  • the coatings were prepared according to Example 1, except the coating were prepared from freshly prepared mixtures that did not stand at room temperature for two weeks. Their static contact angles of water and hexadecane (C 16 H 34 ), and the pen test results were obtained as in Example 1. The results are shown in Table 3.
  • the 2% composition of Comparative Example C3 and the 2% composition of Example 32 were tested for oil and water repellency on fabrics.
  • Each composition (the compositions were used as freshly prepared and did not stand at room temperature for two weeks) was sprayed on a test fabric made of 6 different materials as shown in Table 4, to a weight pickup equal to the weight of the fabric. The sprayed fabric was then heated at 120° C. for 60 min.
  • ScotchgardTM Textile Finishes SPS-3010 Oil Test Kit and ScotchgardTM Textile Finishes SPS-3011 Aqueous Test Kit were used to measure oil and water repellency (Scale of 0-10, higher number indicates more repellency). The results are shown in Table 4.
  • compositions of the present invention can be used to impart improved water repellency to a variety of fabrics, compared to compositions such as those disclosed in Schmidt et. al U.S. Pat. No. '666, supra.
  • Oil repellency can be obtained with the compositions of present invention equal to or better than compositions such as those shown in the '666 patent for all fabrics except spun diacetate.
  • Table 5 show that coatings derived from the compositions of the present invention have reduced peel force as compared with coating compositions such as those described in '666 patent, and would be more useful as release coating for pressure sensitive adhesives.
  • a fluorochemical surfactant was added to the coating composition to improve the wettability without degrading the properties of the resulting coatings. The lower the solution surface tension, the better the composition will wet a substrate.
  • the fluorochemical surfactant C 8 F 17 SO 2 N(CH 2 CH 3 )CH 2 CO 2 NH 4 commercially available from 3M Company as FC-129 surfactant, was added to the emulsion.
  • the mole % of surfactant based on total moles of carboxy functionality and surfactant are shown in Table 6 at a specified molar ratio, shown in Table 6 as "mole % surfactant". As discussed in U.S. Pat. No. 4,929,666 (Schmidt), this surfactant may become incorporated into the polymer by reaction with the pendant oxazoline group of the IPO copolymer.
  • Example 35 a sample of A/IPO (75:25) copolymer aqueous solution (5.0 g, 10.1% solids) was mixed with a A/CEA (60:40) copolymer aqueous solution and 0.034 g of the fluorochemical surfactant and diluted to 5% solids by addition of 15.5 g of water.
  • the surface tension of this mixture was 33.3 dyne/cm.
  • the resulting mixture was maintained at room temperature for at least two weeks, coated, heated, and tested as in Example 1.
  • the surface tension of this finished film was 12.4 dyne/cm as shown in Table 6.
  • compositions were maintained at room temperature for at least two weeks, coated, heated, and tested as in Example 35 except with varying amounts of the fluorochemical surfactant and CEA copolymer.
  • the solution surface tension and final film surface tensions are reported in Table 6. Note that Example 39 contained no CEA copolymer, and Example 40 contained none of the fluorochemical surfactant.
  • Example 39 which did not perform well in the pen test, did not contain any of the A/CEA copolymer.
  • a solution of neutralized A/CEA copolymer from Example 1 (20.0 g, 23.2% in water, pH 8) was mixed with 0.86 g of C 8 F 17 SO 2 N(CH 2 CH 3 )CH 2 CO 2 K, commercially available from 3M Company as FC-129 surfactant, and placed into a blender with an additional 20 g of water.
  • a sample of A/IPO (75:25) copolymer solution prepared as in Example 1 (11.8 g, 35.7% solids in methyl ethyl ketone) was added slowly under vigorous stirring. Organic solvents were then stripped off.
  • Example 41 and Comparative Example C1 were maintained at room temperature for at least two weeks, coated, and heated as in Example 1.
  • the resulting coatings were tested for UV stabilization ability according to ASTM G26-90.
  • the contact angles were measured initially and after 2,000 hours. The results are shown in Table 7.

Abstract

Novel polymers are disclosed which can be used to prepare water-based compositions are disclosed having the capability of forming a uniform, low surface-energy, thin film on a substrate. Such compositions comprise a polymer having at least one fluoroaliphatic moiety and at least one anionic moiety, and a novel polymer having at least one fluoroaliphatic moiety and at least one oxazoline moiety.

