WO2000035956A1 - Antihuman vegf monoclonal antibody - Google Patents

Antihuman vegf monoclonal antibody Download PDF

Info

Publication number
WO2000035956A1
WO2000035956A1 PCT/JP1999/007074 JP9907074W WO0035956A1 WO 2000035956 A1 WO2000035956 A1 WO 2000035956A1 JP 9907074 W JP9907074 W JP 9907074W WO 0035956 A1 WO0035956 A1 WO 0035956A1
Authority
WO
WIPO (PCT)
Prior art keywords
vegf
monoclonal antibody
antibody
human
cells
Prior art date
Application number
PCT/JP1999/007074
Other languages
French (fr)
Japanese (ja)
Inventor
Kenya Shitara
Mikito Ito
Nobuo Hanai
Junji Kanazawa
Tatsuya Tamaoki
Masabumi Shibuya
Original Assignee
Kyowa Hakko Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co., Ltd. filed Critical Kyowa Hakko Kogyo Co., Ltd.
Priority to AU16875/00A priority Critical patent/AU1687500A/en
Publication of WO2000035956A1 publication Critical patent/WO2000035956A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention provides a monoclonal antibody which specifically binds to human VEGF and inhibits binding of human VEGF to two kinds of receptors, KDR and Flt-1, a hybridoma producing the antibody,
  • the present invention relates to a method for immunologically detecting human VEGF using the monoclonal antibody, and a diagnostic method, a diagnostic agent and a therapeutic agent using the monoclonal antibody.
  • Angiogenesis plays an important role in the formation of a circulatory system and many tissues in the vertebrate embryo during the embryonic period, and also in the mature individual (female), luteinization during the estrous cycle, and transient endometrium. It is closely involved in the growth of the placenta and placenta formation. Furthermore, pathological conditions include solid tumor growth or metastasis, diabetic retinopathy, and angiogenesis are deeply involved in the pathogenesis and promotion of 'hidden rheumatoid arthritis' [J. Folkman et al .; J. Biol. Chem., 267, 10931 (1992)].
  • Angiogenesis is triggered by the secretion of angiogenic factors, which secrete proteases from endothelial cells of existing blood vessels in the vicinity, destroy the basement membrane and stroma, and subsequently migrate and proliferate vascular endothelial cells.
  • angiogenic factors which secrete proteases from endothelial cells of existing blood vessels in the vicinity, destroy the basement membrane and stroma, and subsequently migrate and proliferate vascular endothelial cells.
  • Vascular permeability is a factor that induces angiogenesis.
  • factor (VPF) / Vascular endothelial growth factor (VEGF) is known as the most important factor in angiogenesis in the above-mentioned developmental stages and angiogenesis in pathological conditions [M. Shibuya; Advances in Cancer Research, Vol. 67 , 281 (1995)].
  • YPF / VEGF is a homodimer protein with a molecular weight of about 40,000.
  • VPF vascular permeability factor
  • VEGF Vascular endothelial growth factor
  • cDNA cloning revealed that they were the same substance [DW Leung et al .; Science, 246, 1306 (1989); PJ Keck et al .; Science, 246, 1309 (1989)].
  • VEGF vascular permeability factor
  • VEGF vascular endothelial growth factor
  • ED50 2-3 pM
  • Activity [AE Koch et al .; J. Immunology, 152, 4149 (1994)]
  • Meta-oral protease secretion promoting activity [EN Unemori et al., J. Cell Physiol.,! 153, 557 (1992)]
  • Secretion of perokinase and tPA Promoting activity [MS Pepper et al .; Biochem. Biophys. Res.
  • VEGF has been reported to be a growth factor with extremely high specificity for vascular endothelial cells [N. Ferrara et al .; Biochem. Biophys. Res. Com, 161.851 (1989)]. It has been reported that VEGF has four types of proteins by alternative splicing [KA Houck et al .; J. Biol. Chem., 267, 26031 (1991)].
  • VEGF vascular endothelial growth factor
  • kidney cancer [A. Takahashi; Cancer Research, 54, 4233 (1994)]
  • breast cancer [LF Brown et al .; Human Pathology, 26, 86 (1995)]
  • Gastrointestinal cancer It is reported that VEGF is produced in many human tumor tissues such as [LF Brown et al., Cancer Research, 53, 4727 (1993)], ovarian cancer [TA Olson et al., Cancer Research, 54, 276 (1994)]. Have been.
  • an anti-VEGF monoclonal antibody A4.6.1 can suppress cancer metastasis in a metastatic cancer model of human tumor in a nude mouse [O. Melnyk et al .; Cancer Research, 56, 921, (1996)]. Therefore, if VEGF activity can be suppressed, it is expected that tumor growth and metastasis formation in cancer patients can be suppressed.
  • high concentrations of VEGF were detected in human pleural effusion and ascites in humans, indicating that it may be a major factor in pleural and ascites retention [S. Kondo et al .; Biochimica et Biophysica Acta, 1221]. , 211 (1994)], and blocking VEGF is also expected to prevent the accumulation of cancerous pleural effusion and ascites.
  • angiogenesis in diabetic retinopathy is positively correlated with VEGF levels in the patient's eye.
  • VEGF levels in diabetic retinopathy
  • angiogenesis is suppressed by suppressing the VEGF activity by intraocular administration of the anti-VEGF neutralizing monoclonal antibody A4.6.1 [AP Adamis et al .; Arch Opthalmol., Lli, 66 (1996)]. Therefore, it is expected that angiogenesis in diabetic retinopathy can be suppressed by suppressing excessively produced VEGF activity.
  • Fit-l the first human VEGF receptor belonging to the receptor tyrosine kinase family
  • KDR kinase insert domain-containing receptor
  • a mouse homolog of the human VEGF receptor KDR is Flk-1 [W.
  • the extracellular domains of Flt-1 and KDR / Flk-1 consist of seven immoglobulin-like domains, and the intracellular domain consists of a membrane protein with a molecular weight of 180-200 kilodaltons containing a tyrosine kinase domain.
  • VEGF specifically binds to Flt-1 and KDR / Flk-1 with KD values of 20 pM and 75 pM, respectively.
  • FU-1 and KDR / Flk-1 have been reported to be specifically expressed in vascular endothelial cells [TP Quinn et al .; Proc. Natl. Acad. Sci. USA, 90, 7533 (1993); RL Kendall Natl. Acad. Sci. USA, 90, 8915 (1993)].
  • F11-1 has been reported to bind VEGF and autophosphorylate the intracellular domain [Science, 255, 989 (1992)], but its detailed function is unknown.
  • the fit-1 knockout mouse in which the fit-1 gene has been disrupted in the early development of blood islands and subsequent angiogenesis, abnormal vascular architecture was caused by abnormal vascular endothelial cell morphology, and the embryo died at 8.5 to 9.5 days of age. Therefore, Flt-1 has been presumed to play an essential function in vascular endothelial cell lumen formation during angiogenesis [Nature, 376, 66 (1995)].
  • the expression of KDR in various human diseases has been studied in tumor vascular endothelial cells of human brain tumor tissue [E.
  • KDR mRNA is also observed in vascular endothelial cells of the joints of patients with rheumatoid arthritis by in situ hybridization [RA Fava et al .; J. Experimental Medicine, 180, 341 (1994)], VEGF -VEGF receptor Yuichi suggests the importance of the KDR system.
  • VEGF vascular endothelial growth factor
  • angiogenesis can be more effectively inhibited by blocking two types of receptors simultaneously. It is estimated to be.
  • Anti-KDR / Flk-1 U pozyme (Ribozyme) or anti-F11-1 ribozyme, which can suppress the expression of KDR / Flk-1 or Fit-1 in vascular endothelial cells, is used for human skin.
  • Microvessel endothelial cells can inhibit VEGF-dependent proliferation of HMVEC, but each of them is a partial inhibition, so anti-KDR / F1k-1 lipozyme and anti-F11-1 lipozyme are added simultaneously to obtain two types of It has been reported that a stronger growth inhibitory effect was observed than simultaneous suppression of body expression (W097 / 15662).
  • the antibodies established so far include a mouse VEGF neutralizing monoclonal antibody, a mouse monoclonal antibody A4.6.1 [Growth Factors, 7, 53 (1992); Nature, 362, 844 (1993)], a mouse monoclonal antibody Antibodies MV101 and 1 MV303 [Hybridoma, li, 475 (1995); Cancer Res., 55, 5296 (1993)], and human monoclonal antibodies VA01 and BL2 ( ⁇ 0787742) are known. Antibodies also bind to VEGF and inhibit the function of either KDR or FU-1 by inhibiting the binding of VEGF to either of the two existing receptors, KDR or Fit-1 It is an anti-VEGF antibody.
  • An object of the present invention is to diagnose or treat diseases in which the disease progresses due to abnormal vascular neoplasia such as proliferation or metastasis of solid tumors, arthritis in rheumatoid arthritis, diabetic retinopathy, retinopathy of prematurity, or dryness.
  • Anti-VEGF that can inhibit the function of KDR and F11-1 by binding to VEGF and inhibiting the binding of VEGF to two receptors, KDR and Flt-1 To provide antibodies.
  • the present inventors have prepared an anti-human VEGF monoclonal antibody that recognizes VEGF, and inhibit the binding of the monoclonal antibody to two kinds of receptors for VEGF, KDR and Flt-1.
  • the present inventors have found that the function of t-1 can be inhibited, and that various biological activities of human VEGF can be inhibited, thereby completing the present invention.
  • the present invention relates to the following (1) to (12).
  • the monoclonal antibody is a monoclonal antibody belonging to the mouse IgGl subclass.
  • the monoclonal antibody according to (1) which is a monoclonal antibody.
  • hybridoma according to (4) above wherein the hybridoma is hybridoma KM1544 (FERM BP-6555) or ⁇ hybridoma KM1548 (FERM BP-6556).
  • Therapeutic drugs comprising the monoclonal antibody according to any one of the above (1) to (3) as an active ingredient.
  • Diseases whose disease progresses due to abnormal angiogenesis include diseases based on solid tumor growth or metastasis, arthritis in rheumatoid arthritis, diabetic retinopathy, Examples include retinopathy of infants and freshness.
  • the monoclonal antibody of the present invention binds to human VEGF, inhibits VEGF from binding to two types of receptors, KDR and Flt-1, and thereby inhibits the functions of KDR and Fit-1. Any substance can be used as long as it can inhibit various biological activities of human VEGF.
  • the functions of the human VEGF receptors KDR and Flt-1 include secretion of protease from vascular endothelial cells, degradation of the basal membrane outside vascular endothelial cells, migration and proliferation of vascular endothelial cells, and tube formation Is shown.
  • Inhibition of the biological activity of human VEGF refers to inhibition of the binding of human VEGF, a ligand, to KDR and Flt-1 as receptors, thereby inhibiting the function of KDR and Flt-1. Inhibits part or all of blood, resulting in the cessation of angiogenesis.
  • Examples of the monoclonal antibody of the present invention include antibodies produced by hybridomas, humanized antibodies, and human antibodies.
  • a hybridoma has a desired antigen specificity obtained by cell fusion of B cells obtained by immunizing a mammal other than human with an antigen and myeoma cells derived from a mouse or the like. Means a cell producing the monoclonal antibody.
  • humanized antibody examples include a human chimeric antibody and a human homology determining region.
  • CDR complementarity determining region
  • the human chimeric antibody is composed of an antibody non-human animal heavy chain variable region (hereinafter, the heavy chain is referred to as an H chain, and the variable region is referred to as a HV or VH as a V region) and an antibody light chain variable region (hereinafter, referred to as a light chain).
  • the L chain represents the L chain as LV or VL
  • the heavy chain constant region of the human antibody hereinafter, the constant region is also referred to as CH as the C region
  • CL light chain constant region of the human antibody
  • Non-human animals can produce hybridomas such as mice, rats, hamsters, and rabbits. Anything that works can be used.
  • the human chimeric antibody is obtained by obtaining cDNAs encoding VH and VL from a hybridoma producing the anti-human VEGF monoclonal antibody of the present invention, and preparing an animal having genes encoding human antibody CH and human antibody CL.
  • a human-type chimeric antibody expression vector can be constructed by inserting it into an expression vector for cells, and can be expressed and produced by introducing it into animal cells.
  • any CH may be used as long as it belongs to human immunoglobulin (hereinafter, referred to as hlg).
  • the CH of the hlgG class is suitable, and further, h IgGl belonging to the hlgG class, Any of the subclasses h IgG2, h IgG3, h IgG4 can be used.
  • the CL of the human chimeric antibody may be any CL as long as it belongs to Mg, and a ⁇ class or ⁇ class CL can be used.
  • the human CDR-grafted antibody means an antibody obtained by grafting the amino acid sequence of the CDR of VH and VL of an antibody of a non-human animal at an appropriate position of VH and VL of a human antibody.
  • the human CDR-grafted antibody comprises a V region obtained by grafting the VH and VL CDR sequences of an anti-human VEGF monoclonal antibody derived from a non-human animal of the present invention into the VH and VL CDR sequences of any human antibody.
  • a cDNA encoding the human antibody is inserted into an expression vector for animal cells having genes encoding the human antibody CH and the human antibody CL to construct a human CDR-grafted antibody expression vector. By introducing one into animal cells, a human CDR-grafted antibody can be expressed and produced.
  • the CH of the humanized CDR-grafted antibody may be any CH as long as it belongs to hlg, but the hlgG class is preferable, and further subclasses such as h IgGl, h IgG2, h IgG3, h IgG4 belonging to the MgG class. Can be used.
  • the CL of the human-type CDR-grafted antibody may be any CL as long as it belongs to hlg, and a CL class / ⁇ class can be used.
  • Human antibodies originally mean antibodies naturally occurring in the human body. Also included are human antibody phage libraries produced by advances in child engineering, cell engineering, and developmental engineering techniques, and antibodies obtained from transgenic animals producing human antibodies.
  • Antibodies present in the human body can be isolated, for example, by isolating human peripheral blood lymphocytes, infecting and immortalizing EB virus and the like, and cloning the lymphocytes that produce the antibodies.
  • the antibody can be purified.
  • the human antibody phage library is a library in which antibody fragments such as Fab and single-chain antibodies are expressed on the phage surface by inserting an antibody gene prepared from human B cells into the phage gene. Phage expressing an antibody fragment having the desired antigen-binding activity can be recovered from the library using the binding activity to the substrate on which the antigen is immobilized as an index. The antibody fragment can be further converted to a human antibody molecule consisting of two complete H chains and two complete L chains by genetic engineering techniques.
  • the human antibody-producing transgenic animal means an animal in which a human antibody gene has been integrated into cells.
  • a human antibody-producing transgenic animal can be produced by introducing a human antibody gene into mouse ES cells, transplanting the ES cells into an early embryo of another mouse, and then developing the embryo.
  • Human antibodies can be produced from human antibody-producing transgenic animals by obtaining human antibody-producing hybridomas by the method of producing hybridomas used in mammals other than normal humans, and culturing the culture. Human antibodies can be produced and accumulated therein.
  • antibody fragment examples include Fab (abbreviation of —fragment tof-antigen—binding), Fab ′, F (a), I, single-chain antibody (single chain Fv: hereinafter abbreviated as scFv), Examples include disulfide-stabilized antibodies (disul fi de stabilized Fv; dsFv), peptides containing CDRs, and the like.
  • Fab is a fragment obtained by treating IgG with proteolytic enzyme papain (which is cleaved at the 224th amino acid residue of the H chain), and contains about half the amino acid at the N-terminal side of the H chain. And the entire L chain are linked by disulfide bonds, and are antibody fragments having a molecular weight of about 50,000 and having antigen-binding activity.
  • Fab can be obtained by treating the anti-human VEGF monoclonal antibody of the present invention with the protease papain.
  • F (at) ') 2 is a fragment obtained by treating IgG with the protease pepsin (which is cleaved at the 234th amino acid residue in the H chain), and Fab is a disulfide bond in the hinge region.
  • This is an antibody fragment having a molecular weight of about 100,000 and having an antigen-binding activity, which is slightly larger than that bound through the DNA.
  • F (ab ') 2 can be obtained by treating the anti-human VEGF monoclonal antibody of the present invention with proteolytic enzyme pepsin.
  • the following Fab ′ can be prepared by making a thioether bond or a disulfide bond.
  • Fab ' is an antibody fragment having a molecular weight of about 50,000 and having an antigen-binding activity, in which the disulfide bond in the hinge region of F (ab') 2 is cleaved.
  • Fab ′ can be obtained by treating F (al) ′) 2 that binds to human VEGF with a reducing agent dithiothreitol.
  • DNA encoding the antibody Fa fragment is inserted into a prokaryotic or eukaryotic expression vector, and Fa is expressed by introducing the vector into a prokaryotic or eukaryotic organism. can do.
  • scFv refers to a VH-P-VL or VL_P-VH polypeptide in which one VH and one VL are linked using an appropriate peptide linker (hereinafter, referred to as P).
  • P an appropriate peptide linker
  • the scFv is obtained by obtaining cDNAs encoding the VH and VL of the anti-human VEGF monoclonal antibody of the present invention, constructing a DNA encoding the scFv, and using the DNA for expression in a prokaryotic expression vector or eukaryotic expression vector. And the expression vector is inserted into a prokaryotic organism. Alternatively, it can be expressed by introduction into eukaryotes to produce scFv.
  • dsFv refers to a polypeptide in which one amino acid residue in each of VH and VL has been substituted with a cysteine residue, which is linked via a disulfide bond between the cysteine residues.
  • the amino acid residue to be substituted for the cysteine residue can be selected based on the prediction of the three-dimensional structure of the antibody according to the method shown by Reiter et al. [Protein Engineering, 7, 697 (1994)].
  • VH and VL contained in the dsFv of the present invention any of the antibodies, humanized antibodies, and human antibodies produced by the hybridoma of the present invention can be used.
  • dsFv is obtained by obtaining cDNAs encoding the VH and VL of the anti-human VEGF monoclonal antibody of the present invention, constructing a DNA encoding the dsFv, and using the DNA for expression in a prokaryotic expression vector or eukaryotic expression vector.
  • the expression vector can be expressed and produced by introducing it into a prokaryote or eukaryote.
  • a peptide containing a CDR is composed of at least one region of a heavy chain or light chain CDR.
  • a plurality of CDRs can be linked directly or via an appropriate peptide linker.
  • the peptide containing the CDR is obtained by obtaining a cDNA encoding the VH and YL of the anti-human VEGF monoclonal antibody of the present invention, constructing a DNA encoding the CDR, and converting the DNA into a prokaryotic expression vector or a eukaryotic organism.
  • the expression vector can be expressed and produced by introducing the expression vector into a prokaryote or eukaryote.
  • the peptide containing CDR can also be produced by a chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the tBoc method (t-butyloxycarbonyl method).
  • An antibody derivative refers to an antibody produced by the hybridoma of the present invention, a humanized antibody, a human antibody or an antibody fragment thereof, which is bound to a radioisotope, protein or low-molecular compound.
  • Antibody derivatives include the N-terminal or C-terminal of the H-chain or L-chain of the anti-human VEGF monoclonal antibody or antibody fragment of the present invention, an appropriate substituent or side chain in the antibody or antibody fragment, and the antibody or antibody.
  • DNA encoding the anti-human VEGF monoclonal antibody or antibody fragment of the present invention and DNA encoding the protein to be ligated are ligated and inserted into an expression vector, and the expression vector is transferred to host cells. It can also be produced by genetic engineering techniques to be introduced.
  • radioisotope examples include 131 I, I and the like.
  • the radioisotope can be bound to the antibody by the chloramine T method or the like.
  • Low molecular drugs include alkylating agents such as nitrogen, mustard, and cyclophosphamide, antimetabolites such as 5-fluorouracil and methotrexate, antibiotics such as daunomycin, bleomycin, mitomycin C, daunorubicin, and doxorubicin; Anticancer drugs, such as plant alkyloids such as vincristine, vinblastine, and vindesine, and hormones such as evening moxifen and dexamethasone [Clinical Oncology (Japanese Society for Clinical Oncology, ed.
  • Steroids such as oral cortisone and prednisone, non-steroids such as aspirin and indomethacin, immunomodulators such as gold thiomalate and penicillamine, immunosuppressants such as cyclophosphamide and azathioprine, maleic acid
  • Anti-inflammatory drugs such as anti-histamines such as lupheniramine and clemacitin [Inflammation and anti-inflammatory therapy 1977, Ito Denki Shuppan Co., Ltd.], etc.
  • cytokines that activate immunocompetent cells are suitable.
  • human interleukin-12 hereinafter abbreviated as ML-2
  • human granulocyte-mac ora fuzzy colony-stimulating factor hereinafter abbreviated
  • HGM-CSF human granulocyte-mac ora fuzzy colony-stimulating factor
  • hM-CSF human macrophage colony-stimulating factor
  • ML-12 human interleukin-12
  • toxins such as ricin and diphtheria toxin can be used to directly damage cancer cells.
  • a cDNA encoding the protein is ligated to cDNA encoding the antibody or antibody fragment, a DNA encoding the fusion antibody is constructed, and the DNA is used for prokaryotic or eukaryotic organisms.
  • a fusion antibody can be produced by inserting the expression vector into an expression vector and introducing the expression vector into a prokaryote or eukaryote to cause expression.
  • a method for producing the antibody of the present invention will be described.
  • a human VEGF protein or a peptide chemically synthesized based on the amino acid sequence of human VEGF protein is prepared as an antigen, and an antigen-producing cell having antigen specificity is induced from an animal immunized with the antigen.
  • the cells are fused with a myeloma cell line to prepare a hybridoma, and the hybridoma is cultured, or the hybridoma cells are administered to an animal to cause the animal to develop ascites tumor, and the culture solution or By separating and purifying ascites, an anti-human VEGF monoclonal antibody can be obtained.
  • antigen examples include a human VEGF protein, a human VEGF protein having a different amino acid length, and a fusion protein of the protein and another protein.
  • the human VEGF protein can be produced in cells or in a culture supernatant by culturing cells that produce human VEGF protein in an appropriate medium.
  • the cells include human tumor cell lines such as human gloma cells G55 and human colorectal cancer COLO205 [Nature. 362, 841 (1993)].
  • DNA encoding human VEGF is obtained from the above-described cells by genetic engineering techniques, and human VEGF protein, human VEGF protein having different amino acid lengths, and Alternatively, a fusion protein of the protein and the Fc portion of an antibody can be expressed to be used as an antigen. The method is described below.
  • RNA is extracted, and cDNA is synthesized from the RNA.
  • a cDNA library is prepared by incorporating the obtained cDNA into a cloning vector and introducing it into host cells.
  • DNA encoding human VEGF can be obtained.
  • Methods for preparing total RNA from cells expressing human VEGF in cells include the guanidine Z cesium chloride method and the guanidine thiosinate method [Methods in EnzymoL, 154, 3 (1987)].
  • Examples of a method for preparing mRNA from total RNA include a column method or a batch method using oligo dT cellulose or the like.
  • mRNA can be prepared using a kit such as Fast Track mRNA mRNA Isolation Kit (manufactured by Invitrogen) or Quick Prep mRNA mRNA Pyurifique Kit (manufactured by Pharmacia).
  • CDNA can also be obtained using kits such as Superscript, Plasmid, System, Fortran, cDNA, Synthesis ⁇ and Plasmid Cloning (Gibco BRL), Zap-cDNA, Synthesis' Kit (Stratagene). It can also be synthesized.
  • Any phage vector or plasmid vector may be used as the cloning vector for incorporating the cDNA, as long as it can be replicated autonomously in the host cell and can stably maintain the cDNA.
  • ZAP Express [Stratagene, Strategies, 5, 58 (1992)]
  • pBluescript II SK 10 [Nucleic Acids Research, ⁇ , 9494 (1989)]
  • Azap II (Strata Gene), AgtlO, Agtll [DNA cloning, A Practical Approach], ⁇ , 49 (1985)]
  • ATriplEx (Clontech)
  • AEXCell PT7T3 18U (Pharmacia)
  • cD2 [Molecular and Cellular Biology (Mol. Cell.
  • any microorganism belonging to Escherichia coli can be used. Specifically, Escherichia coli XLI-Blue MRF '(Stratagene, Strategies,, 81 (1992)), Escherichia coli C6QQ (Genetics, 39, 440 (1954)), Escherichia coli YI088 [Science, 222, 778 (1983)], Escherichia col i YI090
  • a cDNA library is prepared by introduction into a host cell.
  • the cloning vector is a plasmid
  • the vector is introduced into a host cell by an electroporation method or a calcium chloride method.
  • the cloning vector is a phage
  • it is introduced into a host cell by in vitro packaging or the like.
  • a probe is prepared based on the nucleotide sequence of the DNA encoding human VEGF, and the probe is labeled with a fluorescent substance, radiation, an enzyme, or the like, and the hybridization is performed using a black hybridization, a colony hybridization, By performing Southern hybridization or the like, a transformant that hybridizes can be selected.
  • the human VEGF-expressing cells obtained by constructing the cells and introducing them into host cells are cultured in an appropriate medium, so that the full-length or partial fragments of human VEGF can be directly or intracellularly or in the culture supernatant. It can be produced as a fusion protein.
  • the host may be any host such as bacteria, yeast, animal cells, and insect cells, as long as it can express the gene of interest.
  • bacteria include bacteria of the genus Escherichia, such as Escherichia coH and Bacillus subtilis, and those of the genus Bacillus.
  • yeast include Saccharomyces cerevisiae, Schizosaccaromyces pombe, and the like.
  • animal cells include Namalba cells, which are human cells, COS cells, which are monkey cells, and CHO cells, which are Chinese 'hamster cells.
  • insect cells Sf9, Sf21 (Pharmingen), High Five (Invitrogen) and the like are exemplified.
  • any vector can be used as long as it can incorporate the DNA and can be expressed in a host cell.
  • an expression vector is composed of a promoter, a ribosome binding sequence, the DNA of the present invention, a transcription termination sequence, and, in some cases, a promoter control sequence.
  • a promoter for example, commercially available pGEX (Pharmacia), pET system (Novagen) and the like.
  • any method can be used as long as it is a method for introducing DNA into a bacterium.
  • a method using a calcium ion [Procedures-of-the- SA (Proc. Natl. Acad. Sci., USA), 69, 2110-2114 (1972)], the protoplast method (Japanese Unexamined Patent Publication No. 248394).
  • yeast is used as a host, for example, YEp13 (ATCC37115), YEp24 (ATCC37051), YCp50 (ATCC37419) and the like are used as expression vectors.
  • a method for introducing DNA into yeast includes, for example, an elect-mouth method [Methods. Enzymol., 194. 182-187]. (1990)], the Sueeloplast Act [Proceedings of the National Academy of Sciences. Obb Science 'of the United States. SA (Proc. Natl. Acad. Sci., USA), 84 , 1929-1933 (1978)] and the lithium acetate method [Journal of Bacteriol. (J. Bacteriol.), 153, 163-168 (1983)].
  • expression vectors such as pA GE 107 [JP-A-3-22979; Cytotechnology, 3, 133 (1990)], AGE 103 [Journal of Biochemistry (J. Biochem.), Sato, 1307 (1987)], etc. Is used.
  • any promoter can be used as long as it can be expressed in animal cells.
  • CMV cytomegalovirus
  • the enhancer of the IE gene of human CMV may be used together with the promoter.
  • Examples of a method for introducing a recombinant vector into animal cells include a method for introducing DNA into animal cells, for example, the electroporation method [Cytotechnology, 3 ⁇ 133 (1990)], the calcium phosphate method ( JP-A-2-227075), Lipoff-execution method [Proc. Natl. Acad. Sci., USA], 84 , 7413 (1987)].
  • insect cells When insect cells are used as hosts, for example, Current Protocols in Molecular Biology Supplement 1-34, baculovirus' Expression Vectors, a. Q; Proteins can be expressed by methods described in Baculovirus expression vectors A laboratory manual. That is, the recombinant gene transfer vector and baculovirus described below are co-transfected into insect cells to obtain a recombinant virus in the culture supernatant of insect cells, and the recombinant virus is further infected into insect cells to express the protein. Obtain insect cells.
  • pVL1392 As the gene transfer vector, for example, pVL1392, pVL1393, pBlueBacIII (all manufactured by Invitrogen) and the like are used.
  • the paculovirus is, for example, a virus that infects night moth insects.
  • Autographer ⁇ Californi force ⁇ Nuclear 1 ⁇ Polyhedosis ⁇ Virus
  • the recombinant virus is transferred to the insect cells such as Sf9, Sf21 or High Five described above. Can also be used to produce proteins by infecting [Biotechnology (Bio / Technology), 10, 457 (1988)].
  • proteins to be fused include i3-galactosidase, protein A, the IgG-binding region of protein A, chloramphenicol-acetyltransferase, poly (Arg), poly (Glu), protein G, maltose-binding protein, and Dalbin.
  • the transformant obtained as described above is cultured in a medium, the protein of the present invention is produced and accumulated in the culture, and collected from the culture to obtain the full-length or partial fragment of human VEGF as it is or as it is. It can be produced as a fusion protein.
  • the above-described method of culturing the transformant in a medium is performed by the usual method used for culturing a host. It is done according to the method.
  • a culture medium for culturing a transformant obtained by using a microorganism such as Escherichia coli or yeast as a host contains a carbon source, a nitrogen source, inorganic salts, and the like that can be used by the microorganism to efficiently culture the transformant.
  • a natural medium or a synthetic medium can be used as long as it can be used (Molecular 'Cloning 2nd edition).
  • Cultivation is usually carried out at 15 to 40 ° C for 16 to 96 hours under aerobic conditions such as shaking culture or deep aeration stirring culture.
  • the pH is maintained at 3.0-9.0.
  • the pH is adjusted using inorganic or organic acids, alkaline solutions, urea, calcium carbonate, ammonia and the like.
  • an antibiotic such as ampicillin or tetracycline may be added to the medium as needed.
  • a medium for culturing the transformant obtained using animal cells as a host commonly used RPM11640 medium, Eag1e MEM medium, or a medium obtained by adding fetal calf serum or the like to such a medium can be used.
  • Can be Cultivation is usually performed at 35 to 37 ° C. for 3 to 7 days in the presence of 5% C 2, and if necessary, antibiotics such as kanamycin and benicillin may be added to the medium during the cultivation.
  • TNM-medium As a medium for culturing a transformant obtained by using an insect cell as a host, commonly used TNM-medium [Pharmingen], Sf90011 SFM [Life Technologies ( Life Technologies), ExCelHOO, ExCell405 [all manufactured by JRH Biosciences] and the like.
  • the culture is performed for 25 to 3 days (TC for 1 to 4 days).
  • an antibiotic such as mycin mycin may be added to the medium as needed.
  • the full-length or partial fragment of human VEGF when culture can be performed in a medium without serum added to the medium of animal cells and insect cells, the full-length or partial fragment of human VEGF can be used as it is or the fusion protein can be easily purified. It is preferable to use a culture medium without addition.
  • Human VEGF full length or partial fragment as it is or as fusion protein host If it accumulates in the cells, after the culture is completed, centrifuge the cells to obtain the cells. After suspending the cells in an aqueous buffer, the cells are disrupted by an ultrasonic method, a French press method or the like. The obtained cell lysate is centrifuged, and the protein is recovered from the supernatant.
  • the insoluble form When an insoluble form of human VEGF is formed in cells, the insoluble form is solubilized with a protein denaturant, and then diluted to a solution that does not contain the protein denaturant or is diluted to such a concentration that the protein denaturant does not denature the protein Alternatively, the protein can be dialyzed to form a three-dimensional structure of the protein.
  • the expressed protein can be recovered in the culture supernatant.
  • solvent extraction, fractional precipitation with organic solvents, salting out, dialysis, centrifugal separation, ultrafiltration, ion exchange chromatography, gel filtration chromatography, hydrophobic chromatography, affinity chromatography Separation operations such as reverse phase chromatography, crystallization, and electrophoresis can be performed alone or in combination.
  • a polypeptide having a partial sequence of human VEGF can also be produced by a chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the tBoc method (t-butyloxycarponyl method). Also, Kuwawa Trading (US Advanced ChemTech), Perkin-Elmer Japan (US Perkin-Elmer), Aroka (US Protein Technology Instrument), Kurabo (US Synthecel Vega), It can also be produced using a peptide synthesizer such as Nippon Perceptive, Limited (US PerSeptive) or Shimadzu Corporation.
  • Animals used for immunization are non-human animals such as mice, rats, hamsters, and rabbits, and any animal can be used as long as hybridomas can be produced.
  • the non-human animal is immunized with the protein obtained above as an antigen, and antibody-producing cells are collected from spleen, lymph nodes, and peripheral blood of the animal.
  • How to immunize May be administered subcutaneously, intravenously or intraperitoneally to an animal, but it is preferable to administer the antigen by binding a carrier protein with high antigenicity, or to administer the antigen together with an appropriate adjuvant.
  • Carrier proteins include keyhole limpet hemosinin, keyhole limpet hemosinin, bovine serum albumin, bovine thyroglobulin, etc.
  • Adjuvants include Freund's complete adjuvant (Co immediately lete Freund's Adjuvant), hydroxylation Aluminum gel and B. pertussis vaccine.
  • the antigen is administered 3 to 10 times every 1 to 2 weeks after the first administration. Blood is collected from the fundus venous plexus or tail vein of the immunized animal 3 to 7 days after each administration, and the reactivity of the serum with the antigen is confirmed by an enzyme immunoassay or the like.
  • Enzyme immunoassay (ELISA): Published by the Medical Shoin (1976)]: an immunized animal whose serum shows a sufficient antibody titer is used as a source of antibody-producing cells.
  • lymphocytes are excised and fused with lymphocytes and myeloma cells in accordance with the Antipodes. Laboratory Manual.
