WO2002000251A9 - Vaccin contre la fievre aphteuse - Google Patents

Vaccin contre la fievre aphteuse

Info

Publication number
WO2002000251A9
WO2002000251A9 PCT/FR2001/002042 FR0102042W WO0200251A9 WO 2002000251 A9 WO2002000251 A9 WO 2002000251A9 FR 0102042 W FR0102042 W FR 0102042W WO 0200251 A9 WO0200251 A9 WO 0200251A9
Authority
WO
WIPO (PCT)
Prior art keywords
vaccine according
promoter
virus
vaccine
fragment
Prior art date
Application number
PCT/FR2001/002042
Other languages
English (en)
Other versions
WO2002000251A1 (fr
Inventor
Andrew King
Alison Burman
Jean-Christophe Audonnet
Michel Lombard
Original Assignee
Merial Sas
Andrew King
Alison Burman
Audonnet Jean Christophe
Michel Lombard
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merial Sas, Andrew King, Alison Burman, Audonnet Jean Christophe, Michel Lombard filed Critical Merial Sas
Priority to CN018120709A priority Critical patent/CN1440296B/zh
Priority to AU2001270678A priority patent/AU2001270678A1/en
Priority to JP2002505032A priority patent/JP5153984B2/ja
Priority to BRPI0112071-9B1A priority patent/BR0112071B1/pt
Priority to AT01949547T priority patent/ATE552845T1/de
Priority to EP01949547A priority patent/EP1294400B1/fr
Priority to DK01949547.2T priority patent/DK1294400T3/da
Priority to ES01949547T priority patent/ES2386373T3/es
Publication of WO2002000251A1 publication Critical patent/WO2002000251A1/fr
Publication of WO2002000251A9 publication Critical patent/WO2002000251A9/fr
Priority to US10/327,481 priority patent/US7531182B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/125Picornaviridae, e.g. calicivirus
    • A61K39/135Foot- and mouth-disease virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5258Virus-like particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55522Cytokines; Lymphokines; Interferons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/24011Poxviridae
    • C12N2710/24111Orthopoxvirus, e.g. vaccinia virus, variola
    • C12N2710/24141Use of virus, viral particle or viral elements as a vector
    • C12N2710/24143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/32011Picornaviridae
    • C12N2770/32111Aphthovirus, e.g. footandmouth disease virus
    • C12N2770/32122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/32011Picornaviridae
    • C12N2770/32111Aphthovirus, e.g. footandmouth disease virus
    • C12N2770/32134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present invention relates to vaccines against foot-and-mouth disease and in particular to the improvement of their thermal stability. It also relates to methods for preparing these vaccines, to the use of antigens for the production of these vaccines and to the vaccination methods using them. It also relates in particular to nucleotide sequences, in particular cDNA, and to amino acid sequences, modified with respect to the natural sequences of the virus. And. The invention relates to the products of expression of the modified nucleotide sequences and to the foot-and-mouth disease antigens and viruses incorporating these modifications.
  • Foot and mouth disease is one of the most virulent and contagious diseases affecting farm animals. This disease is endemic in many countries around the world, especially in Africa, Asia and South America. In addition, epidemic foci appear occasionally. The presence of this disease in a country can have very severe economic consequences by the losses of productivity, losses in weight and milk in the infected farms and by the commercial embargoes imposed on this country.
  • Measures against this disease consist of the strict application of import restriction measures, sanitary and quarantine controls, the slaughter of sick animals and vaccination programs using inactivated vaccines, which are preventive to national or regional level, or perifocal in the event of an epidemic outbreak.
  • the disease is characterized by its short incubation period, its highly contagious nature, the formation of mouth ulcers in the mouth and on the feet, and sometimes by mortality in young animals. Foot and mouth disease affects several animal species, in particular cattle, pigs, sheep and goats.
  • RNA ribonucleic acid virus
  • the FMD virus is also known by the acronym FMDV (Foot-and-mouth disease) virus).
  • FMDV Fluot-and-mouth disease virus
  • 7 types of FMD virus are known, European types (A, O and C), African types (SAT1, SAT2 and SAT3) and one Asian type (Asia 1).
  • European types A, O and C
  • African types SAT1, SAT2 and SAT3
  • Asian type Asian type
  • RNA molecule consists of a single open reading frame (COL) which codes for a single polyprotein containing inter alia the capsid precursor also called protein P1 or P88.
  • the P1 protein is myristylated at its amino terminus.
  • the protein P1 is cleaved by the protease 3C into three proteins called OPV, VP1 and VP3 (or respectively 1AB, 1D and 1C) (Belsham GJ, Progress in Biophysics and Molecular Biology, 1993, 60, 241- 261).
  • the OPV protein is then cleaved into two proteins, VP4 and VP2 (or 1A and 1B respectively).
  • the mechanism for converting OPV proteins to VP1 and VP3 and for forming mature virions is not known.
  • the proteins VP1, VP2 and VP3 have a molecular weight of approximately 26,000 Da, the protein VP4 is smaller with approximately 8,000 Da.
  • the simple association of capsid proteins forms the 5S protomer or molecule, which is the elementary constituent of the capsid of FMD virus. This protomer then complexes into a pentamer to form the 12S molecule.
  • the virion results from the packaging of a genomic RNA molecule by means of the assembly of 12 12S pentamers, thus constituting the 146S particles.
  • the viral capsid can also form without the presence inside of it of an RNA molecule.
  • the capsid is then empty.
  • the empty capsid is also called particle 70S.
  • the formation of empty capsids can occur naturally during viral replication or be caused artificially by chemical treatment.
  • a FMD vaccine must generally be versatile. Its composition must be renewed as soon as the dominant type or types on the ground change. Furthermore, to block the rapid development of the disease within the flock, it is advisable to have a vaccine which induces early immunity and which is highly protective.
  • These artificial capsids are, according to Rowlands et al., Weakly immunogenic and natural empty capsids are only immunogenic after treatment with formaldehyde to stabilize them, the antibody response induced by natural empty capsids in guinea pigs is, however, inconsistent like notes the author.
  • Rowlands et al. and Rweyemamu et al. disagree on the need to stabilize natural empty capsids.
  • the absence of formaldehyde treatment is not detrimental for the level of antigenicity of natural empty capsids. Immunogenicity is only tested by the induction of neutralizing antibodies in the guinea pig.
  • the expression of the gene coding for the precursor P1 of the capsid proteins by a recombinant baculovirus in insect cells is compared with the expression of the gene coding for P1 associated with the 3C protease in E. coli (Grubman et al., Vaccine, 1993, 11, 825-829; Lewis et al., J. Viral., 1991, 65, 6572-6580).
  • the co-expression of P1 and 3C in E. coli results in the assembly of 70S empty capsids.
  • the expression product of these two constructs induces neutralizing antibodies in guinea pigs and pigs.
  • the titers obtained with the P1 / baculovirus construct are low.
  • the expression system consisting of the vaccinia virus has also been used to obtain empty capsids of aphthous virus A10, A24 and 01 K (Abrams et al., J. Gen. Virol., 1995, 76, 3089- 3098). Mainly two constructions were carried out for each subtype, which include the fragments of the nucleotide sequence coding for the precursor P1 and for the protease 3C either under the control of the early / late promoter p7.5K of the vaccinia virus, or of the promoter bacteriophage T7. Only in vitro recombination and expression experiments were carried out on human cell cultures.
  • Plasmids comprising the cassette coding for P1-2A and 3C under the dependence of an hCMV-IE promoter were tested by Chinsangaram et al. (Chinsangaram et al., J. Virol., 1998, 72 (5), 4454-4457). Injections of these plasmids in pigs induce neutralizing antibodies, and depending on the groups of animals an absence of protection after 2 injections or protection after 4 injections. The authors conclude that the immune response induced by cytokine co-expression should be improved. In addition to these approaches, which have not led to the production of vaccines, other authors have turned to the use of VP1 protein from foot-and-mouth disease virus, alone or in fusion, or synthetic peptides.
  • TrpE fusion protein with fragments of the C-terminal region of the VP1 protein of FMD 01 virus.
  • Huang et al. describe a recombinant fusion protein comprising beta-galactosidase and two tandem repeats of VP1 of the foot-and-mouth disease virus O (Huang et al., Viral Immunol., 1999, 12 (1), 1-8).
  • Fusion proteins comprising all or part of the VP1 protein have also been obtained by the use of viral vectors, namely a herpes virus or the vaccinia virus.
  • CA-A-2,047,585 describes in particular a bovine herpes virus used for the production of fusion proteins comprising a peptide sequence of the foot-and-mouth disease virus (amino acids 141 to 158 of VP1 linked to amino acids 200 to 213 of VP1) fused with the glycoprotein gplll of this bovine herpes virus.
  • Vaccines comprising synthetic peptides based on the immunogenic regions of the VP1 protein (on these regions, see Strohmaier et al., J. Gen. Virol., 1982, 59, 295-306) have also been developed and tested.
  • Agterberg et al. (Vaccine, 1990, 8, 438-440) produced in transformed E. coli bacteria a fusion protein comprising two immunogenic determinants of the VP1 protein of the foot-and-mouth disease virus A10 (regions 141-153 and 200-207) and the membrane protein E coli K-12 phoE. 100 ⁇ g of this fusion protein were then administered intramuscularly to guinea pigs which subsequently showed a detectable level of neutralizing antibodies and protection after homologous testing.
  • WO-A-99/66954 describes synthetic peptides corresponding to consensus sequences of VP1 antigenic sites of foot-and-mouth disease virus type A, O or Asia (corresponding to the 134-168 region of VP1 of the foot-and-mouth disease virus A12).
  • WO-A-98/12333 describes synthetic peptides comprising at least 8 amino acids corresponding to a partial sequence of FMD protein.
  • the present invention aims to provide effective and safe vaccines against foot and mouth disease.
  • the present invention also aims to provide stable foot-and-mouth disease vaccines.
  • the present invention also aims to provide such effective foot-and-mouth disease vaccines at low doses.
  • the subject of the invention is therefore a vaccine against foot-and-mouth disease, using as an antigen an effective amount of empty capsids of the foot-and-mouth disease virus, these empty capsids being obtained by the expression, in eukaryotic cells, of complementary DNA (cDNA) of the P1 region of the genome of the foot-and-mouth disease virus coding for the capsid and of the cDNA of the genome of the foot-and-mouth disease virus coding for the protease 3C, the vaccine further comprising a pharmaceutically acceptable vehicle or excipient on the veterinary level.
  • cDNA complementary DNA
  • the constructs do not include the cDNA coding for L, and preferably they do not include any cDNA coding for all or part of L.
  • P1 and at least part of 2A preferably all of 2A.
  • the expression can also imply regions beyond 2A, and include for example a part of 2B, eg as was done in the examples.
  • 3C and at least part of the 3B proteins for example two adjacent 3B proteins and a non-functional part of 3D, eg as was done in the examples.
  • Figure 3 gives the nucleotide sequence and the amino acid sequence corresponding to P1 (amino acids 2 to 737), 2A (amino acids 738 to 753), 3C (amino acids 913 to 1 126) of the A10 strain of FMD virus.
  • the sequences of other strains of the different types and subtypes are available, especially in Genbank as mentioned in the examples.
  • the empty capsids are present in the vaccine as subunits and this in an effective amount.
  • these subunits are obtained by expression of the cDNAs of regions P1 and 3C under the dependence of a promoter, preferably the same promoter.
  • it is an inducible promoter or a late promoter of viral origin.
  • the expression vectors which can be used include in particular viral vectors, preferably poxviruses, in particular vaccinia virus, or alternatively for example adenoviruses, herpesviruses and plasmid vectors. These expression vectors are used to ensure the expression in vitro of empty capsids in primary or line eukaryotic cells.
  • a variant consists in using an integration vector making it possible to integrate the expression cassette into the eukaryotic cell.
  • the eukaryotic cells which can be used are preferably lineage cells, for example BHK-21, CHO, COS, RK13, Vero, MDBK, PK15 cells.
  • inducible promoter mention may in particular be made of the bacteriophage T7 promoter, the heat-shock promoter, the metallothionein promoter, the promoters inducible by ecdysone or by steroids.
  • the bacteriophage T7 promoter When the bacteriophage T7 promoter is used, co-expression of the bacteriophage T7 polymerase and the empty capsids is achieved.
  • late promoter of viral origin mention may be made in particular, when a poxvirus is used as vector, the promoter P11 K of the vaccinia virus, P28K of the vaccinia virus, P160K ATI of the cowpox virus.
  • the conservation and storage of the subunits is preferably ensured by freezing or by lyophilization.
  • the doses administered may in particular be between 0.3 and 30 ⁇ g, in particular between 0.5 and 20 ⁇ g, preferably between 1 and 10 ⁇ g and more preferably still between 1 and 5 ⁇ g, per dose.
  • the dose volumes can preferably be between 0.2 and 5 ml, preferably between 1 and 3 ml.
  • the recovery medium (excipient, vehicle) for the subunit vaccines is preferably a medium allowing the conservation of empty capsids, e.g. of the DMEM type.
  • the administration of the subunit vaccine can be done in particular by the parenteral route, preferably by the subcutaneous or intramuscular route, or even the intradermal route, in particular using a needle-free administration device (jet under pressure).
  • These vaccines preferably include one or more adjuvants.
  • subunit vaccines it is possible in particular to use, as an adjuvant (1), aluminum hydroxide, saponin (for example QuilA), avridine, DDA, ( 2) a polymer of acrylic or methacrylic acid, a polymer of maleic anhydride and alkenyl derivative, or (3) formulate the vaccine in the form of a water-in-oil, oil-in-water or water- emulsion in-oil-in-water.
  • an adjuvant (1) aluminum hydroxide, saponin (for example QuilA), avridine, DDA, ( 2) a polymer of acrylic or methacrylic acid, a polymer of maleic anhydride and alkenyl derivative, or (3) formulate the vaccine in the form of a water-in-oil, oil-in-water or water- emulsion in-oil-in-water.
  • the emulsion can in particular be based on light liquid paraffin oil
  • isoprenoid oil such as squalane or squalene
  • esters of branched fatty acids or alcohols in particular esters of isostearic acid.
  • the oil is used in combination with emulsifiers to form the emulsion.
  • the emulsifiers are preferably nonionic surfactants, in particular polyoxyetylenated fatty acids (eg oleic acid), esters of sorbitan, of mannide (eg anhydromannitol oleate), of glycerol, of polyglycerol, of propylene glycol and of l oleic, isostearic, ricinoleic, hydroxystearic acid, optionally ethoxylated, fatty alcohol ethers and polyols (eg oleic alcohol), polyoxypropylene-polyoxyethylene copolymer blocks in particular Pluronic®, in particular L121 (see Hunter et al., 1995 , "The Theory and Practical Application of Adjuvants" (Ed.
  • nonionic surfactants in particular polyoxyetylenated fatty acids (eg oleic acid), esters of sorbitan, of mannide (eg anhydromannitol oleate
  • the polymers of acrylic or methacrylic acid are crosslinked in particular with polyalkenyl ethers of sugars or of polyalcohols. These compounds are known by the term carbomer (Pharmeuropa vol. 8, No. 2, June 1996). Those skilled in the art can also refer to US-A-2,909,462 (incorporated by reference) describing such acrylic polymers crosslinked with a polyhydroxy compound having at least 3 hydroxyl groups, preferably not more than 8, the atoms hydrogen from at least three hydroxyls being replaced by unsaturated aliphatic radicals having at least 2 carbon atoms.
  • the preferred radicals are those containing from 2 to 4 carbon atoms, eg vinyls, allyls and other ethylenically unsaturated groups.
  • the unsaturated radicals may themselves contain other substituents, such as methyl.
  • the products sold under the name Carbopol® (BF Goodrich, Ohio, USA) are particularly suitable. They are crosslinked with an allyl sucrose or with aHylpentaerythritol. Among them, mention may be made of Carbopol® 974P, 934P and 971 P.
  • EMA® Monsanto which are copolymers of maleic anhydride and ethylene, linear or crosslinked, for example crosslinked with divinylether, are preferred.
  • EMA® Monsanto
  • polymers of acrylic or methacrylic acid and EMA® are preferably formed from basic units of the following formula:
  • the polymer concentration in the final vaccine composition will be 0.01% to 1.5% P ⁇ , more particularly 0, 05 to 1% P / V, preferably from 0.1 to 0.4% P ⁇ .
  • the vaccine comprises an expression vector containing the cDNA so as to produce the empty capsids in vivo.
  • these empty capsids are obtained in vivo by expression of the cDNAs of the P1 and 3C regions inserted into a plasmid expression vector or into a viral expression vector and placed under the control of a promoter, preferably of the same promoter.
  • the promoter is a strong early promoter or a late promoter of viral origin.
  • a late promoter of viral origin is preferably used.
  • the viral vectors are preferably poxviruses, in particular vaccinia virus, avipox (eg fowlpox, canarypox), racoonpox, swinepox, capripox, or replicative adenoviruses, including porcine adenovirus, and herpesviruses.
  • poxviruses mention may in particular be made, for poxviruses, of the promoter P11K of the vaccinia virus, P28K of the vaccinia virus, P160K ATI of the cowpox virus.
  • a plasmid expression vector covers a DNA transcription unit comprising a polynucleotide sequence comprising the cDNA to be expressed and the elements necessary for its expression in vivo.
  • the linear shape also falls within the scope of this invention.
  • a very early promoter of viral origin or of cell origin is preferably used and in particular the early promoter of the CMV-IE cytomegalovirus, of human or murine origin, or optionally of another origin such that rat, guinea pig. It is also possible to use the early or late promoter of the SV40 virus or the LTR promoter of the Rous Sarcoma virus.
  • cell promoter mention may be made of the promoter of a cytoskeleton gene, such as for example the desmin promoter, or even the actin promoter.
  • the conservation and storage of the recombinant vaccines are preferably ensured by freezing or by lyophilization or in liquid form.
  • the recovery medium (excipient, vehicle) is preferably 0.9% NaCl saline or a phosphate buffer.
  • the quantity of viral vectors used in the vaccines according to the present invention is approximately at least 10 3 pfu. It is preferably between approximately 10 4 pfu and approximately 10 10 pfu, eg approximately 10 5 pfu and 10 9 pfu, more particularly between approximately 10 6 pfu and approximately 10 8 pfu, per dose.
  • the quantity of plasmid vectors used in the vaccines according to the present invention is between approximately 1 ⁇ g and approximately 2 mg, and preferably between approximately 50 ⁇ g and approximately 1 mg, per dose.
  • the dose volumes can preferably be between 0.2 and 5 ml, preferably between 1 and 3 ml.
  • the recombinant vaccines according to the invention can be administered, by the various usual routes of administration and by means of the techniques known administration. According to a preferred form of the invention, the administration is done by the intramuscular, subcutaneous route or using an injector without needle by intradermal route. In particular for viral vectors, the intramuscular or subcutaneous route is preferred. For the viral or plasmid vectors, it is also possible to use the mucosal route (eg oral, nasal).
  • these vaccines include one or more adjuvants.
  • a polymer of acrylic or methacrylic acid is used, or a polymer of maleic anhydride and of alkenyl derivative, and in particular carbomers, in particular Carbopol® (these adjuvants are described above).
  • cationic lipids containing a quaternary ammonium salt of formula:
  • R1 is a linear aliphatic radical, saturated or unsaturated, having from 12 to 18 carbon atoms
  • R2 is another aliphatic radical, containing 2 or 3 carbon atoms
  • X a hydroxyl or amino group.
  • DMRIE N- (2-hydroxyethyl) -N, N-dimethyl-2,3-bis (tetradecyloxy) -1-propanammonium; WO-A-9634109
  • DOPE dioleoyl-phosphatidyl-ethanolamine
  • the plasmid mixture with this adjuvant is carried out extemporaneously and it is preferred, before its administration to the animal, to allow the mixture thus constituted time to complex, for example for a period ranging from 10 to 60 minutes , especially around 30 minutes.
  • DOPE DOPE
  • the DMRIE: DOPE molar ratio preferably ranges from 95: 5 to 5: 95, and is more particularly 1: 1.