Description

This is a division of application No. 08/047,782 filed Apr. 15, 1993 now U.S. Pat. No. 5,294,662.
This invention relates to water-soluble or water-dispersible, crosslinkable, fluorine-containing polymer, aqueous composition comprising said polymer, and methods of making said polymer and composition. In another aspect, this invention relates to coatings and coated articles obtained from said aqueous composition, and methods of making said coating and coated articles.
Fluorochemicals are widely used to impart low surface energy to substrates. Several patents to Schmidt et al., which are described below, disclose certain water-based compositions said to give useful fluorine-containing coatings with low surface energy.
U.S. Pat. Nos. 4,554,325 and 4,592,930 (Schmidt et al.) disclose polymers comprising pendant rearranged oxazoline or oxazine portions linked to a perfluorocarbon moiety. Such polymers are said to provide coating compositions which exhibit critical surface tensions of wetting of less than about 15 dynes/cm.
U.S. Pat. Nos. 4,606,973 and 4,764,564 (Schmidt et al.) disclose polymers comprising pendant amino-functional portions linked to a perfluorocarbon moiety having a perfluoroalkyl group, and coating compositions comprising said polymers. Such polymers are said to provide coating compositions which exhibit critical surface tensions of wetting of less than about 15 dynes/cm.
U.S. Pat. Nos. 4,929,666 and 5,006,624 (Schmidt et al.) describe certain polymeric surfactants having at least one pendant fluorocarbon moiety and at least one pendant ionic moiety. Water-based crosslinkable coating compositions comprising an aqueous solution of said polymer and a polymeric crosslinking agent having an ionic or potentially ionic moiety are also disclosed. Such compositions are said to be capable of forming a uniform, thin film, on a surface to be coated, and the capability, on crosslinking, to form a uniform, thin coating having a critical surface tension less than about 19 dynes/cm.
Briefly, in one aspect, the present invention provides water-soluble or water-dispersible polymer having at least one oxazoline or oxazine moiety and at least one fluoroaliphatic moiety. Such polymers can be illustrated by the following formula: ##STR1##
In another aspect, this invention provides a water-based composition comprising an aqueous solution, emulsion, or dispersion of (a) a water-soluble or water-dispersible polymer having at least one fluoroaliphatic moiety and at least one anionic moiety, such as carboxylate, which is capable of reacting with an oxazoline or oxazine moiety and (b) a water-soluble or water-dispersible polymer having at least one oxazoline or oxazine moiety and at least one fluoroaliphatic moiety. Said composition has the capability of forming a uniform, low surface-energy, thin film or coating, on a surface coated with said composition. Preferably, the weight % of fluorine, based on total weight of the polymers, is at least 30%.
In another aspect, this invention provides coated articles comprising a surface having a coating or film derived from the water-based composition of this invention. Methods of making said coated articles are also disclosed.
As used herein, "anionic" means capable of forming anions in aqueous mixtures. As used herein, "polymer" or "polymers" includes polymers and oligomers.
The coated articles of this invention are resistant to wetting because of the low surface-energy film or coating. Possible applications include soil-releasing automotive protective finishes and glazes, anti-soiling carpet and fabric treatments, protective coatings for building walls and other construction surfaces, mold release coatings, fly fishing line coatings, wound dressings, and the like.
The anionic moiety-containing polymers useful in this invention preferably have an average of more than two reactive ionic moieties per polymer. Preferably, the anionic moiety-containing polymers have an average of more than one fluoroaliphatic moiety per polymer. Such polymers include those described, for example, in U.S. Pat. No 4,929,666, supra, which descriptions are hereby incorporated by reference.
Useful anionic moieties include carboxy, mercaptan, or sulfonamide moieties which can be reacted with bases to obtain carboxylate, mercaptide, and sulfonamide salts. At lower pH values, these moieties become essentially nonionic. The particularly preferred anionic moiety is carboxylate. The carboxylate anionic polymer can be utilized in the water-based compositions of this invention as its ammonium salt.
The anionic moiety-containing polymers useful in the present invention, can be prepared, for example, by the addition polymerization of fluoroaliphatic radical-containing ethylenically unsaturated monomer, such as acrylate, e.g. CH2 ═CHCOOCH2 CH2 N(Et)SO2 C8 F17, vinyl ether, or styrenic monomers, and ethylenically unsaturated carboxylic acid monomer, such as acrylate, e.g. 2-carboxyethyl acrylate, vinyl ether, or styrenic monomers.
The polymers of this invention, having at least one oxazoline or oxazine moiety and at least one fluoroaliphatic moiety, can be prepared by the addition polymerization of fluoroaliphatic radical-containing ethylenically unsaturated monomer, such as acrylate, e.g. CH2 ═CHCOOCH2 CH2 N(Et)SO2 C8 F17, vinyl ether, or styrenic monomers, and oxazine or oxazoline-containing ethylenically unsaturated monomer, such as 2-isopropenyl-2-oxazoline (IPO), and those represented by the general structures: ##STR2## wherein R1 is an organic radical having addition polymerizable unsaturation, such as α-β ethylenic unsaturation. Preferably, R1 is an isopropenyl group. Each R2 is independently hydrogen, halogen, or an substituted organic radical, preferably R2 is hydrogen.
The oxazoline or oxazine containing polymers of the present invention preferably have an average of more than two oxazoline or oxazine moieties per polymer. Preferably, the oxazoline or oxazine containing polymers have an average of more than one fluoroaliphatic moiety per polymer.
The fluoroaliphatic moiety can be a fluorinated, stable, inert, preferably saturated, non-polar, monovalent aliphatic or cycloaliphatic moiety. It can be straight chain, branched chain, cyclic, or combinations thereof. It can contain catenary heteroatoms, bonded only to carbon atoms, such as oxygen, divalent or hexavalent sulfur, or nitrogen. A fully-fluorinated moiety is preferred but hydrogen or chlorine atoms can be present as substituents provided that not more than one atom of either is present for every two carbon atoms. The moiety has at least 3 carbon atoms, preferably 3 to 20 carbon atoms and most preferably about 4 to about 10 carbon atoms. The terminal portion of the moiety is a perfluorinated moiety which will preferably contain at least 7 fluorine atoms, e.g., CF3 CF2 CF2 --, (CF3)2 CF--, F5 SCF2 --, or the like.
The compositions of the present invention are useful for preparing coated articles such as plastic, glass, metal, or ceramic articles.
EXAMPLES
In the following Examples and Comparative Examples, oxazoline-containing polymers and carboxyl-containing polymers were prepared. Aqueous compositions containing oxazoline-containing polymer and carboxyl-containing polymer were then prepared. The resulting compositions appear to have good stability, with some samples still capable of forming coatings with low surface energy after 6 months aging at room temperature. The aqueous compositions were coated onto substrates and dried, the resulting coatings (or films) were evaluated.
The following acrylates and vinyl ethers were used as monomers:
______________________________________                                    
          MONOMERS                                                        
______________________________________                                    
Acrylate A  CH.sub.2 ═CHCOOCH.sub.2 CH.sub.2 N(Et)SO.sub.2 C.sub.8    
            F.sub.17                                                      
Acrylate B  CH.sub.2 ═CHCOOCH.sub.2 CH.sub.2 N(Me)SO.sub.2 C.sub.8    
            F.sub.17                                                      
Acrylate C  CH.sub.2 ═CHCOOCH.sub.2 C.sub.7 F.sub.15                  
Acrylate D  CH.sub.2 ═C(CH.sub.3)COOCH.sub.2 C.sub.7 F.sub.15         
Acrylate E  CH.sub.2 ═C(CH.sub.3)COOCH.sub.2 CH.sub.2 OC.sub.9        
            F.sub.17                                                      
Acrylate F  CH.sub.2 ═C(CH.sub.3)COOCH.sub.2 CH.sub.2 (CF.sub.2).sub.n
             CF.sub.3                                                     
Where n is 5,7, and 9, average of 7.0                                     
Acrylate G  CH.sub.2 ═C(CH.sub.3)COOCH.sub.2 C.sub.6 F.sub.11         
where C.sub.6 F.sub.11 represents a mixture of                            
perfluorocyclohexane and trifluoromethyl-                                 
perfluorocyclopentane.                                                    
Acrylate H  CH.sub.2 ═CHCOOCH.sub.2 C.sub.2 F.sub.4 OC.sub.8 F.sub.17 
            1                                                             
Vinyl Ether I                                                             
            CH.sub.2 ═CHO(CH.sub.2).sub.4 OC.sub.9 F.sub.17           
Vinyl Ether J                                                             
            CH.sub.2 ═CHOCH.sub.2 CH.sub.2 N(Et)SO.sub.2 C.sub.8      