  • mice 8-azaguanine-resistant mice (derived from BALB / c) myeloma cell line P3-X63Ag8-Ul (P3-Ul), a cell line obtained from mice [G. Kohler et al. Pian Journal of Immunology (Europ. J. Immunol.), 6, 511 (1976)], SP2 / 0-Agl4 (SP-2) [M. Shulman et al .; Nature, 276, 269 ( 1978)], P3-X63-Ag8653 (653) [JF Kearney et al., Journal of Obiminology (J. I.
  • a cell-aggregating medium such as Glyco-Rue 1000 (PEG-1000) to fuse the cells and suspend them in the medium.
  • MEM medium or PBS 1.83 g of sodium phosphate phosphate, 0.21 g of phosphate monophosphate, 7.65 g of salt, 1 liter of distilled water, H7.2
  • HAT medium normal medium [Dalmin (1.5 ⁇ ), 2-mercapto) in RPMI-1640 medium, so that only the desired fused cells can be selectively obtained.
  • ethanol (5 X 10- 5 M), Jen evening mycin (10 g / ml) and fetal calf serum (FCS) (CSL Ltd., 10%) Hipokisa Nchin the added medium] (10- 4 M), thymidine (1. 5 X 10- 5 M) and aminopterin (4X 10- 7 M) was added medium) is used.
  • a sample that reacts with the antigen protein and does not react with the non-antigen protein is selected by the following enzyme immunoassay.
  • cloning is performed by the limiting dilution method, and those with a stable and high antibody titer determined by enzyme immunoassay are selected as monoclonal antibody-producing hybridoma strains.
  • the antigen protein or cells expressing the antigen protein are coated on a plate, and the antiserum, hybridoma culture supernatant or the purified antibody obtained by the above method is reacted as the first antibody, and the second antibody is biotin, an enzyme. After reacting the immunoglobulin antibody against the animal species of the primary antibody labeled with a chemiluminescent substance or a radioactive compound, a reaction corresponding to the labeling substance is performed, and a monoclonal antibody that specifically reacts with the antigen is produced. Select as dormer.
  • Specific examples of the hybridoma strain of the present invention include the hybridoma strains KM1544 and KM1548.
  • Hypridoma strains K1544 and KM1548 were registered on October 27, 1998 with the Institute of Biotechnology and Industrial Technology, Institute of Bio-Science and Technology (1-1-3 Tsukuba-Higashi, Ibaraki, Japan) and FERM BP-6555, respectively. Has been deposited as FERM BP-6556 You.
  • Monoclonal antibodies were obtained by intraperitoneal administration of 5 ml of a culture solution obtained by culturing eight hybridoma cells or treated with pristane [2,6,104-tetratetramethylpentane (Pristane) O. 5 ml.
  • the monoclonal antibody-producing hybridoma cells are intraperitoneally administered to the mouse or nude mouse of 8 to 10 weeks of age, and then separated and purified from ascites caused by ascites tumor.
  • Methods for separating and purifying monoclonal antibodies include centrifugation, salting out with 40-50% ammonium sulfate, caprylic acid precipitation, DEAE-Sepharose column, anion exchange column, and protein A or G-column.
  • chromatography using a gel filtration column or the like is performed alone or in combination.
  • an IgG or IgM fraction can be collected to obtain a purified monoclonal antibody.
  • the subclass of the purified monoclonal antibody can be determined using a monoclonal antibody typing kit or the like.
  • the protein content can be calculated by the Lowry method or from the absorbance at 280 nm.
  • Antibody subclasses refer to isotypes within a class, including IgGl, IgG, IgG2b, and IgG3 in mice and IgGl, IgG2, IgG3, and IgG4 in humans, and particularly mouse IgGl, IgG2a, and human IgGl types. It has complement-dependent cytotoxic activity (hereinafter referred to as CDC activity) and antibody-dependent cytotoxic activity (hereinafter referred to as ADCC activity), and is useful for therapeutic applications.
  • CDC activity complement-dependent cytotoxic activity
  • ADCC activity antibody-dependent cytotoxic activity
  • the present invention also relates to a method for immunologically detecting and quantifying human VEGF using the monoclonal antibody of the present invention.
  • Methods for immunologically detecting and quantifying human VEGF using the monoclonal antibody or the antibody fragment thereof of the present invention include a fluorescent antibody method, an immunoenzymatic antibody method (ELISA), and a radioactive substance labeled immunological antibody method (RIA).
  • ELISA immunoenzymatic antibody method
  • RIA radioactive substance labeled immunological antibody method
  • the fluorescent antibody method is a reaction of the monoclonal antibody of the present invention or an antibody fragment thereof with isolated cells or tissues, and further, an anti-immunoglobulin antibody or a binding antibody labeled with a fluorescent substance such as fluorescin / isothiosinate (FITC). After reacting the fragments, a fluorescent dye is measured by a flow cytometer.
  • the immunoenzymatic antibody method refers to the monoclonal antibody of the present invention isolated on cells or its lysate, tissue or its lysate, cell culture supernatant, serum, pleural effusion, ascites, eye fluid, etc.
  • the antibody fragment is reacted with an anti-immunoglobulin antibody or binding fragment that has been labeled with an enzyme such as peroxidase or biotin, and then the colored dye is absorbed.
  • the radioactive substance-labeled immunoassay refers to the isolated cells or their lysates, tissues or their lysates, cell culture supernatants, serum, pleural effusion, ascites, eye fluids, etc. This is a method in which an antibody or an antibody fragment thereof is reacted, and further reacted with a radiolabeled anti-immunoglobulin antibody or a binding fragment, followed by measurement using a scintillation counter or the like.
  • the immune cell staining method and the immunohistochemical staining method are as follows: the isolated cells or tissues are reacted with the monoclonal antibody of the present invention or an antibody fragment thereof, and further, a fluorescent substance such as fluorescin / isothiocyanate (FITC); This is a method in which an anti-immunoglobulin antibody or a binding fragment labeled with an enzyme such as peroxidase or biotin is reacted, and then observed using a microscope.
  • FITC fluorescin / isothiocyanate
  • the Western plotting method is based on SDS-polyacrylamide of cells or their lysates, tissues or their lysates, cell culture supernatants, serum, etc. After fractionation by gel electrophoresis and electrophoresis [Antibodies—A Laboratry Manual, Cold Spring Harbor Laboratory, 1988], the gel was plotted on a PVDF membrane or a nitrocellulose membrane, and the present invention was applied to the membrane. The monoclonal antibody or its fragment is reacted, and further reacted with a fluorescent substance such as FITC, an anti-mouse IgG antibody or a binding fragment labeled with an enzyme such as peroxidase or biotin, and then checked.
  • a fluorescent substance such as FITC
  • an anti-mouse IgG antibody an anti-mouse IgG antibody or a binding fragment labeled with an enzyme such as peroxidase or biotin
  • the immunoprecipitation method refers to a method of reacting a cell or its disrupted solution, a tissue or its disrupted solution, a cell culture supernatant, a serum, or the like, separated from a living body with a monoclonal antibody or an antibody fragment thereof of the present invention, followed by protein G -An antigen-antibody complex is precipitated by adding a carrier having specific binding ability to immunoglobulin such as Sepharose.
  • the sandwich ELISA method is a monoclonal antibody or an antibody fragment thereof of the present invention.
  • one of the monoclonal antibodies or antibody fragments is adsorbed on a plate in advance, and the other is monoclonal.
  • Antibodies or antibody fragments should be labeled with a fluorescent substance such as FITC or an enzyme such as peroxidase or biotin. After reacting the antibody-adsorbed plate with cells or its lysate, tissue or its lysate, cell culture supernatant, serum, etc., separated from the living body, react the labeled monoclonal antibody or its antibody fragment with the labeled substance. This is a method for performing a corresponding reaction.
  • human VEGF present in cells or tissues of a subject is detected by immunological detection as described above.
  • a quantification method may be used.
  • the monoclonal antibody or the antibody fragment thereof of the present invention can be used as a diagnostic drug for a disease based on the growth or metastasis of a solid tumor, or a disease in which the disease state progresses due to abnormal angiogenesis.
  • the activity of inhibiting the binding of human VEGF to human VEGF receptor KDR and the activity of human VEGF can be determined by measuring the binding between growth factors and receptors. Biochemistry Laboratory Course 7 Growth differentiation factors and their receptors (Tokyo Kagaku Dojin, 1991)] It can be confirmed by performing a VEGF-VEGF receptor KDR binding inhibition test and a VEGF-VEGF receptor Fit-1 binding inhibition test using a monoclonal antibody according to the method described in (1).
  • cells or tissues expressing Flt-1 or KDR are reacted with VEGF labeled with a radioactive substance, and VEGF bound to cells or tissues expressing F11-1 or KDR is treated with a scintillation counter or the like. It is a method of measuring.
  • the antibody of the present invention simultaneously with VEGF labeled with a radioactive substance, the activity of inhibiting the binding of VEGF labeled with a radioactive substance to Flt-1 or KDR can be measured. It is.
  • the autophosphorylation inhibitory activity of VEGF receptor KDR and VEGF receptor Fit-1 is measured by the method of measuring the autophosphorylation of growth factor receptor [Sequence Chemistry Laboratory Lecture Information transmission and cellular response (Tokyo Chemical Dojin, 1998 6 years)], and can be confirmed by performing an autophosphorylation inhibition test of VEGF-VEGF receptor KDR and VEGF-VEGF receptor Flt-1 using monoclonal antibodies .
  • VEGF is reacted with cells or tissues expressing Flt-1 or KDR, and the autophosphorylation of FU-1 or KDR, which is enhanced by the binding of VEGF, is immunoprecipitated and Western blotted. It is a method to detect by such as.
  • By reacting the antibody of the present invention simultaneously with VEGF it is possible to measure the activity of inhibiting the autophosphorylation of Flt-1 or KDR, which is enhanced by the binding of VEGF.
  • the VEGF-dependent vascular endothelial cell proliferation test is performed by reacting vascular endothelial cells with VEGF and measuring the number of vascular endothelial cell growth-promoting activities that are enhanced by the binding of VEGF. It is a method. By reacting the antibody of the present invention simultaneously with VEGF, it is possible to measure the activity of inhibiting the growth promoting activity of vascular endothelial cells promoted by VEGF.
  • the VEGF-dependent migration test of vascular endothelial cells is a method in which VEGF is reacted with vascular endothelial cells, and the activity of promoting migration of vascular endothelial cells, which is enhanced by binding of VEGF, is observed using a microscope.
  • VEGF vascular endothelial growth factor
  • the VEGF-dependent tube formation test of vascular endothelial cells is a method in which VEGF is reacted with vascular endothelial cells and the activity of promoting tube formation of vascular endothelial cells, which is enhanced by the binding of VEGF, is observed using a microscope. .
  • By reacting the antibody of the present invention simultaneously with VEGF it is possible to measure the activity of inhibiting the tube formation promoting activity of vascular endothelial cells enhanced by VEGF.
  • the monoclonal antibody of the present invention inhibits the functions of KDR and Fit-1 by inhibiting the binding of VEGF to two kinds of receptors, KDR and Fit-1, as described above. Since it can inhibit the various biological activities of human VEGF, it can be used as a therapeutic agent for diseases based on the growth or metastasis of solid tumors induced by excessive VEGF, or diseases in which the disease progresses due to abnormal vascular growth. it can.
  • FIG. I shows the results of analyzing the binding activity of human VEGF monoclonal antibody to human VEGF.
  • FIG. 2 shows the result of analyzing the binding activity of human VEGF monoclonal antibody to human VEGF.
  • FIG. 3 shows the results of analyzing the binding activity of human VEGF monoclonal antibody to human VEGF.
  • FIG. 5 shows the results of analyzing the binding inhibitory effect of human VEGF monoclonal antibody between VEGF and soluble VEGF receptor KDR and soluble VEGF receptor F1 tol.
  • FIG. 6 shows the results of examining the KDR autophosphorylation inhibitory effect and the Fit-1 autophosphorylation inhibitory effect of a human VEGF monoclonal antibody.
  • FIG. 7 shows the results of examining VEGF-dependent vascular endothelial cell growth inhibitory activity of human VEGF monoclonal antibodies.
  • FIG. 8 shows the results of examining the in vivo antitumor effect of the human VEGF monoclonal antibody.
  • FIG. 9 shows the results of examining the in vivo antitumor effect of the human VEGF monoclonal antibody.
  • FIG. 10 shows the results of examining the in vivo antitumor effect of the human VEGF monoclonal antibody.
  • FIG. 11 shows the construction of a fusion gene expression vector Pv1-KDR-7N-Fc comprising a soluble human VEGF receptor KDR fragment and a human antibody Fc region.
  • Human VEGF was obtained as follows. 4 ⁇ 10 7 High Five cells were suspended in 30 ml of EX-CELL TM 400 medium (manufactured by JRH Bioscience) in a 175 cm 2 flask (manufactured by Grainer), allowed to stand at room temperature for 1 hour, and allowed to adhere to the flask. A human VEGF recombinant paculovirus solution obtained by the method described in the literature [Cell Growth & Differentiation ,; ⁇ 213 (1996)] was used for about 1 to 3 ⁇ 10 8 PFU. 1 ml of a solution containing a concentration of 1 ml / ml was added, and the cells were infected at room temperature for 2 hours.
  • the culture supernatant was removed, and 30 ml of a fresh 30 ml EX-CELL TM 400 medium was added, followed by culturing at 27 ° C for 3 to 4 days. End of culture After completion, the culture supernatant was collected and centrifuged at 1,500 X g for 10 minutes to obtain a supernatant.
  • the column was filled with approximately 40 ml of heparin-Sepharose CL-6B gel [Pharmacia Biotech AB] and 0.5 ml / min with 400 ml of 20 mM Tris-HCl ( ⁇ (7.5) buffer. Wash at flow rate. After washing, 1500 ml of the culture solution containing human VEGF prepared as described above was passed through a heparin-Sepharose CL-6B column at a flow rate of 0.5 ml / min. Further, the column was washed with 20 ⁇ tris-hydrochloric acid 117.5) 4001111 at a flow rate of 0.5 ml / min.
  • a 20 mM Tris-HCl (pH 7.5) buffer solution and a 20 mM Tris-HCl (pH 7.5) buffer solution containing 1 mM NaCl were passed successively in 120 ml portions to elute the protein adsorbed on heparin-sepharose stepwise.
  • the eluate was fractionated in 8 ml portions.
  • the protein contained in each fraction was analyzed by SDS-PAGE, and 120 ml of a fraction containing human VEGF (0.5-1 M NaCl fraction) was recovered.
  • the fractions were concentrated with Centrrep-10 (manufactured by Amicon), and 4 ml (protein concentration: 1.2 mg / ml) of human VEGF was obtained as a solution.
  • VEGF vascular endothelial growth factor
  • 6001 of a 0.1 M CH 3 C00NH 4 (pH 7) solution 120 g of mocyanin (KLH; manufactured by Calbiochem) was added to and dissolved in the keyhole limpet, and 30 l of 1% dal aldehyde was added, followed by stirring at room temperature for 5 hours. Dialysis was performed against PBS to obtain a VEGF-KLH fusion as an antigen for immunization.
  • KLH mocyanin
  • a heparin column-binding protein of the culture supernatant of High Five cells prepared as follows was used. 4 x 10 7 High Five cells are suspended in 30 ml of EX-CELL TM 400 medium (manufactured by JRH Bioscience) in a 175 cm 2 flask (manufactured by Grainer), allowed to stand at room temperature for 1 hour, and allowed to adhere to the flask. The cells were cultured at H ° C for 3 to 4 days. After completion of the culture, the culture supernatant was collected and centrifuged at 1,500 X g for 10 minutes to obtain a supernatant.
  • Heparin-Sepharose CL-6B gel on column [Pharmacia Biotech (Pharmacia Biotech, AB)] About 20 ml was packed, and the column was washed with 200 ml of a 20 mM Tris-hydrochloric acid (pH 7.5) buffer at a flow rate of 0.5 ml / min. After washing, 500 ml of the culture of High Five cells prepared as described above was passed through a heparin-cepharose CL-6B column at a flow rate of 0.5 ml / min.
  • Blood was collected from the fundus venous plexus or the tail vein, and its serum antibody titer was examined by the enzyme immunoassay described below, and the spleen was excised 3 days after the last immunization from the mouse showing a sufficient antibody titer.
  • the spleen was shredded in MEM medium (manufactured by Nissui Pharmaceutical), loosened with forceps, and centrifuged at 200 rpm for 5 minutes. Thereafter, the supernatant was discarded, and treated with Tris-ammonium chloride buffer (pH 7.65) for 1 to 2 minutes to remove red blood cells, washed three times with MEM medium, and used for cell fusion.
  • MEM medium manufactured by Nissui Pharmaceutical
  • Tris-ammonium chloride buffer pH 7.65
  • the antigen was obtained from the insect cell culture supernatant of 1).
  • Human VEGF was used.
  • 96 ⁇ L EIA plate Dara Heparin column-adsorbed fraction of human VEGF and the High Five cell culture supernatant obtained in step 1 as a control antigen was diluted to 1 to 10 g / ml with PBS. The plate was left overnight at 4 ° C to adsorb the antigen.
  • tween-PBS peroxidase-labeled heron antimouse immunoglobulin
  • ABTS substrate solution [2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) ammonium] was added to 1 L of 0.1 M citrate buffer (pH 4.2). The solution was added with 1 l / ml of hydrogen peroxide immediately before use], and the absorbance at 0D415 nm E max [Molecular Devices] (Molecular Devices) was measured.
  • the 8-azaguanine-resistant mouse myeloma cell line P3-U1 was cultured in a normal medium to secure 2 ⁇ 10 7 or more cells at the time of cell fusion, and used as a parent strain for cell fusion.
  • mice spleen cells obtained in 2 and the myeloma cells obtained in 4 were mixed at a ratio of 10: 1, and centrifuged at 1,200-111 for 5 minutes. Discard the supernatant of the mixture, thoroughly dissolve the precipitated cell group, and mix with 2 g of polyethylene glycol 1000 (PEG-1000), 2 ml of ME medium and 0.7 ml of DMSO at 37 ° C with stirring. 0. 2 ⁇ lml / (10 8 mouse spleen cells) was added, and MEM medium is added several times l ⁇ 2ml every 1-2 minutes, the total amount added MEM medium was made up to 50 ml.
  • PEG-1000 polyethylene glycol 1000
  • ME medium 2 ml of ME medium
  • DMSO 0.7 ml of DMSO
  • HAT medium RPMI 1640 medium containing 10% FCS ( Nissui Pharmaceutical Co., Ltd.) To which 100 nM hypoxanthine, 0.4 nM aminopterin, and 16 nM thymidine (manufactured by Behringer Mannheim) were added.
  • the suspension was dispensed by 100 A / Ueru the plate for 96 Ueru culture in 5% C0 2 incubator one, were cultured in 10 to 14 days at 37 ° C.
  • the enzyme immunoassay described in Example 1-3 above was performed using each of the culture supernatants obtained by the culture.
  • human VEGF and the negative control antigen protein prepared with 1 (2) were adsorbed on a 96-well plate. Each cell culture supernatant was dispensed at 100/1 / well into the plate and left at room temperature for 2 hours.
  • a peroxidase-labeled mouse heron anti-mouse immunoglobulin antibody was dispensed at 100 / X1 / well, and left at room temperature for 1 hour.
  • the cloning operation by the limiting dilution method involves re-rolling cells in a 96-well plate at 1 cell / well, culturing the hybridoma cells for 7 to 14 days, and then performing enzyme immunization on the cell culture supernatant. This is an operation of performing measurement, selecting a well of a cell culture supernatant that reacts with human VEGF and does not react with a control antigen, and obtains hybridoma cells that have produced culture supernatant in the selected well.
  • Hybridomas were prepared from the three immunized mice of the above 2 to obtain a total of 12 kinds of anti-human VEGF monoclonal antibodies KM1537, intestine 38, TZ39, KM1540, KM154U KM1542, intestine 43, KM1544, KM1545, thigh 546, KM1547 and KM1548 was.
  • the antibody class of the monoclonal antibody was determined by enzyme immunoassay using a subcluster typing kit (Zymed). The results are shown in Figure 1 below. KM1538 was of IgG3 class, KM1542 was of IgG2a class, and the remaining 10 monoclonal antibodies were all of IgGl class. 6. Purification of monoclonal antibodies
  • the ascites fluid from which solids had been removed was purified by the force prillic acid precipitation method (Anti-Podise Laboratories' Manual) to obtain a purified monoclonal antibody.
  • the reactivity of the anti-human VEGF monoclonal antibody obtained in 5 with VEGF was confirmed using the enzyme immunoassay described in 3.
  • VEGF vascular endothelial growth factor
  • a 4-fold dilution series (0.0078 to 8 g / ml) of VEGF obtained by the method described in 1 (1) above with PBS in a 96-well microplate for ELISA.
  • the reaction was performed at 4 ° C for 1 ⁇ .
  • 1% 834-? 83 was reacted at 200/1 / well at room temperature for 30 minutes, and then washed with PBS.
  • a negative control antibody a mouse monoclonal antibody (KM12570TO97 / 10354) that belongs to the mouse IgGl class and does not react with human VEGF but reacts with the human interleukin 5 (hereinafter abbreviated as IL-5) receptor chain is used.
  • IL-5 human interleukin 5
  • the purified anti-VEGF monoclonal antibody obtained in 6 and the negative control antibody KM1257 were added at a concentration of 10 g / ml at a concentration of 501 / well, and reacted at room temperature for 2 hours.
  • a peroxidase-labeled anti-mouse immunoglobulin antibody (manufactured by Dako) diluted 400-fold with BSA-PBS was dispensed into 50 / l / well and left at room temperature for 1 hour. Reacted.
  • color was developed using ABTS substrate solution and the absorbance at 0D415nm was measured.
  • VEGF detection limit of KM1538 is 2 ig / ml
  • the VEGF detection limit of other anti-VEGF monoclonal antibodies was as good as 0.0078 to 0.125 // g / ml.
  • a 50 ⁇ l / well of 2 ⁇ g / ml VEGF diluted with PBS was added to a 96-well plate for ELISA using a 50 ⁇ l / well plate and reacted at 4 ° C. for 1 hour. After the plate was washed with PBS, 1% BSA-PBS was added at 200 1 / well, reacted at room temperature for 30 minutes, and washed with PBS.
  • Purified anti-VEGF monoclonal antibody was prepared in a three-fold dilution series (0.0041 to lig / ml) with 1% BSA-PBS, and each was added at 50 l / well and allowed to react at room temperature for 2 hours.
  • the biotinylated antibodies KM1539, KM1537, KM1540, and KM1542 were inhibited by the purified monoclonal antibody KM1542, and similarly, the biotinylated antibodies KM1543, KM1546 KM1548, KM1547, and KM1544 were inhibited by the purified monoclonal antibody KM1548.
  • the biotinylated antibodies KM1541 and KM1545 were inhibited by the purified monoclonal antibody KM1541. From the above, KM1539, KM1537, KM1540, and KM1542 are each epi! It was found that the peptides were similar, and that KM1543, KM1546, KM1548, KM1547 and KM1544, and KM1541 and KM1545 had similar epitopes.
  • biotin-labeled anti-human VEGF monoclonal antibody KM1544 or biotin-labeled anti-human VEGF monoclonal antibody KM1548 diluted to a concentration of 0.1 g / ml with 1% BSA-PBS. l / well were added and the reaction was carried out at room temperature for 2 hours.
  • Fig. 4 shows the results. The results clearly show that human VEGF can be measured at 50 pg / ml by using anti-human VEGF monoclonal antibody KM1541 and biotin-labeled anti-human VEGF monoclonal antibody KM1544 or biotin-labeled anti-human VEGF monoclonal antibody KM1548. It became.
  • a vector for expressing a fusion protein comprising 227 amino acids constituting the human antibody Fc region (hereinafter referred to as soluble human VEGF receptor KDR-7N-Fc) was prepared by the following procedure.
  • the soluble human VEGF receptor KDR-7N corresponds to the seven imnoglobulin-like sites from the N-terminal side of the extracellular region of the soluble human VEGF receptor KDR.
  • pUC-KDR A cDNA clone encoding the full-length cDNA of human VEGF receptor KDR BCMGS-neo-KDR [A. Sawano et al., Cell Growth & Diferent ation 7, 213-221 (1996)] with EcoRI
  • the pUC-KDR was prepared by cutting it and incorporating an approximately 2.8 kb fragment encoding the extracellular and membrane-bound regions of KDR into the ⁇ RI site of pUC18.
  • pUC-KDR was cut with ⁇ I, and after Klenow treatment, pUC-KDR-Xb was prepared by inserting the ⁇ I linker shown in SEQ ID NO: 1.
  • the production of proteins by insect cells requires the production of a recombinant virus incorporating the target gene, which is called a transfer vector.
  • the process involves the process of incorporating the cDNA encoding the protein into a special plasmid, the process of cotransfecting the wild-type virus and the transfer vector into insect cells, and obtaining the recombinant virus by homologous recombination.
  • the above process was carried out using the Baculo logo starter kit (product number PM-21001K) manufactured by Farmingen in accordance with the manual and in the following procedure.
  • Insect cells Sf9 (Pharmingen) cultured on TMN-FH Insect Medium (Pharmingen) were added to linear baculovirus DNA [Baculologil * Paculovirus 03 ⁇ 4 &(; 1] 1 ( ⁇ 01 ( 1 aculovirus DNA), manufactured by Pharmingen, Inc.] and the prepared transfer vector DNA were introduced by the lipofectin method [protein nucleic acid enzyme,, 2701 (1992)] to produce a recombinant baculovirus as follows.
  • each of the recombinant viruses obtained for use in protein expression was propagated by the following procedure.
  • the virus titer of the obtained recombinant virus solution was calculated by the method described in PacuMouth Golds Evening-Evening-Kit 'Manual (Pharmingen).
  • each of the recombinant virus solutions contained about 1 ⁇ 10 7 plaque forming units (hereinafter, referred to as PFU) / ml of virus.
  • the soluble human VEGF receptor KDR-7N-FC was obtained as follows. 4 ⁇ 10 7 High Five cells were suspended in 30 ml of EX-CELL TM 400 medium (manufactured by JRH Bioscience) in a 175 cm 2 flask (manufactured by Grainer), allowed to stand at room temperature for 1 hour, and allowed to adhere to the flask. 10 The solution lml added including transfer one vector one pVL-KDR-7N-FC-derived recombinant virus obtained in (2) at a concentration of about 1 ⁇ 3X10 8 PFl) / ml, were infected for 2 hours at room temperature.
  • the culture supernatant was removed and a fresh 30 ml of EX-CELL TM 400 medium was added, followed by culturing at 27 ° C for 3 to 4 days. After completion of the culture, the culture supernatant was collected and centrifuged at 1,500 X g for 10 minutes to obtain a supernatant.
  • the activity of the anti-human VEGF monoclonal antibody described in 5 to inhibit the binding between human VEGF and human VEGF receptor KDR and Flt-1 was confirmed according to the following procedure.
  • soluble human VEGF receptor KDR-7N-Fc purified in step 10 is diluted with PBS to a concentration of 4 / _ig / ml, or the soluble human VEGF receptor Flt-17N
  • Fig. 5 shows the results.
  • Both purified monoclonal antibody KM1544 and belly 1548 The binding of human VEGF to the human VEGF receptor KDR was inhibited in a degree-dependent manner.
  • the concentrations (IC50) of the purified monoclonal antibodies KM1544 and KM1548 showing 50% inhibition of binding between human VEGF and human VEGF receptor KDR were 0.06 and 0.21 g / ml.
  • both KM1544 and KM1548 inhibited the binding of human VEGF to the human VEGF receptor Fit-1 in a concentration-dependent manner.
  • the concentrations (IC50) of purified monoclonal antibodies KM1544 and KM1548 showing 50% inhibition of binding between human VEGF and human VEGF receptor Fit-1 were 0.23 and 0.
  • a monoclonal antibody KM231 which belongs to the mouse IgGl class and does not react with human VEGF but binds to Cyaryl Lewis A [Anticancer Research, _10, 1579 (1990)] was used. KM231 did not show any inhibitory activity.
  • a neutralizing monoclonal antibody (W098 / 22616) that belongs to the mouse igG2b class, does not react with human VEGF, and binds to the human VEGF receptor Flt-1 was used.
  • # 50 selectively inhibited only the binding between human VEGF and the human VEGF receptor Fit-1 in a concentration-dependent manner. 12. Inhibition of autophosphorylation of VEGF receptor Fit-1 and KDR
  • the autophosphorylation inhibitory activity of VEGF receptor FU-1 and KDR by the anti-human VEGF monoclonal antibody described in 5 was confirmed according to the following procedure.
  • Fit-1 autophosphorylation Human VEGF receptor Fit-1 expression NIH3T3 cells (NIH3T3-FU-1) [Oncogene, 10, 135 (1995)] in 20% of 10% FCS-DMEM medium The cells were cultured in a 175 cm 2 flask until they reached 5 to 10 ⁇ 10 6 cels / flask. After that, the medium was replaced with 20 ml of 0.1% FCS-DMEM and cultured for 2 ⁇ . After the culture, replace with 10 ml of 0.1% FCS-DMEM containing 0.1 mM sodium orthovanadate (V), add the anti-VEGF neutralizing antibody KM1544 to 10 g / ml, and place on ice. For 30 minutes.
  • human VEGF manufactured by R & D
  • human VEGF manufactured by R & D
  • the medium was removed from the flask, the cell Yabu ⁇ buffer [20 mM Hepes (pH7. 4 ), 150 mM NaCl, 0.
  • Tr i tonX-100 10% Glycero l, mM Na 3 V0 4, 10 mM Na 4 P 2 0 7 , 5 2 ml of iM EDTA, 50 DI NaF, 1.5 mM MgCl 2 , 1 mM PMSF, 10 / ml aprotinin, 5 / ml leupeptin] were added, and the cells were crushed to obtain a cell lysate.
  • the cell lysate is centrifuged at 15,000 X g for 10 minutes, and 100 ⁇ l of goat anti-mouse IgG (H + L) Sepharose 4B (Zymed Laboratories) is added to the supernatant for 1 hour at 4 ° C.
  • the adsorbed protein was eluted from the collected Sepharose with SDS-PAGE sample buffer (2x concentration) containing 301 2-mercaptoethanol, and the entire amount was electrophoresed by SDS-PAGE, Western blotting.
  • the PVDF membrane was reacted with 1% BSA-PBS at room temperature for 30 minutes to perform a blocking operation, and ⁇ a heron anti-phosphorylated tyrosine antibody (2 ig / ml) (Upstate Biotechnology Incoiotot) at 4 ° C. 1 ⁇ reaction. Washed with 0.05% Tween-PBS, Peruokishidaze labeled blanking evening anti Usagi IgG (10 3 fold dilutions: Dako Corp.) was reacted at room temperature for 1 hour.
  • NIH3T3-KDR KDR Autophosphorylation human VEGF receptor KDR expressing NIH3T3 cells [oncogene (Oncogene), 10, 135 ( 1995)] to 5 in 175cm 2 flasks with 10% FCS-DMEM medium 20ml The cells were cultured until they reached 10 ⁇ 10 6 cells / flask. After cultivation, replace with 0.1 ml of 0.1% FCS-DMEM containing 0.1% ImM sodium orthovanadate (V), add anti-VEGF neutralizing antibody KM1544 to 10 ig / ml, and pre-treat on ice for 30 minutes Went.
  • V ImM sodium orthovanadate
  • human VEGF (manufactured by R & D) was added to a concentration of 50 ng / ml, and stimulation was performed on ice for 45 minutes. After stimulation, remove the medium from the flask and add cell disruption buffer [20 mM Hepes (pH7.4), 150mM NaCl, 0.2 % TritonX-100, 10% Glycerol, 2 mM Na 3 V0 4, 10 mM Na 4 P 2 0 7, 5iM EDTA, 50 M NaF, 1.5mM MgCl 2, lmM PMSF, 2 g of [10 g / ml aprotinin, 5 / xg / ml leupeptin] was added to disrupt cells to obtain a cell lysate.
  • cell disruption buffer [20 mM Hepes (pH7.4), 150mM NaCl, 0.2 % TritonX-100, 10% Glycerol, 2 mM Na 3 V0 4, 10 mM Na
  • Centrifugation was performed for 1 minute at OOOXg to collect the Sepharose, and the collected Sepharose was washed with 1 ml of the cell disruption buffer. The washing operation by centrifugation was repeated six times. After washing, the adsorbed protein is eluted from the Sepharose recovered at 30 // 1 (2x concentration) SDS polyacrylamide gel electrophoresis sample buffer containing 2-mercaptoethanol, and the whole amount is SDS polyacrylamide. The samples were subjected to amid gel electrophoresis and western blotting.
  • the PVDF membrane was reacted with 1% BSA-PBS at room temperature for 30 minutes to perform blocking, and ⁇ a heron anti-phosphorylated tyrosine antibody.
  • Fig. 6 shows the results. Although autophosphorylation was specifically observed in Fit-1 and KDR when VEGF was added, autophosphorylation of Flt-1 and KDR could be inhibited by the addition of anti-human VEGF neutralizing monoclonal antibody KM1544. Indicated.
  • vascular endothelial cell growth E-BM medium containing 48% microtiter plate (Iwaki Glass) supplemented with 5% (V / V) FCS, 10 ng / ml human recombinant epidermal growth factor, and 1 g / ml hydrocortisone
  • HMVEC human skin-derived microvascular endothelial cells suspended in a basal medium (Kurabo Co., Ltd.) were added at 4000 cells / 800 1 / well.
  • purified monoclonal antibodies KM1544, KM1548, KM1543, and KM1540 were added at 100 / ⁇ 1 / well.
  • the basal medium human VEGF diluted with a (R & D) was added at 100 / xl / Ueru (final concentration 10 ng / ml), and cultured for 3-4 days in 37 ° C C0 2 incubator scratch.
  • Fig. 7 shows the results.
  • KM1544, M1548 and KM1543 inhibited VEGF-dependent HV EC proliferation in a concentration-dependent manner.
  • K1540 did not show any growth inhibitory activity.
  • the antibody concentration required to completely suppress proliferation is 0.1 / g / ml (2.67) for KM1548 and 0.1 / il (13.33) for KM1544 (the molar ratio of antibody to VEGF in Kakko) Met.
  • KM1543 inhibited VEGF-dependent proliferation of HMVEC in a concentration-dependent manner, but partially. 14.
  • Human fibrosarcoma HT-1080 (ATCC CCL-121) cut into approximately 8 thighs 3 was placed subcutaneously on the ventral side of Balb / c nu / nu nude mice (purchased from CLEA Japan; 6-8 week old male species) Transplanted
  • Fig. 8 shows the results.
  • the tumor volume on the 25th day after tumor implantation was significantly suppressed in the 10, 50, and 100 zg administration groups of KM1544 and the 10, 50, and 100 ig administration groups of KM1548, and T / C
  • the values were 0.44, 0.14, 0.11 and 0.48, 0.17, 0.16, respectively.
  • the tumor volume on the 33rd day after tumor implantation was significantly suppressed in the K1544 10, 50, lOOjLtg administration group and the KM1548 10, 50, 100 / g administration group, and T
  • the / C values were 0.63, 0.44, 0.33 and 0.77, 0.44, 0.22, respectively. From the above results, it has been clarified that KM1544 and KM1548 show antitumor effects in early cancer and advanced cancer models.
  • FIG. 9 shows the antitumor effect of KM1544 in the early cancer model and the advanced cancer model over time. It was revealed that KM1544 exhibited an antitumor effect in two models in a dose-dependent manner.
  • the antitumor effect of the administration schedule of the antibody was examined in an advanced cancer model.
  • the dosing schedule was tumor administration for 5 consecutive days from day 7 and continuous administration for 5 days from day 14 (50, 100 ig / mouse / day), and a total of 4 administrations at 2 day intervals from day 7 (125, 250 ig) / Mouse / day) and once weekly administration from day 7 X 2 weeks (25, 500 g / mouse / day).
  • a monoclonal antibody characterized by binding to human VEGF and inhibiting binding of human VEGF to human VEGF receptors KDR and F-1.
  • the monoclonal antibody of the present invention can be used for the diagnosis or treatment of VEGF-related diseases, such as proliferation or metastasis of solid tumors, arthritis in rheumatoid arthritis, diabetic retinopathy, retinopathy of prematurity, and xerogeneity, in which the disease state is involved in the progression and malignancy of VEGF.
  • VEGF-related diseases such as proliferation or metastasis of solid tumors, arthritis in rheumatoid arthritis, diabetic retinopathy, retinopathy of prematurity, and xerogeneity, in which the disease state is involved in the progression and malignancy of VEGF.