  • the plasmid: adjuvant, in particular DMRIE or DMRIE-DOPE weight ratio can range in particular from 50: 1 to 1: 10, in particular from 10: 1 to 1: 5, and preferably from 1: 1 to 1: 2.
  • the vaccines according to the invention can also be adjuvanted by one or more cytokines, added or expressed in vivo.
  • GM-CSF in English Granulocyte Macrophage Colony Stimulating Factor: Clark SC et al. Science 1987. 230. 1229; Grant SM et al. Drugs 1992. 53. 516) is used, which can be done by incorporation of GM-CSF protein directly into the vaccine composition or preferably by inserting the nucleotide sequence coding for GM-CSF into an expression vector under conditions allowing its expression in vivo, eg the vector containing the sequence nucleotide coding for the FMDV antigen or another vector.
  • GM-CSF As the expression vector, it is preferred to use a plasmid.
  • the choice of GM-CSF is preferably made according to the animal species to be vaccinated; thus for cattle the bovine GM-CSF (see e.g. Maliszewski et a /. Molec. Immunol. 1988. 25. 843-850) is used; for pigs it is the porcine GM-CSF (see e.g. Inumaru S. and Takamatsu H., Immunol. Cell. Biol. 1995. 75. 474-476).
  • GM-CSF sequences are available in Genbank, D21074 for pigs, U22385 for cattle and X55991 for sheep.
  • the present invention also relates to a process for the preparation of a subunit FMD vaccine in which empty capsids of this virus are produced by expression of the cDNA of the P1 region and by expression of the cDNA of the region 3C, and they are formulated in a vehicle or excipient acceptable from the veterinary point of view, preferably in the presence of at least one adjuvant.
  • the subject of the invention is also the use of empty capsids produced in vitro in accordance with the invention, for the preparation of a foot-and-mouth disease vaccine.
  • subunit further comprising a vehicle or excipient acceptable from the veterinary point of view, preferably in the presence of at least one adjuvant.
  • a subject of the invention is also a method of vaccination against foot-and-mouth disease, comprising the administration to the animal, in particular production animals, in particular cattle, sheep, pigs, goats, of a subunit vaccine in accordance with the 'invention. Methods of administration and doses have been defined above.
  • the present invention also relates to a process for the preparation of a recombinant foot-and-mouth disease vaccine in which viral or plasmid vectors are produced which express the P1 protein and the 3C protein in vivo under conditions leading to the formation of empty capsids, and these vectors are formulated in a vehicle or excipient acceptable from the veterinary point of view, preferably in the presence of at least one adjuvant.
  • a subject of the invention is also the use of viral or plasmid vectors in accordance with the invention, for the preparation of a recombinant foot-and-mouth disease vaccine, further comprising a vehicle or excipient acceptable from the veterinary point of view, preferably in the presence of minus an adjuvant.
  • the subject of the invention is also a method of vaccination against foot-and-mouth disease, comprising the administration to the animal, in particular production animals, in particular cattle, sheep, pigs, goats, of a recombinant vaccine in accordance with the invention . Methods of administration and doses have been defined above.
  • the invention also relates to a multivalent vaccine or a combination of vaccines comprising a vaccine according to the invention, and at least one other vaccine against a foot-and-mouth disease virus of another type (eg O, A, C, SAT1, SAT2 , SAT3,
  • a multivalent vaccine or a combination of vaccines comprising a vaccine according to the invention, and at least one other vaccine against a foot-and-mouth disease virus of another type (eg O, A, C, SAT1, SAT2 , SAT3,
  • a subject of the invention is also a multivalent vaccine or a combination of vaccines comprising a vaccine according to the invention, and at least one vaccine against another pathogen, in particular the rabies virus, in a vehicle or excipient acceptable on the plan veterinarian and preferably with an adjuvant, in particular one of those described above.
  • Another subject of the invention is the improvement of the temperature stability of the empty capsids of foot-and-mouth disease virus and of the vaccines obtained.
  • this improvement is obtained by replacing an amino acid of the original sequence with an amino acid cysteine in the polypeptide sequence of a capsid structure protein, the protein VP2, this amino acid being in position 179 on the amino acid sequence SEQ ÎD N ° 38 ( Figure 3).
  • the position of this amino acid is identical in other foot-and-mouth disease viruses (this is particularly the case for the strains described in the examples).
  • the position may possibly be very slightly different and for example be 178 or 180.
  • the region which comprises this amino acid corresponds to an alpha helix.
  • the amino acid sequences of this region are aligned with the corresponding region (for example of the order of ten or more - eg 10 to 20 - amino acids ) on the sequence SEQ ID No. 38, taking into account the fact that the sequences are well conserved in their structure among the various foot-and-mouth disease viruses. It was notably noted by comparing the sequences of the strains 01, A10, A24, A22, C1, C3, SAT2, that the region can be written as follows: Xi Gly X 3 X 4 Gly X 6 Leu X 8 X 9 Ser Xn X 2 Tyr Met with X 4 and X. n are Tyr, His or Phe (hydrophobic amino acids)
  • X 3 , X 8 and X 1 2 are Val, ' Met, Ile, Thr or Ala -
  • X 6 is His, Gln, Arg, Lys, Ser or Gly; this is the amino acid to mutate into Cys
  • Xi is His or Lys (basic amino acids)
  • Xg is Asp, Glu or Lys (acid and basic amino acids).
  • the amino acid to mutate is histidine located at position 179 of the P1 precursor of the foot-and-mouth disease virus A10.
  • the present invention therefore also relates to the nucleotide sequences in particular the cDNAs incorporating this modification.
  • the invention relates to the cDNA sequences, and the vectors incorporating them, comprising the sequence coding for VP2 (or VPO), and more particularly for P1, which incorporate this modification, for example cDNA sequences coding for P1-2A or P1 -2A-part of 2B, and the sequences incorporating them, for example sequences incorporating them with the sequences allowing their expression (promoter, ATG codon, etc.).
  • the present invention also relates to the amino acid sequences obtained from these nucleotide sequences, as well as the empty capsids and thermostable foot-and-mouth disease viruses (that is to say having improved thermal stability).
  • they include disulfide bridges which are not present in capsids and natural viruses.
  • they include VP2 proteins comprising a cysteine in place of a natural amino acid, as just described.
  • the vaccines described above are based on the use of this modification and therefore the cDNA sequences are modified accordingly and the empty capsids obtained either in vitro or in vivo have the disulfide bridges.
  • Figure 1 graph of the A24 neutralizing anti-foot-and-mouth disease antibody titers measured in cattle (expressed in log)
  • Figure 3 nucleotide sequence and amino acid sequence corresponding to P1 (amino acids 2 to 737), 2A (amino acids 738 to 753), 3C (amino acids 913 to 1126) of the A10 strain of foot-and-mouth disease virus
  • SEQ ID No. 39 nucleotide sequence corresponding to P1, 2A, 3C of the foot-and-mouth disease virus A10.
  • FMD virus nucleotide and polypeptide sequences are available from the GenBank database, in particular under the numbers X00429 for A10, X00871 for 01K, AJ251476 for A24, and AJ 133357 for C Spain Olot.
  • strains of foot-and-mouth disease virus designated 01 K (Forss et al., 1984, Nucleic Acids Res., 12 (16), 6587-6601), A24 (Weddell et al., 1985, Proc. Natl. Acad. Sci. USA, 82, 2618-2622), A10 (Carroll et al., 1984, Nucleic Acids Res., 12 (16), 6587-6601), A24 (Weddell et al., 1985, Proc. Natl. Acad. Sci. USA, 82, 2618-2622), A10 (Carroll et al., 1984, Nucleic
  • BHK-21 cells Boby Hamster Kidney, accessible from the American Type Culture Collection (ATCC) under the number CCL-10.
  • the BHK-21 cells are cultured in a 25 cm 2 Falcon with Eagle-MEM medium supplemented with 1% yeast extracts and 5% calf serum containing approximately 100,000 cells per ml. The cells are cultured at + 37 ° C.
  • the cell layer arrives at confluence.
  • the culture medium is then replaced with Eagle-MEM medium without serum but supplemented with 0.4% of lactalbumin hydrolyzate and 0.3% of peptone (pH 7.4) and the foot-and-mouth disease virus is added at a rate of 1. pfu for about 20 cells.
  • the viral suspensions are harvested and then clarified by centrifugation and frozen at -70 C. C 3-4 successive passages are generally required to the production of a viral lot.
  • the viral batch is stored at -70 ° C.
  • the viral RNA contained in 100 ml of viral suspension of the foot-and-mouth disease strain A24, obtained in Example 1, is extracted after thawing with the solutions of the kit “High Pure TM Viral RNA Kit” Cat # 1 858 882, Roche Molecular Biochemicals), following the supplier's instructions for the extraction steps.
  • the RNA pellet obtained at the end of the extraction is re-suspended with 10 ml of sterile distilled water without RNase.
  • the viral RNA of each of the strains of FMD virus is extracted under the same conditions.
  • Example 3 Construction of the expression plasmid for the empty capsids of the foot-and-mouth disease virus A10
  • the complementary DNA (cDNA) of the foot-and-mouth disease virus A10 is synthesized with the kit
  • a reverse transcription reaction followed by a chain amplification reaction (“Tl-ACP” or “RT-PCR” reaction) is carried out with 50 ⁇ l of the suspension of viral RNA of the foot-and-mouth disease virus A10 (example
  • This pair of oligonucleotides allows the incorporation of a restriction site
  • the conditions for synthesis of the first strand of cDNA are a temperature of
  • The. conditions of the PCR reaction in the presence of the pair of oligonucleotides JCA305 and JCA306 are a temperature of 95 ° C for 2 min, then 35 cycles (95 ° C for 1 min, then 62 ° C for 1 min, and 72 ° C for 2 min), and finally 72 ° C for 7 min to produce a 2583 bp fragment.
  • fragment A This fragment is digested with EcoRV and then with Xhol to isolate, after agarose gel electrophoresis, the EcoRV-Xhol fragment of approximately 2550 bp. This fragment is called fragment A.
  • a PCR reaction is carried out with 50 ⁇ l of the suspension of viral RNA of the foot-and-mouth disease virus A10 (example 2) and with the following oligonucleotides:
  • JCA307 (21 sea) (SEQ ID NO 3) 5 'CTGAAGGACCCTACTCCGGGC 3' and JCA308 (37 sea) (SEQ ID NO 4) 5 'TTTTAGATCTTCAAAGCTTTGTTTTGCGCATCACGTG 3'.
  • This pair of oligonucleotides allows the incorporation of a BglII restriction site and a stop codon in phase with the nucleotide sequence coding for the 3C protease.
  • the first strand of cDNA is synthesized by elongation of the oligonucleotide JCA308, after hybridization of the latter to the RNA template.
  • the conditions for the synthesis of the first strand of cDNA are a temperature of 42 ° C for 15 min, then 99 ° C for 5 min, and finally 4 ° C for 5 min.
  • the conditions of the PCR reaction in the presence of the pair of oligonucleotides JCA307 and JCA308 are a temperature of 95 ° C for 2 min, then 35 cycles (95 ° C for 1 min, then 62 ° C for 1 min, and 72 ° C for 2 min), and finally 72 ° C for 7 min to produce a fragment of 936 bp.
  • fragment B This fragment is digested with BglII and then with Xhol to isolate, after agarose gel electrophoresis, the Bglll-Xhol fragment of approximately 900 bp. This fragment is called fragment B.
  • Fragment A and fragment B are ligated with the expression plasmid pVR1012 (Hartikka J. et al., 1997, Human Gene Therapy, 7, 1205-1217), previously digested with Bglll and EcoRV, to give the plasmid pJCA161 ( 8327 bp).
  • This plasmid contains, under the control of the early promoter of the human cytomegalovirus or hCMV-IE (human Cytomegalovirus Immediate Eariy), an insert coding for the part of the polyprotein sufficient to generate capsid proteins capable of self-assembly.
  • the cDNAs of the foot-and-mouth disease viruses of the 01 K, C Spain Olot and A24 subtypes are synthesized as described in Example 3.
  • the oligonucleotide couple JCA309 (37 sea) (SEQ ID NO 5)
  • fragment C 5 "TTCACGACGAAGGTGCTGTCC 3 'is used during the first PCR reaction to produce a fragment of 2583 base pairs (bp), then after digestion and isolation an EcoRV-Xhol fragment of approximately 2550 bp. This fragment is called fragment C .
  • fragment D 5 'AAGGACCCTACGCCGGAC 3 * and JCA312 (34 mer) (SEQ ID NO 8) 5' TTTTAGATCTTCAAAGCTTGGTTTTGCGCATCAC 3 'is used to produce a fragment of 930 bp, then after digestion and isolation a Bglll-Xhol fragment of approximately 900 bp. This fragment is called fragment D.
  • Fragment C and fragment D are ligated with the expression plasmid pVR1012, previously digested with BglII and EcoRV, to give the plasmid pJCA162 (8327 bp).
  • fragment E is used during the first PCR reaction to produce a fragment of 2568 base pairs (bp), then after digestion and isolation an EcoRV-Xhol fragment of approximately 2540 bp. This fragment is called fragment E.
  • fragment E is used during the second PCR reaction to produce a fragment of 2568 base pairs (bp), then after digestion and isolation an EcoRV-Xhol fragment of approximately 2540 bp. This fragment is called fragment E.
  • fragment F 5 'TTTTAGATCTTCAAAGCTTGGTTTTGCGCATTAC 3', is used to produce a fragment of 947 bp, then after digestion and isolation a Bglll-Xhol fragment of approximately 900 bp. This fragment is called fragment F. Fragment E and fragment F are ligated with the expression plasmid pVR1012, previously digested with BglII and EcoRV, to give the plasmid pJCA163 (8312 bp).
  • fragment G EcoRV-Xhol of approximately 2580 bp. This fragment is called fragment G.
  • JCA319 (31 sea) (SEQ ID NO 15) 5 'TTTTCTCGAGGGACCGGTGAAGAAGCCTGTC 3' and JCA320 (37 sea) (SEQ ID NO 16)
  • fragment H 5 'TTTTAGATCTTCAGCGGCGGAACAGCGCTTTGTCCTC 3'. is used to produce a fragment of approximately 950 bp, then after digestion and isolation a Bglll-Xhol fragment of approximately 940 bp. This fragment is called fragment H.
  • Fragment G and fragment H are ligated with the expression plasmid pVR1012, previously digested with BglII and EcoRV, to give the plasmid pJCA164 (with a size of approximately 8400 bp).
  • the A24 FMD virus cDNA is synthesized as described in Example 3.
  • a PCR reaction is carried out with 50 ⁇ l of the suspension of RNA of foot-and-mouth disease virus A24 (example 2) and with the following oligonucleotides: JCA317 (37 mer) (SEQ ID NO 13) and JCA321 (24 mer) (SEQ ID NO 17) 5 'TTTGACCTAACGTCGGAGAAGAAG 3'.
  • a fragment of approximately 2300 bp is produced.
  • fragment I This fragment is then digested with EcoRV and then with Hindi II to isolate, after agarose gel electrophoresis, the EcoRV-Hindlll fragment of approximately 1710 This fragment is called fragment I.
  • the 2300 bp fragment is digested with HindIII! then by Apal to isolate, after agarose gel electrophoresis, the Hindlll-Apal fragment of approximately 550 bp. This fragment is called fragment J.
  • the plasmid pJCA161 (Example 3) is digested with Apal and then with EcoRV to isolate, after electrophoresis in agarose gel, the Apal-EcoRV fragment of approximately
  • fragment K 5960 bp. This fragment is called fragment K.
  • Fragments I, J and K are ligated together to give the plasmid pJCA165 (8333 bp).
  • This plasmid contains an insert coding for the structural part of the polyprotein A24 and for the enzymatic part of A10, parts sufficient to generate capsid proteins capable of self-assembly.
  • Example 6 Construction of the vaccinia recombinant virus vV100 (A10)
  • An ACP reaction is carried out using the plasmid pJCA161 (Example 3) as template and the following oligonucleotides:
  • JCA322 (37 sea) (SEQ ID NO 18):
  • This pair of oligonucleotides allows the incorporation of an EcoRI restriction site at each end of the amplification fragment.
  • the conditions for the PCR reaction in the presence of this pair of oligonucleotides are a temperature of 95 ° C for 2 min, then 35 cycles (95 ° C for 1 min, then 62 ° C for 1 min, and 72 ° C for 2 min), and finally 72 ° C for 7 min.
  • This fragment is digested with EcoRI to isolate, after agarose gel electrophoresis, the EcoRI-EcoRI fragment of 3448 bp.
  • a PCR reaction on the genome of the vaccinia virus is carried out with the pair of oligonucleotides: JCA342 (28 mer) SEQ ID N ° 40
  • a 488 bp fragment is produced. This fragment is digested with ClaI and EcoRI, to isolate, after agarose gel electrophoresis, the fragment of 367 bp. This last fragment is then inserted into the plasmid pGS20 (Mackett et al, J; Virol., 1984, 49, 857-864), previously digested with ClaI and EcoRI. The plasmid thus obtained is linearized with EcoRI and the EcoRI-EcoRI fragment of 3448 bp is inserted therein, giving the vector pJCA166.
  • a person skilled in the art can also use the plasmid pvFOHC (Newton et al., In: Vaccines 87, 1987, Chanock et al. Eds., Cold Spring Harbor Laboratory, 12-21) comprising the P11K promoter from vaccinia virus and two arms of the vaccinia virus TK gene, one upstream of this promoter and the other downstream of an EcoRI site.
  • pvFOHC Newton et al., In: Vaccines 87, 1987, Chanock et al. Eds., Cold Spring Harbor Laboratory, 12-21
  • Insertion sites in the vaccinia virus other than the TK gene can be used, in particular for example the HA gene, M 2 L.
  • the plasmid pJCA166 is transfected into COS cells (renal cells of African green monkeys, deposited with the American Type Culture Collection under the access number ATCC CRL-1651) infected with vaccinia virus (strain WR, number ATCC VR-119).
  • COS cells are cultured in petri dishes in DMEM culture medium (Dulbecco's odified Eagles Medium) supplemented with 10% fetal calf serum, 2 mM glutamine, 500 IU / ⁇ g / ml penicillin / streptomycin, 12.5 ⁇ g / ml of fungizone (all in final concentration), containing approximately 100,000 cells per ml, at + 37 ° C in an atmosphere containing 5% of CO 2 for 16 h. When the cells reach 75% confluence, the culture medium is removed.
  • DMEM culture medium Dulbecco's odified Eagles Medium
  • the COS cells are then infected with vaccinia virus (strain WR) at one to a multiplicity of infection (moi) of 3 DICC 50 / cell, then the dishes are incubated for 1 h. The cultures are then washed with DMEM medium without serum. 400 ⁇ l of plasmid / Lipofectin / Optimem mixture are then added to each box (8 ⁇ l of Lipofectin, 192 ⁇ l of Optimem and 200 ⁇ l of distilled water containing 8 ⁇ g of plasmid), the plasmid being pJCA166. The dishes are incubated at + 37 ° C in an atmosphere containing 5% C0 2 for 4 to 6 hours, shaking them every 30 min.
  • vaccinia virus strain WR
  • moi multiplicity of infection
  • DMEM medium then supplemented with 10% fetal calf serum is then added to each dish, and the dishes are incubated at + 37 ° C. in an atmosphere containing 5% CO 2 for 16 h.
  • the cells can then be harvested, frozen and stored at -20 ° C.
  • the selection of recombinant vaccinia viruses is carried out on cultures of human 143 TK- cells (accessible from the American Type Culture Collection under the access number CRL-8303) in 6 cm dishes containing 5 ml of DMEM culture medium, incubated at + 37 ° C. in an atmosphere containing 5% of CO 2 for 16 h.
  • the transfection suspension obtained previously is added.
  • 25 ⁇ g of 5-brodeoxyuridine (BUdR) per ml is added in order to select the recombinant vaccinia viruses TK-.
  • the incubation is extended for 48 hours to allow the development of the recombinant cells.
  • 3 successive cycles of selection / purification of recombinant vaccinia viruses are carried out.
  • 24-well plates are seeded with 143 TK- cells with DMEM medium containing 25 ⁇ g of BUdR per ml. After 2 h of incubation at + 37 ° C approximately 10 tracks each taken up in 2 ⁇ l of PBS buffer are transferred to 10 wells. The plates are then incubated for 48-72h.
  • a PCR reaction is carried out on the culture supernatant of each well using the “Gene Releaser” protocol (Cambio) with the oligonucleotides JCA305 and JCA308.
  • the recombinant virus undergoes a new purification cycle.
  • the recombinant virus designated vV100 is amplified and stored at -70 ° C or at -20 ° C.
  • the constructs of recombinant vaccinia viruses are obtained for types O, C and A of foot-and-mouth disease viruses as described in Example 6.
  • PCR reaction is carried out using the plasmid pJCA162 (Example 4) as template and the following oligonucleotides:
  • JCA324 (37 sea) (SEQ ID NO 20):
  • the EcoRI-EcoRI fragment of 3448 bp is inserted into the plasmid pvFOHC, previously digested with EcoRI, to give the donor plasmid pJCA167.
  • the PCR reaction is carried out using the plasmid pJCA163 (Example 4) as template and the following oligonucleotides: JCA326 (37 mer) (SEQ ID NO 22): 5 'TTTTGAATTCATGGGAGCTGGGCAATCCAGCCCAGCG 3' and JCA327 (41 mer) (SEQ ID NO 23) : 5 'TTTTGAATTCATAAAAATCAAAGCTTGGTTTTGCGCATTAC 3' to amplify a fragment of approximately 3460 bp.
  • the EcoRI-EcoRI fragment of 3439 bp is inserted into the plasmid pvFOHC, previously digested with EcoRI, to give the donor plasmid pJCA168.
  • JCA313 and JCA316 A range is amplified and the stock of recombinant virus obtained is designated vV102.
  • the PCR reaction is carried out using the plasmid pJCA164 (Example 4) as template and the following oligonucleotides:
  • JCA328 (37 sea) (SEQ ID NO 24): 5 'TTTTGAATTCATGGGGGCCGGGCAATCCAGTCCGGCG 3' and JCA329 (44 sea) (SEQ ID NO 25):