            F.sub.17                                                      
______________________________________                                    
Acrylates A and B were prepared as described in U.S. Pat. No. 2,803,615 (Ahlbrecht et al.). Acrylates C and D were prepared as described in U.S. Pat. No. 2,642,416 (Ahlbrecht et al.). Acrylate E was prepared as described in Chem. Abstracts 84(20):136258g. Acrylate F was prepared as described in U.S. Pat. No. 3,277,039 (Marascia et al.). Acrylate G was prepared as described in U.S. Pat. No. 3,699,156 (Holland et al.). Acrylate H was prepared as described in U.S. Pat. No. 2,826,564 (Bovey et al.). Vinyl ether I was prepared as described in U.S. Pat. No. 2,732,370 (Codding et al.). Vinyl ether J was prepared as described in U.S. Pat. No. 3,078,245 (Heine et al.).
Example 1
In Example 1, an oxazoline-containing polymer of this invention was prepared. A mixture of acrylate A (40.0 g, 67 mmol), 2-isopropenyl-2-oxazoline ("IPO") (10.0 g, 90 mmol), azobis(isobutyronitrile) ("AIBN") (0.301 g), and methyl ethyl ketone (MEK) (14 g) was added to a refluxing mixture of 50.0 g each of 2-propanol and MEK in a 3-necked flask, under nitrogen, over 2.5 hours. The resulting solution was stirred at reflux for 18 hours. An additional 0.302 g of AIBN was added and heating was continued for 10 hours. The resulting copolymer ("A/IPO copolymer") was precipitated out by adding this solution to 600 ml of heptane. The A/IPO copolymer was then further purified by dissolving in acetone and re-precipitation from heptane. 24.5 g of lightly colored solid A/IPO copolymer was obtained after drying in vacuum. Strong absorption band at 1660 cm-1 confirms the presence of 2-oxazoline moiety. Strong absorption band at around 1220 cm-1 confirms the presence of fluorine. Elemental analysis showed the following weight percents: 37.9% carbon, 3.6% hydrogen, 5.2% nitrogen, 35.7% fluorine. The weight ratio of interpolymerized units in the A/IPO copolymer was calculated, based on nitrogen analysis, to be 72% derived from acrylate A and 28% derived from IPO. The weight ratio of interpolymerized units in the A/IPO copolymer was calculated, based on quantitative 13 C NMR, to be 76% derived from acrylate A and 24% derived from IPO.
A solution of 5 g of the above A/IPO copolymer of this invention in 10 g ethyl acetate and 10 g acetone was dispersed into 40 ml water containing 0.15 g of C7 F15 CO2 NH4 in a blender under fast stirring. The organic solvents were then evaporated under reduced pressure at around 80° C. to form a stable dispersion. This dispersion had no flash point, indicating there was little residual organic solvent. The dispersion appeared homogeneous. It is surprising that this highly fluorinated copolymer is water-dispersible despite the lack of an ionic comonomer.
Next, a carboxyl-containing polymer was prepared. A mixture of acrylate A (240 g, 0.40 mole), 2-carboxyethyl acrylate ("CEA") (160 g, 1.11 mole), AIBN (1.0 g), MEK (100 g), and 2-propanol (100 g) was added to a refluxing mixture of 100 g each MEK and 2-propanol, under nitrogen, over 6 hr. The heating and stirring were continued for 12 hr to produce a solution of copolymer ("A/CEA copolymer"). This organic polymer solution was dispersed into an aqueous system by adding, with stirring, a 50 g portion to 180 g of water containing about 8 g of 30% ammonia. The organic solvents were then stripped off under reduced pressure at 80° to 85° C. No flash point was observed for this sample.
A 5.0 gram sample of the above A/IPO copolymer dispersion (13.8% solids) was mixed with a 4.9 g sample of the above A/CEA copolymer dispersion (19.0% solids) and then diluted to 10% solids by addition of water. The molar ratio of the carboxy functionality in the A/CEA copolymer to the oxazoline functionality in the A/IPO copolymer was calculated to be 1.6. In other words, there are 1.6 carboxy groups per oxazoline group. This mixture was allowed to sit at room temperature for at least two weeks after which it was coated onto a glass slide with a #12 Mayer rod to a coating thickness of about 2.7 microns. The resulting coating was then heated in a oven at 120° C. for 30 min.
The resulting film was clear and resistant to solvents. The weight % fluorine, based on total solids, of the polymers was calculated from the known fluorine content of the monomers. The resulting film was tested for water contact angle and film critical surface energy by the methods described in Zisman, W. A., "Contact Angle, Wettability, and Adhesion," Advances in Chemistry Series 43, American Chemical Society, Washington, D.C. (1964). The resulting films were also evaluated using a "pen test" consisting of drawing a line on the coated glass slide using a blue Sharpie™ fine point permanent marker available from the Sanford company. A number value of 0 to 3 was assigned based on the appearance of the resulting line. The values are defined as follows: 3: totally unwettable, ink dewets to form a discontinuous line (best); 2: ink partially dewets to form a very thin continuous line; 1: some dewetting; 0: totally wettable, same as nontreated surface (worst). For illustration of the test method, a line written on a Teflon™ surface dewets slightly and is assigned a 1. The results are shown in Table 1.
Examples 2-23
In Examples 2-23, additional IPO copolymers and additional CEA copolymers were prepared and dispersed in water as described in Example 1, utilizing the various monomers listed above. The suspensions were mixed, maintained at room temperature for at least two weeks, coated, heated, and tested as in Example 1. The compositions and results are summarized in Table 1.
The monomers used, and the weight ratio of the monomer feed used in each copolymer, are shown in Table 1. For example, "D/CEA (80:20)" means that a CEA copolymer was prepared as in Example 1 with a monomer feed ratio of 80 weight % acrylate D and 20 weight % CEA. The molar ratio of carboxylate functionality to oxazoline functionality was calculated based on weight % of monomer, and was 1.6 for each Example.
Example 24
A copolymer was prepared by copolymerization of maleic anhydride ("MA") and vinyl ether J. Maleic anhydride (4.9 g, 50 mmol), vinyl ether J (27.3 g, 50 mmol), AIBN (0.3 g), and carbon tetrabromide (0.019 g) were dissolved in ethyl acetate (30 g) and charged into a flask. The mixture was purged with nitrogen and polymerized at 80° C. for 3 to 4 hours. The resulting polymer was not very soluble in ethyl acetate and the polymer layer separated from solvent upon cooling to room temperature. The solvent was decanted and the polymer was dispersed into 150 g of water containing 7 g of 30% NH3. The remaining solvent was stripped off under reduced pressure at 80° C.
A coating composition was prepared by mixing the above copolymer dispersion (4.84 g, 12.3% solids) with the A/IPO copolymer dispersion of Example 1 (4.84 g, 12.3% solids). The molar ratio of carboxylate functionality to oxazoline functionality was calculated based on weight % of monomer to be 2.0. The mixture was adjusted to about 10% solids using water. The resulting mixture was maintained at room temperature for at least two weeks, coated, heated, and tested as in Example 1. The results of the test are shown in Table 1.
Example 25
As in Example 24, a copolymer of vinyl ether J and MA was prepared using the weight ratio of monomers shown in table 1. This copolymer, after being dispersed into an aqueous system using triethylamine, was mixed with the IPO copolymer dispersion of Example 1. The resulting mixture was maintained at room temperature for at least two weeks, coated, heated, and tested as in Example 1. The resulting coating was clear and solvent resistant. The results are shown in Table 1. The molar ratio of carboxylate functionality to oxazoline functionality was calculated based on weight % of monomer to be 2.0.
              TABLE 1                                                     
______________________________________                                    
                         CON-   CRITICAL                                  
                         TACT   SURFACE                                   
     FORMULA-            ANGLE  TENSION  PEN                              
EX   TION         % F    WATER  dynes/cm TEST                             
______________________________________                                    
 1   A/IPO    (80:20) 36.1 116    11.0     3                              
     A/CEA    (60:40)                                                     
 2   A/IPO    (80:20) 38.4 114    11.3     3                              
     IA/CEA   (70:30)                                                     
 3   A/IPO    (80:20) 41.4 113    13.2     3                              
     A/CEA    (80:20)                                                     
 4   A/IPO    (75:25) 34.4 112    11.6     3                              
     A/CEA    (60:40)                                                     
 5   A/IPO    (75:25) 38.8 114    11.0     3                              
     A/CEA    (75:25)                                                     
 6   A/IPO    (75/25) 38.8 112    12.8     3                              
     A/CEA    (75:25)                                                     
     1% suspension                                                        
 7   A/IPO    (70:30) 32.8 102    10.9     3                              
     A/CEA    (60:40)                                                     
 8   A/IPO    (60:40) 39.4 116    10.9     3                              
     A/CEA    (20:80)                                                     
 9   A/IPO    (60:40) 31.0 108    11.6     3                              
     A/CEA    (60:40)                                                     
10   A/IPO    (80:20) 37.9 112    13.3     2                              
     F/CEA    (60:40)                                                     
11   A/IPO    (80:20) 38.9 113    10.4     3                              
     F/CEA    (60:40)                                                     
12   A/IPO    (80:20) 36.1 116    9.8      3                              
     B/CEA    (60:40)                                                     
13   A/IPO    (80:20) 38.9 113    11.0     3                              
     D/CEA    (60:40)                                                     
14   A/IPO    (80:20) 39.5 112    11.1     3                              
     C/CEA    (60:40)                                                     
15   C/IPO    (70:30) 37.5  98    8.6      1                              
     C/CEA    (60:40)                                                     
16   C/IPO    (70:30) 35.0 112    11.4     2                              
     A/CEA    (60:40)                                                     
17   H/IPO    (70:30) 33.6 111    14.0     3                              
     A/CEA    (60:40)                                                     
18   A/IPO    (80:20) 37.1 112    14.8     2                              
     G/CEA    (60:40)                                                     
19   F/IPO    (70:30  35.5 120    12.0     3                              
     A/CEA    (60:40)                                                     
20   F/IPO    (70:30) 38.8 116    11.1     3                              
     IF/CEA   (60:40                                                      
21   B/IPO    (70:30  33.4 114    10.0     3                              
     A/CEA    (60:40)                                                     
22   A/IPO    (70:30) 33.5 114    12.0     3                              
     B/CEA    (60:40)                                                     
23   B/IPO    (70:30) 34.0 115    10.9     3                              
     B/CEA    (60:40)                                                     
24   A/IPO    (80:20) 46.8 115    15.4     1                              
     I/MA     (85:15)                                                     
25   A/IPO    (80:20) 44.1 116    11.4     2                              
     J/MA     (86:14)                                                     
______________________________________                                    
The data in Table 1 show that the compositions of this invention can form coatings having low surface energy and which are also generally less wettable under the pen test than comparable known compositions. For comparison, Teflon™ gives a rating of 1 under the pen test.
Examples 26-29
A series of coating compositions was prepared by mixing varying amounts of the two copolymer suspensions of Example 1. The resulting compositions were then maintained at room temperature for at least two weeks, coated, heated, and tested as in Example 1. The compositions and films were tested as above. The molar ratio of carboxylate functionality to oxazoline functionality was calculated based on weight % of monomer and is shown in Table 2 as "CO2 H:IPO ratio". The results are shown in Table 2.
              TABLE 2                                                     
______________________________________                                    
                           Critical                                       
                  Contact  Surface                                        
       CO.sub.2 H:IPO                                                     
                  Angle    Tension Pen                                    
Example                                                                   
       ratio      Water    dynes/cm                                       
                                   Test  % F                              
______________________________________                                    
26     0.4        115      11.7    2     39.0                             
27     0.8        114      14.4    3     37.9                             
28     2.4        115      12.0    3     35.0                             
29     3.2        111      10.6    2     34.4                             
______________________________________                                    
The data in Table 2 show that the ratio of the two polymers may be varied without adversely affecting the performance of the coating.
Comparative Examples C1 to C5
Comparative Examples C1 to C5 were prepared according to the teaching of U.S. Pat. No. '666, supra. An aqueous, 10% solids solution of IPO homopolymer of oxazoline functionality of 9.0 mmol per gram of dry polymer (10.0 g, total reactive functionality of 9.0 mmol) was mixed with an aqueous solution of A/CEA copolymer as in Example 1, functionality: 2.31 mmol per gram of dry polymer by titration, 23.2% solids, (16.8 g, total reactive functional of 9.0 mmol) and diluted with 22.2 g of water to a 10% solution. The above composition was diluted with water to specific concentrations shown in Table 3. The coatings were prepared according to Example 1, except the coating were prepared from freshly prepared mixtures that did not stand at room temperature for two weeks. The static contact angles of water and hexadecane, and the pen test results were obtained as in Example 1. The results are shown in Table 3.
Examples 30 to 34
An aqueous solution of the A/IPO copolymer of Example 1 (functionality of 2.52 mmol per gram of dry polymer by elemental analysis, 10% solids, 20.0 g, total reactive functional of 5.04 mmol) was mixed with the A/CEA copolymer solution of Comparative Example C1 (9.4 g, total reactive functional: 5.04 mmol) and diluted with 12.4 g of water to a 10% solids solution.
The above composition was diluted with water to specific % solids shown in Table 3. The coatings were prepared according to Example 1, except the coating were prepared from freshly prepared mixtures that did not stand at room temperature for two weeks. Their static contact angles of water and hexadecane (C16 H34), and the pen test results were obtained as in Example 1. The results are shown in Table 3.
              TABLE 3                                                     
______________________________________                                    
                   Contact Angle Pen                                      
Example   % Solids Water/C.sub.16 H.sub.34                                
                                 Test % F                                 
______________________________________                                    
C1        10.0      91/66        1    24.7                                
C2        5.0       78/66        1    24.7                                
C3        2.0       77/66        0    24.7                                
C4        1.0       85/64        0    24.7                                
C5        0.5       87/63        0    24.7                                
30        10.0     112/65        3    34.7                                
31        5.0      112/65        3    34.7                                
32        2.0      112/65        2    34.7                                
33        1.0      111/64        0    34.7                                
34        0.5      109/65        0    34.7                                
______________________________________                                    
The data in Table 3 show that coatings made from the compositions of this invention have lower surface energies compared to analogous known compositions as shown by the higher contact angles and improved resistance to wetting in the pen test. The improvements seen by the compositions of the present invention are particularly apparent at low concentrations.
The 2% composition of Comparative Example C3 and the 2% composition of Example 32 were tested for oil and water repellency on fabrics. Each composition (the compositions were used as freshly prepared and did not stand at room temperature for two weeks) was sprayed on a test fabric made of 6 different materials as shown in Table 4, to a weight pickup equal to the weight of the fabric. The sprayed fabric was then heated at 120° C. for 60 min. Scotchgard™ Textile Finishes SPS-3010 Oil Test Kit and Scotchgard™ Textile Finishes SPS-3011 Aqueous Test Kit were used to measure oil and water repellency (Scale of 0-10, higher number indicates more repellency). The results are shown in Table 4.
              TABLE 4                                                     
______________________________________                                    
              Example 32 Comp Example C3                                  
              Repellency Repellency                                       
Fabric        (Oil/Water)                                                 
                         (Oil/Water)                                      
______________________________________                                    
Spun Diacetate                                                            
              2/5        3/2                                              
Bleached Cotton                                                           
              1/3        1/2                                              
Spun Polyamide                                                            
              2/4        1/1                                              
(Nylon 6:6)                                                               
Spun Polyester                                                            
              4/3        4/1                                              
(Dacron 54)                                                               
Spun Polyacrylic                                                          
              4/4        4/2                                              
(Orlon 75)                                                                
Worsted Wool  2/5        0/1                                              
______________________________________                                    
The data in Table 4 show that compositions of the present invention can be used to impart improved water repellency to a variety of fabrics, compared to compositions such as those disclosed in Schmidt et. al U.S. Pat. No. '666, supra. Oil repellency can be obtained with the compositions of present invention equal to or better than compositions such as those shown in the '666 patent for all fabrics except spun diacetate.
The 10% composition of Comparative Example C1 and the 10% composition of Example 30 were coated onto glass slides and cured at 120° C. for 30 minutes (the compositions were used as freshly prepared and did not stand at room temperature for two weeks). These glass slides were then tested according to ASTM D3330-78 PSTC-1 for peel adhesion to tackified styrene-isoprene block copolymer adhesive coated on an ethylene-propylene impact copolymer backing ("Tape 1"), and 3M #232 masking tape ("Tape 2"). The results are reported in Table 5 for both initial and aged results. The "aged" values were obtained from samples aged at 65° C. for 72 hr. For example, an entry in Table 5 of "2.2/3.2" means the sample had an peel force of 2.2 ounces per inch initially and 3.2 ounces per inch after aging.
              TABLE 5                                                     
______________________________________                                    
                 Tape 1                                                   
                       Tape 2                                             
______________________________________                                    
Example 30 Peel Force                                                     
                   2.2/3.2 6.1/8.4                                        
(Oz. In) Initial/Aged                                                     
Comparative C1 Peel                                                       
                   2.6/3.7 9.8/17.8                                       
Force                                                                     
(Oz/in) initial/Aged                                                      
______________________________________                                    
The data in Table 5 show that coatings derived from the compositions of the present invention have reduced peel force as compared with coating compositions such as those described in '666 patent, and would be more useful as release coating for pressure sensitive adhesives.
In Examples 35-40, a fluorochemical surfactant was added to the coating composition to improve the wettability without degrading the properties of the resulting coatings. The lower the solution surface tension, the better the composition will wet a substrate. In these Examples the fluorochemical surfactant C8 F17 SO2 N(CH2 CH3)CH2 CO2 NH4, commercially available from 3M Company as FC-129 surfactant, was added to the emulsion. The mole % of surfactant based on total moles of carboxy functionality and surfactant are shown in Table 6 at a specified molar ratio, shown in Table 6 as "mole % surfactant". As discussed in U.S. Pat. No. 4,929,666 (Schmidt), this surfactant may become incorporated into the polymer by reaction with the pendant oxazoline group of the IPO copolymer.
Example 35
In Example 35, a sample of A/IPO (75:25) copolymer aqueous solution (5.0 g, 10.1% solids) was mixed with a A/CEA (60:40) copolymer aqueous solution and 0.034 g of the fluorochemical surfactant and diluted to 5% solids by addition of 15.5 g of water. The surface tension of this mixture was 33.3 dyne/cm. The resulting mixture was maintained at room temperature for at least two weeks, coated, heated, and tested as in Example 1. The surface tension of this finished film was 12.4 dyne/cm as shown in Table 6.
Examples 36-40
Compositions were maintained at room temperature for at least two weeks, coated, heated, and tested as in Example 35 except with varying amounts of the fluorochemical surfactant and CEA copolymer. The solution surface tension and final film surface tensions are reported in Table 6. Note that Example 39 contained no CEA copolymer, and Example 40 contained none of the fluorochemical surfactant.
              TABLE 6                                                     
______________________________________                                    
                 Soln.            Critical                                
                 Surface   Contact                                        
                                  Surface                                 
       mole %    tension   Angle  tension Pen                             
Example                                                                   
       surfactant                                                         
                 (dynes/cm)                                               
                           (water)                                        
                                  dynes/cm                                
                                          Test                            
______________________________________                                    
35      5        33.3      113    12.4    3                               
36     10        31.0      114    10.8    3                               
37     20        27.7      115    10.9    3                               
38     50        21.5      120    10.5    1                               
39     100       17.5      124     7.6    0                               
40      0        37.5      114    11.3    3                               
______________________________________                                    
The data in Table 6 show that surfactant may be added to the coating compositions of this invention to reduce the solution surface tension and improve the wetting. Example 39, which did not perform well in the pen test, did not contain any of the A/CEA copolymer. Example 38, with 50 mole % surfactant, did not perform well in the pen test, perhaps because the crosslinking of the coating was affected by the relatively high surfactant concentration.
Example 41
A solution of neutralized A/CEA copolymer from Example 1 (20.0 g, 23.2% in water, pH=8) was mixed with 0.86 g of C8 F17 SO2 N(CH2 CH3)CH2 CO2 K, commercially available from 3M Company as FC-129 surfactant, and placed into a blender with an additional 20 g of water. To this solution, a sample of A/IPO (75:25) copolymer solution prepared as in Example 1 (11.8 g, 35.7% solids in methyl ethyl ketone) was added slowly under vigorous stirring. Organic solvents were then stripped off.
The compositions of Example 41 and Comparative Example C1 were maintained at room temperature for at least two weeks, coated, and heated as in Example 1. The resulting coatings were tested for UV stabilization ability according to ASTM G26-90. The contact angles were measured initially and after 2,000 hours. The results are shown in Table 7.
              TABLE 7                                                     
______________________________________                                    
       Example 41  Comparative Example C1                                 
       Initial                                                            
              Aged     Initial    Aged                                    
______________________________________                                    
Hexadecane                                                                
          65      42        60      30                                    
Water    110      95       109      78                                    
______________________________________                                    
The results in Table 7 show that the coating of the present invention are more stable to UV than known compositions such as Comparative Example C1.
Various modifications and alterations of this invention will become apparent to those skilled in the art without departing from the scope and spirit of this invention.

Claims (3)

What is claimed is:
1. A water-soluble or water-dispersible polymer or oligomer having at least one fluoroaliphatic moiety and at least one oxazoline or oxazine moiety comprising interpolymerized units derived from an ethylenically unsaturated monomer containing a fluoroaliphatic moiety and an ethylenically unsaturated monomer containing an oxazoline or oxazine moiety.
2. The polymer or oligomer of claim 1 wherein said oxazoline moiety is derived from 2-isopropenyl-2oxazoline.
3. The polymer or oligomer of claim 1 wherein said polymer or oligomer comprises interpolymerized units derived from fluoroaliphatic radical-containing acrylate or vinyl ether or both, and 2-isopropenyl-2-oxazoline.
US08/168,344 1993-04-15 1993-12-17 Aqueous fluorochemical compositions and coatings therefrom Expired - Lifetime US5382639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/168,344 US5382639A (en) 1993-04-15 1993-12-17 Aqueous fluorochemical compositions and coatings therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/047,782 US5294662A (en) 1993-04-15 1993-04-15 Aqueous fluorochemical compositions and coatings therefrom
US08/168,344 US5382639A (en) 1993-04-15 1993-12-17 Aqueous fluorochemical compositions and coatings therefrom

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/047,782 Division US5294662A (en) 1993-04-15 1993-04-15 Aqueous fluorochemical compositions and coatings therefrom

Publications (1)

Publication Number Publication Date
US5382639A true US5382639A (en) 1995-01-17

Family

ID=21950943

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/047,782 Expired - Fee Related US5294662A (en) 1993-04-15 1993-04-15 Aqueous fluorochemical compositions and coatings therefrom
US08/168,344 Expired - Lifetime US5382639A (en) 1993-04-15 1993-12-17 Aqueous fluorochemical compositions and coatings therefrom

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/047,782 Expired - Fee Related US5294662A (en) 1993-04-15 1993-04-15 Aqueous fluorochemical compositions and coatings therefrom

Country Status (5)

Country Link
US (2) US5294662A (en)
EP (1) EP0694046A1 (en)
JP (1) JPH08509009A (en)
AU (1) AU681628B2 (en)
WO (1) WO1994024178A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608003A (en) * 1995-06-23 1997-03-04 Minnesota Mining And Manufacturing Company Aqueous fluorochemical compositions and abrasion-resistant coatings therefrom
US5760126A (en) * 1996-12-20 1998-06-02 Minnesota Mining And Manufacturing Company Aqueous fluorochemical compositions and abrasion-resistant coatings therefrom
US5851674A (en) * 1997-07-30 1998-12-22 Minnesota Mining And Manufacturing Company Antisoiling coatings for antireflective surfaces and methods of preparation
US5981076A (en) * 1996-12-09 1999-11-09 3M Innovative Properties Company UV protected syndiotactic polystyrene overlay films
US6132861A (en) * 1998-05-04 2000-10-17 3M Innovatives Properties Company Retroreflective articles including a cured ceramer composite coating having a combination of excellent abrasion, dew and stain resistant characteristics
US6245833B1 (en) 1998-05-04 2001-06-12 3M Innovative Properties Ceramer composition incorporating fluoro/silane component and having abrasion and stain resistant characteristics
US6265061B1 (en) 1998-05-04 2001-07-24 3M Innovative Properties Company Retroflective articles including a cured ceramer composite coating having abrasion and stain resistant characteristics
US6277485B1 (en) 1998-01-27 2001-08-21 3M Innovative Properties Company Antisoiling coatings for antireflective surfaces and methods of preparation
US6352758B1 (en) 1998-05-04 2002-03-05 3M Innovative Properties Company Patterned article having alternating hydrophilic and hydrophobic surface regions
US20020164477A1 (en) * 2000-01-05 2002-11-07 Lonc Gregory J. Release coating for tapes
US20050008784A1 (en) * 2003-06-27 2005-01-13 3M Innovative Properties Company Removal and replacement of antisoiling coatings
US20050022313A1 (en) * 2003-07-08 2005-02-03 Scheidler Karl J. Methods and compositions for improving light-fade resistance and soil repellency of textiles and leathers
US20070085050A1 (en) * 2003-07-08 2007-04-19 Scheidler Karl J Methods and Compositions for Improving Light-Fade Resistance and Soil Repellency of Textiles and Leathers
US20070275174A1 (en) * 2006-05-24 2007-11-29 Hanson Eric L Fishing fly and fly fishing line with fluorocarbon coating
US20140113061A1 (en) * 2012-10-18 2014-04-24 International Business Machines Corporation Novel wound dressing