Abstract

An antihuman VEGF monoclonal antibody which inhibits binding of human VEGF to two receptors KDR and Flt-1 corresponding thereto, thereby inhibiting the functions of KDR and Flt-1 and, moreover, inhibiting various biological activities of human VEGD.

Description

明 細  Details
抗ヒト VEGFモノクローナル抗体  Anti-human VEGF monoclonal antibody
技術分野 Technical field
本発明は、 ヒト VEGFに特異的に結合し、 ヒト VEGFが 2種類の受容体 KDRおよび Flt-1 に結合するのを阻害することを特徴とするモノクローナル抗体、 該抗体 を生産するハイプリド一マおよび該モノクローナル抗体を用いるヒト VEGFの免 疫学的検出方法、 ならびに該モノクローナル抗体を用いる診断方法、 診断薬お よび治療薬に関する。  The present invention provides a monoclonal antibody which specifically binds to human VEGF and inhibits binding of human VEGF to two kinds of receptors, KDR and Flt-1, a hybridoma producing the antibody, The present invention relates to a method for immunologically detecting human VEGF using the monoclonal antibody, and a diagnostic method, a diagnostic agent and a therapeutic agent using the monoclonal antibody.
背景技術 Background art
血管新生は、 脊椎動物の胎生期における循環器系の形成や多くの組織の構築 に重要な役割を果たすとともに、 成熟個体 (雌) においても性周期における黄 体形成、 子宮内膜の一過性の増殖、 胎盤形成などに密接に関与する。 さらに、 病的状態としては、 固形腫瘍の増殖もしくは転移形成、 糖尿病性網膜症、 '隱性 関節リュウマチの病態形成、 促進に血管新生が深く関与している [J. Folkmanら ; J. Biol. Chem., 267, 10931 (1992)]。  Angiogenesis plays an important role in the formation of a circulatory system and many tissues in the vertebrate embryo during the embryonic period, and also in the mature individual (female), luteinization during the estrous cycle, and transient endometrium. It is closely involved in the growth of the placenta and placenta formation. Furthermore, pathological conditions include solid tumor growth or metastasis, diabetic retinopathy, and angiogenesis are deeply involved in the pathogenesis and promotion of 'hidden rheumatoid arthritis' [J. Folkman et al .; J. Biol. Chem., 267, 10931 (1992)].
血管新生は、 血管新生因子が分泌されることが引き金となり、 近傍にある既 存の血管の内皮細胞からプロテアーゼが分泌され、 基底膜、 間質が破壊され、 続いて血管内皮細胞の遊走、 増殖がはじまり、 管腔が形成されることで血管が 新生される過程よりなる [J. Folkmanら; J. Biol. Chem. , 267, 10931 (1992)] 血管新生を誘導する因子としては、 Vascular permeability factor (VPF)/Vas cular endothelial growth factor (VEGF)が上記発生段階における血管新生お よび病的な状態における血管新生において最も重要な因子として知られている [M. Shibuya; Advances in Cancer Research, Vol67, 281 (1995)]。 YPF/VEGF はホモダイマ一よりなる分子量約 4万の蛋白質であり、 1983年に血管透過性促進 因子(Vascular permeability factor: VPF)として [D. R. Sengerら; Science, 219, 983 (1983)]、 1989年に血管内皮細胞増殖因子(Vascular endothelial growth factor: VEGF)として独立した分子として報告されたが [N. Ferraraら; Biochem. Biophys. Res. Comm. , 161, 851 (1989)]、 cDNAクローニングの結果、 両者は同 一の物質であることが明らかとなった [D. W. Leungら; Science, 246, 1306 (1989); P. J. Keckら; Science, 246, 1309 (1989)] (以下 VEGFと記載) 。 Angiogenesis is triggered by the secretion of angiogenic factors, which secrete proteases from endothelial cells of existing blood vessels in the vicinity, destroy the basement membrane and stroma, and subsequently migrate and proliferate vascular endothelial cells. [J. Folkman et al .; J. Biol. Chem., 267, 10931 (1992)] Vascular permeability is a factor that induces angiogenesis. factor (VPF) / Vascular endothelial growth factor (VEGF) is known as the most important factor in angiogenesis in the above-mentioned developmental stages and angiogenesis in pathological conditions [M. Shibuya; Advances in Cancer Research, Vol. 67 , 281 (1995)]. YPF / VEGF is a homodimer protein with a molecular weight of about 40,000. In 1983, as a vascular permeability factor (VPF) [DR Senger et al .; Science, 219, 983 (1983)], which was reported in 1989 as an independent molecule as Vascular endothelial growth factor (VEGF) [N. Ferrara et al .; Biochem. Biophys. Res. Comm., 161, 851 ( 1989)], and cDNA cloning revealed that they were the same substance [DW Leung et al .; Science, 246, 1306 (1989); PJ Keck et al .; Science, 246, 1309 (1989)]. (Hereinafter referred to as VEGF).
VEGFの活性としてはこれまでに、 血管内皮細胞に対し、 増殖促進活性 (ED50 = 2-3pM) [N. Ferraraら; Biochem. Biophys. Res. Comm. , , 851 (1989)], 遊 走促進活性 [A. E. Kochら; J. Immunology, 152, 4149 (1994)]、 メタ口プロ テアーゼ分泌促進活性 [E. N. Unemoriら; J. Cell Physiol., !153, 557 (1992)] 、 ゥロキナーゼおよび tPAの分泌促進活性 [M. S. Pepperら; Biochem. Biophys. Res. Comm., m, 902 (1991)]、 転写因子 ETS-iの発現促進活性 [C. Iwasakaら; J. Cell. Physiol., 169, 522 (1996)]、 インテグリン 3の発現上昇活性 [D. R. Sengerら; American J. Pathology, 149, 293 (1996)]等が知られており、 in vivoにおいては血管新生促進活性 [T. Asaharaら; Circulation, 92 sup j Π, 365, (1995)]、血管透過性促進活性 [D. R. Sengerら; Science, m 983, (1983)] が報告されている。  As for the activity of VEGF, a proliferation promoting activity (ED50 = 2-3 pM) on vascular endothelial cells has been reported [N. Ferrara et al., Biochem. Biophys. Res. Comm.,, 851 (1989)], Activity [AE Koch et al .; J. Immunology, 152, 4149 (1994)], Meta-oral protease secretion promoting activity [EN Unemori et al., J. Cell Physiol.,! 153, 557 (1992)], Secretion of perokinase and tPA Promoting activity [MS Pepper et al .; Biochem. Biophys. Res. Comm., M, 902 (1991)], Expression promoting activity of transcription factor ETS-i [C. Iwasaka et al .; J. Cell. Physiol., 169, 522 ( 1996)], the activity of increasing the expression of integrin 3 [DR Senger et al .; American J. Pathology, 149, 293 (1996)] and the like, and an angiogenesis promoting activity in vivo [T. Asahara et al .; Circulation, 92 sup j Π, 365, (1995)], and vascular permeability promoting activity [DR Senger et al .; Science, m 983, (1983)].
VEGFは血管内皮細胞に極めて特異性の高い増殖因子であることが報告されて いる [N. Ferraraら; Biochem. Biophys. Res. Com , 161. 851 (1989)]。 VEGF には Alternative splicingにより 4種類の蛋白質が存在することが報告されてい る [K. A. Houckら; J. Biol. Chem. , 267, 26031 (1991)]。  VEGF has been reported to be a growth factor with extremely high specificity for vascular endothelial cells [N. Ferrara et al .; Biochem. Biophys. Res. Com, 161.851 (1989)]. It has been reported that VEGF has four types of proteins by alternative splicing [KA Houck et al .; J. Biol. Chem., 267, 26031 (1991)].
血管新生を伴う疾患の中で、 固形腫瘍の増殖もしくは転移形成、 糖尿病性網 膜症、 慢性関節リユウマチの病態形成に VEGFが深く関与していることが報告さ れている。  Among diseases associated with angiogenesis, it has been reported that VEGF is deeply involved in the growth or metastasis of solid tumors, diabetic retinopathy, and pathogenesis of rheumatoid arthritis.
固形腫瘍については、 これまでに腎癌 [A. Takahashi ; Cancer Research, 54, 4233 (1994)]、 乳癌 [L. F. Brownら; Human Pathology, 26, 86 (1995)]、 脳腫 龍. A. Berkmanら; J. Clinical Investigation, 91, 153 (1993)]、 消化器癌 [L. F. Brownら; Cancer Research, 53, 4727 (1993)]、 卵巣癌 [T. A. Olsonら ; Cancer Research, 54, 276 (1994)]などの多くのヒト腫瘍組織において VEGF が産生されていることが報告されている。 乳癌については VEGFと患者の予後と の関係が検討された結果、 VEGF高発現腫瘍は、 低発現腫瘍に比べ、 腫瘍血管新 生が盛んであり、 患者の生存率が低いことが明らかとなっている [M. Toiら; Japanese J. Cancer Research, 85, 1045 (1994)]。 また、 ヌードマウスにヒト 腫瘍を皮下移植したゼノグラフトモデル実験系において、 抗 VEGFモノクローナ ル抗体 A4.6.1は腫瘍増殖抑制効果を示すことが報告されている [J. K. Kimら; Nature, 362, 841 (1993)]。 さらに、 ヌ一ドマウスにおけるヒト腫瘍の転移癌 モデルにおいて、 抗 VEGFモノクローナル抗体 A4.6.1は癌転移を抑制できること が報告されている [O.Melnykら; Cancer Research, 56, 921, (1996)]。 従って、 VEGF活性を抑制することができれば癌患者における腫瘍の増殖、 転移形成を抑 制できるものと期待される。 また、 ヒ卜の癌性胸水、 腹水中に高濃度の VEGFが 検出されることから、 胸水、 腹水貯留の主要な因子である可能性も示され [S. Kondoら; Biochimica et Biophysica Acta, 1221, 211 (1994)]、 VEGFをブロッ クすることで癌性胸水、 腹水の貯留を防ぐことも期待される。 For solid tumors, kidney cancer [A. Takahashi; Cancer Research, 54, 4233 (1994)], breast cancer [LF Brown et al .; Human Pathology, 26, 86 (1995)], encephaloma Ryu. A. Berkman J. Clinical Investigation, 91, 153 (1993)], Gastrointestinal cancer It is reported that VEGF is produced in many human tumor tissues such as [LF Brown et al., Cancer Research, 53, 4727 (1993)], ovarian cancer [TA Olson et al., Cancer Research, 54, 276 (1994)]. Have been. Examination of the relationship between VEGF and the prognosis of patients with breast cancer revealed that tumors with high VEGF expression had more active tumor neovascularization and lower patient survival rates than tumors with low expression. [M. Toi et al .; Japanese J. Cancer Research, 85, 1045 (1994)]. In a xenograft model experimental system in which human tumors were subcutaneously implanted into nude mice, it has been reported that the anti-VEGF monoclonal antibody A4.6.1 has a tumor growth inhibitory effect [JK Kim et al .; Nature, 362, 841 (1993)]. Furthermore, it has been reported that an anti-VEGF monoclonal antibody A4.6.1 can suppress cancer metastasis in a metastatic cancer model of human tumor in a nude mouse [O. Melnyk et al .; Cancer Research, 56, 921, (1996)]. Therefore, if VEGF activity can be suppressed, it is expected that tumor growth and metastasis formation in cancer patients can be suppressed. In addition, high concentrations of VEGF were detected in human pleural effusion and ascites in humans, indicating that it may be a major factor in pleural and ascites retention [S. Kondo et al .; Biochimica et Biophysica Acta, 1221]. , 211 (1994)], and blocking VEGF is also expected to prevent the accumulation of cancerous pleural effusion and ascites.
糖尿病網膜症においては、 異常な血管新生により網膜剥離や硝子体出血をお こして失明にいたるが、 糖尿病性網膜症における血管新生と患者眼球内の VEGF レベルが正相関することが報告されている [L. P. Aielloら; New England J. Medicine, 331, 1480 (1994)]。 また、 サルの網膜症モデルにおいて抗 VEGF中和 モノクローナル抗体 A4.6.1の眼内投与により VEGF活性を抑制すると血管新生が 抑制されることが報告されている [A. P. Adamisら; Arch Opthalmol.,lli, 66 (1996)]。 従って、 過剰に産生される VEGF活性を抑制することで糖尿病性網膜症 における血管新生を抑制できることが期待される。  In diabetic retinopathy, abnormal angiogenesis leads to blindness through retinal detachment and vitreous hemorrhage, but it has been reported that angiogenesis in diabetic retinopathy is positively correlated with VEGF levels in the patient's eye. [LP Aiello et al .; New England J. Medicine, 331, 1480 (1994)]. In addition, it has been reported that in a monkey retinopathy model, angiogenesis is suppressed by suppressing the VEGF activity by intraocular administration of the anti-VEGF neutralizing monoclonal antibody A4.6.1 [AP Adamis et al .; Arch Opthalmol., Lli, 66 (1996)]. Therefore, it is expected that angiogenesis in diabetic retinopathy can be suppressed by suppressing excessively produced VEGF activity.
慢性関節リュウマチの関節炎の病態の進展 (骨、 軟骨の破壊) には血管新生 を伴うが、 慢性関節リュウマチ患者の関節液中には VEGFが高濃度で含まれてい ること、関節中のマクロファージが VEGFを産生することが報告されている [A. E. Kochら; Journal of Immunology, J_52, 4149 (1994); R. A. Favaら; J. The development of arthritis in rheumatoid arthritis (destruction of bone and cartilage) is accompanied by angiogenesis, but the synovial fluid of patients with rheumatoid arthritis contains VEGF at high concentrations. It has been reported that macrophages in joints produce VEGF [AE Koch et al .; Journal of Immunology, J_52, 4149 (1994); RA Fava et al .;
Experimental Medicine, 里, 341 (1994)]。 Experimental Medicine, Sato, 341 (1994)].
過剰に産生される VEGF活性を抑制することで関節炎における血管新生を抑制 できることが期待される。  It is expected that suppressing an excessively produced VEGF activity can suppress angiogenesis in arthritis.
ヒ卜の VEGF受容体としてはこれまでに受容体型チロシンキナーゼファミリー に属する第 1の受容体である Fit- l(fms- like tyrosine kinase) [M. Shibuyaら; Oncogene, 5, 519 (1990); C. Vriesら; Science, 255, 989 (1992)]および第 2 の受容体である KDR(kinase insert domain - containing receptor) [B. I. Terman ら; W092/14748, Priolity Feb.22, 1991; B. I. Termanら; Biochem. Biop ys. Res. Comm. , 187, 1579 (1992)]の 2種が報告されている。 ヒト型 VEGF受容体 KDR のマウス型ホモログは Flk- 1[ W. Mat thewsら; Proc. Natl. Acad. Science, USA, 88, 9026 (1991); A. Ul Uchら; W094/11499 Priol i ty Nov. 13, 1992; B. Millauer ら; Cell, 72, 835 (1993)]と命名されている。 Fl t- 1および KDR/Flk- 1の細胞外 ドメインは 7個のィムノグロブリン様ドメインよりなり、 細胞内ドメインはチロ シンキナーゼドメインを有する分子量 180〜200キロダルトンの膜蛋白質よりな る。 VEGFは Flt-1および KDR/Flk-1にはそれぞれ KD値が 20 pMおよび 75 pMで特異 的に結合する。 FU-1および KDR/Flk- 1は血管内皮細胞に特異的に発現している と報告されている [T. P. Quinnら; Proc. Natl. Acad. Sci. USA, 90, 7533 (1993); R. L. Kendallら; Proc. Natl. Acad. Sci. USA, 90, 8915 (1993)]。  Fit-l (fms-like tyrosine kinase), the first human VEGF receptor belonging to the receptor tyrosine kinase family, has been described so far [M. Shibuya et al .; Oncogene, 5, 519 (1990); C. Vries et al .; Science, 255, 989 (1992)] and the second receptor, KDR (kinase insert domain-containing receptor) [BI Terman et al .; W092 / 14748, Priolity Feb. 22, 1991; BI Terman et al. Biochem. Biophys. Res. Comm., 187, 1579 (1992)]. A mouse homolog of the human VEGF receptor KDR is Flk-1 [W. Mat thews et al .; Proc. Natl. Acad. Science, USA, 88, 9026 (1991); A. Ul Uch et al .; W094 / 11499 Priolity Nov. 13, 1992; B. Millauer et al .; Cell, 72, 835 (1993)]. The extracellular domains of Flt-1 and KDR / Flk-1 consist of seven immoglobulin-like domains, and the intracellular domain consists of a membrane protein with a molecular weight of 180-200 kilodaltons containing a tyrosine kinase domain. VEGF specifically binds to Flt-1 and KDR / Flk-1 with KD values of 20 pM and 75 pM, respectively. FU-1 and KDR / Flk-1 have been reported to be specifically expressed in vascular endothelial cells [TP Quinn et al .; Proc. Natl. Acad. Sci. USA, 90, 7533 (1993); RL Kendall Natl. Acad. Sci. USA, 90, 8915 (1993)].
Flt-1の様々な疾患における発現については、 ヒトグリオブラストーマ組織の 腫瘍血管内皮細胞 [Nature, 359, 845 (1992)] 、 ヒト消化器癌組織の腫瘍血管 内皮細胞 [Cancer Research, 53, 4727 (1993)] で、 正常組織の血管内皮細胞 に比べ flt-1 mRNAの発現が上昇していることが報告されている。 さらに、 慢性 関節リュウマチ患者の関節の血管内皮細胞においてもイン ·サイチュ ·ハイブ リダィゼーシヨン (in situ hybridization) により fit - 1 mRNAの発現が認めら れることが報告されている [J. Experimental Medicine, 180, 341 (1994)] 。 これらの結果は、 腫瘍血管新生において VEGF- VEGFレセプ夕一 Fit- 1系が重要な 役割を果たしていることを強く示唆するものである。 F 11 - 1は VEGFが結合するこ と、 細胞内ドメインが自己リン酸化されることが報告されているが [Science, 255, 989 (1992)] 、 詳しい機能については不明である。 しかし、 fit- 1遺伝子 を破壊した fit- 1ノックァゥ卜マウスは発生初期の血島形成や、 それに続く血管 新生において、 血管内皮細胞の形態異常により血管構築が異常となり胎生 8.5〜 9.5日齢で死亡することから、 Flt-1は血管新生における血管内皮細胞の管腔形 成に必須の機能を果たしていると推定されている [Nature, 376, 66 (1995)] 。 一方、 様々なヒ卜の疾患における KDRの発現については、 ヒト脳腫瘍組織の腫 瘍血管内皮細胞 [E. Hatvaら; American J. Pathology, H6, 368 (1995)]、 ヒ 卜消化器癌組織の腫瘍血管内皮細胞 [L. F. Brownら; Cancer Research, 53, 4727, (1993)]において、 正常組織の血管内皮細胞に比べ KDRの mRNAレベルの発現が上 昇していることが報告されている。 これらの結果は、 腫瘍血管新生において VEGF-VEGFレセプター KDR系が重要な役割を果たしていることを強く示唆するも のである。 Regarding the expression of Flt-1 in various diseases, tumor vascular endothelial cells of human glioblastoma tissue [Nature, 359, 845 (1992)] and tumor vascular endothelial cells of human gastrointestinal cancer tissue [Cancer Research, 53, 4727] (1993)] reported that flt-1 mRNA expression was higher than that of vascular endothelial cells in normal tissues. In addition, the expression of fit-1 mRNA was also observed in the vascular endothelial cells of the joints of patients with rheumatoid arthritis by in situ hybridization. [J. Experimental Medicine, 180, 341 (1994)]. These results strongly suggest that the VEGF-VEGF receptor Yuichi Fit-1 system plays an important role in tumor angiogenesis. F11-1 has been reported to bind VEGF and autophosphorylate the intracellular domain [Science, 255, 989 (1992)], but its detailed function is unknown. However, in the fit-1 knockout mouse in which the fit-1 gene has been disrupted, in the early development of blood islands and subsequent angiogenesis, abnormal vascular architecture was caused by abnormal vascular endothelial cell morphology, and the embryo died at 8.5 to 9.5 days of age. Therefore, Flt-1 has been presumed to play an essential function in vascular endothelial cell lumen formation during angiogenesis [Nature, 376, 66 (1995)]. On the other hand, the expression of KDR in various human diseases has been studied in tumor vascular endothelial cells of human brain tumor tissue [E. Hatva et al .; American J. Pathology, H6, 368 (1995)], and in human gastrointestinal cancer tissues. In tumor vascular endothelial cells [LF Brown et al .; Cancer Research, 53, 4727, (1993)], it has been reported that the expression of KDR mRNA levels is increased as compared to vascular endothelial cells in normal tissues. These results strongly suggest that the VEGF-VEGF receptor KDR system plays an important role in tumor angiogenesis.
さらに、 慢性関節リュウマチ患者の関節の血管内皮細胞においても in situ hybridizationにより KDR mRNAの発現が認められることが報告されており [R. A. Favaら; J. Experimental Medicine, 180, 341 (1994)]、 VEGF-VEGFレセプ夕一 KDR系の重要性を示唆している。  Furthermore, it has been reported that the expression of KDR mRNA is also observed in vascular endothelial cells of the joints of patients with rheumatoid arthritis by in situ hybridization [RA Fava et al .; J. Experimental Medicine, 180, 341 (1994)], VEGF -VEGF receptor Yuichi suggests the importance of the KDR system.
VEGFレセプター KDR/Flk- 1の機能については、 ブ夕動脈の血管内皮細胞に KDR を発現させると、 血管内皮細胞が VEGFに反応し増殖、 遊走することから、 VEGF の多様な活性の中で KDRは血管内皮細胞の増殖、 遊走に関与すると報告されてい る [J. Waltenbergerら; J. Biol. Chem. , 269, 26988 (1994)]。  Regarding the function of the VEGF receptor KDR / Flk-1, the expression of KDR in the vascular endothelial cells of the bushing artery causes the vascular endothelial cells to proliferate and migrate in response to VEGF. Has been reported to be involved in the proliferation and migration of vascular endothelial cells [J. Waltenberger et al .; J. Biol. Chem., 269, 26988 (1994)].
また、 マウス型 flk- 1遺伝子を破壊した flk- 1ノックァゥトマウスは成熟した 血管内皮細胞が全く認められず、 卵黄嚢の血島も形成されず、 子宮内で死亡し たことから、 動物個体においても KDR/f lk- 1は血管内皮細胞の増殖、 分化に関与 することが報告されている [F. Shal abyら; Nature, 376, 62 (1995) ]。 Furthermore, flk-1 knockout mice in which the mouse-type flk-1 gene was disrupted did not show any mature vascular endothelial cells, did not form yolk sac blood islands, and died in the uterus. Thus, it has been reported that KDR / flk-1 is involved in the proliferation and differentiation of vascular endothelial cells even in animal individuals [F. Shalby et al .; Nature, 376, 62 (1995)].
以上のように、 VEGFの多彩な機能の中で、 血管内皮細胞の増殖および遊走は KDRにより、 血管内皮細胞の管腔形成は F i t- 1により担われていると推定され、 血管透過性の亢進、 プロテア一ゼ産生促進等の他の VEGFの作用はいずれかの受 容体が関与していると推定されるが、 その媒介の詳細は不明である。  As described above, among the various functions of VEGF, it is presumed that proliferation and migration of vascular endothelial cells are carried out by KDR, and luminal formation of vascular endothelial cells is carried out by Fit-1. It is presumed that the activity of other VEGFs, such as the enhancement of protein expression and the promotion of protease production, is related to any receptor, but the details of the mediation are unknown.
F l t-1ノックァゥトマウスと i lk- 1ノックァゥトマウスにおいて認められる血 管形成異常が全く異なることから、 2種類の受容体を同時にプロックすればよ り効果的に血管新生を阻害できるものと推定される。  Because the angiogenesis abnormalities observed in Flt-1 knockout mice and ilk-1 knockout mice are completely different, angiogenesis can be more effectively inhibited by blocking two types of receptors simultaneously. It is estimated to be.
血管内皮細胞において、 KDR/Flk- 1あるいは Fi t- 1の発現を抑制することが可 能な抗 KDR/F lk-1 Uポザィム (Ribozyme)あるいは抗 F 1 1 - 1リボザィムは、 ヒト皮 膚の微小血管内皮細胞 HMVECの VEGF依存的増殖を抑制できるがそれぞれ部分的 な抑制であるため、 抗 KDR/F 1 k- 1リポザィムおよび抗 F 1 1 - 1リポザィムを同時に 添加し、 2種類の受容体の発現を同時に抑制することより強い増殖阻害効果が 認められたと報告されている (W0 97/15662) 。  Anti-KDR / Flk-1 U pozyme (Ribozyme) or anti-F11-1 ribozyme, which can suppress the expression of KDR / Flk-1 or Fit-1 in vascular endothelial cells, is used for human skin. Microvessel endothelial cells can inhibit VEGF-dependent proliferation of HMVEC, but each of them is a partial inhibition, so anti-KDR / F1k-1 lipozyme and anti-F11-1 lipozyme are added simultaneously to obtain two types of It has been reported that a stronger growth inhibitory effect was observed than simultaneous suppression of body expression (W097 / 15662).
VEGFのアミノ酸に変異を導入し、 変異 VEGFの KDRおよび Fi t- 1への結合に関与 するアミノ酸部位が検討された。その結果、 VEGFの KDRへの結合には VEGFの Arg82 、 Lys84および Hi s86が、 VEGFの Fl t- 1への結合には VEGFの Asp63、 Glu64および G 1 u 67がそれぞれ重要であることから、 VEGFの KDRおよび Fl t-1への結合アミノ酸 部位が異なることが示された [J. Bi o l. Chem. , 2JI, 5638 (1996) ]。 さらに、 公知の抗 VEGF中和モノクローナル抗体 A4. 6. 1は KDR結合アミノ酸部位を含む 82 〜92アミノ酸残基に反応するが、 Fl t-1結合部位には反応しないことが示されて いる [J. Bi o l. Chem., 2U, 5638 (1996) ]。  Mutations were introduced into the amino acids of VEGF, and the amino acid sites involved in the binding of the mutated VEGF to KDR and Fit-1 were examined. As a result, the binding of VEGF to KDR is VEGF Arg82, Lys84 and His86, and the binding of VEGF to Flt-1 is Asp63, Glu64 and G1u67 of VEGF, respectively, It has been shown that the binding amino acid sites of VEGF to KDR and Flt-1 are different [J. Biol. Chem., 2JI, 5638 (1996)]. Furthermore, it has been shown that the known anti-VEGF neutralizing monoclonal antibody A4.6.1 reacts with 82 to 92 amino acid residues including the KDR binding amino acid site, but does not react with the Flt-1 binding site [ J. Biol. Chem., 2U, 5638 (1996)].
以上のことから、 VEGFに結合し、 VEGFが 2種類の受容体 KDR及び F i t - 1 に結合 するのを阻害し、 KDR及び Fl t-1 の機能を阻害することにより VEGFの多彩な生物 活性を阻害できる抗体は、 ヒトにおける固形腫瘍の増殖、 転移形成、 慢性関節 リュウマチにおける関節炎、 糖尿病性網膜症、 未熟児網膜症、 乾鮮など異常な 血管新生により病態が進行する疾患の診断あるいは治療に有用であることが期 待されるが、 該抗体は確立されていない。 Based on the above, the various biological activities of VEGF by binding to VEGF, inhibiting the binding of VEGF to two types of receptors, KDR and Fit-1, and inhibiting the functions of KDR and Flt-1 Antibodies that can inhibit the growth of solid tumors, metastasis, It is expected to be useful for the diagnosis or treatment of diseases in which the disease progresses due to abnormal angiogenesis such as arthritis, diabetic retinopathy, retinopathy of prematurity, and dryness in rheumatism, but the antibody has not been established. .
これまで確立された抗体としては、 ヒト VEGF中和モノクローナル抗体である、 マウスモノクローナル抗体 A4. 6. 1 [Growth Fac tors, 7, 53 (1992); Nature, 362 , 844 (1993) ]、 マウスモノクローナル抗体 MV101および1 MV303 [Hybr idoma, li, 4 75 (1995); Cancer Res. , 55, 5296 (1993) ]、 ならびに、 ヒトモノクローナル 抗体 VA01および BL2 (ΕΡ 0787742) が知られているが、 いずれの抗体も VEGFに結 合し、 2種類存在する受容体である KDRまたは Fi t- 1のいずれか一方への VEGFの結 合を阻害することにより KDRまたは F U - 1 のいずれかの機能を阻害することし かできなぃ抗 VEGF抗体である。 The antibodies established so far include a mouse VEGF neutralizing monoclonal antibody, a mouse monoclonal antibody A4.6.1 [Growth Factors, 7, 53 (1992); Nature, 362, 844 (1993)], a mouse monoclonal antibody Antibodies MV101 and 1 MV303 [Hybridoma, li, 475 (1995); Cancer Res., 55, 5296 (1993)], and human monoclonal antibodies VA01 and BL2 (ΕΡ0787742) are known. Antibodies also bind to VEGF and inhibit the function of either KDR or FU-1 by inhibiting the binding of VEGF to either of the two existing receptors, KDR or Fit-1 It is an anti-VEGF antibody.
発明の開示 Disclosure of the invention
本発明の課題は、 固形腫瘍の増殖もしくは転移形成、 慢性関節リュウマチに おける関節炎、 糖尿病性網膜症、 未熟児網膜症あるいは乾鮮など異常な血管新 生により病態が進行する疾患を診断あるいは治療するために有用である、 VEGF に結合し、 かつ VEGFが 2種類の受容体 KDRおよび Fl t-1 に結合するのを阻害する ことにより KDRおよび F 11- 1 の機能を阻害することのできる抗 VEGF抗体を提供 することにある。  An object of the present invention is to diagnose or treat diseases in which the disease progresses due to abnormal vascular neoplasia such as proliferation or metastasis of solid tumors, arthritis in rheumatoid arthritis, diabetic retinopathy, retinopathy of prematurity, or dryness. Anti-VEGF that can inhibit the function of KDR and F11-1 by binding to VEGF and inhibiting the binding of VEGF to two receptors, KDR and Flt-1 To provide antibodies.
本発明者らは、 VEGFを認識する抗ヒ卜 VEGFモノクローナル抗体を作製し、 該 モノクローナル抗体が VEGFの 2種類の受容体 KDRおよび Fl t- 1 に結合すること を阻害することにより、 KDRおよび Fl t-1 の機能を阻害し、 さらに、 ヒト VEGFの 多彩な生物活性を阻害できることを見い出し、 本発明を完成させた。  The present inventors have prepared an anti-human VEGF monoclonal antibody that recognizes VEGF, and inhibit the binding of the monoclonal antibody to two kinds of receptors for VEGF, KDR and Flt-1. The present inventors have found that the function of t-1 can be inhibited, and that various biological activities of human VEGF can be inhibited, thereby completing the present invention.
すなわち、 本発明は、 以下の (1 ) 〜 (1 2 ) に関する。  That is, the present invention relates to the following (1) to (12).
( 1 ) ヒト VEGFに結合し、 かつヒト VEGF受容体 KDR及び F U-1へのヒト VEGFの 結合を阻害するモノク口一ナル抗体。  (1) Monoclonal antibodies that bind to human VEGF and inhibit the binding of human VEGF to human VEGF receptors KDR and FU-1.
( 2 ) モノクローナル抗体が、 マウス IgGlサブクラスに属するモノクロ一ナ ル抗体である、 上記 (1) 記載のモノクローナル抗体。 (2) The monoclonal antibody is a monoclonal antibody belonging to the mouse IgGl subclass. The monoclonal antibody according to (1), which is a monoclonal antibody.
(3) モノクローナル抗体が、 KM1544または KM1548である上記 (2) 記載の モノクローナル抗体。  (3) The monoclonal antibody according to the above (2), wherein the monoclonal antibody is KM1544 or KM1548.
(4) 上記 (1) 〜 (3) のいずれかに記載のモノクローナル抗体を生産す る八イブリドーマ。  (4) Eight hybridomas producing the monoclonal antibody according to any one of the above (1) to (3).
(5) ハイプリドーマが、 ハイブリドーマ KM1544 (FERM BP-6555) または Λ イブリドーマ KM1548 (FERM BP-6556)である、 上記 (4) 記載のハイブリドーマ。  (5) The hybridoma according to (4) above, wherein the hybridoma is hybridoma KM1544 (FERM BP-6555) or Λ hybridoma KM1548 (FERM BP-6556).
(6) 上記 (1) 〜 (3) のいずれかに記載のモノクローナル抗体を用い、 ヒ卜 VEGFのヒト VEGF受容体 KDRおよび Fit- 1への結合を阻害する方法。  (6) A method for inhibiting the binding of human VEGF to human VEGF receptor KDR and Fit-1 using the monoclonal antibody according to any one of (1) to (3).
(7) 上記 (1) 〜 (3) のいずれかに記載のモノクローナル抗体を用いて、 ヒ卜 VEGFの生物活性を阻害する方法。  (7) A method for inhibiting the biological activity of human VEGF using the monoclonal antibody according to any one of the above (1) to (3).
(8) 上記 (1) 〜 (3) のいずれかに記載のモノクローナル抗体を用いて、 ヒト VEGFを免疫学的に検出する方法。  (8) A method for immunologically detecting human VEGF using the monoclonal antibody according to any one of the above (1) to (3).
(9) 上記 (1) 〜 (3) のいずれかに記載のモノクローナル抗体を用いて、 ヒ卜 VEGFを免疫学的に定量する方法。  (9) A method for immunologically quantifying human VEGF using the monoclonal antibody according to any one of (1) to (3).
(1 0) 上記 (1) 〜 (3) のいずれかに記載のモノクローナル抗体を用い る、 固形腫瘍の増殖もしくは転移形成に基づく疾患、 または異常な血管新生に より病態が進行する疾患の診断方法。  (10) A method for diagnosing a disease based on the growth or metastasis of a solid tumor or a disease progressing due to abnormal angiogenesis using the monoclonal antibody according to any one of the above (1) to (3) .
(1 1) 上記 (1) 〜 (3) のいずれかに記載のモノクローナル抗体を有効 成分とする、 固形腫瘍の増殖もしくは転移形成に基づく疾患、 または異常な血 管新生により病態が進行する疾患の治療薬。  (11) A disease which is based on the growth or metastasis of a solid tumor or whose disease progresses due to abnormal angiogenesis, comprising the monoclonal antibody according to any one of the above (1) to (3) as an active ingredient. Therapeutic drugs.
(1 2) 上記 (1) 〜 (3) のいずれかに記載のモノクローナル抗体を有効 成分とする、 固形腫瘍の増殖もしくは転移形成に基づく疾患、 または異常な血 管新生により病態が進行する疾患の診断薬。  (12) A disease based on the growth or metastasis of a solid tumor, or a disease whose condition progresses due to abnormal angiogenesis, comprising the monoclonal antibody according to any one of the above (1) to (3) as an active ingredient. Diagnostics.
異常な血管新生により病態が進行する疾患とは、 固形腫瘍の増殖もしくは転 移形成に基づく疾患、 慢性関節リウマチにおける関節炎、 糖尿病性網膜症、 未 熟児網膜症、 乾鮮などがあげられる。 Diseases whose disease progresses due to abnormal angiogenesis include diseases based on solid tumor growth or metastasis, arthritis in rheumatoid arthritis, diabetic retinopathy, Examples include retinopathy of infants and freshness.
本発明におけるモノクローナル抗体は、 ヒト VEGFに結合し、 VEGFが 2種類の 受容体 KDRおよび Fl t-1 に結合するのを阻害することにより、 KDRおよび Fi t- 1 の機能を阻害し、 さらに、 ヒ卜 VEGFの多彩な生物活性を阻害できればいかなる ものでもよい。  The monoclonal antibody of the present invention binds to human VEGF, inhibits VEGF from binding to two types of receptors, KDR and Flt-1, and thereby inhibits the functions of KDR and Fit-1. Any substance can be used as long as it can inhibit various biological activities of human VEGF.
ヒト VEGF受容体 KDRおよび Fl t-1 の機能とは、 血管内皮細胞からのプロテア一 ゼの分泌、 血管内皮細胞の外側の基定膜の分解、 血管内皮細胞の遊走および増 殖、 管腔形成を示す。  The functions of the human VEGF receptors KDR and Flt-1 include secretion of protease from vascular endothelial cells, degradation of the basal membrane outside vascular endothelial cells, migration and proliferation of vascular endothelial cells, and tube formation Is shown.
ヒト VEGFの生物活性の阻害とは、 リガンドであるヒ卜 VEGFと、 レセプ夕一で ある KDRおよび Fl t- 1とが結合することを阻害することにより、 KDRおよび Fl t-1 の機能の一部あるいはすべてを阻害し、 その結果、 血管形成が停止することを いう。  Inhibition of the biological activity of human VEGF refers to inhibition of the binding of human VEGF, a ligand, to KDR and Flt-1 as receptors, thereby inhibiting the function of KDR and Flt-1. Inhibits part or all of blood, resulting in the cessation of angiogenesis.
本発明のモノクローナル抗体としては、 ハイプリドーマが産生する抗体、 ヒ ト化抗体およびヒト抗体などがあげられる。  Examples of the monoclonal antibody of the present invention include antibodies produced by hybridomas, humanized antibodies, and human antibodies.
ハイプリドーマとは、 ヒト以外の哺乳動物に抗原を免疫して取得された B細 胞と、 マウス等に由来するミエ口一マ細胞とを細胞融合させて得られる、 所望 の抗原特異性を有したモノクローナル抗体を産生する細胞を意味する。  A hybridoma has a desired antigen specificity obtained by cell fusion of B cells obtained by immunizing a mammal other than human with an antigen and myeoma cells derived from a mouse or the like. Means a cell producing the monoclonal antibody.
ヒ ト化抗体としては、 ヒ ト型キメラ抗体、 ヒ ト型相同性決定領域 Examples of the humanized antibody include a human chimeric antibody and a human homology determining region.
(complementar i ty determining region :以下、 CDR と略記する) 移植抗体など があげられる。 (complementarity determining region: hereinafter abbreviated as CDR).
ヒ卜型キメラ抗体は、 ヒト以外の動物の抗体重鎖可変領域 (以下、 重鎖は H 鎖として、可変領域は V領域として HVまたは VHとも称す)および抗体軽鎖可変 領域(以下、 軽鎖は L鎖として LVまたは VLとも称す) とヒト抗体の重鎖定常領 域 (以下、 定常領域は C領域として CHとも称す) およびヒト抗体の軽鎖定常領 域 (以下、 CLとも称す) とからなる抗体を意味する。 ヒト以外の動物としては、 マウス、 ラット、 ハムスター、 ラビット等、 ハイプリドーマを作製することが可 能であれば、 いかなるものも用いることができる。 The human chimeric antibody is composed of an antibody non-human animal heavy chain variable region (hereinafter, the heavy chain is referred to as an H chain, and the variable region is referred to as a HV or VH as a V region) and an antibody light chain variable region (hereinafter, referred to as a light chain). Represents the L chain as LV or VL), the heavy chain constant region of the human antibody (hereinafter, the constant region is also referred to as CH as the C region), and the light chain constant region of the human antibody (hereinafter also referred to as CL). Antibodies. Non-human animals can produce hybridomas such as mice, rats, hamsters, and rabbits. Anything that works can be used.
ヒト型キメラ抗体は、 本発明の抗ヒト VEGFモノクローナル抗体を生産するハ イブリド一マより、 VHおよび VLをコードする cDNAを取得し、 ヒト抗体 CHおよ びヒト抗体 CLをコードする遺伝子を有する動物細胞用発現べクタ一にそれぞれ 挿入してヒト型キメラ抗体発現ベクターを構築し、動物細胞へ導入することによ り発現させ、 製造することができる。  The human chimeric antibody is obtained by obtaining cDNAs encoding VH and VL from a hybridoma producing the anti-human VEGF monoclonal antibody of the present invention, and preparing an animal having genes encoding human antibody CH and human antibody CL. A human-type chimeric antibody expression vector can be constructed by inserting it into an expression vector for cells, and can be expressed and produced by introducing it into animal cells.
ヒト型キメラ抗体の CHとしては、 ヒトイムノグロブリン (以下、 h lgと表記 する) に属すればいかなるものでもよいが、 h lgGクラスのものが好適であり、 更に h lgGクラスに属する h IgGl、 h IgG2、 h IgG3、 h IgG4といったサブクラスの いずれも用いることができる。 また、 ヒト型キメラ抗体の CLとしては、 Mgに 属すればいかなるものでもよく、 κクラスあるいは λクラスのものを用いるこ とができる。  As the CH of the human chimeric antibody, any CH may be used as long as it belongs to human immunoglobulin (hereinafter, referred to as hlg). The CH of the hlgG class is suitable, and further, h IgGl belonging to the hlgG class, Any of the subclasses h IgG2, h IgG3, h IgG4 can be used. The CL of the human chimeric antibody may be any CL as long as it belongs to Mg, and a κ class or λ class CL can be used.
ヒト型 CDR移植抗体は、ヒト以外の動物の抗体の VHおよび VLの CDRのァミノ 酸配列をヒト抗体の VHおよび VLの適切な位置に移植した抗体を意味する。  The human CDR-grafted antibody means an antibody obtained by grafting the amino acid sequence of the CDR of VH and VL of an antibody of a non-human animal at an appropriate position of VH and VL of a human antibody.