  • the EcoRI-EcoRI fragment of approximately 3530 bp is inserted into the plasmid pvFOHC, previously digested with EcoRI, to give the donor plasmid pJCA169.
  • JCA317 and JCA320 A range is amplified and the stock of recombinant virus obtained is designated vV103.
  • the PCR reaction is carried out using the plasmid pJCA165 (Example 5) as template and the following oligonucleotides: JCA328 (SEQ ID NO 24) (37 mer) and JCA325 (SEQ ID NO 21) (37 mer) to amplify a fragment of around 3480 bp.
  • the EcoRI-EcoRI fragment of approximately 3463 bp is inserted into the plasmid pvFOHC, previously digested with EcoRI, to give the donor plasmid pJCA170.
  • the recombination is carried out according to the technique described in Example 6. Positive plaques are selected by PCR reaction with the oligonucleotides JCA317 and JCA312. A range is amplified and the stock of recombinant virus obtained is designated vV104.
  • the plasmid pJCA161 (Example 3) is digested with the restriction enzymes EcoRV and Bglll. After agarose gel electrophoresis, an EcoRV-BglII fragment with a size of approximately 3450 bp is isolated. This fragment is made "blunt ends" by treatment with Klenow polymerase, then ligated into the plasmid pBG200 (Abrams et al., 1995, J. Gen. Virol., 76, 3089-3098) the latter being previously digested with BamHI and blunt-ended by treatment with Klenow polymerase, to give the donor plasmid pJCA171.
  • the plasmid pBG200 comprises the promoter of bacteriophage T7, the transcription terminator of T7 and two arms of the TK gene of the vaccinia virus, one upstream of this promoter and the other downstream of the terminator (man of the art can be inspired by Fuerst et al., Molecular and Cellular Biology, 1987, 7, 2538-2544 for the construction of pBG200).
  • the BamHI insertion site on the plasmid pBG200 is between the promoter and the T7 terminator.
  • the recombination is carried out according to the technique described in Example 6. Positive plaques are selected by PCR reaction with the oligonucleotides JCA305 and JCA308.
  • a range is amplified and the stock of recombinant virus obtained is designated vV105.
  • the storage of the recombinant virus stock is done at -20 ° C or - 70 ° C.
  • Example 9 Construction of Recombinant Vaccinia Viruses for In Vitro Expression of Types O, C and A
  • the constructs of recombinant vaccinia viruses for expression in vitro are obtained for types O, C and A of foot-and-mouth disease viruses as described in Example 8.
  • Plasmid pJCA162 (Example 4) is digested with restriction enzymes
  • EcoRV and Bglll After isolation, an EcoRV-BglII fragment with a size of approximately 3450 bp is made "blunt ends" by treatment with Klenow polymerase, then ligated into the plasmid pBG200 previously digested with BamHI and made blunt ends by treatment with Klenow polymerase , to give the donor plasmid pJCA172.
  • a range selected by PCR reaction with the oligonucleotides JCA309 and JCA312 is amplified and the stock of recombinant virus obtained is designated vV106.
  • Plasmid pJCA163 (Example 4) is digested with restriction enzymes
  • EcoRV and Bglll After isolation, an EcoRV-BglII fragment with a size of approximately 3440 bp is made "blunt ends" by treatment with Klenow polymerase, then ligated into the plasmid pBG200 previously digested with BamHI and blunt ends by treatment with Klenow polymerase , to give the donor plasmid pJCA173.
  • a range selected by PCR reaction with the oligonucleotides JCA313 and JCA316 is amplified and the stock of recombinant virus obtained is designated vV107.
  • Plasmid pJCA164 (Example 4) is digested by restriction enzymes
  • EcoRV and Bglll After isolation, an EcoRV-BglII fragment with a size of approximately 3520 bp is made "blunt ends" by treatment with Klenow polymerase, then ligated into the plasmid pBG200 previously digested with BamHI and rendered blunt tips by treatment with Klenow polymerase, to give the donor plasmid pJCA174.
  • a range selected by PCR reaction with the oligonucleotides JCA317 and JCA320 is amplified and the stock of recombinant virus obtained is designated vV108.
  • the plasmid pJCA165 (Example 5) is digested with the restriction enzymes EcoRV and Bglll. After isolation, an EcoRV-BglII fragment with a size of approximately 3450 bp is made "blunt ends" by treatment with Klenow polymerase, then ligated into the plasmid pBG200 previously digested with BamHI and made blunt ends by treatment with Klenow polymerase , to give the donor plasmid pJCA175.
  • a range selected by PCR reaction with the oligonucleotides JCA317 and JCA312 is amplified and the stock of recombinant virus obtained is designated vV109.
  • Rabbit kidney cells RK13 (accessible from the American Type Culture Collection under the access number CCL-37) are cultured at 37 ° C. in 20 Falcons 175 cm 2 with 20 ml of DMEM medium supplemented with 10% fetal calf serum, 2 mM glutamine, 500 IU / ⁇ g / ml penicillin / streptomycin, 12.5 ⁇ g / ml fungizone, each Falcon contains approximately 2 ⁇ 10 7 cells at confluence.
  • the recombinant vaccinia viruses vTF7-3 and vV108 are then each added to a multiplicity of infection (moi) of 10 DICC 50 / cell in each Falcon.
  • the viral culture is maintained at 37 ° C. for approximately 24 hours until a 100% cytopathic effect is obtained.
  • the recombinant vaccinia virus vTF7-3 (accessible from the ATCC under the number VR-2153) contains the RNA polymerase of bacteriophage T7 under the control of the promoter p7.5K of the vaccinia virus (Fuerst et al, 1986 , Proc. Natl. Acad. Sci. USA, 83, 8122-8126).
  • T7 RNA polymerase induces expression of the insert under the control of the T7 promoter.
  • the P1 precursor and the 3C protease of FMD viruses are thus produced and the empty capsids self-assemble.
  • the viral suspension is collected and then clarified by centrifugation (4,000 rotations per minute (rpm), for 30 min, at 4 ° C).
  • the pellet is resuspended in 30 ml of phosphate buffer (40 mM sodium phosphate, 100 mM sodium chloride, pH 7.6) at 0 ° C., containing 0.5% of Nonidet P40 (Roche, Cat. No. 1 754 599).
  • Cell lysis is carried out at 0 ° C on ice for 20 min.
  • the cellular debris is harvested after centrifugation at 10,000 rpm, for 20 min, at 4 ° C.
  • the supernatant is stored at 0 ° C. on ice.
  • the cellular debris is re-suspended in 6 ml of phosphate buffer. An extraction with chloroform (at equal volume) is carried out.
  • the aqueous phase obtained from this extraction mixed with the supernatant obtained above is deposited on a 15% sucrose cushion (2 ml) and centrifuged with a Beeckman SW28 rotor (28,000 rpm, 5 hours, 4 ° C). The pellet is taken up in 1 ml of phosphate buffer and stored at 4 ° C.
  • the pellet obtained is resuspended, then treated with 20 ⁇ l of RNase (10 mg / ml) on ice for 10 min. 10 ⁇ l of 10% Nonidet P40 are then added and the whole is left for 10 min on ice. An extraction with chloroform for equal volume is then carried out on the suspension.
  • the aqueous phase (1 ml) is recovered and deposited on a 15-45% sucrose gradient (approximately 12 ml) and centrifuged with a Beeckman SW40 rotor (40,000 rpm, 5 hours, 12 ° C or 18,000 rpm, 16 hours, 12 ° C). The gradient is then divided into 14 fractions of 0.8 ml. The absorbance is measured at a wavelength of 220 nm.
  • the fractions corresponding to the peak of absorbance are collected. These fractions contain the empty viral capsids A24.
  • the specificity of the proteins harvested is verified by Western Blot.
  • the empty viral capsids of the subtypes 01 K, A10, C Spain Olot and A24 / A10 are obtained by proceeding in an identical manner to that described in this example, respectively by replacing the recombinant vaccinia viruses vV108 with VV106 (example 9), vV105 (example 8), vV107 (example 9) and vV109 (example 9).
  • the protein fractions thus obtained are stored at 4 ° C before their use in vaccines.
  • a 5 ml dose includes 15 ⁇ g of empty viral capsids with 360 hemolytic units of saponin.
  • the quantity of empty particles is determined by spectrophotometry by measuring the adsorption at 220 nm using as standard a solution of bovine albumin (BSA).
  • BSA bovine albumin
  • the recombinant vaccinia viruses vV100 to vV105 can be combined with solutions of carbomer.
  • the preferred carbomer is Carbopol TM 974P manufactured by BF Goodrich, Ohio, USA (molecular weight about 3,000,000).
  • a 1.5% stock solution of Carbopol TM 974P is initially prepared in distilled water containing 1 g / l of sodium chloride. This stock solution is then used for the preparation of a 4 mg / ml solution of Carbopol TM 974P in physiological water. The stock solution is mixed with the appropriate volume of physiological water, either in a single stage or in several successive stages, the pH value is adjusted at each stage with a 1N sodium hydroxide solution (or even more concentrated) in order to d '' obtain a final pH value of 7.3-7.4.
  • the ready-to-use Carbopol TM 974P solution thus obtained can be used to take up lyophilized recombinant viruses or to dilute concentrated stock solutions of recombinant viruses.
  • a DNA solution containing one or more plasmids pJCA161 to pJCA165 (Examples 3 and 4) is concentrated by ethanolic precipitation as described in Sambrook et al (1989). The DNA pellet is taken up in a 0.9% NaCl solution so as to obtain a concentration of 1 mg / ml.
  • a 0.75 mM solution of DMRIE-DOPE is prepared by taking up a lyophilizate of DMRIE-DOPE with a suitable volume of sterile H 2 0 (DMRIE or N- (2-hydroxyethyl) -N, N-dimethyl-2 , 3- bis (tetradecyloxy) -1-propanammonium (WO-A-9634109); DOPE or dioleoylphosphatidyl-ethanolamine (Behr JP, 1994, Bioconjugate Chemistry, 5, 382-389)).
  • the plasmid DNA-lipid complexes are formed by diluting the 0.75 mM DMRIE-DOPE solution with equal parts with the 1 mg / ml DNA solution in 0.9% NaCl.
  • the DNA solution is gradually introduced using a 26G crimped needle along the wall of the bottle containing the cationic lipid solution so as to avoid foaming. A gentle agitation is carried out as soon as the two solutions are mixed.
  • a composition is finally obtained comprising 0.375 mM of DMRIE-DOPE and 500 ⁇ g / ml of plasmid.
  • Example 14 Inspection on cattle The vaccine against the foot-and-mouth disease virus A24, obtained in Example 11 from the empty viral capsids expressed by vV109, is administered to a group of 6 cattle.
  • the injection is made subcutaneously, on each side of the neck, facing the shoulders.
  • the first 5 animals received a dose of 5 ml (2 x 2.5 ml)
  • the 6 th animal received 4 ml (2 x 2.0 mL).
  • This 6th animal is tattooed in the ear "UC10".
  • a second injection is administered subcutaneously on each side of the neck to each animal 31 days after the primary vaccination (4 ml for the first 5 animals (2 x 2.0 ml) and 0.5 ml (2 x 0 , 25 ml) to the 6th animal).
  • Blood samples are taken from animals vaccinated on D0 (day of the primary vaccination), D6, D13, D20, D31, D38, D42, D52 and immediately before their sacrifice.
  • All vaccinated animals and 2 non-vaccinated control animals are tested intradermolingually (10 x 0.10 ml per tongue) with foot-and-mouth disease virus A24 at a titer of 10 4.4 infectious doses / ml (titer on bovine thyroid cells ).
  • the test takes place 42 days after the primary vaccination.
  • Temperatures (table 2) and signs of foot-and-mouth disease (table 1) in the tongue, mouth and feet are monitored daily for each animal.
  • the titers of neutralizing antibodies against foot-and-mouth disease virus A24 are followed (FIG. 1).
  • T1 healthy tongue, no signs of viral replication, only trauma at injection sites
  • T2 presence of primary lesions on the tongue
  • T3 presence of primary and secondary lesions on the tongue or on other regions of the mouth
  • Table 2 temperature monitoring (in ° C) of cattle after virulent test
  • Figure 1 shows that vaccinated cattle develop a strong neutralizing anti-FMD A24 antibody response with a first peak around 13 days after the primary vaccination. After the booster injection, a strong neutralizing antibody response is observed. This is also observed in UC10 cattle which received a weaker booster injection than the others. After testing, the antibody titer does not increase, which indicates that the FDMV A24 virus does not replicate enough to stimulate the antibody response.
  • the vaccine against foot-and-mouth disease A24 made from empty viral capsids obtained from recombinant expression vectors vaccinia virus induces a primary and secondary immune response in cattle. After testing, these cattle are fully protected against foot-and-mouth disease and against viral replication.
  • Mutagenesis directed to construct A10 is carried out using oligonucleotides and PCR reactions in order to replace the codon coding for histidine 179 (position in the polyprotein coded by the plasmid pJCA161, example 3; the initiating methionine being numbered 1) by a codon coding for a cysteine.
  • An ACP reaction is carried out using the plasmid pJCA161 as template and the following oligonucleotides: JCA309 (37 mer) (SEQ ID NO 5) and JCA330 (27 mer) (SEQ ID NO 26): 5 'TGAGTCCACCAGGCACCCGAAGACACC 3' to amplify a fragment of 559 bp. This fragment is called fragment L.
  • the conditions for the first cycle of the PCR reaction are 95 ° C for 2 min, then 62 ° C for 2 min and 72 ° C for 3 min.
  • the conditions of the following 35 cycles of the PCR reaction are the same as those described in Example 6.
  • a second PCR reaction is carried out using the plasmid pJCA161 as template and the following oligonucleotides:
  • JCA331 (27 sea) (SEQ ID NO 27): 5 'GGTGTCTTCGGGTGCCTGGTGGACTCA 3' and JCA332 (36 sea) (SEQ ID NO 28):
  • fragment M 5 'AAAGTCTTTGCCGGCGCTAGCCGACACTAACAAGGT 3' to amplify a 1020 bp fragment. This fragment is called fragment M.
  • a third PCR reaction is carried out using the L and M fragments as template, and the oligonucleotides JCA309 (SEQ ID NO 5) and JCA332 (SEQ ID NO
  • fragment N The conditions of the PCR reaction are the same as those described in Example 6. This fragment is then digested using EcoRV and Nhel, to isolate, after electrophoresis in agarose gel, the fragment. 1527 bp EcoRV-Nhel. This fragment is called fragment N.
  • the plasmid pJCA161 is digested with Nhel and then with EcoRV in order to isolate, after agarose gel electrophoresis, the Nhel-EcoRV fragment of approximately 6800 bp. This fragment and fragment N are ligated together to give the plasmid pJCA176 (8327 bp).
  • This plasmid contains an insert coding for the part of the polyprotein A10 sufficient to generate mutated thermostable capsid proteins capable of self-assembly.
  • the plasmid pJCA176 is used for the construction of a recombinant vaccinia virus according to Example 8, the EcoRV-BglII fragment being obtained in this case at from plasmid pJCA176 and not from plasmid pJCA161
  • the recombinant virus thus obtained is called vV110.
  • EXAMPLE 16 Mutagenesis on the 01 K Construction A mutagenesis directed on the 01 K construction is carried out using oligonucleotides and PCR reactions as described in example 15, with the aim of replacing the codon coding for the serine 179 (position in the polyprotein coded by the plasmid pJCA162, example 4; the initiating methionine being numbered 1) by a codon coding for a cysteine.
  • a PCR reaction is carried out using the plasmid pJCA162 as template and the following oligonucleotides: JCA305 (37 mer) (SEQ ID NO 1) and JCA333 (27 mer) (SEQ ID NO 29): 5 * CGAGTCAGTCAGGCAGCCGTAGACACC 3 'to amplify a fragment of 559 bp. This fragment is called fragment O.
  • JCA334 (27 mer) (SEQ ID NO 30): 5 'GGTGTCTACGGCTGCCTGACTGACTCG 3' and JCA335 (36 mer) (SEQ ID NO 31):
  • fragment P 5 'AGACGTCCGTGTGTTGGCGCCTCTGGATCTGTGTTT 3' to amplify a fragment of 1147 bp. This fragment is called fragment P.
  • a third PCR reaction is carried out using the fragments O and P as template, and the oligonucleotides JCA305 (SEQ ID NO 1) and JCA335 (SEQ ID NO 31) to amplify a fragment of 1679 bp.
  • This fragment is then digested using EcoRV and Narl, to isolate, after agarose gel electrophoresis, the EcoRV-Narl fragment of 1654 bp. This fragment is called fragment Q.
  • the plasmid pJCA162 is digested with Nar1 then by EcoRV to isolate, after electrophoresis in agarose gel, the Narl-EcoRV fragment of approximately 6670 bp. This fragment and the Q fragment are ligated together to give the plasmid.
  • pJCA177 (8327 bp).
  • This plasmid contains an insert coding for the part of the polyprotein 01 K sufficient to generate thermostable mutated capsid proteins capable of self-assembly.
  • the plasmid pJCA177 is used for the construction of a recombinant vaccinia virus according to Example 9, the EcoRV-BglII fragment being obtained in this case from the plasmid pJCA177 and not from the plasmid pJCA162
  • the recombinant virus thus obtained is called vV111.
  • Example 17 Mutagenesis on the C Spain Olot Construction
  • a mutagenesis directed on the C Spain Olot construct is carried out using oligonucleotides and PCR reactions as described in Example 15, with the aim of replacing the coding codon for glycine 179 (position in the polyprotein coded by the plasmid pJCA163, example 4; the initiating methionine being numbered 1) by a codon coding for a cysteine.
  • An ACP reaction is carried out using the plasmid pJCA163 as template and the following oligonucleotides: JCA313 (37 mer) (SEQ ID NO 9) and JCA336 (27 mer) (SEQ ID NO 32): 5 'TGACTTGACGAGGCACCCGTAAACACC 3' to amplify a fragment 559 bp. This fragment is called fragment R.
  • a second PCR reaction is carried out using the plasmid pJCA163 as template and the following oligonucleotides:
  • fragment S 5 'GTAGTACTGGGCCAAGCCGGCCAAGTAGGTGTTTGA 3' to amplify a fragment of 681 bp. This fragment is called fragment S.
  • a third PCR reaction is carried out using the R and S fragments as a template, and the oligonucleotides JCA313 (SEQ ID NO 9) and JCA338 (SEQ ID NO 34) to amplify a 1213 bp fragment.
  • This fragment is then digested with EcoRV and Nael, in order to isolate, after agarose gel electrophoresis, the EcoRV-Nael fragment of approximately 1190 bp. This fragment is called fragment T.
  • Plasmid pJCA178 contains an insert coding for the part of the Spain Olot polyprotein C sufficient to generate mutable thermostable capsid proteins capable of self-assembly.
  • the plasmid pJCA178 is used for the construction of a recombinant vaccinia virus according to Example 9, the EcoRV-BglII fragment being obtained in this case from the plasmid pJCA178 and not from the plasmid pJCA163
  • the recombinant virus thus obtained is called vV112.
  • Mutagenesis directed to construct A24 is carried out using oligonucleotides and PCR reactions as described in the example
  • An ACP reaction is carried out using the plasmid pJCA164 as template and the following oligonucleotides:
  • JCA317 (37 mer) (SEQ ID NO 13) and JCA339 (27 mer) (SEQ ID NO 35): 5 'CGAGTCCACCAAGCATCCAAAGACACC 3' to amplify a fragment of 559 bp. This fragment is called fragment U.
  • a second PCR reaction is carried out using the plasmid pJCA164 as template and the following oligonucleotides:
  • JCA340 (27 sea) (SEQ ID NO 36): 5 'GGTGTCTTTGGATGCTTGGTGGACTCG 3' and JCA341 (36 sea) (SEQ ID NO 37): 5 'CCCAGGGTAGTTAGTCCTAGGCGGGTTGTACACCTT 3' to amplify a fragment of 507 bp. This fragment is called fragment V.
  • a third PCR reaction is carried out using the U and V fragments as template, and the oligonucleotides JCA317 (SEQ ID NO 13) and JCA341 (SEQ ID NO 37) to amplify a 1039 bp fragment.
  • This fragment is then digested with EcoRV and Bln1, in order to isolate, after agarose gel electrophoresis, the EcoRV-BInI fragment of approximately 1014 bp.
  • This fragment is called fragment W.
  • the plasmid pJCA164 is digested with Bln1 then with EcoRV to isolate, after electrophoresis in agarose gel, the BInl-EcoRV fragment of approximately 7360 bp.
  • This fragment and the W fragment are ligated together to give the plasmid pJCA179 (of a size of approximately 8400 bp).
  • This plasmid contains an insert coding for the part of the polyprotein A24 sufficient to generate thermostable mutated capsid proteins capable of self-assembly.
  • the plasmid pJCA179 is used for the construction of a recombinant vaccinia virus according to Example 9, the EcoRV-BglII fragment being obtained in this case from the plasmid pJCA179 and not from the plasmid pJCA164
  • the recombinant virus thus obtained is called vV113.
  • the modified empty viral capsids subtypes A10..O1K, C Spain Olot and A24 are obtained by proceeding in an identical manner to that described in example 10, by replacing the recombinant vaccinia viruses vV108 by respectively vV110 (example 15), vV111 (example 16), vV112 (example 17) and vV113 (example 18).
  • each tube contains 0.8 ⁇ g of capsids in 0.5 ml of phosphate buffer at pH 7.6. These 10 tubes are placed in a water bath at 50 ° C for 1 hour. They are then cooled. Each capsid sample is deposited on a sucrose gradient (15-35%) and centrifuged for 2.5 hours at 12 ° C (40,000 rpm with a Beeckman SW40 rotor). Each gradient obtained is then divided into 12 fractions of 1 ml.
  • the pellet is collected, dried, resuspended in a loading buffer (Maniatis et al., 1982, in: "Molecular cloning: a laboratory manual", Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA) and deposited on a gel. SDS-PAGE electrophoresis 10% acrylamide. The protein bands after transfer are revealed by a polyclonal guinea pig antibody anti-140S A10 reacting essentially with the protein VP1. The empty capsids migrate in the gradient at the level of fractions 7 and 8 while the degraded empty capsids remain near the top of the gradient at the level of fraction 11.