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576411A (en) 1994-09-14 1996-11-19 Bayer Corporation Low surface energy polyisocyanates and their use in one-or two component coating compositions
US5541281A (en) 1994-12-20 1996-07-30 Bayer Corporation Low surface energy polyisocyanates and their use in one- or two-component coating compositions
EP0722116A1 (en) * 1995-01-12 1996-07-17 Minnesota Mining And Manufacturing Company Antistatic film bases and photographic elements comprising said antistatic film bases
US5874191A (en) * 1997-06-12 1999-02-23 Eastman Kodak Company Auxiliary layers for imaging elements applied from aqueous coating compositions containing fluoropolymer latex
US6476114B2 (en) * 1997-11-19 2002-11-05 3M Innovative Properties Company Thermoplastic polymer film comprising a fluorochemical compound
US20090131581A1 (en) * 2007-11-19 2009-05-21 Wylie Amy S Aqueous, stain-resistant coating compositions
ITUB20159527A1 (en) * 2015-12-14 2017-06-14 Fondazione St Italiano Tecnologia Polyelectrolyte fluorinated acrylic copolymers and release agents for use in rubber vulcanization

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2642416A (en) * 1950-05-26 1953-06-16 Minnesota Mining & Mfg Fluorinated acrylates and polymers
US2732370A (en) * 1956-01-24 Polymers
US2803615A (en) * 1956-01-23 1957-08-20 Minnesota Mining & Mfg Fluorocarbon acrylate and methacrylate esters and polymers
US2826564A (en) * 1953-12-21 1958-03-11 Minnesota Mining & Mfg Fluorinated acrylates and polymers
US3078245A (en) * 1960-11-07 1963-02-19 Minnesota Mining & Mfg Fluorocarbon vinyl ethers and polymers and aqueous dispersions containing same
US3277039A (en) * 1963-09-26 1966-10-04 Du Pont Oil and water repellent compositions
GB1190106A (en) * 1966-11-15 1970-04-29 Gaf Corp Improvements in or relating to Copolymers
US3699156A (en) * 1967-01-11 1972-10-17 Air Prod & Chem Fluorinated cyclic alcohol and their esters
US4508624A (en) * 1980-09-29 1985-04-02 Kyoto Ceramic Co., Ltd. Ceramic body for chromatography and process for preparation thereof
US4554325A (en) * 1984-05-11 1985-11-19 The Dow Chemical Company Perfluorocarbon based polymeric coatings having low critical surface tensions
US4592930A (en) * 1984-05-11 1986-06-03 The Dow Chemical Company Perfluorocarbon based polymeric coatings having low critical surface tensions
US4606973A (en) * 1984-05-11 1986-08-19 The Dow Chemical Company Substrate with perfluorocarbon polymeric coatings having low critical surface tensions
US4764564A (en) * 1984-05-11 1988-08-16 The Dow Chemical Company Perfluorocarbon based polymeric coatings having low critical surface tensions
US4929666A (en) * 1987-05-14 1990-05-29 The Dow Chemical Company Fluorocarbon containing, reactive polymeric surfactants and coating compositions therefrom
US5006624A (en) * 1987-05-14 1991-04-09 The Dow Chemical Company Fluorocarbon containing, reactive polymeric surfactants and coating compositions therefrom
EP0489941A1 (en) * 1990-12-03 1992-06-17 The Dow Chemical Company Industrial coatings with oxazoline latex

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4508869A (en) * 1983-06-14 1985-04-02 The Dow Chemical Company Latexes of polymers having pendant coreactive and oxazoline groups
CA1314353C (en) * 1987-05-14 1993-03-09 Donald L. Schmidt Fluorocarbon containing, reactive polymeric surfactants and coating compositions therefrom

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2732370A (en) * 1956-01-24 Polymers
US2642416A (en) * 1950-05-26 1953-06-16 Minnesota Mining & Mfg Fluorinated acrylates and polymers
US2826564A (en) * 1953-12-21 1958-03-11 Minnesota Mining & Mfg Fluorinated acrylates and polymers
US2803615A (en) * 1956-01-23 1957-08-20 Minnesota Mining & Mfg Fluorocarbon acrylate and methacrylate esters and polymers
US3078245A (en) * 1960-11-07 1963-02-19 Minnesota Mining & Mfg Fluorocarbon vinyl ethers and polymers and aqueous dispersions containing same
US3277039A (en) * 1963-09-26 1966-10-04 Du Pont Oil and water repellent compositions
GB1190106A (en) * 1966-11-15 1970-04-29 Gaf Corp Improvements in or relating to Copolymers
US3699156A (en) * 1967-01-11 1972-10-17 Air Prod & Chem Fluorinated cyclic alcohol and their esters
US4508624A (en) * 1980-09-29 1985-04-02 Kyoto Ceramic Co., Ltd. Ceramic body for chromatography and process for preparation thereof
US4554325A (en) * 1984-05-11 1985-11-19 The Dow Chemical Company Perfluorocarbon based polymeric coatings having low critical surface tensions
US4592930A (en) * 1984-05-11 1986-06-03 The Dow Chemical Company Perfluorocarbon based polymeric coatings having low critical surface tensions
US4606973A (en) * 1984-05-11 1986-08-19 The Dow Chemical Company Substrate with perfluorocarbon polymeric coatings having low critical surface tensions
US4764564A (en) * 1984-05-11 1988-08-16 The Dow Chemical Company Perfluorocarbon based polymeric coatings having low critical surface tensions
US4929666A (en) * 1987-05-14 1990-05-29 The Dow Chemical Company Fluorocarbon containing, reactive polymeric surfactants and coating compositions therefrom
US5006624A (en) * 1987-05-14 1991-04-09 The Dow Chemical Company Fluorocarbon containing, reactive polymeric surfactants and coating compositions therefrom
EP0489941A1 (en) * 1990-12-03 1992-06-17 The Dow Chemical Company Industrial coatings with oxazoline latex

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chem Abstract 84(20):136258g. *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005043A (en) * 1995-06-23 1999-12-21 3M Innovative Properties Company Aqueous fluorochemical compositions
US5608003A (en) * 1995-06-23 1997-03-04 Minnesota Mining And Manufacturing Company Aqueous fluorochemical compositions and abrasion-resistant coatings therefrom
US6201056B1 (en) 1995-06-23 2001-03-13 3M Innovative Properties Company Crosslinked fluoroaliphatic coating composition having oxazoline or oxazine moieties and integrated colloidal silica
US5981076A (en) * 1996-12-09 1999-11-09 3M Innovative Properties Company UV protected syndiotactic polystyrene overlay films
US6120901A (en) * 1996-12-09 2000-09-19 3M Innovative Properties Company UV protected syndiotactic polystyrene overlay films
US5760126A (en) * 1996-12-20 1998-06-02 Minnesota Mining And Manufacturing Company Aqueous fluorochemical compositions and abrasion-resistant coatings therefrom
US5851674A (en) * 1997-07-30 1998-12-22 Minnesota Mining And Manufacturing Company Antisoiling coatings for antireflective surfaces and methods of preparation
US6277485B1 (en) 1998-01-27 2001-08-21 3M Innovative Properties Company Antisoiling coatings for antireflective surfaces and methods of preparation
US6376576B2 (en) 1998-05-04 2002-04-23 3M Innovative Properties Company Ceramer composition incorporating fluoro/silane component and having abrasion and stain resistant characteristics
US6265061B1 (en) 1998-05-04 2001-07-24 3M Innovative Properties Company Retroflective articles including a cured ceramer composite coating having abrasion and stain resistant characteristics
US6245833B1 (en) 1998-05-04 2001-06-12 3M Innovative Properties Ceramer composition incorporating fluoro/silane component and having abrasion and stain resistant characteristics
US6352758B1 (en) 1998-05-04 2002-03-05 3M Innovative Properties Company Patterned article having alternating hydrophilic and hydrophobic surface regions
US6132861A (en) * 1998-05-04 2000-10-17 3M Innovatives Properties Company Retroreflective articles including a cured ceramer composite coating having a combination of excellent abrasion, dew and stain resistant characteristics
US20020164477A1 (en) * 2000-01-05 2002-11-07 Lonc Gregory J. Release coating for tapes
US20050008784A1 (en) * 2003-06-27 2005-01-13 3M Innovative Properties Company Removal and replacement of antisoiling coatings
US20070085050A1 (en) * 2003-07-08 2007-04-19 Scheidler Karl J Methods and Compositions for Improving Light-Fade Resistance and Soil Repellency of Textiles and Leathers
US7157018B2 (en) 2003-07-08 2007-01-02 Scheidler Karl J Compositions for improving the light-fade resistance and soil repellancy of textiles and leathers
US20050022313A1 (en) * 2003-07-08 2005-02-03 Scheidler Karl J. Methods and compositions for improving light-fade resistance and soil repellency of textiles and leathers
US7824566B2 (en) 2003-07-08 2010-11-02 Scheidler Karl J Methods and compositions for improving light-fade resistance and soil repellency of textiles and leathers
US20070275174A1 (en) * 2006-05-24 2007-11-29 Hanson Eric L Fishing fly and fly fishing line with fluorocarbon coating
US20140113061A1 (en) * 2012-10-18 2014-04-24 International Business Machines Corporation Novel wound dressing
CN103768640A (en) * 2012-10-18 2014-05-07 国际商业机器公司 Novel wound dressing and method of making same
US8951599B2 (en) * 2012-10-18 2015-02-10 International Business Machines Corporation Wound dressing
CN103768640B (en) * 2012-10-18 2016-07-06 国际商业机器公司 Wound dressing and preparation method thereof
US9656000B2 (en) 2012-10-18 2017-05-23 International Business Machines Corporation Wound dressing

Also Published As

Publication number Publication date
JPH08509009A (en) 1996-09-24
AU681628B2 (en) 1997-09-04
US5294662A (en) 1994-03-15
EP0694046A1 (en) 1996-01-31
WO1994024178A1 (en) 1994-10-27
AU6127194A (en) 1994-11-08

Similar Documents

Publication Publication Date Title
US5382639A (en) Aqueous fluorochemical compositions and coatings therefrom
US4929666A (en) Fluorocarbon containing, reactive polymeric surfactants and coating compositions therefrom
US5006624A (en) Fluorocarbon containing, reactive polymeric surfactants and coating compositions therefrom
US5344956A (en) Fluoroacrylate monomers and polymers, processes for preparing the same and their use
EP1326902B1 (en) Degradable, amorphous, fluoroacrylate polymers
US6833414B2 (en) Cross-linkable aqueous fluoropolymer based dispersions containing silanes
US5021527A (en) Fluorine-containing water-repellent oil-repellent composition
EP0725088B1 (en) Single package ambient curing polymers
JP2007520583A (en) Fluoropolymers of short chain fluorinated acrylates or methacrylates and oil and water repellent compositions based thereon
US4100225A (en) Stable polymer compositions containing perfluoroalkyl groups and process for making
EP0161804A1 (en) Method for modifying the surface of polymer materials
JP3433024B2 (en) Water / oil repellent composition
EP2251363B1 (en) Poly(meth)acrylamides and poly(meth)acrylates containing fluorinated amide
JPS5946248B2 (en) Manufacturing method of thermoplastic terpolymer
CA1314353C (en) Fluorocarbon containing, reactive polymeric surfactants and coating compositions therefrom
EP2810966A1 (en) Fluorine-containing copolymer and method for producing same, and water repellent/oil repellent agent composition
US5712348A (en) Maleic acid copolymers with fluorinated thioether end-cap
JPH05295275A (en) Aqueous resin composition
JPWO2013115197A1 (en) Fluorine-containing copolymer, process for producing the same, and water / oil repellent composition
JP3517821B2 (en) Aqueous resin composition
JPH09328677A (en) Water and oil repellent composition
KR20210109003A (en) Fluorine-containing polymer, coating composition, manufacturing method of coating article and coating article
EP1162218A1 (en) Aqueous dispersions of urethane-acrylic copolymers and their use as finishing agents
JPH02300388A (en) Wall paper
WO2023058532A1 (en) Spherical crosslinked particles

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 12