ヒト型 CDR移植抗体は、 本発明の非ヒ卜動物由来の抗ヒ卜 VEGFモノクロ一ナ ル抗体の VHおよび VLの CDR配列を任意のヒト抗体の VHおよび VLの CDR配列に 移植した V領域をコードする cDNAを構築し、 ヒト抗体の CHおよびヒト抗体の CL をコードする遺伝子を有する動物細胞用発現ベクターにそれぞれ挿入してヒ ト型 CDR移植抗体発現べクタ一を構築し、該発現べクタ一を動物細胞へ導入する ことによりヒト型 CDR移植抗体を発現させ、 製造することができる。  The human CDR-grafted antibody comprises a V region obtained by grafting the VH and VL CDR sequences of an anti-human VEGF monoclonal antibody derived from a non-human animal of the present invention into the VH and VL CDR sequences of any human antibody. A cDNA encoding the human antibody is inserted into an expression vector for animal cells having genes encoding the human antibody CH and the human antibody CL to construct a human CDR-grafted antibody expression vector. By introducing one into animal cells, a human CDR-grafted antibody can be expressed and produced.
ヒト型 CDR移植抗体の CHとしては、 h lgに属すればいかなるものでもよいが、 h lgGクラスのものが好適であり、更に MgGクラスに属する h IgGl、 h IgG2、 h IgG3、 h IgG4といったサブクラスのいずれも用いることができる。 また、 ヒト型 CDR移 植抗体の CLとしては、 h lgに属すればいかなるものでもよく、 / クラスあるい は λクラスのものを用いることができる。  The CH of the humanized CDR-grafted antibody may be any CH as long as it belongs to hlg, but the hlgG class is preferable, and further subclasses such as h IgGl, h IgG2, h IgG3, h IgG4 belonging to the MgG class. Can be used. The CL of the human-type CDR-grafted antibody may be any CL as long as it belongs to hlg, and a CL class / λ class can be used.
ヒト抗体は、元来、 ヒト体内に天然に存在する抗体を意味するが、最近の遺伝 子工学的、細胞工学的、発生工学的な技術の進歩により作製されたヒト抗体ファ —ジライブラリーおよびヒト抗体産生トランスジエニック動物から得られる抗 体等も含まれる。 Human antibodies originally mean antibodies naturally occurring in the human body. Also included are human antibody phage libraries produced by advances in child engineering, cell engineering, and developmental engineering techniques, and antibodies obtained from transgenic animals producing human antibodies.
ヒト体内に存在する抗体は、 例えば、 ヒト末梢血リンパ球を単離し、 EB ウイ ルス等を感染させ不死化、 クローニングすることにより、該抗体を産生するリン パ球を培養でき、 培養物中より該抗体を精製することができる。  Antibodies present in the human body can be isolated, for example, by isolating human peripheral blood lymphocytes, infecting and immortalizing EB virus and the like, and cloning the lymphocytes that produce the antibodies. The antibody can be purified.
ヒト抗体ファージライブラリ一は、ヒ卜 B細胞から調製した抗体遺伝子をファ —ジ遺伝子に挿入することにより Fab、一本鎖抗体等の抗体断片をファージ表面 に発現させたライブラリーである。該ライブラリーより、抗原を固定化した基質 に対する結合活性を指標として所望の抗原結合活性を有する抗体断片を発現し ているファージを回収することができる。該抗体断片は、更に遺伝子工学的手法 により、 2本の完全な H鎖および 2本の完全な L鎖からなるヒト抗体分子へも変 換することができる。  The human antibody phage library is a library in which antibody fragments such as Fab and single-chain antibodies are expressed on the phage surface by inserting an antibody gene prepared from human B cells into the phage gene. Phage expressing an antibody fragment having the desired antigen-binding activity can be recovered from the library using the binding activity to the substrate on which the antigen is immobilized as an index. The antibody fragment can be further converted to a human antibody molecule consisting of two complete H chains and two complete L chains by genetic engineering techniques.
ヒト抗体産生トランスジエニック動物は、ヒ卜抗体遺伝子が細胞内に組込まれ た動物を意味する。 具体的には、 マウス ES細胞ヘヒト抗体遺伝子を導入し、 該 ES 細胞を他のマウスの初期胚へ移植後、 発生させることによりヒト抗体産生ト ランスジエニック動物を作製することができる。ヒト抗体産生トランスジェニッ ク動物からのヒ卜抗体の作製方法は、通常のヒ卜以外の哺乳動物で行われている ハイプリドーマ作製方法によりヒト抗体産生ハイプリドーマを得、培養すること で培養物中にヒト抗体を産生蓄積させることができる。  The human antibody-producing transgenic animal means an animal in which a human antibody gene has been integrated into cells. Specifically, a human antibody-producing transgenic animal can be produced by introducing a human antibody gene into mouse ES cells, transplanting the ES cells into an early embryo of another mouse, and then developing the embryo. Human antibodies can be produced from human antibody-producing transgenic animals by obtaining human antibody-producing hybridomas by the method of producing hybridomas used in mammals other than normal humans, and culturing the culture. Human antibodies can be produced and accumulated therein.
抗体断片としては、 Fab ( ―f ragmen t o f 一 ant igen一 bind ingの略) 、 Fab'、 F (a ), I、 一本鎖抗体 (s ingl e chain Fv:以下、 scFvと略記する) 、 ジスルフィ ド安定化 抗体 (d i sul f i de s t abi l i zed Fv ; dsFv) 、 CDRを含むペプチドなどがあげられ る。  Examples of the antibody fragment include Fab (abbreviation of —fragment tof-antigen—binding), Fab ′, F (a), I, single-chain antibody (single chain Fv: hereinafter abbreviated as scFv), Examples include disulfide-stabilized antibodies (disul fi de stabilized Fv; dsFv), peptides containing CDRs, and the like.
Fabは、 I g Gを蛋白質分解酵素パパインで処理して得られる断片のうち (H 鎖の 224番目のアミノ酸残基で切断される) 、 H鎖の N末端側約半分のアミノ酸 と L鎖全体がジスルフィド結合で結合した分子量約 5万の抗原結合活性を有す る抗体断片である。 Fab is a fragment obtained by treating IgG with proteolytic enzyme papain (which is cleaved at the 224th amino acid residue of the H chain), and contains about half the amino acid at the N-terminal side of the H chain. And the entire L chain are linked by disulfide bonds, and are antibody fragments having a molecular weight of about 50,000 and having antigen-binding activity.
Fabは、 本発明の抗ヒト VEGFモノクローナル抗体を蛋白質分解酵素パパインで 処理して得ることができる。または、該抗体の Fabをコードする DNAを原核生物用 発現ベクターあるいは真核生物用発現ベクターに挿入し、該ベクターを原核生物 あるいは真核生物へ導入することにより発現させ、 Fabを製造することができる。  Fab can be obtained by treating the anti-human VEGF monoclonal antibody of the present invention with the protease papain. Alternatively, it is possible to insert the DNA encoding the Fab of the antibody into a prokaryotic or eukaryotic expression vector and introduce the vector into a prokaryotic or eukaryotic organism to express the vector, thereby producing a Fab. it can.
F (at)' ) 2は、 I g Gを蛋白質分解酵素ペプシンで処理して得られる断片のうち (H鎖の 234番目のアミノ酸残基で切断される) 、 Fabがヒンジ領域のジスルフィ ド結合を介して結合されたものよりやや大きい、分子量約 10万の抗原結合活性を 有する抗体断片である。 F (at) ') 2 is a fragment obtained by treating IgG with the protease pepsin (which is cleaved at the 234th amino acid residue in the H chain), and Fab is a disulfide bond in the hinge region. This is an antibody fragment having a molecular weight of about 100,000 and having an antigen-binding activity, which is slightly larger than that bound through the DNA.
F (ab' ) 2は、 本発明の抗ヒト VEGFモノクローナル抗体を蛋白質分解酵素ぺプシ ンで処理して得ることができる。または、下記の Fab'をチォエーテル結合あるい はジスルフイド結合させ、 作製することができる。 F (ab ') 2 can be obtained by treating the anti-human VEGF monoclonal antibody of the present invention with proteolytic enzyme pepsin. Alternatively, the following Fab ′ can be prepared by making a thioether bond or a disulfide bond.
Fab'は、 上記 F (ab' ) 2のヒンジ領域のジスルフィド結合を切断した分子量約 5 万の抗原結合活性を有する抗体断片である。 Fab 'is an antibody fragment having a molecular weight of about 50,000 and having an antigen-binding activity, in which the disulfide bond in the hinge region of F (ab') 2 is cleaved.
Fab'は、 ヒト VEGFに結合する F (al)' ) 2を還元剤ジチオスレィトール処理して得 ることができる。 または、 該抗体の Fa 断片をコードする DNAを原核生物用発現 ベクターあるいは真核生物用発現ベクターに挿入し、 該ベクターを原核生物あ るいは真核生物へ導入することにより Fa を発現させ、 製造することができる。 scFvは、一本の VHと一本の VLとを適当なぺプチドリンカ一(以下、 Pと称す) を用いて連結した、 VH— P— VLないしは VL _P— VHポリペプチドを示す。 本発明 の scFvに含まれる VHおよび VLは、 本発明のハイプリドーマが産生する抗体、 ヒト化抗体、 ヒト抗体のいずれをも用いることができる。 Fab ′ can be obtained by treating F (al) ′) 2 that binds to human VEGF with a reducing agent dithiothreitol. Alternatively, DNA encoding the antibody Fa fragment is inserted into a prokaryotic or eukaryotic expression vector, and Fa is expressed by introducing the vector into a prokaryotic or eukaryotic organism. can do. scFv refers to a VH-P-VL or VL_P-VH polypeptide in which one VH and one VL are linked using an appropriate peptide linker (hereinafter, referred to as P). As the VH and VL contained in the scFv of the present invention, any of the antibodies, humanized antibodies, and human antibodies produced by the hybridoma of the present invention can be used.
scFvは、本発明の抗ヒト VEGFモノクローナル抗体の VHおよび VLをコードす る cDNAを取得し、 scFvをコードする DNAを構築し、 該 DNAを原核生物用発現べ クタ一あるいは真核生物用発現べクタ一に挿入し、該発現ベクターを原核生物あ るいは真核生物へ導入することにより発現させ、 scFvを製造することができる。 dsFvは、 VHおよび VL中のそれぞれ 1アミノ酸残基をシスティン残基に置換し たポリペプチドを該システィン残基間のジスルフィド結合を介して結合させた ものをいう。 システィン残基に置換するアミノ酸残基は Rei terらにより示され た方法 [Protein Engineering, 7, 697 (1994) ] に従って、 抗体の立体構造予測 に基づいて選択することができる。 本発明の dsFvに含まれる VHおよび VLは本 発明のハイプリドーマが産生する抗体、 ヒト化抗体、 ヒト抗体のいずれをも用い ることができる。 The scFv is obtained by obtaining cDNAs encoding the VH and VL of the anti-human VEGF monoclonal antibody of the present invention, constructing a DNA encoding the scFv, and using the DNA for expression in a prokaryotic expression vector or eukaryotic expression vector. And the expression vector is inserted into a prokaryotic organism. Alternatively, it can be expressed by introduction into eukaryotes to produce scFv. dsFv refers to a polypeptide in which one amino acid residue in each of VH and VL has been substituted with a cysteine residue, which is linked via a disulfide bond between the cysteine residues. The amino acid residue to be substituted for the cysteine residue can be selected based on the prediction of the three-dimensional structure of the antibody according to the method shown by Reiter et al. [Protein Engineering, 7, 697 (1994)]. As the VH and VL contained in the dsFv of the present invention, any of the antibodies, humanized antibodies, and human antibodies produced by the hybridoma of the present invention can be used.
dsFvは、本発明の抗ヒト VEGFモノクローナル抗体の VHおよび VLをコードす る cDNAを取得し、 dsFvをコードする DNAを構築し、 該 DNAを原核生物用発現べ クタ一あるいは真核生物用発現べクタ一に挿入し、該発現ベクターを原核生物あ るいは真核生物へ導入することにより発現させ、 製造することができる。  dsFv is obtained by obtaining cDNAs encoding the VH and VL of the anti-human VEGF monoclonal antibody of the present invention, constructing a DNA encoding the dsFv, and using the DNA for expression in a prokaryotic expression vector or eukaryotic expression vector. The expression vector can be expressed and produced by introducing it into a prokaryote or eukaryote.
CDRを含むぺプチドは、 H鎖または L鎖 CDRの少なくとも 1領域以上を含んで 構成される。複数の CDRは、直接または適当なぺプチドリンカーを介して結合さ せることができる。  A peptide containing a CDR is composed of at least one region of a heavy chain or light chain CDR. A plurality of CDRs can be linked directly or via an appropriate peptide linker.
CDRを含むペプチドは、本発明の抗ヒト VEGFモノクローナル抗体の VHおよび YLをコードする cDNAを取得した後、 CDRをコ一ドする DNAを構築し、 該 DNAを 原核生物用発現ベクターあるいは真核生物用発現ベクターに挿入し、該発現べク 夕一を原核生物あるいは真核生物へ導入することにより発現させ、製造すること ができる。  The peptide containing the CDR is obtained by obtaining a cDNA encoding the VH and YL of the anti-human VEGF monoclonal antibody of the present invention, constructing a DNA encoding the CDR, and converting the DNA into a prokaryotic expression vector or a eukaryotic organism. The expression vector can be expressed and produced by introducing the expression vector into a prokaryote or eukaryote.
また、 CDRを含むペプチドは、 Fmoc法(フルォレニルメチルォキシカルボニル 法) 、 tBoc 法 (t-ブチルォキシカルボ二ル法) 等の化学合成法によって製造す ることもできる。  Further, the peptide containing CDR can also be produced by a chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the tBoc method (t-butyloxycarbonyl method).
抗体の誘導体は、 本発明のハイプリドーマが産生する抗体、 ヒト化抗体、 ヒト 抗体またはそれらの抗体断片に放射性同位元素、蛋白質または低分子の化合物な どを結合させた抗体をいう。 抗体の誘導体は、 本発明の抗ヒト VEGFモノクローナル抗体または抗体断片の H鎖或いは L鎖の N末端側或いは C末端側、 抗体または抗体断片中の適当な置換 基あるいは側鎖、 さらには抗体または抗体断片中の糖鎖に放射性同位元素、蛋白 質あるいは低分子の化合物などを化学的手法 [抗体工学入門(金光修著 1 9 9 4年 (株) 地人書館) ] により結合させることにより製造することができる。 または、 本発明の抗ヒト VEGFモノクローナル抗体または抗体断片をコードす る DNAと、結合させたい蛋白質をコ一ドする DNAを連結させて発現ベクターに挿 入し、該発現べクタ一を宿主細胞へ導入する、遺伝子工学的手法によっても製造 することができる。 An antibody derivative refers to an antibody produced by the hybridoma of the present invention, a humanized antibody, a human antibody or an antibody fragment thereof, which is bound to a radioisotope, protein or low-molecular compound. Antibody derivatives include the N-terminal or C-terminal of the H-chain or L-chain of the anti-human VEGF monoclonal antibody or antibody fragment of the present invention, an appropriate substituent or side chain in the antibody or antibody fragment, and the antibody or antibody. Manufactured by bonding radioisotopes, proteins, or low-molecular-weight compounds to the sugar chains in the fragments by a chemical method [Introduction to Antibody Engineering (Osamu Kanemitsu, 1994, Jinjinshokan Co., Ltd.)] be able to. Alternatively, DNA encoding the anti-human VEGF monoclonal antibody or antibody fragment of the present invention and DNA encoding the protein to be ligated are ligated and inserted into an expression vector, and the expression vector is transferred to host cells. It can also be produced by genetic engineering techniques to be introduced.
放射性同位元素としては、 131 I、 I 等があげられ、 例えば、 クロラミン T法 等により、 抗体に結合させることができる。 Examples of the radioisotope include 131 I, I and the like. For example, the radioisotope can be bound to the antibody by the chloramine T method or the like.
低分子の薬剤としては、 ナイトロジェン,マスタード、サイクロフォスフアミ ドなどのアルキル化剤、 5—フルォロウラシル、メソトレキセートなどの代謝拮 抗剤、 ダウノマイシン、 ブレオマイシン、 マイトマイシン C, ダウノルビシン、 ドキソルビシンなどの抗生物質、 ビンクリスチン、 ビンブラスチン、 ビンデシン のような植物アル力ロイド、 夕モキシフェン、デキサメタソンなどのホルモン剤 等の抗癌剤 [臨床腫瘍学 (日本臨床腫瘍研究会編 1 9 9 6年 癌と化学療法 社) ] 、 またはハイド口コーチゾン、 プレドニゾンなどのステロイド剤、 ァスピ リン、 インドメ夕シンなどの非ステロイド剤、 金チォマレ一ト、 ぺニシラミンな どの免疫調節剤、 サイクロフォスフアミド、 ァザチォプリンなどの免疫抑制剤、 マレイン酸クロルフェニラミン、クレマシチンのような抗ヒスタミン剤等の抗炎 症剤 [炎症と抗炎症療法 昭和 5 7年 医歯薬出版株式会社]などがあげられる 例えば、 ダウノマイシンと抗体を結合させる方法としては、 ダルタールアルデヒ ドを介してダウノマイシンと抗体のアミノ基間を結合させる方法、水溶性カルボ ジイミドを介してダウノマイシンのァミノ基と抗体の力ルポキシル基を結合さ せる方法等があげられる。 蛋白質としては、免疫担当細胞を活性化するサイトカインが好適であり、例え ば、 ヒトインタ一ロイキン一 2 (以下、 ML-2と表記する) 、 ヒ卜顆粒球ーマク 口ファ一ジーコロニ一刺激因子 (以下、 hGM-CSFと表記する) 、 ヒトマクロファ ージコロニ一刺激因子 (以下、 hM-CSFと表記する) 、 ヒトインタ一ロイキン 12 (以下、 ML- 12 と表記する) 等があげられる。 また、 癌細胞を直接障害するた め、 リシンやジフテリア毒素などの毒素を用いることができる。例えば、蛋白質 との融合抗体ついては、 抗体または抗体断片をコードする cDNAに蛋白質をコ一 ドする cDMを連結させ、 融合抗体をコードする DNAを構築し、 該 DNAを原核生 物あるいは真核生物用発現ベクターに挿入し、該発現ベクターを原核生物あるい は真核生物へ導入することにより発現させ、 融合抗体を製造することができる。 以下に、 本発明の抗体の製造法を説明する。 Low molecular drugs include alkylating agents such as nitrogen, mustard, and cyclophosphamide, antimetabolites such as 5-fluorouracil and methotrexate, antibiotics such as daunomycin, bleomycin, mitomycin C, daunorubicin, and doxorubicin; Anticancer drugs, such as plant alkyloids such as vincristine, vinblastine, and vindesine, and hormones such as evening moxifen and dexamethasone [Clinical Oncology (Japanese Society for Clinical Oncology, ed. 1996, Cancer and Chemotherapy Company)] Steroids such as oral cortisone and prednisone, non-steroids such as aspirin and indomethacin, immunomodulators such as gold thiomalate and penicillamine, immunosuppressants such as cyclophosphamide and azathioprine, maleic acid Anti-inflammatory drugs such as anti-histamines such as lupheniramine and clemacitin [Inflammation and anti-inflammatory therapy 1977, Ito Denki Shuppan Co., Ltd.], etc. For example, as a method of binding daunomycin and antibody, daltar aldehyde And a method in which the amino group of daunomycin is bound to the amino group of the antibody via a water-soluble carbodiimide. As proteins, cytokines that activate immunocompetent cells are suitable. For example, human interleukin-12 (hereinafter abbreviated as ML-2), human granulocyte-mac ora fuzzy colony-stimulating factor (hereinafter abbreviated) , HGM-CSF), human macrophage colony-stimulating factor (hereinafter referred to as hM-CSF), human interleukin-12 (hereinafter referred to as ML-12) and the like. In addition, toxins such as ricin and diphtheria toxin can be used to directly damage cancer cells. For example, for a fusion antibody with a protein, a cDNA encoding the protein is ligated to cDNA encoding the antibody or antibody fragment, a DNA encoding the fusion antibody is constructed, and the DNA is used for prokaryotic or eukaryotic organisms. A fusion antibody can be produced by inserting the expression vector into an expression vector and introducing the expression vector into a prokaryote or eukaryote to cause expression. Hereinafter, a method for producing the antibody of the present invention will be described.
すなわち、 ヒト VEGF蛋白質、 あるいはヒト VEGF蛋白質のアミノ酸配列に基づ いて化学合成したペプチドなどを抗原として調製し、 該抗原を免疫した動物よ り抗原特異性をもつ抗原産生細胞を誘導し、 さらに、 該細胞と骨髄腫細胞株と を融合させてハイプリドーマを調製し、 該ハイブリドーマを培養するか、 ある いは該八イブリドーマ細胞を動物に投与して該動物を腹水癌化させ、 該培養液 または腹水を分離、 精製することにより抗ヒト VEGFモノクローナル抗体を取得 することができる。  That is, a human VEGF protein or a peptide chemically synthesized based on the amino acid sequence of human VEGF protein is prepared as an antigen, and an antigen-producing cell having antigen specificity is induced from an animal immunized with the antigen. The cells are fused with a myeloma cell line to prepare a hybridoma, and the hybridoma is cultured, or the hybridoma cells are administered to an animal to cause the animal to develop ascites tumor, and the culture solution or By separating and purifying ascites, an anti-human VEGF monoclonal antibody can be obtained.
抗原としては、 ヒト VEGF蛋白質、 アミノ酸の長さの異なるヒト VEGF蛋白質あ るいは該蛋白質と他の蛋白質との融合蛋白質などがあげられる。  Examples of the antigen include a human VEGF protein, a human VEGF protein having a different amino acid length, and a fusion protein of the protein and another protein.
ヒト VEGF蛋白質は、 ヒト VEGF蛋白質を生産する細胞を適当な培地中で培養す ることにより細胞内あるいは培養上清中にヒト VEGF蛋白質を生産することがで きる。 細胞としては、 ヒ卜グリオ一マ細胞 G 5 5、 ヒト大腸癌 COLO205 [Nature. 362, 841 (1993) ]等のヒト腫瘍細胞株などがあげられる。  The human VEGF protein can be produced in cells or in a culture supernatant by culturing cells that produce human VEGF protein in an appropriate medium. Examples of the cells include human tumor cell lines such as human gloma cells G55 and human colorectal cancer COLO205 [Nature. 362, 841 (1993)].
さらに、 上述の細胞から、 遺伝子工学的手法を用いて、 ヒト VEGFをコードす る DNAを取得し、 ヒト VEGF蛋白質、 アミノ酸の長さの異なるヒト VEGF蛋白質、 あ るいは該蛋白質と抗体の F c部分との融合蛋白質などを発現させて抗原とする こともできる。 以下にその方法を述べる。 Furthermore, DNA encoding human VEGF is obtained from the above-described cells by genetic engineering techniques, and human VEGF protein, human VEGF protein having different amino acid lengths, and Alternatively, a fusion protein of the protein and the Fc portion of an antibody can be expressed to be used as an antigen. The method is described below.
ヒト VEGFをコードする DNAを取得するために、 文献 [J. Biol. Chen , 268, 22782 (1993) ] に記載された cDNA、 あるいは上述したヒト VEGFを細胞内に発現 した細胞より、常法 [モレキュラー ·クローニング第 2版 (Molecul ar Cloning 2nd edi t ion, Cold Spring Harbor Lab. Press New York (1989); 以下、 モレキユラ 一 ·クロ一ニング第 2版と略す)やカレント ·プロトコールズ ·イン ·モレキュ ラ一 'バイオロジー、 サプルメント 1〜3 8 (Current Protocols in Molecul ar Biology Supplement 1-38;以下、 カレント 'プロトコールズ 'イン 'モレキュ ラー 'バイオロジー、 サプリレメン卜 1〜3 8と略す) ] により cDNAライブラリ 一を作製する。  To obtain DNA encoding human VEGF, a cDNA described in the literature [J. Biol. Chen, 268, 22782 (1993)], or cells expressing the above-mentioned human VEGF intracellularly, can be obtained by a conventional method [ Molecular Cloning 2nd edition, Cold Spring Harbor Lab. Press New York (1989); hereafter abbreviated as “Molecula 1st Cloning 2nd Edition” and Current Protocols in Molecule. CDNA from “Role 'Biology, Supplements 1-38 (Current Protocols in Molecular Biology Supplement 1-38; hereinafter abbreviated as“ Current Protocols ”in“ Molecular ”Biology, Supplements 1-38)] Create a library.
すなわち、 RNAを抽出し、 該 RNAより cDNAを合成する。 得られた cDNAをクロー ニングベクターに組み込み宿主細胞に導入することにより cDNAライブラリーを 作製する。  That is, RNA is extracted, and cDNA is synthesized from the RNA. A cDNA library is prepared by incorporating the obtained cDNA into a cloning vector and introducing it into host cells.
該ライブラリ一より目的とする cDNAを含有する形質転換体を選択することに よりヒ卜 VEGFをコ一ドする DNAを取得することができる。  By selecting a transformant containing the cDNA of interest from the library, DNA encoding human VEGF can be obtained.
ヒト VEGFを細胞内に発現した細胞から全 RNAを調製する方法としては、 グァニ ジン Zセシウムクロライド法やグァニジンチオシァネート法 [Methods in EnzymoL , 154, 3 (1987) ] などがあげられる。 また、 全 RNAから mRNAを調製す る方法としては、 オリゴ dTセルロースなどを用いたカラム法またはバッチ法な どがあげられる。 また、 ファースト · トラック · mRNA ·アイソレーション ·キ ット (インビトロジェン社製) 、 クイック ·プレップ · mRNA ·ピユリフィケ一 シヨン ·キット (フアルマシア社製) などのキットを用いて mRNAを調製するこ ともできる。  Methods for preparing total RNA from cells expressing human VEGF in cells include the guanidine Z cesium chloride method and the guanidine thiosinate method [Methods in EnzymoL, 154, 3 (1987)]. Examples of a method for preparing mRNA from total RNA include a column method or a batch method using oligo dT cellulose or the like. Alternatively, mRNA can be prepared using a kit such as Fast Track mRNA mRNA Isolation Kit (manufactured by Invitrogen) or Quick Prep mRNA mRNA Pyurifique Kit (manufactured by Pharmacia).
上述で得られた RNAから cDNAを合成する方法としては、ォカャマバーグ法 [Mol. Cel l. Biol. , , 161 (1982) ] ゃグブラーホフマン法 [Gene, 25, 263 (1983) ] 等があげられる。 また、 スーパ一スクリプト ·プラスミド ·システム ·フォ 一 · cDNA ·シンセシス♦アンド ·プラスミド ·クローニング (ギブコ BRL社製) 、 ザップ- cDNA ·シンセシス 'キット (ストラタジーン社製) などのキットを用 いて cDNAを合成することもできる。 As a method for synthesizing cDNA from the RNA obtained above, the Okamaberg method [Mol. Cell. Biol.,, 161 (1982)] ゃ Gubler-Hoffman method [Gene, 25, 263 (1983)] ] And the like. CDNA can also be obtained using kits such as Superscript, Plasmid, System, Fortran, cDNA, Synthesis ♦ and Plasmid Cloning (Gibco BRL), Zap-cDNA, Synthesis' Kit (Stratagene). It can also be synthesized.
cDNAを組み込むためのクローニングベクタ一としては、 宿主細胞内で自律複 製可能で該 cDNAを安定保持できるものであれば、 ファージベクタ一、 プラスミ ドベクターなどいずれでもよい。 具体的には、 ZAP Express 〔ストラタジーン社 製、 Strategies, 5, 58 (1992)] 、 pBluescript II SK (十) 〔ヌクレイツク'ァ シッド ·リサーチ(Nucleic Acids Research), Π, 9494 (1989)〕 、 Azap II (ス トラ夕ジーン社製)、 AgtlO, Agtll 〔DNA クローニング,ァ'プラクティカル' アプローチ(DNACIoning, A Practical Approach ), 丄, 49 (1985)] 、 ATriplEx( クローンテック社製)、 AEXCell (フアルマシア社製)、 pT7T3 18U (フアルマシア 社製)、 cD2 〔モレキュラー'アンド'セルラー'バイオロジー(Mol. Cell.Biol.), 3, 280 (1983)〕 、 pUC18 〔ジーン(Gene), 33, 103 (1985)〕 、 A o [J. Biol. Chem. , 268, 22782-22787 (1993),別名 pA oPRC3Sc (特開平 05- 336963)〕 等をあげ ることができる。  Any phage vector or plasmid vector may be used as the cloning vector for incorporating the cDNA, as long as it can be replicated autonomously in the host cell and can stably maintain the cDNA. Specifically, ZAP Express [Stratagene, Strategies, 5, 58 (1992)], pBluescript II SK (10) [Nucleic Acids Research, Π, 9494 (1989)], Azap II (Strata Gene), AgtlO, Agtll [DNA cloning, A Practical Approach], 丄, 49 (1985)], ATriplEx (Clontech), AEXCell ( PT7T3 18U (Pharmacia), cD2 [Molecular and Cellular Biology (Mol. Cell. Biol.), 3, 280 (1983)], pUC18 [Gene, 33, 103 (1985)], Ao [J. Biol. Chem., 268, 22782-22787 (1993), also known as pAoPRC3Sc (JP-A-05-336963)].
宿主微生物としては,大腸菌に属する微生物であればいずれでも用いること ができる。 具体的には、 Escherichia coli XLI-Blue MRF' 〔ストラタジーン社 製, Strategies, , 81 (1992)〕 、 Escherichia col i C6QQ (Genetics, 39, 440(1954) 〕、 Escherichia coli YI088 [Science, 222, 778(1983)]、 Escherichia col i YI090 As the host microorganism, any microorganism belonging to Escherichia coli can be used. Specifically, Escherichia coli XLI-Blue MRF '(Stratagene, Strategies,, 81 (1992)), Escherichia coli C6QQ (Genetics, 39, 440 (1954)), Escherichia coli YI088 [Science, 222, 778 (1983)], Escherichia col i YI090
[Science, 222, 778 (1983)) 、 Escherichia coli NM522 [J. Mol. Biol. , 166, 1 (1983))、 Escherichia coli K802 (J. Mol. Biol. , ^6, 118 (1966)3 , Escherichia coli JM105 [Gene, 38, 275 (1985)] , Escherichia coli S0LR™ Strain 〔スト ラタジーン社より巿販〕 および Escherichia coli LE392(モレキュラー 'クロ一 ニング第 2版)等が用いられる。 (Science, 222, 778 (1983)), Escherichia coli NM522 (J. Mol. Biol., 166, 1 (1983)), Escherichia coli K802 (J. Mol. Biol., ^ 6, 118 (1966) 3, Escherichia coli JM105 [Gene, 38, 275 (1985)], Escherichia coli S0LR ™ Strain (commercially available from Stratagene), Escherichia coli LE392 (Molecular 'Cloning 2nd Edition) and the like are used.
cDNAを上述のクロ一ニングベクタ一に組み込み、 該クローニングベクターを 宿主細胞に導入することにより cDNAライブラリ一を作製する。 Integrate the cDNA into the above-mentioned cloning vector, A cDNA library is prepared by introduction into a host cell.
該クローニングベクターがプラスミドの場合には、 エレクトロポレーシヨン 法あるいはカルシウムクロライド法などにより宿主細胞に導入する。 該クロー ニングベクターがファージの場合には、 ィンビトロパッケージング法などによ り宿主細胞に導入する。  When the cloning vector is a plasmid, the vector is introduced into a host cell by an electroporation method or a calcium chloride method. When the cloning vector is a phage, it is introduced into a host cell by in vitro packaging or the like.
上述で取得された cDNAライブラリ一から、 ヒ卜 VEGFをコードする DNAを含む形 質転換株については、 例えば文献 [Science, 246, 1306 (1989); Science, 246, 1309 (1989)] に掲載されたヒト VEGFをコードする DNAの塩基配列を基にプロ一 ブを作製して、 蛍光物質、 放射線、 酵素などで該プローブをラベル化し、 ブラ —クハイブリダィゼーシヨン、 コロニ一ハイブリダィゼ一シヨン、 サザンハイ ブリダイゼーシヨンなどを行うことにより、 ハイブリダイズする形質転換株を 選択することができる。  From the cDNA library obtained above, transformed strains containing DNA encoding human VEGF are described, for example, in the literature [Science, 246, 1306 (1989); Science, 246, 1309 (1989)]. A probe is prepared based on the nucleotide sequence of the DNA encoding human VEGF, and the probe is labeled with a fluorescent substance, radiation, an enzyme, or the like, and the hybridization is performed using a black hybridization, a colony hybridization, By performing Southern hybridization or the like, a transformant that hybridizes can be selected.
上述で取得されたヒト VEGFをコードする全長あるいはその部分断片 cDNA [ Science, 246, 1306 (1989); Science, 246, 1309 (1989)] を適当なベクター のプロモーター下流に挿入した組み換えべクタ一を造成し、 それを宿主細胞に 導入することにより得られたヒト VEGF発現細胞を、 適当な培地中で培養するこ とにより細胞内あるいは培養上清中にヒト VEGFの全長あるいは部分断片をその ままあるいは融合蛋白質として生産することができる。  A recombinant vector obtained by inserting the full length or partial fragment cDNA encoding human VEGF obtained as described above [Science, 246, 1306 (1989); Science, 246, 1309 (1989)] downstream of the promoter of an appropriate vector The human VEGF-expressing cells obtained by constructing the cells and introducing them into host cells are cultured in an appropriate medium, so that the full-length or partial fragments of human VEGF can be directly or intracellularly or in the culture supernatant. It can be produced as a fusion protein.
宿主としては、 細菌、 酵母、 動物細胞、 昆虫細胞など、 目的とする遺伝子を 発現できるものであれば、 いずれでもよい。 細菌としては、 ェシエリヒア -コ リ (Escherichia coH) 、 バチルス ·ズブチリス (Bacillussubtilis) 等のェ シエリヒア属、 バチルス属等の細菌が例示される。 酵母としては、 サッカロミ セス *セレビシェ (Saccharomyces cerevisiae) 、 シゾサッカロミセス 'ホン ベ (Schizosacc aromyces pombe) 等が例示される。 動物細胞としては、 ヒトの 細胞であるナマルバ細胞、 サルの細胞である COS細胞、 チャイニーズ 'ハム スターの細胞である CHO細胞等が例示される。 昆虫細胞としては、 S f 9、 S f 2 1 (ファーミンジェン社製) 、 High Five (インビトロジェン社製) 等が 例示される。 The host may be any host such as bacteria, yeast, animal cells, and insect cells, as long as it can express the gene of interest. Examples of the bacteria include bacteria of the genus Escherichia, such as Escherichia coH and Bacillus subtilis, and those of the genus Bacillus. Examples of yeast include Saccharomyces cerevisiae, Schizosaccaromyces pombe, and the like. Examples of animal cells include Namalba cells, which are human cells, COS cells, which are monkey cells, and CHO cells, which are Chinese 'hamster cells. As insect cells, Sf9, Sf21 (Pharmingen), High Five (Invitrogen) and the like are exemplified.
本発明の DN Aを導入するべクタ一としては、 該 DN Aを組み込むことがで き、 宿主細胞で発現できるものであればいかなるベクターでも用いることがで さる。  As a vector into which the DNA of the present invention is introduced, any vector can be used as long as it can incorporate the DNA and can be expressed in a host cell.
細菌、 例えばェシエリヒア 'コリ (Escherichia coH) を宿主として用いる 場合の発現ベクターとしては、 プロモーター、 リボゾーム結合配列、 本発明の DNA、 転写終結配列、 場合によってはプロモーターの制御配列より構成され ているのが好ましいが、 例えば、 市販の pGEX (フアルマシア社製) 、 pET シス テム (ノバジェン社製) などが例示される。  When a bacterium, for example, Escherichia coli (Escherichia coH) is used as a host, an expression vector is composed of a promoter, a ribosome binding sequence, the DNA of the present invention, a transcription termination sequence, and, in some cases, a promoter control sequence. Preferred are, for example, commercially available pGEX (Pharmacia), pET system (Novagen) and the like.
細菌への組換えベクターの導入方法としては、 細菌に DN Aを導入する方法 であればいずれの方法も用いることができ、 例えば、 カルシウムイオンを用い る方法 [プロシ一ディングス ·ォブ ·ザ ·ナショナル ·ァカデミ一 'ォブ ·サ ィエンス.ォブ ·ザ ·υ. S. A. (Proc. Natl. Acad. Sci. , USA), 69, 2110-2114 (1972) ] 、 プロトプラスト法 (特開昭 63-248394) 等をあげることができる。 酵母を宿主として用いる場合には、 発現ベクターとして、 例えば、 YEp l 3 (ATCC37115 ) 、 YE p 24 (ATCC37051 ) 、 YC p 50 (ATCC37419 ) 等 が用いられる。  As a method for introducing a recombinant vector into a bacterium, any method can be used as long as it is a method for introducing DNA into a bacterium. For example, a method using a calcium ion [Procedures-of-the- SA (Proc. Natl. Acad. Sci., USA), 69, 2110-2114 (1972)], the protoplast method (Japanese Unexamined Patent Publication No. 248394). When yeast is used as a host, for example, YEp13 (ATCC37115), YEp24 (ATCC37051), YCp50 (ATCC37419) and the like are used as expression vectors.
酵母への組換えベクターの導入方法としては、 酵母に DN Aを導入する方法 であれば、 例えば、 エレクト口ポレーシヨン法 [メソッズ ·ォブ ·ェンザィモ ロジー(Methods. Enzymol. ), 194. 182-187 (1990)] 、 スフエロプラスト法 [ プロシーディングス ·ォブ ·ザ ·ナショナル ·ァカデミ一 .ォブ ·サイエンス 'ォブ ·ザ ·υ. S. A. (Proc. Natl. Acad. Sci. , USA), 84, 1929-1933 (1978) ]、酢酸リチウム法 [ジャーナル'ォブ 'パクテリォロジ一(J. Bacteriol.), 153, 163-168 (1983)] 等、 いずれの方法も用いられる。  As a method for introducing a recombinant vector into yeast, a method for introducing DNA into yeast includes, for example, an elect-mouth method [Methods. Enzymol., 194. 182-187]. (1990)], the Sueeloplast Act [Proceedings of the National Academy of Sciences. Obb Science 'of the United States. SA (Proc. Natl. Acad. Sci., USA), 84 , 1929-1933 (1978)] and the lithium acetate method [Journal of Bacteriol. (J. Bacteriol.), 153, 163-168 (1983)].
動物細胞を宿主として用いる場合には、 発現ベクターとして、 例えば、 pA GE 1 07 [特開平 3 - 22979 ;サイトテクノロジー(Cytotechnology), 3, 133 (1990)], AGE 1 03 [ジャーナル ·ォブ 'バイオケミストリー(J. Biochem. ), 里, 1307 (1987) ] 等が用いられる。 When animal cells are used as a host, expression vectors such as pA GE 107 [JP-A-3-22979; Cytotechnology, 3, 133 (1990)], AGE 103 [Journal of Biochemistry (J. Biochem.), Sato, 1307 (1987)], etc. Is used.
プロモータ一としては、 動物細胞中で発現できるものであればいかなるもの を用いてもよいが、 例えば、 サイトメガロウィルス (CMV) の IE(i画 ediate early) 遺伝子のプロモーター、 SV40あるいはメタ口チォネインのプロモーター 等があげられる。 また、 ヒト CMVの IE遺伝子のェンハンサ一をプロモ一夕一 とともに用いてもよい。  As the promoter, any promoter can be used as long as it can be expressed in animal cells. For example, the promoter of the IE (i-ediate early) gene of cytomegalovirus (CMV), SV40 or Promoters and the like. The enhancer of the IE gene of human CMV may be used together with the promoter.
動物細胞への組換えベクターの導入方法としては、 動物細胞に D N Aを導入 する方法であれば、 例えば、 エレクトロボレ一シヨン法 [サイトテクノロジー (Cytotechnology), 3^ 133 (1990)] 、 リン酸カルシウム法 (特開平 2- 227075) 、 リポフエクシヨン法 [プロシ一ディンダス ·ォブ ·ザ ·ナショナル ·ァカデ ミ一'ォブ'サイエンス'ォブ 'ザ · U. S. A. (Proc. Natl. Acad. Sci. , USA), 84, 7413 (1987)] 等、 いずれの方法も用いられる。  Examples of a method for introducing a recombinant vector into animal cells include a method for introducing DNA into animal cells, for example, the electroporation method [Cytotechnology, 3 ^ 133 (1990)], the calcium phosphate method ( JP-A-2-227075), Lipoff-execution method [Proc. Natl. Acad. Sci., USA], 84 , 7413 (1987)].
昆虫細胞を宿主として用いる場合には、 例えばカレント ·プロ卜コールズ- イン ·モレキュラー 'バイオロジー、サプルメント 1 〜34 (Current Protocols in Molecular Biology Supplement 1-34) 、 バキュロウィルス 'イクスプレツ シヨン ·ベクターズ、 ァ ·ラ; qくラ卜リ一 ·マニュアル (Baculovirus expression vectors A laboratory manual) 等に記載された方法によって、 蛋白質を発現す ることができる。 すなわち、 以下に述べる組換え遺伝子導入ベクターおよびバ キュロウィルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウィルス を得たのち、 さらに組換えウィルスを昆虫細胞に感染させ、 蛋白質発現昆虫細 胞を取得する。  When insect cells are used as hosts, for example, Current Protocols in Molecular Biology Supplement 1-34, baculovirus' Expression Vectors, a. Q; Proteins can be expressed by methods described in Baculovirus expression vectors A laboratory manual. That is, the recombinant gene transfer vector and baculovirus described below are co-transfected into insect cells to obtain a recombinant virus in the culture supernatant of insect cells, and the recombinant virus is further infected into insect cells to express the protein. Obtain insect cells.