Abstract

Le vaccin contre la fièvre aphteuse, utilise comme antigène une quantité efficace de capsides vides du virus aphteux, ces capsides vides étant obtenues par l'expression, en cellules eucaryotes, de l'ADNc de la région P1 du génome du virus aphteux codant pour la capside et de l'ADNc de la région du génome du virus aphteux codant pour la protéase 3C, le vaccin comprenant en outre un véhicule ou excipient pharmaceutique acceptable sur le plan vétérinaire. L'invention prévoit aussi d'introduire une mutation dans la séquence de VP2 (introduction d'une cystéine), ce qui stabilise thermiquement les capsides vides et virus obtenus.

Description

VACCIN CONTRE LA FIEVRE APHTEUSE
La présente invention est relative à des vaccins contre la fièvre aphteuse et en particulier à l'amélioration de leur stabilité thermique. Elle est aussi relative à des procédés de préparation de ces vaccins, à l'utilisation d'antigènes pour la réalisation de ces vaccins et les méthodes de vaccination les utilisant. Elle est encore relative notamment à des séquences nucléotidiques, en particulier ADNc, et à des séquences en acides aminés, modifiées par rapport aux séquences naturelles du virus. Et. l'invention est relative aux produits d'expression des séquences nucléotidiques modifiées et aux antigènes et virus aphteux incorporant ces modifications. La fièvre aphteuse est l'une des maladies les plus virulentes et contagieuses touchant les animaux de rente. Cette maladie est endémique dans de nombreux pays dans le monde, notamment en Afrique, en Asie et en Amérique du Sud. En outre des foyers épidémiques apparaissent épisodiquement. La présence de cette maladie dans un pays peut avoir des conséquences économiques très sévères par les pertes de productivité, pertes en poids et en lait dans les élevages infectés et par les embargos commerciaux imposés envers ce pays.
Les mesures contre cette maladie consistent en l'application stricte de mesures de restriction d'importation, de contrôles sanitaires et de quarantaines, à l'abattage des bêtes malades et en des programmes de vaccination à l'aide de vaccins inactivés, soit préventifs au niveau national ou régional, soit périfocal en cas d'apparition d'un foyer épidémique.
La maladie se caractérise par sa faible période d'incubation, sa nature très contagieuse, la formation d'aphtes dans la bouche et sur les pieds, et parfois par de la mortalité chez les jeunes animaux. La fièvre aphteuse touche plusieurs espèces animales, en particulier les bovins, les porcins, les ovins et les caprins.
L'agent responsable de cette maladie est un virus à acide ribonucléique (ARN) appartenant au genre des Aphthovirus et à la famille des Picornaviridae (Cooper et al., Intervirology, 1978, 10, 165-180). Le virus de la fièvre aphteuse est également désigné sous le sigle anglais FMDV (Foot-and-mouth disease virus). A ce jour, 7 types du virus de la fièvre aphteuse sont connus, les types européens (A, O et C), les types africains (SAT1 , SAT2 et SAT3) et un type asiatique (Asia 1 ). On distingue aussi et de nombreux sous-types (Kleid et ai. dans Science, 1981, 214, 1125-1129). II s'agit d'un virus nu de forme icosaèdrique d'environ 25 nm de diamètre renfermant une molécule d'ARN simple-brin de polarité positive d'environ 8500 nucléotides. Cette molécule d'ARN se compose d'un seul cadre ouvert de lecture (COL) qui code pour une seule polyprotéine renfermant entre autres le précurseur de la capside également nommée protéine P1 ou P88. La protéine P1 est myristylée à son extrémité amino-terminale.
Lors du processus de maturation, la protéine P1 est clivée par la protease 3C en trois protéines nommées VPO, VP1 et VP3 (ou respectivement 1AB, 1D et 1C) (Belsham G. J., Progress in Biophysics and Molecular Biology, 1993, 60, 241-261). Dans le virion, la protéine VPO est ensuite clivée en deux protéines, VP4 et VP2 (ou respectivement 1A et 1 B). Le mécanisme de conversion des protéines VPO en VP1 et VP3 et de formation de virions matures n'est pas connu.
Les protéines VP1 , VP2 et VP3 ont un poids moléculaire d'environ 26 000 Da, la protéine VP4 est plus petite avec environ 8 000 Da. L'association simple des protéines de capside forme le protomère ou molécule 5S, qui est le constituant élémentaire de la capside du virus aphteux. Ce protomère se complexe ensuite en pentamère pour former la molécule 12S.
Le virion résulte de l'encapsidation d'une molécule d'ARN génomique au moyen de l'assemblage de 12 pentamères 12S, constituant ainsi les particules 146S.
La capside virale peut aussi se former sans la présence à l'intérieur de celle-ci d'une molécule d'ARN. La capside est alors vide. La capside vide est également nommée particule 70S. La formation de capsides vides peut se produire naturellement au cours de la réplication virale ou être provoquée artificiellement par traitement chimique. Pour être efficace, un vaccin contre la fièvre aphteuse doit être en général polyvalent. Sa composition doit être renouvelé dès que le ou les types dominants sur le terrain changent. Par ailleurs pour bloquer la développement rapide de la maladie au sein du cheptel il convient d'avoir un vaccin induisant une immunité précoce et qui soit fortement protecteur.
De très nombreuses hypothèses, voies de recherche, propositions ont été faites pour tenter de développer à des vaccins efficaces contre la fièvre aphteuse. Aujourd'hui les seuls vaccins commercialisés sont des vaccins à virus inactivés. Le traitement chimique d'inactivation peut entraîner une diminution du pouvoir immunogène du virus et de la production d'anticorps neutralisants. Les doses administrées doivent souvent être accompagnées d'adjuvants pour stimuler la réponse immunitaire, mais selon leur compositions ces adjuvants peuvent aussi induire des réactions inflammatoires. Les vaccins inactivés ne confèrent pas d'immunité sur une longue période, d'où la nécessité de pratiquer des injections de rappel tous les ans, voire plus en cas de difficultés, notamment lors d'apparitions de foyers épidémiques.
En outre il existe des risques liés à une inactivation incomplète et/ou à l'échappement de virus lors de la production de vaccins inactivés (e.g. King et al., 1981 , Nature, 293, 479-480).
Le développement des techniques du génie génétique aurait dû permettre d'envisager la production de vaccins sous-unitaires et de vecteurs recombinés. Mais malgré de nombreuses tentatives, aucun d'entre eux n'est commercialisé à ce jour.
En préalable à ces travaux des études sur les capsides vides naturelles menées. Notamment Rowlands et al. (Rowlands et al., J. Gen. Virol., 1975, 26, 227-238) montrent que les virions de la fièvre aphteuse A10 comportent majoritairement les quatre protéines VP1, VP2, VP3 et VP4. Par comparaison, les capsides vides naturelles (non obtenues par recombinaison mais purifiées à partir de cultures de virus aphteux A10) contiennent essentiellement la protéine VPO non clivée, des résultats identiques avec le virus aphteux A-Pando sont décrits par Rweyemamu (Rweyemamu et al., Archives of Virology, 1979, 59, 69- 79). Les capsides vides artificielles, obtenues après dialyse en présence de Tris- EDTA et après centrifugation, ne contiennent aucune protéine VP4. Ces capsides artificielles sont, selon Rowlands et al., faiblement immunogènes et les capsides vides naturelles ne sont immunogènes qu'après traitement par le formaldéhyde pour les stabiliser, la réponse en anticorps induite par les capsides vides naturelles chez le cobaye est toutefois inconstante comme le note l'auteur. En outre, Rowlands et al. et Rweyemamu et al. ne sont pas d'accord sur la nécessité de stabiliser les capsides vides naturelles. Pour Rweyemamu et al., l'absence de traitement par le formaldéhyde n'est pas préjudiciable pour le niveau d'antigénicité des capsides vides naturelles. L'immunogénicité n'est testée que par l'induction d'anticorps neutralisants chez le cobaye.
Certains auteurs ne suivent pas ce courant de pensée à propos des capsides vides, voire s'y opposent. C'est le cas pour Doel T. R. et Chong W. K. T. (Doel et al., Archives of Virology, 1982, 73, 185-191) qui concluent de leurs résultats d'expérience que les capsides vides sont moins immunogènes car moins stables que les virions aphteux de sous-type A24.
L'expression du gène codant pour le précurseur P1 des protéines de capsides par un baculovirus recombiné dans des cellules d'insectes est comparée à l'expression du gène codant pour P1 associé à la protease 3C dans E. coli (Grubman et al., Vaccine, 1993, 11 , 825-829 ; Lewis et al., J. Viral., 1991 , 65, 6572-6580). La co-expression de P1 et 3C dans E. coli aboutit à l'assemblage de capsides vides 70S. Le produit d'expression de ces deux constructions induit des anticorps neutralisants chez le cobaye et le porc. Les titres obtenus avec la construction P1 /baculovirus sont faibles. Ces mêmes produits d'expression induisent chez le porc une protection partielle. Toutefois certains porcs protégés contre la maladie ne sont pas protégés contre la réplication du virus d'épreuve. Les auteurs constatent par ailleurs que le système d'expression E. coli ne myristyle pas les protéines et que la protease 3C est toxique pour cette cellule. Lewis et al. concluent que des questions fondamentales concernant l'assemblage du virus et la structure de la capside nécessaires pour obtenir une protection maximale chez l'animal demeurent sans réponse. Par ailleurs Grubman et al. précisent qu'il serait nécessaire de stabiliser les capsides vides avant de formuler le vaccin ; ils rejoignent en cela les problèmes rencontrés avec les capsides vides obtenues par extraction à partir de cultures virales (voir supra).
Le système d'expression constitué du virus de la vaccine a aussi été utilisé pour l'obtention de capsides vides de virus aphteux A10, A24 et 01 K (Abrams et al., J. Gen. Virol., 1995, 76, 3089-3098). Principalement deux constructions ont été réalisées pour chaque sous-type, qui comportent les fragments de la séquence nucléotidique codant pour le précurseur P1 et pour la protease 3C soit sous contrôle du promoteur précoce/tardif p7,5K du virus de la vaccine, soit du promoteur du bactériophage T7. Seules des expériences de recombinaison et d'expression in vitro ont été menées, sur des cultures de cellules humaines. Les cultures de cellules transformées par les constructions comportant le promoteur p7,5K n'ont pas permis l'isolement de virus de la vaccine recombinés. Les raisons en sont inconnues. Les cultures de cellules transformées par les constructions comportant le promoteur T7 ont permis l'obtention de vecteurs virus de la vaccine recombinés, l'expression des protéines virales VPO, VP1 et VP3 et l'obtention de capsides vides. Ces expériences étaient destinées à étudier la morphogénèse du virus aphteux et ne concernaient pas la production de vaccins ni l'évaluation de leur efficacité.
Des plasmides comprenant la cassette codant pour P1-2A et 3C sous la dépendance d'un promoteur hCMV-IE ont été testés par Chinsangaram et al. (Chinsangaram et al., J. Virol., 1998, 72(5), 4454-4457). Les injections de ces plasmides chez le porc induisent des anticorps neutralisants, et selon les groupes d'animaux une absence de protection après 2 injections ou une protection après 4 injections. Les auteurs concluent qu'il convient d'améliorer la réponse immunitaire induite par la co-expression de cytokine. Parallèlement à ces approches, qui n'ont pas abouti à la réalisation de vaccins, d'autres auteurs se sont orientés vers l'utilisation de protéine VP1 de virus aphteux, seule ou en fusion, ou de peptides synthétiques.
Des travaux avec une protéine de fusion composée de la protéine LE de l'opéron tryptophane ό'E. coli et d'un fragment de la protéine VP1 du virus aphteux A24 (acides aminés 131-157 sous forme de monomère) ont été menés chez le porc (Morgan et al., Am. J. Vet. Res., 1990, 51, 40-45) en comparant les résultats avec ceux obtenus avec une protéine de fusion semblable mais construite à partir du virus aphteux A12 (acides aminés 137-168 en tandem). Giavedoni et al. (Giavedoni et al., J. Gen. Virol., 1991, 72, 967-971) décrivent une protéine de fusion TrpE avec des fragments de la région C terminale de la protéine VP1 du virus aphteux 01. Huang et al. décrivent une protéine de fusion recombinée comprenant la bêta-galactosidase et deux séquences répétées en tandem de VP1 du virus aphteux O (Huang et al., Viral Immunol., 1999, 12(1), 1- 8).
Des protéines du fusion comportant tout ou partie de la protéine VP1 ont aussi été obtenues par l'utilisation de vecteurs viraux, à savoir un virus herpès ou le virus de la vaccine. CA-A-2,047,585 décrit notamment un virus herpès bovin utilisé pour la production de protéines de fusion comportant une séquence peptidique du virus aphteux (acides aminés 141 à 158 de VP1 liés aux acides aminés 200 à 213 de VP1) fusionné avec la glycoprotéine gplll de ce virus herpès bovin.
Des vaccins comportant des peptides synthétiques basés sur les régions immunogéniques de la protéine VP1 (sur ces régions, voir Strohmaier et al., J. Gen. Virol., 1982, 59, 295-306) ont également été élaborés et testés.
Agterberg et al. (Vaccine, 1990, 8, 438-440) ont produit dans des bactéries E. coli transformées une protéine de fusion comportant deux déterminants immunogéniques de la protéine VP1 du virus aphteux A10 (régions 141-153 et 200-207) et la protéine membranaire PhoE d'E coli K-12. 100 μg de cette protéine de fusion ont ensuite été administrés par voie intramusculaire à des cobayes qui ont par la suite montré un taux d'anticorps neutralisants détectable et une protection après épreuve homologue.
WO-A-99/66954 décrit des peptides synthétiques correspondant à des séquences consensus de sites antigéniques de VP1 de virus aphteux des type A, O ou Asia (correspondant à la région 134-168 de VP1 du virus aphteux A12).
WO-A-98/12333 décrit des peptides synthétiques comprenant au moins 8 acides aminés correspondant à une séquence partielle de protéines de virus aphteux.
La présente invention a pour objectif de proposer des vaccins efficaces et sûrs contre la fièvre aphteuse.
La présente invention a également pour objectif de proposer des vaccins anti-aphteux stables.
La présente invention a aussi pour objectif de proposer de tels vaccins anti-aphteux efficaces à faible dose.
L'invention a ainsi pour objet un vaccin contre la fièvre aphteuse, utilisant comme antigène une quantité efficace de capsides vides du virus aphteux, ces capsides vides étant obtenues par l'expression, dans des cellules eucaryotes, de l'ADN complémentaire (ADNc) de la région P1 du génome du virus aphteux codant pour la capside et de l'ADNc de la région du génome du virus aphteux codant pour la protease 3C, le vaccin comprenant en outre un véhicule ou excipient pharmaceutique acceptable sur le plan vétérinaire. Par définition, on n'exprime pas de protéine L fonctionnelle et par conséquent les constructions ne comprennent pas l'ADNc codant pour L, et de préférence elles ne comprennent aucun ADNc codant pour tout ou partie de L.
On préfère réaliser l'expression de P1 et d'au moins une partie de 2A, de préférence de la totalité de 2A. L'expression peut également impliquer des régions au-delà de 2A, et comprendre par exemple une partie de 2B, e.g. comme cela a été réalisé dans les exemples. On préfère réaliser l'expression de 3C et d'au moins une partie des protéines 3B, par exemple de deux protéines 3B adjacentes et une partie non fonctionnelle de 3D, e.g. comme cela a été réalisé dans les exemples.
La Figure 3 (SEQ ID N° 38) donne la séquence nucléotidique et la séquence en acides aminés correspondant à P1 (acides aminés 2 à 737), 2A (acides aminés 738 à 753), 3C (acides aminés 913 à 1 126) de la souche A10 du virus aphteux. Les séquences d'autres souches des différents types et sous- types sont disponibles, notamment dans Genbank ainsi que cela est mentionné dans les exemples. Suivant une première modalité de l'invention, les capsides vides sont présentes dans le vaccin comme sous-unités et cela en quantité efficace. De préférence ces sous-unités sont obtenues par expression des ADNc des régions P1 et 3C sous la dépendance d'un promoteur, de préférence un même promoteur. De manière préférée il s'agit d'un promoteur inductible ou d'un promoteur tardif d'origine virale.
Les vecteurs d'expression utilisables comprennent notamment les vecteurs viraux, de préférence les poxvirus, notamment le virus de la vaccine, ou encore par exemple les adénovirus, les herpèsvirus et les vecteurs plasmidiques. Ces vecteurs d'expression sont utilisés pour assurer l'expression in vitro des capsides vides dans des cellules eucaryotes primaires ou de lignée. Une variante consiste à utiliser un vecteur d'intégration permettant d'intégrer la cassette d'expression dans la cellule eucaryote. Les cellules eucaryotes utilisables sont de préférence des cellules de lignée par exemple les cellules BHK-21 , CHO, COS, RK13, Vero, MDBK, PK15. Comme promoteur inductible on peut citer notamment le promoteur du bactériophage T7, le promoteur heat-shock, le promoteur métallothionéine, les promoteurs inductibles par l'ecdysone ou par les stéroïdes. Lorsqu'on utilise le promoteur du bactériophage T7, on réalise la co-expression de la polymérase du bactériophage T7 et des capsides vides. Comme promoteur tardif d'origine virale on peut citer notamment, lorsqu'on utilise un poxvirus comme vecteur, le promoteur P11 K du virus de la vaccine, P28K du virus de la vaccine, P160K ATI du virus cowpox.
La conservation et le stockage des sous-unités sont de préférence assurés par congélation ou par lyophilisation.
Les doses administrées peuvent être notamment comprises entre 0,3 et 30 μg, notamment entre 0,5 et 20 μg, de préférence entre 1 et 10 μg et plus préférentiellement encore entre 1 et 5 μg, par dose.
Les volumes de dose peuvent être de préférence compris entre 0,2 et 5 ml, de préférence entre 1 et 3ml.
Le milieu de reprise (excipient, véhicule) pour les vaccins sous-unitaires est de préférence un milieu permettant la conservation des capsides vides, e.g. du type DMEM.
L'administration du vaccin sous-unitaire peut se faire notamment par la voie parenterale, de préférence par la voie sous-cutanée ou intramusculaire, ou encore la voie intradermique, notamment à l'aide d'un appareil d'administration sans aiguille (jet sous pression).
L'homme de l'art possède les compétences nécessaires pour définir précisément le nombre d'injection et les doses de chaque vaccin à utiliser pour chaque protocole de vaccination.
Ces vaccins comprennent de préférence un ou plusieurs adjuvants.
Pour adjuver les vaccins sous-unitaires selon l'invention, on peut notamment utiliser à titre d'adjuvant (1) de l'hydroxyde d'alumine, de la saponine (par exemple QuilA), de l'avridine, du DDA, (2) un polymère de l'acide acrylique ou méthacrylique, un polymère d'anhydride maléique et de dérivé alcényle, ou (3) formuler le vaccin sous forme d'une émulsion eau-dans-huile, huile-dans-eau ou eau-dans-huile-dans-eau.
L' émulsion peut notamment être à base d'huile de paraffine liquide légère
(type Pharmacopée européenne) ; d'huile isoprénoide telle que le squalane ou le squalène ; d'huile résultant de l'oligomérisation d'alcènes, en particulier d'isobutène ou de décène ; des esters d'acides ou d'alcools à groupement alkyle linéaire, plus particulièrement les huiles végétales, l'oléate d'éthyle, le di(caprylate / caprate) de propylène glycol, le tri(caprylàte / caprate) de glycérol, le dioléate de propylène glycol ; des esters d'acides ou d'alcools gras ramifiés, en particulier des esters de l'acide isostéarique. L'huile est utilisée en association avec des émulsifiants pour former l' émulsion. Les émulsifiants sont de préférence des tensio-actifs non ioniques en particulier les acides gras polyoxyétylénés (e.g. acide oléique), les esters de sorbitan, de mannide (e.g. oléate d'anhydromannitol), de glycérol, de polyglycérol, de propylène glycol et de l'acide oléique, isostéarique, ricinoléique, hydroxystéarique, éventuellement éthoxylés, les éthers d'alcools gras et de polyols (e.g. alcool oléique), les blocs copolymères polyoxypropylène-polyoxyéthylène en particulier les Pluronic®, notamment L121 (voir Hunter et al., 1995, "The Theory and Practical Application of Adjuvants" (Ed. Steward-Tull, D.E.S.) John Wiley and Sons, NY, 51-94 ; Todd et al., Vaccine, 1997, 15, 564-570). Les polymères de l'acide acrylique ou méthacrylique sont réticulés notamment par des éthers polyalcényliques de sucres ou de polyalcools. Ces composés sont connus sous le terme carbomère (Pharmeuropa vol. 8, n° 2, juin 1996). L'homme de l'art peut aussi se référer à US-A-2 909 462 (incorporé par référence) décrivant de tels polymères acryliques réticulés par un composé polyhydroxylé ayant au moins 3 groupes hydroxyle, de préférence pas plus de 8, les atomes d'hydrogène d'au moins trois hydroxyles étant remplacés par des radicaux aliphatiques insaturés ayant au moins 2 atomes de carbone. Les radicaux préférés sont ceux contenant de 2 à 4 atomes de carbone, e.g. vinyles, allyles et autres groupes éthyléniquement insaturés. Les radicaux insaturés peuvent eux-mêmes contenir d'autres substituants, tel que méthyl. Les produits vendus sous la dénomination Carbopol® (BF Goodrich, Ohio, USA) sont particulièrement appropriés. Ils sont réticulés par un allyl saccharose ou par de l'aHylpentaérythritol. Parmi eux, on peut citer les Carbopol® 974P, 934P et 971 P.