遺伝子導入べクタ一としては、 例えば、 pVL1392、 pVL1393 、 pBlueBacIII ( ともにインビトロジェン社製) 等が用いられる。  As the gene transfer vector, for example, pVL1392, pVL1393, pBlueBacIII (all manufactured by Invitrogen) and the like are used.
パキュロウィルスとしては、 例えば、 夜盗蛾科昆虫に感染するウィルスであ るアウトグラファ ·カリフォルニ力 ·ヌクレア一 ·ポリへドロシス ·ウィルスThe paculovirus is, for example, a virus that infects night moth insects. Autographer · Californi force · Nuclear 1 · Polyhedosis · Virus
(Au tographa cal i forni ca nuc l ear polyhedros i s vi rus) などが用いられる。 組換えウィルスを調製するための、 昆虫細胞への上記組換え遺伝子導入べク 夕一と上記バキュロウィルスの共導入方法としては、 例えば、 リン酸カルシゥ ム法 (特開平 2- 227075) 、 リポフエクシヨン法 [プロシ一ディンダス 'ォブ' ザ ·ナショナル 'アカデミー ·ォブ ·サイエンス ·ォプ ·ザ · υ. S . A. (Proc. Nat l. Acad. Sc i. , USA) , 84, 7413 (1987) ] 等が用いられる。 (Au tographa cal i forni cannul ear polyhedros is virus) and the like are used. Methods for co-transferring the above-described recombinant gene into insect cells and the above baculovirus into insect cells for preparing a recombinant virus include, for example, calcium phosphate method (Japanese Patent Laid-Open No. 2-227075), and Lipofexion method. [Procedin's' Ob 'The National' Academy of Sciences Op. The S.A. (Proc. Natl. Acad. Sc i., USA), 84, 7413 (1987 )] Is used.
また、 ファーミンジェン社製バキュロゴ一ルドスター夕一キットなどを用い て組み換えパキュロウィルスを作製したのち、 前述した S f 9、 S f 2 1ある いは High F ive等の昆虫細胞に該組み換えウィルスを感染させることにより蛋 白質を生産させることもできる [バイオテクノロジー (Bi o/Techno l ogy) , 10, 457 (1988) ] 。  In addition, after producing a recombinant paculovirus using a Baculo Logo Stardust kit manufactured by Farmingen, etc., the recombinant virus is transferred to the insect cells such as Sf9, Sf21 or High Five described above. Can also be used to produce proteins by infecting [Biotechnology (Bio / Technology), 10, 457 (1988)].
遺伝子の発現方法としては、 直接発現以外に、 分泌生産、 融合蛋白質発現等 が開発されており、 いずれの方法も用いることができる。 例えば、 モレキユラ ― ·クローニング第 2版に記載されている方法に準じて行うことができる。 融合させる蛋白質としては、 i3—ガラクトシダーゼ、 プロテイン A、 プロティ ン Aの I gG結合領域、 クロラムフエ二コール ·ァセチルトランスフェラーゼ、 ポ リ (Arg) 、 ポリ (Glu) 、 プロテイン G、 マルトース結合蛋白質、 ダル夕チオン S—トランスフェラ一ゼ、 ポリヒスチジン鎖 (Hi s-tag) 、 Sペプチド、 D N A 結合蛋白質ドメイン、 Tac抗原、 チォレドキシン、 グリーン ·フルォレツセント •プロティン、および任意の抗体のェピト一プなどがあげられる [山川彰夫 実 験医学, 13, 469-474 (1995) ] 。  In addition to direct expression, secretory production, fusion protein expression, and the like have been developed as gene expression methods, and any method can be used. For example, it can be carried out according to the method described in "Molecula-cloning 2nd edition". The proteins to be fused include i3-galactosidase, protein A, the IgG-binding region of protein A, chloramphenicol-acetyltransferase, poly (Arg), poly (Glu), protein G, maltose-binding protein, and Dalbin. Thione S-transferase, polyhistidine chain (His-tag), S peptide, DNA binding protein domain, Tac antigen, thioredoxin, green fluorescein protein, and any antibody epitope [ Akio Yamakawa Experimental Medicine, 13, 469-474 (1995)].
以上のようにして得られる形質転換体を培地に培養し、 培養物中に本発明の 蛋白質を生成蓄積させ、 該培養物から採取することにより、 ヒト VEGFの全長あ るいは部分断片をそのままあるいは融合蛋白質として製造することができる。 上記の形質転換体を培地に培養する方法は、 宿主の培養に用いられる通常の 方法に従って行われる。 The transformant obtained as described above is cultured in a medium, the protein of the present invention is produced and accumulated in the culture, and collected from the culture to obtain the full-length or partial fragment of human VEGF as it is or as it is. It can be produced as a fusion protein. The above-described method of culturing the transformant in a medium is performed by the usual method used for culturing a host. It is done according to the method.
大腸菌あるいは酵母等の微生物を宿主として得られた形質転換体を培養する 培地としては、 微生物が資化し得る炭素源、 窒素源、 無機塩類等を含有し、 形 質転換体の培養を効率的に行える培地であれば天然培地、 合成培地のいずれを 用いてもよい (モレキュラー 'クローニング 第 2版) 。 培養は、 通常振盪培 養または深部通気攪拌培養などの好気的条件下、 1 5〜40°Cで 1 6〜96時 間行う。 培養期間中、 pHは 3. 0〜9. 0に保持する。 pHの調整は、 無機 または有機の酸、 アルカリ溶液、 尿素、 炭酸カルシウム、 アンモニアなどを用 いて行う。 培養中は必要に応じて、 アンピシリンやテトラサイクリン等の抗生 物質を培地に添加してもよい。  A culture medium for culturing a transformant obtained by using a microorganism such as Escherichia coli or yeast as a host contains a carbon source, a nitrogen source, inorganic salts, and the like that can be used by the microorganism to efficiently culture the transformant. Either a natural medium or a synthetic medium can be used as long as it can be used (Molecular 'Cloning 2nd edition). Cultivation is usually carried out at 15 to 40 ° C for 16 to 96 hours under aerobic conditions such as shaking culture or deep aeration stirring culture. During the culture period, the pH is maintained at 3.0-9.0. The pH is adjusted using inorganic or organic acids, alkaline solutions, urea, calcium carbonate, ammonia and the like. During the culture, an antibiotic such as ampicillin or tetracycline may be added to the medium as needed.
動物細胞を宿主として得られた形質転換体を培養する培地としては、 一般に 使用されている RPM 1 1640培地、 E a g 1 eの MEM培地またはこれら 培地に牛胎児血清等を添加した培地等が用いられる。 培養は、 通常 5%C〇2存 在下、 35〜37°Cで 3〜7日間行い、 培養中は必要に応じて、 カナマイシン、 ベニシリン等の抗生物質を培地に添加してもよい。 As a medium for culturing the transformant obtained using animal cells as a host, commonly used RPM11640 medium, Eag1e MEM medium, or a medium obtained by adding fetal calf serum or the like to such a medium can be used. Can be Cultivation is usually performed at 35 to 37 ° C. for 3 to 7 days in the presence of 5% C 2, and if necessary, antibiotics such as kanamycin and benicillin may be added to the medium during the cultivation.
昆虫細胞を宿主として得られた形質転換体を培養する培地としては、 一般に 使用されている TNM- 培地 [ファーミンジェン(Ph arm i ngen)社製]、 S f 90011 SFM [ライフテクノロジ一ズ (Life Technologies) 社製] 、 ExCelHOO 、 ExCell405 [いずれも JRHバイオサイエンシーズ (JRH Biosciences) 社製] 等が用いられ る。 培養は、 25〜3 (TCで 1〜4日間行い、 培養中は必要に応じて、 ゲン夕マ イシン等の抗生物質を培地に添加してもよい。  As a medium for culturing a transformant obtained by using an insect cell as a host, commonly used TNM-medium [Pharmingen], Sf90011 SFM [Life Technologies ( Life Technologies), ExCelHOO, ExCell405 [all manufactured by JRH Biosciences] and the like. The culture is performed for 25 to 3 days (TC for 1 to 4 days). During the culture, an antibiotic such as mycin mycin may be added to the medium as needed.
上記において、 動物細胞および昆虫細胞の培地に血清を添加していない培地 で培養が可能な場合には、 ヒト VEGFの全長あるいは部分断片をそのままあるい は融合蛋白質の精製が容易になるため、 血清無添加の培地を用いることが好ま しい。  In the above, when culture can be performed in a medium without serum added to the medium of animal cells and insect cells, the full-length or partial fragment of human VEGF can be used as it is or the fusion protein can be easily purified. It is preferable to use a culture medium without addition.
ヒト VEGFの全長あるいは部分断片をそのままあるいは融合蛋白質として宿主 細胞内に蓄積された場合には、 培養終了後、 細胞を遠心分離し、 細胞を取得す る。 該細胞を、 水系緩衝液にけん濁後、 超音波法、 フレンチプレス法などによ り細胞を破砕する。 得られた細胞破碎液を遠心分離し、 上清より該蛋白質を回 収する。 Human VEGF full length or partial fragment as it is or as fusion protein host If it accumulates in the cells, after the culture is completed, centrifuge the cells to obtain the cells. After suspending the cells in an aqueous buffer, the cells are disrupted by an ultrasonic method, a French press method or the like. The obtained cell lysate is centrifuged, and the protein is recovered from the supernatant.
細胞内にヒト VEGFの不溶体を形成した場合には、 不溶体を蛋白質変性剤で可 溶化後、 蛋白質変性剤を含まないあるいは蛋白質変性剤の濃度が蛋白質が変性 しない程度に希薄な溶液に希釈、 或いは透析し、 蛋白質の立体構造を形成させ ることができる。  When an insoluble form of human VEGF is formed in cells, the insoluble form is solubilized with a protein denaturant, and then diluted to a solution that does not contain the protein denaturant or is diluted to such a concentration that the protein denaturant does not denature the protein Alternatively, the protein can be dialyzed to form a three-dimensional structure of the protein.
ヒト VEGFの全長あるいは部分断片がそのままあるいは融合蛋白質として細胞 外に分泌された場合には、 培養上清中に発現蛋白質を回収することができる。 単離精製については、 溶媒抽出、 有機溶媒による分別沈殿、 塩析、 透析、 遠 心分離、 限外ろ過、 イオン交換クロマトグラフィー、 ゲルろ過クロマトグラフ ィー、 疎水性クロマトグラフィー、 ァフィ二ティークロマトグラフィー、 逆相 クロマトグラフィー、 結晶化、 電気泳動などの分離操作を単独あるいは組み合 わせて行うことができる。  When the full length or partial fragment of human VEGF is secreted extracellularly as it is or as a fusion protein, the expressed protein can be recovered in the culture supernatant. For isolation and purification, solvent extraction, fractional precipitation with organic solvents, salting out, dialysis, centrifugal separation, ultrafiltration, ion exchange chromatography, gel filtration chromatography, hydrophobic chromatography, affinity chromatography Separation operations such as reverse phase chromatography, crystallization, and electrophoresis can be performed alone or in combination.
ヒト VEGFの部分配列を有するポリペプチドは、 Fmoc法 (フルォレニルメチル ォキシカルボニル法) 、 tBoc法 (t-ブチルォキシカルポニル法) 等の化学合成 法によっても製造することができる。 また、 桑和貿易 (米国 Advanced chemTech 社製) 、 パーキンエルマ一ジャパン (米国 Perkin-Elmer社製) 、 ァロカ (米国 Pro tein Technol ogy Ins t rument社製) 、 クラボウ (米国 Synthecel卜 Vega社製 ) 、 日本パーセプティブ, リミテッド (米国 PerSept ive社製) 、 島津製作所等 のペプチド合成機を用いても製造することができる。  A polypeptide having a partial sequence of human VEGF can also be produced by a chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the tBoc method (t-butyloxycarponyl method). Also, Kuwawa Trading (US Advanced ChemTech), Perkin-Elmer Japan (US Perkin-Elmer), Aroka (US Protein Technology Instrument), Kurabo (US Synthecel Vega), It can also be produced using a peptide synthesizer such as Nippon Perceptive, Limited (US PerSeptive) or Shimadzu Corporation.
免疫に用いる動物としては、 マウス、 ラット、 ハムスター、 ラビットなどの 非ヒト動物であり、 ハイプリドーマを作製することが可能であれば、 いかなる ものでもよい。 該非ヒト動物に、 上記で得られた該蛋白質を抗原として免疫し、 その動物の脾、 リンパ節、 末梢血より抗体産生細胞を採取する。 免疫する方法 としては、 動物の皮下、 静脈内または腹腔内に抗原をそのまま投与してもよい が、 抗原性の高いキャリア蛋白質を結合させて投与したり、 あるいは適当なァ ジュバン卜とともに抗原を投与することが好ましい。 キヤリァ蛋白質としては、 スカシガイへモシァニン、 キーホールリンペットへモシァニン、 牛血清アルブ ミン、 牛チログロブリン等があげられ、 アジュバンドとしては、 フロインドの 完全アジュバント(Co即 lete Freund' s Adjuvant), 水酸化アルミニウムゲルと 百日咳菌ワクチン等があげられる。 Animals used for immunization are non-human animals such as mice, rats, hamsters, and rabbits, and any animal can be used as long as hybridomas can be produced. The non-human animal is immunized with the protein obtained above as an antigen, and antibody-producing cells are collected from spleen, lymph nodes, and peripheral blood of the animal. How to immunize May be administered subcutaneously, intravenously or intraperitoneally to an animal, but it is preferable to administer the antigen by binding a carrier protein with high antigenicity, or to administer the antigen together with an appropriate adjuvant. . Carrier proteins include keyhole limpet hemosinin, keyhole limpet hemosinin, bovine serum albumin, bovine thyroglobulin, etc. Adjuvants include Freund's complete adjuvant (Co immediately lete Freund's Adjuvant), hydroxylation Aluminum gel and B. pertussis vaccine.
抗原の投与は、 1回目の投与の後、 1〜2週間毎に 3〜10回行う。 各投与 後 3〜7日目に免疫動物の眼底静脈叢あるいは尾静脈より採血し、 該血清の抗原 との反応性について、酵素免疫測定法などで確認し [酵素免疫測定法(ELISA法 ) :医学書院刊 (1976年) ] 、 該血清が十分な抗体価を示した免疫動物を 抗体産生細胞の供給源とする。 抗原の最終投与後 3 〜7日目に、 免疫動物より公 知の方法 [アンティポディーズ ·ァ ·ラボラトリー ·マニュアル、 コ一ルド · スプリングハーバー ·ラボラトリー (Antibodies- A Laboratory Manual Cold Spring Harbor Laboratory, 1988) 、 以下、 アンチポディーズ.ァ .ラボラト リ一 ·マニュアルと記す] に準じてリンパ球を摘出し、 リンパ球と骨髄腫細胞 とを融合させる。  The antigen is administered 3 to 10 times every 1 to 2 weeks after the first administration. Blood is collected from the fundus venous plexus or tail vein of the immunized animal 3 to 7 days after each administration, and the reactivity of the serum with the antigen is confirmed by an enzyme immunoassay or the like. [Enzyme immunoassay (ELISA)]: Published by the Medical Shoin (1976)], an immunized animal whose serum shows a sufficient antibody titer is used as a source of antibody-producing cells. Three to seven days after the last administration of the antigen, a method known from the immunized animal [Antibodies-A Laboratory Manual, Cold Spring Harbor Laboratory Manual, Cold Spring Harbor Laboratory, 1988 In the following, lymphocytes are excised and fused with lymphocytes and myeloma cells in accordance with the Antipodes. Laboratory Manual.
骨髄腫細胞としては、 マウスから得られた株化細胞である、 8-ァザグァニン 耐性マウス (BALB/c由来) 骨髄腫細胞株 P3- X63Ag8-Ul (P3- Ul) [G. Kohlerら; ョ一口ピアン ·ジャーナル ·ォブ ·ィムノロジィ(Europ. J. Immunol. ), 6, 511 (1976)],SP2/0-Agl4(SP-2) [M. Shulmanら;ネイチヤー(Nature), 276, 269 (1978) ] 、 P3-X63-Ag8653 (653) [J. F. Kearneyら;ジャーナル'ォブ.ィムノロジィ (J. I讓麵 1.), 123, 1548 (1979)] 、 P3-X63-Ag8 (X63) [G. Kohlerら;ネイチ ャ一(Nature), 256, 495 (1975)] など、 イン ·ビトロ (in vitro) で増殖可能 な骨髄腫細胞であればいかなるものでもよい。 これらの細胞株の培養および継 代については公知の方法 (アンチポディーズ ·ァ ·ラボラトリー .マニュアル ) に従い、 細胞融合時までに 2 X 1 07個以上の細胞数を確保する。 As myeloma cells, 8-azaguanine-resistant mice (derived from BALB / c) myeloma cell line P3-X63Ag8-Ul (P3-Ul), a cell line obtained from mice [G. Kohler et al. Pian Journal of Immunology (Europ. J. Immunol.), 6, 511 (1976)], SP2 / 0-Agl4 (SP-2) [M. Shulman et al .; Nature, 276, 269 ( 1978)], P3-X63-Ag8653 (653) [JF Kearney et al., Journal of Obiminology (J. I. 麵 1.), 123, 1548 (1979)], P3-X63-Ag8 (X63) [ G. Kohler et al., Nature, 256, 495 (1975)], and any other myeloma cells that can grow in vitro. Culture and passage of these cell lines are performed by known methods (antipodes laboratory manual. ) According to ensure 2 X 1 0 7 or more cell numbers until cell fusion.
上記で得られた抗体産生細胞と骨髄腫細胞とを洗浄したのち、  After washing the antibody-producing cells and myeloma cells obtained above,
グライコ一ルー 1000 (PEG- 1000)などの細胞凝集性媒体を加え、 細胞を融合させ、 培地中に懸濁させる。 細胞の洗浄には M E M培地または P B S (リン酸ニナ卜 リゥム 1. 83g、 リン酸一力リゥム 0. 21g 、食塩 7. 65g 、蒸留水 1 リットル、 H7. 2 ) などを用いる。 また、 融合細胞を懸濁させる培地としては、 目的の融合細胞 のみを選択的に得られるように、 HAT 培地 {正常培地 [RPMI- 1640 培地にダル 夕ミン(1. 5 Μ) 、 2-メルカプトエタノール(5 X 10— 5M ) 、 ジェン夕マイシン(10 g/ml) および牛胎児血清 (FCS) (CSL 社製、 10%) を加えた培地] にヒポキサ ンチン (10—4M ) 、 チミジン (1. 5 X 10—5M ) およびアミノプテリン (4X 10—7M ) を加えた培地) を用いる。 Add a cell-aggregating medium such as Glyco-Rue 1000 (PEG-1000) to fuse the cells and suspend them in the medium. For washing the cells, use MEM medium or PBS (1.83 g of sodium phosphate phosphate, 0.21 g of phosphate monophosphate, 7.65 g of salt, 1 liter of distilled water, H7.2) or the like. In addition, as a medium for suspending the fused cells, a HAT medium (normal medium [Dalmin (1.5 に), 2-mercapto) in RPMI-1640 medium, so that only the desired fused cells can be selectively obtained. ethanol (5 X 10- 5 M), Jen evening mycin (10 g / ml) and fetal calf serum (FCS) (CSL Ltd., 10%) Hipokisa Nchin the added medium] (10- 4 M), thymidine (1. 5 X 10- 5 M) and aminopterin (4X 10- 7 M) was added medium) is used.
培養後、 培養上清の一部をとり、 以下の酵素免疫測定法により、 抗原蛋白質 に反応し、 非抗原蛋白質に反応しないサンプルを選択する。 ついで、 限界希釈 法によりクローニングを行い、 酵素免疫測定法により安定して高い抗体価の認 められたものをモノクローナル抗体産生ハイプリドーマ株として選択する。  After the culture, a part of the culture supernatant is taken, and a sample that reacts with the antigen protein and does not react with the non-antigen protein is selected by the following enzyme immunoassay. Next, cloning is performed by the limiting dilution method, and those with a stable and high antibody titer determined by enzyme immunoassay are selected as monoclonal antibody-producing hybridoma strains.
酵素免疫測定法  Enzyme immunoassay
抗原蛋白質あるいは抗原蛋白質を発現した細胞などをプレートにコートし、 抗血精、 ハイプリドーマ培養上清もしくは上述の方法で得られる精製抗体を第 一抗体として反応させ、 さらに第二抗体としてピオチン、 酵素、 化学発光物質 あるいは放射線化合物等で標識した第一抗体の動物種に対するィムノグロプリ ン抗体を反応させた後に標識物質に応じた反応を行ない、 抗原に特異的に反応 するものをモノクローナル抗体を生産するハイプリドーマとして選択する。 本発明のハイプリドーマ株の具体例としては、 ハイプリドーマ株 KM1544およ び KM1548が挙げられる。 ハイプリドーマ株 K 1544および KM1548は、 平成 10年 10 月 27日付で、 それぞれ工業技術院生命工学工業技術研究所 (日本国茨城県つく ば巿東 1丁目 1番 3号) に、 FERM BP-6555、 FERM BP-6556として寄託されてい る。 The antigen protein or cells expressing the antigen protein are coated on a plate, and the antiserum, hybridoma culture supernatant or the purified antibody obtained by the above method is reacted as the first antibody, and the second antibody is biotin, an enzyme. After reacting the immunoglobulin antibody against the animal species of the primary antibody labeled with a chemiluminescent substance or a radioactive compound, a reaction corresponding to the labeling substance is performed, and a monoclonal antibody that specifically reacts with the antigen is produced. Select as dormer. Specific examples of the hybridoma strain of the present invention include the hybridoma strains KM1544 and KM1548. The Hypridoma strains K1544 and KM1548 were registered on October 27, 1998 with the Institute of Biotechnology and Industrial Technology, Institute of Bio-Science and Technology (1-1-3 Tsukuba-Higashi, Ibaraki, Japan) and FERM BP-6555, respectively. Has been deposited as FERM BP-6556 You.
モノクローナル抗体は、 八イブリドーマ細胞を培養して得られる培養液、 ま たはプリスタン処理 〔2, 6, 10 4 -テ卜ラメチルペン夕デカン(Pr is tane) O. 5ml を 腹腔内投与し、 2 週間飼育する〕 した 8〜10週令のマウスまたはヌードマウスに 、 モノクローナル抗体産生ハイプリドーマ細胞を腹腔内投与して腹水癌化させ た腹水から、 分離、 精製することにより調製できる。  Monoclonal antibodies were obtained by intraperitoneal administration of 5 ml of a culture solution obtained by culturing eight hybridoma cells or treated with pristane [2,6,104-tetratetramethylpentane (Pristane) O. 5 ml. The monoclonal antibody-producing hybridoma cells are intraperitoneally administered to the mouse or nude mouse of 8 to 10 weeks of age, and then separated and purified from ascites caused by ascites tumor.
モノクロ一ナル抗体を分離、 精製する方法としては、 遠心分離、 40〜50% 飽 和硫酸アンモニゥムによる塩析、 力プリル酸沈殿法、 DEAE-セファロースカラム 、 陰イオン交換カラム、 プロテイン Aまたは G- カラムあるいはゲル濾過カラ ム等を用いるクロマトグラフィー等を、 単独または組み合わせて行う方法があ げられる。 この方法により、 IgG あるいは IgM 画分を回収し、 精製モノクロ一 ナル抗体を取得することができる。  Methods for separating and purifying monoclonal antibodies include centrifugation, salting out with 40-50% ammonium sulfate, caprylic acid precipitation, DEAE-Sepharose column, anion exchange column, and protein A or G-column. Alternatively, there is a method in which chromatography using a gel filtration column or the like is performed alone or in combination. By this method, an IgG or IgM fraction can be collected to obtain a purified monoclonal antibody.
精製モノクローナル抗体のサブクラスの決定は、 モノクローナル抗体タイピ ングキットなどを用いて行うことができる。 蛋白質量は、 ローリー法あるいは 280nm での吸光度より算出することができる。  The subclass of the purified monoclonal antibody can be determined using a monoclonal antibody typing kit or the like. The protein content can be calculated by the Lowry method or from the absorbance at 280 nm.
抗体のサブクラスとは、 クラス内のアイソタイプのことで、 マウスでは、 IgGl 、 IgG 、 IgG2b 、 IgG3、 ヒトでは、 IgGl、 IgG2、 IgG3、 IgG4があげられるが、 特にマウス IgGl、 IgG2a 、 ヒト IgGlタイプは、 補体依存性細胞傷害活性 (以下、 CDC活性) および抗体依存性細胞傷害活性 (以下、 ADCC活性) を有し、 治療への 応用上、 有用である。  Antibody subclasses refer to isotypes within a class, including IgGl, IgG, IgG2b, and IgG3 in mice and IgGl, IgG2, IgG3, and IgG4 in humans, and particularly mouse IgGl, IgG2a, and human IgGl types. It has complement-dependent cytotoxic activity (hereinafter referred to as CDC activity) and antibody-dependent cytotoxic activity (hereinafter referred to as ADCC activity), and is useful for therapeutic applications.
また、 本発明は、 本発明のモノクローナル抗体を用いて、 ヒト VEGFを免疫学 的に検出および定量する方法に関する。  The present invention also relates to a method for immunologically detecting and quantifying human VEGF using the monoclonal antibody of the present invention.
本発明のモノクローナル抗体またはその抗体断片を用いて、 ヒ卜 VEGFを免疫 学的に検出および定量する方法としては、 蛍光抗体法、 免疫酵素抗体法 (ELISA ) 、 放射性物質標識免疫抗体法 (RIA) 、 免疫組織染色法、 免疫細胞染色法など の免疫組織化学染色法 (ABC法、 CSA法等) 、 ウェスタンブロッテイング法、 免 疫沈降法、 上記に記した酵素免疫測定法、 サンドイッチ ELISA法 [単クローン抗 体実験マニュアル (講談社サイエンティフィック、 1 9 8 7年) 、 続生化学実 験講座 5 免疫生化学研究法 (東京化学同人、 1 9 8 6年) ] 等をあげること ができる。 Methods for immunologically detecting and quantifying human VEGF using the monoclonal antibody or the antibody fragment thereof of the present invention include a fluorescent antibody method, an immunoenzymatic antibody method (ELISA), and a radioactive substance labeled immunological antibody method (RIA). , Immunohistochemical staining, immunohistochemical staining such as immunocytostaining (ABC, CSA, etc.), Western blotting, Epidemiological sedimentation method, enzyme immunoassay method described above, sandwich ELISA method [Monoclonal Antibody Experiment Manual (Kodansha Scientific, 1987), Seismic Chemistry Laboratory Course 5 Immunobiochemical Research Method (Tokyo, Japan) Chemistry Doujinshi, 1986).
蛍光抗体法とは、 分離した細胞あるいは組織などに、 本発明のモノクローナ ル抗体またはその抗体断片を反応させ、 さらにフルォレシン ·イソチオシァネ ート(FITC)などの蛍光物質でラベルした抗ィムノグロプリン抗体あるいは結合 断片を反応させた後、 蛍光色素をフローサイトメ一ターで測定する方法である。 免疫酵素抗体法 (EL ISA)とは、 分離した、 細胞あるいはその破砕液、 組織ある いはその破砕液、 細胞培養上清、 血清、 胸水、 腹水、 眼液などに、 本発明のモ ノクローナル抗体またはその抗体断片させ、 さらにペルォキシダーゼ、 ビォチ ンなどの酵素標識などを施した抗ィムノグロブリン抗体あるいは結合断片を反 応させた後、 発色色素を吸光  The fluorescent antibody method is a reaction of the monoclonal antibody of the present invention or an antibody fragment thereof with isolated cells or tissues, and further, an anti-immunoglobulin antibody or a binding antibody labeled with a fluorescent substance such as fluorescin / isothiosinate (FITC). After reacting the fragments, a fluorescent dye is measured by a flow cytometer. The immunoenzymatic antibody method (ELISA) refers to the monoclonal antibody of the present invention isolated on cells or its lysate, tissue or its lysate, cell culture supernatant, serum, pleural effusion, ascites, eye fluid, etc. Alternatively, the antibody fragment is reacted with an anti-immunoglobulin antibody or binding fragment that has been labeled with an enzyme such as peroxidase or biotin, and then the colored dye is absorbed.
光度計で測定する方法である。 This is a method of measuring with a photometer.
放射性物質標識免疫抗体法 (RIA)とは、 分離した、 細胞あるいはその破砕液、 組織あるいはその破砕液、 細胞培養上清、 血清、 胸水、 腹水、 眼液などに、 本 発明のモノク口一ナル抗体またはその抗体断片を反応させ、 さらに放射線標識 を施した抗ィムノグロプリン抗体あるいは結合断片を反応させた後、 シンチレ ーションカウン夕一などで測定する方法である。  The radioactive substance-labeled immunoassay (RIA) refers to the isolated cells or their lysates, tissues or their lysates, cell culture supernatants, serum, pleural effusion, ascites, eye fluids, etc. This is a method in which an antibody or an antibody fragment thereof is reacted, and further reacted with a radiolabeled anti-immunoglobulin antibody or a binding fragment, followed by measurement using a scintillation counter or the like.
免疫細胞染色法、 免疫組織染色法とは、 分離した、 細胞あるいは組織などに、 本発明のモノクローナル抗体またはその抗体断片を反応させ、 さらにフルォレ シン ·イソチオシァネート (FITC) などの蛍光物質、 ペルォキシダーゼ、 ピオ チンなどの酵素標識を施した抗ィムノグロブリン抗体あるいは結合断片を反応 させた後、 顕微鏡を用いて観察する方法である。  The immune cell staining method and the immunohistochemical staining method are as follows: the isolated cells or tissues are reacted with the monoclonal antibody of the present invention or an antibody fragment thereof, and further, a fluorescent substance such as fluorescin / isothiocyanate (FITC); This is a method in which an anti-immunoglobulin antibody or a binding fragment labeled with an enzyme such as peroxidase or biotin is reacted, and then observed using a microscope.
ウエスタンプロッティング法は、 生体内から分離された細胞またはその破砕 液、 組織またはその破砕液、 細胞培養上清、 血清などを SDS-ポリアクリルアミ ドゲル電気、泳動 [ An t ibod i es— A Labora tory Manual, Co l d Spr ing Harbor Laboratory, 1988] で分画した後、 該ゲルを PVDF膜あるいはニトロセルロース 膜にプロッティングし、 該膜に本発明のモノクロ一ナル抗体またはその抗体断 片を反応させ、 さらに FITCなどの蛍光物質、 ペルォキシダーゼ、 ピオチンなど の酵素標識を施した抗マウス IgG抗体あるいは結合断片を反応させた後、 確認 する。 The Western plotting method is based on SDS-polyacrylamide of cells or their lysates, tissues or their lysates, cell culture supernatants, serum, etc. After fractionation by gel electrophoresis and electrophoresis [Antibodies—A Laboratry Manual, Cold Spring Harbor Laboratory, 1988], the gel was plotted on a PVDF membrane or a nitrocellulose membrane, and the present invention was applied to the membrane. The monoclonal antibody or its fragment is reacted, and further reacted with a fluorescent substance such as FITC, an anti-mouse IgG antibody or a binding fragment labeled with an enzyme such as peroxidase or biotin, and then checked.
免疫沈降法とは、 生体内から分離された細胞またはその破碎液、 組織または その破砕液、 細胞培養上清、 血清などを本発明のモノクローナル抗体またはそ の抗体断片と反応させた後、 プロテイン G-セファロ一ス等のィムノグロブリン に特異的な結合能を有する担体を加えて抗原抗体複合体を沈降させるものであ る。  The immunoprecipitation method refers to a method of reacting a cell or its disrupted solution, a tissue or its disrupted solution, a cell culture supernatant, a serum, or the like, separated from a living body with a monoclonal antibody or an antibody fragment thereof of the present invention, followed by protein G -An antigen-antibody complex is precipitated by adding a carrier having specific binding ability to immunoglobulin such as Sepharose.
サンドイッチ ELI SA法とは、 本発明のモノクローナル抗体またはその抗体断 片で、 抗原認識部位の異なる 2種類のモノクローナル抗体のうち、 あらかじめ 一方のモノクローナル抗体または抗体断片はプレートに吸着させ、 もう一方の モノクローナル抗体または抗体断片は FITCなどの蛍光物質、 ペルォキシダーゼ、 ピオチンなどの酵素で標識しておく。 抗体吸着プレートに、 生体内から分離さ れた細胞またはその破砕液、 組織またはその破砕液、 細胞培養上清、 血清など を反応後、 標識したモノクローナル抗体またはその抗体断片を反応させ、 標識 物質に応じた反応を行う方法である。  The sandwich ELISA method is a monoclonal antibody or an antibody fragment thereof of the present invention. Of two types of monoclonal antibodies having different antigen recognition sites, one of the monoclonal antibodies or antibody fragments is adsorbed on a plate in advance, and the other is monoclonal. Antibodies or antibody fragments should be labeled with a fluorescent substance such as FITC or an enzyme such as peroxidase or biotin. After reacting the antibody-adsorbed plate with cells or its lysate, tissue or its lysate, cell culture supernatant, serum, etc., separated from the living body, react the labeled monoclonal antibody or its antibody fragment with the labeled substance. This is a method for performing a corresponding reaction.
また、 固形腫瘍の増殖もしくは転移形成に基づく疾患、 異常な血管新生によ り病態が進行する疾患の診断方法としては、 被験者の細胞あるいは組織に存在 するヒト VEGFを、 上述した免疫学的に検出または定量する方法があげられる。 また、 本発明のモノクローナル抗体またはその抗体断片は、 固形腫瘍の増殖も しくは転移形成に基づく疾患、 異常な血管新生により病態が進行する疾患の診 断薬として用いることができる。  In addition, as a method for diagnosing a disease based on the growth or metastasis of a solid tumor or a disease progressing due to abnormal angiogenesis, human VEGF present in cells or tissues of a subject is detected by immunological detection as described above. Alternatively, a quantification method may be used. In addition, the monoclonal antibody or the antibody fragment thereof of the present invention can be used as a diagnostic drug for a disease based on the growth or metastasis of a solid tumor, or a disease in which the disease state progresses due to abnormal angiogenesis.
また、 ヒ卜 VEGFとヒト VEGF受容体 KDRとの結合の阻害活性およびヒ卜 VEGFと VEGF受容体 F i t- 1との結合の阻害活性は、 増殖因子と受容体の結合測定法 生 化学実験講座 7 増殖分化因子とその受容体 (東京化学同人、 1 9 9 1年) ] 等の方法に準じて、 モノクローナル抗体を用いた VEGF-VEGF受容体 KDR結合阻害 試験、 VEGF-VEGF受容体 F i t- 1結合阻害試験を行うことにより確認することがで さる。 In addition, the activity of inhibiting the binding of human VEGF to human VEGF receptor KDR and the activity of human VEGF The activity of inhibiting the binding of VEGF receptor Fit-1 can be determined by measuring the binding between growth factors and receptors. Biochemistry Laboratory Course 7 Growth differentiation factors and their receptors (Tokyo Kagaku Dojin, 1991)] It can be confirmed by performing a VEGF-VEGF receptor KDR binding inhibition test and a VEGF-VEGF receptor Fit-1 binding inhibition test using a monoclonal antibody according to the method described in (1).
すなわち、 F l t-1または KDRを発現している細胞あるいは組織に放射性物質等 を標識した VEGFを反応させ、 F 1 1 - 1または KDR発現細胞あるいは組織に結合した VEGFをシンチレーシヨンカウンターなどで測定する方法である。 放射性物質等 を標識した VEGFと同時に本発明の抗体を反応させることで、 放射性物質等を標 識した VEGFが F l t-1または KDRに結合するのを阻害する活性を測定することが可 能である。  That is, cells or tissues expressing Flt-1 or KDR are reacted with VEGF labeled with a radioactive substance, and VEGF bound to cells or tissues expressing F11-1 or KDR is treated with a scintillation counter or the like. It is a method of measuring. By reacting the antibody of the present invention simultaneously with VEGF labeled with a radioactive substance, the activity of inhibiting the binding of VEGF labeled with a radioactive substance to Flt-1 or KDR can be measured. It is.
VEGF受容体 KDRおよび VEGF受容体 F i t- 1の自己リン酸化阻害活性は、 増殖因子 受容体の自己リン酸化測定法 [続生化学実験講座 情報伝達と細胞応答 (東京 化学同人、 1 9 8 6年) ] 等の方法に準じて、 モノクローナル抗体を用いた、 VEGF-VEGF受容体 KDRおよび VEGF-VEGF受容体 F l t-1の自己リン酸化阻害試験を行 うことにより確認することができる。  The autophosphorylation inhibitory activity of VEGF receptor KDR and VEGF receptor Fit-1 is measured by the method of measuring the autophosphorylation of growth factor receptor [Sequence Chemistry Laboratory Lecture Information transmission and cellular response (Tokyo Chemical Dojin, 1998 6 years)], and can be confirmed by performing an autophosphorylation inhibition test of VEGF-VEGF receptor KDR and VEGF-VEGF receptor Flt-1 using monoclonal antibodies .
すなわち、 F l t-1または KDRを発現している細胞あるいは組織に VEGFを反応さ せ、 VEGFが結合することで亢進する F U-1または KDRの自己リン酸化を免疫沈降 法およびウエスタンブロット法などで検出する方法である。 VEGFと同時に本発 明の抗体を反応させることで、 VEGFが結合することにより亢進される F l t-1また は KDRの自己リン酸化を阻害する活性を測定することが可能である。  That is, VEGF is reacted with cells or tissues expressing Flt-1 or KDR, and the autophosphorylation of FU-1 or KDR, which is enhanced by the binding of VEGF, is immunoprecipitated and Western blotted. It is a method to detect by such as. By reacting the antibody of the present invention simultaneously with VEGF, it is possible to measure the activity of inhibiting the autophosphorylation of Flt-1 or KDR, which is enhanced by the binding of VEGF.
ヒ卜 VEGFの生物活性の阻害活性は、 VEGF依存的な血管内皮細胞の増殖、 遊走、 およびチューブ形成試験 万生化学実験講座 1 0 血管 (内皮と平滑筋) (東 京化学同人、 1 9 9 1年) ] を行うことにより確認することができる。  The inhibitory activity of the biological activity of human VEGF on VEGF-dependent vascular endothelial cell proliferation, migration, and tube formation test. 10 Biochemical Experiment Lectures 10 Blood vessels (endothelium and smooth muscle) (Tokyo Kagaku Dojin, 1992 1 year)].
VEGF依存的な血管内皮細胞の増殖試験とは、 血管内皮細胞に VEGFを反応させ、 VEGFが結合することで亢進する血管内皮細胞の増殖促進活性を細胞数を測定す る方法である。 VEGFと同時に本発明の抗体を反応させることで、 VEGFにより亢 進する血管内皮細胞の増殖促進活性を阻害する活性を測定することが可能であ る。 The VEGF-dependent vascular endothelial cell proliferation test is performed by reacting vascular endothelial cells with VEGF and measuring the number of vascular endothelial cell growth-promoting activities that are enhanced by the binding of VEGF. It is a method. By reacting the antibody of the present invention simultaneously with VEGF, it is possible to measure the activity of inhibiting the growth promoting activity of vascular endothelial cells promoted by VEGF.
VEGF依存的な血管内皮細胞の遊走試験とは、 血管内皮細胞に VEGFを反応させ、 VEGFが結合することで亢進する血管内皮細胞の遊走促進活性を顕微鏡を用いて 観察する方法である。 VEGFと同時に本発明の抗体を反応させることで、 VEGFに より亢進する血管内皮細胞の遊走促進活性を阻害する活性を測定することが可 能である。  The VEGF-dependent migration test of vascular endothelial cells is a method in which VEGF is reacted with vascular endothelial cells, and the activity of promoting migration of vascular endothelial cells, which is enhanced by binding of VEGF, is observed using a microscope. By reacting the antibody of the present invention simultaneously with VEGF, it is possible to measure the activity of inhibiting the migration promoting activity of vascular endothelial cells enhanced by VEGF.
VEGF依存的な血管内皮細胞のチューブ形成試験とは、 血管内皮細胞に VEGFを 反応させ、 VEGFが結合することで亢進する血管内皮細胞のチューブ形成促進活 性を顕微鏡を用いて観察する方法である。 VEGFと同時に本発明の抗体を反応さ せることで、 VEGFにより亢進する血管内皮細胞のチューブ形成促進活性を阻害 する活性を測定することが可能である。  The VEGF-dependent tube formation test of vascular endothelial cells is a method in which VEGF is reacted with vascular endothelial cells and the activity of promoting tube formation of vascular endothelial cells, which is enhanced by the binding of VEGF, is observed using a microscope. . By reacting the antibody of the present invention simultaneously with VEGF, it is possible to measure the activity of inhibiting the tube formation promoting activity of vascular endothelial cells enhanced by VEGF.
また、 本発明のモノクローナル抗体は、 上述のように VEGFの 2種類の受容体 KDR及び Fi t- 1 に結合することを阻害することにより、 KDR及び F i t- 1 の機能を 阻害し、 さらに、 ヒト VEGFの多彩な生物活性を阻害できるため、 過剰な VEGFに より誘導される固形腫瘍の増殖もしくは転移形成に基づく疾患、 異常な血管新 生により病態が進行する疾患の治療薬として用いることができる。  Further, the monoclonal antibody of the present invention inhibits the functions of KDR and Fit-1 by inhibiting the binding of VEGF to two kinds of receptors, KDR and Fit-1, as described above. Since it can inhibit the various biological activities of human VEGF, it can be used as a therapeutic agent for diseases based on the growth or metastasis of solid tumors induced by excessive VEGF, or diseases in which the disease progresses due to abnormal vascular growth. it can.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 i図 ヒト VEGFモノクローナル抗体のヒ卜 VEGFへの結合活性を解析した結 果を示す。 FIG. I shows the results of analyzing the binding activity of human VEGF monoclonal antibody to human VEGF.
第 2図 ヒト VEGFモノクローナル抗体のヒト VEGFへの結合活性を解析した結 果を示す。 FIG. 2 shows the result of analyzing the binding activity of human VEGF monoclonal antibody to human VEGF.
第 3図 ヒ卜 VEGFモノクローナル抗体のヒト VEGFへの結合活性を解析した結 果を示す。 FIG. 3 shows the results of analyzing the binding activity of human VEGF monoclonal antibody to human VEGF.
第 4図 ヒト VEGFモノク口一ナル抗体を用いたヒト VEGFの定量系を検討した 結果を示す。 Fig. 4 Study of human VEGF quantification system using human VEGF monoclonal antibody The results are shown.
第 5図 ヒト VEGFモノクローナル抗体による VEGFと可溶性 VEGF受容体 KDRお よび可溶性 VEGF受容体 F1卜 1の結合阻害効果を解析した結果を示す。 FIG. 5 shows the results of analyzing the binding inhibitory effect of human VEGF monoclonal antibody between VEGF and soluble VEGF receptor KDR and soluble VEGF receptor F1 tol.
第 6図 ヒト VEGFモノクローナル抗体による KDR自己リン酸化阻害効果およ び Fit- 1自己リン酸化阻害効果を検討した結果を示す。 FIG. 6 shows the results of examining the KDR autophosphorylation inhibitory effect and the Fit-1 autophosphorylation inhibitory effect of a human VEGF monoclonal antibody.
第 7図 ヒ卜 VEGFモノクローナル抗体による VEGF依存的な血管内皮細胞の増 殖阻害活性を検討した結果を示す。 FIG. 7 shows the results of examining VEGF-dependent vascular endothelial cell growth inhibitory activity of human VEGF monoclonal antibodies.
第 8図 ヒト VEGFモノクローナル抗体による in vivo抗腫瘍効果を検討した 結果を示す。 FIG. 8 shows the results of examining the in vivo antitumor effect of the human VEGF monoclonal antibody.
第 9図 ヒト VEGFモノクローナル抗体による in vivo抗腫瘍効果を検討した 結果を示す。 FIG. 9 shows the results of examining the in vivo antitumor effect of the human VEGF monoclonal antibody.
第 10図 ヒト VEGFモノクローナル抗体による in vivo抗腫瘍効果を検討し た結果を示す。 FIG. 10 shows the results of examining the in vivo antitumor effect of the human VEGF monoclonal antibody.
第 11図 溶性ヒ卜 VEGF受容体 KDR断片とヒ卜抗体 Fc領域との融合遺伝子発 現べクタ一 Pv 1 -KDR- 7N- Fcの構築を示す。 FIG. 11 shows the construction of a fusion gene expression vector Pv1-KDR-7N-Fc comprising a soluble human VEGF receptor KDR fragment and a human antibody Fc region.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
実施例 1 Example 1
1. 抗原の調製  1. Preparation of antigen
(1) 昆虫細胞におけるヒ卜 VEGFの発現と精製  (1) Expression and purification of human VEGF in insect cells
ヒト VEGFは以下のようにして得た。 High Five細胞 4X 107個を 175cm2フラスコ (グライナ一社製) に EX-CELL™400培地 (JRH Bioscience社製) 30mlに懸濁し、 室温で 1時間放置し、 フラスコに付着させた。 文献 [セル ·グロ一ス ·アンド · ディファレンシエーション(Cell Growth & Differentiation),;^ 213 (1996)] 記載の方法により得られたヒト VEGF組み換えパキュロウィルス溶液を約 1〜 3 X 108PFU/mlの濃度で含む溶液を lml 加え、室温で 2時間感染させた。培養上清を除 き新たに 30mlの EX-CELL™400培地 30mlを加え 27°Cにて 3〜4日間培養した。培養終 了後、 培養上清を回収し 1, 500 X gで 10分間遠心分離を行い上清を得た。 Human VEGF was obtained as follows. 4 × 10 7 High Five cells were suspended in 30 ml of EX-CELL ™ 400 medium (manufactured by JRH Bioscience) in a 175 cm 2 flask (manufactured by Grainer), allowed to stand at room temperature for 1 hour, and allowed to adhere to the flask. A human VEGF recombinant paculovirus solution obtained by the method described in the literature [Cell Growth & Differentiation ,; ^ 213 (1996)] was used for about 1 to 3 × 10 8 PFU. 1 ml of a solution containing a concentration of 1 ml / ml was added, and the cells were infected at room temperature for 2 hours. The culture supernatant was removed, and 30 ml of a fresh 30 ml EX-CELL ™ 400 medium was added, followed by culturing at 27 ° C for 3 to 4 days. End of culture After completion, the culture supernatant was collected and centrifuged at 1,500 X g for 10 minutes to obtain a supernatant.
カラムにへパリン—セファロース CL- 6Bゲル [フアルマシア'バイォテック(Ph armac i a Biotech) AB社製] 約 40mlを充填し、 20mMトリスー塩酸 (ρΗ7. 5)緩衝液 400mlを用いて 0. 5ml/分の流速で洗浄した。 洗浄後、 上記のように調製したヒト VEGFを含む培養液 1500mlを 0. 5ml/分の流速で、 へパリンーセファロース CL- 6B力 ラムに通塔した。 さらに20^トリス—塩酸 117. 5) 4001111を用ぃて、 0. 5ml /分の 流速でカラムを洗浄した後、 0. 2M NaCl含有 20m トリスー塩酸 (pH7. 5)緩衝液、 0. 5M NaCl含有 20mMトリスー塩酸 (pH7. 5)緩衝液および lMNaCl含有 20ιΜトリスー 塩酸(pH7. 5)緩衝液を 120 mlずつ順次通塔し、 へパリン一セファロースに吸着し た蛋白質を段階的に溶出を行うと共に 8ml ずつ溶出液を分画した。 各分画に含 まれる蛋白質を SDS- PAGEにて解析し、 ヒト VEGFを含む分画 (0. 5〜1 M NaCl画分 ) を 120ml回収した。 該分画をセン卜リブレップ- 10 (アミコン社製) で濃縮後、 ヒト VEGFを溶液として 4ml (蛋白質濃度 1. 2 mg/ml) 得た。  The column was filled with approximately 40 ml of heparin-Sepharose CL-6B gel [Pharmacia Biotech AB] and 0.5 ml / min with 400 ml of 20 mM Tris-HCl (ρ (7.5) buffer. Wash at flow rate. After washing, 1500 ml of the culture solution containing human VEGF prepared as described above was passed through a heparin-Sepharose CL-6B column at a flow rate of 0.5 ml / min. Further, the column was washed with 20 ^ tris-hydrochloric acid 117.5) 4001111 at a flow rate of 0.5 ml / min. A 20 mM Tris-HCl (pH 7.5) buffer solution and a 20 mM Tris-HCl (pH 7.5) buffer solution containing 1 mM NaCl were passed successively in 120 ml portions to elute the protein adsorbed on heparin-sepharose stepwise. The eluate was fractionated in 8 ml portions. The protein contained in each fraction was analyzed by SDS-PAGE, and 120 ml of a fraction containing human VEGF (0.5-1 M NaCl fraction) was recovered. The fractions were concentrated with Centrrep-10 (manufactured by Amicon), and 4 ml (protein concentration: 1.2 mg / ml) of human VEGF was obtained as a solution.
次に、 0. 1M CH3C00NH4 (pH7)溶液 600 1に VEGF 480 i gを溶解した。 該 VEGF溶液 5 1にキーホールリンペットへモシァニン (KLH ;カルビオケム社製) 120 g を加えて溶解し、 さらに、 1 %ダル夕一ルアルデヒドを 30 l加え、 室温で 5時間 撹拌した。 PBSに対して透析し、 免疫用の抗原として、 VEGF- KLH融合体を取得し た。 Next, 480 ig of VEGF was dissolved in 6001 of a 0.1 M CH 3 C00NH 4 (pH 7) solution. To the VEGF solution 51, 120 g of mocyanin (KLH; manufactured by Calbiochem) was added to and dissolved in the keyhole limpet, and 30 l of 1% dal aldehyde was added, followed by stirring at room temperature for 5 hours. Dialysis was performed against PBS to obtain a VEGF-KLH fusion as an antigen for immunization.
(2) ヒト VEGFの陰性コントロール抗原蛋白質の精製  (2) Purification of human VEGF negative control antigen protein
可溶性ヒ卜 VEGFの陰性コントロール抗原蛋白質としては以下のようにして調 製した High Five細胞の培養上清のへパリンカラム結合蛋白質を用いた。 High Five細胞 4 X 107個を 175cm2フラスコ (グライナ一社製)に EX-CELL™400培地(JRH Bi osc i ence社製) 30mlに懸濁し、 室温で 1時間放置し、 フラスコに付着させ、 H °Cにて 3〜4日間培養した。 培養終了後、 培養上清を回収し 1, 500 X gで 10分間遠 心分離を行い上清を得た。 As a soluble control VEGF negative control antigen protein, a heparin column-binding protein of the culture supernatant of High Five cells prepared as follows was used. 4 x 10 7 High Five cells are suspended in 30 ml of EX-CELL ™ 400 medium (manufactured by JRH Bioscience) in a 175 cm 2 flask (manufactured by Grainer), allowed to stand at room temperature for 1 hour, and allowed to adhere to the flask. The cells were cultured at H ° C for 3 to 4 days. After completion of the culture, the culture supernatant was collected and centrifuged at 1,500 X g for 10 minutes to obtain a supernatant.
カラムにへパリンーセファロース CL-6Bゲル [フアルマシア ·バイオテック (Pharmac i a Bi o tech) AB社製] 約 20mlを充填し、 20mM卜リス一塩酸(pH7. 5)緩衝 液 200mlを用いて 0. 5ml/分の流速でカラムを洗浄した。 洗浄後、 上記のように調 製した High F ive細胞の培養液 500ml を 0. 5ml/分の流速でへパリン—セファロ一 ス CL-6Bカラムに通塔した。 Heparin-Sepharose CL-6B gel on column [Pharmacia Biotech (Pharmacia Biotech, AB)] About 20 ml was packed, and the column was washed with 200 ml of a 20 mM Tris-hydrochloric acid (pH 7.5) buffer at a flow rate of 0.5 ml / min. After washing, 500 ml of the culture of High Five cells prepared as described above was passed through a heparin-cepharose CL-6B column at a flow rate of 0.5 ml / min.
さらに 0. 2 M NaClを含む 20mMトリスー塩酸(pH7. 5) 200mlを用いて 0. 5ml/分の 流速で洗浄した後、 1 M NaClを含む 20mM卜リス一塩酸 (pH7. 5)からなる緩衝液を 200 ml通塔し、 へパリン—セファロ一スに吸着した蛋白質を溶出した。 1M NaCl 溶出画分をセントリブレップ 10 (アミコン社製) を用いて濃縮し対照抗原蛋白 を溶液として 7 ml (蛋白質濃度 867 g/ml) 得た。  After washing with 200 ml of 20 mM Tris-HCl (pH 7.5) containing 0.2 M NaCl at a flow rate of 0.5 ml / min, a buffer consisting of 20 mM Tris-HCl (pH 7.5) containing 1 M NaCl is used. The solution was passed through 200 ml, and the protein adsorbed on heparin-sepharose was eluted. The 1M NaCl-eluted fraction was concentrated using CentriBrep 10 (manufactured by Amicon) to obtain 7 ml (protein concentration: 867 g / ml) of a control antigen protein as a solution.
2 . 動物の免疫と抗体産生細胞の調製  2. Animal immunization and preparation of antibody-producing cells
1 ( 2 ) より得られた VEGF- KLH融合体 12. 5 g を RIBI Adj uvant Sys tem (RIBI ImmunoChei Research In 製) 0. lml、 あるいは、 アルミニウムゲル 2mgおよび 百日咳ワクチン (千葉県血清研究所製) 1 X 109細胞とともに 5週令雌 BALB/c (日 本 S L C社製) に投与し、 2週間後より の蛋白質を 1 週間に 1 回、 計 4 回 投与した。 1) 12.5 g of the VEGF-KLH fusion obtained from (2) was added to RIBI Adj uvant System (manufactured by RIBI ImmunoChei Research In) 0.1 ml or aluminum gel 2 mg and pertussis vaccine (manufactured by Chiba Prefectural Serum Institute) A 5-week-old female BALB / c (manufactured by SLC Japan) was administered together with 1 × 10 9 cells, and the protein was administered once a week after 2 weeks, a total of 4 times.
眼底静脈叢あるいは尾静脈より採血し、 その血清抗体価を以下に示す酵素免 疫測定法で調べ、 十分な抗体価を示したマウスから最終免疫 3日後に脾臓を摘出 した。  Blood was collected from the fundus venous plexus or the tail vein, and its serum antibody titer was examined by the enzyme immunoassay described below, and the spleen was excised 3 days after the last immunization from the mouse showing a sufficient antibody titer.
脾臓を MEM培地(日水製薬社製) 中で細断し、 ピンセットでほぐし、 l, 200rpm で 5 分間、 遠心分離した。 その後、 上清を捨て、 トリスー塩化アンモニゥム緩 衝液 (pH7. 65) で 1〜2分間処理し赤血球を除去し、 MEM培地で 3回洗浄し、 細胞 融合に用いた。  The spleen was shredded in MEM medium (manufactured by Nissui Pharmaceutical), loosened with forceps, and centrifuged at 200 rpm for 5 minutes. Thereafter, the supernatant was discarded, and treated with Tris-ammonium chloride buffer (pH 7.65) for 1 to 2 minutes to remove red blood cells, washed three times with MEM medium, and used for cell fusion.
3 . 酵素免疫測定法  3. Enzyme immunoassay
1 (2) で得られた VEGF-KLH融合体を免疫したマウスに由来する抗血清および 後述するハイブリド一マの培養上清の測定に関しては、 抗原として、 1の昆虫細 胞培養上清より得られたヒト VEGFを用いた。 96ゥエルの E IA用プレート (ダラ イナ一社製) に、 ヒト VEGFおよび対照抗原として 1で得られた High Five細胞培 養上清のへパリンカラム吸着画分を、 PBSで l〜10 g/mlに希釈し、 50 Ai lずつゥ エルに分注し、 プレートを 4 °ςで一晩放置して抗原を吸着させた。 プレートを 洗浄後、 1 %牛血清アルブミン(BSA) を含む PBS を 100 1 /ゥエルずつ分注し、 室温 1時間反応させてプレート上に残つた結合残基をプロックした。 その後、 1%BSA-PBSを捨て、 被免疫マウスおよびハイプリドーマの培養上清を 50 i l/ゥェ ルで分注し 2 時間反応させた。 0. 05% (V/V) tween20を含む PBS (以下、 tween- PBS と略記する) で洗浄後、 ペルォキシダーゼ標識ゥサギ抗マウスィムノグロプリ ン (DAK0社製) を 50 1/ゥエルで加えて室温で、 1 時間放置した。 1 For the measurement of the antiserum derived from the mouse immunized with the VEGF-KLH fusion obtained in (2) and the culture supernatant of the hybridoma described below, the antigen was obtained from the insect cell culture supernatant of 1). Human VEGF was used. 96 ゥ L EIA plate (Dara Heparin column-adsorbed fraction of human VEGF and the High Five cell culture supernatant obtained in step 1 as a control antigen was diluted to 1 to 10 g / ml with PBS. The plate was left overnight at 4 ° C to adsorb the antigen. After washing the plate, PBS containing 1% bovine serum albumin (BSA) was dispensed at 100 1 / ゥ l and allowed to react at room temperature for 1 hour to block the remaining binding residues on the plate. Thereafter, 1% BSA-PBS was discarded, and the culture supernatants of the immunized mice and hybridomas were dispensed at 50 il / well and reacted for 2 hours. After washing with PBS containing 0.05% (V / V) tween20 (hereinafter abbreviated as tween-PBS), add peroxidase-labeled heron antimouse immunoglobulin (manufactured by DAK0) at 50 1 / well. Left for 1 hour at room temperature.
0. 05¾ tween-PBS で洗浄後、 ABTS基質液 [2, 2'-アジノ-ビス (3-ェチルベンゾ チアゾリン- 6- スルホン酸) アンモニゥム 550mgを 0. 1Mクェン酸緩衝液 (pH4. 2 ) 1Lに溶解した溶液に過酸化水素 1 l/mlを使用直前に加えた溶液] を用いて発 色させ、 0D415nm の吸光度 E max [モレキュラー .デパイシ一ズ (Molecular Devices)社製] を測定した。  After washing with 0.05-tween-PBS, 550 mg of ABTS substrate solution [2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) ammonium] was added to 1 L of 0.1 M citrate buffer (pH 4.2). The solution was added with 1 l / ml of hydrogen peroxide immediately before use], and the absorbance at 0D415 nm E max [Molecular Devices] (Molecular Devices) was measured.
4. マウス骨髄腫細胞の調製  4. Preparation of mouse myeloma cells
8 -ァザグァニン耐性マウス骨髄腫細胞株 P3-U1 を正常培地で培養し、 細胞融 合時に 2 X 107以上の細胞を確保し、 細胞融合に親株として供した。 The 8-azaguanine-resistant mouse myeloma cell line P3-U1 was cultured in a normal medium to secure 2 × 10 7 or more cells at the time of cell fusion, and used as a parent strain for cell fusion.
5 . ハイブリドーマの作製  5. Preparation of hybridoma
2で得られたマウス脾細胞と 4で得られた骨髄腫細胞とを 10: 1になるよう混合 し、 1, 200卬111で 5分間、 遠心分離した。 該混合液の上清を捨て、 沈澱した細胞群 をよくほぐした後、 攪拌しながら、 37°Cで、 ポリエチレングライコ一ルー 1000 (PEG-1000) 2g、 ME 培地 2ml および DMSO 0. 7mlの混液 0. 2〜lml/ (108マウス 脾細胞)を加え、 1〜2分間毎に MEM培地 l〜2ml を数回加えた後、 MEM培地を加え て全量が 50mlになるようにした。 900rpmで 5分間、 遠心分離した後、 上清を捨て 、 沈殿した細胞群をゆるやかにほぐした後、 メスピペットによる吸込み、 吸出 しでゆるやかに細胞を HAT 培地 [10%FCSを含む RPMI 1640培地 (日水製薬社製) にヒポキサンチン 100nM、 アミノプテリン 0. 4nM、 チミジン 16nM (ベ一リンガー マンハイム社製) を添加した培地] 100ml 中に懸濁した。 The mouse spleen cells obtained in 2 and the myeloma cells obtained in 4 were mixed at a ratio of 10: 1, and centrifuged at 1,200-111 for 5 minutes. Discard the supernatant of the mixture, thoroughly dissolve the precipitated cell group, and mix with 2 g of polyethylene glycol 1000 (PEG-1000), 2 ml of ME medium and 0.7 ml of DMSO at 37 ° C with stirring. 0. 2~lml / (10 8 mouse spleen cells) was added, and MEM medium is added several times l~2ml every 1-2 minutes, the total amount added MEM medium was made up to 50 ml. After centrifugation at 900 rpm for 5 minutes, the supernatant is discarded, the precipitated cell group is loosened gently, and then sucked and sucked with a female pipette. The cells are gently removed by HAT medium [RPMI 1640 medium containing 10% FCS ( Nissui Pharmaceutical Co., Ltd.) To which 100 nM hypoxanthine, 0.4 nM aminopterin, and 16 nM thymidine (manufactured by Behringer Mannheim) were added.
この懸濁液を 96ゥエル培養用プレートに 100 A /ゥエルずつ分注し、 5% C02 インキュベータ一中、 37°Cで 10〜14日間で培養した。 該培養により得られた各 々の培養上清を用いて、 上記実施例 1の 3に記載した酵素免疫測定を行った。 上述の方法で、 9 6ゥエルプレートにヒト VEGFおよび 1 ( 2 ) で調製した陰性 コントロール抗原蛋白質を吸着させた。 プレートに各細胞培養上清を 100 / 1/ゥ エルずつ分注し、 室温で 2時間放置した。 The suspension was dispensed by 100 A / Ueru the plate for 96 Ueru culture in 5% C0 2 incubator one, were cultured in 10 to 14 days at 37 ° C. The enzyme immunoassay described in Example 1-3 above was performed using each of the culture supernatants obtained by the culture. In the manner described above, human VEGF and the negative control antigen protein prepared with 1 (2) were adsorbed on a 96-well plate. Each cell culture supernatant was dispensed at 100/1 / well into the plate and left at room temperature for 2 hours.
該プレートを PBSで洗浄後、 ペルォキシダーゼ標識ゥサギ抗マウスィムノグロ プリン抗体を 100 /X 1/ゥエルずつ分注し、 室温で 1時間放置した。  After the plate was washed with PBS, a peroxidase-labeled mouse heron anti-mouse immunoglobulin antibody was dispensed at 100 / X1 / well, and left at room temperature for 1 hour.
その結果、 ヒト VEGFに反応し、 対照抗原に反応しない細胞培養上清のゥエル を選択した。 該選択ゥエル中の培養上清を産生したハイプリドーマ細胞は以下 に示す限界希釈法によるクローニング操作を 2回行って取得した。 図 1にその結 果を示す。  As a result, a well of cell culture supernatant which reacted with human VEGF but did not react with the control antigen was selected. The hybridoma cells that produced the culture supernatant in the selection well were obtained by performing the cloning operation twice by the following limiting dilution method. Figure 1 shows the results.
限界希釈法によるクローニング操作とは、 9 6ゥエルプレートの 1ゥエルあ たり 1細胞となるようにまき直し、 7日から 1 4日間ハイプリドーマ細胞を培 養した後、 細胞培養上清について酵素免疫測定を行い、 ヒ卜 VEGFに反応し、 対 照抗原に反応しない細胞培養上清のゥエルを選択し、 該選択ゥエル中の培養上 清を産生したハイブリド一マ細胞を取得する操作である。  The cloning operation by the limiting dilution method involves re-rolling cells in a 96-well plate at 1 cell / well, culturing the hybridoma cells for 7 to 14 days, and then performing enzyme immunization on the cell culture supernatant. This is an operation of performing measurement, selecting a well of a cell culture supernatant that reacts with human VEGF and does not react with a control antigen, and obtains hybridoma cells that have produced culture supernatant in the selected well.
上述 2の免疫マウス 3匹よりハイブリドーマを作製し、 計 12種類の抗ヒト VEGF モノクローナル抗体 KM1537、 腸 38、 讓 39、 KM1540, KM154U KM1542, 腸 43 、 KM1544, KM1545, 腿 546、 KM1547および KM1548を得た。  Hybridomas were prepared from the three immunized mice of the above 2 to obtain a total of 12 kinds of anti-human VEGF monoclonal antibodies KM1537, intestine 38, TZ39, KM1540, KM154U KM1542, intestine 43, KM1544, KM1545, thigh 546, KM1547 and KM1548 Was.
モノクローナル抗体の抗体クラスはサブクラスタイピングキット [ザィメッ ト (Zymed ) 社製] を用いた酵素免疫測定法を行った。 その結果を以下の図 1に 示す。 KM1538は IgG3クラス、 KM1542は IgG2aクラス、 残りの 10種のモノクローナ ル抗体は全て IgGlクラスであった。 6 . モノクローナル抗体の精製 The antibody class of the monoclonal antibody was determined by enzyme immunoassay using a subcluster typing kit (Zymed). The results are shown in Figure 1 below. KM1538 was of IgG3 class, KM1542 was of IgG2a class, and the remaining 10 monoclonal antibodies were all of IgGl class. 6. Purification of monoclonal antibodies
プリスタン処理した 8 週令ヌード雌マウス (Balb/c) に 5で得られたハイプリ ドーマ株を 5〜20 X 細胞 Z匹それぞれ腹腔内に注射した。 10〜21日後に、ハイ ブリド一マは腹水癌化した。 腹水のたまったマウスから、 腹水を採取 (l〜8ml/ 匹) し、 3, OOOrpmで 5分間、 遠心分離して固形分を除去した。  Eight-week-old nude female mice (Balb / c) treated with pristane were intraperitoneally injected with each of the 5 to 20 X Z cells of the Hypridoma strain obtained in 5 above. After 10 to 21 days, the hybridoma became ascites carcinoma. Ascites was collected (1-8 ml / animal) from the mice that had accumulated ascites, and the solid content was removed by centrifugation at 3, OOO rpm for 5 minutes.
固形分を除去した腹水を力プリル酸沈殿法 (アンチポディーズ ·ァ ·ラボラ トリ一 'マニュアル) により精製し、 精製モノクローナル抗体とした。  The ascites fluid from which solids had been removed was purified by the force prillic acid precipitation method (Anti-Podise Laboratories' Manual) to obtain a purified monoclonal antibody.
7.モノク口一ナル抗体の VEGFに対する反応性の検討  7.Examination of reactivity of monoclonal antibody to VEGF
5で得られた抗ヒ卜 VEGFモノク口一ナル抗体の VEGFに対する反応性を 3に記載 した酵素免疫測定法を用いて確認した。  The reactivity of the anti-human VEGF monoclonal antibody obtained in 5 with VEGF was confirmed using the enzyme immunoassay described in 3.
(1) プレートコートする VEGF濃度の検討  (1) Examination of VEGF concentration for plate coating
ELISA用 96ウェルマイク口タイ夕一プレートに、 1 (1) の方法により得られた VEGFを PBSで 4倍希釈系列 (0. 0078〜8 g/ml) に調製し、 50 1/ゥエル加え、 4 °Cで 1晚反応させた。 プレートを PBSで洗浄後、 1 %834-?83を200 / 1/ゥェル加ぇ 室温で 30分間反応させ、 その後 PBSで洗浄した。 陰性コントロール抗体としては 、 マウス IgGlクラスに属し、 かつヒト VEGFに反応せず、 ヒトインタ一ロイキン 5 (以下、 IL-5と略す) 受容体ひ鎖に反応する、 マウスモノクローナル抗体 KM12570TO97/10354)を用いた。 6で得られた精製した抗 VEGFモノクローナル抗体 および陰性コントロール抗体 KM1257を lO g/mlの濃度で 50 1/ゥエル加え、 室 温で 2時間反応させた。 0. 05 %Tween- PBSで洗浄後、 BSA-PBSで 400倍に希釈し たペルォキシダーゼ標識抗マウスィムノグロブリン抗体 (Dako社製) を 50 / l/ ゥエルに分注して、 室温で 1時間反応させた。 0. 05% tween- PBS で洗浄後、 ABTS 基質液を用いて発色させ 0D415nm の吸光度を測定した。  Prepare a 4-fold dilution series (0.0078 to 8 g / ml) of VEGF obtained by the method described in 1 (1) above with PBS in a 96-well microplate for ELISA. The reaction was performed at 4 ° C for 1 晚. After the plate was washed with PBS, 1% 834-? 83 was reacted at 200/1 / well at room temperature for 30 minutes, and then washed with PBS. As a negative control antibody, a mouse monoclonal antibody (KM12570TO97 / 10354) that belongs to the mouse IgGl class and does not react with human VEGF but reacts with the human interleukin 5 (hereinafter abbreviated as IL-5) receptor chain is used. Was. The purified anti-VEGF monoclonal antibody obtained in 6 and the negative control antibody KM1257 were added at a concentration of 10 g / ml at a concentration of 501 / well, and reacted at room temperature for 2 hours. After washing with 0.05% Tween-PBS, a peroxidase-labeled anti-mouse immunoglobulin antibody (manufactured by Dako) diluted 400-fold with BSA-PBS was dispensed into 50 / l / well and left at room temperature for 1 hour. Reacted. After washing with 0.05% Tween-PBS, color was developed using ABTS substrate solution and the absorbance at 0D415nm was measured.
結果を図 2に示す。 この結果、 陰性コント口一ル抗体である は VEGFに全 く反応しなかったのに対し、 12種の抗 VEGFモノクローナル抗体は、 VEGF濃度依 存的に VEGFに反応することが明らかとなった。 KM1538の VEGF検出限界は 2 i g/ml と感度が悪いが、 その他の抗 VEGFモノクローナル抗体の VEGF検出限界は 0. 0078 〜0. 125 // g/mlとよい感度を示した。 The result is shown in figure 2. As a result, it was revealed that 12 kinds of anti-VEGF monoclonal antibodies reacted with VEGF in a VEGF concentration-dependent manner, while the negative control antibody did not react with VEGF at all. VEGF detection limit of KM1538 is 2 ig / ml Although the sensitivity was poor, the VEGF detection limit of other anti-VEGF monoclonal antibodies was as good as 0.0078 to 0.125 // g / ml.
(2) 検出する抗 VEGFモノクローナル抗体濃度の検討  (2) Examination of anti-VEGF monoclonal antibody concentration to be detected
ELISA用 96ウェルマイク口タイ夕一プレートに PBSで希釈した 2 x g/ml VEGFを 50 l/ゥエル加え、 4°Cで 1晚反応させた。 該プレートを PBSで洗浄後、 1 %BSA - PBSを 200 1/ゥエル加え室温で 30分間反応させ、 PBSで洗浄した。 精製抗 VEGFモ ノクローナル抗体を 1%BSA-PBSで 3倍希釈系列 (0. 0041〜l i g/ml) に調製し、 そ れぞれ 50 l/ゥエル加え、 室温で 2時間反応させた。 0. 05 %Tween- PBSで洗浄後、 BSA-PBSで 400倍に希釈したペルォキシダーゼ標識抗マウスィムノグロプリン 抗体を 50 1/ゥエルに分注し室温にて 1 時間反応させた。 0. 05% tween- PBS で 洗浄後、 ABTS基質液を用いて発色させ 0D415nm の吸光度を測定した。  A 50 μl / well of 2 × g / ml VEGF diluted with PBS was added to a 96-well plate for ELISA using a 50 μl / well plate and reacted at 4 ° C. for 1 hour. After the plate was washed with PBS, 1% BSA-PBS was added at 200 1 / well, reacted at room temperature for 30 minutes, and washed with PBS. Purified anti-VEGF monoclonal antibody was prepared in a three-fold dilution series (0.0041 to lig / ml) with 1% BSA-PBS, and each was added at 50 l / well and allowed to react at room temperature for 2 hours. After washing with 0.05% Tween-PBS, a peroxidase-labeled anti-mouse immunoglobulin antibody diluted 400-fold with BSA-PBS was dispensed into 50 1 / well and allowed to react at room temperature for 1 hour. After washing with 0.05% Tween-PBS, color was developed using ABTS substrate solution and the absorbance at 0D415nm was measured.
結果を図 3に示す。 この結果、 KM1538を除く 11種の抗 VEGFモノクロ一ナル抗体 は、 抗体濃度依存的に VEGFに反応することが明らかとなった。 VEGF検出限界の 抗 VEGFモノク口一ナル抗体濃度は 0. 0041〜0. 0123 g/mlとよい感度を示した。 8.結合阻害実験系を用いた抗 VEGFモノクローナル抗体のェピト一プ解析  The results are shown in Figure 3. As a result, it was revealed that 11 kinds of anti-VEGF monoclonal antibodies except KM1538 react with VEGF in an antibody concentration-dependent manner. The concentration of anti-VEGF monoclonal antibody at the detection limit of VEGF was as high as 0.0041 to 0.0123 g / ml. 8. Epitope analysis of anti-VEGF monoclonal antibody using the binding inhibition experiment system
96ゥエルの EIA用プレート (グライナ一社製) に、 PBSで希釈した 1 i g/mlヒ ト VEGFを 50 1/ゥエルずつ分注し、 4°Cで一晩放置して吸着させた。 プレートを 洗浄後、 1%BSA- PBS を 100 a 1 / ゥエル加え、 室温 1時間反応させて、 プレート 上に残った結合残基をブロックした。その後、 1%BSA- PBS を捨て、 1%BSA-PBS で 0. 1あるいは lO g/mlに希釈された精製抗ヒト VEGFモノクロ一ナル抗体を 50 l加え、 さらに、 公知の方法 (酵素抗体法:学際企画刊 1985年) でピオチン 標識した抗ヒト VEGFモノクロ一ナル抗体 (KM1539、 KM1545、 KM1546については 1 g/mK KM1537, KM1540, KM1541、 KM1542, KM1543, KM1544, KM1547、 KM1548 については 0. 2 i g/ml) を 加え、室温で 2時間反応させた。 0. 05% tween- PBS で洗浄後、 1 BSA- PBS にて 4, 000倍に希釈したアビジン標識ペルォキシダーゼ ( ベクタ一社製) を 50 ^ 1/ゥエルで加えて室温にて 1 時間反応させた。 0. 05% tween-PBS で洗浄後 ABTS基質液を用いて発色させ 0D415nm の吸光度を測定した。 結果を表 1に示す。 1 /x g/mlの精製モノクローナル抗体添加により、 ピオチン 化抗体の結合が 80%以上阻害される活性を ++十、 1 g/mlの精製モノクローナル 抗体添加により、 ピオチン化抗体の結合が 50〜80%阻害される活性を ++、 10 g/mlの精製モノクローナル抗体添加により、 ピオチン化抗体の結合が 50%以上 阻害される活性を +とした。 1 ig / ml human VEGF diluted with PBS was dispensed at 50 1 / well into a 96-well plate for EIA (manufactured by Grainer Co., Ltd.), and allowed to stand overnight at 4 ° C for adsorption. After washing the plate, 1% BSA-PBS was added at 100 a1 / well, and the mixture was reacted at room temperature for 1 hour to block the binding residues remaining on the plate. After that, discard the 1% BSA-PBS, add 50 l of purified anti-human VEGF monoclonal antibody diluted to 0.1 or lO g / ml with 1% BSA-PBS. : 1 g / mK for KM1539, KM1545 and KM1546 labeled with anti-human VEGF monoclonal antibody (Interdisciplinary Journal, 1985) 0.2 g for KM1537, KM1540, KM1541, KM1542, KM1543, KM1544, KM1547, KM1548 ig / ml) and reacted at room temperature for 2 hours. After washing with 0.05% Tween-PBS, avidin-labeled peroxidase (manufactured by VECTOR) diluted 4,000-fold with 1 BSA-PBS was added at 50 ^ 1 / Pell and reacted at room temperature for 1 hour. . 0.05% After washing with tween-PBS, color was developed using ABTS substrate solution, and the absorbance at 0D415 nm was measured. Table 1 shows the results. Addition of 1 / xg / ml purified monoclonal antibody has an activity that inhibits binding of pyotinylated antibody by 80% or more ++ 10.Addition of 1 g / ml purified monoclonal antibody reduces binding of pyotinylated antibody by 50-80. The activity that was inhibited by +++ and the activity that inhibited the binding of the biotinylated antibody by 50% or more by adding a purified monoclonal antibody at 10 g / ml was +.
第 1 表  Table 1
ビ才チンィ匕抗体 1539 1537 1540 1542 1543 154B 1548 1547 1544 1541 1545 Bisai Chin-Dani antibody 1539 1537 1540 1542 1543 154B 1548 1547 1544 1541 1545
(KM No.) _ ―  (KM No.) _ ―
阻害抗体  Inhibitory antibody
KM 1538 - - 一 — 一 - - - - - - KM 1538--one-one------
KM1537 + ++ ++ KM1537 +++++
KM 1539 + + ++  KM 1539 ++++
KM 1542 ++ ++ +++ +  KM 1542 ++ ++ +++ +
KM 1540 十一 ++  KM 1540 11 ++
K 1544 ++ +++ +++ ++ +  K 1544 ++ +++ +++ ++ +
KM 1548 + ++ ++ + +  KM 1548 + ++ ++ + +
KM1547 ++ +++ + ++ KM1547 ++++++++
M1543 ++ +++ +  M1543 +++++++
K 1546 + +  K 1546 + +
K 1541 ++  K 1541 ++
+ 10 g/ml: >50%阻害 + 10 g / ml:> 50% inhibition
++ 1 /ig/ml: >50%阻害  ++ 1 / ig / ml:> 50% inhibition
+++ 1 Aig/ml: >80%阻害  +++ 1 Aig / ml:> 80% inhibition
この結果、 ピオチン化抗体 KM1539、 KM1537, KM1540, KM1542は精製モノクロ -ナル抗体 KM1542により阻害がかかり、 同様に、 ピオチン化抗体 KM1543、 KM1546 KM1548, KM1547, KM1544は精製モノクローナル抗体 KM1548により阻害がかか り、 また、 ピオチン化抗体 KM1541、 KM1545は精製モノクローナル抗体 KM1541に より阻害がかかった。 以上のことから、 KM1539、 KM1537, KM1540, KM1542はそ れぞれェピ! ^一プが類似していること、 KM1543、 KM1546、 KM1548, KM1547およ び KM1544、 ならびに、 KM1541および KM1545はそれぞれェピトープが類似してい ることが明らかとなった。 As a result, the biotinylated antibodies KM1539, KM1537, KM1540, and KM1542 were inhibited by the purified monoclonal antibody KM1542, and similarly, the biotinylated antibodies KM1543, KM1546 KM1548, KM1547, and KM1544 were inhibited by the purified monoclonal antibody KM1548. In addition, the biotinylated antibodies KM1541 and KM1545 were inhibited by the purified monoclonal antibody KM1541. From the above, KM1539, KM1537, KM1540, and KM1542 are each epi! It was found that the peptides were similar, and that KM1543, KM1546, KM1548, KM1547 and KM1544, and KM1541 and KM1545 had similar epitopes.
9. VEGF定量系の作製  9. Preparation of VEGF quantitative system
96ゥエルの EIA用プレート (グライナ一社製) に、 PBS で 10 /x g/mlに希釈し た抗ヒト VEGFモノク口一ナル抗体 KM1541を 50 1/ゥエルずつ分注し、 4°Cでー晚 放置して吸着させた。 プレートを洗浄後、 1%BSA - PBS を 100 1 / ゥエル加え、 室温 1時間反応させてプレート上に残った結合残基をブロックした。 1%BSA- PBS を捨て、 1%BSA-PBS で 1000〜0. 00035ng/mlの濃度に希釈した 1 (1)で得られたヒ ト VEGFを 4 °Cでー晚反応させた。 0. 05 % tween-PBS で洗浄後、 1 %BSA-PBS で 0. 1 g/mlの濃度に希釈したピオチン標識抗ヒト VEGFモノクローナル抗体 KM1544あ るいはピオチン標識抗.ヒト VEGFモノクローナル抗体 KM1548を 50 l/ゥエルずつ 加えて室温にて 2 時間反応させた。  Dispense 50 μl / well of anti-human VEGF monoclonal antibody KM1541 diluted to 10 / xg / ml with PBS into a 96-well EIA plate (manufactured by Grainer) at 4 ° C. Leave to adsorb. After washing the plate, 100% / well of 1% BSA-PBS was added, and the mixture was reacted at room temperature for 1 hour to block the binding residue remaining on the plate. The 1% BSA-PBS was discarded, and the human VEGF obtained in 1 (1) diluted with 1% BSA-PBS to a concentration of 1000-0.00035 ng / ml was reacted at 4 ° C. After washing with 0.05% tween-PBS, dilute 50% of biotin-labeled anti-human VEGF monoclonal antibody KM1544 or biotin-labeled anti-human VEGF monoclonal antibody KM1548 diluted to a concentration of 0.1 g / ml with 1% BSA-PBS. l / well were added and the reaction was carried out at room temperature for 2 hours.
0. 05% t een-PBS で洗浄後、 1%BSA- PBSで 4, 000 倍に希釈したアビジン標識べ ルォキシダーゼ (ベクター社製) を 50 / l/ゥエルで加えて室温にて 1 時間反応 させた。 0. 05% tween- PBS で洗浄後 ABTS基質液を用いて発色させ 0D415體 の吸 光度を測定した。  After washing with 0.05% teen-PBS, add avidin-labeled oxidase (manufactured by Vector) diluted 4,000-fold with 1% BSA-PBS at 50 / l / well and incubate at room temperature for 1 hour. Was. After washing with 0.05% Tween-PBS, color was developed using ABTS substrate solution and the absorbance of 0D415 was measured.
結果を図 4に示す。 この結果、 抗ヒ卜 VEGFモノクローナル抗体 KM1541およびビ ォチン標識抗ヒト VEGFモノクローナル抗体 KM1544あるいはピオチン標識抗ヒ卜 VEGFモノクローナル抗体 KM1548を用いることによりヒ卜 VEGFは 50pg/mlより測 定することができることが明らかとなった。  Fig. 4 shows the results. The results clearly show that human VEGF can be measured at 50 pg / ml by using anti-human VEGF monoclonal antibody KM1541 and biotin-labeled anti-human VEGF monoclonal antibody KM1544 or biotin-labeled anti-human VEGF monoclonal antibody KM1548. It became.
10.可溶性 VEGF受容体 KDRの調製  10.Preparation of soluble VEGF receptor KDR
(1)可溶性ヒ卜 VEGF受容体 KDR断片とヒト抗体 Fc領域との融合遺伝子発現べクタ 一の構築 ヒト VEGF受容体 KDRのシグナルべプチドを構成する 19アミノ酸及び成熟体の N末端アミノ酸から 738番目に相当する可溶性ヒト VEGF受容体 KDR断片、 6ァミノ 酸残基からなるリンカ一 (リンカ一 # 1) 及びヒト抗体 Fc領域を構成する 227ァ ミノ酸から成る融合蛋白質 (以下、 可溶性ヒ卜 VEGF受容体 KDR - 7N - Fcと称す) を 発現するためのベクタ一を以下の手順で作製した。 可溶性ヒ卜 VEGF受容体 KDR- 7Nとは、 可溶性ヒ卜 VEGF受容体 KDRの細胞外領域の N末端側から 7個のィムノグ ロブリン様部位に相当する。 (1) Construction of a fusion gene expression vector of soluble human VEGF receptor KDR fragment and human antibody Fc region A linker consisting of 19 amino acids constituting the signal peptide of human VEGF receptor KDR and a soluble human VEGF receptor KDR fragment corresponding to the 738th amino acid from the N-terminal amino acid of the mature form, a linker consisting of 6 amino acid residues (linker # 1) A vector for expressing a fusion protein comprising 227 amino acids constituting the human antibody Fc region (hereinafter referred to as soluble human VEGF receptor KDR-7N-Fc) was prepared by the following procedure. The soluble human VEGF receptor KDR-7N corresponds to the seven imnoglobulin-like sites from the N-terminal side of the extracellular region of the soluble human VEGF receptor KDR.
ヒト VEGF受容体 KDRの完全長 cDNAをコ一ドする cDNAクローン BCMGS- neo- KDR [A. Sawanoら; Cel l Growth & Di f ferent i at i on 7, 213-221 (1996) ]を EcoRIで切断 し、 KDRの細胞外領域及び膜結合領域をコードする約 2. 8 kbの断片を pUC18の ^RI部位に組み込むことによって、 pUC-KDRを作製した。 pUC-KDRを^ Iで切断 し、 Kl enow処理後、 配列番号 1に示す^ Iリンカ一を挿入することによって pUC-KDR-Xbを作製した。 pUC-KDR-Xbの Xb a I -BamH I (2. 3 kbp)断片を pBluescr ipt I I KS (+)の^ 部位に挿入した後、 I- lHI (5. 2 kbp) 断片を調製し、 ^BI部位を含む合成リンカ一 (配列番号 2及び配列番号 3) を挿入し、 pBS- KDR-Xb-Sを作製した。  A cDNA clone encoding the full-length cDNA of human VEGF receptor KDR BCMGS-neo-KDR [A. Sawano et al., Cell Growth & Diferent ation 7, 213-221 (1996)] with EcoRI The pUC-KDR was prepared by cutting it and incorporating an approximately 2.8 kb fragment encoding the extracellular and membrane-bound regions of KDR into the ^ RI site of pUC18. pUC-KDR was cut with ^ I, and after Klenow treatment, pUC-KDR-Xb was prepared by inserting the ^ I linker shown in SEQ ID NO: 1. After inserting the XbaI-BamHI (2.3 kbp) fragment of pUC-KDR-Xb into the ^ site of pBluescript II KS (+), an I-lHI (5.2 kbp) fragment was prepared, ^ A synthetic linker containing a BI site (SEQ ID NO: 2 and SEQ ID NO: 3) was inserted to prepare pBS-KDR-Xb-S.