Parmi les copolymères d'anhydride maléique et de dérivé alcényle, on préfère les EMA® (Monsanto) qui sont des copolymères d'anhydride maléique et d'éthylène, linéaires ou réticulés, par exemple réticulés par du divinyléther. On peut se référer à J. Fields ef al., Nature, 186: 778-780, 4 juin 1960 (incorporé par référence).
Sur le plan de leur structure, les polymères d'acide acrylique ou méthacrylique et les EMA® sont formés de préférence de motifs de base de formule suivante :
Figure imgf000012_0001
dans laquelle :
- Ri et R2, identiques ou différents, représentent H ou CH3 - x = 0 ou 1 , de préférence x = 1
- y = 1 ou 2, avec x + y = 2
Pour les EMA®, x = 0 et y = 2. Pour les carbomères, x = y = 1. La concentration en polymère dans la composition vaccinale finale sera de 0,01 % à 1 ,5 % PΛ , plus particulièrement de 0,05 à 1 % P/V, de préférence de 0,1 à 0,4 % PΛ .
Suivant une deuxième modalité de l'invention, le vaccin comprend un vecteur d'expression contenant l'ADNc de façon à produire les capsides vides in vivo. De préférence ces capsides vides sont obtenues in vivo par expression des ADNc des régions P1 et 3C insérés dans un vecteur d'expression plasmidique ou dans un vecteur d'expression viral et placés sous la dépendance d'un promoteur, de préférence d'un même promoteur. De manière préférée le promoteur est un promoteur fort précoce ou un promoteur tardif d'origine virale.
Dans le cas des vecteurs viraux on utilise de préférence un promoteur tardif d'origine virale. Les vecteurs viraux sont de préférences les poxvirus, notamment le virus de la vaccine, les avipox (e.g. fowlpox, canarypox), le racoonpox, le swinepox, le capripox, ou encore les adénovirus réplicatifs, notamment Padénovirus porcin, et les herpèsvirus. Comme promoteur tardif d'origine virale on peut citer notamment, pour les poxvirus, le promoteur P11K du virus de la vaccine, P28K du virus de la vaccine, P160K ATI du virus cowpox.
Par définition, un vecteur d'expression plasmidique (ou plasmide) recouvre une unité de transcription ADN comprenant une séquence polynucléotidique comprenant l'ADNc à exprimer et les éléments nécessaires à son expression in vivo. On préfère la forme plasmide circulaire, super-enroulée ou non. La forme linéaire entre également dans le cadre de cette invention.
Dans le cas des plasmides on utilise de préférence un promoteur fort précoce d'origine virale ou d'origine cellulaire et en particulier le promoteur précoce du cytomégalovirus CMV-IE, d'origine humaine ou murine, ou encore éventuellement d'une autre origine telle que rat, cobaye. On peut également utiliser le promoteur précoce ou tardif du virus SV40 ou le promoteur LTR du virus du Sarcome de Rous. Comme promoteur cellulaire, on peut citer le promoteur d'un gène du cytosquelette, tel que par exemple le promoteur de la desmine, ou encore le promoteur de l'actine.
La conservation et le stockage des vaccins recombinés sont de préférence assurés par congélation ou par lyophilisation ou sous forme liquide.
Le milieu de reprise (excipient, véhicule) est de préférence une solution saline NaCI à 0,9 % ou un tampon phosphate.
La quantité de vecteurs viraux utilisée dans les vaccin selon la présente invention est d'environ au moins 103 pfu. Elle est de préférence comprise entre environ 104 pfu et environ 1010 pfu, e.g. environ 105 pfu et 109 pfu, plus particulièrement entre environ 106 pfu et environ 108 pfu, par dose. La quantité de vecteurs plasmidiques utilisée dans les vaccins selon la présente invention est comprise entre environ 1 μg et environ 2 mg, et préférentiellement entre environ 50 μg et environ 1 mg, par dose.
Les volumes de dose peuvent être de préférence compris entre 0,2 et 5 ml, de préférence entre 1 et 3 ml. Les vaccins recombinés selon l'invention peuvent être administrés, par les différentes voies d'administration usuelles et au moyen des techniques d'administration connues. Suivant une modalité préférée de l'invention, l'administration se fait par la voie intramusculaire, sous-cutanée ou à l'aide d'un injecteur sans aiguille par voie intradermique. En particulier pour les vecteurs viraux on préfère la voie intramusculaire ou sous-cutanée. Pour les vecteurs viraux ou plasmidiques on peut également utiliser la voie mucosale (e.g. orale, nasale).
De préférence, ces vaccins comprennent un ou plusieurs adjuvants. Pour les vecteurs viraux on utilise avantageusement un polymère de l'acide acrylique ou méthacrylique, ou un polymère d'anhydride maléique et de dérivé alcényle, et en particulier les carbomères, notamment Carbopol® (ces adjuvants sont décrits supra).
Pour les vecteurs plasmidiques, il est avantageux de les formuler par addition à titre d'adjuvant, de lipides cationiques contenant un sel d'ammonium quaternaire, de formule :
Figure imgf000014_0001
dans laquelle R1 est un radical aliphatique linéaire, saturé ou insaturé, ayant de 12 à 18 atomes de carbone, R2 est un autre radical aliphatique, renfermant 2 ou 3 atomes de carbone, et X un groupement hydroxyle ou aminé. De préférence il s'agit du DMRIE (N-(2-hydroxyéthyl)-N,N-diméthyl-2,3- bis(tetradécyloxy)-1-propanammonium ; WO-A-9634109), de préférence associé avec un lipide neutre, notamment le DOPE (dioléoyl-phosphatidyl-éthanolamine ; Behr J.P., 1994, Bioconjugate Chemistry, 5, 382-389) pour former le DMRIE- DOPE. De préférence, le mélange plasmide avec cet adjuvant se fait de manière extemporanee et l'on préfère, avant son administration à l'animal, laisser le temps au mélange ainsi constitué de se complexer, par exemple pendant une durée allant de 10 à 60 minutes, notamment de l'ordre de 30 minutes. Lorsque du DOPE est présent, le ratio molaire DMRIE : DOPE va de préférence de 95 : 5 à 5 : 95, et est plus particulièrement de 1 : 1.
Le ratio pondéral plasmide : adjuvant, notamment DMRIE ou DMRIE- DOPE peut aller notamment de 50 : 1 à 1 : 10, en particulier de 10 : 1 à 1 : 5, et de préférence de 1 : 1 à 1 : 2.
Les vaccins selon l'invention, adjuvés ou non comme décrit ci-dessus, peuvent encore être adjuvés par une ou des cytokines, ajoutées ou exprimées in vivo. De préférence, on utilise le GM-CSF (en anglais Granulocyte Macrophage Colony Stimulating Factor : Clark S.C. et al. Science 1987. 230. 1229 ; Grant S. M. et al. Drugs 1992. 53. 516), ce qui peut se faire par l'incorporation de protéine GM-CSF directement dans la composition vaccinale ou de préférence par l'insertion de la séquence nuciéotidique codant pour le GM-CSF dans un vecteur d'expression dans des conditions permettant son expression in vivo, e.g. le vecteur contenant la séquence nuciéotidique codant pour l'antigène FMDV ou un autre vecteur. Comme vecteur d'expression, on préfère utiliser un plasmide. Le choix du GM-CSF se fait de préférence en fonction de l'espèce animale à vacciner ; ainsi pour les bovins le GM-CSF bovin (voir e.g. Maliszewski et a/. Molec. Immunol. 1988. 25. 843-850) est utilisé ; pour les porcs il s'agit du GM- CSF porcin (voir e.g. Inumaru S. et Takamatsu H., Immunol. Cell. Biol. 1995. 75. 474-476).
Pour la réalisation de vecteurs exprimant le GM-CSF, tes séquences du GM-CSF sont disponibles dans Genbank, D21074 pour le porc, U22385 pour le bovin et X55991 pour l'ovin.
La présente invention a aussi pour objet un procédé de préparation d'un vaccin anti-aphteux sous-unitaire dans lequel on produit des capsides vides de ce virus par expression de l'ADNc de la région P1 et par expression de l'ADNc de la région 3C, et on les formule dans un véhicule ou excipient acceptable au plan vétérinaire, de préférence en présence d'au moins un adjuvant. L'invention a aussi pour objet l'utilisation de capsides vides produites in vitro conformément à l'invention, pour la préparation d'un vaccin anti-aphteux sous-unitaire, comprenant en outre un véhicule ou excipient acceptable au plan vétérinaire, de préférence en présence d'au moins un adjuvant.
L'invention a aussi pour objet une méthode de vaccination anti-aphteuse, comprenant l'administration à l'animal, notamment les animaux de rente, en particulier bovin, ovin, porcin, caprin, d'un vaccin sous-unitaire conforme à l'invention. Modes d'administration et doses ont été définis plus haut.
Les différentes caractéristiques décrites plus haut à propos du vaccin sous-unitaire selon l'invention s'appliquent à ces différents objets.
La présente invention a aussi pour objet un procédé de préparation d'un vaccin anti-aphteux recombiné dans lequel on produit des vecteurs viraux ou plasmidiques exprimant in vivo la protéine P1 et la protéine 3C dans des conditions conduisant à la formation de capsides vides, et on formule ces vecteurs dans un véhicule ou excipient acceptable au plan vétérinaire, de préférence en présence d'au moins un adjuvant.
L'invention a aussi pour objet l'utilisation de vecteurs viraux ou plasmidiques conformes à l'invention, pour la préparation d'un vaccin antiaphteux recombiné, comprenant en outre un véhicule ou excipient acceptable au plan vétérinaire, de préférence en présence d'au moins un adjuvant. L'invention a aussi pour objet une méthode de vaccination anti-aphteuse, comprenant l'administration à l'animal, notamment les animaux de rente, en particulier bovin, ovin, porcin, caprin, d'un vaccin recombiné conforme à l'invention. Modes d'administration et doses ont été définis plus haut.
Les différentes caractéristiques décrites plus haut à propos des vaccins utilisant des vecteurs viraux ou plamidiques selon l'invention s'appliquent à ces différents objets.
L'invention a aussi pour objet un vaccin multivalent ou une association de vaccins comprenant une vaccin conforme à l'invention, et au moins un autre vaccin contre un virus aphteux d'un autre type (e.g. O, A, C, SAT1 , SAT2, SAT3,
Asia), d'un autre sous-type (e.g. A10, A12, A24, 01) ou d'un autre variant, de préférence conforme à l'invention, dans un véhicule ou excipient acceptable sur le plan vétérinaire et de préférence avec un adjuvant, notamment l'un de ceux décrits précédemment.
L'invention a aussi pour objet un vaccin multivalent ou une association de vaccins comprenant un vaccin conforme à l'invention, et au moins un vaccin contre un autre pathogène, notamment le virus de la rage, dans un véhicule ou excipient acceptable sur le plan vétérinaire et de préférence avec un adjuvant, notamment l'un de ceux décrits précédemment.
L'invention a encore pour objet l'amélioration de la stabilité à la température des capsides vides de virus aphteux et des vaccins obtenus.
L'amélioration de la stabilité à la température des capsides vides est assurée avantageusement par la formation de ponts disulfures.
En particulier, cette amélioration est obtenue par le remplacement d'un acide aminé de la séquence d'origine par un acide aminé cysteine dans la séquence polypeptidique d'une protéine de structure de la capside, la protéine VP2, cet acide aminé étant en position 179 sur la séquence d'acides aminés SEQ ÎD N° 38 (Figure 3). En règle générale, la position de cet acide aminé est identique chez les autres virus aphteux (c'est notamment le cas des souches décrites dans les exemples). Sur les séquences d'autres virus, la position peut éventuellement être très légèrement différente et par exemple être 178 ou 180. La région qui comprend cet acide aminé correspond à une hélice alpha. Pour identifier ou confirmer l'acide aminé à muter, on aligne les séquences en acides aminés de cette région avec la région correspondante (par exemple de l'ordre d'une dizaine ou un peu plus - e.g. 10 à 20 - d'acides aminés) sur la séquence SEQ ID N° 38, compte tenu du fait que les séquences sont bien conservées dans leur structure parmi les différents virus aphteux. On a notamment constaté en comparant les séquences des souches 01, A10, A24, A22, C1 , C3, SAT2, que la région peut s'écrire de la manière suivante : Xi Gly X3 X4 Gly X6 Leu X8 X9 Ser Xn X 2 Tyr Met avec X4 et X.n sont Tyr, His ou Phe (acides aminés hydrophobes)
X3, X8 et X12 sont Val,' Met, Ile, Thr ou Ala -
X6 est His, Gin, Arg, Lys, Ser ou Gly ; c'est l'acide aminé à muter en Cys
Xi est His ou Lys (acides aminés basiques) Xg est Asp, Glu ou Lys (acides aminés acide et basique).
L'acide aminé à muter est l'histidine située en position 179 du précurseur P1 du virus aphteux A10.
Il s'agit de la serine située en position 179 du précurseur P1 du virus aphteux 01. II s'agit de la glycine située en position 179 du précurseur P1 du virus aphteux C1.
Il s'agit de l'histidine située en position 179 du précurseur P1 du virus aphteux A24.
Par convention, la méthionine correspondant au codon d'initiation (qui n'est pas présent dans la séquence naturelle et est donc ajouté) est numérotée 1
Au niveau nucléotide, cela revient à remplacer les codons d'origine par un codon codant pour la cysteine, soit un codon TGT ou TGC pour l'ADNc, ou UGU ou UGC pour l'ARN.
La présente invention a donc aussi pour objet les séquences nucléotidiques notamment les ADNc incorporant cette modification. En particulier, l'invention concerne les séquences ADNc, et les vecteurs les incorporant, comprenant la séquence codant pour VP2 (ou VPO), et plus particulièrement pour P1 , qui incorporent cette modification, par exemple séquences ADNc codant pour P1-2A ou P1-2A-partie de 2B, et les séquences les incorporant, par exemple séquences les incorporant avec les séquences permettant leur expression (promoteur, codon ATG, etc.).
La présente invention a aussi pour objet les séquences en acides aminés, obtenues à partir dé ces séquences nucléotidiques, ainsi que les capsides vides et les virus aphteux thermostables (c'est-à-dire ayant une stabilité thermique améliorée). De préférence, ils comprennent des ponts disulfure qui ne sont pas présents dans les capsides et virus naturels. En particulier, ils comprennent des protéines VP2 comprenant une cysteine à la place d'un acide aminé naturel, comme cela vient d'être décrit.
Suivant la modalité préférée de l'invention, les vaccins décrits supra sont basés sur l'utilisation de cette modification et donc les séquences d'ADNc sont modifiées en conséquence et les capsides vides obtenus soit in vitro soit in vivo possèdent les ponts disulfures.
De même, tous les autres objets (méthodes, utilisation, procédés) de l'invention qui ont été décrits supra peuvent, et de préférence reprennent ces caractéristiques.
L'invention va être maintenant décrite plus en détail à l'aide de modes de réalisation pris à titre d'exemples non limitatifs et se référant aux dessins dans lesquels :
Figure 1 : graphe des titres en anticorps neutralisants anti-aphteux A24 mesurés sur bovins (exprimés en log)
Figure 2 : photographie des gels obtenus
Figure 3 : séquence nuciéotidique et séquence en acides aminés correspondant à P1 (acides aminés 2 à 737), 2A (acides aminés 738 à 753), 3C (acides aminés 913 à 1126) de la souche A10 du virus aphteux
Listes des séquences SEQ ID pour les constructions de ia présente invention
SEQ ID N° 1 : oligonucléotide JCA305 SEQ ID N° 2 : oligonucléotide JCA306
SEQ ID N° 3 : oligonucléotide JCA307
SEQ ID N° 4 : oligonucléotide JCA308
SEQ ID N° 5 : oligonucléotide JCA309
SEQ ID N° 6 : oligonucléotide JCA310 SEQ ID N° 7 : oligonucléotide JCA311
SEQ ID N° 8 : oligonucléotide JCA312 SEQ ID N° 9 : oligonucléotide JCA313 SEQ ID N° 10 : oligonucléotide JCA314 SEQ ID N° 11 : oligonucléotide JCA315 SEQ ID N° 12 : oligonucléotide JCA316 SEQ ID N° 13 : oligonucléotide JCA317 SEQ ID N° 14 : oligonucléotide JCA318 SEQ ID N° 15 : oligonucléotide JCA319 SEQ ID N° 16 : oligonucléotide JCA320 SEQ ID N° 17 : oligonucléotide JCA321 SEQ ID N° 8 : oligonucléotide JCA322 SEQ ID N° 19 : oligonucléotide JCA323 SEQ ID N° 20 : oligonucléotide JCA324 SEQ ID N° 21 : oligonucléotide JCA325 SEQ ID N° 22 : oligonucléotide JCA326 SEQ ID N° 23 : oligonucléotide JCA327 SEQ ID N° 24 : oligonucléotide JCA328 SEQ ID N° 25 : oligonucléotide JCA329 SEQ ID N° 26 : oligonucléotide JCA330 SEQ ID N° 27 : oligonucléotide JCA331 SEQ ID N° 28 : oligonucléotide JCA332 SEQ ID N° 29 : oligonucléotide JCA333 SEQ ID N° 30 : oligonucléotide JCA334 SEQ ID N° 31 : oligonucléotide JCA335 SEQ ID N° 32 : oligonucléotide JCA336 SEQ ID N° 33 : oligonucléotide JCA337 SEQ ID N° 34 : oligonucléotide JCA338 SEQ ID N° 35 : oligonucléotide JCA339 SEQ ID N° 36 : oligonucléotide JCA340 SEQ ID N° 37 : oligonucléotide JCA341 SEQ ID N° 38 : séquence en acides aminés correspondant à P1 (acides aminés
2 à 737), 2A (acides aminés 738 à 753), 3C (acides aminés 913 à 1126) du virus aphteux A10.
SEQ ID N° 39 : séquence nuciéotidique correspondant à P1, 2A, 3C du virus aphteux A10.
SEQ ID N° 40 : oligonucléotide JCA342
SEQ ID N° 41 : oligonucléotide JCA343
Exemples :
Toutes les constructions sont réalisées en utilisant les techniques standards de biologie moléculaire (clonage, digestion par les enzymes de restriction, synthèse d'un ADN complémentaire simple brin, amplification en chaîne par polymérase, élongation d'un oligonucléotide par une ADN polymérase...) décrites par Sambrook J. et ai. (Molecular Cloning: A Laboratory Manual. 2πd Edition. Cold Spring Harbor Laboratory. Cold Spring Harbor. New York. 1989). Tous les fragments de restriction utilisés pour la présente invention, ainsi que les divers fragments d'amplification en chaîne par polymérase (= ACP ou PCR), sont isolés et purifiés en utilisant le kit "Geneclean®" (BIO101 Inc. La Jolla, CA).
Des séquences nucléotidiques et polypeptidiques de virus de la fièvre aphteuse sont accessibles auprès de la base de donnée GenBank, notamment sous les numéros X00429 pour A10, X00871 pour 01K, AJ251476 pour A24, et AJ 133357 pour C Spain Olot.
Exemple 1 : Culture des souches de virus aphteux
Pour leur amplification, les souches de virus aphteux désignées 01 K (Forss et al., 1984, Nucleic Acids Res., 12(16), 6587-6601), A24 (Weddell et al., 1985, Proc. Natl. Acad. Sci. USA, 82, 2618-2622), A10 (Carroll et al., 1984, Nucleic
Acids Res., 12(5), 2461-2472), C Spain Olot (Toja et al., 1999, Virus Res., 64(2), 161-171) sont cultivées sur cellules BHK-21 (Baby Hamster Kidney, accessible auprès de l' American Type Culture Collection (ATCC) sous le numéro CCL-10). Les cellules BHK-21 sont mises en culture en Falcon 25 cm2 avec du milieu Eagle-MEM supplémenté de 1 % d'extraits de levure et de 5 % de sérum de veau contenant environ 100 000 cellules par ml. Les cellules sont cultivées à +37°C.
Après 3 jours la couche cellulaire arrive à confluence. Le milieu de culture est alors remplacé par du milieu Eagle-MEM sans sérum mais supplémenté avec 0,4 % d'hydrolysat de lactalbumine et 0,3 % de peptone (pH 7,4) et le virus aphteux est ajouté à raison de 1 pfu pour environ 20 cellules.
Lorsque l'effet cytopathogène (CPE) est complet (généralement 24 heures après le début de la mise en culture), les suspensions virales sont récoltées, puis clarifiées par centrifugation et congelées à -70CC. 3 à 4 passages successifs sont généralement nécessaires à la production d'un lot viral. Le lot viral est stocké à -70°C.
Ces opérations sont renouvelées pour chacune des souches de virus aphteux.
Exemple 2 : Extraction de TARN viral des souches virus aphteux
L'ARN viral contenu dans 100 ml de suspension virale de la souche de virus aphteux A24, obtenue à l'exemple 1 , est extrait après décongélation avec les solutions du kit « High Pure™ Viral RNA Kit » Cat # 1 858 882, Roche Molecular Biochemicals), en suivant les instructions du fournisseur pour les étapes d'extraction. Le culot d'ARN obtenu à la fin de l'extraction est re-suspendu avec 10 ml d'eau distillée stérile sans RNase. L'ARN viral de chacune des souches de virus aphteux est extrait dans les mêmes conditions.
Exemple 3 : Construction du plasmide d'expression pour les capsides vides du virus aphteux A10 L'ADN complémentaire (ADNc) du virus aphteux A10 est synthétisé avec le kit
« Gène Amp RNA PCR Kit » (Cat # N 808 0017, Perkin-Elmer, Norwalk, CT
06859, USA) en utilisant les conditions données par le fournisseur.
Pour le premier fragment, une réaction de transcription inverse, suivie d'une réaction d'amplification en chaîne (Réaction « Tl-ACP » ou « RT-PCR ») est réalisée avec 50 μl de la suspension d'ARN viral du virus aphteux A10 (exemple
2) et avec les oligonucléotides suivants :