pBS- KDR- Xb- Sの Xbal/SnaBI (2. 3 kbp) 断片、 プラスミド pAMoPRFc [T. Yagoら ; The Journal o f Inunimo logy 158, 707-714, (1997) ]上のヒト抗体の Fc領域をコ —ドする^ BI/ I (0. 7 kbp) 断片をバキュロウィルス組み換え pVL1393ブラ スミドのポリへドリン (Polyhedr in) 遺伝子の転写開始点の下流 5'側^ I及び 3'側 l部位に組み込み、 可溶性ヒ卜 VEGF受容体 KDR- 7Nとヒ卜抗体 Fc領域との 融合遺伝子発現べクタ一 PVL-KDR- 7N-FCを構築した (図 1 1 ) 。  Xbal / SnaBI (2.3 kbp) fragment of pBS-KDR-Xb-S, plasmid pAMoPRFc [T.Yago et al .; The Journal of Inunimology 158, 707-714, (1997)] Coding ^ BI / I (0.7 kbp) fragment into the baculovirus-recombinant pVL1393 plasmid at the 5 '^ I and 3' l sites downstream of the transcription start site of the polyhedrin (Polyhedrin) gene. A fusion gene expression vector, PVL-KDR-7N-FC, comprising a soluble human VEGF receptor KDR-7N and a human antibody Fc region was constructed (FIG. 11).
(2)昆虫細胞による可溶性ヒ卜 VEGF受容体 KDR発現を行うための組み換えウィル スの作製  (2) Preparation of recombinant virus for expression of soluble human VEGF receptor KDR by insect cells
昆虫細胞による蛋白質の生産には目的遺伝子を組み込んだ組み換えウィルス の作製が必要であるが、 その作製にはトランスファ一ベクターと呼ばれる目的 蛋白質をコードする cDNAを特殊なプラスミドに組み込む過程と野生型ウィルス とトランスファ一ベクターを昆虫細胞にコトランスフエクシヨンし、 相同組み 換えにより組み換えウィルスを取得する過程を経る。 以上の過程についてファ 一ミンジェン社製バキュロゴ一ルドスターターキット (製品番号 PM- 21001K) を 用いてそのマニュアルに従い以下の手順で行った。 The production of proteins by insect cells requires the production of a recombinant virus incorporating the target gene, which is called a transfer vector. The process involves the process of incorporating the cDNA encoding the protein into a special plasmid, the process of cotransfecting the wild-type virus and the transfer vector into insect cells, and obtaining the recombinant virus by homologous recombination. The above process was carried out using the Baculo logo starter kit (product number PM-21001K) manufactured by Farmingen in accordance with the manual and in the following procedure.
TMN- FHインセクトメディウム (ファーミンジェン社製) にて培養した昆虫細 胞 Sf9 (ファーミンジェン社製) に線状バキュロウィルス DNA [バキュロゴ一 ルド *パキュロゥィルス0 ¾&(;1]1(^01(1 aculovirus DNA) 、 ファーミンジェ ン社製] および作製したトランスファーベクター DNA をリポフエクチン法にて 導入すること [蛋白質核酸酵素、 , 2701 (1992)] により、 組み換えバキュ口 ウィルスを以下のように作製した。  Insect cells Sf9 (Pharmingen) cultured on TMN-FH Insect Medium (Pharmingen) were added to linear baculovirus DNA [Baculologil * Paculovirus 0¾ &(; 1] 1 (^ 01 ( 1 aculovirus DNA), manufactured by Pharmingen, Inc.] and the prepared transfer vector DNA were introduced by the lipofectin method [protein nucleic acid enzyme,, 2701 (1992)] to produce a recombinant baculovirus as follows.
10(1)で作製した発現ベクター l igと線状バキュロウィルス DNA 20ngとを 12/x 1の蒸留水に溶解し、 さらにリポフエクチン 6 l と蒸留水 6 〖 とを混和した ものを加え室温で 15分間放置した。一方 Sf9 細胞 IX 106個を 2ml の Sf900- II培地 [ギブコ(Gibco) 社製] に懸濁し、 直径 35πιιηの細胞培養用プラスチックシヤー レに入れた。 ここに上記のプラスミド DNA、 線状バキュロウィルス DNAおよび リポフエクチン混和溶液全量を加え 27°Cで 3日間培養後、 組み換えウィルスを含 む培養上清 lmlを採取した。 シャーレには新たに Sf900- II培地 lml を加え、 さら に 27°Cで 3日間培養し組み換えウィルスを含む培養上清をさらに 1.5ml得た。 次に蛋白質発現に用いるために得られた組み換えウイルスを各々、 以下の手 順で増殖させた。 Dissolve the expression vector lig prepared in 10 (1) and 20 ng of linear baculovirus DNA in 12 / x1 distilled water, add 6 l of lipofectin and 6 ml of distilled water, and add at room temperature. Let stand for minutes. On the other hand, 10 6 IX Sf9 cells were suspended in 2 ml of Sf900-II medium (manufactured by Gibco) and placed in a plastic culture dish having a diameter of 35πιιη. The total amount of the above mixed solution of plasmid DNA, linear baculovirus DNA and lipofectin was added thereto, and the mixture was cultured at 27 ° C for 3 days. Then, 1 ml of the culture supernatant containing the recombinant virus was collected. To the Petri dish, 1 ml of fresh Sf900-II medium was added, and the mixture was further cultured at 27 ° C for 3 days to obtain another 1.5 ml of the culture supernatant containing the recombinant virus. Next, each of the recombinant viruses obtained for use in protein expression was propagated by the following procedure.
Sf9 細胞 2X107偭を 10mlの Sf900-II培地に懸濁し、 175cm2フラスコ (グライ ナ一社製) に入れて室温で 1 時間放置して細胞をフラスコに付着させた。 放置 後上清を除き、 新たに TMN- FHインセクトメディウム 15mlと上記の組み換えウイ ルスを含む培養上清のうち lml を加え 27°Cで 3日間培養した。 培養後上清を 1, 500Xgで 10分間遠心分離して細胞を除き、 蛋白質発現に使用する組み換えゥ ィルス溶液を得た。 2 × 10 7 S of Sf9 cells were suspended in 10 ml of Sf900-II medium, placed in a 175 cm 2 flask (manufactured by Grainer Co., Ltd.) and left at room temperature for 1 hour to allow the cells to adhere to the flask. After standing, the supernatant was removed, and 15 ml of TMN-FH Insect Medium and 1 ml of the culture supernatant containing the recombinant virus were added and cultured at 27 ° C for 3 days. After the culture, the supernatant is centrifuged at 1,500Xg for 10 minutes to remove the cells, and the recombinant used for protein expression is removed. A virus solution was obtained.
得られた組み換えウィルス溶液についてウィルスの力価をパキュ口ゴールド ス夕—夕—キット 'マニュアル (ファーミンジェン社製) に記載の方法で算定 した。  The virus titer of the obtained recombinant virus solution was calculated by the method described in PacuMouth Golds Evening-Evening-Kit 'Manual (Pharmingen).
Sf9細胞 6X106個を 4mlの Sf900- Π培地に懸濁し、直径 60腿の細胞培養用プラス チックシャーレに入れ、 室温で 1時間放置して細胞をシャーレに付着させた。 次 に上清を除き新たに Sf 900- II培地 400 lと Sf 900-11培地で 103倍に希釈した上記 組み換えゥィルス溶液を加え室温で 1時間放置した後、 培地を除き 5m 1の 1 氐融 点ァガ口一ス [ァガ一プラーク ·ァガロース(Agai^plaque Agarose) ファ一ミ ンジェン社製] を含む培地 [滅菌した ¾ァガープラークプラス,ァガ口一ス水 溶液 lmlと TMN-FHインセクトメディウム 4mlを混和し、 42°Cに保温したもの] を 該シャーレに流し込んだ。 室温で 15分間放置した後、 乾燥を防ぐためビニルテ ープをシャーレにまき、 密閉可能なプラスチック製容器に該シャーレを入れ、 27°Cで 6日間培養した。 該シャーレに 0.01% ニュートラルレッドを含む PBSlmlを 加えさらに 1日間培養した後、 出現したプラークの数を数えた。 以上の操作より 該組み換えウィルス溶液はいずれも約 1X107プラークフォーミングュニット ( 以下、 PFU と称す) /mlのウィルスを含んでいることがわかった。 Six 6 × 10 6 Sf9 cells were suspended in 4 ml of Sf900-II medium, placed in a 60-cell diameter plastic culture dish for cell culture, and left at room temperature for 1 hour to allow the cells to adhere to the dish. After 1 hour at room temperature was added the recombinant Wirusu solution diluted 10 3 fold with freshly Sf 900- II medium 400 l and Sf 900-11 media supernatant was removed to the next, the first 5 m 1 medium was removed氐Medium containing melting point [agai plaque agarose (Agai ^ plaque Agarose) manufactured by PfaMingen] [Sterile lagaplaque plus, lml agarose water solution and TMN- The mixture was mixed with 4 ml of FH Insect Medium and kept at 42 ° C.] into the Petri dish. After standing at room temperature for 15 minutes, a vinyl tape was spread on a Petri dish to prevent drying, the Petri dish was placed in a sealable plastic container, and cultured at 27 ° C for 6 days. After adding PBSlml containing 0.01% neutral red to the petri dish and further culturing for 1 day, the number of plaques appeared was counted. From the above operations, it was found that each of the recombinant virus solutions contained about 1 × 10 7 plaque forming units (hereinafter, referred to as PFU) / ml of virus.
(3) 昆虫細胞における可溶性ヒ卜 VEGF受容体 KDR7N- Fcの発現および精製 可溶性ヒト VEGF受容体 KDR-7N-FC は以下のようにして得た。 High Five細胞 4 X107個を 175cm2フラスコ (グライナ一社製)に EX-CELL™400培地(JRH Bioscience 社製) 30mlに懸濁し、 室温で 1時間放置し、 フラスコに付着させた。 10(2) で得 られたトランスファ一ベクタ一 pVL- KDR- 7N-FC由来の組み換えウィルスを約 1〜 3X108PFl)/mlの濃度で含む溶液を lml加え、室温で 2時間感染させた。培養上清を 除き新たに 30mlの EX-CELL™400培地 30mlを加え 27°Cにて 3〜4日間培養した。培養 終了後、 培養上清を回収し 1, 500Xgで 10分間遠心分離を行い上清を得た。 (3) Expression and purification of soluble human VEGF receptor KDR7N-FC in insect cells The soluble human VEGF receptor KDR-7N-FC was obtained as follows. 4 × 10 7 High Five cells were suspended in 30 ml of EX-CELL ™ 400 medium (manufactured by JRH Bioscience) in a 175 cm 2 flask (manufactured by Grainer), allowed to stand at room temperature for 1 hour, and allowed to adhere to the flask. 10 The solution lml added including transfer one vector one pVL-KDR-7N-FC-derived recombinant virus obtained in (2) at a concentration of about 1~ 3X10 8 PFl) / ml, were infected for 2 hours at room temperature. The culture supernatant was removed and a fresh 30 ml of EX-CELL ™ 400 medium was added, followed by culturing at 27 ° C for 3 to 4 days. After completion of the culture, the culture supernatant was collected and centrifuged at 1,500 X g for 10 minutes to obtain a supernatant.
カラムに約 lmlのプロセップ A [Bioprocessing社製] を充填し、 20 mMリン酸 ナトリウム緩衝液 (PH7. 2) 10mlを用いて lml/分の流速でカラムを洗浄した。 洗 浄後、 上述で調製した可溶性ヒ卜 VEGF受容体 KDR- 7N-FCを含む培養液 760mlを 100ml/時の流速でプロセップ Aカラムに通塔した。 さらに 20 リン酸ナトリウ ム緩衝液 (PH7. 2) 10mlを用いて lml/分の流速で洗浄した後、 50mMクェン酸緩衝 液 (pH3) を 7ml通塔し、 プロセップ Aカラムに吸着した蛋白質の溶出を行った。 各分画に含まれる蛋白質について、 SDSポリアクリルアミドゲル電気泳動(SDS - PAGE)を行い、 可溶性ヒト VEGF受容体である可溶性ヒト KDR-7N- Fcを溶液として 7 ml (蛋白質濃度 281 /z g/ml) を得た。 Fill the column with about 1 ml of Prosep A [Bioprocessing] and add 20 mM phosphoric acid. The column was washed with 10 ml of sodium buffer (PH7.2) at a flow rate of 1 ml / min. After washing, 760 ml of the culture solution containing the soluble human VEGF receptor KDR-7N-FC prepared above was passed through a Prosep A column at a flow rate of 100 ml / hour. After washing with 10 ml of 20 sodium phosphate buffer (PH7.2) at a flow rate of 1 ml / min, 7 ml of 50 mM citrate buffer (pH 3) was passed, and the protein adsorbed on the Prosep A column was eluted. Was done. The protein contained in each fraction was subjected to SDS polyacrylamide gel electrophoresis (SDS-PAGE), and soluble human VEGF receptor, soluble human KDR-7N-Fc, was used as a solution in 7 ml (protein concentration 281 / zg / ml). ).
11. VEGFの VEGF受容体 KDRおよび F 11 - 1への結合の阻害 11. Inhibition of VEGF binding to VEGF receptor KDR and F11-1
5で述べた抗ヒト VEGFモノクローナル抗体の、 ヒト VEGFとヒト VEGF受容体 KDR および Fl t-1の結合阻害活性を以下の手順に従い確認した。  The activity of the anti-human VEGF monoclonal antibody described in 5 to inhibit the binding between human VEGF and human VEGF receptor KDR and Flt-1 was confirmed according to the following procedure.
96ゥエル ·マルチスクリーン一 I Pプレート (96- wel l Mul t iscreen- IP Plate ;ミリポア社製) にメタノールを 100 /i l/ゥエルで分注し、 プレート底部の PVDF 膜を親水化した。 水で洗浄後、 10で精製した可溶性ヒト VEGF受容体 KDR-7N- Fcを PBSで 4 /_i g/mlの濃度に希釈するか、 あるいは、 可溶性ヒト VEGF受容体 Fl t-1 7N Methanol was dispensed into a 96-well Multiscreen IP plate (96-well Multiscreen-IP Plate; manufactured by Millipore) at 100 / il / well to hydrophilize the PVDF membrane at the bottom of the plate. After washing with water, the soluble human VEGF receptor KDR-7N-Fc purified in step 10 is diluted with PBS to a concentration of 4 / _ig / ml, or the soluble human VEGF receptor Flt-17N
(W098/22616) を PBS で 1. 6 / g/mlの濃度に希釈して、 各 50 1/ゥェルで分注し 、 4 °Cで一晩放置して吸着させた。 プレートを洗浄後、 1 %BSA - PBS を 50 1 / ゥエル加え、 室温 1 時間反応させてプレート上に残った結合残基をブロックし た。 PBSで洗浄後、 ハイプリドーマの培養上清あるいは 0. 5M NaCl を含む 1%BSA- PBS溶液で 3倍希釈系列 (0. 005〜4 2 g/ml) を調製した精製モノクロ一ナ ル抗体 KM1544および KM1548を 50 i l/ゥエルで分注し、 さらに、 4ng/mlの1251標識 ヒ卜 VEGF (アマシャム社製) を 1 / ゥエル加え室温で 1. 5 時間反応させた。 0. 05%tween - PBSで洗浄後、 50°Cにてゥエルを乾燥させ、 マイクロシンチ -0 (パ ッカード社製) を 10 // 1/ゥエル加え、 トップカウント (パッカード社製) を用 いて、 各ゥエルに結合した 標識ヒト VEGFの放射活性を測定した。 (W098 / 22616) was diluted with PBS to a concentration of 1.6 / g / ml, dispensed at 50 1 / well, and allowed to stand at 4 ° C overnight to adsorb. After washing the plate, 50% / well of 1% BSA-PBS was added, and the mixture was reacted at room temperature for 1 hour to block the binding residues remaining on the plate. After washing with PBS, purified monoclonal antibody KM1544 prepared in a 3-fold dilution series (0.005 to 42 g / ml) with the culture supernatant of hybridoma or 1% BSA-PBS solution containing 0.5M NaCl and KM1548 was dispensed in 50 il / Ueru was further 4 ng / ml of 125 1-labeled human Bok VEGF (manufactured by Amersham) 1 / Ueru added to 1.5 hours at room temperature. After washing with 0.05% tween-PBS, dry the wells at 50 ° C, add 10/1/1 / well of Microscint-0 (Packard), and use Topcount (Packard). The radioactivity of labeled human VEGF bound to each well was measured.
結果を図 5に示す。 精製モノクローナル抗体 KM1544および腹 1548はともに、 濃 度依存的にヒト VEGFとヒ卜 VEGF受容体 KDRの結合を阻害した。 ヒ卜 VEGFとヒト VEGF受容体 KDRの結合の 50%阻害を示す精製モノク口一ナル抗体 KM1544および KM1548の濃度 (IC50) は 0. 06および 0. 21 g/mlであった。 さらに、 KM1544およ び KM1548はともに、 濃度依存的にヒト VEGFとヒト VEGF受容体 Fi t- 1の結合を阻害 した。 Fig. 5 shows the results. Both purified monoclonal antibody KM1544 and belly 1548 The binding of human VEGF to the human VEGF receptor KDR was inhibited in a degree-dependent manner. The concentrations (IC50) of the purified monoclonal antibodies KM1544 and KM1548 showing 50% inhibition of binding between human VEGF and human VEGF receptor KDR were 0.06 and 0.21 g / ml. Furthermore, both KM1544 and KM1548 inhibited the binding of human VEGF to the human VEGF receptor Fit-1 in a concentration-dependent manner.
ヒト VEGFとヒ卜 VEGF受容体 Fi t- 1の結合の 50%阻害を示す精製モノクロ一ナ ル抗体 KM1544および KM1548の濃度 (IC50) は 0. 23および 0. であった。 一方、 陰性コントロール抗体としては、 マウス IgGlクラスに属し、 かつヒト VEGFに反応せず、 シァリルルイス Aに結合する、 モノクローナル抗体 KM231 [ァ ンチキャンサー · リサーチ(Ant icancer Research) , _10, 1579 (1990) ] を用い た。 KM231では全く阻害活性を示さなかった。 さらに、 コントロール抗体として 、 マウス igG2bクラスに属し、 かつヒト VEGFに反応せず、 ヒ卜 VEGF受容体 Fl t-1 に結合する中和モノクローナル抗体 ΚΜΠ50 (W098/22616) を用いた。 ΚΜΠ50は、 濃度依存的にヒ卜 VEGFとヒト VEGF受容体 Fi t- 1の結合のみを選択的に阻害した。 12. VEGF受容体 Fi t- 1および KDRの自己リン酸化阻害  The concentrations (IC50) of purified monoclonal antibodies KM1544 and KM1548 showing 50% inhibition of binding between human VEGF and human VEGF receptor Fit-1 were 0.23 and 0. On the other hand, as a negative control antibody, a monoclonal antibody KM231 which belongs to the mouse IgGl class and does not react with human VEGF but binds to Cyaryl Lewis A [Anticancer Research, _10, 1579 (1990)] Was used. KM231 did not show any inhibitory activity. Furthermore, as a control antibody, a neutralizing monoclonal antibody (W098 / 22616) that belongs to the mouse igG2b class, does not react with human VEGF, and binds to the human VEGF receptor Flt-1 was used. # 50 selectively inhibited only the binding between human VEGF and the human VEGF receptor Fit-1 in a concentration-dependent manner. 12. Inhibition of autophosphorylation of VEGF receptor Fit-1 and KDR
5で述べた抗ヒ卜 VEGFモノクローナル抗体による VEGF受容体 FU-1および KDR の自己リン酸化阻害活性を以下の手順に従い確認した。  The autophosphorylation inhibitory activity of VEGF receptor FU-1 and KDR by the anti-human VEGF monoclonal antibody described in 5 was confirmed according to the following procedure.
Fi t- 1自己リン酸化: ヒト VEGF受容体 Fi t- 1発現 NIH3T3細胞(NIH3T3-FU-1) [ オンコジーン(Oncogene) , 10, 135 (1995) ] を 10%FCS- DMEM培地 20inlを用いて 175cm2フラスコにて 5〜10 X 106cel l s/フラスコになるまで培養した。 その後、 培 地を 0. 1 %FCS-DMEM 20 mlに交換し、 2晚培養した。 培養後、 0. 1 mMのォルトバ ナジン酸 (V) ナトリウムを含む 0. 1 %FCS- DMEM 10 mlに交換し、 抗 VEGF中和抗 体 KM1544を 10 g/mlとなるように添加して氷上で 30分間培養した。 培養後、 該 培地にヒト VEGF (R&D社製)を 20 ng/mlとなるように添加し、 氷上で 45分間培養 した。培養後、フラスコから培地を除去し、細胞破碎緩衝液 [20 mM Hepes (pH7. 4) , 150 mM NaCl, 0. 2% Tr i tonX-100, 10% Glycero l, mM Na3V04, 10 mM Na4P207, 5 iM EDTA, 50 DI NaF, 1.5 mM MgCl2, 1 mM PMSF, 10 /ml aprotinin, 5 /ml leupeptin] を 2ml加え、 細胞を破砕し、 細胞破砕液を得た。細胞破碎液を 15, 000 X gで 10分間遠心分離を行い、 上清にャギ抗マウス I gG (H+L)セファロース 4B (Zymed Laboratories社製)を 100 1添加し 4°Cで 1時間穏やかに混合した。 5, 000 Xgで 1分間遠心分離後、 上清にャギ抗マウス〖gG(H+L)セファロ一ス 4Bを 30 l、 マウス抗 Flt-1モノクローナル抗体 KM1730および ΚΜΠ37 (W098/22616) を各 10 gずつ添加し、 4°Cで 1晚穏やかに混合し、 免疫沈降を行った。 5, 000Xgで 1分間 遠心分離を行い、 セファロースを回収し、 1mlの細胞破碎緩衝液で洗浄した。 洗 浄操作は繰り返して 6回行った。 洗浄後、 回収したセファロ一スから 30 1の 2- メルカプトエタノールを含む SDS-PAGE用サンプルバッファー (2倍濃度) にて吸 着蛋白質を溶出し、 全量を SDS-PAGE法により泳動、 ウエスタンブロッテイング に供した。 ブロッティング後の PVDF膜は 1%BSA-PBSに室温で 30分間反応させブロ ッキング操作を行い、 ゥサギ抗リン酸化チロシン抗体 (2 ig/ml) (Upstate Biotechnology Incoi^otated社製)を 4°Cにて 1晚反応させた。 0.05% Tween-PBS で洗浄し、 ペルォキシダーゼ標識したブ夕抗ゥサギ IgG (103倍希釈: Dako社製) を室温で 1時間反応させた。 Fit-1 autophosphorylation: Human VEGF receptor Fit-1 expression NIH3T3 cells (NIH3T3-FU-1) [Oncogene, 10, 135 (1995)] in 20% of 10% FCS-DMEM medium The cells were cultured in a 175 cm 2 flask until they reached 5 to 10 × 10 6 cels / flask. After that, the medium was replaced with 20 ml of 0.1% FCS-DMEM and cultured for 2 晚. After the culture, replace with 10 ml of 0.1% FCS-DMEM containing 0.1 mM sodium orthovanadate (V), add the anti-VEGF neutralizing antibody KM1544 to 10 g / ml, and place on ice. For 30 minutes. After the culture, human VEGF (manufactured by R & D) was added to the medium at a concentration of 20 ng / ml, and the cells were cultured on ice for 45 minutes. After incubation, the medium was removed from the flask, the cell Yabu碎buffer [20 mM Hepes (pH7. 4 ), 150 mM NaCl, 0. 2% Tr i tonX-100, 10% Glycero l, mM Na 3 V0 4, 10 mM Na 4 P 2 0 7 , 5 2 ml of iM EDTA, 50 DI NaF, 1.5 mM MgCl 2 , 1 mM PMSF, 10 / ml aprotinin, 5 / ml leupeptin] were added, and the cells were crushed to obtain a cell lysate. The cell lysate is centrifuged at 15,000 X g for 10 minutes, and 100 µl of goat anti-mouse IgG (H + L) Sepharose 4B (Zymed Laboratories) is added to the supernatant for 1 hour at 4 ° C. Mix gently. After centrifugation at 5,000 Xg for 1 minute, 30 l of goat anti-mouse 〖gG (H + L) Sepharose 4B and mouse anti-Flt-1 monoclonal antibodies KM1730 and ΚΜΠ37 (W098 / 22616) were added to the supernatant. 10 g each was added, and mixed gently at 4 ° C for 1C to perform immunoprecipitation. After centrifugation at 5,000 Xg for 1 minute, Sepharose was collected and washed with 1 ml of cell disruption buffer. The washing operation was repeated six times. After washing, the adsorbed protein was eluted from the collected Sepharose with SDS-PAGE sample buffer (2x concentration) containing 301 2-mercaptoethanol, and the entire amount was electrophoresed by SDS-PAGE, Western blotting. Was served. After blotting, the PVDF membrane was reacted with 1% BSA-PBS at room temperature for 30 minutes to perform a blocking operation, and ゥ a heron anti-phosphorylated tyrosine antibody (2 ig / ml) (Upstate Biotechnology Incoiotot) at 4 ° C. 1 晚 reaction. Washed with 0.05% Tween-PBS, Peruokishidaze labeled blanking evening anti Usagi IgG (10 3 fold dilutions: Dako Corp.) was reacted at room temperature for 1 hour.
0.05% Tween- PBSで洗浄し、 ECL™ Western blotting detection reagents (ァ マシャム社製) を用いて、 ゥサギ抗リン酸化チロシン抗体が結合したバンドを 検出した。  After washing with 0.05% Tween-PBS, the band bound to the heron anti-phosphorylated tyrosine antibody was detected using ECL ™ Western blotting detection reagents (Amersham).
KDR自己リン酸化:ヒト VEGF受容体 KDR発現 NIH3T3細胞(NIH3T3-KDR) [オンコ ジーン(Oncogene), 10, 135 (1995)] を 10% FCS-DMEM培地 20mlを用いて 175cm2 フラスコにて 5〜10X106cells/フラスコになるまで培養した。 培養後、 0. ImMの オルトバナジン酸(V)ナトリウムを含む 0.1% FCS- DMEM 10mlに交換し、抗 VEGF 中和抗体 KM1544を 10 i g/mlとなるように添加して氷上で 30分間前処理を行つた。 前処理後、 ヒト VEGF (R&D社製)を 50ng/mlとなるように添加し、 氷上で 45分間刺 激を行った。 刺激後、 フラスコから培地を除去し、 細胞破砕緩衝液 [20mMHepes (pH7.4) , 150mM NaCl, 0.2% TritonX-100, 10% Glycerol, 2 mM Na3V04, 10 mM Na4P207, 5iM EDTA, 50 M NaF, 1.5mM MgCl2, lmM PMSF, 10 g/ml aprotinin, 5/xg/ml leupeptin] を 2ml加え、 細胞を破砕し、 細胞破砕液を得た。 細胞破砕 液を 15, OOOXgで 10分間遠心分離を行い、 上清にャギ抗マウス IgG(H+L)セファロ ース 4B (Zymed Laboratories社製)を 100 1添加し 4°Cで 1時間穏やかに混合した 。 5, OOOXgで 1分間遠心分離後、 上清にャギ抗マウス IgG(H+L)セファロ一ス 4Bを 30 xK マウス抗 KDRモノクローナル抗体 KM1668 (FERM BP-6216) を 添加し 、 4°Cで 1晚穏やかに混合し、 免疫沈降を行った。 5, OOOXgで 1分間遠心分離を行 い、 セファロ一スを回収し、 回収したセファロ一スを lmlの細胞破碎緩衝液で洗 浄した。 遠心分離による洗浄操作は繰り返して 6回行った。 洗浄後、 2-メルカプ トェタノ一ルを含む SDSポリアクリルァミドゲル電気泳動用サンプルバッファ 一 (2倍濃度) 30//1で回収したセファロ一スから吸着蛋白質を溶出し、 全量を SDSポリアクリルアミ'ドゲル電気泳動およびウエスタンブロッテイングに供し た。 KDR Autophosphorylation human VEGF receptor KDR expressing NIH3T3 cells (NIH3T3-KDR) [oncogene (Oncogene), 10, 135 ( 1995)] to 5 in 175cm 2 flasks with 10% FCS-DMEM medium 20ml The cells were cultured until they reached 10 × 10 6 cells / flask. After cultivation, replace with 0.1 ml of 0.1% FCS-DMEM containing 0.1% ImM sodium orthovanadate (V), add anti-VEGF neutralizing antibody KM1544 to 10 ig / ml, and pre-treat on ice for 30 minutes Went. After pretreatment, human VEGF (manufactured by R & D) was added to a concentration of 50 ng / ml, and stimulation was performed on ice for 45 minutes. After stimulation, remove the medium from the flask and add cell disruption buffer [20 mM Hepes (pH7.4), 150mM NaCl, 0.2 % TritonX-100, 10% Glycerol, 2 mM Na 3 V0 4, 10 mM Na 4 P 2 0 7, 5iM EDTA, 50 M NaF, 1.5mM MgCl 2, lmM PMSF, 2 g of [10 g / ml aprotinin, 5 / xg / ml leupeptin] was added to disrupt cells to obtain a cell lysate. Centrifuge the cell lysate at 15, OOOXg for 10 minutes, and add 100 1 of goat anti-mouse IgG (H + L) Sepharose 4B (manufactured by Zymed Laboratories) to the supernatant, and gentle at 4 ° C for 1 hour Mixed. 5.After centrifugation at OOOXg for 1 minute, add goat anti-mouse IgG (H + L) Sepharose 4B to the supernatant and add 30 xK mouse anti-KDR monoclonal antibody KM1668 (FERM BP-6216) to the supernatant at 4 ° C. 1 晚 The mixture was gently mixed and immunoprecipitated. 5. Centrifugation was performed for 1 minute at OOOXg to collect the Sepharose, and the collected Sepharose was washed with 1 ml of the cell disruption buffer. The washing operation by centrifugation was repeated six times. After washing, the adsorbed protein is eluted from the Sepharose recovered at 30 // 1 (2x concentration) SDS polyacrylamide gel electrophoresis sample buffer containing 2-mercaptoethanol, and the whole amount is SDS polyacrylamide. The samples were subjected to amid gel electrophoresis and western blotting.
ブロッティング後の PVDF膜は 1%BSA-PBSに室温で 30分間反応させブロッキン グ操作を行い、 ゥサギ抗リン酸化チロシン抗体
Figure imgf000048_0001
(Upstate
After blotting, the PVDF membrane was reacted with 1% BSA-PBS at room temperature for 30 minutes to perform blocking, and 、 a heron anti-phosphorylated tyrosine antibody.
Figure imgf000048_0001
(Upstate
Biotechnology Incorpotated社製)を 4°Cにて 1晚反応させた。 0.05% Tween-PBS で洗浄し、 ペルォキシダーゼ標識したブ夕抗ゥサギ IgG (103倍希釈: Dako社製) を室温で 1時間反応させた。 Biotechnology Incorpotated) at 4 ° C for 1 晚. Washed with 0.05% Tween-PBS, Peruokishidaze labeled blanking evening anti Usagi IgG (10 3 fold dilutions: Dako Corp.) was reacted at room temperature for 1 hour.
0.05% Tween-PBSで洗浄し、 ECL™Western blotting detection reagents (ァ マシャム社製) を用いて、 ゥサギ抗リン酸化チロシン抗体が結合したバンドを 検出した。  After washing with 0.05% Tween-PBS, the band bound to the heron anti-phosphorylated tyrosine antibody was detected using ECL ™ Western blotting detection reagents (Amersham).
結果を図 6に示す。 Fit- 1および KDRは VEGF添加時に特異的に自己リン酸化が認 められたが、 抗ヒト VEGF中和モノクローナル抗体 KM1544添加により、 Flt-1およ び KDRの自己リン酸化が阻害されることが示された。  Fig. 6 shows the results. Although autophosphorylation was specifically observed in Fit-1 and KDR when VEGF was added, autophosphorylation of Flt-1 and KDR could be inhibited by the addition of anti-human VEGF neutralizing monoclonal antibody KM1544. Indicated.
13.血管内皮細胞の増殖阻害 48ウェルマイクロタイタ一プレート (岩城硝子社製) に 5 % (V/V) FCS、 10 ng/ mlのヒト組み換え型上皮細胞成長因子、 1 g/mlのハイドロコーチゾンを添加し た E- BM培地 (以下、 基礎培地という ;クラボウ社製) に浮遊させたヒト皮膚由 来微小血管内皮細胞 HMVEC (クラボウ社製) を 4000個/ 800 1/ゥエルになるよう に加えた。 次に、 上記基礎培地でそれぞれ 5倍希釈系列 (終濃度 0. 02〜12. 5 /z g/ml) に調製した精製モノクローナル抗体 KM1544、 KM1548, KM1543および KM1540 を 100 /^ 1/ゥエルで添加し、 さらに、 上記基礎培地で希釈したヒト VEGF (R&D社 製)を 100 /x l/ゥエル (終濃度 10ng/ml) で添加し、 37°C C02インキュベータ一中 で 3〜4日間培養した。 培養後、 培養上清を除去し、 200 1の10%?じ5添加のフヱ ノールレッド除去 RPMI 1640 (ギブコ社製) を各ゥエルに加え、 さらに、 の 細胞発色用試薬 (Ce l l Coun t ing Ki t;同仁化学社製) を加え、 37°Cで 2〜3時間 培養した。 培養終了後、 を EIA用 96ウェルマイクロタイタ一プレートに移 し、 0D450M1の吸光度を測定した。 10ng/mlの VEGF添加時の HMVECの増殖を 100%、 VEGF非添加時の HMVECの増殖を 0%とした相対的な細胞増殖活性を示した。 13.Inhibition of vascular endothelial cell growth E-BM medium containing 48% microtiter plate (Iwaki Glass) supplemented with 5% (V / V) FCS, 10 ng / ml human recombinant epidermal growth factor, and 1 g / ml hydrocortisone The human skin-derived microvascular endothelial cells HMVEC (Kurabo Co., Ltd.) suspended in a basal medium (Kurabo Co., Ltd.) were added at 4000 cells / 800 1 / well. Next, purified monoclonal antibodies KM1544, KM1548, KM1543, and KM1540, each prepared in a 5-fold dilution series (final concentration: 0.02 to 12.5 / zg / ml) with the above basal medium, were added at 100 / ^ 1 / well. further, the basal medium human VEGF diluted with a (R & D) was added at 100 / xl / Ueru (final concentration 10 ng / ml), and cultured for 3-4 days in 37 ° C C0 2 incubator scratch. After culturing, remove the culture supernatant, add RPMI 1640 (manufactured by Gibco) containing 200% of 10% phenol red to each well, and further add Cell Reagent for Cell Coloring (Cell Culture). ing Kit (manufactured by Dojin Chemical Co., Ltd.) and cultured at 37 ° C. for 2 to 3 hours. After completion of the culture, was transferred to a 96-well microtiter plate for EIA, and the absorbance of 0D450M1 was measured. Relative cell proliferation activity was shown, where the proliferation of HMVEC when 10 ng / ml VEGF was added was 100%, and the proliferation of HMVEC without VEGF was 0%.
結果を図 7に示す。 KM1544, M1548および KM1543は濃度依存的に VEGF依存的 H V ECの増殖を阻害した。 一方、 K 1540は全く増殖阻害活性を示さなかった。 完全 に増殖を抑制するのに必要な抗体濃度は KM1548は 0. 1 / g/ml (2. 67) , KM1544は 0. /il (13. 33) (カツコ内は VEGFに対する抗体のモル比)であった。 KM1543は 濃度依存的に VEGF依存的な HMVECの増殖を阻害したが、 部分的な阻害であった。 14. in vivo抗腫瘍効果  Fig. 7 shows the results. KM1544, M1548 and KM1543 inhibited VEGF-dependent HV EC proliferation in a concentration-dependent manner. On the other hand, K1540 did not show any growth inhibitory activity. The antibody concentration required to completely suppress proliferation is 0.1 / g / ml (2.67) for KM1548 and 0.1 / il (13.33) for KM1544 (the molar ratio of antibody to VEGF in Kakko) Met. KM1543 inhibited VEGF-dependent proliferation of HMVEC in a concentration-dependent manner, but partially. 14. In vivo antitumor effect
約 8腿3に切り出したヒト繊維肉腫 HT- 1080 (ATCC CCL- 121)を Balb/c nu/nuヌ一 ドマウス (日本クレア社より購入; 6〜8週令の雄性種) の腹側皮下に移植したHuman fibrosarcoma HT-1080 (ATCC CCL-121) cut into approximately 8 thighs 3 was placed subcutaneously on the ventral side of Balb / c nu / nu nude mice (purchased from CLEA Japan; 6-8 week old male species) Transplanted
(移植日 =Day0) 。 初期癌モデルでは 1、 2、 3、 4、 8、 9、 1 0、 1 1、(Transplant date = Day 0). 1, 2, 3, 4, 8, 9, 10, 0, 1 1,
1 4および 15日目に、 PBSに溶解した抗ヒ卜 VEGFモノクローナル抗体 KM1544ある いは KM1548 (10, 50, マウス/日) を 0. 2ml静脈内投与し、 経日的に腫瘍 体積 [l/2 X ab2, a (讓) :長径、 b (mm):短径]を測定した。 陰性コントロール抗体と して、 抗体クラスの一致したマウス IgGl型のコントロールモノクローナル抗体 であり、 ラデイシコール UCS1006 (特開平 6- 298764) に反応するが、 ヒト VEGFに は反応しないモノクローナル抗体、 および PBSのみを抗ヒ卜 VEGFモノクローナル 抗体と同様に投与した。 進行癌モデルでは、 腫瘍移植 8日後 (腫瘍体積が 50〜 200顯 3に達した時点) より、 9、 10、 1 1、 14、 15、 16、 17、 18、 21日目に、 上述と同様に抗体を静脈内投与した。 各抗体投与群にはそれぞれ 5 匹のマウスを用いた。 抗 VEGFモノクローナル抗体の腫瘍増殖抑制活性を T/C (治 療群の体積/対照群の体積) で判定した。 On days 14 and 15, 0.2 ml of the anti-human VEGF monoclonal antibody KM1544 or KM1548 (10, 50, mouse / day) dissolved in PBS was intravenously administered, and the tumor volume was increased over time. 2 X ab 2 , a (j): major axis, b (mm): minor axis] were measured. With a negative control antibody A mouse IgGl control monoclonal antibody of the same antibody class, which reacts with Radicicol UCS1006 (Japanese Patent Laid-Open No. 6-298764) but does not react with human VEGF, and uses only PBS as an anti-human VEGF monoclonal antibody. The administration was performed in the same manner as the antibody. In the advanced cancer model, from day 8 after tumor implantation (when the tumor volume reaches 50 to 200 episodes 3 ), on days 9, 10, 11, 14, 15, 16, 17, 18, and 21, The antibody was administered intravenously. Five mice were used for each antibody administration group. Tumor growth inhibitory activity of the anti-VEGF monoclonal antibody was determined by T / C (volume of treatment group / volume of control group).
結果を図 8に示す。 初期癌モデルにおいては、 腫瘍移植 25日目の腫瘍体積は、 KM1544の 10、 50、 100 zg投与群、 および、 KM1548の 10、 50、 100 ig投与群にお いて優位に抑制され、 T/C値はそれぞれ 0.44、 0.14、 0.11および 0.48、 0.17、 0.16 であった。  Fig. 8 shows the results. In the early cancer model, the tumor volume on the 25th day after tumor implantation was significantly suppressed in the 10, 50, and 100 zg administration groups of KM1544 and the 10, 50, and 100 ig administration groups of KM1548, and T / C The values were 0.44, 0.14, 0.11 and 0.48, 0.17, 0.16, respectively.
一方、 進行癌モデルにおいては、 腫瘍移植 33日目の腫瘍体積は、 K 1544の 10、 50、 lOOjLtg投与群、 および、 KM1548の 10、 50、 100/ g投与群において優位に抑 制され、 T/C値はそれぞれ 0.63、 0.44、 0.33および 0.77、 0.44、 0.22であった。 以上の結果から、 初期癌および進行癌モデルにおいて、 KM1544および KM1548は 抗腫瘍効果を示すことが明らかとなつた。  On the other hand, in the advanced cancer model, the tumor volume on the 33rd day after tumor implantation was significantly suppressed in the K1544 10, 50, lOOjLtg administration group and the KM1548 10, 50, 100 / g administration group, and T The / C values were 0.63, 0.44, 0.33 and 0.77, 0.44, 0.22, respectively. From the above results, it has been clarified that KM1544 and KM1548 show antitumor effects in early cancer and advanced cancer models.
図 9には、 KM1544の初期癌モデルおよび進行癌モデルにおける抗腫瘍効果を経 日的に示したものである。 KM1544は 2つのモデルにおいて投与量依存的に抗腫瘍 効果を示すことが明らかとなつた。  FIG. 9 shows the antitumor effect of KM1544 in the early cancer model and the advanced cancer model over time. It was revealed that KM1544 exhibited an antitumor effect in two models in a dose-dependent manner.
進行癌モデルにおいて抗体の投与スケジュールによる抗腫瘍効果を検討した。 投与スケジュールは腫瘍移植 7日目より 5日間連続投与および 14日目より 5日間 連続投与 (50、 lOO ig/マウス/日) 、 7日目より 2日間隔で計 4回投与 (125、 250 ig/マウス/日) 、 7日目より週 1回投与 X2週間 (25、 500 g/マウス/日) の 3種 類を検討した。  The antitumor effect of the administration schedule of the antibody was examined in an advanced cancer model. The dosing schedule was tumor administration for 5 consecutive days from day 7 and continuous administration for 5 days from day 14 (50, 100 ig / mouse / day), and a total of 4 administrations at 2 day intervals from day 7 (125, 250 ig) / Mouse / day) and once weekly administration from day 7 X 2 weeks (25, 500 g / mouse / day).
結果を図 10に示す。 KM1544は 3種類の投与スケジュールにおいて T/Cは 0.17〜 0. 24とほぼ同等の抗腫瘍効果を示した。 この結果から KM1544は週 1回投与でも 5 日間連続投与と同等の抗腫瘍効果を示すことから臨床上非常に有用である可能 性を示している。 The results are shown in FIG. KM1544 has T / C of 0.17 ~ The antitumor effect was almost equivalent to 0.24. These results indicate that KM1544 is extremely clinically useful because it shows the same antitumor effect even if administered once a week as continuous administration for 5 days.
産業上の利用可能性 Industrial applicability
本発明により、 ヒト VEGFに結合し、 かつヒト VEGFがヒト VEGF受容体 KDR及び F - 1への結合を阻害することを特徴とするモノクローナル抗体が提供される。 本発明のモノクローナル抗体は固形腫瘍の増殖もしくは転移形成、 慢性関節リ ユウマチにおける関節炎、 糖尿病性網膜症、 未熟児網膜症および乾鮮など VEGF が病態の進展、 悪性化に関与する疾患の診断あるいは治療に有用である。  According to the present invention, there is provided a monoclonal antibody characterized by binding to human VEGF and inhibiting binding of human VEGF to human VEGF receptors KDR and F-1. The monoclonal antibody of the present invention can be used for the diagnosis or treatment of VEGF-related diseases, such as proliferation or metastasis of solid tumors, arthritis in rheumatoid arthritis, diabetic retinopathy, retinopathy of prematurity, and xerogeneity, in which the disease state is involved in the progression and malignancy of VEGF. Useful for
「配列表フリーテキス卜」  "Sequence List Free Text"
配列番号 1一人工配列の説明:合成 DNA  SEQ ID NO: 1 Description of Artificial Sequence: Synthetic DNA
配列番号 2—人工配列の説明:合成 DNA  SEQ ID NO: 2—Description of Artificial Sequence: Synthetic DNA
配列番号 3—人工配列の説明:合成 DM  SEQ ID NO: 3—Description of Artificial Sequence: Synthetic DM