JCA305 (37 mer) (SEQ ID NO 1)
5' TTTTGATATCATGGGTGCTGGGCAGTCCAGCCCAGCA 3' et JCA306 (21 mer) (SEQ ID NO 2)
5' TTCACGACGAAAGTACTATCC 3'.
Ce couple d'oligonucléotides permet l'incorporation d'un site de restriction
EcoRV et d'un codon initiateur ATG en phase avec la séquence nuciéotidique codant pour P1. La synthèse du premier brin d'ADNc se fait par élongation de l'oligonucléotide
JCA306, après hybridation de ce dernier à la matrice d'ARN.
Les conditions de synthèse du premier brin d'ADNc sont une température de
42°C pendant 15 min, puis 99°C pendant 5 min, et enfin 4°C pendant 5 min. Les. conditions de la réaction ACP en présence du couple d'oligonucléotides JCA305 et JCA306 sont une température de 95°C pendant 2 min, puis 35 cycles (95°C pendant 1 min, puis 62°C pendant 1 min, et 72°C pendant 2 min), et enfin 72°C pendant 7 min pour produire un fragment de 2583 pb.
Ce fragment est digéré par EcoRV puis par Xhol pour isoler, après électrophorèse en gel d'agarose, le fragment EcoRV-Xhol d'environ 2550 pb. Ce fragment est appelé fragment A.
Pour le deuxième fragment, une réaction d'ACP est réalisée avec 50 μl de la suspension d'ARN viral du virus aphteux A10 (exemple 2) et avec les oligonucléotides suivants :
JCA307 (21 mer) (SEQ ID NO 3) 5' CTGAAGGACCCTACTCCGGGC 3' et JCA308 (37 mer) (SEQ ID NO 4) 5' TTTTAGATCTTCAAAGCTTTGTTTTGCGCATCACGTG 3'. Ce couple d'oligonucléotides permet l'incorporation d'un site de restriction Bglll et d'un codon stop en phase avec la séquence nuciéotidique codant pour la protease 3C. La synthèse du premier brin d'ADNc se fait par élongation de l'oligonucléotide JCA308, après hybridation de ce dernier à la matrice d'ARN. Les conditions de synthèse du premier brin d'ADNc sont une température de 42°C pendant 15 min, puis 99°C pendant 5 min, et enfin 4°C pendant 5 min. Les conditions de la réaction ACP en présence du couple d'oligonucléotides JCA307 et JCA308 sont une température de 95°C pendant 2 min, puis 35 cycles (95°C pendant 1 min, puis 62°C pendant 1 min, et 72°C pendant 2 min), et enfin 72°C pendant 7 min pour produire un fragment de 936 pb.
Ce fragment est digéré par Bglll puis par Xhol pour isoler, après électrophorèse en gel d'agarose, le fragment Bglll-Xhol d'environ 900 pb. Ce fragment est appelé fragment B.
Le fragment A et le fragment B sont ligaturés avec le plasmide d'expression pVR1012 (Hartikka J. et al., 1997, Human Gène Therapy, 7, 1205-1217), préalablement digéré par Bglll et EcoRV, pour donner le plasmide pJCA161 (8327 pb). Ce plasmide contient, sous le contrôle du promoteur précoce du cytomegalovirus humain ou hCMV-IE (human Cytomegalovirus Immédiate Eariy), un insert codant pour la partie de la polyprotéine suffisante pour générer des protéines de capside capables de s'auto-assembler.
Exemple 4 : Construction des plasmide d'expression pour les capsides vides du virus aphteux des sous-types O1 K, C Spain Olot et A24
Les ADNc des virus aphteux des sous-types 01 K, C Spain Olot et A24 sont synthétisés comme cela est décrit dans l'exemple 3.
Pour 01 K, le couple d'oligonuciéotide : JCA309 (37 mer) (SEQ ID NO 5)
5' TTTTGATATCATGGGGGCTGGACAATCCAGTCCAGCG 3' et JCA310 (21 mer) (SEQ ID NO 6)
5" TTCACGACGAAGGTGCTGTCC 3' est utilisé lors de la première réaction d'ACP pour produire un fragment de 2583 paires de bases (pb), puis après digestion et isolement un fragment EcoRV-Xhol d'environ 2550 pb. Ce fragment est appelé fragment C.
Lors de la deuxième réaction d'ACP, le couple d'oligonucléotides :
JCA311 (18 mer) (SEQ ID NO 7)
5' AAGGACCCTACGCCGGAC 3* et JCA312 (34 mer) (SEQ ID NO 8) 5' TTTTAGATCTTCAAAGCTTGGTTTTGCGCATCAC 3' est utilisé pour produire un fragment de 930 pb, puis après digestion et isolement un fragment Bglll-Xhol d'environ 900 pb. Ce fragment est appelé fragment D.
Le fragment C et le fragment D sont ligaturés avec le plasmide d'expression pVR1012, préalablement digéré par Bglll et EcoRV, pour donner le plasmide pJCA162 (8327 pb).
Pour C Spain Olot, le couple d'oligonucléotide :
JCA313 (37 mer) (SEQ ID NO 9)
5' TTTTGATATCATGGGAGCTGGGCAATCCAGCCCAGCG 3' et JCA314 (23 mer) (SEQ ID NO 10)
5' TTCACGACAAACGTGCTGTCCAG 3', est utilisé lors de la première réaction d'ACP pour produire un fragment de 2568 paires de bases (pb), puis après digestion et isolement un fragment EcoRV-Xhol d'environ 2540 pb. Ce fragment est appelé fragment E. Lors de la deuxième réaction d'ACP, le couple d'oligonucléotides :
JCA315 (21 mer) (SEQ ID NO 11)
5' AGAGCAACCGCAAGCTGAAGG 3' et JCA316 (34 mer) (SEQ ID NO 12)
5' TTTTAGATCTTCAAAGCTTGGTTTTGCGCATTAC 3', est utilisé pour produire un fragment de 947 pb, puis après digestion et isolement un fragment Bglll-Xhol d'environ 900 pb. Ce fragment est appelé fragment F. Le fragment E et le fragment F sont ligaturés avec le plasmide d'expression pVR1012, préalablement digéré par Bglll et EcoRV, pour donner le plasmide pJCA163 (8312 pb).
Pour A24, le couple d'oligonucléotide :
JCA317 (37 mer) (SEQ ID NO 13)
5' TTTTGATATCATGGGGGCCGGGCAATCCAGTCCGGCG 3' et JCA318 (31 mer) (SEQ ID NO 14)
5' TTTTCTCGAGGGGGGCCGGCACGTGAAAGAG 3', est utilisé lors de la première réaction d'ACP pour produire un fragment d'environ
2630 paires de bases (pb), puis après digestion et isolement un fragment
EcoRV-Xhol d'environ 2580 pb. Ce fragment est appelé fragment G.
Lors dé la deuxième réaction d'ACP, le couple d'oligonucléotides :
JCA319 (31 mer) (SEQ ID NO 15) 5' TTTTCTCGAGGGACCGGTGAAGAAGCCTGTC 3' et JCA320 (37 mer) (SEQ ID NO 16)
5' TTTTAGATCTTCAGCGGCGGAACAGCGCTTTGTCCTC 3'. est utilisé pour produire un fragment d'environ 950 pb, puis après digestion et isolement un fragment Bglll-Xhol d'environ 940 pb. Ce fragment est appelé fragment H.
Le fragment G et le fragment H sont ligaturés avec le plasmide d'expression pVR1012, préalablement digéré par Bglll et EcoRV, pour donner le plasmide pJCA164 (d'une taille d'environ 8400pb).
Exemple 5 : Construction du plasmide d'expression pour A24/A10
L'ADNc du virus aphteux A24 est synthétisé comme cela est décrit dans l'exemple 3.
Une réaction d'ACP est réalisée avec 50 μl de la suspension d'ARN de virus aphteux A24 (exemple 2) et avec les oligonucléotides suivants : JCA317 (37 mer) (SEQ ID NO 13) et JCA321 (24 mer) (SEQ ID NO 17) 5' TTTGACCTAACGTCGGAGAAGAAG 3'.
Un fragment d'environ 2300 pb est produit.
Ce fragment est ensuite digéré par EcoRV puis par Hindi II pour isoler, après electrophorese en gel d'agarose, le fragment EcoRV-Hindlll d'environ 1710 Ce fragment est appelé fragment I.
Le fragment de 2300 pb est digéré par Hindll! puis par Apal pour isoler, après electrophorese en gel d'agarose, le fragment Hindlll-Apal d'environ 550 pb. Ce fragment est appelé fragment J.
Le plasmide pJCA161 (exemple 3) est digéré par Apal puis par EcoRV pour isoler, après electrophorese en gel d'agarose, le fragment Apal-EcoRV d'environ
5960 pb. Ce fragment est appelé fragment K.
Les fragments I, J et K sont ligaturés ensemble pour donner le plasmide pJCA165 (8333 pb). Ce plasmide contient un insert codant pour la partie structurale de la polyprotéine A24 et pour la partie enzymatique de A10, parties suffisantes pour générer des protéines de capside capables de s'auto- assembler.
Exemple 6 : Construction du virus recombiné vaccine vV100 (A10)
Une réaction ACP est réalisée en utilisant le plasmide pJCA161 (exemple 3) comme matrice et les oligonucléotides suivants :
JCA322 (37 mer) (SEQ ID NO 18) :
5' TTTTGAATTCATGCAGTCCAGCCCAGCAACCGGCTCG 3' et JCA323 (44 mer) (SEQ ID NO 19) :
5' TTTTGAATTCATAAAAATCAAAGCTTTGTTTTGCGCATCACGTG 3' pour amplifier un fragment d'environ 3462 pb.
Ce couple d'oligonucléotides permet l'incorporation d'un site de restriction EcoRI à chaque extrémité du fragment d'amplification.
Les conditions de la réaction d'ACP en présence de ce couple d'oligonucléotides sont une température de 95°C pendant 2 min, puis 35 cycles (95°C pendant 1 min, puis 62°C pendant 1 min, et 72°C pendant 2 min), et enfin 72°C pendant 7 min. Ce fragment est digéré par EcoRI pour isoler, après electrophorese en gel d'agarose, le fragment EcoRI-EcoRI de 3448 pb.
Une réaction d'ACP sur génome du virus de la vaccine (souche WR) est réalisée avec le couple d'oligonucléotides : JCA342 (28 mer) SEQ ID N° 40
5' TTTTATCGATTCATTGATAGTACCAAAT 3'
JCA343 (20 mer) SEQ ID N° 41
5' ATTCTACAGTTCTAACATCG 3'.
Les conditions d'ACP sont les mêmes que précédemment. Un fragment de 488 pb est produit. Ce fragment est digéré par Clal et EcoRI, pour isoler, après electrophorese en gel d'agarose, le fragment de 367 pb. Ce dernier fragment est ensuite inséré dans le plasmide pGS20 (Mackett et ai, J ; Virol., 1984, 49, 857- 864), préalablement digéré par Clal et EcoRI. Le plasmide ainsi obtenu est linéarisé par EcoRI et le fragment EcoRI-EcoRI de 3448 pb y est inséré, donnant le vecteur pJCA166.
Avantageusement, l'homme de l'art peut aussi se servir du plasmide pvFOHC (Newton et al., in : Vaccines 87, 1987, Chanock et al. eds., Cold Spring Harbor Laboratory, 12-21) comportant le promoteur P11K du virus de la vaccine et deux bras du gène TK du virus de la vaccine, l'un en amont de ce promoteur et l'autre en aval d'un site EcoRI.
Des sites d'insertion dans le virus de la vaccine autre que le gène TK peuvent être utilisés, notamment par exemple le gène HA, M2L.
Le plasmide pJCA166 est transfecté dans des cellules COS (cellules rénales de singes verts africains, déposées auprès de l' American Type Culture Collection sous le numéro d'accès ATCC CRL-1651) infectées avec du virus de la vaccine (souche WR, numéro ATCC VR-119).
Les cellules COS sont cultivées en boîtes de Pétri en milieu de culture DMEM (Dulbecco's odified Eagles Médium) supplémenté de 10 % de sérum de veau fœtal, 2 mM du glutamine, 500 Ul/μg/ml de pénicilline/streptomycine, 12,5 μg/ml de fungizone (tous en concentrations finale), contenant environ 100 000 cellules par ml, à +37°C en atmosphère contenant 5% de C02 pendant 16h. Lorsque les cellules arrivent à 75% de confluence, le milieu de culture est retiré. Les cellules COS sont ensuite infectées par du virus de la vaccine (souche WR) à une à une multiplicité d'infection (moi) de 3 DICC50/cellule, puis les boîtes sont incubées pendant 1h. Les cultures sont ensuite lavées avec du milieu DMEM sans sérum. On ajoute alors dans chaque boîte 400 μl de mélange plasmide/Lipofectine/Optimem (8 μl de Lipofectine, 192 μl d'Optimem et 200 μl d'eau distillée contenant 8 μg de plasmide), le plasmide étant pJCA166. Les boîtes sont incubées à +37°C en atmosphère contenant 5% de C02de 4 à 6h en les agitant toutes les 30 min. On ajoute ensuite dans chaque boîte du milieu DMEM supplémenté de 10% de sérum de veau fœtal, et les boîtes sont mises à incuber à +37°C en atmosphère contenant 5% de C02 pendant 16h. Les cellules peuvent alors être récoltées, congelées et stockées à -20°C. La sélection des virus de la vaccine recombinés s'effectue sur des cultures de cellules humaines 143 TK- (accessibles auprès de l' American Type Culture Collection sous le numéro d'accès CRL-8303) dans des boîtes de 6 cm contenant 5 ml de milieu de culture DMEM, incubées à +37°C en atmosphère contenant 5% de C02 pendant 16h.
La suspension de transfection obtenue précédemment est ajoutée. Après une incubation d'1 h à +37°C, 25 μg de 5-bromodésoxyuridine (BUdR) par ml est ajouté afin de sélectionner les virus de la vaccine recombinés TK-. L'incubation est prolongée pendant 48h afin de permettre le développement des cellules recombinées. 3 cycles successifs de sélection/purification de virus de la vaccine recombinés sont réalisés. Des plaques de 24 puits sont ensemencées de cellules 143 TK- avec du milieu DMEM contenant 25 μg de BUdR par ml. Après 2h d'incubation à +37°C environ 10 plages reprises chacune dans 2 μl de tampon PBS sont transférées dans 10 puits. Les plaques sont alors incubées pendant 48-72h.
Après incubation, une réaction d'ACP est pratiquée sur le surnageant de culture de chaque puit en utilisant le protocole « Gène Releaser » (Cambio) avec les oligonucléotides JCA305 et JCA308. Pour les puits trouvés positifs le virus recombiné subit un nouveau cycle de purification. Le virus recombiné désigné vV100 est amplifiée et stocké à -70°C ou à -20°C.
Exemple 7 : Construction des virus recombinés de la vaccine pour les types O, C et A
Les constructions des virus recombinés de la vaccine sont obtenues pour les types O, C et A des virus aphteux comme cela est décrit dans l'exemple 6.
Pour le type O :
La réaction ACP est réalisée en utilisant le plasmide pJCA162 (exemple 4) comme matrice et les oligonucléotides suivants :
JCA324 (37 mer) (SEQ ID NO 20) :
5' TTTTGAATTCATGGGGGCTGGACAATCCAGTCCAGCG 3' et JCA325 (41 mer) (SEQ ID NO 21 ) :
5' TTTTGMTTCATAAAAATCAAAGCTTGGTTTTGCGCATCAC 3' pour amplifier un fragment d'environ 3470 pb.
Après digestion et isolement, le fragment EcoRI-EcoRI de 3448 pb est inséré dans le plasmide pvFOHC, préalablement digéré par EcoRI, pour donner le plasmide donneur pJCA167.
La recombinaison est effectué selon la technique décrite à l'exemple 6. Des plages positives sont sélectionnées par réaction d'ACP avec les oligonucléotides
JCA309 et JCA312. Une plage est amplifiée et le stock de virus recombiné obtenu est désigné vV101.
Pour le type C :
La réaction ACP est réalisée en utilisant le plasmide pJCA163 (exemple 4) comme matrice et les oligonucléotides suivants : JCA326 (37 mer) (SEQ ID NO 22) : 5' TTTTGAATTCATGGGAGCTGGGCAATCCAGCCCAGCG 3' et JCA327 (41 mer) (SEQ ID NO 23) : 5' TTTTGAATTCATAAAAATCAAAGCTTGGTTTTGCGCATTAC 3' pour amplifier un fragment d'environ 3460 pb.
Après digestion et isolement, le fragment EcoRI-EcoRI de 3439 pb est inséré dans le plasmide pvFOHC, préalablement digéré par EcoRI, pour donner le plasmide donneur pJCA168.
La recombinaison est effectué selon la technique décrite à l'exemple 6. Des plages positives sont sélectionnées par réaction d'ACP avec les oligonucléotides
JCA313 et JCA316. Une plage est amplifiée et le stock de virus recombiné obtenu est désigné vV102.
Pour le type A :
La réaction ACP est réalisée en utilisant le plasmide pJCA164 (exemple 4) comme matrice et les oligonucléotides suivants :
JCA328 (37 mer) (SEQ ID NO 24) : 5' TTTTGAATTCATGGGGGCCGGGCAATCCAGTCCGGCG 3' et JCA329 (44 mer) (SEQ ID NO 25) :
5' TTTTGAATTCATAAAAATCAGCGGCGGAACAGCGCTTTGTCCTC 3' pour amplifier un fragment d'environ 3550 pb.
Après digestion et isolement, le fragment EcoRI-EcoRI d'environ 3530 pb est inséré dans le plasmide pvFOHC, préalablement digéré par EcoRI, pour donner le plasmide donneur pJCA169.
La recombinaison est effectué selon la technique décrite à l'exemple 6. Des plages positives sont sélectionnées par réaction d'ACP avec les oligonucléotides
JCA317 et JCA320. Une plage est amplifiée et le stock de virus recombiné obtenu est désigné vV103.
Variante pour le type A :
La réaction ACP est réalisée en utilisant le plasmide pJCA165 (exemple 5) comme matrice et les oligonucléotides suivants : JCA328 (SEQ ID NO 24) (37 mer) et JCA325 (SEQ ID NO 21) (37 mer) pour amplifier un fragment d'environ 3480 pb.
Après digestion et isolement, le fragment EcoRI-EcoRI d'environ 3463 pb est inséré dans le plasmide pvFOHC, préalablement digéré par EcoRI, pour donner le plasmide donneur pJCA170. La recombinaison est effectué selon la technique décrite à l'exemple 6. Des plages positives sont sélectionnées par réaction d'ACP avec les oligonucléotides JCA317 et JCA312. Une plage est amplifiée et le stock de virus recombiné obtenu est désigné vV104.
Exemple 8 : Construction de virus recombinés de la vaccine pour l'expression in vitro (A10)
Le plasmide pJCA161 (exemple 3) est digéré par les enzymes de restriction EcoRV et Bglll. Après electrophorese en gel d'agarose, un fragment EcoRV-BglII d'une taille d'environ 3450 pb est isolé. Ce fragment est rendu « bouts francs » par traitement avec la polymérase Klenow, puis ligaturé dans le plasmide pBG200 (Abrams et al., 1995, J. Gen. Virol., 76, 3089-3098) ce dernier étant préalablement digéré par BamHI et rendu bouts francs par traitement avec la polymérase Klenow, pour donner le plasmide donneur pJCA171. Le plasmide pBG200 comporte le promoteur du bactériophage T7, le terminateur de transcription de T7 et deux bras du gène TK du virus de la vaccine, l'un en amont de ce promoteur et l'autre en aval du terminateur (l'homme de l'art peut s'inspirer de Fuerst et al., Molecular and Cellular Biology, 1987, 7, 2538-2544 pour la construction de pBG200). Le site d'insertion BamHI sur le plasmide pBG200 se trouve entre le promoteur et le terminateur de T7. La recombinaison est effectué selon la technique décrite à l'exemple 6. Des plages positives sont sélectionnées par réaction d'ACP avec les oligonucléotides JCA305 et JCA308. Une plage est amplifiée et le stock de virus recombiné obtenu est désigné vV105. La conservation du stock de virus recombiné se fait à -20°C ou - 70°C. Exemple 9 : Construction des virus recombinés de la vaccine pour l'expression in vitro des types O, C et A
Les constructions des virus recombinés de la vaccine pour l'expression in vitro sont obtenues pour les types O, C et A des virus aphteux comme cela est décrit dans l'exemple 8.
Pour le type O :
Le plasmide pJCA162 (exemple 4) est digéré par les enzymes de restriction
EcoRV et Bglll. Après isolement, un fragment EcoRV-BglII d'une taille d'environ 3450 pb est rendu « bouts francs » par traitement avec la polymérase Klenow, puis ligaturé dans le plasmide pBG200 préalablement digéré par BamHI et rendu bouts francs par traitement avec la polymérase Klenow, pour donner le plasmide donneur pJCA172.
Une plage sélectionnée par réaction d'ACP avec les oligonucléotides JCA309 et JCA312 est amplifiée et le stock de virus recombiné obtenu est désigné vV106.
Pour le type C :
Le plasmide pJCA163 (exemple 4) est digéré par les enzymes de restriction
EcoRV et Bglll. Après isolement, un fragment EcoRV-BglII d'une taille d'environ 3440 pb est rendu « bouts francs » par traitement avec la polymérase Klenow, puis ligaturé dans le plasmide pBG200 préalablement digéré par BamHI et rendu bouts francs par traitement avec la polymérase Klenow, pour donner le plasmide donneur pJCA173.
Une plage sélectionnée par réaction d'ACP avec les oligonucléotides JCA313 et JCA316 est amplifiée et le stock de virus recombiné obtenu est désigné vV107.
Pour le type A :
Le plasmide pJCA164 (exemple 4) est digéré par les enzymes de restriction
EcoRV et Bglll. Après isolement, un fragment EcoRV-BglII d'une taille d'environ 3520 pb est rendu « bouts francs » par traitement avec la polymérase Klenow, puis ligaturé dans le plasmide pBG200 préalablement digéré par BamHI et rendu bouts francs par traitement avec la polymérase Klenow, pour donner le plasmide donneur pJCA174.
Une plage sélectionnée par réaction d'ACP avec les oligonucléotides JCA317 et JCA320 est amplifiée et le stock de virus recombiné obtenu est désigné vV108.
Variante pour le type A :
Le plasmide pJCA165 (exemple 5) est digéré par les enzymes de restriction EcoRV et Bglll. Après isolement, un fragment EcoRV-BglII d'une taille d'environ 3450 pb est rendu « bouts francs » par traitement avec la polymérase Klenow, puis ligaturé dans le plasmide pBG200 préalablement digéré par BamHI et rendu bouts francs par traitement avec la polymérase Klenow, pour donner le plasmide donneur pJCA175.
Une plage sélectionnée par réaction d'ACP avec les oligonucléotides JCA317 et JCA312 est amplifiée et le stock de virus recombiné obtenu est désigné vV109.
Exemple 10 : Production et purification des capsides virales vides
Des cellules rénales de lapin RK13 (accessibles auprès de l' American Type Culture Collection sous le numéro d'accès CCL-37) sont mises en culture à 37°C dans 20 Falcons 175 cm2 avec 20 ml de milieu DMEM supplémenté de 10 % de sérum de veau fœtal, 2 mM du glutamine, 500 Ul/μg/ml de pénicilline/streptomycine, 12,5 μg/ml de fungizone, chaque Falcon contient environ 2 107 cellules à confluence.
Les virus recombinés de la vaccine vTF7-3 et vV108 (exemple 9) sont alors ajoutées chacun à une multiplicité d'infection (moi) de 10 DICCso/cellule dans chaque Falcon. La culture virale est maintenue à 37°C pendant environ 24 heures jusqu'à l'obtention d'un effet cytopathogène à 100%. Le virus recombiné de la vaccine vTF7-3 (accessible auprès de l'ATCC sous le numéro VR-2153) contient l'ARN polymérase du bactériophage T7 sous le contrôle du promoteur p7,5K du virus de la vaccine (Fuerst et ai, 1986, Proc. Natl. Acad. Sci. USA, 83, 8122-8126). La production de l'ARN polymérase T7 induit l'expression de l'insert sous contrôle du promoteur T7. Le précurseur P1 et la protease 3C des virus aphteux sont ainsi produits et les capsides vides s'auto-assemblent. La suspension virale est récoltée puis clarifiée par centrifugation (4 000 rotations par minute (rpm), pendant 30 min, à 4°C).
Le culot est resuspendu dans 30 ml de tampon phosphate (40 mM de phosphate de sodium, 100 mM de chlorure de sodium, pH7,6) à 0°C, contenant 0,5% de Nonidet P40 (Roche, Cat. No. 1 754 599). La lyse cellulaire est effectuée à 0°C sur glace pendant 20 min. Les débris cellulaires sont récoltés après centrifugation à 10 000 rpm, pendant 20 min, à 4°C. Le surnageant est conservé à 0°C, sur glace. Les débris cellulaires, sont re-suspendus dans 6 ml de tampon phosphate. Une extraction au chloroforme (à volume égal) est effectuée. La phase aqueuse obtenue de cette extraction mélangée au surnageant obtenu précédemment est déposée sur un coussin de saccharose 15% (2 ml) et centrifugée avec un rotor Beeckman SW28 (28 000 rpm, 5 heures, 4°C). Le culot est repris dans 1 ml de tampon phosphate et stocké à 4°C.
Le culot obtenu est resuspendu, puis traité avec 20 μl de RNase (10 mg/ml) sur glace pendant 10 min. 10 μl de Nonidet P40 à 10% sont alors ajoutés et le tout est laissé 10 min sur la glace. Une extraction au chloroforme à volume égale est alors pratiquée sur la suspension. La phase aqueuse (1 ml) est récupérée et déposé sur un gradient de saccharose 15-45% (environ 12 ml) et centrifugé avec un rotor Beeckman SW40 (40 000 .rpm, 5 heures, 12°C ou 18 000 rpm, 16 heures, 12°C). Le gradient est ensuite fractionné en 14 fractions de 0,8 ml. On mesure l'absorbance à une longueur d'onde de 220 nm. Les fractions correspondant au pic d'absorbance sont récoltées. Ces fractions contiennent les capsides virales vides A24. La spécificité des protéines récoltées est vérifiée par Western Blot. Les capsides virales vides des sous-types 01 K, A10, C Spain Olot et A24/A10 sont obtenues en procédant de manière identique à ce qui est décrit dans cet exemple, respectivement en remplaçant les virus recombinés de la vaccine vV108 par VV106 (exemple 9), vV105 (exemple 8), vV107 (exemple 9) et vV109 (exemple 9).
Les fractions protéiques ainsi obtenues sont conservées à 4°C avant leur utilisation dans des vaccins.
Exemple 1 : Production de vaccins sous-unités
13,2 ml des fractions du gradient de saccharose contenant au total 165 μg de capsides vides de virus aphteux, obtenues à l'exemple 10, sont formulés avec 14,01 ml de DMEM avec 27,5 ml d'hydroxyde d'aluminium (AI(OH)3) à 1,5% et avec 0,29 ml de saponine.
Les 55 ml ainsi obtenus sont ensuite répartis dans deux flacons, 30 ml dans le premier et 25 ml dans le deuxième. Une dose de 5 ml comprend 15 μg de capsides virales vides avec 360 unités hémolytiques de saponine. La quantité de particules vides est déterminée par spectrophotométrie en mesurant l'adsorption à 220 nm en utilisant comme standard une solution d'albumine bovine (BSA).
Exemple 12 : Production de vaccins recombinés
Pour la préparation de vaccins, les virus recombinés de la vaccine vV100 à vV105 (exemples 6 et 7) peuvent être adjuvés avec des solutions de carbomère. Le carbomère préféré est le Carbopol™ 974P fabriqué par BF Goodrich, Ohio, USA (poids moléculaire d'environ 3000 000).
Une solution stock à 1 ,5 % de Carbopol™ 974P est initialement préparée dans de l'eau distillée contenant 1 g/l de chlorure de sodium. Cette solution stock est alors utilisée pour l'élaboration d'une solution à 4 mg/ml de Carbopol™ 974P en eau physiologique. La solution stock est mélangée au volume adéquat d'eau physiologique, soit en une étape unique soit en plusieurs étapes successives, la valeur du pH est ajustée à chaque étape avec une solution d'hydroxyde de sodium 1N (ou encore plus concentrée) afin d'obtenir une valeur finale de pH de 7,3-7,4. La solution de Carbopol™ 974P prête à l'emploi ainsi obtenue peut être utilisée pour reprendre des virus recombinés lyophilisés ou pour diluer des solutions stocks concentrées de virus recombinés. Par exemple, pour obtenir une suspension virale contenant 108 pfu par dose de 1 ml, on dilue une solution virale stock de manière à obtenir un titre de 108,3 pfu/ml, puis on dilue à parties égales avec ladite solution de Carbopol™ 974P prête à l'emploi à 4 mg/ml.
Exemple 13 : Production de vaccins ADN
Une solution d'ADN contenant un ou plusieurs plasmides pJCA161 à pJCA165 (exemples 3 et 4) est concentrée par précipitation éthanolique comme décrit dans Sambrook et al (1989). Le culot d'ADN est repris par une solution de NaCl 0.9% de façon à obtenir une concentration de 1 mg/ml. Une solution de DMRIE- DOPE à 0,75mM est préparée par reprise d'un lyophilisât de DMRIE-DOPE par un volume adapté d'H20 stérile (DMRIE ou N-(2-hydroxyéthyl)-N,N-diméthyl-2,3- bis(tetradécyloxy)-1-propanammonium (WO-A-9634109) ; DOPE ou dioléoyl- phosphatidyl-éthanolamine (Behr J. P., 1994, Bioconjugate Chemistry, 5, 382- 389)).
La formation des complexes ADN plasmidique-lipide est réalisée par dilution à parties égales de la solution de DMRIE-DOPE 0.75 mM par la solution d'ADN à 1 mg/ml dans NaCl 0.9%. La solution d'ADN est introduire progressivement à l'aide d'une aiguille sertie 26G le long de la paroi du flacon contenant la solution de lipide cationique de façon à éviter la formation de mousse. On procède à une agitation douce dès que les deux solutions sont mélangées. On obtient en final une composition comprenant 0,375 mM de DMRIE-DOPE et 500 μg/ml de plasmide.
Il est souhaitable que l'ensemble des solutions utilisées soient à température ambiante pour l'ensemble des opérations décrites ci-dessus. On laisse la complexation ADN/DMRIE-DOPE se mettre en place à température ambiante pendant 30 minutes avant de procéder à l'immunisation des animaux.
Exemple 14 : Contrôle sur bovins Le vaccin contre le virus aphteux A24, obtenu à l'exemple 11 à partir des capsides virales vides exprimées par vV109, est administré à un groupe de 6 bovins.
L'injection est réalisée par voie sous-cutanée, de chaque côté du cou, face aux épaules. Les 5 premiers animaux reçoivent une dose de 5 ml (2 x 2,5 ml), le 6eme animal reçoit 4 ml (2 x 2,0 ml). Ce 6ème animal est tatoué à l'oreille « UC10 ». Une deuxième injection est administrée par voie sous-cutanée de chaque côté du cou à chaque animal 31 jours après la primo-vaccination (4 ml pour les 5 premiers animaux (2 x 2,0 ml) et 0,5 ml (2 x 0,25 ml) pour le 6ème animal). Des prélèvements sanguins sont pratiqués sur les animaux vaccinés à J0 (jour de la primo-vaccination), J6, J13, J20, J31, J38, J42, J52 et immédiatement avant leur sacrifice.
Tous les animaux vaccinés et 2 animaux contrôles non-vaccinés sont éprouvés par voie intradermolinguale (10 x 0,10 ml par langue) avec des virus aphteux A24 à un titre de 104,4 doses infectieuses/ml (titre sur cellules thyroïdiennes de bovin). L'épreuve a lieu 42 jours après la primo-vaccination. Un suivi des températures (tableau 2) et des signes de fièvre aphteuse (tableau 1 ) au niveau de la langue, de la bouche et des pieds est assuré quotidiennement pour chaque animal. Les titres en anticorps neutralisants anti-virus aphteux A24 sont suivis (Figure 1 ).
Tableau 1 : Suivi des signes cliniques de fièvre aphteuse sur les bovins après épreuve virulente
Figure imgf000039_0001
Significations des codes :
TO : langue saine, aucun signe de réplication virale, aucune trace aux points d'injection
T1 : langue saine, aucun signe de réplication virale, uniquement des trauma aux points d'injection
T2 : présence de lésions primaires sur la langue
T3 : présence de lésions primaires et secondaires sur la langue ou sur d'autres régions de la bouche
4F0 : aucun signe de fièvre aphteuse au niveau des 4 pieds
4F+ : présence de vésicules sur les 4 pieds.
ND : pas d'examen clinique pratiqué Ces résultats montrent que les animaux vaccinés sont tous protégés contre une infection par le virus aphteux A24, même localement au niveau des points d'injection. Le bovin UC10 qui a reçu une injection de rappel plus faible que les autres est également protégé. A l'inverse, les animaux contrôles sensibles à l'infection par le virus, développent la maladie de façon visible dans la bouche dès le deuxième jour après épreuve et sur les pieds dès le cinquième jour après épreuve.
Tableau 2 : suivi des températures (en °C) des bovins après épreuve virulente
Figure imgf000041_0001
Ces résultats montrent que les bovins vaccinés ne présentent pas d'hyperthermie, même le bovin UC10 qui a reçu une injection de rappel plus faible que les autres. A l'inverse, les bovins contrôles présentent une hyperthermie, dont le maximum apparaît deux jours après l'épreuve, puis un retour à des températures corporelles normales.
La Figure 1 montre que les bovins vaccinés développent une forte réponse en anticorps neutralisants anti-virus aphteux A24 avec un premier pic à environ 13 jours après la primo-vaccination. Après l'injection de rappel, une forte réponse en anticorps neutralisants est observée. Ceci est également observé chez le bovin UC10 qui a reçu une injection de rappel plus faible que les autres. Après épreuve le titre en anticorps n'augmente pas ce qui indique que le virus FDMV A24 ne se réplique pas suffisamment pour stimuler la réponse en anticorps.
En conclusion, le vaccin contre la fièvre aphteuse A24 réalisé à partir de capsides virales vides obtenues de vecteurs d'expression recombinés virus de la vaccine induit une réponse immunitaire primaire et secondaire chez les bovins. Après épreuve, ces bovins sont totalement protégés contre la fièvre aphteuse et contre une réplication virale.
Exemple 15 : Mutagenèse sur la construction A10
Une mutagenèse dirigée sur la construction A10 est effectuée au moyen d'oligonucléotides et de réactions d'ACP dans le but de remplacer le codon codant pour l'histidine 179 (position dans la polyprotéine codée par le plasmide pJCA161, exemple 3 ; la méthionine initiatrice étant numérotée 1) par un codon codant pour une cysteine.
Une réaction ACP est réalisée en utilisant le plasmide pJCA161 comme matrice et les oligonucléotides suivants : JCA309 (37 mer) (SEQ ID NO 5) et JCA330 (27 mer) (SEQ ID NO 26) : 5' TGAGTCCACCAGGCACCCGAAGACACC 3' pour amplifier un fragment de 559 pb. Ce fragment est appelé fragment L.
Les conditions du premier cycle de la réaction d'ACP sont 95°C pendant 2 min, puis 62°C pendant 2 min et 72°C pendant 3 min. Les conditions des 35 cycles suivants de la réaction d'ACP sont les mêmes que celles décrites dans l'exemple 6.
Une deuxième réaction ACP est réalisée en utilisant le plasmide pJCA161 comme matrice et les oligonucléotides suivants :
JCA331 (27 mer) (SEQ ID NO 27) : 5' GGTGTCTTCGGGTGCCTGGTGGACTCA 3' et JCA332 (36 mer) (SEQ ID NO 28) :
5' AAAGTCTTTGCCGGCGCTAGCCGACACTAACAAGGT 3' pour amplifier un fragment de 1020 pb. Ce fragment est appelé fragment M.
Les conditions de la réaction d'ACP sont les mêmes que celles décrites dans l'exemple 6.
Une troisième réaction ACP est réalisée en utilisant les fragments L et M comme matrice, et les oligonucléotides JCA309 (SEQ ID NO 5) et JCA332 (SEQ ID NO
28) pour amplifier un fragment de 1552 pb. Les conditions de la réaction d'ACP sont les mêmes que celles décrites dans l'exemple 6. Ce fragment est ensuite digéré à l'aide de EcoRV et de Nhel, pour isoler, après electrophorese en gel d'agarose, le fragment. EcoRV-Nhel de 1527 pb. Ce fragment est appelé fragment N.
Le plasmide pJCA161 est digéré par Nhel puis par EcoRV pour isoler, après electrophorese en gel d'agarose, le fragment Nhel-EcoRV d'environ 6800 pb. Ce fragment et le fragment N sont ligaturés ensemble pour donner le plasmide pJCA176 (8327 pb). Ce plasmide contient un insert codant pour la partie de la polyprotéine A10 suffisante pour générer des protéines de capside mutées thermostables capables de s'auto-assembler.
Le plasmide pJCA176 est utilisé pour la construction d'un virus recombiné vaccine selon l'exemple 8, le fragment EcoRV-BglII étant obtenu dans ce cas à partir du plasmide pJCA176 et non pas à partir du plasmide pJCA161 Le virus recombiné ainsi obtenu est appelé vV110.
Exemple 16 : Mutagenèse sur la construction 01 K Une mutagenèse dirigée sur la construction 01 K est effectuée au moyen d'oligonucléotides et de réactions d'ACP comme cela est décrit dans l'exemple 15, dans le but de remplacer le codon codant pour la serine 179 (position dans la polyprotéine codée par le plasmide pJCA162, exemple 4 ; la méthionine initiatrice étant numérotée 1) par un codon codant pour une cysteine. Une réaction d'ACP est réalisée en utilisant le plasmide pJCA162 comme matrice et les oligonucléotides suivants : JCA305 (37 mer) (SEQ ID NO 1) et JCA333 (27 mer) (SEQ ID NO 29) : 5* CGAGTCAGTCAGGCAGCCGTAGACACC 3' pour amplifier un fragment de 559 pb. Ce fragment est appelé fragment O.
Une deuxième réaction d'ACP est réalisée en utilisant le plasmide pJCA162 comme matrice et les oligonucléotides suivants : JCA334 (27 mer) (SEQ ID NO 30) : 5' GGTGTCTACGGCTGCCTGACTGACTCG 3' et JCA335 (36 mer) (SEQ ID NO 31 ) :
5' AGACGTCCGTGTGTTGGCGCCTCTGGATCTGTGTTT 3' pour amplifier un fragment de 1147 pb. Ce fragment est appelé fragment P. Une troisième réaction ACP est réalisée en utilisant les fragments O et P comme matrice, et les oligonucléotides JCA305 (SEQ ID NO 1) et JCA335 (SEQ ID NO 31 ) pour amplifier un fragment de 1679 pb.
Ce fragment est ensuite digéré à l'aide de EcoRV et de Narl, pour isoler, après electrophorese en gel d'agarose, le fragment EcoRV-Narl de 1654 pb. Ce fragment est appelé fragment Q. Le plasmide pJCA162 est digéré par Narl puis par EcoRV pour isoler, après electrophorese en gel d'agarose, le fragment Narl-EcoRV d'environ 6670 pb. Ce fragment et le fragment Q sont ligaturés ensemble pour donner le plasmide pJCA177 (8327 pb). Ce plasmide contient un insert codant pour la partie de la polyprotéine 01 K suffisante pour générer des protéines de capside mutées thermostables capables de s'auto-assembler.
Le plasmide pJCA177 est utilisé pour la construction d'un virus recombiné vaccine selon l'exemple 9, le fragment EcoRV-BglII étant obtenu dans ce cas à partir du plasmide pJCA177 et non pas à partir du plasmide pJCA162 Le virus recombiné ainsi obtenu est appelé vV111.
Exemple 17 : Mutagenèse sur la construction C Spain Olot Une mutagenèse dirigée sur la construction C Spain Olot est effectuée au moyen d'oligonucléotides et de réactions d'ACP comme cela est décrit dans l'exemple 15, dans le but de remplacer le codon codant pour la glycine 179 (position dans la polyprotéine codée par le plasmide pJCA163, exemple 4 ; la méthionine initiatrice étant numérotée 1) par un codon codant pour une cysteine. Une réaction ACP est réalisée en utilisant le plasmide pJCA163 comme matrice et les oligonucléotides suivants : JCA313 (37 mer) (SEQ ID NO 9) et JCA336 (27 mer) (SEQ ID NO 32) : 5' TGACTTGACGAGGCACCCGTAAACACC 3' pour amplifier un fragment de 559 pb. Ce fragment est appelé fragment R.
Une deuxième réaction ACP est réalisée en utilisant le plasmide pJCA163 comme matrice et les oligonucléotides suivants :
JCA337 (27 mer) (SEQ ID NO 33) :
5' GGTGTTTACGGGTGCCTCGTCAAGTCA 3' et JCA338 (36 mer) (SEQ ID NO 34) :
5' GTAGTACTGGGCCAAGCCGGCCAAGTAGGTGTTTGA 3' pour amplifier un fragment de 681 pb. Ce fragment est appelé fragment S.
Une troisième réaction ACP est réalisée en utilisant les fragments R et S comme matrice, et les oligonucléotides JCA313 (SEQ ID NO 9) et JCA338 (SEQ ID NO 34) pour amplifier un fragment de 1213 pb. Ce fragment est ensuite digéré par EcoRV et Nael, pour isoler, après electrophorese en gel d'agarose, le fragment EcoRV-Nael d'environ 1190 pb. Ce fragment est appelé fragment T.
Le plasmide pJCA163 est digéré par Nael puis par EcoRV pour isoler, après electrophorese en gel d'agarose, le fragment Nael-EcoRV d'environ 7120 pb. Ce fragment et le fragment T sont ligaturés ensemble pour donner le plasmide pJCA178 (8312 pb). Le plasmide pJCA178 contient un insert codant pour la partie de la polyprotéine C Spain Olot suffisante pour générer des protéines de capside mutées thermostables capables de s'auto-assembler. Le plasmide pJCA178 est utilisé pour la construction d'un virus recombiné vaccine selon l'exemple 9, le fragment EcoRV-BglII étant obtenu dans ce cas à partir du plasmide pJCA178 et non pas à partir du plasmide pJCA163 Le virus recombiné ainsi obtenu est appelé vV112.
Exemple 18 : Mutagenèse sur la construction A24
Une mutagenèse dirigée sur la construction A24 est effectuée au moyen d'oligonucléotides et de réactions d'ACP comme cela est décrit dans l'exemple
15, dans le but de remplacer le codon codant pour l'histidine 179 (position dans la polyprotéine codée par le plasmide pJCA164, exemple 4 ; la méthionine initiatrice étant numérotée 1 ) par un codon codant pour une cysteine.
Une réaction ACP est réalisée en utilisant le plasmide pJCA164 comme matrice et les oligonucléotides suivants :
JCA317 (37 mer) (SEQ ID NO 13) et JCA339 (27 mer) (SEQ ID NO 35) : 5' CGAGTCCACCAAGCATCCAAAGACACC 3' pour amplifier un fragment de 559 pb. Ce fragment est appelé fragment U.
Une deuxième réaction ACP est réalisée en utilisant le plasmide pJCA164 comme matrice et les oligonucléotides suivants :
JCA340 (27 mer) (SEQ ID NO 36) : 5' GGTGTCTTTGGATGCTTGGTGGACTCG 3' et JCA341 (36 mer) (SEQ ID NO 37) : 5' CCCAGGGTAGTTAGTCCTAGGCGGGTTGTACACCTT 3' pour amplifier un fragment de 507 pb. Ce fragment est appelé fragment V.
Une troisième réaction ACP est réalisée en utilisant les fragments U et V comme matrice, et les oligonucléotides JCA317 (SEQ ID NO 13) et JCA341 (SEQ ID NO 37) pour amplifier un fragment de 1039 pb.
Ce fragment est ensuite digéré par EcoRV et Blnl, pour isoler, après electrophorese en gel d'agarose, le fragment EcoRV-BInl d'environ 1014 pb. Ce fragment est appelé fragment W. Le plasmide pJCA164 est digéré par Blnl puis par EcoRV pour isoler, après electrophorese en gel d'agarose, le fragment BInl-EcoRV d'environ 7360 pb. Ce fragment et le fragment W sont ligaturés ensemble pour donner le plasmide pJCA179 (d'une taille d'environ 8400 pb). Ce plasmide contient un insert codant pour la partie de la polyprotéine A24 suffisante pour générer des protéines de capside mutées thermostables capables de s'auto-assembler. Le plasmide pJCA179 est utilisé pour la construction d'un virus recombiné vaccine selon l'exemple 9, le fragment EcoRV-BglII étant obtenu dans ce cas à partir du plasmide pJCA179 et non pas à partir du plasmide pJCA164 Le virus recombiné ainsi obtenu est appelé vV113.
Exemple 19 : Production et purification des capsides virales vides thermostables
Les capsides virales vides modifiées sous-types A10..O1K, C Spain Olot et A24 sont obtenues en procédant de manière identique à ce qui est décrit dans l'exemple 10, en remplaçant les virus recombinés de la vaccine vV108 par respectivement vV110 (exemple 15), vV111 (exemple 16), vV112 (exemple 17) et vV113 (exemple 18).
Exemple 20 : Contrôle de thermostabilité
10 tubes contenant des capsides virales vides modifiées (exemple 19) de virus aphteux A10 sont préparés et quantifiés. Chaque tube contient 0,8 μg de capsides dans 0,5 ml de tampon phosphate à pH7,6. Ces 10 tubes sont placés dans un bain-marie à 50°C pendant 1 heure. Ils sont ensuite refroidis. Chaque échantillon de capsides est déposé sur un gradient de saccharose (15-35%) et centrifugé pendant 2,5 heures à 12°C (40 000 rpm avec un rotor Beeckman SW40). Chaque gradient obtenu est alors fractionné en 12 fractions de 1 ml.
0,5 ml de chaque fraction est précipité en présence d'1 ml d'éthanol absolu à -20°C pendant 16 heures.
Le culot est collecté, séché, resuspendu dans un tampon de chargement (Maniatis et al., 1982, in : « Molecular cloning : a laboratory manual », Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA) et déposé sur un gel d' electrophorese SDS-PAGE 10% d'acrylamide. Les bandes des protéines après transfert sont révélées par un anticorps polyclonal de cobaye anti-140S A10 réagissant essentiellement avec la protéine VP1. Les capsides vides migrent dans le gradient au niveau des fractions 7 et 8 alors que les capsides vides dégradées restent près du sommet du gradient au niveau de la fraction 11.
Le Western (Figure 2) montre que les capsides vides correspondant au mutant sont toujours assemblées après 1 h à 50°C (gel A) alors que les capsides vides non mutées sont dégradées, n'ayant pas résistées au traitement thermique (gel B) comme on peut s'y attendre.
Exemple 21 : Production de vaccins sous-unités contenant des capsides vides thermostables de virus aphteux
Les vaccins contenant des capsides virales vides modifiées des sous-types 01 K, A10, C Spain Olot et A24 de virus aphteux sont obtenues en procédant de manière semblable à ce qui est décrit dans l'exemple 11, en remplaçant les capsides virales vides non-modifiées par les capsides virales vides modifiées (exemple 19). Il doit être bien compris que l'invention définie par les revendications annexées n'est pas limitée aux modes de réalisation particuliers indiqués dans la description ci-dessus, mais englobe les variantes qui ne sortent ni du cadre ni de l'esprit de la présente invention.

Claims

REVENDICATIONS
1. Vaccin contre la fièvre aphteuse, utilisant comme antigène une quantité efficace de capsides vides du virus aphteux, ces capsides vides étant obtenues par l'expression, en cellules eucaryotes, de l'ADNc de la région P1 du génome du virus aphteux codant pour la capside et de l'ADNc de la région du génome du virus aphteux codant pour la protease 3C, le vaccin comprenant en outre un véhicule ou excipient pharmaceutique acceptable sur le plan vétérinaire. 2. Vaccin selon la revendication 1 , caractérisé en ce que l'ADNc codant pour P1 code aussi pour tout ou partie de 2A.
3. Vaccin selon la revendication 1 ou 2, caractérisé en ce que l'ADNc codant pour 3C code aussi pour tout ou partie des protéines 3B.
4. Vaccin selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les capsides vides sont présentes dans le vaccin comme sous-unités, en . quantité suffisante.
5. Vaccin selon la revendication 4, caractérisé en ce que les capsides vides sous forme de sous-unités sont obtenues par expression de l'ADNc en cellules eucaryotes, par un vecteur d'expression in vitro, sous la dépendance d'un promoteur inductible ou d'un promoteur tardif d'origine virale.
6. Vaccin selon la revendication 5, caractérisé en ce que le promoteur est choisi dans le groupe consistant en promoteur du bactériophage T7, promoteur heat-shock, promoteur métallothionéine et promoteurs inductibles par l'ecdysone ou par les stéroïdes. 7. Vaccin selon la revendication 6, caractérisé en ce que le promoteur est le promoteur du bactériophage T7 et les capsides vides sous forme de sous- unités sont obtenues par expression de l'ADNc en présence de l'expression de polymérase T7. 8. Vaccin selon l'une quelconque des revendications 5 à 7, caractérisé en ce que les vecteurs d'expression sont choisis parmi les vecteurs viraux, de préférence les poxvirus, notamment le virus de la vaccine, et les vecteurs plasmidiques, ou la cassette d'expression est intégrée dans la cellule eucaryote. 9. Vaccin selon la revendication 8, caractérisé en ce que le vecteur est un poxvirus et le promoteur tardif d'origine virale est choisi dans le groupe consistant en P11 K du virus de la vaccine, P28K du virus de la vaccine et
P 160K ATI du virus cowpox. 10. Vaccin selon l'une quelconque des revendications 4 à 9 , caractérisé en ce que les cellules eucaryotes sont des cellules de lignée, de préférence cellules
BHK-21 , CHO, COS, RK13, Vero, MDBK ou PK15. 11. Vaccin selon l'une quelconque des revendications 4 à 10, caractérisé en ce qu'il est formulé avec un milieu permettant la conservation des capsides vides, notamment du type DMEM. 12. Vaccin selon l'une quelconque des revendications 4 à 11 , caractérisé en ce qu'il comprend un adjuvant. 13. Vaccin selon la revendication 12, caractérisé en ce qu'il comprend à titre d'adjuvant de Phydroxyde d'alumine, de la saponine, de l'avridine, du DDA, un polymère de l'acide acrylique ou méthacrylique, un polymère d'anhydride maléique et de dérivé alcényle, du GM-CSF, ou en ce qu'il est formulé sous forme d'une émulsion eau-dans-huile, huile-dans-eau ou eau-dans-huile- dans-eau.
14. Vaccin selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comprend un vecteur d'expression contenant l'ADNc de façon à produire les capsides in vivo. 15. Vaccin selon la revendication 14, caractérisé en ce que le vecteur est un vecteur viral ou un vecteur plasmidique.
16. Vaccin selon la revendication 15, caractérisé en ce que le vecteur viral est choisi dans le groupe consistant en poxvirus, notamment virus de la vaccine, avipox tel que fowlpox et canarypox, racoonpox, swinepox, capripox ; adénovirus, herpèsvirus.
17. Vaccin selon l'une quelconque des revendications 14 à 16, caractérisé en ce que l'ADNc est exprimé par un vecteur viral sous le contrôle d'un promoteur tardif d'origine virale. 18. Vaccin selon la revendication 17, caractérisé en ce que le vecteur est un poxvirus et le promoteur tardif d'origine virale est choisi dans le groupe consistant en P11K du virus de la vaccine, P28K du virus de la vaccine et
P160K ATI du virus cowpox. 9. Vaccin selon la revendication 17, caractérisé en ce que l'ADNc est exprimé par un vecteur plasmidique, sous la dépendance d'un promoteur fort précoce d'origine virale ou d'origine cellulaire, de préférence le promoteur précoce du cytomegalovirus CMV-IE. 20. Vaccin selon la revendication 19, caractérisé en ce que l'ADNc est exprimé par un vecteur plasmidique, sous la dépendance d'un promoteur choisi parmi le promoteur précoce ou tardif du virus SV40, le promoteur LTR du virus du Sarcome de Rous, le promoteur d'un gène du cytosquelette, tel que le promoteur de la desmine ou le promoteur de l'actine. 21. Vaccin selon l'une quelconque des revendications 14 à 20, caractérisé en ce que le vaccin est formulé avec une solution saline NaCl à 9 pour 1000 ou un tampon phosphate. 22. Vaccin selon l'une quelconque des revendications 14 à 21, caractérisé en ce que le vaccin comprend un adjuvant. 23. Vaccin selon la revendication 22, caractérisé en ce que le vaccin comprend un vecteur viral et l'adjuvant comprend un lipide cationique contenant un sel d'ammonium quaternaire, de formule :
R1 - O - CH2 - CH - CH2 - N - R2 - X
0R 1 CH3 dans laquelle R1 est un radical aliphatique linéaire, saturé ou insaturé, ayant 12 à 18 atomes de carbone, R2 est un autre radical aliphatique, renfermant 2 ou 3 atomes de carbone, et X un groupement hydroxyle ou aminé. 24. Vaccin selon la revendication 23, caractérisé en ce que l'adjuvant comprend du DMRIE, de préférence associé avec un lipide neutre, notamment le
DOPE, pour former le DMRIE-DOPE. 25. Vaccin selon la revendication 22, caractérisé en ce que le vaccin comprend un vecteur plasmidique et l'adjuvant comprend un polymère de l'acide acrylique ou méthacrylique, ou un polymère d'anhydride maléique et de dérivé alcényle.
26. Vaccin selon la revendication 13 ou 23, caractérisé en ce que l'adjuvant comprend du carbomère.
27. Vacc+in selon la revendication 22, caractérisé en ce que l'adjuvant comprend du GM-CSF. 28. Vaccin selon la revendication 22, caractérisé en ce que qu'il comprend un vecteur exprimant in vivo du GM-CSF.
29. Vaccin selon l'une quelconque des revendications 1 à 28, caractérisé en ce que les capsides vides sont stabilisées thermiquement.
30. Vaccin selon la revendication 29, caractérisé en ce que les capsides vides comportent des ponts disulfure non naturels.
31. Vaccin selon la revendication 29 ou 30, caractérisé en ce que l'ADNc comprend la séquence codant pour VP2, VPO ou P1 , modifiée par incorporation d'un codon codant pour une cysteine.
32. Vaccin selon la revendication 31 , caractérisée en ce que le codon codant pour l'acide aminé 179 est remplacé par un codon codant pour une cysteine.
PCT/FR2001/002042 2000-06-29 2001-06-27 Vaccin contre la fievre aphteuse WO2002000251A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN018120709A CN1440296B (zh) 2000-06-29 2001-06-27 抗口蹄疫疫苗
AU2001270678A AU2001270678A1 (en) 2000-06-29 2001-06-27 Vaccine against foot-and-mouth disease
JP2002505032A JP5153984B2 (ja) 2000-06-29 2001-06-27 口蹄疫に対するワクチン
BRPI0112071-9B1A BR0112071B1 (pt) 2000-06-29 2001-06-27 Vacina contra a febre aftosa
AT01949547T ATE552845T1 (de) 2000-06-29 2001-06-27 Maul- und klauenseuche impfstoff
EP01949547A EP1294400B1 (fr) 2000-06-29 2001-06-27 Vaccin contre la fievre aphteuse
DK01949547.2T DK1294400T3 (da) 2000-06-29 2001-06-27 Vaccine mod mund- og klovsyge
ES01949547T ES2386373T3 (es) 2000-06-29 2001-06-27 Vacuna contra la fiebre aftosa
US10/327,481 US7531182B2 (en) 2000-06-29 2002-12-20 Vaccine against foot-and-mouth disease

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/08437 2000-06-29
FR0008437A FR2810888B1 (fr) 2000-06-29 2000-06-29 Vaccin contre la fievre aphteuse

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/327,481 Continuation US7531182B2 (en) 2000-06-29 2002-12-20 Vaccine against foot-and-mouth disease

Publications (2)

Publication Number Publication Date
WO2002000251A1 WO2002000251A1 (fr) 2002-01-03
WO2002000251A9 true WO2002000251A9 (fr) 2002-04-04

Family

ID=8851899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/002042 WO2002000251A1 (fr) 2000-06-29 2001-06-27 Vaccin contre la fievre aphteuse

Country Status (13)

Country Link
US (1) US7531182B2 (fr)
EP (1) EP1294400B1 (fr)
JP (1) JP5153984B2 (fr)
CN (1) CN1440296B (fr)
AT (1) ATE552845T1 (fr)
AU (1) AU2001270678A1 (fr)
BR (1) BR0112071B1 (fr)
CY (1) CY1116491T1 (fr)
DK (1) DK1294400T3 (fr)
ES (1) ES2386373T3 (fr)
FR (1) FR2810888B1 (fr)
PT (1) PT1294400E (fr)
WO (1) WO2002000251A1 (fr)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1550453B1 (fr) * 2002-09-12 2015-05-27 International Institute of Cancer Immunology, Inc. Preparation de peptides antigenes du cancer
CN1320116C (zh) * 2002-10-18 2007-06-06 中国人民解放军军需大学军事兽医研究所 O型口蹄疫病毒o_ny00株基因组序列
CN100381170C (zh) * 2003-09-03 2008-04-16 上海华谊生物技术有限公司 一种口蹄疫双价多肽疫苗及其制备方法和用途
CN1290579C (zh) * 2003-10-15 2006-12-20 北京迪威华宇生物技术有限公司 重组口蹄疫病毒vp1融合蛋白疫苗
CN100342911C (zh) * 2004-01-13 2007-10-17 厦门大学 A、o型口蹄疫病毒双价dna疫苗及其制备方法
ES2424847T3 (es) * 2004-06-25 2013-10-09 Merial Ltd. Genes del virus de la fiebre aftosa que expresan avipox recombinantes
WO2006063445A1 (fr) * 2004-12-14 2006-06-22 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Health Vaccin recombine contre la fievre aphteuse
US9717788B2 (en) * 2007-03-02 2017-08-01 Glaxosmithkline Biologicals Sa Method of inducing an immune response against HIV employing HIV immunogens, adenoviral vectors encoding said immunogens, and adjuvant
CL2008001806A1 (es) * 2007-06-20 2008-09-05 Wyeth Corp Composicion de vacuna en emulsion agua en aceite que comprende un antigeno y un adyuvante en la fase acuosa; y metodo de elaboracion.
CN101270155B (zh) * 2008-05-06 2011-04-27 中国农业科学院兰州兽医研究所 通过耐酸性改造在昆虫中组装口蹄疫病毒空衣壳的方法
GB0918375D0 (en) 2009-10-20 2009-12-02 Animal Health Inst Construct
MX2012004677A (es) * 2009-10-30 2012-07-25 Agres Ltd Proteinas en capsulantes de aceites modificados y sus usos.
US8974834B2 (en) 2010-01-15 2015-03-10 Ecolab Usa Inc. Method for producing reservoir layer for hoof treatment and reservoir layer
WO2011112945A2 (fr) * 2010-03-12 2011-09-15 Merial Limited Vaccins de recombinaison contre le virus de la fièvre aphteuse et utilisations de ceux-ci
US8765141B2 (en) * 2010-07-01 2014-07-01 The United States Of America, As Represented By The Secretary Of Agriculture Development of a marker foot and mouth disease virus vaccine candidate that is attenuated in the natural host
CN101948811B (zh) * 2010-08-18 2013-01-09 中国农业科学院兰州兽医研究所 用反向遗传操作拓展口蹄疫疫苗株抗原谱及疫苗制备方法
GB201014965D0 (en) 2010-09-08 2010-10-20 Animal Health Inst Vaccine
US8906384B2 (en) * 2010-12-22 2014-12-09 The United States Of America As Represented By The Secretary Of Agriculture Antiviral activity of bovine type III interferon against foot-and-mouth disease virus
CN103060278B (zh) * 2012-10-23 2014-07-09 于力 亚洲1型口蹄疫病毒耐酸突变株、其携带的衣壳蛋白及其编码基因和应用
RU2522868C1 (ru) * 2013-03-06 2014-07-20 Федеральное государственное унитарное предприятие "Щелковский биокомбинат" Способ изготовления вакцины против ящура
CN114045295A (zh) * 2013-03-15 2022-02-15 宾夕法尼亚大学理事会 口蹄疫病毒(fmdv)共有蛋白、其编码序列以及由其制造的疫苗
KR20150137085A (ko) * 2013-03-26 2015-12-08 더 피르브라이트 인스티튜트 안정화된 fmdv 캡시드
KR101629353B1 (ko) * 2013-06-20 2016-06-15 대한민국 구제역 a형 표준 백신주의 방어항원이 발현되는 재조합 구제역 바이러스 및 그의 제조방법
KR101629345B1 (ko) * 2013-06-26 2016-06-15 대한민국 구제역 아시아1 혈청형 유전형 iv 바이러스의 방어항원이 발현되는 재조합 구제역 바이러스 및 그의 제조방법
KR101629282B1 (ko) * 2013-06-26 2016-06-15 대한민국 구제역 아시아1 혈청형 유전형 v 바이러스의 방어항원이 발현되는 재조합 구제역 바이러스 및 그의 제조방법
KR101578425B1 (ko) 2013-07-26 2015-12-18 대한민국 구제역 sat1형 wz 지역형의 방어항원이 발현되는 재조합 바이러스 및 그의 제조방법
RU2562547C1 (ru) * 2014-04-16 2015-09-10 Федеральное государственное бюджетное учреждение "Федеральный центр охраны здоровья животных" (ФГБУ "ВНИИЗЖ") Вакцина инактивированная сорбированная против ящура типа а
BR112017005833A8 (pt) * 2014-09-23 2023-02-14 Merial Inc Vacinas recombinantes fmdv e seus usos
AR102547A1 (es) 2014-11-07 2017-03-08 Takeda Vaccines Inc Vacunas contra la enfermedad de manos, pies y boca y métodos de fabricación y su uso
CN105505853B (zh) * 2015-12-23 2019-03-15 中农威特生物科技股份有限公司 一种用于bhk-21细胞高密度悬浮培养的低血清培养基及其在口蹄疫病毒增殖中的应用
TWI760322B (zh) 2016-01-29 2022-04-11 美商百靈佳殷格翰動物保健美國有限公司 重組腺病毒載體裝載之fmdv疫苗及其用途
RU2617043C1 (ru) * 2016-03-24 2017-04-19 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский и технологический институт биологической промышленности" (ФГБНУ ВНИТИБП) Вакцина против ящура и способ её получения и применения
WO2019045791A1 (fr) * 2017-08-28 2019-03-07 Board Of Trustees Of Michigan State University Compositions et méthodes de traitement du cancer et des infections à l'aide d'un bactériophage et de ses mutants
CN111744000B (zh) * 2020-07-14 2021-03-23 中国农业科学院兰州兽医研究所 免疫抑制功能降低的口蹄疫重组病毒及其制备方法与应用
CN113817068B (zh) * 2020-12-24 2024-01-30 北京微佰生物科技有限公司 一种以人复制缺陷型重组腺病毒为载体的o型口蹄疫疫苗
CN114957480B (zh) * 2021-02-23 2024-01-30 北京微佰生物科技有限公司 一种以人复制缺陷型重组腺病毒为载体的a型口蹄疫疫苗
WO2023021167A1 (fr) 2021-08-20 2023-02-23 Intervet International B.V. Méthode de production d'une particule de type virus du virus de la fièvre aphteuse
WO2023020738A1 (fr) 2021-08-20 2023-02-23 The Pirbright Institute Particule pseudovirale de la fa à double mutation de stabilisation
WO2023021168A1 (fr) 2021-08-20 2023-02-23 Intervet International B.V. Procédé de production d'une particule pseudo-virale du virus de la fièvre aphteuse
WO2023020737A1 (fr) 2021-08-20 2023-02-23 Intervet International B.V. Particule pseudovirale du fmdv à mutation stabilisante

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2909462A (en) 1955-12-08 1959-10-20 Bristol Myers Co Acrylic acid polymer laxative compositions
ZA915593B (en) 1990-07-24 1993-03-31 Novagene Inc Herpesvirus-based viral vector which expresses a foot and mounth disease virus epitope on the surface of virus-infected cells and on the surface of virus particles,and vaccine against foot and mounth disease containing the same
US5679356A (en) * 1992-07-08 1997-10-21 Schering Corporation Use of GM-CSF as a vaccine adjuvant
JPH11504631A (ja) 1995-04-25 1999-04-27 バイカル インコーポレイテッド Dna/脂質複合体の単一バイアル製剤
DE19638044A1 (de) * 1996-09-18 1998-03-19 Bayer Ag Immunogene Peptide von Maul- und Klauenseuchen-Viren

Also Published As

Publication number Publication date
FR2810888A1 (fr) 2002-01-04
DK1294400T3 (da) 2012-07-23
EP1294400B1 (fr) 2012-04-11
ES2386373T3 (es) 2012-08-20
WO2002000251A1 (fr) 2002-01-03
PT1294400E (pt) 2012-07-10
JP2004501874A (ja) 2004-01-22
AU2001270678A1 (en) 2002-01-08
CN1440296B (zh) 2012-04-11
BR0112071A (pt) 2003-05-20
CY1116491T1 (el) 2017-03-15
CN1440296A (zh) 2003-09-03
US7531182B2 (en) 2009-05-12
FR2810888B1 (fr) 2004-07-30
EP1294400A1 (fr) 2003-03-26
US20040001864A1 (en) 2004-01-01
BR0112071B1 (pt) 2014-08-26
ATE552845T1 (de) 2012-04-15
JP5153984B2 (ja) 2013-02-27

Similar Documents

Publication Publication Date Title
EP1294400B1 (fr) Vaccin contre la fievre aphteuse
KR102526219B1 (ko) Fmdv 재조합 백신 및 이의 용도
EP0954332B2 (fr) Formule de vaccin polynucleotidique contre les pathologies canines, notamment les pathologies respiratoires et digestives
Chien et al. Oral immunization with cell-free self-assembly virus-like particles against orange-spotted grouper nervous necrosis virus in grouper larvae, Epinephelus coioides
EP1058558A1 (fr) Vaccins vivants recombines et adjuves
FR2751226A1 (fr) Formule de vaccin polynucleotidique contre les pathologies du cheval
JP6878464B2 (ja) 組換えアデノウイルスベクター性fmdvワクチンとその使用
EP1185662A2 (fr) Vaccins adn pour animaux de compagnie et de sport
BE1022174B1 (fr) Vaccin
EP2979705B1 (fr) Vaccin contre le virus de la fièvre du nil
KR102153303B1 (ko) Fmdv 및 e2 융합 단백질 및 이의 용도
JP7303306B2 (ja) 口蹄疫ウイルス様粒子抗原及びそのワクチン組成物並びに調製方法及び応用
Fernando et al. Peptide polymerisation facilitates incorporation into ISCOMs and increases antigen-specific IgG2a production
US9913896B2 (en) Attenuated parvovirus vaccine for muscovy duck parvovirus and goose parvovirus (derzsy's disease)
EP3583948B1 (fr) Vaccins pour la prévention de la maladie hémorragique du lapin
EP0817799A1 (fr) Vaccin plasmidique contre le virus pseudorabique
US20220323569A1 (en) Plant-produced vlps and ric vaccines
EP1248648B1 (fr) Vaccination contre l'herpesvirose canine et vaccins
BE1009826A3 (fr) Vaccin plasmidique contre le virus pseudorabique.
WO2002053183A1 (fr) Vaccin contre l'hantavirus renfermant un adjuvant
BE1010344A3 (fr) Vaccin plasmidique contre le virus pseudorabique.
WO2001005436A1 (fr) Methode de production d'anticorps dans le jaune d'oeuf et utilisation des anticorps ainsi obtenus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: C2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

COP Corrected version of pamphlet

Free format text: INTERNATIONAL SEARCH REPORT ADDED (2 PAGES)

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 2001949547

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10327481

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 505032

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 018120709

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001949547

Country of ref document: EP