Claims

請求の範囲 The scope of the claims
1. ヒト VEGFに結合し、 かつヒト VEGF受容体 KDR及び F i t- 1へのヒト VEGFの結合 を阻害するモノクロ一ナル抗体。  1. A monoclonal antibody that binds to human VEGF and inhibits the binding of human VEGF to human VEGF receptor KDR and Fit-1.
2. モノクローナル抗体が、 マウス I gGlサブクラスに属するモノクローナル抗 体である、 請求項 1記載のモノクローナル抗体。  2. The monoclonal antibody according to claim 1, wherein the monoclonal antibody is a monoclonal antibody belonging to the mouse IgGl subclass.
3. モノクローナル抗体が、 KM1544または KM1548である請求項 2記載のモノク ローナル抗体。  3. The monoclonal antibody according to claim 2, wherein the monoclonal antibody is KM1544 or KM1548.
4. 請求項 1〜 3のいずれか 1項に記載のモノクローナル抗体を生産するハイ ブリドーマ。  4. A hybridoma that produces the monoclonal antibody according to any one of claims 1 to 3.
5. 八イブリドーマが、 八イブリドーマ KM1544 (FERM BP- 6555) または Λイブ リドーマ KM 1548 (FERM BP- 6556)である、 請求項 4記載のハイブリドーマ。  5. The hybridoma according to claim 4, wherein the hybridoma is a hybridoma KM1544 (FERM BP-6555) or a hybridoma KM 1548 (FERM BP-6556).
6. 請求項 1〜3のいずれか 1項に記載のモノクロ一ナル抗体を用い、 ヒト VEGFのヒト VEGF受容体 KDRおよび F 1 1 - 1への結合を阻害する方法。  6. A method for inhibiting binding of human VEGF to human VEGF receptor KDR and F11-1 using the monoclonal antibody according to any one of claims 1 to 3.
7. 請求項 1〜 3のいずれか 1項に記載のモノクローナル抗体を用いて、 ヒト VEGFの生物活性を阻害する方法。  7. A method for inhibiting the biological activity of human VEGF using the monoclonal antibody according to any one of claims 1 to 3.
8. 請求項 1〜3のいずれか 1項に記載のモノクローナル抗体を用いて、 ヒト VEGFを免疫学的に検出する方法。  8. A method for immunologically detecting human VEGF using the monoclonal antibody according to any one of claims 1 to 3.
9. 請求項 1〜3のいずれか 1項に記載のモノクローナル抗体を用いて、 ヒト VEGFを免疫学的に定量する方法。  9. A method for immunologically quantifying human VEGF using the monoclonal antibody according to any one of claims 1 to 3.
10. 請求項 1〜3のいずれか 1項に記載のモノクローナル抗体を用いる、 固 形腫瘍の増殖もしくは転移形成に基づく疾患、 または異常な血管新生により病 態が進行する疾患の診断方法。  10. A method for diagnosing a disease based on the growth or metastasis of a solid tumor or a disease progressing due to abnormal angiogenesis, using the monoclonal antibody according to any one of claims 1 to 3.
1 1. 請求項 1〜 3のいずれか 1項に記載のモノクローナル抗体を有効成分と する、 固形腫瘍の増殖もしくは転移形成に基づく疾患、 または異常な血管新生 により病態が進行する疾患の治療薬。  1 1. A therapeutic agent for a disease based on the growth or metastasis of a solid tumor, or a disease whose disease state progresses due to abnormal angiogenesis, comprising the monoclonal antibody according to any one of claims 1 to 3 as an active ingredient.
12. 請求項 1〜3のいずれか 1項に記載のモノクローナル抗体を有効成分と する、 固形腫瘍の増殖もしくは転移形成に基づく疾患、 または異常な血管新生 により病態が進行する疾患の診断薬。 12. The monoclonal antibody according to any one of claims 1 to 3 as an active ingredient. Diagnostic agent for diseases based on the growth or metastasis of solid tumors or whose disease progresses due to abnormal angiogenesis.
PCT/JP1999/007074 1998-12-16 1999-12-16 Antihuman vegf monoclonal antibody WO2000035956A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU16875/00A AU1687500A (en) 1998-12-16 1999-12-16 Antihuman vegf monoclonal antibody

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP35714898 1998-12-16
JP10/357148 1998-12-16

Publications (1)

Publication Number Publication Date
WO2000035956A1 true WO2000035956A1 (en) 2000-06-22

Family

ID=18452629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/007074 WO2000035956A1 (en) 1998-12-16 1999-12-16 Antihuman vegf monoclonal antibody

Country Status (2)

Country Link
AU (1) AU1687500A (en)
WO (1) WO2000035956A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1086705A1 (en) * 1998-05-20 2001-03-28 Kyowa Hakko Kogyo Co., Ltd. Vegf activity inhibitors
JP2008067710A (en) * 2003-09-10 2008-03-27 Warner-Lambert Co Llc Antibody to m-csf
EP2364732A1 (en) 2006-03-22 2011-09-14 F. Hoffmann-La Roche AG Tumor therapy with an antibody for vascular endothelial growth factor and an antibody for human epithelial growth factor receptor type 2
WO2011117329A1 (en) 2010-03-26 2011-09-29 F. Hoffmann-La Roche Ag Bispecific, bivalent anti-vegf/anti-ang-2 antibodies
WO2012022747A1 (en) 2010-08-17 2012-02-23 F. Hoffmann-La Roche Ag Combination therapy of an afucosylated cd20 antibody with an anti-vegf antibody
EP2441472A1 (en) 2006-08-21 2012-04-18 F. Hoffmann-La Roche AG Tumor therapy with an anti-VEGF antibody
US8268314B2 (en) 2008-10-08 2012-09-18 Hoffmann-La Roche Inc. Bispecific anti-VEGF/anti-ANG-2 antibodies
US9266967B2 (en) 2007-12-21 2016-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US9382323B2 (en) 2009-04-02 2016-07-05 Roche Glycart Ag Multispecific antibodies comprising full length antibodies and single chain fab fragments
US9567403B2 (en) 2013-08-06 2017-02-14 Bio-Thera Solutions, Ltd. Bispecific antibodies which bind EGFR and VEGF
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
US9688758B2 (en) 2012-02-10 2017-06-27 Genentech, Inc. Single-chain antibodies and other heteromultimers
US9695233B2 (en) 2012-07-13 2017-07-04 Roche Glycart Ag Bispecific anti-VEGF/anti-ANG-2 antibodies and their use in the treatment of ocular vascular diseases
US9879095B2 (en) 2010-08-24 2018-01-30 Hoffman-La Roche Inc. Bispecific antibodies comprising a disulfide stabilized-Fv fragment
US9890204B2 (en) 2009-04-07 2018-02-13 Hoffmann-La Roche Inc. Trivalent, bispecific antibodies
US9982036B2 (en) 2011-02-28 2018-05-29 Hoffmann-La Roche Inc. Dual FC antigen binding proteins
US9994646B2 (en) 2009-09-16 2018-06-12 Genentech, Inc. Coiled coil and/or tether containing protein complexes and uses thereof
US10106612B2 (en) 2012-06-27 2018-10-23 Hoffmann-La Roche Inc. Method for selection and production of tailor-made highly selective and multi-specific targeting entities containing at least two different binding entities and uses thereof
US10106600B2 (en) 2010-03-26 2018-10-23 Roche Glycart Ag Bispecific antibodies
US10138293B2 (en) 2007-12-21 2018-11-27 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US10323099B2 (en) 2013-10-11 2019-06-18 Hoffmann-La Roche Inc. Multispecific domain exchanged common variable light chain antibodies
WO2019129677A1 (en) 2017-12-29 2019-07-04 F. Hoffmann-La Roche Ag Anti-vegf antibodies and methods of use
US10611825B2 (en) 2011-02-28 2020-04-07 Hoffmann La-Roche Inc. Monovalent antigen binding proteins
US10633457B2 (en) 2014-12-03 2020-04-28 Hoffmann-La Roche Inc. Multispecific antibodies
US11421022B2 (en) 2012-06-27 2022-08-23 Hoffmann-La Roche Inc. Method for making antibody Fc-region conjugates comprising at least one binding entity that specifically binds to a target and uses thereof
US11618790B2 (en) 2010-12-23 2023-04-04 Hoffmann-La Roche Inc. Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787742A1 (en) * 1995-08-21 1997-08-06 MITSUI TOATSU CHEMICALS, Inc. Anti-VEGF human monoclonal antibody
JPH10245347A (en) * 1997-02-28 1998-09-14 Toagosei Co Ltd Agent for inhibiting restorage of body fluid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787742A1 (en) * 1995-08-21 1997-08-06 MITSUI TOATSU CHEMICALS, Inc. Anti-VEGF human monoclonal antibody
JPH10245347A (en) * 1997-02-28 1998-09-14 Toagosei Co Ltd Agent for inhibiting restorage of body fluid

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANTHONY P. ADAMIS ET AL.: "Inhibition of Vascular Endothelial Growth Factor Prevents Retinal Ischemia-Associated Iris Neovascularization in a Nonhuman Primate", ARCHIVES OF OPHTHALMOLOGY, vol. 114, no. 1, January 1996 (1996-01-01), pages 66 - 71, XP002924364 *
K. JIN KIM ET AL.: "Inhibition of vascular endothelial growth factor-induced angiogenesis supresses tumour growth in vivo", NATURE, vol. 362, 29 April 1993 (1993-04-29), pages 841 - 844, XP002924366 *
OSTAP MELNYK ET AL.: "Vascular Endothelial Growth Factor Promotes Tumor Dissemination by a Mechanism Distinct from Its Effect on Primary Tumor Growth", CANCER RESEARCH, vol. 56, no. 4, 15 February 1996 (1996-02-15), pages 921 - 924, XP002924365 *

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1086705A1 (en) * 1998-05-20 2001-03-28 Kyowa Hakko Kogyo Co., Ltd. Vegf activity inhibitors
EP1086705A4 (en) * 1998-05-20 2002-02-06 Kyowa Hakko Kogyo Kk Vegf activity inhibitors
US10280219B2 (en) 2003-09-10 2019-05-07 Amgen Fremont Inc. Antibodies to M-CSF
JP2011083291A (en) * 2003-09-10 2011-04-28 Warner-Lambert Co Llc Antibody to m-csf
JP2015147802A (en) * 2003-09-10 2015-08-20 ワーナー−ランバート カンパニー リミテッド ライアビリティー カンパニー Antibodies to m-csf
JP2013223509A (en) * 2003-09-10 2013-10-31 Warner-Lambert Co Llc Antibody to m-csf
US9718883B2 (en) 2003-09-10 2017-08-01 Amgen Fremont Inc. Antibodies to M-CSF
JP2008067710A (en) * 2003-09-10 2008-03-27 Warner-Lambert Co Llc Antibody to m-csf
JP2017035103A (en) * 2003-09-10 2017-02-16 ワーナー−ランバート カンパニー リミテッド ライアビリティー カンパニー Antibody to m-csf
EP2364732A1 (en) 2006-03-22 2011-09-14 F. Hoffmann-La Roche AG Tumor therapy with an antibody for vascular endothelial growth factor and an antibody for human epithelial growth factor receptor type 2
EP2441472A1 (en) 2006-08-21 2012-04-18 F. Hoffmann-La Roche AG Tumor therapy with an anti-VEGF antibody
US10927163B2 (en) 2007-12-21 2021-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US10138293B2 (en) 2007-12-21 2018-11-27 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US9266967B2 (en) 2007-12-21 2016-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US9708396B2 (en) 2008-10-08 2017-07-18 Hoffmann-La Roche Inc. Bispecific anti-VEGF/anti-ANG-2 antibodies
EP2781526A1 (en) 2008-10-08 2014-09-24 F. Hoffmann-La Roche AG Bispecific anti-VEGF/anti-ANG-2 antibodies
US8268314B2 (en) 2008-10-08 2012-09-18 Hoffmann-La Roche Inc. Bispecific anti-VEGF/anti-ANG-2 antibodies
EP2792687A1 (en) 2008-10-08 2014-10-22 F. Hoffmann-La Roche AG Bispecific anti-VEGF/anti-ANG-2 antibodies
US8703130B2 (en) 2008-10-08 2014-04-22 Hoffmann-La Roche, Inc. Bispecific anti-VEGF/anti-ANG-2 antibodies
US9382323B2 (en) 2009-04-02 2016-07-05 Roche Glycart Ag Multispecific antibodies comprising full length antibodies and single chain fab fragments
US9890204B2 (en) 2009-04-07 2018-02-13 Hoffmann-La Roche Inc. Trivalent, bispecific antibodies
US10640555B2 (en) 2009-06-16 2020-05-05 Hoffmann-La Roche Inc. Bispecific antigen binding proteins
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
US11673945B2 (en) 2009-06-16 2023-06-13 Hoffmann-La Roche Inc. Bispecific antigen binding proteins
US9994646B2 (en) 2009-09-16 2018-06-12 Genentech, Inc. Coiled coil and/or tether containing protein complexes and uses thereof
WO2011117329A1 (en) 2010-03-26 2011-09-29 F. Hoffmann-La Roche Ag Bispecific, bivalent anti-vegf/anti-ang-2 antibodies
US8945552B2 (en) 2010-03-26 2015-02-03 Hoffmann-La Roche Inc. Bispecific, bivalent anti-VEGF/anti-ANG-2 antibodies
US10106600B2 (en) 2010-03-26 2018-10-23 Roche Glycart Ag Bispecific antibodies
WO2012022747A1 (en) 2010-08-17 2012-02-23 F. Hoffmann-La Roche Ag Combination therapy of an afucosylated cd20 antibody with an anti-vegf antibody
US9879095B2 (en) 2010-08-24 2018-01-30 Hoffman-La Roche Inc. Bispecific antibodies comprising a disulfide stabilized-Fv fragment
US11618790B2 (en) 2010-12-23 2023-04-04 Hoffmann-La Roche Inc. Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery
US9982036B2 (en) 2011-02-28 2018-05-29 Hoffmann-La Roche Inc. Dual FC antigen binding proteins
US10611825B2 (en) 2011-02-28 2020-04-07 Hoffmann La-Roche Inc. Monovalent antigen binding proteins
US10793621B2 (en) 2011-02-28 2020-10-06 Hoffmann-La Roche Inc. Nucleic acid encoding dual Fc antigen binding proteins
US9688758B2 (en) 2012-02-10 2017-06-27 Genentech, Inc. Single-chain antibodies and other heteromultimers
US10106612B2 (en) 2012-06-27 2018-10-23 Hoffmann-La Roche Inc. Method for selection and production of tailor-made highly selective and multi-specific targeting entities containing at least two different binding entities and uses thereof
US11421022B2 (en) 2012-06-27 2022-08-23 Hoffmann-La Roche Inc. Method for making antibody Fc-region conjugates comprising at least one binding entity that specifically binds to a target and uses thereof
US11407836B2 (en) 2012-06-27 2022-08-09 Hoffmann-La Roche Inc. Method for selection and production of tailor-made highly selective and multi-specific targeting entities containing at least two different binding entities and uses thereof
US10683345B2 (en) 2012-07-13 2020-06-16 Roche Glycart Ag Bispecific anti-VEGF/anti-ANG-2 antibodies and their use in the treatment of ocular vascular diseases
US9695233B2 (en) 2012-07-13 2017-07-04 Roche Glycart Ag Bispecific anti-VEGF/anti-ANG-2 antibodies and their use in the treatment of ocular vascular diseases
US9567403B2 (en) 2013-08-06 2017-02-14 Bio-Thera Solutions, Ltd. Bispecific antibodies which bind EGFR and VEGF
US10323099B2 (en) 2013-10-11 2019-06-18 Hoffmann-La Roche Inc. Multispecific domain exchanged common variable light chain antibodies
US10633457B2 (en) 2014-12-03 2020-04-28 Hoffmann-La Roche Inc. Multispecific antibodies
WO2019129677A1 (en) 2017-12-29 2019-07-04 F. Hoffmann-La Roche Ag Anti-vegf antibodies and methods of use
US11820816B2 (en) 2017-12-29 2023-11-21 Hoffman-La Roche Inc. Anti-VEGF antibodies and methods of use

Also Published As

Publication number Publication date
AU1687500A (en) 2000-07-03

Similar Documents

Publication Publication Date Title
WO2000035956A1 (en) Antihuman vegf monoclonal antibody
JP3946256B2 (en) Antibody to human interleukin 5 receptor α chain
US7615215B2 (en) Anti-human VEGF receptor Flt-1 monoclonal antibody
JP5631733B2 (en) Anti-EpCAM antibodies and uses thereof
WO1999059636A1 (en) Vegf activity inhibitors
WO2007142277A1 (en) Monoclonal antibody capable of binding to heparin-binding epidermal growth factor-like growth factor
KR102486507B1 (en) Plectin-1 Binding Antibodies and Uses Thereof
KR20120118918A (en) Humanized anti-emapii antibodies and uses thereof
WO2021213466A1 (en) Anti-cd73 antibody and use thereof
WO1999040118A1 (en) Antibodies against human vegf receptor kdr
US6639057B1 (en) Monoclonal antibody against human telomerase catalytic subunit
AU767731B2 (en) Gene recombinant antibodies
WO2022083723A1 (en) Anti-cd73 antibody and use thereof
US20030175271A1 (en) VEGF activity inhibitor
CN113121689B (en) CTLA-4 binding molecules and uses thereof
CN114656566A (en) Antibody targeting CD47 and application thereof
JP2001046066A (en) Antibody against human vegf receptor kdr having new complementary determining region
JP3679406B2 (en) Recombinant antibody
WO2001023573A1 (en) Human type complementation-determining domain transplanted antibody against ganglioside gd2 and derivative of this antibody
CN111018988B (en) anti-CD 19 antibody, preparation method and application thereof
CN108659128B (en) Monoclonal antibody of anti-CD 19 protein, cell strain, preparation method and application thereof
KR102662387B1 (en) B7-H3 antibody, antigen-binding fragment thereof and medical uses thereof
JP2003310275A (en) Gene recombinant antibody against human insulin-like growth factor
JP2003261460A (en) Diagnostic agent and treating agent for lung selective cancer metastasis
WO1999048926A1 (en) ANTIBODY AGAINST HUMAN α1,3-FUCOSE TRANSFERASE Fuc-TVII

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: AU

Ref document number: 2000 16875

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 588212

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase