WO2002100348A2 - Anticorps monoclonaux humains diriges contre le recepteur de facteur de croissance epidermique (egfr) - Google Patents

Anticorps monoclonaux humains diriges contre le recepteur de facteur de croissance epidermique (egfr) Download PDF

Info

Publication number
WO2002100348A2
WO2002100348A2 PCT/US2002/018748 US0218748W WO02100348A2 WO 2002100348 A2 WO2002100348 A2 WO 2002100348A2 US 0218748 W US0218748 W US 0218748W WO 02100348 A2 WO02100348 A2 WO 02100348A2
Authority
WO
WIPO (PCT)
Prior art keywords
human
antibody
egfr
cell
cells
Prior art date
Application number
PCT/US2002/018748
Other languages
English (en)
Other versions
WO2002100348A8 (fr
WO2002100348A3 (fr
Inventor
Jan Van De Winkel
Marcus A. Van Dijk
Arnout F. Gerritsen
Edward Halk
Original Assignee
Genmab A/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BRPI0210405 priority Critical patent/BRPI0210405B8/pt
Priority to AU2002345673A priority patent/AU2002345673B2/en
Priority to MXPA03011365A priority patent/MXPA03011365A/es
Priority to HU0600225A priority patent/HUP0600225A3/hu
Application filed by Genmab A/S filed Critical Genmab A/S
Priority to EP02744320.9A priority patent/EP1417232B1/fr
Priority to NZ530212A priority patent/NZ530212A/en
Priority to IL15922502A priority patent/IL159225A0/xx
Priority to KR1020037016294A priority patent/KR100945108B1/ko
Priority to CA2450285A priority patent/CA2450285C/fr
Priority to JP2003503174A priority patent/JP4298498B2/ja
Publication of WO2002100348A2 publication Critical patent/WO2002100348A2/fr
Publication of WO2002100348A3 publication Critical patent/WO2002100348A3/fr
Publication of WO2002100348A8 publication Critical patent/WO2002100348A8/fr
Priority to IL159225A priority patent/IL159225A/en
Priority to HK04107653.9A priority patent/HK1064685A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]

Definitions

  • EGF receptor is a 170 kDa type 1 transmembrane molecule.
  • Monoclonal antibodies directed to the ligand-binding domain of EGFR can block the interaction with EGF and TGF- ⁇ and, concomitantly, the resultant intracellular signaling pathway.
  • Several murine monoclonal antibodies have been generated which achieve such a block in vitro and which have been evaluated for their ability to affect tumor growth in mouse xenograft models (Masui, et al. (1986) Cancer Res. 46: 5592-5598; Masui, et l. (1984) Cancer Res. 44: 1002-1007; Goldstein, et al. (1995) Clin. Cancer Res. 1 : 1311-1318).
  • the present invention provides improved antibody therapeutics for treating and preventing diseases related to expression of EGFR, particularly EGFR- expressing tumors and autoimmune diseases.
  • the antibodies are improved in that they are fully human (referred to herein as "HuMAbsTM") and, thus, are less immunogenic in patients.
  • the antibodies are also therapeutically effective (e.g., at preventing growth and/or function of EGFR-expressing cells) at lower dosages than previously reported for other anti-EGFR antibodies.
  • the antibodies have the added benefit of not activating compliment (e.g., not inducing complement mediated lysis of target cells) which reduces adverse side-effects during treatment.
  • the present invention provides isolated human monoclonal antibodies which specifically bind to human epidermal growth factor receptor (EGFR), as well as compositions containing one or a combination of such antibodies.
  • the human antibodies inhibit (e.g., block) binding of EGFR ligands, such as EGF and TGF- ⁇ , to EGFR.
  • EGFR ligands such as EGF and TGF- ⁇
  • binding of EGFR ligand to EGFR can be inhibited by at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% and preferably results in the prevention of EGFR-mediated cell signaling.
  • Preferred human antibodies of the invention inhibit the growth and/or mediate the killing (e.g., lysis or phagocytosis) of cells expressing EGFR (in vitro or in vivo) in the presence of human effector cells (e.g., polymorphonuclear cells, monocytes, macrophages and dendritic cells), yet they do not activate complement mediated lysis of cells which express EGFR.
  • human monoclonal antibodies of the invention can be used as diagnostic or therapeutic agents in vivo and in vitro.
  • human antibodies of the invention are IgGl (e.g., IgGlk) antibodies having an IgGl heavy chain and a kappa light chain.
  • IgGl e.g., IgGlk
  • other antibody isotypes are also encompassed by the invention, including IgG2, IgG3, IgG4, IgM, IgAl, IgA2, IgAsec, IgD, and IgE.
  • the antibodies can be whole antibodies or antigen-binding fragments of the antibodies, including Fab, F(ab')2, Fv and chain Fv fragments.
  • the human antibody is encoded by human
  • the human antibody include IgG heavy chain and kappa light chain variable regions which comprise the amino acid sequences shown in SEQ ID NO:2 and SEQ ID NO:4, respectively, and conservative sequence modifications thereof.
  • the human antibody corresponds to antibody 2F8 or an antibody that binds to the same epitope as (e.g., competes with) or has the same functional binding characteristics as antibody 2F8.
  • Human antibodies of the invention can be produced recombinantly in a host cell, such as a transfectoma (e.g., a transfectoma consisting of immortalized CHO cells or lymphocytic cells) containing nucleic acids encoding the heavy and light chains of the antibody, or be obtained directly from a hybridoma which expresses the antibody (e.g., which includes a B cell obtained from a transgenic non-human animal, e.g., a transgenic mouse, having a genome comprising a human heavy chain transgene and a human light chain transgene that encode the antibody, fused to an immortalized cell).
  • a transfectoma e.g., a transfectoma consisting of immortalized CHO cells or lymphocytic cells
  • a hybridoma which expresses the antibody
  • a B cell obtained from a transgenic non-human animal, e.g., a transgenic mouse, having a genome comprising a human heavy
  • the antibodies are produced by a hybridoma referred to herein as 2F8 or by a host cell (e.g., a CHO cell) transfectoma containing human heavy chain and human light chain nucleic acids which comprise nucleotide sequences in their variable regions as set forth in SEQ ID NOs: 1 and 3, respectively, and conservative modifications thereof.
  • a host cell e.g., a CHO cell
  • transfectoma containing human heavy chain and human light chain nucleic acids which comprise nucleotide sequences in their variable regions as set forth in SEQ ID NOs: 1 and 3, respectively, and conservative modifications thereof.
  • human anti-EGFR antibodies of the present invention can be characterized by one or more of the following properties: a) specificity for the EGFR; b) a binding affinity to EGFR with an equilibrium association constant (K A ) of at least about 10 7 M" 1 , preferably about, 10** M" 1 , 10 9 M ⁇ l, and more preferably, about 10 10 M" 1 to 10 1 !
  • K D dissociation constant from EGFR of about 10"- s " preferably about 10 ⁇ s ⁇ l, more preferably, 10" ⁇ s ⁇ l, and most preferably, 10"° " s ⁇ l; d) the ability to opsonize a cell expressing EGFR; or e) the ability to inhibit growth and/or mediate phagocytosis and killing of cells expressing EGFR (e.g., a tumor cell) in the presence of human effector cells at a concentration of about 10 ⁇ g/ml or less (e.g., in vitro).
  • K D dissociation constant
  • Examples of EGFR-expressing tumor cells which can be targeted (e.g., opsonized) by human antibodies of the present invention include, but are not limited to, bladder, breast, colon, kidney, ovarian, prostate, renal cell, squamous cell, lung (non- small cell), or head and neck tumor cells.
  • Other EGFR-expressing cells include synovial fibroblast cells and keratinocytes which can be used, for example, as target cells in the treatment of arthritis and psoriasis, respectively.
  • human antibodies of the invention bind to EGFR antigen with an affinity constant of at least about 10** M ⁇ l, more preferably at least about 10° M'l or 10 ⁇ M" and are capable of inhibiting growth and/or mediating phagocytosis and killing of cells expressing EGFR by human effector cells, e.g., polymorphonuclear cells (PMNs), monocytes and macrophages, with an IC50 of about 1 x 10" M or less, or at a concentration of about 10 ⁇ g/ml or less in vitro.
  • PMNs polymorphonuclear cells
  • monocytes e.g., monocytes and macrophages
  • human antibodies of the invention inhibit EGFR-mediated cell signaling.
  • the antibodies can inhibit EGFR ligand (e.g., EGF or TGF- ⁇ ) induced autophosphorylation of EGFR.
  • the antibodies also can inhibit autocrine EGF or TGF- ⁇ induced cell activation or by inducing lysis (ADCC) of EGFR expressing cells in the presence of human polymorphonuclear cells.
  • ADCC inducing lysis
  • Cells which express EGFR include, among others, a bladder cell, a breast cell, a colon cell, a kidney cell, an ovarian cell, a prostate cell, a renal cell, a squamous cell, a non-small lung cell, a synovial fibroblast cell, and a keratinocyte.
  • the present invention provides nucleic acid molecules encoding the antibodies, or antigen-binding portions, of the invention.
  • Recombinant expression vectors which include nucleic acids encoding antibodies of the invention, and host cells transfected with such vectors, are also encompassed by the invention, as are methods of making the antibodies of the invention by culturing such host cells, e.g., an expression vector comprising a nucleotide sequence encoding the variable and constant regions of the heavy and light chains of antibody 2F8 produced by the hybridoma.
  • the invention provides isolated B-cells from a transgenic non-human animal, e.g., a transgenic mouse, which express human anti- EGFR antibodies of the invention.
  • the isolated B cells are obtained from a • transgenic non-human animal, e.g., a transgenic mouse, which has been immunized with a purified or enriched preparation of EGFR antigen and/or cells expressing the EGFR.
  • the transgenic non-human animal e.g., a transgenic mouse
  • the isolated B-cells are then immortalized to provide a source (e.g., a hybridoma) of human anti-EGFR antibodies.
  • the present invention also provides a hybridoma capable of producing human monoclonal antibodies of the invention that specifically bind to EGFR.
  • the hybridoma includes a B cell obtained from a transgenic non-human animal, e.g., a transgenic mouse having a genome comprising a human heavy chain transgene and a human light chain transgene encoding all or a portion of an antibody of the invention, fused to an immortalized cell.
  • Particular hybridomas of the invention include 2F8.
  • the invention provides a transgenic non-human animal, such as a transgenic mouse (also referred to herein as a "HuMAb"), which express human monoclonal antibodies that specifically bind to EGFR.
  • a transgenic non-human animal is a transgenic mouse having a genome comprising a human heavy chain transgene and a human light chain transgene encoding all or a portion of an antibody of the invention.
  • the transgenic non-human animal can be immunized with a purified or enriched preparation of EGFR antigen and/or cells expressing EGFR.
  • the transgenic non-human animal e.g., the transgenic mouse
  • the transgenic non-human animal is capable of producing multiple isotypes of human monoclonal antibodies to EGFR (e.g., IgG, IgA and/or IgM) by undergoing V-D-J recombination and isotype switching.
  • Isotype switching may occur by, e.g., classical or non-classical isotype switching.
  • the present invention provides methods for producing human monoclonal antibodies which specifically react with EGFR.
  • the method includes immunizing a transgenic non-human animal, e.g., a transgenic mouse, having a genome comprising a human heavy chain transgene and a human light chain transgene encoding all or a portion of an antibody of the invention, with a purified or enriched preparation of EGFR antigen and/or cells expressing EGFR.
  • B cells e.g., splenic B cells
  • myeloma cells to form immortal, hybridoma cells that secrete human monoclonal antibodies against EGFR.
  • human anti-EGFR antibodies of the invention are derivatized, linked to or co-expressed with another functional molecule, e.g., another peptide or protein (e.g., an Fab' fragment).
  • another functional molecule e.g., another peptide or protein (e.g., an Fab' fragment).
  • an antibody or antigen-binding portion of the invention can be functionally linked (e.g., by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other molecular entities, such as another antibody (e.g. , to produce a bispecific or a multispecific antibody), a cytoxin, a cellular ligand or an antigen.
  • present invention encompasses a large variety of antibody conjugates, bi- and multispecific molecules, and fusion proteins, all of which bind to EGFR expressing cells and which target other molecules to the cells, or which bind to EGFR and to other molecules or cells.
  • the invention includes a bispecific or multispecific molecule comprising at least one first binding specificity for EGFR (e.g., a human anti-EGFR antibody or fragment or mimetic thereof), and a second binding specificity for an Fc receptor, e.g., human Fc ⁇ RI or a human Fc ⁇ receptor, or another antigen on an antigen presenting cell (APC).
  • EGFR e.g., a human anti-EGFR antibody or fragment or mimetic thereof
  • Fc receptor e.g., human Fc ⁇ RI or a human Fc ⁇ receptor
  • APC antigen presenting cell
  • bispecific and multispecific molecules of the invention comprise at least one antibody, or fragment thereof (e.g., an Fab, Fab', F(ab')2, Fv, or a single chain Fv), preferably a human antibody or a portion thereof, or a "chimeric” or a "humanized” antibody or a portion thereof (e.g., has a variable region, or at least a complementarity determining region (CDR), derived from a non-human antibody (e.g., murine) with the remaining portion(s) being human in origin).
  • an antibody, or fragment thereof e.g., an Fab, Fab', F(ab')2, Fv, or a single chain Fv
  • a human antibody or a portion thereof e.g., or a "chimeric” or a "humanized” antibody or a portion thereof (e.g., has a variable region, or at least a complementarity determining region (CDR), derived from a non-human antibody (e.
  • the present invention includes bispecific and multispecific molecules that bind to both human EGFR and to an Fc receptor, e.g., a human IgG receptor, e.g., an Fc-gamma receptor (Fc ⁇ R), such as Fc ⁇ RI (CD64), Fc ⁇ RII (CD32), and Fc ⁇ RIII (CD16).
  • Fc receptors e.g., a human IgG receptor, e.g., an Fc-gamma receptor (Fc ⁇ R), such as Fc ⁇ RI (CD64), Fc ⁇ RII (CD32), and Fc ⁇ RIII (CD16).
  • Fc receptors such as human IgA receptors (e.g. Fc ⁇ RI)
  • the Fc receptor is preferably located on the surface of an effector cell, e.g., a monocyte, macrophage or an activated polymorphonuclear cell.
  • the bispecific and multispecific molecules bind to an Fc receptor at a site which is distinct from the immunoglobulin Fc (e.g., IgG or IgA) binding site of the receptor. Therefore, the binding of the bispecific and multispecific molecules is not blocked by physiological levels of immunoglobulins.
  • the present invention provides a conjugate comprising a human anti-EGFR antibody of the invention linked to a therapeutic moiety, e.g., a cytotoxic drug, an enzymatically active toxin, or a fragment thereof, a radioisotope, or a small molecule anti-cancer drug.
  • human antibodies of the invention can be co-administered with such therapeutic and cytotoxic agents, but not linked to them. They can be coadministered simultaneously with such agents (e.g., in a single composition or separately) or can be administered before or after administration of such agents.
  • agents can include chemotherapeutic agents such as doxorubicin (adriamycin), cisplatin bleomycin sulfate, carmustine, chlorambucil, and cyclophosphamide hydroxyurea.
  • Human antibodies of the invention also can be administered in conjunction with radiation therapy.
  • the present invention provides compositions, e.g., pharmaceutical and diagnostic compositions/kits, comprising a pharmaceutically acceptable carrier and at least one human monoclonal antibody of the invention, or an antigen-binding portion thereof, which specifically binds to EGFR.
  • the composition comprises a combination of the human antibodies or antigen-binding portions thereof, preferably each of which binds to a distinct epitope.
  • a pharmaceutical composition comprising a human monoclonal antibody that mediates highly effective killing of target cells in the presence of effector cells can be combined with another human monoclonal antibody that inhibits the growth of cells expressing EGFR.
  • the combination provides multiple therapies tailored to provide the maximum therapeutic benefit.
  • compositions e.g., pharmaceutical compositions, comprising a combination of at least one human monoclonal antibody of the invention, or antigen-binding portions thereof, and at least one bispecific or multispecific molecule of the invention, are also within the scope of the invention.
  • the invention provides a method for inhibiting the proliferation and/or growth of a cell expressing EGFR, and/or inducing killing of a cell expressing EGFR, using human antibodies of the invention and related compositions as described above.
  • the method comprises contacting a cell expressing EGFR either in vitro or in vivo with one or a combination of human monoclonal antibodies of the invention in the presence of a human effector cell.
  • the method can be employed in culture, e.g. in vitro or ex vivo (e.g., cultures comprising cells expressing EGFR and effector cells).
  • a sample containing cells expressing EGFR and effector cells can be cultured in vitro, and combined with an antibody of the invention, or an antigen-binding portion thereof (or a bispecific or multispecific molecule of the invention).
  • the method can be performed in a subject, e.g., as part of an in vivo (e.g., therapeutic or prophylactic) protocol.
  • human antibodies of the invention are administered to patients (e.g., human subjects) at therapeutically effective dosages (e.g., dosages which result in growth inhibition, phagocytosis and/or killing of tumor cells expressing EGFR) using any suitable route of administration, such as injection and other routes of administration known in the art for antibody-based clinical products.
  • therapeutically effective dosages e.g., dosages which result in growth inhibition, phagocytosis and/or killing of tumor cells expressing EGFR
  • any suitable route of administration such as injection and other routes of administration known in the art for antibody-based clinical products.
  • Typical EGFR-related diseases which can be treated and/or prevented using the human antibodies of the invention include, but are not limited to, autoimmune diseases and cancers.
  • cancers which can be treated and/or prevented include cancer of the bladder, breast, colon, kidney, ovarian, prostate, renal cell, squamous cell, lung (non-small cell), head and neck.
  • Autoimmune diseases which can be treated include, for example, psoriasis and inflammatory arthritis, e.g., rheumatoid arthritis, systemic lupus erythematosus-associated arthritis, and psoriatic arthritis.
  • the patient is additionally treated with a chemotherapeutic agent, radiation, or an agent that modulates, e.g., enhances or inhibits, the expression or activity of an Fc receptor, e.g., an Fc ⁇ receptor or an Fc ⁇ receptor, such as a cytokine.
  • a chemotherapeutic agent e.g., radiation, or an agent that modulates, e.g., enhances or inhibits, the expression or activity of an Fc receptor, e.g., an Fc ⁇ receptor or an Fc ⁇ receptor, such as a cytokine.
  • Typical cytokines for administration during treatment include granulocyte colony-stimulating factor (G-CSF), granulocyte- macrophage colony- stimulating factor (GM-CSF), interferon- ⁇ (IFN- ⁇ ), and tumor necrosis factor (TNF).
  • G-CSF granulocyte colony-stimulating factor
  • GM-CSF granulocyte- macrophage colony- stimulating factor
  • Typical therapeutic agents include, among others, anti-neoplastic agents such as doxorubicin (adriamycin), cisplatin bleomycin sulfate, carmustine, chlorambucil, and cyclophosphamide hydroxyurea.
  • anti-neoplastic agents such as doxorubicin (adriamycin), cisplatin bleomycin sulfate, carmustine, chlorambucil, and cyclophosphamide hydroxyurea.
  • the antibodies can be co-administered with an agent which upregulates or otherwise effects expression of EGFR, such as a lymphokine preparation which cause upregulated and more homogeneous expression of EGFR on tumor cells.
  • Lymphokine preparations suitable for administration include interferon-gamma, tumor necrosis factor, and combinations thereof. These can be administered intravenously. Suitable dosages of lymphokine typically range from 10,000 to 1,000,000 units/patient.
  • the present invention provides a method for detecting in vitro or in vivo the presence of EGFR antigen in a sample, e.g., for diagnosing an EGFR-related disease.
  • this is achieved by contacting a sample to be tested, optionally along with a control sample, with a human monoclonal antibody of the invention (or an antigen-binding portion thereof) under conditions that allow for formation of a complex between the antibody and EGFR. Complex formation is then detected (e.g., using an ELISA).
  • a control sample along with the test sample complex is detected in both samples and any statistically significant difference in the formation of complexes between the samples is indicative the presence of EGFR antigen in the test sample.
  • Figure 7 is a graph showing competitive ELISA with hybridoma supernatants from mouse 20241 versus murine monoclonal anti-EGFR MAbs 225, 528, and AB5.
  • Figure 2 is a graph showing competitive ELISA with human antibody supernatants from mouse 20242 and 20243 versus murine monoclonal anti-EGFR MAbs 225, 528, and AB5.
  • Figure J is a graph showing competitive ELISA with purified human antibodies versus murine monoclonal anti-EGFR MAbs 225 and 528.
  • Figures 4 A, 4B, 4C, and 4D are graphs showing competitive ELISA with HuMAbs (A) 6B3, (B) 5F12, (C) 2F8, and (D) 2A2.
  • Figures 5 A and 5B are graphs showing inhibition of EGF-biotin binding to EGFR by anti-EGFR HuMAbs and murine MAbs (ELISA format).
  • Figure 6 is a graph showing inhibition of EGF-biotin binding to EGFR on A431 cells by anti-EGFR HuMAbs and murine MAbs.
  • Figure 7 is a graph showing titration of anti-EGFR HuMAbs on A431 cells.
  • Figure 8 is a graph showing the ability of 2F8 to inhibit the binding of EGF binding to purified and native EGFR.
  • the effect of 2F8 (diamonds), murine 225 (squares), EGF (triangles) or human IgGl kappa isotype control (bullets) is measured on the binding of EGF-biotin to immobilized EGFR.
  • 2F8 is able to inhibit EGF-biotin binding with an IC50 of 17 nM, significantly lower than 225 (IC50 of 30 nM).
  • Figure 9 is a bar graph showing the ability of 2F8 to inhibit the binding of EGF and TGF- ⁇ to A431 cells.
  • A431 cells are derived from an ovarian epidermoid carcinoma and express in excess of lxlO 6 EGFR molecules on their cell surface.
  • Inhibition of 2F8-binding to A431 cells was determined using flow cytometer analysis. Cells were pre-incubated with either 5 (open bars) or 50 ⁇ g/ml (closed bars) ligand before adding 2F8. Binding of antibody without ligand (PBS group) was designated as 100%. As shown, EGF and TGF- ⁇ binding to A431 cells is efficiently blocked by 2F8. These results indicate that 2F8 binds close to, or at the same site, on EGFR as the ligands.
  • FIGs 10 A and 10B show the effect of monoclonal anti EGFR on autophosphorylation of A431 cells. Serum deprived subconfluent A431 cells were treated with different antibodies (10 ⁇ g/ml) as indicated in the methods, stimulated with either EGF (A) or TGF- ⁇ (B), and extracted. The EGFR phosphorylation was analyzed by SDS-PAGE and immunoblotting with antiphosphotyrosine antibodies.
  • Figures 11 A, 11B, and 11C are graphs showing growth inhibition of EGFR-expressing tumor cell lines by anti-EGFR human antibodies.
  • the EGFR- expressing tumor cell lines A431 (A), HN5 (B) and MDA-MB-468 (C) were incubated with various concentrations of HuMAb 2F8 (squares), 5C5 (triangles), 6E9 (crosses), 2A2 (diamonds) antibody negative control anti-CTLA4 (open circles), antibody positive control 225 (closed circles) or with medium only (control) for seven (7) days. Thereafter, cell growth was evaluated using crystal violet staining of fixed cells. The percentage growth inhibition was calculated as the amount of protein left after seven (7) days incubation compared to the amount of protein present in the medium only control. The data represent triplicate measurements, and are representative of three experiments performed on different days.
  • Figure 12 is a graph showing human PMN mediated antibody dependent cellular cytotoxicity.
  • PMN were isolated as described. 5 'Chromium labeled A431 cells were plated in 96 wells flat bottom plates. PMN were added in effecto ⁇ target ratio 100:1 and antibodies were added in different concentrations. After overnight incubation, the 51 Cr release was measured.
  • Figure 13 is a graph showing the prevention of tumor formation by
  • HuMAb 2F8 in an athymic murine model Groups of six (6) mice were injected subcutaneously in the flank with 3 x 10 6 tumor cells in 200 ⁇ l PBS at day zero (0). Subsequently, mice were injected i.p. on days 1 (75 ⁇ g/200 ⁇ l), 3 (25 ⁇ g/200 ⁇ l), and 5 (25 ⁇ g/200 ⁇ l) (arrows) with either HuMAb 2F8 (closed squares) i.p. of human IgGl- ⁇ MAb as a control (open circles). The data are presented as mean tumor volume + SEM, and are representative of 3 individual experiments, yielding similar results.
  • Figure 14 is a graph showing the eradication of established A431 tumor xenografts by HuMAb 2F8 in comparison to murine anti-EGFR MAb (m225).
  • Mice were injected subcutaneously in the flank with 3x10 6 tumor cells in 200 ⁇ l PBS on day zero (0).
  • mice were randomly allocated to treatment groups and treated on days 12 (75 ⁇ g/200 ⁇ l), 14 (25 ⁇ g/200 ⁇ l), and 16 (25 ⁇ g/200 ⁇ l) (arrows) with HuMAb 2F8 (closed squares, 2F8 short-term) or with murine anti-EGFR MAb 225 (closed triangles, m225 short-term).
  • Figures 15 A and 15B show the sequences of the V H - and V -regions of 2F8 with
  • the present invention provides novel antibody-based therapies for treating and diagnosing diseases characterized by expression, particularly over- expression, of epidermal growth factor receptor antigen (referred to herein as "EGFR").
  • therapies of the invention employ isolated human IgG monoclonal antibodies, or antigen-binding portions thereof, which bind to an epitope present on EGFR.
  • Other isolated human monoclonal antibodies encompassed by the present invention include IgA, IgGl -4, IgE, IgM, and IgD antibodies.
  • the human antibodies are produced in a non-human transgenic animal, e.g., a transgenic mouse, capable of producing multiple isotypes of human monoclonal antibodies to EGFR (e.g., IgG, IgA and/or IgE) by undergoing V-D-J recombination and isotype switching.
  • a non-human transgenic animal e.g., a transgenic mouse
  • aspects of the invention include not only antibodies, antibody fragments, and pharmaceutical compositions thereof, but also non-human transgenic animals, B-cells, host cell transfectomas, and hybridomas which produce monoclonal antibodies.
  • EGFR epidermal growth factor receptor
  • EGFR antigen binding of an antibody of the invention to the EGFR-antigen inhibits the growth of cells expressing EGFR (e.g., a tumor cell) by inhibiting or blocking binding of EGFR ligand to EGFR.
  • EGFR ligand encompasses all (e.g., physiological) ligands for EGFR, including EGF, TGF- ⁇ , heparin binding EGF (HB-EGF), amphiregulin (AR), and epiregulin (EPI).
  • binding of an antibody of the invention to the EGFR- antigen mediates effector cell phagocytosis and/or killing of cells expressing EGFR.
  • inhibits growth e.g., referring to cells
  • the term "inhibits growth” is intended to include any measurable decrease in the growth of a cell when contacted with an anti-EGFR antibody as compared to the growth of the same cell not in contact with an anti-EGFR antibody, e.g., the inhibition of growth of a cell by at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 99%, or 100%.
  • inhibits binding and “blocks binding” (e.g., referring to inhibition/blocking of binding of EGFR ligand to EGFR) are used interchangeably and encompass both partial and complete inhibition/blocking.
  • the inhibition blocking of EGFR ligand to EGFR preferably reduces or alters the normal level or type of cell signaling that occurs when EGFR ligand binds to EGFR without inhibition or blocking.
  • Inhibition and blocking are also intended to include any measurable decrease in the binding affinity of EGFR ligand to EGFR when in contact with an anti-EGFR antibody as compared to the ligand not in contact with an anti-EGFR antibody, e.g., the blocking of EGFR ligands to EGFR by at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 99%, or 100%.
  • antibody as referred to herein includes whole antibodies and any antigen binding fragment (i.e., "antigen-binding portion") or single chain thereof
  • An “antibody” refers to a glycoprotein comprising at least two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds, or an antigen binding portion thereof.
  • Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as VH) and a heavy chain constant region.
  • the heavy chain constant region is comprised of three domains, CHI, CH2 and CH3.
  • Each light chain is comprised of a light chain variable region (abbreviated herein as VL) and a light chain constant region.
  • the light chain constant region is comprised of one domain, CL.
  • VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR).
  • CDR complementarity determining regions
  • FR framework regions
  • Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
  • the variable regions of the heavy and light chains contain a binding domain that interacts with an antigen.
  • the constant regions of the antibodies may mediate the binding of the immunoglobulin to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the first component (Clq) of the classical complement system.
  • antibody portion refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen (e.g., EGFR). It has been shown that the antigen-binding function of an antibody can be performed by fragments of a full-length antibody.
  • binding fragments encompassed within the term "antigen- binding portion" of an antibody include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CHI domains; (ii) a F(ab')2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CHI domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al., (1989) Nature 341 :544-546), which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR).
  • a Fab fragment a monovalent fragment consisting of the VL, VH, CL and CHI domains
  • F(ab')2 fragment a bivalent fragment comprising two Fab fragments linked by a dis
  • the two domains of the Fv fragment, VL and VH are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv (scFv); see e.g., Bird et al. (1988) Science 242:423-426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA ⁇ 2:5879-5883).
  • single chain Fv single chain Fv
  • Such single chain antibodies are also intended to be encompassed within the term "antigen-binding portion" of an antibody.
  • epitope means a protein determinant capable of specific binding to an antibody.
  • Epitopes usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics. Conformational and nonconformational epitopes are distinguished in that the binding to the former but not the latter is lost in the presence of denaturing solvents.
  • bispecific molecule is intended to include any agent, e.g., a protein, peptide, or protein or peptide complex, which has two different binding specificities.
  • the molecule may bind to, or interact with, (a) a cell surface antigen and (b) an Fc receptor on the surface of an effector cell.
  • multispecific molecule or “heterospecific molecule” is intended to include any agent, e.g., a protein, peptide, or protein or peptide complex, which has more than two different binding specificities.
  • the molecule may bind to, or interact with, (a) a cell surface antigen, (b) an Fc receptor on the surface of an effector cell, and (c) at least one other component.
  • the invention includes, but is not limited to, bispecific, trispecific, tetraspecific, and other multispecific molecules which are directed to cell surface antigens, such as EGFR, and to other targets, such as Fc receptors on effector cells.
  • bispecific antibodies also includes diabodies.
  • Diabodies are bivalent, bispecific antibodies in which the VH and VL domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites (see e.g., Holliger, P., et al. (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak, R.J., et al. (1994) Structure 2:1121-1123).
  • heteroantibodies refers to two or more antibodies, antibody binding fragments (e.g., Fab), derivatives therefrom, or antigen binding regions linked together, at least two of which have different specificities. These different specificities include a binding specificity for an Fc receptor on an effector cell, and a binding specificity for an antigen or epitope on a target cell, e.g., a tumor cell.
  • the term "human antibody”, as used herein, is intended to include antibodies having variable and constant regions derived from human germline immunoglobulin sequences. The human antibodies of the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g.
  • human antibody is not intended to include antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.
  • the terms “monoclonal antibody” or “monoclonal antibody composition” as used herein refer to a preparation of antibody molecules of single molecular composition.
  • a monoclonal antibody composition displays a single binding specificity and affinity for a particular epitope.
  • the term “human monoclonal antibody” refers to antibodies displaying a single binding specificity which have variable and constant regions derived from human germline immunoglobulin sequences.
  • the human monoclonal antibodies are produced by a hybridoma which includes a B cell obtained from a transgenic non-human animal, e.g., a transgenic mouse, having a genome comprising a human heavy chain transgene and a light chain transgene fused to an immortalized cell.
  • recombinant human antibody is intended to include all human antibodies that are prepared, expressed, created or isolated by recombinant means, such as (a) antibodies isolated from an animal (e.g., a mouse) that is transgenic for human immunoglobulin genes or a hybridoma prepared therefrom (described further in Section I, below), (b) antibodies isolated from a host cell transformed to express the antibody, e.g., from a transfectoma, (c) antibodies isolated from a recombinant, combinatorial human antibody library, and (d) antibodies prepared, expressed, created or isolated by any other means that involve splicing of human immunoglobulin gene sequences to other DNA sequences.
  • Such recombinant human antibodies have variable and constant regions derived from human germline immunoglobulin sequences.
  • such recombinant human antibodies can be subjected to in vitro mutagenesis (or, when an animal transgenic for human Ig sequences is used, in vivo somatic mutagenesis) and thus the amino acid sequences of the VH and VL regions of the recombinant antibodies are sequences that, while derived from and related to human germline VH and VL sequences, may not naturally exist within the human antibody germline repertoire in vivo.
  • a “heterologous antibody” is defined in relation to the transgenic non-human organism producing such an antibody. This term refers to an antibody having an amino acid sequence or an encoding nucleic acid sequence corresponding to that found in an organism not consisting of the transgenic non-human animal, and generally from a species other than that of the transgenic non-human animal.
  • a “heterohybrid antibody” refers to an antibody having a light and heavy chains of different organismal origins. For example, an antibody having a human heavy chain associated with a murine light chain is a heterohybrid antibody. Examples of heterohybrid antibodies include chimeric and humanized antibodies, discussed supra.
  • an "isolated antibody,” as used herein, is intended to refer to an antibody which is substantially free of other antibodies having different antigenic specificities (e.g., an isolated antibody that specifically binds to EGFR is substantially free of antibodies that specifically bind antigens other than EGFR).
  • An isolated antibody that specifically binds to an epitope, isoform or variant of human EGFR may, however, have cross-reactivity to other related antigens, e.g., from other species (e.g., EGFR species homologs).
  • an isolated antibody may be substantially free of other cellular material and/or chemicals.
  • a combination of "isolated" monoclonal antibodies having different specificities are combined in a well defined composition.
  • telomere binding refers to antibody binding to a predetermined antigen.
  • the antibody binds with an affinity of at least about 1 x 10 7 M “1 , and binds to the predetermined antigen with an affinity that is at least twofold greater than its affinity for binding to a non-specific antigen (e.g., BSA, casein) other than the predetermined antigen or a closely-related antigen.
  • a non-specific antigen e.g., BSA, casein
  • high affinity for an IgG antibody refers to a binding affinity of at least about 10 7 M “1 , preferably at least about 10 8 M “1 , more preferably at least about 10 9 M ⁇ ', and still more preferably at least about 10 10 M “ ',10 U M “ ', 10 12 M “1 or greater, e.g., up tolO 13 M “1 or greater.
  • “high affinity” binding can vary for other antibody isotypes. For example, "high affinity" binding for an IgM
  • I isotype refers to a binding affinity of at least about 1 x 10 M " .
  • KA is intended to refer to the association constant of a particular antibody-antigen interaction.
  • K D is intended to refer to the dissociation constant of a particular antibody-antigen interaction.
  • isotype refers to the antibody class (e.g., IgM or IgGl) that is encoded by heavy chain constant region genes.
  • isotype switching refers to the phenomenon by which the class, or isotype, of an antibody changes from one Ig class to one of the other Ig classes.
  • nonswitched isotype refers to the isotypic class of heavy chain that is produced when no isotype switching has taken place; the CH gene encoding the nonswitched isotype is typically the first CH gene immediately downstream from the functionally rearranged VDJ gene.
  • Isotype switching has been classified as classical or non-classical isotype switching.
  • Classical isotype switching occurs by recombination events which involve at least one switch sequence region in the transgene.
  • Non-classical isotype switching may occur by, for example, homologous recombination between human ⁇ ⁇ and human ⁇ ⁇ ( ⁇ -associated deletion).
  • Alternative non-classical switching mechanisms such as intertransgene and/or interchromosomal recombination, among others, may occur and effectuate isotype switching.
  • switch sequence refers to those DNA sequences responsible for switch recombination.
  • a "switch donor” sequence typically a ⁇ switch region, will be 5' (i.e., upstream) of the construct region to be deleted during the switch recombination.
  • the "switch acceptor” region will be between the construct region to be deleted and the replacement constant region (e.g., ⁇ , ⁇ , etc.).
  • the replacement constant region e.g., ⁇ , ⁇ , etc.
  • a glycosylation pattern of a heterologous antibody can be characterized as being substantially similar to glycosylation patterns which occur naturally on antibodies produced by the species of the nonhuman transgenic animal, when one of ordinary skill in the art would recognize the glycosylation pattern of the heterologous antibody as being more similar to said pattern of glycosylation in the species of the nonhuman transgenic animal than to the species from which the CH genes of the transgene were derived.
  • the term "naturally-occurring" as used herein as applied to an object refers to the fact that an object can be found in nature.
  • a polypeptide or polynucleotide sequence that is present in an organism (including viruses) that can be isolated from a source in nature and which has not been intentionally modified by man in the laboratory is naturally-occurring.
  • the term "rearranged” as used herein refers to a configuration of a heavy chain or light chain immunoglobulin locus wherein a V segment is positioned immediately adjacent to a D-J or J segment in a conformation encoding essentially a complete VH or VL domain, respectively.
  • a rearranged immunoglobulin gene locus can be identified by comparison to germline DNA; a rearranged locus will have at least one recombined heptamer/nonamer homology element.
  • V segment configuration refers to the configuration wherein the V segment is not recombined so as to be immediately adjacent to a D or J segment.
  • nucleic acid molecule is intended to include DNA molecules and RNA molecules.
  • a nucleic acid molecule may be single-stranded or double-stranded, but preferably is double-stranded DNA.
  • isolated nucleic acid molecule as used herein in reference to nucleic acids encoding antibodies or antibody portions (e.g., VH, VL, CDR3) that bind to EGFR, is intended to refer to a nucleic acid molecule in which the nucleotide sequences encoding the antibody or antibody portion are free of other nucleotide sequences encoding antibodies or antibody portions that bind antigens other than EGFR, which other sequences may naturally flank the nucleic acid in human genomic DNA.
  • the human anti-EGFR antibody includes the nucleotide or amino acid sequence of 2F8, as well as heavy chain (VH) and light chain (VL) variable regions having the sequences shown in SEQ ID NOs: 1 and 3, and 2 and 4, respectively. As disclosed and claimed herein, the sequences set forth in SEQ ID NOs:
  • nucleotide and amino acid sequence modifications which do not significantly affect or alter the binding characteristics of the antibody encoded by the nucleotide sequence or containing the amino acid sequence.
  • conservative sequence modifications include nucleotide and amino acid substitutions, additions and deletions. Modifications can be introduced into SEQ ID NOs: 1-4 by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis. Conservative amino acid substitutions include ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art.
  • amino acids with basic side chains e.g., lysine, arginine, histidine
  • acidic side chains e.g., aspartic acid, glutamic acid
  • uncharged polar side chains e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan
  • nonpolar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine
  • beta-branched side chains e.g., threonine, valine, isoleucine
  • aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine.
  • a predicted nonessential amino acid residue in a human anti-EGFR antibody is preferably replaced with another amino acid residue from the same side chain family.
  • mutations can be introduced randomly along all or part of a anti-EGFR antibody coding sequence, such as by saturation mutagenesis, and the resulting modified anti-EGFR antibodies can be screened for binding activity.
  • antibodies encoded by the (heavy and light chain variable region) nucleotide sequences disclosed herein and/or containing the (heavy and light chain variable region) amino acid sequences disclosed herein include substantially similar antibodies encoded by or containing similar sequences which have been conservatively modified. Further discussion as to how such substantially similar antibodies can be generated based on the partial (i.e., heavy and light chain variable regions) sequences disclosed herein as SEQ ID Nos: 1-4 is provided below.
  • nucleic acids For nucleic acids, the term "substantial homology" indicates that two nucleic acids, or designated sequences thereof, when optimally aligned and compared, are identical, with appropriate nucleotide insertions or deletions, in at least about 80% of the nucleotides, usually at least about 90% to 95%, and more preferably at least about 98% to 99.5% of the nucleotides. Alternatively, substantial homology exists when the segments will hybridize under selective hybridization conditions, to the complement of the strand.
  • the comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm, as described in the non-limiting examples below.
  • the percent identity between two nucleotide sequences can be determined using the GAP program in the GCG software package (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6.
  • the percent identity between two nucleotide or amino acid sequences can also determined using the algorithm of E. Meyers and W. Miller (Comput. Appl. Biosci., 4:11-17 (1988)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.
  • the percent identity between two amino acid sequences can be determined using the Needleman and
  • nucleic acid and protein sequences of the present invention can further be used as a "query sequence" to perform a search against public databases to, for example, identify related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (1990) J. Mol. Biol. 215:403-10.
  • Gapped BLAST can be utilized as described in Altschul et al., (1997) Nucleic Acids Res. 25(17):3389-3402.
  • the default parameters of the respective programs e.g., XBLAST and NBLAST
  • the default parameters of the respective programs e.g., XBLAST and NBLAST
  • the nucleic acids may be present in whole cells, in a cell lysate, or in a partially purified or substantially pure form.
  • a nucleic acid is "isolated” or “rendered substantially pure” when purified away from other cellular components or other contaminants, e.g., other cellular nucleic acids or proteins, by standard techniques, including alkaline/SDS treatment, CsCl banding, column chromatography, agarose gel electrophoresis and others well known in the art. See, F. Ausubel, et al., ed. Current Protocols in Molecular Biology, Greene Publishing and Wiley Interscience, New York (1987).
  • nucleic acid compositions of the present invention while often in a native sequence (except for modified restriction sites and the like), from either cDNA, genomic or mixtures may be mutated, thereof in accordance with standard techniques to provide gene sequences. For coding sequences, these mutations, may affect amino acid sequence as desired.
  • DNA sequences substantially homologous to or derived from native V, D, J, constant, switches and other such sequences described herein are contemplated (where "derived" indicates that a sequence is identical or modified from another sequence).
  • a nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence.
  • a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence.
  • operably linked means that the DNA sequences being linked are contiguous and, where necessary to join two protein coding regions, contiguous and in reading frame.
  • operably linked indicates that the sequences are capable of effecting switch recombination.
  • vector is intended to refer to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
  • plasmid refers to a circular double stranded DNA loop into which additional DNA segments may be ligated.
  • viral vector Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome.
  • Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors).
  • vectors e.g., non-episomal mammalian vectors
  • vectors can be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome.
  • certain vectors are capable of directing the expression of genes to which they are operatively linked.
  • Such vectors are referred to herein as "recombinant expression vectors" (or simply, "expression vectors”).
  • expression vectors of utility in recombinant DNA techniques are often in the form of plasmids.
  • plasmid and vector may be used interchangeably as the plasmid is the most commonly used form of vector.
  • the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.
  • recombinant host cell (or simply “host cell”), as used herein, is intended to refer to a cell into which a recombinant expression vector has been introduced. It should be understood that such terms are intended to refer not only to the particular subject cell but to the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term “host cell” as used herein.
  • Recombinant host cells include, for example, CHO cells and lymphocytic cells.
  • the monoclonal antibodies (MAbs) of the invention can be produced by a variety of techniques, including conventional monoclonal antibody methodology e.g., the standard somatic cell hybridization technique of Kohler and Milstein (1975) Nature 256: 495. Although somatic cell hybridization procedures are preferred, in principle, other techniques for producing monoclonal antibody can be employed e.g., viral or oncogenic transformation of B lymphocytes.
  • hybridomas The preferred animal system for preparing hybridomas is the murine system.
  • Hybridoma production in the mouse is a very well-established procedure. Immunization protocols and techniques for isolation of immunized splenocytes for fusion are known in the art. Fusion partners (e.g., murine myeloma cells) and fusion procedures are also known.
  • human monoclonal antibodies directed against EGFR can be generated using transgenic mice carrying parts of the human immune system rather than the mouse system.
  • transgenic mice referred to herein as "HuMAb” mice, contain a human immunoglobulin gene miniloci that encodes unrearranged human heavy ( ⁇ and ⁇ ) and K light chain immunoglobulin sequences, together with targeted mutations that inactivate the endogenous ⁇ and K chain loci (Lonberg, et al. (1994) Nature 368(6474): 856-859).
  • mice exhibit reduced expression of mouse IgM or K, and in response to immunization, the introduced human heavy and light chain transgenes undergo class switching and somatic mutation to generate high affinity human IgG ⁇ monoclonal (Lonberg, N. et al. (1994), supra; reviewed in Lonberg, N. (1994) Handbook of Experimental Pharmacology 1 13:49-101; Lonberg, N. and Huszar, D. (1995) Intern. Rev. Immunol. Vol. 13: 65-93, and Harding, F. and Lonberg, N. (1995) Ann. N. Y. Acad. Sci 764:536-546).
  • the preparation of HuMAb mice is described in detail Section II below and in Taylor, L. et al.
  • HuMAb mice can be immunized with a purified or enriched preparation of EGFR antigen and/or cells expressing EGFR, as described by Lonberg, N. et al. (1994) Nature 368(6474): 856-859; Fishwild, D. et al. (1996) Nature Biotechnology 14: 845-851 and WO 98/24884.
  • the mice will be 6-16 weeks of age upon the first infusion.
  • a purified or enriched preparation (5-20 ⁇ g) of EGFR antigen (e.g., purified from EGFR-expressing LNCaP cells) can be used to immunize the HuMAb mice intraperitoneally.
  • EGFR antigen e.g., purified from EGFR-expressing LNCaP cells
  • mice can also be immunized with cells expressing EGFR, e.g., a tumor cell line, to promote immune responses.
  • Cumulative experience with various antigens has shown that the HuMAb transgenic mice respond best when initially immunized intraperitoneally (IP) with antigen in complete Freund's adjuvant, followed by every other week i.p.
  • mice can be immunized for each antigen. For example, a total of twelve HuMAb mice of the HC07 and HC012 strains can be immunized.
  • mice splenocytes can be isolated and fused with PEG to a mouse myeloma cell line based upon standard protocols.
  • the resulting hybridomas are then screened for the production of antigen-specific antibodies. For example, single cell suspensions of splenic lymphocytes from immunized mice are fused to one-sixth the number of P3X63-Ag8.653 nonsecreting mouse myeloma cells (ATCC, CRL 1580) with 50% PEG.
  • Cells are plated at approximately 2 x 10 5 in flat bottom microtiter plate, followed by a two week incubation in selective medium containing 20% fetal Clone Serum, 18% "653" conditioned media, 5% origen (IGEN), 4 mM L-glutamine, 1 mM L-glutamine, 1 mM sodium pyruvate, 5mM HEPES, 0.055 mM 2-mercaptoethanol, 50 units/ml penicillin, 50 mg/ml streptomycin, 50 mg/ml gentamycin and IX HAT (Sigma; the HAT is added 24 hours after the fusion). After two weeks, cells are cultured in medium in which the HAT is replaced with HT.
  • selective medium containing 20% fetal Clone Serum, 18% "653" conditioned media, 5% origen (IGEN), 4 mM L-glutamine, 1 mM L-glutamine, 1 mM sodium pyruvate, 5mM HEPES, 0.05
  • Human antibodies of the invention can also be produced in a host cell transfectoma using, for example, a combination of recombinant DNA techniques and gene transfection methods as is well known in the art (Morrison, S. (1985) Science 229:1202).
  • the gene(s) of interest e.g., human antibody genes
  • the gene(s) of interest can be ligated into an expression vector such as a eukaryotic cell plasmid.
  • the plasmid can then be introduced into a host cell, such as a bacterial cell (e.g., E. coli) and the cell can be grown.
  • the host cell containing the plasmid with integrated DNA can be selected and treated with lysozyme to remove the cell walls.
  • the resulting spheroplasts can be fused with immortalized cells, such as myeloma cells (referred to as "transfection"). After fusion, the stable cells (transfectants) can be identified and selected. These cells represent the transfectomas which can then be amplified by growing them as ascites or in tissue culture and used to produce recombinant human antibodies.
  • immortalized cells such as myeloma cells
  • Such framework sequences can be obtained from public DNA databases that include germline antibody gene sequences. These germline sequences will differ from mature antibody gene sequences because they will not include completely assembled variable genes, which are formed by V(D)J joining during B cell maturation. Germline gene sequences will also differ from the sequences of a high affinity secondary repertoire antibody at individual evenly across the variable region. For example, somatic mutations are relatively infrequent in the amino-terminal portion of framework region.
  • somatic mutations are relatively infrequent in the amino terminal portion of framework region 1 and in the carboxy -terminal portion of framework region 4. Furthermore, many somatic mutations do not significantly alter the binding properties of the antibody. For this reason, it is not necessary to obtain the entire DNA sequence of a particular antibody in order to recreate an intact recombinant antibody having binding properties similar to those of the original antibody (see PCT/US99/05535 filed on March 12, 1999, which is herein incorporated by referenced for all purposes). Partial heavy and light chain sequence spanning the CDR regions is typically sufficient for this purpose. The partial sequence is used to determine which germline variable and joining gene segments contributed to the recombined antibody variable genes. The germline sequence is then used to fill in missing portions of the variable regions.
  • Heavy and light chain leader sequences are cleaved during protein maturation and do not contribute to the properties of the final antibody. For this reason, it is necessary to use the corresponding germline leader sequence for expression constructs.
  • cloned cDNA sequences cab be combined with synthetic oligonucleotides by ligation or
  • variable region can be synthesized as a set of short, overlapping, oligonucleotides and combined by PCR amplification to create an entirely synthetic variable region clone. This process has certain advantages such as elimination or inclusion or particular restriction sites, or optimization of particular codons.
  • the nucleotide sequences of heavy and light chain transcripts from a hybridomas are used to design an overlapping set of synthetic oligonucleotides to create synthetic V sequences with identical amino acid coding capacities as the natural sequences.
  • the synthetic heavy and kappa chain sequences can differ from the natural sequences in three ways: strings of repeated nucleotide bases are interrupted to facilitate oligonucleotide synthesis and PCR amplification; optimal translation initiation sites are incorporated according to Kozak's rules (Kozak, 1991, J. Biol.
  • the optimized coding, and corresponding non-coding, strand sequences are broken down into 30 - 50 nucleotide approximately the midpoint of the corresponding non-coding oligonucleotide.
  • the oligonucleotides can be assemble into overlapping double stranded sets that span segments of 150 - 400 nucleotides. The pools are then used as templates to produce PCR amplification products of 150 -
  • variable region oligonucleotide set will be broken down into two pools which are separately amplified to generate two overlapping PCV products. These overlapping products are then combined by PCT amplification to form the complete variable region. It may also be desirable to include an overlapping fragment of the heavy or light chain constant region (including the Bbsl site of the kappa light chain, or the Agel site if the gamma heavy chain) in the PCR amplification to generate fragments that can easily be cloned into the expression vector constructs.
  • the heavy or light chain constant region including the Bbsl site of the kappa light chain, or the Agel site if the gamma heavy chain
  • the reconstructed heavy and light chain variable regions are then combined with cloned promoter, translation initiation, constant region, 3' untranslated, polyadenylation, and transcription termination, sequences to form expression vector constructs.
  • the heavy and light chain expression constructs can be combined into a single vector, co-transfected, serially transfected, or separately transfected into host cells which are then fused to form a host cell expressing both chains.
  • Plasmids for use in construction of expression vectors for human IgG ⁇ are described below.
  • the plasmids were constructed so that PCR amplified V heavy and V kappa light chain cDNA sequences could be used to reconstruct complete heavy and light chain minigenes.
  • These plasmids can be used to express completely human, or chimeric IgGiK or IgG ⁇ antibodies. Similar plasmids can be constructed for expression of other heavy chain isotypes, or for expression of antibodies comprising lambda light chains.
  • an human anti-EGFR antibodies of the invention e.g., 2F8
  • structurally related human anti-EGFR antibodies that retain at least one functional property of the antibodies of the invention, such as binding to EGFR.
  • one or more CDR regions of 2F8 can be combined recombinantly with known human framework regions and CDRs to create additional, recombinantly-engineered, human anti-EGFR antibodies of the invention.
  • the invention provides a method for preparing an anti-EGFR antibody comprising: preparing an antibody comprising (1) human heavy chain framework regions and human heavy chain CDRs, wherein at least one of the human heavy chain CDRs comprises an amino acid sequence selected from the amino acid sequences of CDRs shown in Figure 15 (or corresponding amino acid residues in SEQ ID NO: 2); and (2) human light chain framework regions and human light chain CDRs, wherein at least one of the human light chain CDRs comprises an amino acid sequence selected from the amino acid sequences of CDRs shown in Figure 15 (or corresponding amino acid residues in SEQ ID NO: 4); wherein the antibody retains the ability to bind to EGFR.
  • the ability of the antibody to bind EGFR can be determined using standard binding assays, such as those set forth in the Examples (e.g., an ELISA). Since it is well known in the art that antibody heavy and light chain CDR3 domains play a particularly important role in the binding specificity /affinity of an antibody for an antigen, the recombinant antibodies of the invention prepared as set forth above preferably comprise the heavy and light chain CDR3s of 2F8. The antibodies further can comprise the CDR2s of 2F8. The antibodies further can comprise the CDRls of 2F8.
  • the invention further provides anti-EGFR antibodies comprising: (1) human heavy chain framework regions, a human heavy chain CDR1 region, a human heavy chain CDR2 region, and a human heavy chain CDR3 region, wherein the human heavy chain CDR3 region is the CDR3 of 2F8 as shown in Figure 15 (or corresponding amino acid residues in SEQ ID NO: 2); and (2) human light chain framework regions, a human light chain CDR1 region, a human light chain CDR2 region, and a human light chain CDR3 region, wherein the human light chain CDR3 region is the CDR3 of 2F8 as shown in Figure 15 (or corresponding amino acid residues in SEQ ID NO: 4), wherein the antibody binds EGFR.
  • the antibody may further comprise the heavy chain CDR2 and/or the light chain CDR2 of 2F8.
  • the antibody may further comprise the heavy chain CDR1 and/or the light chain CDR1 of 2F8.
  • the CDR1, 2, and/or 3 of the engineered antibodies described above comprise the exact amino acid sequence(s) as those of 2F8 disclosed herein.
  • the engineered antibody may be composed of one or more CDRs that are, for example, 90%, 95%, 98% or 99.5% identical to one or more CDRs of 2F8.
  • engineered antibodies such as those described above may be selected for their retention of other functional properties of antibodies of the invention, such as: (1) binding to live cells expressing EGFR;
  • sera from immunized mice can be tested, for example, by ELISA. Briefly, microtiter plates are coated with purified EGFR at 0.25 ⁇ g/ml in PBS, and then blocked with 5% bovine serum albumin in PBS. Dilutions of plasma from EGFR-immunized mice are added to each well and incubated for 1-2 hours at 37°C. The plates are washed with PBS/Tween and then incubated with a goat-anti-human IgG Fc-specific polyclonal reagent conjugated to alkaline phosphatase for 1 hour at 37°C.
  • mice which develop the highest titers will be used for fusions.
  • An ELISA assay as described above can also be used to screen for hybridomas that show positive reactivity with EGFR immunogen. Hybridomas that bind with high avidity to EGFR will be subcloned and further characterized. One clone from each hybridoma, which retains the reactivity of the parent cells (by ELISA), can be chosen for making a 5-10 vial cell bank stored at -140 °C, and for antibody purification.
  • selected hybridomas can be grown in two-liter spinner-flasks for monoclonal antibody purification.
  • Supernatants can be filtered and concentrated before affinity chromatography with protein A- sepharose (Pharmacia, Piscataway, NJ).
  • Eluted IgG can be checked by gel electrophoresis and high performance liquid chromatography to ensure purity.
  • the buffer solution can be exchanged into PBS, and the concentration can be determined by OD 80 using 1.43 extinction coefficient.
  • the monoclonal antibodies can be aliquoted and stored at -80 °C.
  • each antibody can be biotinylated using commercially available reagents (Pierce, Rockford, IL). Competition studies using unlabeled monoclonal antibodies and biotinylated monoclonal antibodies can be performed using EGFR coated-ELISA plates as described above. Biotinylated MAb binding can be detected with a strep-avidin-alkaline phosphatase probe.
  • isotype ELISAs can be performed. Wells of microtiter plates can be coated with 10 ⁇ g/ml of anti-human Ig overnight at 4°C. After blocking with 5% BSA, the plates are reacted with 10 ⁇ g/ml of monoclonal antibodies or purified isotype controls, at ambient temperature for two hours. The wells can then be reacted with either human IgGl or human IgM-specific alkaline phosphatase-conjugated probes. Plates are developed and analyzed as described above.
  • flow cytometry can be used. Briefly, cell lines expressing EGFR (grown under standard growth conditions) are mixed with various concentrations of monoclonal antibodies in PBS containing 0.1% Tween 80 and 20% mouse serum, and incubated at 37°C for 1 hour. After washing, the cells are reacted with Fluorescein- labeled anti-human IgG antibody under the same conditions as the primary antibody staining. The samples can be analyzed by FACScan instrument using light and side scatter properties to gate on single cells. An alternative assay using fluorescence microscopy may be used (in addition to or instead of) the flow cytometry assay. Cells can be stained exactly as described above and examined by fluorescence microscopy. This method allows visualization of individual cells, but may have diminished sensitivity depending on the density of the antigen.
  • Anti-EGFR human IgGs can be further tested for reactivity with EGFR antigen by Western blotting. Briefly, cell extracts from cells expressing EGFR can be prepared and subjected to sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. After electrophoresis, the separated antigens will be transferred to nitrocellulose membranes, blocked with 20% mouse serum, and probed with the monoclonal antibodies to be tested. Human IgG binding can be detected using anti-human IgG alkaline phosphatase and developed with BCIP/NBT substrate tablets (Sigma Chem. Co., St. Louis, MO). Phagocytic and Cell Killing Activities of Human Monoclonal Antibodies to EGFR
  • human monoclonal anti- EGFR antibodies can be tested for their ability to mediate phagocytosis and killing of cells expressing EGFR.
  • the testing of monoclonal antibody activity in vitro will provide an initial screening prior to testing in vivo models. Briefly, polymorphonuclear cells (PMN), or other effector cells, from healthy donors can be purified by Ficoll Hypaque density centrifugation, followed by lysis of contaminating erythrocytes.
  • PMN polymorphonuclear cells
  • Washed PMNs can be suspended in RPMI supplemented with 10% heat-inactivated fetal calf serum and mixed with Cr labeled cells expressing EGFR, at various ratios of effector cells to tumor cells (-effector cells:tumor cells).
  • Purified human anti-EGFR IgGs can then be added at various concentrations. Irrelevant human IgG can be used as negative control.
  • Assays can be carried out for 0-120 minutes at 37°C. Samples can be assayed for cytolysis by measuring 51 Cr release into the culture supernatant. Anti-EGFR monoclonal can also be tested in combinations with each other to determine whether cytolysis is enhanced with multiple monoclonal antibodies.
  • Human monoclonal antibodies which bind to EGFR also can be tested in an in vivo model (e.g., in mice) to determine their efficacy in mediating phagocytosis and killing of cells expressing EGFR, e.g., tumor cells. These antibodies can be selected, for example, based on the following criteria, which are not intended to be exclusive:
  • human monoclonal antibodies of the invention meet one or more, and preferably all, of these criteria.
  • the human monoclonal antibodies are used in combination, e.g., as a pharmaceutical composition comprising two or more anti-EGFR monoclonal antibodies or fragments thereof.
  • human anti-EGFR monoclonal antibodies having different, but complementary activities can be combined in a single therapy to achieve a desired therapeutic or diagnostic effect.
  • the invention provides transgenic non-human animals, e.g., a transgenic mice, which are capable of expressing human monoclonal antibodies that specifically bind to EGFR, preferably with high affinity.
  • the transgenic non-human animals e.g., the transgenic mice (HuMAb mice)
  • the transgenic non-human animals have a genome comprising a human heavy chain transgene and a light chain transgene.
  • the transgenic non-human animals, e.g., the transgenic mice have been immunized with a purified or enriched preparation of EGFR antigen and/or cells expressing EGFR.
  • the transgenic non-human animals e.g., the transgenic mice
  • the transgenic non-human animals are capable of producing multiple isotypes of human monoclonal antibodies to EGFR (e.g., IgG, IgA and/or IgE) by undergoing V-D-J recombination and isotype switching.
  • Isotype switching may occur by, e.g., classical or non-classical isotype switching.
  • transgenic non-human animal that responds to foreign antigen stimulation with a heterologous antibody repertoire, requires that the heterologous immunoglobulin transgenes contain within the transgenic animal function correctly throughout the pathway of B-cell development.
  • correct function of a heterologous heavy chain transgene includes isotype switching.
  • the transgenes of the invention are constructed so as to produce isotype switching and one or more of the following: (1) high level and cell-type specific expression, (2) functional gene rearrangement, (3) activation of and response to allelic exclusion, (4) expression of a sufficient primary repertoire, (5) signal transduction, (6) somatic hypermutation, and (7) domination of the transgene antibody locus during the immune response.
  • the transgene need not activate allelic exclusion.
  • the transgene comprises a functionally rearranged heavy and/or light chain immunoglobulin gene
  • the second criteria of functional gene rearrangement is unnecessary, at least for that transgene which is already rearranged.
  • the transgenic non-human animals used to generate the human monoclonal antibodies of the invention contain rearranged, unrearranged or a combination of rearranged and unrearranged heterologous immunoglobulin heavy and light chain transgenes in the germline of the transgenic animal.
  • Each of the heavy chain transgenes comprises at least one C H gene.
  • the heavy chain transgene may contain functional isotype switch sequences, which are capable of supporting isotype switching of a heterologous transgene encoding multiple C H genes in the B-cells of the transgenic animal.
  • Such switch sequences may be those which occur naturally in the germline immunoglobulin locus from the species that serves as the source of the transgene C H genes, or such switch sequences may be derived from those which occur in the species that is to receive the transgene construct (the transgenic animal).
  • a human transgene construct that is used to produce a transgenic mouse may produce a higher frequency of isotype switching events if it incorporates switch sequences similar to those that occur naturally in the mouse heavy chain locus, as presumably the mouse switch sequences are optimized to function with the mouse switch recombinase enzyme system, whereas the human switch sequences are not.
  • Switch sequences may be isolated and cloned by conventional cloning methods, or may be synthesized de novo from overlapping synthetic oligonucleotides designed on the basis of published sequence information relating to immunoglobulin switch region sequences (Mills et al., Nucl Acids Res. 15:7305-7316 (1991); Sideras et al., Intl. Immunol. 1 :631-642 (1989), which are incorporated herein by reference).
  • functionally rearranged heterologous heavy and light chain immunoglobulin transgenes are found in a significant fraction of the B-cells of the transgenic animal (at least 10 percent).
  • the transgenes used to generate the transgenic animals of the invention include a heavy chain transgene comprising DNA encoding at least one variable gene segment, one diversity gene segment, one joining gene segment and at least one constant region gene segment.
  • the immunoglobulin light chain transgene comprises DNA encoding at least one variable gene segment, one joining gene segment and at least one constant region gene segment.
  • the gene segments encoding the light and heavy chain gene segments are heterologous to the transgenic non-human animal in that they are derived from, or correspond to, DNA encoding immunoglobulin heavy and light chain gene segments from a species not consisting of the transgenic non-human animal.
  • the transgene is constructed such that the individual gene segments are unrearranged, i.e., not rearranged so as to encode a functional immunoglobulin light or heavy chain.
  • Such unrearranged transgenes support recombination of the V, D, and J gene segments (functional rearrangement) and preferably support incorporation of all or a portion of a D region gene segment in the resultant rearranged immunoglobulin heavy chain within the transgenic non-human animal when exposed to EGFR antigen.
  • the transgenes comprise an unrearranged "mini-locus." Such transgenes typically comprise a substantial portion of the C, D, and J segments as well as a subset of the V gene segments.
  • the various regulatory sequences e.g. promoters, enhancers, class switch regions, splice- donor and splice-acceptor sequences for RNA processing, recombination signals and the like, comprise corresponding sequences derived from the heterologous DNA.
  • Such regulatory sequences may be incorporated into the transgene from the same or a related species of the non-human animal used in the invention.
  • human immunoglobulin gene segments may be combined in a transgene with a rodent immunoglobulin enhancer sequence for use in a transgenic mouse.
  • synthetic regulatory sequences may be incorporated into the transgene, wherein such synthetic regulatory sequences are not homologous to a functional DNA sequence that is known to occur naturally in the genomes of mammals.
  • Synthetic regulatory sequences are designed according to consensus rules, such as, for example, those specifying the permissible sequences of a splice-acceptor site or a promoter/enhancer motif
  • a minilocus comprises a portion of the genomic immunoglobulin locus having at least one internal (i.e., not at a terminus of the portion) deletion of a non-essential DNA portion (e.g., intervening sequence; intron or portion thereof) as compared to the naturally-occurring germline Ig locus.
  • the transgenic animal used to generate human antibodies to EGFR contains at least one, typically 2-10, and sometimes 25-50 or more copies of the transgene described in Example 12 of WO 98/24884 (e.g., pHC 1 or pHC2) bred with an animal containing a single copy of a light chain transgene described in Examples 5, 6, 8, or 14 of WO 98/24884, and the offspring bred with the Jn deleted animal described in Example 10 of WO 98/24884, the contents of which are hereby expressly incorporated by reference. Animals are bred to homozygosity for each of these three traits.
  • WO 98/24884 e.g., pHC 1 or pHC2
  • Such animals have the following genotype: a single copy (per haploid set of chromosomes) of a human heavy chain unrearranged mini-locus (described in Example 12 of WO 98/24884), a single copy (per haploid set of chromosomes) of a rearranged human K light chain construct (described in Example 14 of WO 98/24884), and a deletion at each endogenous mouse heavy chain locus that removes all of the functional J H segments (described in Example 10 of WO 98/24884).
  • Such animals are bred with mice that are homozygous for the deletion of the J H segments (Examples 10 of WO 98/24884) to produce offspring that are homozygous for the J H deletion and hemizygous for the human heavy and light chain constructs.
  • the resultant animals are injected with antigens and used for production of human monoclonal antibodies against these antigens.
  • B cells isolated from such an animal are monospecific with regard to the human heavy and light chains because they contain only a single copy of each gene. Furthermore, they will be monospecific with regards to human or mouse heavy chains because both endogenous mouse heavy chain gene copies are nonfunctional by virtue of the deletion spanning the J H region introduced as described in Example 9 and 12 of WO 98/24884. Furthermore, a substantial fraction of the B cells will be monospecific with regards to the human or mouse light chains because expression of the single copy of the rearranged human K light chain gene will allelically and isotypically exclude the rearrangement of the endogenous mouse K and lambda chain genes in a significant fraction of B-cells.
  • the transgenic mouse of the preferred embodiment will exhibit immunoglobulin production with a significant repertoire, ideally substantially similar to that of a native mouse.
  • the total immunoglobulin levels will range from about 0.1 to 10 mg/ml of serum, preferably 0.5 to 5 mg/ml, ideally at least about 1.0 mg/ml.
  • the adult mouse ratio of serum IgG to IgM is preferably about 10:1. The IgG to IgM ratio will be much lower in the immature mouse.
  • the repertoire will ideally approximate that shown in a non-transgenic mouse, usually at least about 10% as high, preferably 25 to 50% or more.
  • at least about a thousand different immunoglobulins ideally IgG
  • 10 to 10 6 or more will be produced, depending primarily on the number of different V, J and D regions introduced into the mouse genome.
  • These immunoglobulins will typically recognize about one-half or more of highly antigenic proteins, e.g., staphylococcus protein A.
  • the immunoglobulins will exhibit an affinity for preselected antigens of at least about 10 7 M " ', preferably at least about 10 9 M _1 , more preferably at least about 10 10 M “ ',10 1 I M “1 , 10 12 M “ ', or greater, e.g., up tol0 13 M " ' or greater.
  • a heavy chain transgene having a predetermined repertoire may comprise, for example, human VH genes which are preferentially used in antibody responses to the predetermined antigen type in humans.
  • some VH genes may be excluded from a defined repertoire for various reasons (e.g., have a low likelihood of encoding high affinity V regions for the predetermined antigen; have a low propensity to undergo somatic mutation and affinity sharpening; or are immunogenic to certain humans).
  • a transgene containing various heavy or light chain gene segments such gene segments may be readily identified, e.g. by hybridization or DNA sequencing, as being from a species of organism other than the transgenic animal.
  • the transgenic mice of the present invention can be immunized with a purified or enriched preparation of EGFR antigen and/or cells expressing EGFR as described previously.
  • the mice will produce B cells which undergo class-switching via intratransgene switch recombination (cis-switching) and express immunoglobulins reactive with EGFR.
  • the immunoglobulins can be human sequence antibodies, wherein the heavy and light chain polypeptides are encoded by human transgene sequences, which may include sequences derived by somatic mutation and V region recombinatorial joints, as well as germline-encoded sequences; these human sequence immunoglobulins can be referred to as being substantially identical to a polypeptide sequence encoded by a human V or V H gene segment and a human J L or J L segment, even though other non-germline sequences may be present as a result of somatic mutation and differential V-J and V-D-J recombination joints.
  • variable regions of each chain are typically at least 80 percent encoded by human germline V, J, and, in the case of heavy chains, D, gene segments; frequently at least 85 percent of the variable regions are encoded by human germline sequences present on the transgene; often 90 or 95 percent or more of the variable region sequences are encoded by human germline sequences present on the transgene.
  • non-germline sequences are introduced by somatic mutation and VJ and VDJ joining
  • the human sequence antibodies will frequently have some variable region sequences (and less frequently constant region sequences) which are not encoded by human V, D, or J gene segments as found in the human transgene(s) in the germline of the mice.
  • non-germline sequences or individual nucleotide positions
  • the human sequence antibodies which bind to the predetermined antigen can result from isotype switching, such that human antibodies comprising a human sequence ⁇ chain (such as ⁇ l, ⁇ 2a, ⁇ 2B, or ⁇ 3) and a human sequence light chain (such as K) are produced.
  • Such isotype-switched human sequence antibodies often contain one or more somatic mutation(s), typically in the variable region and often in or within about 10 residues of a CDR) as a result of affinity maturation and selection of B cells by antigen, particularly subsequent to secondary (or subsequent) antigen challenge.
  • These high affinity human sequence antibodies may have binding affinities of at least 1 x 10 M “1 , typically at least 5 x 10 9 M “1 , frequently more than 1 x 10 M “1 , and sometimes 5 x 10 10 M “1 to 1 x 10" M “1 or greater.
  • Another aspect of the invention pertains to the B cells from such mice which can be used to generate hybridomas expressing human monoclonal antibodies which bind with high affinity (e.g., greater than 2 x 10 9 M "1 ) to EGFR.
  • these hybridomas are used to generate a composition comprising an immunoglobulin having an affinity constant (K A ) of at least 2 x 10 9 M "1 for binding EGFR, wherein said immunoglobulin comprises: a human sequence light chain composed of (1) a light chain variable region having a polypeptide sequence which is substantially identical to a polypeptide sequence encoded by a human V L gene segment and a human J L segment, and (2) a light chain constant region having a polypeptide sequence which is substantially identical to a polypeptide sequence encoded by a human C L gene segment; and a human sequence heavy chain composed of a (1) a heavy chain variable region having a polypeptide sequence which is substantially identical to a polypeptide sequence encoded by a human V H gene
  • V region transgene is a yeast artificial chromosome comprising a portion of a human V H or V L (V K ) gene segment array, as may naturally occur in a human genome or as may be spliced together separately by recombinant methods, which may include out-of-order or omitted V gene segments.
  • V gene segments are contained on the YAC.
  • the V repertoire expansion method wherein the mouse expresses an immunoglobulin chain comprising a variable region sequence encoded by a V region gene segment present on the V region transgene and a C region encoded on the human Ig transgene.
  • V repertoire expansion method transgenic mice having at least 5 distinct V genes can be generated; as can mice containing at least about 24 V genes or more.
  • Some V gene segments may be non-functional (e.g., pseudogenes and the like); these segments may be retained or may be selectively deleted by recombinant methods available to the skilled artisan, if desired.
  • the trait can be propagated and bred into other genetic backgrounds, including backgrounds where the functional YAC having an expanded V segment repertoire is bred into a mouse germline having a different human Ig transgene.
  • Multiple functional YACs having an expanded V segment repertoire may be bred into a germline to work with a human Ig transgene (or multiple human Ig transgenes).
  • YAC transgenes when integrated into the genome may substantially lack yeast sequences, such as sequences required for autonomous replication in yeast; such sequences may optionally be removed by genetic engineering (e.g., restriction digestion and pulsed-field gel electrophoresis or other suitable method) after replication in yeast in no longer necessary (i.e., prior to introduction into a mouse ES cell or mouse prozygote).
  • Methods of propagating the trait of human sequence immunoglobulin expression include breeding a transgenic mouse having the human Ig transgene(s), and optionally also having a functional YAC having an expanded V segment repertoire. Both V H and V L gene segments may be present on the YAC.
  • the transgenic mouse may be bred into any background desired by the practitioner, including backgrounds harboring other human transgenes, including human Ig transgenes and/or transgenes encoding other human lymphocyte proteins.
  • the invention also provides a high affinity human sequence immunoglobulin produced by a transgenic mouse having an expanded V region repertoire YAC transgene.
  • transgenic animal Of these categories of transgenic animal, the preferred order of preference is as follows II > I > III > IV where the endogenous light chain genes (or at least the K gene) have been knocked out by homologous recombination (or other method) and I > II > III >IV where the endogenous light chain genes have not been knocked out and must be dominated by allelic exclusion.
  • human monoclonal antibodies to EGFR, or antigen-binding portions thereof can be derivatized or linked to another functional molecule, e.g., another peptide or protein (e.g., an Fab' fragment) to generate a bispecific or multispecific molecule which binds to multiple binding sites or target epitopes.
  • another functional molecule e.g., another peptide or protein (e.g., an Fab' fragment) to generate a bispecific or multispecific molecule which binds to multiple binding sites or target epitopes.
  • an antibody or antigen-binding portion of the invention can be functionally linked (e.g., by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other binding molecules, such as another antibody, antibody fragment, peptide or binding mimetic.
  • the present invention includes bispecific and multispecific molecules comprising at least one first binding specificity for EGFR and a second binding specificity for a second target epitope.
  • the second target epitope is an Fc receptor, e.g., human Fc ⁇ RI (CD64) or a human Fc ⁇ receptor (CD89). Therefore, the invention includes bispecific and multispecific molecules capable of binding both to Fc ⁇ R, Fc ⁇ R or Fc ⁇ R expressing effector cells (e.g., monocytes, macrophages or polymo ⁇ honuclear cells (PMNs)), and to target cells expressing EGFR.
  • effector cells e.g., monocytes, macrophages or polymo ⁇ honuclear cells (PMNs)
  • bispecific and multispecific molecules target EGFR expressing cells to effector cell and, like the human monoclonal antibodies of the invention, trigger Fc receptor-mediated effector cell activities, such as phagocytosis of a EGFR expressing cells, antibody dependent cell-mediated cytotoxicity (ADCC), cytokine release, or generation of superoxide anion.
  • Fc receptor-mediated effector cell activities such as phagocytosis of a EGFR expressing cells, antibody dependent cell-mediated cytotoxicity (ADCC), cytokine release, or generation of superoxide anion.
  • Bispecific and multispecific molecules of the invention can further include a third binding specificity, in addition to an anti-Fc binding specificity and an anti-EGFR binding specificity.
  • the third binding specificity is an anti-enhancement factor (EF) portion, e.g., a molecule which binds to a surface protein involved in cytotoxic activity and thereby increases the immune response against the target cell.
  • EF anti-enhancement factor
  • the "anti-enhancement factor portion” can be an antibody, functional antibody fragment or a ligand that binds to a given molecule, e.g., an antigen or a receptor, and thereby results in an enhancement of the effect of the binding determinants for the F c receptor or target cell antigen.
  • the "anti-enhancement factor portion” can bind an F c receptor or a target cell antigen.
  • the anti-enhancement factor portion can bind to an entity that is different from the entity to which the first and second binding specificities bind.
  • the anti-enhancement factor portion can bind a cytotoxic T-cell (e.g. via CD2, CD3, CD8, CD28, CD4, CD40, ICAM-1 or other immune cell that results in an increased immune response against the target cell).
  • the bispecific and multispecific molecules of the invention comprise as a binding specificity at least one antibody, or an antibody fragment thereof, including, e.g., an Fab, Fab', F(ab')2, Fv, or a single chain Fv.
  • the antibody may also be a light chain or heavy chain dimer, or any minimal fragment thereof such as a Fv or a single chain construct as described in Ladner et al. U.S. Patent No. 4,946,778, issued August 7, 1990, the contents of which is expressly inco ⁇ orated by reference.
  • bispecific and multispecific molecules of the invention comprise a binding specificity for an Fc ⁇ R or an Fc ⁇ R present on the surface of an effector cell, and a second binding specificity for a target cell antigen, e.g., EGFR.
  • the binding specificity for an Fc receptor is provided by a human monoclonal antibody, the binding of which is not blocked by human immunoglobulin G (IgG).
  • IgG receptor refers to any of the eight ⁇ -chain genes located on chromosome 1.
  • Fc ⁇ RI CD64
  • Fc ⁇ RII CD32
  • Fc ⁇ RIII CD 16
  • the Fc ⁇ receptor a human high affinity Fc ⁇ RI.
  • the human Fc ⁇ RI is a 72 kDa molecule, which shows high affinity for monomeric IgG (10 8 - lO'M 1 ).
  • the anti-Fc ⁇ receptor antibody is a humanized form of monoclonal antibody 22 (H22).
  • H22 monoclonal antibody 22
  • the production and characterization of the H22 antibody is described in Graziano, R.F. et al. (1995) J. Immunol 155 (10): 4996-5002 and PCT/US93/ 10384.
  • the H22 antibody producing cell line was deposited at the American Type Culture Collection on November 4, 1992 under the designation HA022CL1 and has the accession no. CRL 11177.
  • the binding specificity for an Fc receptor is provided by an antibody that binds to a human IgA receptor, e.g., an Fc-alpha receptor (Fc ⁇ RI (CD89)), the binding of which is preferably not blocked by human immunoglobulin A (IgA).
  • IgA receptor is intended to include the gene product of one ⁇ -gene (Fc ⁇ RI) located on chromosome 19. This gene is known to encode several alternatively spliced transmembrane isoforms of 55 to 1 10 kDa.
  • Fc ⁇ RI (CD89) is constitutively expressed on monocytes/macrophages, eosinophilic and neutrophilic granulocytes, but not on non-effector cell populations.
  • Fc ⁇ RI has medium affinity (« 5 ⁇ 10 7 M- 1 ) for both IgAl and IgA2, which is increased upon exposure to cytokines such as G-CSF or GM-CSF (Morton, H.C. et al. (1996) Critical Reviews in Immunology 16:423-440).
  • F ur Fc ⁇ RI-specific monoclonal antibodies identified as A3, A59, A62 and A77, which bind Fc ⁇ RI outside the IgA ligand binding domain, have been described (Monteiro, R.C. et al, 1992, J. Immunol. 148:1764).
  • Fc ⁇ RI and Fc ⁇ RI are preferred trigger receptors for use in the invention because they are (1) expressed primarily on immune effector cells, e.g., monocytes, PMNs, macrophages and dendritic cells; (2) expressed at high levels (e.g., 5,000-
  • mediators of cytotoxic activities e.g., ADCC, phagocytosis
  • mediators of cytotoxic activities e.g., ADCC, phagocytosis
  • bispecific and multispecific molecules of the invention further comprise a binding specificity which recognizes, e.g., binds to, a target cell antigen, e.g., EGFR.
  • a binding specificity which recognizes, e.g., binds to, a target cell antigen, e.g., EGFR.
  • the binding specificity is provided by a human monoclonal antibody of the present invention.
  • effector cell specific antibody refers to an antibody or functional antibody fragment that binds the Fc receptor of effector cells.
  • Preferred antibodies for use in the subject invention bind the Fc receptor of effector cells at a site which is not bound by endogenous immunoglobulin.
  • effector cell refers to an immune cell which is involved in the effector phase of an immune response, as opposed to the cognitive and activation phases of an immune response.
  • exemplary immune cells include a cell of a myeloid or lymphoid origin, e.g., lymphocytes (e.g., B cells and T cells including cytolytic T cells (CTLs)), killer cells, natural killer cells, macrophages, monocytes, eosinophils, neutrophils, polymo ⁇ honuclear cells, granulocytes, mast cells, and basophils.
  • lymphocytes e.g., B cells and T cells including cytolytic T cells (CTLs)
  • killer cells e.g., natural killer cells, macrophages, monocytes, eosinophils, neutrophils, polymo ⁇ honuclear cells, granulocytes, mast cells, and basophils.
  • an effector cell is capable of inducing antibody-dependent cell-mediated cytotoxicity (ADCC), e.g., a neutrophil capable of inducing ADCC.
  • ADCC antibody-dependent cell-mediated cytotoxicity
  • monocytes, macrophages, which express FcR are involved in specific killing of target cells and presenting antigens to other components of the immune system, or binding to cells that present antigens.
  • an effector cell can phagocytose a target antigen, target cell, or microorganism.
  • the expression of a particular FcR on an effector cell can be regulated by humoral factors such as cytokines.
  • Fc ⁇ RI has been found to be up-regulated by interferon gamma (IFN- ⁇ ). This enhanced expression increases the cytotoxic activity of Fc ⁇ RI-bearing cells against targets.
  • An effector cell can phagocytose or lyse a target antigen or a target cell.
  • Target cell shall mean any undesirable cell in a subject (e.g., a human or animal) that can be targeted by a composition (e.g., a human monoclonal antibody, a bispecific or a multispecific molecule) of the invention.
  • the target cell is a cell expressing or overexpressing EGFR.
  • Cells expressing EGFR typically include tumor cells, such as bladder, breast, colon, kidney, ovarian, prostate, renal cell, squamous cell, lung (non-small cell), and head and neck tumor cells.
  • Other EGFR-expressing cells include synovial fibroblast cells and keratinocytes which can be used as targets in the treatment of arthritis and psoriasis, respectively.
  • human monoclonal antibodies are preferred, other antibodies which can be employed in the bispecific or multispecific molecules of the invention are murine, chimeric and humanized monoclonal antibodies.
  • Chimeric mouse-human monoclonal antibodies can be produced by recombinant DNA techniques known in the art. For example, a gene encoding the Fc constant region of a murine (or other species) monoclonal antibody molecule is digested with restriction enzymes to remove the region encoding the murine Fc, and the equivalent portion of a gene encoding a human Fc constant region is substituted, (see Robinson et al., International Patent Publication PCT/US86/02269; Akira, et al., European Patent Application 184,187; Taniguchi, M., European Patent Application 171,496; Morrison et al., European Patent Application 173,494; Neuberger et al., International Application WO 86/01533; Cabilly et al.
  • the chimeric antibody can be further humanized by replacing sequences of the Fv variable region which are not directly involved in antigen binding with equivalent sequences from human Fv variable regions.
  • General reviews of humanized chimeric antibodies are provided by Morrison, S. L., 1985, Science 229:1202-1207 and by Oi et al, 1986, BioTechniques 4:214. Those methods include isolating, manipulating, and expressing the nucleic acid sequences that encode all or part of immunoglobulin Fv variable regions from at least one of a heavy or light chain. Sources of such nucleic acid are well known to those skilled in the art and, for example, may be obtained from 7E3, an anti-GPIIbIII a antibody producing hybridoma.
  • Suitable humanized antibodies can alternatively be produced by CDR substitution U.S. Patent 5,225,539; Jones et al. 1986 Nature 321 :552- 525; Verhoeyan et al. 1988 Science 239:1534; and Beidler et al. 1988 J. Immunol. 141 :4053-4060. All of the CDRs of a particular human antibody may be replaced with at least a portion of a non-human CDR or only some of the CDRs may be replaced with non-human CDRs. It is only necessary to replace the number of CDRs required for binding of the humanized antibody to the Fc receptor.
  • An antibody can be humanized by any method, which is capable of replacing at least a portion of a CDR of a human antibody with a CDR derived from a non-human antibody.
  • Winter describes a method which may be used to prepare the humanized antibodies of the present invention (UK Patent Application GB 2188638 A, filed on March 26, 1987), the contents of which is expressly inco ⁇ orated by reference.
  • the human CDRs may be replaced with non-human CDRs using oligonucleotide site- directed mutagenesis as described in International Application WO 94/10332 entitled, Humanized Antibodies to Fc Receptors for Immunoglobulin G on Human Mononuclear Phagocytes.
  • chimeric and humanized antibodies in which specific amino acids have been substituted, deleted or added.
  • preferred humanized antibodies have amino acid substitutions in the framework region, such as to improve binding to the antigen.
  • amino acids located in the human framework region can be replaced with the amino acids located at the corresponding positions in the mouse antibody. Such substitutions are known to improve binding of humanized antibodies to the antigen in some instances.
  • Antibodies in which amino acids have been added, deleted, or substituted are referred to herein as modified antibodies or altered antibodies.
  • modified antibody is also intended to include antibodies, such as monoclonal antibodies, chimeric antibodies, and humanized antibodies which have been modified by, e.g., deleting, adding, or substituting portions of the antibody.
  • an antibody can be modified by deleting the constant region and replacing it with a constant region meant to increase half-life, e.g., serum half-life, stability or affinity of the antibody. Any modification is within the scope of the invention so long as the bispecific and multispecific molecule has at least one antigen binding region specific for an Fc ⁇ R and triggers at least one effector function.
  • Bispecific and multispecific molecules of the present invention can be made using chemical techniques (see e.g., D. M. Kranz et al. (1981) Proc. Natl. Acad. Sci. USA 78:5807), "polydoma” techniques (See U.S. Patent 4,474,893, to Reading), or recombinant DNA techniques.
  • bispecific and multispecific molecules of the present invention can be prepared by conjugating the constituent binding specificities, e.g., the anti-FcR and anti-EGFR binding specificities, using methods known in the art and described in the examples provided herein.
  • each binding specificity of the bispecific and multispecific molecule can be generated separately and then conjugated to one another.
  • the binding specificities are proteins or peptides
  • a variety of coupling or cross-linking agents can be used for covalent conjugation.
  • cross-linking agents examples include protein A, carbodiimide, N-succinimidyl-S-acetyl- thioacetate (SAT A), 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), o- phenylenedimaleimide (oPDM), N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP), and sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohaxane-1 -carboxylate (sulfo- SMCC) (see e.g., Ka ⁇ ovsky et al. (1984) J. Exp. Med.
  • Preferred conjugating agents are SATA and sulfo-SMCC, both available from Pierce Chemical Co. (Rockford, IL).
  • the binding specificities are antibodies (e.g., two humanized antibodies), they can be conjugated via sulfhydryl bonding of the C-terminus hinge regions of the two heavy chains.
  • the hinge region is modified to contain an odd number of sulfhydryl residues, preferably one, prior to conjugation.
  • both binding specificities can be encoded in the same vector and expressed and assembled in the same host cell.
  • This method is particularly useful where the bispecific and multispecific molecule is a MAb x MAb, MAb x Fab, Fab x F(ab')2 or ligand x Fab fusion protein.
  • a bispecific and multispecific molecule of the invention e.g., a bispecific molecule can be a single chain molecule, such as a single chain bispecific antibody, a single chain bispecific molecule comprising one single chain antibody and a binding determinant, or a single chain bispecific molecule comprising two binding determinants.
  • Bispecific and multispecific molecules can also be single chain molecules or may comprise at least two single chain molecules.
  • Binding of the bispecific and multispecific molecules to their specific targets can be confirmed by enzyme-linked immunosorbent assay (ELISA), a radioimmunoassay (RIA), FACS analysis, a bioassay (e.g., growth inhibition), or a Western Blot Assay.
  • ELISA enzyme-linked immunosorbent assay
  • RIA radioimmunoassay
  • FACS analysis e.g., FACS analysis
  • bioassay e.g., growth inhibition
  • Western Blot Assay e.g., Western Blot Assay.
  • Each of these assays generally detects the presence of protein- antibody complexes of particular interest by employing a labeled reagent (e.g., an antibody) specific for the complex of interest.
  • the FcR-antibody complexes can be detected using e.g., an enzyme-linked antibody or antibody fragment which recognizes and specifically binds to the antibody-FcR complexes.
  • the complexes can be detected using any of a variety of other immunoassays.
  • the antibody can be radioactively labeled and used in a radioimmunoassay (RIA) (see, for example, Weintraub, B., Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, March, 1986, which is inco ⁇ orated by reference herein).
  • the radioactive isotope can be detected by such means as the use of a ⁇ counter or a scintillation counter or by autoradiography.
  • the present invention features a human anti-EGFR monoclonal antibody, or a fragment thereof, conjugated to a therapeutic moiety, such as a cytotoxin, a drug or a radioisotope.
  • a therapeutic moiety such as a cytotoxin, a drug or a radioisotope.
  • cytotoxin conjugated to a cytotoxin
  • these antibody conjugates are referred to as "immunotoxins.”
  • a cytotoxin or cytotoxic agent includes any agent that is detrimental to (e.g., kills) cells.
  • Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1 -dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof.
  • Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g.
  • the antibody conjugates of the invention can be used to modify a given biological response, and the drug moiety is not to be construed as limited to classical chemical therapeutic agents.
  • the drug moiety may be a protein or polypeptide possessing a desired biological activity.
  • proteins may include, for example, an enzymatically active toxin, or active fragment thereof, such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor or interferon- ⁇ ; or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 (“IL-2”), interleukin-6 (“IL-6”), granulocyte macrophage colony stimulating factor (“GM-CSF”), granulocyte colony stimulating factor (“G-CSF”), or other growth factors.
  • IL-1 interleukin-1
  • IL-2 interleukin-2
  • IL-6 interleukin-6
  • compositions in another aspect, the present invention provides a composition, e.g., a pharmaceutical composition, containing one or a combination of human monoclonal antibodies, or antigen-binding portion(s) thereof, of the present invention, formulated together with a pharmaceutically acceptable carrier.
  • the compositions include a combination of multiple (e.g., two or more) isolated human antibodies or antigen-binding portions thereof of the invention.
  • each of the antibodies or antigen-binding portions thereof of the composition binds to a distinct, preselected epitope of EGFR.
  • human anti-EGFR monoclonal antibodies having complementary activities are used in combination, e.g., as a pharmaceutical composition, comprising two or more human anti-EGFR monoclonal antibodies.
  • a human monoclonal antibody that mediates highly effective killing of target cells in the presence of effector cells can be combined with another human monoclonal antibody that inhibits the growth of cells expressing EGFR.
  • the composition comprises one or a combination of bispecific or multispecific molecules of the invention (e.g., which contains at least one binding specificity for an Fc receptor and at least one binding specificity for EGFR).
  • Pharmaceutical compositions of the invention also can be administered in combination therapy, i.e., combined with other agents.
  • the combination therapy can include a composition of the present invention with at least one anti-tumor agent or other conventional therapy.
  • pharmaceutically acceptable carrier includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and abso ⁇ tion delaying agents, and the like that are physiologically compatible.
  • the carrier is suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal administration (e.g., by injection or infusion).
  • the active compound i.e., antibody, bispecific and multispecific molecule
  • the active compound may be coated in a material to protect the compound from the action of acids and other natural conditions that may inactivate the compound.
  • a “pharmaceutically acceptable salt” refers to a salt that retains the desired biological activity of the parent compound and does not impart any undesired toxicological effects (see e.g., Berge, S.M., et al. (1977) J. Pharm. Sci. 66: 1-19).
  • Acid addition salts include those derived from nontoxic inorganic acids, such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydroiodic, phosphorous and the like, as well as from nontoxic organic acids such as aliphatic mono- and dicarboxylic acids, phenyl- substituted alkanoic acids, hydroxy alkanoic acids, aromatic acids, aliphatic and aromatic sulfonic acids and the like.
  • Base addition salts include those derived from alkaline earth metals, such as sodium, potassium, magnesium, calcium and the like, as well as from nontoxic organic amines, such as N,N'-dibenzylethylenediamine, N- methylglucamine, chloroprocaine, choline, diethanolamine, ethylenediamine, procaine and the like.
  • a composition of the present invention can be administered by a variety of methods known in the art. As will be appreciated by the skilled artisan, the route and/or mode of administration will vary depending upon the desired results.
  • the active compounds can be prepared with carriers that will protect the compound against rapid release, such as a controlled release formulation, including implants, transdermal patches, and microencapsulated delivery systems.
  • Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Many methods for the preparation of such formulations are patented or generally known to those skilled in the art. See, e.g., Sustained and Controlled Release Drug Delivery Systems, J.R.
  • the compound may be administered to a subject in an appropriate carrier, for example, liposomes, or a diluent.
  • suitable diluents include saline and aqueous buffer solutions.
  • Liposomes include water-in-oil-in- water CGF emulsions as well as conventional liposomes (Strejan et al (1984) J. Neuroimmunol. 7:27).
  • Pharmaceutically acceptable carriers include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
  • the use of such media and agents for pharmaceutically active substances is known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the pharmaceutical compositions of the invention is contemplated. Supplementary active compounds can also be inco ⁇ orated into the compositions.
  • compositions typically must be sterile and stable under the conditions of manufacture and storage.
  • the composition can be formulated as a solution, microemulsion, liposome, or other ordered structure suitable to high drug concentration.
  • the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
  • the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
  • isotonic agents for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition.
  • Prolonged abso ⁇ tion of the injectable compositions can be brought about by including in the composition an agent that delays abso ⁇ tion, for example, monostearate salts and gelatin.
  • Sterile injectable solutions can be prepared by inco ⁇ orating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by sterilization microfiltration.
  • dispersions are prepared by inco ⁇ orating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above.
  • the preferred methods of preparation are vacuum drying and freeze- drying (lyophilization) that yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof. Dosage regimens are adjusted to provide the optimum desired response
  • Dosage unit form refers to physically discrete units suited as unitary dosages for the subjects to be treated; each unit contains a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
  • the specification for the dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active compound for the treatment of sensitivity in individuals.
  • antioxidants examples include: (1) water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.
  • water soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like
  • oil-soluble antioxidants such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), le
  • formulations of the present invention include those suitable for oral, nasal, topical (including buccal and sublingual), rectal, vaginal and/or parenteral administration.
  • the formulations may conveniently be presented in unit dosage form and may be prepared by any methods known in the art of pharmacy.
  • the amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the subject being treated, and the particular mode of administration.
  • the amount of active ingredient which can be combined with a carrier material to produce a single dosage form will generally be that amount of the composition which produces a therapeutic effect.
  • compositions of this invention include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such carriers as are known in the art to be appropriate.
  • Dosage forms for the topical or transdermal administration of compositions of this invention include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants.
  • the active compound may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants which may be required.
  • parenteral administration and “administered parenterally” as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion.
  • aqueous and nonaqueous carriers examples include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate.
  • polyols such as glycerol, propylene glycol, polyethylene glycol, and the like
  • vegetable oils such as olive oil
  • injectable organic esters such as ethyl oleate.
  • Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
  • These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents.
  • Prevention of presence of microorganisms may be ensured both by sterilization procedures, supra, and by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged abso ⁇ tion of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay abso ⁇ tion such as aluminum monostearate and gelatin.
  • the compounds of the present invention are administered as pharmaceuticals, to humans and animals, they can be given alone or as a pharmaceutical composition containing, for example, 0.01 to 99.5% (more preferably, 0.1 to 90%) of active ingredient in combination with a pharmaceutically acceptable carrier.
  • the compounds of the present invention which may be used in a suitable hydrated form, and/or the pharmaceutical compositions of the present invention, are formulated into pharmaceutically acceptable dosage forms by conventional methods known to those of skill in the art.
  • Actual dosage levels of the active ingredients in the pharmaceutical compositions of the present invention may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.
  • the selected dosage level will depend upon a variety of pharmacokinetic factors including the activity of the particular compositions of the present invention employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compositions employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.
  • a physician or veterinarian having ordinary skill in the art can readily determine and prescribe the effective amount of the pharmaceutical composition required.
  • the physician or veterinarian could start doses of the compounds of the invention employed in the pharmaceutical composition at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved.
  • a suitable daily dose of a compositions of the invention will be that amount of the compound which is the lowest dose effective to produce a therapeutic effect.
  • Such an effective dose will generally depend upon the factors described above. It is preferred that administration be intravenous, intramuscular, intraperitoneal, or subcutaneous, preferably administered proximal to the site of the target.
  • the effective daily dose of a therapeutic compositions may be administered as two, three, four, five, six or more sub-doses administered separately at appropriate intervals throughout the day, optionally, in unit dosage forms. While it is possible for a compound of the present invention to be administered alone, it is preferable to administer the compound as a pharmaceutical formulation (composition).
  • compositions can be administered with medical devices known in the art.
  • a therapeutic composition of the invention can be administered with a needleless hypodermic injection device, such as the devices disclosed in U.S. Patent Nos. 5,399,163; 5,383,851; 5,312,335; 5,064,413; 4,941,880; 4,790,824; or 4,596,556.
  • a needleless hypodermic injection device such as the devices disclosed in U.S. Patent Nos. 5,399,163; 5,383,851; 5,312,335; 5,064,413; 4,941,880; 4,790,824; or 4,596,556.
  • Examples of well-known implants and modules useful in the present invention include: U.S. Patent No. 4,487,603, which discloses an implantable micro-infusion pump for dispensing medication at a controlled rate; U.S. Patent No. 4,486,194, which discloses a therapeutic device for administering medicants through the skin; U.S. Patent No.
  • the blood-brain barrier excludes many highly hydrophilic compounds.
  • the therapeutic compounds of the invention cross the BBB (if desired)
  • they can be formulated, for example, in liposomes.
  • liposomes For methods of manufacturing liposomes, see, e.g., U.S. Patents 4,522,811; 5,374,548; and 5,399,331.
  • the liposomes may comprise one or more moieties which are selectively transported into specific cells or organs, thus enhance targeted drug delivery (see, e.g., V.V. Ranade (1989) J. Clin. Pharmacol. 29:685).
  • Exemplary targeting moieties include folate or biotin (see, e.g., U.S.
  • Patent 5,416,016 to Low et al. mannosides (Umezawa et al., (1988) Biochem. Biophys. Res. Commun. 153:1038); antibodies (P.G. Bloeman et al. (1995) FEBS Lett. 357:140; M. Owais et al. (1995) Antimicrob. Agents Chemother. 39: 180); surfactant protein A receptor (Briscoe et al. (1995) Am. J. Physiol. 1233:134), different species of which may comprise the formulations of the inventions, as well as components of the invented molecules; pl20 (Schreier et al. (1994) J. Biol. Chem.
  • the therapeutic compounds of the invention are formulated in liposomes; in a more preferred embodiment, the liposomes include a targeting moiety.
  • the therapeutic compounds in the liposomes are delivered by bolus injection to a site proximal to the tumor or infection.
  • the composition must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi.
  • a "therapeutically effective dosage” preferably inhibits tumor growth by at least about 20%, more preferably by at least about 40%, even more preferably by at least about 60%, and still more preferably by at least about 80% relative to untreated subjects.
  • the ability of a compound to inhibit cancer can be evaluated in an animal model system predictive of efficacy in human tumors. Alternatively, this property of a composition can be evaluated by examining the ability of the compound to inhibit, such inhibition in vitro by assays known to the skilled practitioner.
  • a therapeutically effective amount of a therapeutic compound can decrease tumor size, or otherwise ameliorate symptoms in a subject. One of ordinary skill in the art would be able to determine such amounts based on such factors as the subject's size, the severity of the subject's symptoms, and the particular composition or route of administration selected.
  • the composition must be sterile and fluid to the extent that the composition is deliverable by syringe.
  • the carrier can be an isotonic buffered saline solution, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof.
  • Proper fluidity can be maintained, for example, by use of coating such as lecithin, by maintenance of required particle size in the case of dispersion and by use of surfactants.
  • isotonic agents for example, sugars, polyalcohols such as mannitol or sorbitol, and sodium chloride in the composition.
  • the injectable compositions can be brought about by including in the composition an agent which delays abso ⁇ tion, for example, aluminum monostearate or gelatin.
  • an agent which delays abso ⁇ tion for example, aluminum monostearate or gelatin.
  • the active compound when suitably protected, as described above, the compound may be orally administered, for example, with an inert diluent or an assimilable edible carrier.
  • compositions e.g., human monoclonal antibodies to EGFR and derivatives/conjugates thereof
  • compositions e.g., human monoclonal antibodies to EGFR and derivatives/conjugates thereof
  • these molecules can be administered to cells in culture, e.g. in vitro or ex vivo, or in a subject, e.g., in vivo, to treat, prevent or diagnose a variety of disorders.
  • the term "subject” is intended to include human and non-human animals.
  • Preferred human animals include a human patient having disorder characterized by expression, typically aberrant expression (e.g., overexpression) of EGFR.
  • the methods and compositions of the present invention can be used to treat a subject with a tumorigenic disorder, e.g., a disorder characterized by the presence of tumor cells expressing EGFR including, for example, bladder, breast, colon, kidney, ovarian, prostate, renal cell, squamous cell, lung (non- small cell), and head and neck tumor cells.
  • a tumorigenic disorder e.g., a disorder characterized by the presence of tumor cells expressing EGFR including, for example, bladder, breast, colon, kidney, ovarian, prostate, renal cell, squamous cell, lung (non- small cell), and head and neck tumor cells.
  • the methods and compositions of the present invention can be also be used to treat other disorders, e.g., autoimmune diseases, cancer, psoriasis, or inflammatory arthritis, e.g., rheumatoid arthritis, systemic lupus erythematosus-associated arthritis, or psoriatic arthritis.
  • non-human animals of the invention includes all vertebrates, e.g., mammals and non-mammals, such as non- human primates, sheep, dog, cow, chickens, amphibians, reptiles, etc.
  • the compositions (e.g., human antibodies, multispecific and bispecific molecules) of the invention can be initially tested for binding activity associated with therapeutic or diagnostic use in vitro.
  • compositions of the invention can be tested using the ELISA and flow cytometric assays described in the Examples below.
  • the activity of these molecules in triggering at least one effector-mediated effector cell activity, including cytolysis of cells expressing EGFR can be assayed. Protocols for assaying for effector cell-mediated phagocytosis are described in the Examples below.
  • compositions e.g., human antibodies, multispecific and bispecific molecules
  • the human monoclonal antibodies, the multispecific or bispecific molecules can be used, for example, to elicit in vivo or in vitro one or more of the following biological activities: to opsonize a cell expressing EGFR; to mediate phagocytosis or cytolysis of a cell expressing EGFR in the presence of human effector cells; to inhibit EGF or TGF- ⁇ induced autophosphorylation in a cell expressing EGFR; to inhibit autocrine EGF or TGF- ⁇ -induced activation of a cell expressing EGFR; or to inhibit the growth of a cell expressing EGFR, e.g., at low dosages.
  • the human monoclonal antibodies of the present invention are unable to induce complement-mediated lysis of cells and, therefore, has fewer side effects in triggering complement-activated afflictions, e.g., acne.
  • the primary cause of acne is an alteration in the pattern of keratinization within the follicle that produce sebum. Since keratinocytes express EGFR, interference with EGFR signaling processes in the skin can alter the growth and differentiation of the keratinocytes in the follicles which results in the formation of acne. Direct immunofluorescent studies have shown that in early non-inflamed and inflamed acne lesions there is activation of the classical and alternative complement pathways.
  • the human antibodies and derivatives thereof are used in vivo to treat, prevent or diagnose a variety of EGFR-related diseases.
  • EGFR-related diseases include a variety of cancers, such as bladder, breast, colon, kidney, ovarian, prostate, renal cell, squamous cell, lung (non-small cell), and head and neck cancer.
  • Other EGFR-related diseases include, among others, autoimmune diseases, psoriasis, and inflammatory arthritis.
  • compositions e.g., human antibodies, multispecific and bispecific molecules
  • Suitable dosages of the molecules used will depend on the age and weight of the subject and the particular drug used.
  • the molecules can be coupled to radionuclides, such as 1311, 90Y, 105Rh, etc., as described in Goldenberg, D.M. et al. (1981) Cancer Res. 41 : 4354-4360, and in EP 0365 997.
  • the compositions (e.g., human antibodies, multispecific and bispecific molecules) of the invention can also be coupled to anti-infectious agents.
  • the human anti-EGFR antibodies, or antigen binding fragments thereof can be co-administered with a therapeutic agent, e.g., a chemotherapeutic agent, or can be co-administered with other known therapies, e.g., an anti-cancer therapy, e.g., radiation.
  • a therapeutic agent e.g., a chemotherapeutic agent
  • other known therapies e.g., an anti-cancer therapy, e.g., radiation.
  • therapeutic agents include, among others, anti- neoplastic agents such as doxorubicin (adriamycin), cisplatin bleomycin sulfate, carmustine, chlorambucil, and cyclophosphamide hydroxyurea which, by themselves, are only effective at levels which are toxic or subtoxic to a patient.
  • Cisplatin is intravenously administered as a 100 mg/m 2 dose once every four weeks and adriamycin is intravenously administered as a 60-75 mg/m 2 dose once every 21 days.
  • Co- administration of the human anti-EGFR antibodies, or antigen binding fragments thereof, of the present invention with chemotherapeutic agents provides two anti-cancer agents which operate via different mechanisms which yield a cytotoxic effect to human tumor cells. Such co-administration can solve problems due to development of resistance to drugs or a change in the antigenicity of the tumor cells which would render them unreactive with the antibody.
  • Target-specific effector cells e.g., effector cells linked to compositions (e.g., human antibodies, multispecific and bispecific molecules) of the invention can also be used as therapeutic agents.
  • Effector cells for targeting can be human leukocytes such as macrophages, neutrophils or monocytes. Other cells include eosinophils, natural killer cells and other IgG- or IgA-receptor bearing cells. If desired, effector cells can be obtained from the subject to be treated.
  • the target-specific effector cells can be administered as a suspension of cells in a physiologically acceptable solution.
  • the number of cells administered can be in the order of 10°- 10 ⁇ but will vary depending on the therapeutic pu ⁇ ose. In general, the amount will be sufficient to obtain localization at the target cell, e.g., a tumor cell expressing EGFR, and to effect cell killing by, e.g., phagocytosis. Routes of administration can also vary.
  • Target-specific effector cells can be performed in conjunction with other techniques for removal of targeted cells.
  • anti- tumor therapy using the compositions (e.g., human antibodies, multispecific and bispecific molecules) of the invention and/or effector cells armed with these compositions can be used in conjunction with chemotherapy.
  • combination immunotherapy may be used to direct two distinct cytotoxic effector populations toward tumor cell rejection.
  • anti-EGFR antibodies linked to anti-Fc-gammaRI or anti-CD3 may be used in conjunction with IgG- or IgA-receptor specific binding agents.
  • Bispecific and multispecific molecules of the invention can also be used to modulate Fc ⁇ R or Fc ⁇ R levels on effector cells, such as by capping and elimination of receptors on the cell surface.
  • compositions e.g., human antibodies, multispecific and bispecific molecules
  • complement binding sites such as portions from IgGl, -2, or -3 or IgM which bind complement
  • ex vivo treatment of a population of cells comprising target cells with a binding agent of the invention and appropriate effector cells can be supplemented by the addition of complement or serum containing complement. Phagocytosis of target cells coated with a binding agent of the invention can be improved by binding of complement proteins.
  • target cells coated with the compositions (e.g., human antibodies, multispecific and bispecific molecules) of the invention can also be lysed by complement.
  • the compositions of the invention do not activate complement.
  • the compositions (e.g., human antibodies, multispecific and bispecific molecules) of the invention can also be administered together with complement. Accordingly, within the scope of the invention are compositions comprising human antibodies, multispecific or bispecific molecules and serum or complement. These compositions are advantageous in that the complement is located in close proximity to the human antibodies, multispecific or bispecific molecules.
  • the human antibodies, multispecific or bispecific molecules of the invention and the complement or serum can be administered separately.
  • kits comprising the compositions (e.g., human antibodies, multispecific and bispecific molecules) of the invention and instructions for use.
  • the kit can further contain a least one additional reagent, such as complement, or one or more additional human antibodies of the invention (e.g., a human antibody having a complementary activity which binds to an epitope in EGFR antigen distinct from the first human antibody).
  • additional human antibodies of the invention e.g., a human antibody having a complementary activity which binds to an epitope in EGFR antigen distinct from the first human antibody.
  • the subject can be additionally treated with an agent that modulates, e.g., enhances or inhibits, the expression or activity of Fc ⁇ or Fc ⁇ receptors by, for example, treating the subject with a cytokine.
  • cytokines for administration during treatment with the multispecific molecule include of granulocyte colony-stimulating factor (G-CSF), granulocyte- macrophage colony-stimulating factor (GM-CSF), interferon- ⁇ (IFN- ⁇ ), and tumor necrosis factor (TNF).
  • G-CSF granulocyte colony-stimulating factor
  • GM-CSF granulocyte- macrophage colony-stimulating factor
  • IFN- ⁇ interferon- ⁇
  • TNF tumor necrosis factor
  • the subject can be additionally treated with a lymphokine preparation.
  • Cancer cells which do not highly express EGFR can be induced to do so using lymphokine preparations.
  • Lymphokine preparations can cause a more homogeneous expression of EGFRs among cells of a tumor which can lead to a more effective therapy.
  • Lymphokine preparations suitable for administration include interferon-gamma, tumor necrosis factor, and combinations thereof. These can be administered intravenously. Suitable dosages of lymphokine are 10,000 to 1,000,000 units/patient.
  • compositions e.g., human antibodies, multispecific and bispecific molecules
  • the binding agent can be linked to a molecule that can be detected.
  • the invention provides methods for localizing ex vivo or in vitro cells expressing Fc receptors, such as Fc ⁇ R, or EGFR.
  • the detectable label can be, e.g., a radioisotope, a fluorescent compound, an enzyme, or an enzyme co- factor.
  • the invention provides methods for detecting the presence of EGFR antigen in a sample, or measuring the amount of EGFR antigen, comprising contacting the sample, and a control sample, with a human monoclonal antibody, or an antigen binding portion thereof, which specifically binds to EGFR, under conditions that allow for formation of a complex between the antibody or portion thereof and EGFR. The formation of a complex is then detected, wherein a difference complex formation between the sample compared to the control sample is indicative the presence of EGFR antigen in the sample.
  • the invention provides a method for detecting the presence or quantifying the amount of Fc-expressing cells in vivo or in vitro.
  • the method comprises (i) administering to a subject a composition (e.g., a multi- or bispecific molecule) of the invention or a fragment thereof, conjugated to a detectable marker; (ii) exposing the subject to a means for detecting said detectable marker to identify areas containing Fc-expressing cells.
  • mice were immunized with the A431 Human epidermoid carcinoma cell line (CRL-1555, Lot 203945, ATCC Manassas, Virginia) and with soluble epidermal growth factor receptor (EGFR) obtained from Sigma Chemical Co (product E 3641 lot 109H4108 and 20K4079). Soluble EGFR was stored at -20° to -80° C until use.
  • Media Formulations (A) High Glucose DMEM (Mediatech Cellgro # 10013) containing 10% FBS, Pennicillin-Streptomycin (Sigma P-7539), and 2-mercaptoethanol (GibcoBRL 21985-023) was used to culture A431 cells and myeloma cells.
  • Hybridoma growth media which included: Origin-Hybridoma Cloning Factor (Igen 21001), OPI supplement (Sigma O-5003), HAT or HT (Sigma H 0262, H 0137).
  • Igen 21001 Origin-Hybridoma Cloning Factor
  • OPI supplement Sigma O-5003
  • HAT HAT
  • HT HT
  • Serum Free Medium contains DMEM, antibiotics and 2- mercaptoethanol only.
  • Cells for Immunization were grown in DMEM (see above) to confluence on T-75 cell culture flasks, and were harvested with Trypsin EDTA
  • EGFR Soluble EGFR was mixed with Ribi adjuvant (Sigma, M 6536) in sterile PBS at a concentration of 25 ⁇ g EGFR/100 ⁇ l. Final tail vein immunizations were performed with soluble EGFR in sterile PBS.
  • mice were housed in filter cages and were evaluated to be in good physical condition on the date of the fusion. Mice that produced the selected hybridomas were males 6-8 weeks old of the (CMD)++; (HCo7)l 1952 +; (JKD) ++; (KCo5)9272 + genotype (see Table 1).
  • mice are in parentheses, followed by line numbers for randomly integrated transgenes.
  • the symbols ++ and + indicate homozygous or hemizygous; however, because the mice are routinely screened using a PCR-based assay that does not allow us to distinguish between heterozygosity and homozygosity for the randomly integrated human Ig transgenes, a + designation may be given to mice that are actually homozygous for these elements.
  • Antibodies The following anti-EGFR MAbs were used in vitro and in vivo: 2F8 (also referred to as "Humax-EGFR"), a human IgGl anti-EGFR antibody (Genmab, Utrecht, The Netherlands); the hybridoma producing m225, a mouse IgG2a anti-EGFR antibody, was obtained from American Type Culture Collection (ATCC, Rockville, MD, HB- 8508); irrelevant human IgG isotype control (Genmab) which was used as an irrelevant IgGl antibody; and fluorescein isothiocynate (FITC)-conjugated F(ab') 2 fragment of goat anti-mouse IgG (H+L) which was used as the secondary antibody for indirect immunofluorescence (Protos, San Francisco, CA), FITC-conjugated F(ab') 2 rabbit- ⁇ - human IgG (DAKO , Glostrup, Denmark).
  • the 2F8 hybridoma was cultured in
  • FBS Fetal bovine serum
  • pen strep Fetal bovine serum
  • the m225 hybridoma was cultured in RPMI 1640 (Gibco BRL) supplemented with 15% FBS (Hyclone,) and pen/strep (both Gibco BRL). All cell lines were kept at 37°C in humidified atmosphere containing 5% carbon dioxide. Humax antibody was purified using protein-A affinity chromatography followed by size exclusion on a HR200 column (Pharmacia, New Jersey).
  • Mouse antibodies were purified using protein-G chromatography followed by size exclusion on a HR200 column. The purity of all antibodies was >95% as determined by dodecyl sulphate- polyacrylamide gel electrophoresis (SDS-PAGE). F(ab') fragments were made via pepsin or ⁇ -mercaptoethanol treatment followed by protein-A/G purification. Isolated F(ab') fragments were >95% pure as determined by SDS-PAGE.
  • A431 an epidermoid carcinoma which highly over-expresses EGFR, was obtained from the ATCC (Rockville, MD, CRL- 155). The cells were cultured in RPMI 1640 medium (Gibco BRL), supplemented with 10% heat-inactivated FBS (Hyclone), 50 ⁇ g/ml streptomycin, 50 IU/ml penicillin, and 4 mM L-glutamine (all Gibco BRL). As the cells grow adherent they were detached by using trypsin-EDTA in PBS (Life Technologies, Paisley, Scotland). In tumor models, the cells are always used in log- phase. The cells are tested for stable EGFR expression and mycoplasma contamination before each experiment.
  • Spleens were aseptically harvested from freshly euthanized mice, and placed in 20-30 ml cold serum free media (SFM) in a petri plate. Adherent tissue was removed and spleens were rinsed twice in SFM. Spleen cells were gently harvested by homogenization in a tissue grinder in SFM. Cells were centrifuged at 1000 g for 10 minutes and the red blood cells in the cell pellet were lysed by suspending the spleen cell pellet in 5 ml of ice cold 0.17 M NH 4 C1 for 2-5 minutes. The cell mix was then diluted with 20 ml of SFM and centrifuged at lOOOg for 10 minutes. Myeloma cells were harvested into 50 ml centrifuge tubes. Spleen cells and myeloma cells were then washed by three cycles of centrifugation at 1000 g and resuspended in 30-40 ml of SFM.
  • SFM cold serum free media
  • spleen and myeloma cells were mixed at a 1 :1 to 4:1 ratio spleen/myeloma.
  • the spleen cell/myeloma cell mix was pelleted by centrifugation and the supernatant was removed by aspiration.
  • the fusion was done by adding 1-2 ml of PEG solution (Sigma # P-7181) drop wise to the cell pellet over 45 seconds and gently mixing the solution for 75 seconds.
  • the PEG solution was slowly diluted by adding 2 ml SFM drop wise over a minute. This was repeated with another 2 ml of SFM and then the solution was allowed to stand for 1 minute.
  • PBS Phosphate buffered saline
  • PBS-T wash buffer
  • PBS containing 0.05% Tween 20 Sigma P-1379.
  • PBS-T plus 1% BSA This serves as the blocking buffer and sample buffer.
  • Diethanolamine buffer Mix 97 ml of diethanolamine, Sigma D-2286, plus O.lg MgCl 2. 6H 2 O and 800 ml Di Water. Adjust the pH to 9.8 and adjust final volume to 1.0 L with Di water. Add one 20 mg tablet of pNPP , Sigma N-2765, per 20 ml diethanolamine buffer.
  • EGFR Epidermal growth factor receptor
  • EGF-B Biotin labeled EGF
  • Biotin labeled anti EGFR MAbs or human antibodies are included in the following assays.
  • Automated ELISA plate washer Titertek MAP C.
  • Anti Human IgG, K ELISA To screen hybridoma plates for human IgG, K producing MAbs, ELISA plates were coated with 1 ⁇ g/ml of anti-human IgG ⁇ -chain specific antibody, Jackson ImmunoResesarch #109-006-098, overnight or longer at 4°C. Plates were washed in a plate washer and 100 ⁇ l/well PBS-T plus 1% BSA was added. Plates were incubated at least 15 minutes and 10-50 ⁇ l of cell culture supernatant was added to ELISA plate wells with a few wells in each plate included with IgG as a positive control and cell culture medium as a negative control.
  • Plates were incubated 1-2 hr at room temperature, washed, and alkaline phosphatase labeled anti-Human K antibody (Sigma A-3813) 1 :5000 in PBS-T plus 1% BSA was added. Plates were incubated for 1 hr at room temperature, washed 4 times in a plate washer, and pNPP substrate was added. Plates were incubated 10-60 minutes and absorbance was read at 405 nm in an ELISA plate reader.
  • ELISA Procedure for Testing Specificity of anti-EGFR Human Antibodies Direct binding of Antibody to EGFR Coated ELISA plates: To verify that anti-EGFR antibodies specifically bind to EGFR, Nunc Maxisorp plates were coated with 100 ⁇ l/well of EGFR at 0.4 ⁇ g/ml in PBS overnight at 4°C or for 2 hr at room temperature. Plates were washed in PBS-T three times, 100 ⁇ l /well of PBS-T plus 1% BSA was added to block nonspecific sites on the plastic surface, and incubated at least 15 minutes before loading samples. Dilutions of samples to be tested were loaded in PBS-T plus 1% BSA.
  • EGF/EGFR Blocking Assay To verify that anti-EGFR antibody binds to EGFR and additionally blocks the binding of biotin labeled epidermal growth factor to the Epidermal growth factor receptor (EGFR), Nunc Maxiso ⁇ plates were coated with 100 ⁇ l/well of EGFR at 0.4 ⁇ g/ml in PBS overnight at 4°C or for 2 hr at room temperature. Plates were washed in PBS-T three times, 100 ⁇ l /well of PBS-T plus 1% BSA was added to block nonspecific sites on the plastic surface, and incubated at least 15 minutes before loading samples.
  • EGFR Epidermal growth factor receptor
  • Dilutions of samples to be tested were loaded in PBS-T plus 1% BSA.
  • Supernatants were diluted a minimum of 1 :3 in PBS-T 1% BSA for loading into ELISA plates.
  • Samples and standards were loaded at 100 ⁇ l well, incubated for 30 minutes at room temperature, and 20 ⁇ l/well of Biotin labeled EGF at 0.5 ⁇ g /ml was added and plates were incubated for 1 hr (this is added to the sample solution already on the plates).
  • samples can be incubated for 1 hr, washed, and 100 ⁇ l /well EGF-biotin at 0.1 ⁇ g /ml added and incubated for 1 hr.
  • Plates were washed 3 times, 100 ⁇ l /well of PBS-T 1% BSA containing streptavidin alkaline phosphatase at 1 :2000 dilution was added, and incubated 1 hr. Plates were washed 4 times, pNPP substrate was added, and absorbance was read at 405 nm.
  • MAbs 225, 528, AB5, and 29.1 This assay was performed to determine which MAbs are most like antibodies 225, 528, AB5 and 29.1.
  • MAbs 225, 528, and AB5 block EGF binding to its receptor and inhibit in-vivo endogenous tyrosine kinase activity of EGFR.
  • MAb 29.1 is a non blocking
  • MAb that binds to a carbohydrate residue of EGFR Plates were coated for at least 2 hr at room temperature, or overnight at 4°C, with 0.4 ⁇ g/ml of EGFR in PBS and washed and blocked with 100 ⁇ l /well of PBS-T 1% BSA. The blocking solution was flicked out and 100 ⁇ l/well of PBS-T-1% BSA was added to columns 1-6 on the left side of the plate while an unlabeled mouse MAb at 1 ⁇ g/ml (100 ⁇ l/well) was added to the right side of the plate in columns 7-12.
  • Plates were incubated at room temperature for 1 hour and 25 ⁇ l of cell culture supernatant was added to the equivalent position of each half of the plate so that each supernatant is loaded onto one well with PBS-T-1% BSA and one well with mouse MAb. Plates were incubated 1 hr, washed, and alkaline phosphatase labeled anti-Human IgG Fc antibody was added. Plates were incubated 1 hr. Plates were washed and substrate was added. Absorbence was read at 405 nm. The % competition from MAb was determined by the following formula: (OD supernatant without competition - OD supernatant with MAb competition / OD supernatant without competition) x 100.
  • Antibodies - Competitive ELISA with Biotin labeled Human Antibodies were also performed to determine the specificity of the anti-EGFR human antibodies. Plates were coated for at least 2 hr at room temperature, or overnight at 4°C, with 0.4 ⁇ g/ml of EGFR in PBS. Plates were washed and blocked with 100 ⁇ l/well of PBS-T 1% BSA. 50 ⁇ l of (10-30 ⁇ g/ml) of unlabeled human antibodies or mouse MAbs was added to the top well(s) of the plate column and 50 ⁇ l was sequentially transferred and mixed serially down each column to create a three fold dilution series of each antibody.
  • A431 cells (ATCC CRL 1555) confluent in one or more T-175 flasks. A 431 cells are cultured in DMEM plus 10 % FCS. 2. Trypsin-EDTA solution, Sigma T-3924.
  • Biotin labeled EGF Prepare a stock solution of about 5 ⁇ g/ml, use 10 ⁇ l / well.
  • A431 cells were harvested by trypsin EDTA treatment. Medium from tissue culture flask was removed and flask was rinsed briefly with 10-20 ml sterile PBS or HBSS. 5-10 ml of trypsin EDTA was added and flask was returned to incubator for a few minutes. As cells began to detach from the plastic surface, a 10 ml pipette was used to gently syringe the cells from the plastic surface and to generate a single cell suspension without too many cell clumps.
  • Cells were transferred to a 50 ml tube with 20-30 ml of cell culture medium (with FBS), centrifuged for 10 min at 1000 g, and washed twice by centrifugation and resuspension of cells in cold FACS buffer. Cell solution was filtered through a nylon mesh to remove cell clumps (the top of BD FACS tubes are equipped for this). Cells were counted and the volume was adjusted so that there are between 1 to 5 x 10 6 cells ml. Cells were dispensed into a round bottom 96 well plate at about 200,000 cells/well and centrifuged for about 1 min at 1000 g and then the liquid was flicked out (cells should remain in well bottom). Plates were kept on ice or at 4° C.
  • antibody sample dilutions in FACS buffer was prepared by preparing a three fold dilution series of antibody starting at 10 ⁇ g/ml and decreasing to 4.5 ng/ml. 100 ⁇ l of each antibody dilution, isotype controls, and buffer controls was added to the round bottom plate. The antibody samples and controls were mixed with the cells and incubated for 30 minutes on ice. 10 ⁇ l of biotin labeled EGF was added to the antibody cell solution and incubated an additional 30 minutes. The cells were washed three times by centrifugation and resuspension in FACS buffer. 50 ⁇ l well of Streptavadin PE was added, mixed, and incubated for 30 minutes on ice.
  • the cells were washed three times and resuspended in 50 ⁇ l FACS buffer. The contents of each well were transferred to a tube containing 300-400 ⁇ l FACS buffer. 5000-10000 cells were analyzed in each sample by FACS in the FL-2 channel. MCF versus Antibody concentration was plotted.
  • Human or Animal Derived Materials A431 Human epidermoid carcinoma cell line (CRL-1555, Lot 203945, ATCC Manassas, Virginia). Trypsin EDTA (Cellgrow Cat # 25-053-C1). P3 X63 ag8.653 myeloma cell line: ATCC CRL 1580, lot F-15183 Origin -Hybridoma Cloning Factor (Igen 21001). OPI supplement (Sigma O-5003) Fetal bovine serum (SH30071 lot #s ALE10321, and AGH6843) from Hyclone, Logan, Utah. Origen Freeze Medium (Igen, # 210002)
  • ELISA For determining the binding of human antibodies to EGFR, an ELISA with EGFR (Sigma, St Louis, M) coated overnight in a concentration of 1 ⁇ g/ml in PBS on a 96-wells microtiter plate (Greiner, Frickenhausen, Germany) was used. After blocking the plate with ELISA buffer (PBS/.05%Tween 20 and 1% chicken serum (Gibco BRL)) at a concentration of 100 ⁇ l/well, monoclonal antibody diluted in ELISA buffer was added and incubated for 1 hour at 37°C.
  • ELISA buffer PBS/.05%Tween 20 and 1% chicken serum (Gibco BRL)
  • the plates were subsequently washed 3 times and incubated with peroxidase labeled goat anti-human IgG Fc specific (Jackson, West Grace, P) for 1 hour at 37°C.
  • the assay was developed with ABTS (Roche Diagnostics, Mannheim, Germany) for 30 minutes. Absorbance was measured with a microplate reader (Biotek, Winooski, Canada) at 415 nm.
  • the plates were pre-incubated for 10 minutes with 50 ⁇ l blocking agent in ELISA buffer before adding 50 ⁇ l fully human antibody.
  • mouse serum ELISA plates were coated with rabbit anti-human kappa, light chains (DAKO) overnight in PBS in a 96-wells microtiter plate (Greiner). After blocking the plate with ELISA buffer (PBS/.05%Tween20 and 1% chicken serum) 100 ⁇ l/well, mouse serum diluted in ELISA buffer was added and incubated for 1 hour at 37°C. The plates were subsequently washed 3 times and incubated with peroxidase labeled rabbit F(ab') fragments anti human IgG (DAKO) for 1 hour at 37°C. The assay was developed with ABTS (Roche) for 30 minutes. Absorbance was measured with a microplate reader (Biotek) at 415 nm.
  • EGFR over expressing tumor cells were incubated with MAb for 30 minutes at 4°C. Cells were washed three times in phosphate buffered saline supplemented with 1 % bovine serum albumin (Roche) and 0,01 % azide. Counter- staining was performed with FITC-conjugated F(ab') fragments of a goat anti-mouse antibody or with FITC-conjugated F(ab') 2 fragments of a rabbit anti-human IgG antibody. With regard to inhibition experiments, the cells were pre incubated with EGF or TGF- ⁇ for 10 minutes at 4°C. All samples were analyzed on a FACScan flowcytometer (Becton-Dickinson, San Jose, CA).
  • A431 cell extract Fifty ⁇ l of A431 cell extract was analyzed by sodium SDS-PAGE and immunoblotting with anti-phospho-tyrosine antibodies (PY20,Transduction Laboratories, Kentucky), goat anti mouse IgG-HRP antibodies (Transduction Laboratories), and ECL detection.
  • TGF- ⁇ Prepotech, Rocky Hill, NJ
  • sub-confluent cultures of A431 cells in 24 well plates (Nunc) were treated overnight with low-serum medium (0.5%).
  • Antibodies were added in a fixed dose of 10 or 0 ⁇ g/ml and incubated as described as above. The cells were stimulated with an increasing amount TGF- ⁇ . Cells were treated as above.
  • the plates were developed with 100% methanol during 30 minutes on a plate shaker. Absorbance was measured with a microplate reader using a 550nm filter with a 650nm reference filter. Inhibition is measured in triplicates. Percentage of relative cell proliferation was determined by dividing the average absorbance from the triplicate of a particular antibody concentration by the average absorbance from wells which had no antibody added, then times 100.
  • Effector cell isolation Peripheral white blood cells were isolated by a method slightly modified from that described in Repp, et al. (1991) Blood 78: 885-889. Briefly, heparin-anticoagulated blood was layered over a ficoll gradient. After centrifugation, effector cells were harvested from the inte ⁇ hase and the remaining erythrocytes were removed by hypotonic lysis. Cytospin preparations were used to assess the purity of isolated cells which was higher than 95 %. The viability of cells, determined by trypan blue exclusion, exceeded 95%.
  • ADCC assays The capacity of fully human antibodies to lyse tumor cells was evaluated in 51 Chromium release assays (Valerius, et al. (1993) Blood, 82: 931-939). Isolated human white blood cells were used as effector source. In brief, tumor targets were incubated with 100 ⁇ Ci 5l Cr for two hours. After a three times wash with culture medium, 5 x 10 target cells were added to round-bottomed tissue culture plates containing 50 ⁇ l of isolated effector cells and sensitizing MAb in different concentrations and diluted in culture medium. The final volume was 200 ⁇ l and the effector to target cell ratio (E:T) 80:1. The assays were incubated overnight at 37°C and stopped by centrifugation. The chromium release was measured in supernatants in triplicates. Percentage of cellular cytotoxity was calculated using the formula:
  • Binding affinity of anti EGFR antibodies was determined using BIAcore 300 (Biacore, Upsula, Sweden).
  • EGFR purified from A431 cells purchased from Sigma was immobilized on a CM5 chip according to the manufacturer's instructions. Measurements were done with antibody F(ab') fragments at different concentrations. Association and dissociation constants were determined using BIAevaluation software (version 3.1).
  • mice and tumor models Nude Balb/c mice (NuNu) were purchased from Harlan (Horst, The Netherlands). All experiments described were performed with female mice of eight to twelve weeks old. Mice were housed in the Transgenic Mouse Facility of the Central Laboratory Animal Facility (Utrecht, The Netherlands) and experiments were approved by the Utrecht University animal ethics committee. When participating in an experiment, mice were checked thrice a week for signs of toxicity and discomfort including level of activity, skin abnormalities, diarrhea, and general appearance. A well-established subcutaneous (s.c.) tumor model was used. Briefly the high EGFR expressing A43l cells were inoculated, on the right side of the mouse, at a dose of 3 x 10 6 cells.
  • the tumors grow uniform and can be easily measured by vernier calipers.
  • the tumor volume is reported as length x width x height (in mm 3 ).
  • the monoclonal antibodies were injected intraperitoneally (i.p.) according to the study protocol.
  • the tumor cells were tested for stable EGFR expression after in vivo passage by flow cytometry and immunohistochemistry.
  • mice, with and without tumors were injected i.p. with 2F8 antibody.
  • Weekly blood samples were taken via the tail vein before and for six weeks after the injection. The samples were analyzed by human IgG ELISA.
  • the plasmid pICEmu contains an EcoRI/XhoI fragment of the murine Ig heavy chain locus, spanning the mu gene, that was obtained from a Balb/C genomic lambda phage library (Marcu et al. Cell 22: 187, 1980). This genomic fragment was subcloned into the XhoI/EcoRI sites of the plasmid pICEMI9H (Marsh et al; Gene 32, 481-485, 1984).
  • the heavy chain sequences included in pICEmu extend downstream of the EcoRI site located just 3' of the mu intronic enhancer, to the Xhol site located approximately 1 kb downstream of the last transmembrane exon of the mu gene; however, much of the mu switch repeat region has been deleted by passage in E. coli.
  • the targeting vector was constructed as follows. A 1.3 kb Hindlll/Smal fragment was excised from pICEmu and subcloned into Hindlll/Smal digested pBluescript (Stratagene, La Jolla, CA). This pICEmu fragment extends from the Hindlll site located approximately 1 kb 5' of Cmul to the Smal site located within Cmul.
  • the resulting plasmid was digested with Smal/Spel and the approximately 4 kb Smal/Xbal fragment from pICEmu, extending from the Smal site in Cmul 3' to the Xbal site located just downstream of the last Cmu exon, was inserted.
  • the resulting plasmid, pTARl was linearized at the Smal site, and a neo expression cassette inserted.
  • This cassette consists of the neo gene under the transcriptional control of the mouse phosphoglycerate kinase (pgk) promoter (Xbal/Taql fragment; Adra et al.
  • the neo cassette was excised from pGEM-7 (KJ1) by EcoRI/Sall digestion, blunt ended and subcloned into the Smal site of the plasmid pTARl, in the opposite orientation of the genomic Cmu sequences.
  • the resulting plasmid was linearized with Not I, and a he ⁇ es simplex virus thymidine kinase (tk) cassette was inserted to allow for enrichment of ES clones bearing homologous recombinants, as described by Mansour et al. (1988) Nature 336: 348-352.
  • This cassette consists of the coding sequences of the tk gene bracketed by the mouse pgk promoter and polyadenylation site, as described by Tybulewicz et al. (1991) Cell 65: 1153-1163.
  • the resulting CMD targeting vector contains a total of approximately 5.3 kb of homology to the heavy chain locus and is designed to generate a mutant mu gene into which has been inserted a neo expression cassette in the unique Smal site of the first Cmu exon.
  • the targeting vector was linearized with Pvul, which cuts within plasmid sequences, prior to electroporation into ES cells.
  • Isolated genomic DNA was digested with Spel and probed with a 915 bp Sad fragment, probe A, which hybridizes to a sequence between the mu intronic enhancer and the mu switch region.
  • Probe A detects a 9.9 kb Spel fragment from the wild type locus, and a diagnostic 7.6 kb band from a mu locus which has homologously recombined with the CMD targeting vector (the neo expression cassette contains a Spel site).
  • the CMD targeting vector the neo expression cassette contains a Spel site.
  • 3 displayed the 7.6 kb Spel band indicative of homologous recombination at the mu locus.
  • mice bearing the mutated mu gene The three targeted ES clones, designated number 264, 272, and 408, were thawed and injected into C57BL/6J blastocysts as described by Bradley (Bradley, A. (1987) in Teratocarcinomas and Embryonic Stem Cells: a Practical Approach. (E. J. Robertson, ed.) Oxford: IRL Press, p. 113-151). Injected blastocysts were transferred into the uteri of pseudopregnant females to generate chimeric mice representing a mixture of cells derived from the input ES cells and the host blastocyst.
  • ES cell contribution to the chimera can be visually estimated by the amount of agouti coat coloration, derived from the ES cell line, on the black C57BL/6J background.
  • Clones 272 and 408 produced only low percentage chimeras (i.e. low percentage of agouti pigmentation) but clone 264 produced high percentage male chimeras. These chimeras were bred with C57BL/6J females and agouti offspring were generated, indicative of germline transmission of the ES cell genome.
  • Screening for the targeted mu gene was carried out by Southern blot analysis of Bgll digested DNA from tail biopsies (as described above for analysis of ES cell DNA). Approximately 50% of the agouti offspring showed a hybridizing Bgll band of 7.7 kb in addition to the wild type band of 15.7 kb, demonstrating a germline transmission of the targeted mu gene.
  • a clone 264 chimera was bred with a mouse homozygous for the JHD mutation, which inactivates heavy chain expression as a result of deletion of the JH gene segments (Chen et al, (1993) Immunol. 5: 647-656).
  • Four agouti offspring were generated. Serum was obtained from these animals at the age of 1 month and assayed by ELISA for the presence of murine IgM. Two of the four offspring were completely lacking IgM (see Table 2).
  • Table 2 shows the levels of serum IgM, detected by ELISA, for mice carrying both the CMD and JHD mutations (CMD/JHD), for mice heterozygous for the JHD mutation (+/JHD), for wild type (129Sv x C57BL/6J)F1 mice (+/+), and for B cell deficient mice homozygous for the JHD mutation (JHD/ JHD).
  • the HCO12 human heavy chain transgene was generated by coinjection of the 80 kb insert of pHC2 (Taylor et al., 1994, Int. Immunol., 6: 579-591) and the 25 kb insert of pVx6.
  • the plasmid pVx6 was constructed as described below.
  • pVx4 The resulting plasmid, pVx4, was digested with Xhol and ligated with the 8.5 kb Xhol/Sall insert of p343.7.16.
  • a clone was obtained with the VH1-18 gene in the same orientation as the other two V genes.
  • This clone, designated pVx6, was then digested with Notl and the purified 26 kb insert coinjected— together with the purified 80 kb Notl insert of pHC2 at a 1 :1 molar ratio—into the pronuclei of one-half day (C57BL/6J x DBA/2J)F2 embryos as described by Hogan et al (B.
  • mice Hogan et al, Manipulating the Mouse Embryo, A Laboratory Manual, 2 nd edition, 1994, Cold Spring Harbor Laboratory Press, Plainview NY).
  • Three independent lines of transgenic mice comprising sequences from both Vx6 and HC2 were established from mice that developed from the injected embryos. These lines are designated (HCO12)14881, (HCO12)15083, and (HCO12)15087.
  • Each of the three lines were then bred with mice comprising the CMD mutation described in Example 1 , the JKD mutation (Chen et al. 1993, EMBO J. 12: 811-820), and the (KCo5)9272 transgene (Fishwild et al. 1996, Nature Biotechnology 14: 845-851).
  • the resulting mice express human immunoglobulin heavy and kappa light chain transgenes in a background homozygous for disruption of the endogenous mouse heavy and kappa light chain loci.
  • mice Two different strains of mice were used to generate EGFR reactive human monoclonal antibodies. Strain ((CMD)++; (JKD)++; (HCo7)l 1952+/++; (KCo5)9272+/++) (referred to herein as "HCO7 mice", and strain ((CMD)++; (JKD)++; (HCol2)15087+/++; (KCo5)9272+/++) (referred to herein as "HCO12 mice”). Each of these strains are homozygous for disruptions of the endogenous heavy chain (CMD) and kappa light chain (JKD) loci.
  • CMD endogenous heavy chain
  • JKD kappa light chain
  • Both strains also comprise a human kappa light chain transgene (HCo7), with individual animals either hemizygous or homozygous for insertion #11952.
  • the two strains differ in the human heavy chain transgene used. Mice were hemizygous or homozygous for either the HCo7 or the HCol2 transgene.
  • the CMD mutation is described above in Example 1.
  • the generation of (HCol 2)15087 mice is described in Example 2.
  • the JKD mutation Chen et al. 1993, EMBO J. 12: 811-820
  • the (KCo5)9272 Frishwild et al. 1996, Nature Biotechnology 14: 845- 851) and (HCo7)l 1952 mice, are described in US patent Nos: 5,770,429 and 5,545,806 (Lonberg & Kay, 6/23/98).
  • mice were immunized twice with A 431 cells followed by soluble antigen in Ribi Adjuvant.
  • the EGFR specific serum titer was determined by ELISA after the third immunization.
  • Three different immunizations were done for the final boosts before the fusion. These included two or three sequential intravenous (iv) boosts via the tail vein with 10 ⁇ g of antigen in 50 ⁇ l PBS or two sequential intraperitoneal (i.p.) boosts with 25 ⁇ g soluble EGFR in Ribi adjuvant (see Table 3).
  • the three mice that were used in the fusion were part of a larger cohort of mice that included both HCo7 and HCol2 genotypes.
  • mice 20242 received only two i.v. vein boosts with soluble EGFR on days -4 and-3, and mouse 20241 received two i.p. immunizations on days -4 and -3 with 25 ⁇ g EGFR in Ribi adjuvant.
  • the three fusions resulted in 46 human ⁇ , K- antigen positive hybridomas (see Table 4).
  • the P3 X63 ag8.653 myeloma cell line (ATCC CRL 1580, lot F-15183) was used for the fusions.
  • the original ATCC vial was thawed and expanded in culture.
  • a seed stock of frozen vials was prepared from this expansion.
  • a fresh vial of cells was thawed one to two weeks before the fusions.
  • High Glucose DMEM Mediatech, Cellgro # 10013
  • FBS Pennicillin-Streptomycin
  • 5.5 xl0 "5 M 2-mercaptoethanol GibcoBRL, 21985-023
  • Hybridoma growth media which included: 3% Origin -Hybridoma Cloning Factor (Igen, 21001), OPI supplement (Sigma, O-5003), 1.1 xlO "3 M Oxalo acetic acid, 4.5 xlO "4 M sodium Pyruvate, and 24 international units/L bovine Insulin, HAT (Sigma, H 0262) 1.0 xlO "4 M Hypoxanthine, 4.0 xlO "7 M Aminopterin, 1.6 xlO ⁇ 5 M Thymidine, or HT (Sigma, H0137) 1.0 xlO "4 M Hypoxanthine, 1.6 xlO ⁇ 5 M Thymidine.
  • Fetal bovine serum (SH30071 lot #s AJE10321 and AGH6843) was obtained from Hyclone, Logan, Utah. Serum Free medium contained DMEM, antibiotics and 2- mercaptoethanol only.
  • Spleens from all three mice were normal in size and yielded from 2xl0 7 to lxlO 8 splenocytes. The splenocytes were fused.
  • the initial ELISA screen for human IgG K antibodies was performed 7- 10 days post fusion.
  • Human IgG, K positive wells were screened on soluble EGFR coated ELISA plates.
  • Antigen positive hybridomas were transferred to 24 well plates and eventually to tissue culture flasks.
  • EGFR specific hybridomas were subcloned by limiting dilution to assure monoclonality.
  • Antigen positive hybridomas were preserved at several stages in the development process by freezing cells in DMEM 10% FBS plus 10% DMSO (Sigma, D2650) or in Origen Freeze Medium (Igen, # 210002). Cells were stored at -80° C or in LN 2 .
  • Mouse monoclonal anti-EGFR antibodies 225 and 528 have previously been shown to bind to EGFR, block binding of EGF to EGFR and to be anti-cancer immunotherapeutic agents in animal and human studies. Therefore these antibodies were used, in addition to a non-blocking antibody, in a competitive ELISA format to identify human antibodies that have immunotherapeutic characteristics.
  • Binding affinity for hybridoma 2F8 was determined using BIAcore 3000 (Biacore, Upsula, Sweden). EGFR purified from A431 cells purchased from Sigma was immobilized on a CM5 chip according to the manufacturer's instructions. Antibody 2F8 had an equilibrium association constant (K A ) of 5.47 ( ⁇ 0.52) x 10 M " .
  • K A equilibrium association constant
  • Figures 1 and 2 show (the data in Figure 1 and 2 are arranged based on degree of competition with MAb 225) that even with crude cell culture supernatants, antibodies can be identified that bind to similar or identical epitopes as the 225 and 528 antibodies. Also evident in this experiment is the different distribution in competitive binding patterns of antibodies derived from mouse 20241 or from mouse 20242 and 20243. For example, the first seven antibodies from the #20241 mouse ( Figure 1) compete strongly with both MAb 225 and 528. The remainder of the antibodies from 20241 competed moderately or weakly with the 225 and 528 antibodies.
  • Antibody 2F8 competes moderately with MAb 225 and does not significantly compete with antibody 528 ( Figures 3 and 4).
  • antibody 2F8, 6B3 and 5F12 show strong cross competition. This data suggests that antibody 2F8 is binding to a separate epitope from the 225 and 528 antibodies and binds to a region of the EGFR receptor that is adjacent to or overlaps with the epitope to which HuMAbs 6B3 and 5F12 bind.
  • Antibodies 2A2 and 6E9 do not compete with either MAb and bind to EGFR epitopes unrelated to the binding sites of the 225 and 528 MAbs ( Figures 3 and 4).
  • Antigen positive subclones were further evaluated in EGF/EGFR blocking assays. These assays included subclones of antibodies that compete strongly with MAb 225 and/or 528, as well as, antibodies that are weak or non competitive with 225 or 528. Several antibodies were expanded in culture medium and purified by protein A chromatography. Figures 5 and 6 show that antibodies 2F8, 5F12, and 6B3, which are moderate to strong competitors of the 225 antibody in ELISA, are strong blockers of EGF binding to EGFR. This is evident in assays done in ELISA format or by FACS on human A431 epidermoid cancer cells. In both assays, the human antibodies were as good as or better than MAb 225.
  • Antibodies 2F8, 5F12, 6B3, and 6E9 also have similar binding characteristics on the surface of A431 cells (Figure 7).
  • the in vitro EGF/EGFR blocking and ELISA competition studies demonstrated that the 2F8, 5F12, and 6B3 antibodies have similar properties to other anti-EGFR murine and human antibodies that have been shown to be immunotherapeutic agents (Sato, et al. (1983) Mol. Biol. Med. 511-529; Gill, et al. (1984) J. of Biol. Chem. 259(12):7755-7760).
  • the 2F8 antibody was equivalent to or better than the 6B3 and 5F12 antibodies overall in the various evaluations.
  • Figure 9 further shows the blocking capacity of 2F8 in that it efficiently inhibits the binding of EGF and TGF- ⁇ to A431 cells (cells derived from an ovarian epidermoid carcinoma and express in excess of 1x10 EGFR molecules on their cell surface). Inhibition of 2F8-binding to A431 cells was determined using flow cytometer analysis. Cells were pre-incubated with either 5 (open bars) or 50 ⁇ g/ml (closed bars) ligand before adding 2F8. Binding of antibody without ligand (PBS group) was designated as 100%. These results indicate that 2F8 binds close to, or at the same site, on EGFR as the ligands.
  • ADCC is a potent immune effector mechanism triggered by the recognition of tumor cells by antibodies.
  • A431 cells were loaded with 51 Cr and subsequently incubated with antibody and effector cells (PMN) overnight. After incubation, chromium release was measured.
  • PMN antibody and effector cells
  • 2F8 is capable of inducing ADCC against A431 cells using human PMN.
  • 2F8 is capable of mediating PMN-induced lysis of 45% of the A431 target cells, which is higher then observed with the MAb 425 ( Figure 14).
  • 2F8 is unable to induce complement-mediated lysis of tumor cells.
  • mice were injected subcutaneously in the flank with 3 x 10 tumor cells in 200 ⁇ l PBS at day zero (0). Subsequently, mice were injected i.p. on days 1 (75 ⁇ g/200 ⁇ l), 3 (25 ⁇ g/200 ⁇ l), and 5 (25 ⁇ g/200 ⁇ l) (arrows) with either HuMAb 2F8 (closed squares) i.p. of human IgGl- ⁇ MAb as a control (open circles) ( Figure 14). The data are presented as mean tumor volume + SEM, and are representative of 3 individual experiments, yielding similar results.
  • mice Eradication of established A431 tumor xenografts by HuMAb 2F8 in comparison to m225 is shown in Figure 14.
  • Mice were injected subcutaneously in the flank with 3x10 6 tumor cells in 200 ⁇ l PBS on day zero (0).
  • mice were randomly allocated to treatment groups and treated on days 12 (75 ⁇ g/200 ⁇ l), 14 (25 ⁇ g/200 ⁇ l), and 16 (25 ⁇ g/200 ⁇ l) (arrows) with HuMAb 2F8 (closed squares, 2F8 short-term) or with murine anti-EGFR MAb m225 (closed triangles, m225 short-term).

Abstract

L'invention concerne des anticorps monoclonaux humains isolés qui se lient spécifiquement à l'EGFR, des molécules et des compositions associées à base d'anticorps. Les anticorps humains peuvent être produits par une souris transgénique, capable de produire des isotypes multiples d'anticorps monoclonaux humains par mise en oeuvre d'une recombinaison V-D-J et par commutation isotypique. L'invention concerne aussi des compositions pharmaceutiques comprenant les anticorps humains, des hybridomes et des animaux transgéniques non humains produisant les anticorps humains, ainsi que des procédés de diagnostic et de thérapie utilisant les anticorps humains.
PCT/US2002/018748 2001-06-13 2002-06-13 Anticorps monoclonaux humains diriges contre le recepteur de facteur de croissance epidermique (egfr) WO2002100348A2 (fr)

Priority Applications (12)

Application Number Priority Date Filing Date Title
NZ530212A NZ530212A (en) 2001-06-13 2002-06-13 An isolated human monoclonal antibody that binds to human epidermal growth factor receptor (EGFR)
MXPA03011365A MXPA03011365A (es) 2001-06-13 2002-06-13 Anticuerpos monoclonales humanos para el receptor de factor de crecimiento epidermico (egfr).
HU0600225A HUP0600225A3 (en) 2001-06-13 2002-06-13 Human monoclonal antibodies to epidermal growth factor receptor (egfr)
KR1020037016294A KR100945108B1 (ko) 2001-06-13 2002-06-13 표피 성장 인자 수용체 (egfr)에 대한 인간모노클로날 항체
EP02744320.9A EP1417232B1 (fr) 2001-06-13 2002-06-13 Anticorps monoclonaux humains diriges contre le recepteur de facteur de croissance epidermique (egfr)
AU2002345673A AU2002345673B2 (en) 2001-06-13 2002-06-13 Human monoclonal antibodies to epidermal growth factor receptor (EGFR)
IL15922502A IL159225A0 (en) 2001-06-13 2002-06-13 Human monoclonal antibodies to epidermal growth factor receptor (egfr)
BRPI0210405 BRPI0210405B8 (pt) 2001-06-13 2002-06-13 anticorpo monoclonal humano, molécula biespecífica, método in vitro para inibir o crescimento de uma célula expressando egfr, para induzir a citólise de uma célula expressando egfr, e para detectar a presença de antígeno egfr ou uma célula expressando egfr em uma amostra, e, vetor de expressão
CA2450285A CA2450285C (fr) 2001-06-13 2002-06-13 Anticorps monoclonaux humains diriges contre le recepteur de facteur de croissance epidermique (egfr)
JP2003503174A JP4298498B2 (ja) 2001-06-13 2002-06-13 上皮成長因子受容体(egfr)に対するヒトモノクローナル抗体
IL159225A IL159225A (en) 2001-06-13 2003-12-07 Human monoclonal antibodies to epidermal growth factor receptor (egfr)
HK04107653.9A HK1064685A1 (en) 2001-06-13 2004-10-06 Human monoclonal antibodies to epidermal growth factor receptor (egfr) (egfr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29817201P 2001-06-13 2001-06-13
US60/298,172 2001-06-13

Publications (3)

Publication Number Publication Date
WO2002100348A2 true WO2002100348A2 (fr) 2002-12-19
WO2002100348A3 WO2002100348A3 (fr) 2003-02-27
WO2002100348A8 WO2002100348A8 (fr) 2003-04-10

Family

ID=23149369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/018748 WO2002100348A2 (fr) 2001-06-13 2002-06-13 Anticorps monoclonaux humains diriges contre le recepteur de facteur de croissance epidermique (egfr)

Country Status (16)

Country Link
US (1) US7247301B2 (fr)
EP (1) EP1417232B1 (fr)
JP (2) JP4298498B2 (fr)
KR (2) KR20090125840A (fr)
CN (2) CN1966525A (fr)
AU (1) AU2002345673B2 (fr)
BR (1) BRPI0210405B8 (fr)
CA (1) CA2450285C (fr)
CZ (1) CZ200438A3 (fr)
HK (1) HK1064685A1 (fr)
HU (1) HUP0600225A3 (fr)
IL (2) IL159225A0 (fr)
MX (1) MXPA03011365A (fr)
NZ (1) NZ530212A (fr)
RU (1) RU2335507C2 (fr)
WO (1) WO2002100348A2 (fr)

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085474A2 (fr) * 2003-03-20 2004-10-07 Imclone Systems Incorporated Procede de production d'un anticorps contre le recepteur du facteur de croissance epidermique
EP1572746A2 (fr) * 2002-12-16 2005-09-14 Genmab A/S Anticorps monoclonaux humains contre le recepteur de facteur de croissance epidermique (egfr)
WO2007002223A3 (fr) * 2005-06-20 2007-04-19 Medarex Inc Anticorps cd19 et utilisations
EP1786918A2 (fr) * 2004-07-17 2007-05-23 Imclone Systems, Inc. Nouveau anticorps bispecifique tetravalent
WO2008003319A1 (fr) 2006-07-04 2008-01-10 Genmab A/S Molécules de liaison à cd20 pour le traitement de copd
EP1877420A1 (fr) * 2005-05-04 2008-01-16 Duke University Polytherapie destinee au traitement du cancer
CN100362018C (zh) * 2005-03-02 2008-01-16 上海张江生物技术有限公司 重组抗egfr单克隆抗体
WO2008119353A1 (fr) * 2007-03-29 2008-10-09 Genmab A/S Anticorps bispécifiques et procédés de production de ceux-ci
WO2009030239A1 (fr) * 2007-09-06 2009-03-12 Genmab A/S Nouveaux procédés et anticorps destinés au traitement du cancer
US7696320B2 (en) 2004-08-24 2010-04-13 Domantis Limited Ligands that have binding specificity for VEGF and/or EGFR and methods of use therefor
US7887805B2 (en) 2007-03-01 2011-02-15 Symphogen A/S Recombinant anti-epidermal growth factor receptor antibody compositions
WO2011040668A1 (fr) * 2009-09-29 2011-04-07 Green Cross Corporation Anticorps se liant spécifiquement au récepteur du facteur de croissance épidermique
CN101058609B (zh) * 2006-05-26 2011-04-13 神州细胞工程有限公司 人源抗体及其表达
WO2011131746A2 (fr) 2010-04-20 2011-10-27 Genmab A/S Protéines contenant des anticorps fc hétérodimères et leurs procédés de production
WO2011154453A1 (fr) 2010-06-09 2011-12-15 Genmab A/S Anticorps dirigés contre le cd38 humain
WO2012036392A2 (fr) * 2010-09-17 2012-03-22 주식회사 아이지세라피 Anticorps fab anti-récepteur de facteur de croissance épidermique humain et composition pharmaceutique pour le traitement de tumeurs le comprenant
WO2012143496A2 (fr) 2011-04-21 2012-10-26 Bayer Intellectual Property Gmbh Nouveaux conjugués liant-principe actif (adc) et leur utilisation
WO2012143524A2 (fr) 2011-04-20 2012-10-26 Genmab A/S Anticorps bispécifiques contre her2 et cd3
WO2012143523A1 (fr) 2011-04-20 2012-10-26 Genmab A/S Anticorps bispécifiques contre her2
EP2535355A2 (fr) 2005-03-23 2012-12-19 Genmab A/S Anticorps diriges contre CD38 pour le traitement du myelome multiple
WO2013004842A2 (fr) 2011-07-06 2013-01-10 Genmab A/S Variants d'anticorps et leurs utilisations
US8409577B2 (en) 2006-06-12 2013-04-02 Emergent Product Development Seattle, Llc Single chain multivalent binding proteins with effector function
WO2013060867A2 (fr) 2011-10-27 2013-05-02 Genmab A/S Production de protéines hétérodimères
EP2615175A1 (fr) 2007-05-31 2013-07-17 Genmab A/S Animaux transgéniques produisant des anticorps humains monovalents et anticorps pouvant s'obtenir à partir de ces animaux
US8663640B2 (en) 2008-08-29 2014-03-04 Symphogen A/S Methods using recombinant anti-epidermal growth factor receptor antibody compositions
WO2014064682A1 (fr) * 2012-10-24 2014-05-01 Yeda Research And Development Co. Ltd. Combinaisons d'anticorps ciblant les récepteurs du facteur de croissance épidermique pour traiter le cancer
WO2014081954A1 (fr) 2012-11-21 2014-05-30 Janssen Biotech, Inc. Anticorps egfr/c-met bispécifiques
WO2014108198A1 (fr) 2013-01-10 2014-07-17 Genmab B.V. Variantes de la région fc d'igg1 humaine et leurs utilisations
US8853366B2 (en) 2001-01-17 2014-10-07 Emergent Product Development Seattle, Llc Binding domain-immunoglobulin fusion proteins
US8883150B2 (en) 2009-03-24 2014-11-11 Erasmus University Medical Center Soluble “heavy-chain only” antibodies
US8921524B2 (en) 2004-07-22 2014-12-30 Erasmus University Medical Centre Binding molecules
WO2015038984A2 (fr) 2013-09-12 2015-03-19 Halozyme, Inc. Anticorps anti-récepteur du facteur de croissance épidermique modifiés et procédés pour les utiliser
US9101609B2 (en) 2008-04-11 2015-08-11 Emergent Product Development Seattle, Llc CD37 immunotherapeutic and combination with bifunctional chemotherapeutic thereof
WO2016062851A1 (fr) 2014-10-23 2016-04-28 Innate Pharma Traitement des cancers au moyen d'agents anti-nkg2a
EP2921503A4 (fr) * 2012-11-16 2016-06-15 Shanghai Serum Biotechnology Co Ltd Anticorps humanisé dirigé contre le récepteur du facteur de croissance épidermique humain, gène codant pour ledit anticorps et ses applications
WO2016097300A1 (fr) 2014-12-19 2016-06-23 Genmab A/S Protéines hétérodimères bispécifiques de rongeurs
WO2016171365A1 (fr) * 2015-04-23 2016-10-27 신일제약주식회사 Fragment fab se liant spécifiquement à l'egfr
US9505845B2 (en) 2005-12-08 2016-11-29 E. R. Squibb & Sons, L.L.C. Treating lung cancer using human monoclonal antibodies to protein tyrosine kinase 7 (PTK7)
EP2985292A4 (fr) * 2013-04-07 2016-12-21 Genrix(Shanghai) Biopharmacertical Co Ltd Anticorps anti-récepteur du facteur de croissance épidermique
WO2016207089A1 (fr) 2015-06-22 2016-12-29 Bayer Pharma Aktiengesellschaft Conjugués anticorps-médicament (adc) et conjugués lieur-promédicament (apdc) à groupes enzymatiquement clivables
WO2017005649A1 (fr) 2015-07-09 2017-01-12 Genmab A/S Anticorps bispécifiques et multispécifiques et procédé pour l'isolement de ceux-ci
US9580506B2 (en) 2005-07-21 2017-02-28 Genmab A/S Potency assays for antibody drug substance binding to an Fc receptor
WO2017060322A2 (fr) 2015-10-10 2017-04-13 Bayer Pharma Aktiengesellschaft Conjugué anticorps-médicament (adc) inhibiteur de ptefb
US9637543B2 (en) 2011-11-09 2017-05-02 The Uab Research Foundation HER3 antibodies and uses thereof
WO2017161206A1 (fr) 2016-03-16 2017-09-21 Halozyme, Inc. Conjugués contenant des anticorps à activité conditionnelle ou des fragments de liaison à un antigène associés, et procédés d'utilisation
WO2017162663A1 (fr) 2016-03-24 2017-09-28 Bayer Pharma Aktiengesellschaft Promédicaments de principes actifs cytotoxiques contenant des groupes fissibles par voie enzymatique
US9944707B2 (en) 2012-05-17 2018-04-17 Sorrento Therapeutics, Inc. Antibodies that bind epidermal growth factor receptor (EGFR)
WO2018114798A1 (fr) 2016-12-21 2018-06-28 Bayer Aktiengesellschaft Promédicaments de principes actifs cytotoxiques contenant des groupes divisibles par voie enzymatique
US10022453B2 (en) 2013-12-23 2018-07-17 Bayer Pharma Aktiengesellschaft Antibody drug conjugates (ADCs) with kinesin spindel protein (KSP)
WO2018146317A1 (fr) 2017-02-10 2018-08-16 Genmab B.V. Variants polypeptidiques et ses utilisations
US10143748B2 (en) 2005-07-25 2018-12-04 Aptevo Research And Development Llc B-cell reduction using CD37-specific and CD20-specific binding molecules
US10465011B2 (en) 2015-06-26 2019-11-05 Novartis Ag Factor XI antibodies and methods of use
EP3569245A1 (fr) 2006-09-26 2019-11-20 Genmab A/S Traitement combiné de tumeurs exprimant la cd38
WO2019243626A1 (fr) 2018-06-22 2019-12-26 Genmab A/S Procédé de production d'un mélange contrôlé d'au moins deux anticorps différents
US10647780B2 (en) 2016-05-25 2020-05-12 Novartis Ag Reversal binding agents for anti-factor XI/XIa antibodies and uses thereof
WO2020136147A1 (fr) 2018-12-26 2020-07-02 Innate Pharma Composés et méthodes de traitement du cancer de la tête et du cou
US10941190B2 (en) 2014-05-06 2021-03-09 Genentech, Inc. Production of heteromultimeric proteins using mammalian cells
US10993420B2 (en) 2013-03-15 2021-05-04 Erasmus University Medical Center Production of heavy chain only antibodies in transgenic mammals
US11001636B2 (en) 2016-06-15 2021-05-11 Bayer Pharma Aktiengesellschaft Specific antibody-drug-conjugates (ADCs) with KSP inhibitors and anti-CD123-antibodies
WO2021113212A1 (fr) 2019-12-02 2021-06-10 Celgene Corporation Thérapie pour le traitement du cancer
US11046771B2 (en) 2010-05-27 2021-06-29 Genmab A/S Monoclonal antibodies against HER2
US20210230301A1 (en) * 2012-07-06 2021-07-29 Genmab B.V. Dimeric protein with triple mutations
US11168147B2 (en) 2016-12-23 2021-11-09 Novartis Ag Factor XI antibodies and methods of use
US11352426B2 (en) 2015-09-21 2022-06-07 Aptevo Research And Development Llc CD3 binding polypeptides
EP4023670A1 (fr) * 2012-11-21 2022-07-06 Janssen Biotech, Inc. Molécules de liaison à domaine d'egfr et de c-met-fibronectine de type iii
EP2560683B2 (fr) 2010-04-23 2022-07-20 F. Hoffmann-La Roche AG Production de protéines hétéromultimères
US11433140B2 (en) 2016-12-21 2022-09-06 Bayer Pharma Aktiengesellschaft Specific antibody drug conjugates (ADCs) having KSP inhibitors
US11478554B2 (en) 2016-12-21 2022-10-25 Bayer Pharma Aktiengesellschaft Antibody drug conjugates (ADCS) having enzymatically cleavable groups
EP4119579A1 (fr) 2007-05-31 2023-01-18 Genmab A/S Anticorps igg4 stables

Families Citing this family (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7060808B1 (en) * 1995-06-07 2006-06-13 Imclone Systems Incorporated Humanized anti-EGF receptor monoclonal antibody
US20030224001A1 (en) * 1998-03-19 2003-12-04 Goldstein Neil I. Antibody and antibody fragments for inhibiting the growth of tumors
ZA200007412B (en) * 1998-05-15 2002-03-12 Imclone Systems Inc Treatment of human tumors with radiation and inhibitors of growth factor receptor tyrosine kinases.
RU2294761C2 (ru) * 1999-05-14 2007-03-10 Имклон Систимс Инкопэритид Лечение резистентных опухолей человека антагонистами рецепторов фактора роста эпидермиса
AU9500201A (en) * 2000-08-09 2002-02-18 Imclone Systems Inc Treatment of hyperproliferative diseases with epidermal growth factor receptor antagonists
US20080008704A1 (en) * 2001-03-16 2008-01-10 Mark Rubin Methods of treating colorectal cancer with anti-epidermal growth factor antibodies
DE60234094D1 (de) 2001-05-11 2009-12-03 Ludwig Inst For Cancer Res Ltd Spezifische bindungsproteine und ihre verwendung
US20100056762A1 (en) 2001-05-11 2010-03-04 Old Lloyd J Specific binding proteins and uses thereof
US20050271663A1 (en) * 2001-06-28 2005-12-08 Domantis Limited Compositions and methods for treating inflammatory disorders
WO2004058821A2 (fr) * 2002-12-27 2004-07-15 Domantis Limited Ligand
WO2003002609A2 (fr) * 2001-06-28 2003-01-09 Domantis Limited Ligand
AU2003222568B2 (en) 2002-01-11 2009-05-07 Bioasis Technologies, Inc. Use of P97 as an enzyme delivery system for the delivery of therapeutic lysosomal enzymes
US20090042291A1 (en) * 2002-03-01 2009-02-12 Xencor, Inc. Optimized Fc variants
US7662925B2 (en) * 2002-03-01 2010-02-16 Xencor, Inc. Optimized Fc variants and methods for their generation
CN1678634A (zh) * 2002-06-28 2005-10-05 多曼蒂斯有限公司 免疫球蛋白单个变体抗原结合区及其特异性构建体
US9321832B2 (en) * 2002-06-28 2016-04-26 Domantis Limited Ligand
PT2314629E (pt) * 2002-07-18 2014-01-22 Merus B V Produção recombinante de misturas de anticorpos
USRE47770E1 (en) 2002-07-18 2019-12-17 Merus N.V. Recombinant production of mixtures of antibodies
DE10303974A1 (de) 2003-01-31 2004-08-05 Abbott Gmbh & Co. Kg Amyloid-β(1-42)-Oligomere, Verfahren zu deren Herstellung und deren Verwendung
US8388955B2 (en) * 2003-03-03 2013-03-05 Xencor, Inc. Fc variants
US20090010920A1 (en) * 2003-03-03 2009-01-08 Xencor, Inc. Fc Variants Having Decreased Affinity for FcyRIIb
EP1622941A2 (fr) * 2003-03-20 2006-02-08 ImClone Systems Incorporated Procede de production d'un anticorps contre le recepteur du facteur de croissance epidermique
ES2408582T3 (es) 2003-05-30 2013-06-21 Merus B.V. Biblioteca de Fab para la preparación de una mezcla de anticuerpos
US20100069614A1 (en) 2008-06-27 2010-03-18 Merus B.V. Antibody producing non-human mammals
US8101720B2 (en) 2004-10-21 2012-01-24 Xencor, Inc. Immunoglobulin insertions, deletions and substitutions
US9714282B2 (en) 2003-09-26 2017-07-25 Xencor, Inc. Optimized Fc variants and methods for their generation
GB0324368D0 (en) * 2003-10-17 2003-11-19 Univ Cambridge Tech Polypeptides including modified constant regions
EP1737971B1 (fr) 2004-01-20 2017-08-16 Merus N.V. Mélanges de proteines de liason
US7767792B2 (en) * 2004-02-20 2010-08-03 Ludwig Institute For Cancer Research Ltd. Antibodies to EGF receptor epitope peptides
AU2005224267B2 (en) * 2004-03-19 2011-07-21 Imclone Llc Human anti-epidermal growth factor receptor antibody
EP2314618A3 (fr) 2004-11-12 2011-10-19 Xencor Inc. Variants de Fc avec une liaison altérée à FcRn
US8367805B2 (en) * 2004-11-12 2013-02-05 Xencor, Inc. Fc variants with altered binding to FcRn
US8546543B2 (en) 2004-11-12 2013-10-01 Xencor, Inc. Fc variants that extend antibody half-life
US8802820B2 (en) 2004-11-12 2014-08-12 Xencor, Inc. Fc variants with altered binding to FcRn
PL1871805T3 (pl) * 2005-02-07 2020-03-31 Roche Glycart Ag Cząsteczki wiążące antygen, które wiążą egfr, wektory kodujące te cząsteczki oraz ich zastosowania
CA2605781A1 (fr) * 2005-05-09 2007-04-12 Glycart Biotechnology Ag Molecules de liaison a l'antigene possedant des zones fc modifiees et une liaison alteree aux recepteurs fc
US7449442B2 (en) * 2005-07-12 2008-11-11 Children's Medical Center Corporation EGFR inhibitors promote axon regeneration
US7612181B2 (en) * 2005-08-19 2009-11-03 Abbott Laboratories Dual variable domain immunoglobulin and uses thereof
US20090215992A1 (en) * 2005-08-19 2009-08-27 Chengbin Wu Dual variable domain immunoglobulin and uses thereof
JP5376948B2 (ja) * 2005-09-13 2013-12-25 ナショナル リサーチ カウンシル オブ カナダ 腫瘍細胞活性を調節する方法及び組成物
CA2624189A1 (fr) 2005-10-03 2007-04-12 Xencor, Inc. Variants de fc dotes de proprietes de liaison aux recepteurs fc optimisees
AU2006319358B2 (en) 2005-11-30 2012-01-19 AbbVie Deutschland GmbH & Co. KG Anti-Abeta globulomer antibodies, antigen-binding moieties thereof, corresponding hybridomas, nucleic acids, vectors, host cells, methods of producing said antibodies, compositions comprising said antibodies, uses of said antibodies and methods of using said antibodies
RS53270B2 (sr) 2005-11-30 2018-05-31 Abbvie Deutschland Monoklonalna antitela protiv amiloidnog beta proteina i njihova upotreba
AU2006321364B2 (en) * 2005-12-01 2011-11-10 Domantis Limited Noncompetitive domain antibody formats that bind Interleukin 1 Receptor type 1
AR062223A1 (es) * 2006-08-09 2008-10-22 Glycart Biotechnology Ag Moleculas de adhesion al antigeno que se adhieren a egfr, vectores que los codifican, y sus usos de estas
WO2008045373A2 (fr) * 2006-10-06 2008-04-17 Amgen Inc. Formulations stables
ES2925992T3 (es) * 2006-10-20 2022-10-20 Amgen Inc Formulaciones estables de polipéptidos
US8455626B2 (en) 2006-11-30 2013-06-04 Abbott Laboratories Aβ conformer selective anti-aβ globulomer monoclonal antibodies
CN104013956B (zh) 2007-01-25 2018-12-18 达娜-法勃肿瘤研究所公司 抗egfr抗体在治疗egfr突变体介导的疾病中的用途
EP2486928A1 (fr) 2007-02-27 2012-08-15 Abbott GmbH & Co. KG Procédé pour le traitement des amyloses
WO2008115404A1 (fr) 2007-03-15 2008-09-25 Ludwing Institute For Cancer Research Procédé de traitement utilisant des anticorps d'egfr et des inhibiteurs de src, et formulations en rapport
BRPI0809594A2 (pt) * 2007-04-03 2019-08-27 Micromet Ag polipeptídeo, seqüência de ácido nucléico, vetor, hospedeiro, processo para a produção de um polipeptídeo, composição farmacêutica, uso de um polipeptídeo, método para prevenção, tratamento ou melhora de uma doença, em um indivíduo com necessidade do mesmo, kit, método para a identificação de um polipeptídeo(s)
MX2009010611A (es) * 2007-04-03 2010-03-26 Micromet Ag Enlazadores biespecificos, especificos para especies.
EA200901301A1 (ru) * 2007-06-06 2010-06-30 Домантис Лимитед Полипептиды, вариабельные домены антител и антагонисты
US20100322939A1 (en) * 2007-06-21 2010-12-23 Genmab A/S Novel methods for treating egfr-associated tumors
MX2010001757A (es) 2007-08-14 2010-09-14 Ludwig Inst Cancer Res Anticuerpo monoclonal 175 que activa el receptor egf y derivados y usos del mismo.
ES2742268T3 (es) 2007-12-26 2020-02-13 Xencor Inc Variantes de Fc con unión alterada a FcRn
JP6014706B2 (ja) * 2008-02-14 2016-10-25 株式会社イーベック hGM−CSFに結合するモノクローナル抗体および前記抗体を含む医薬組成物
EP2274437B1 (fr) 2008-04-10 2015-12-23 Cell Signaling Technology, Inc. Compositions et procédés pour la détection des mutations d'egfr en cas de cancer
US20100260668A1 (en) * 2008-04-29 2010-10-14 Abbott Laboratories Dual Variable Domain Immunoglobulins and Uses Thereof
EP2282769A4 (fr) 2008-04-29 2012-04-25 Abbott Lab Immunoglobulines à double domaine variable et utilisations
RU2010153580A (ru) 2008-06-03 2012-07-20 Эбботт Лэборетриз (Us) Иммуноглобулины с двумя вариабельными доменами и их применение
CA2725666A1 (fr) 2008-06-03 2009-12-10 Abbott Laboratories Immunoglobulines a double domaine variable et leurs utilisations
CN101602808B (zh) * 2008-06-12 2012-06-20 上海市肿瘤研究所 特异性结合蛋白及其使用
JP5674654B2 (ja) 2008-07-08 2015-02-25 アッヴィ・インコーポレイテッド プロスタグランジンe2二重可変ドメイン免疫グロブリンおよびその使用
AU2013202400B2 (en) * 2008-07-16 2014-10-09 Institute For Research In Biomedicine Human cytomegalovirus neutralizing antibodies and use thereof
LT2842573T (lt) * 2008-11-07 2017-12-11 Galaxy Biotech, Llc Monokloniniai antikūnai prieš fibroblastų augimo faktoriaus receptorių-2
MX2011005953A (es) * 2008-12-04 2011-08-17 Abbott Lab Inmunoglobulinas de dominio variable dual y usos de las mismas.
US8835610B2 (en) 2009-03-05 2014-09-16 Abbvie Inc. IL-17 binding proteins
TW201109438A (en) * 2009-07-29 2011-03-16 Abbott Lab Dual variable domain immunoglobulins and uses thereof
TW201119673A (en) 2009-09-01 2011-06-16 Abbott Lab Dual variable domain immunoglobulins and uses thereof
US9493578B2 (en) 2009-09-02 2016-11-15 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
AR078161A1 (es) 2009-09-11 2011-10-19 Hoffmann La Roche Formulaciones farmaceuticas muy concentradas de un anticuerpo anti cd20. uso de la formulacion. metodo de tratamiento.
TW201119676A (en) 2009-10-15 2011-06-16 Abbott Lab Dual variable domain immunoglobulins and uses thereof
UY32979A (es) * 2009-10-28 2011-02-28 Abbott Lab Inmunoglobulinas con dominio variable dual y usos de las mismas
CN101875695B (zh) * 2009-11-11 2012-07-04 中国人民解放军军事医学科学院生物工程研究所 一种抗体及其编码基因与应用
CN101875696B (zh) * 2009-11-11 2012-02-08 中国人民解放军军事医学科学院生物工程研究所 一种抗体及其制备方法与应用
AU2010324506B2 (en) 2009-11-24 2015-02-26 Alethia Biotherapeutics Inc. Anti-clusterin antibodies and antigen binding fragments and their use to reduce tumor volume
US20110189178A1 (en) * 2010-02-04 2011-08-04 Xencor, Inc. Immunoprotection of Therapeutic Moieties Using Enhanced Fc Regions
MX336196B (es) 2010-04-15 2016-01-11 Abbvie Inc Proteinas de union a amiloide beta.
HUE033063T2 (hu) 2010-05-14 2017-11-28 Abbvie Inc IL-1 kötõ fehérjék
WO2011162904A2 (fr) * 2010-05-24 2011-12-29 Marek Malecki Biomarqueurs à domaines multiples pour la détection, le diagnostic et la thérapie du cancer
WO2011156617A2 (fr) 2010-06-09 2011-12-15 Aveo Pharmaceuticals, Inc. Anticorps anti-egfr
JP5953303B2 (ja) 2010-07-29 2016-07-20 ゼンコア インコーポレイテッド 改変された等電点を有する抗体
CA2807014A1 (fr) 2010-08-03 2012-02-09 Abbvie Inc. Immunoglobulines a double domaine variable et utilisations associees
WO2012024187A1 (fr) 2010-08-14 2012-02-23 Abbott Laboratories Protéines de liaison bêta-amyloïdes
CA2809433A1 (fr) 2010-08-26 2012-03-01 Abbvie Inc. Immunoglobulines a deux domaines variables et leurs utilisations
WO2012047225A2 (fr) * 2010-10-08 2012-04-12 The General Hospital Corporation Méthodes de traitement de la fibrose hépatique et de la pré-cirrhose par inhibiteurs du récepteur des facteurs de croissance épidermique
BR112013010544A2 (pt) 2010-10-29 2016-08-02 Immunogen Inc moléculas de ligação ao egfr e imunoconjugados das mesmas
BR112013010569A2 (pt) * 2010-10-29 2017-07-04 Immunogen Inc moléculas de ligação de egfr não antagonísticas e imunoconjugados das mesma
RU2627171C2 (ru) 2010-12-21 2017-08-03 Эббви Инк. Il-1 альфа и бета биспецифические иммуноглобулины с двойными вариабельными доменами и их применение
KR102001686B1 (ko) * 2011-04-07 2019-07-18 암젠 인크 신규한 egfr 결합 단백질
CN102262155B (zh) * 2011-04-12 2013-10-09 百泰生物药业有限公司 重组人表皮生长因子生物学活性测定方法及其应用
PT2717917T (pt) 2011-07-05 2016-07-27 Bioasis Technologies Inc Conjugados de anticorpos p97
NO2739649T3 (fr) 2011-08-05 2018-02-24
US9273143B2 (en) 2011-09-30 2016-03-01 Regeneron Pharmaceuticals, Inc. Methods and compositions comprising a combination of an anti-ErbB3 antibody and an anti-EGFR antibody
EP2760893B1 (fr) 2011-09-30 2018-09-12 Regeneron Pharmaceuticals, Inc. Anticorps anti-erbb3 et leurs utilisations
US10851178B2 (en) 2011-10-10 2020-12-01 Xencor, Inc. Heterodimeric human IgG1 polypeptides with isoelectric point modifications
CA2856411A1 (fr) 2011-11-21 2013-05-30 Immunogen, Inc. Methode de traitement de tumeurs resistantes aux therapies egfr par un conjugue anticorps egfr-agent cytotoxique
PT2782598T (pt) * 2011-11-23 2020-09-02 In3Bio Ltd Codan Services Ltd Proteínas recombinantes e suas utilizações terapêuticas
JP6180425B2 (ja) 2011-11-23 2017-08-23 メディミューン,エルエルシー Her3に特異的な結合分子及びそれらの使用
CN103172741B (zh) * 2011-12-20 2018-04-27 智翔(上海)医药科技有限公司 全人源抗egfr抗体
BR112014015851A2 (pt) 2011-12-30 2019-09-24 Abbvie Inc proteínas de ligação específicas duplas direcionadas contra il-13 e/ou il-17
RU2650770C2 (ru) * 2012-03-27 2018-04-17 Грин Кросс Корпорейшн Эпитопы поверхностного антигена рецептора эпидермального фактора роста и их применение
HUE045944T2 (hu) 2012-04-20 2020-02-28 Merus Nv Eljárások és eszközök heterodimerikus IG-szerû molekulák elõállítására
US9844582B2 (en) 2012-05-22 2017-12-19 Massachusetts Institute Of Technology Synergistic tumor treatment with extended-PK IL-2 and therapeutic agents
CA2875989A1 (fr) 2012-06-08 2013-12-12 Sutro Biopharma, Inc. Anticorps comprenant des residus d'acides amines non endogenes specifiques d'un site, leurs procedes de preparation et leurs procedes d'utilisation
TWI641619B (zh) 2012-06-25 2018-11-21 美商再生元醫藥公司 抗-egfr抗體及其用途
US9670276B2 (en) 2012-07-12 2017-06-06 Abbvie Inc. IL-1 binding proteins
AU2013296557B2 (en) 2012-07-31 2019-04-18 Bioasis Technologies Inc. Dephosphorylated lysosomal storage disease proteins and methods of use thereof
HUE045227T2 (hu) 2012-08-31 2019-12-30 Sutro Biopharma Inc Azido csoportot tartalmazó módosított aminosavak
SG11201503412RA (en) 2012-11-01 2015-05-28 Abbvie Inc Anti-vegf/dll4 dual variable domain immunoglobulins and uses thereof
CA3211863A1 (fr) 2013-01-14 2014-07-17 Xencor, Inc. Nouvelles proteines heterodimeres
US10487155B2 (en) 2013-01-14 2019-11-26 Xencor, Inc. Heterodimeric proteins
US11053316B2 (en) 2013-01-14 2021-07-06 Xencor, Inc. Optimized antibody variable regions
US10131710B2 (en) 2013-01-14 2018-11-20 Xencor, Inc. Optimized antibody variable regions
US10968276B2 (en) 2013-03-12 2021-04-06 Xencor, Inc. Optimized anti-CD3 variable regions
US9701759B2 (en) 2013-01-14 2017-07-11 Xencor, Inc. Heterodimeric proteins
US9605084B2 (en) 2013-03-15 2017-03-28 Xencor, Inc. Heterodimeric proteins
WO2014113510A1 (fr) 2013-01-15 2014-07-24 Xencor, Inc. Elimination rapide de complexes antigéniques à l'aide de nouveaux anticorps
RU2528414C1 (ru) 2013-01-25 2014-09-20 Закрытое Акционерное Общество "Фарм-Синтез" Циклический октапептид, радиофармацевтическое средство на его основе и способ применения радиофармацевтического средства для получения лекарственных (фармацевтических) средств для лечения новообразований, экспрессирующих соматостатиновые рецепторы
NZ711373A (en) 2013-03-13 2020-07-31 Bioasis Technologies Inc Fragments of p97 and uses thereof
US10106624B2 (en) 2013-03-15 2018-10-23 Xencor, Inc. Heterodimeric proteins
CA3093606A1 (fr) 2013-03-15 2014-09-18 Xencor, Inc. Proteines heterodimetriques pour l'induction de cellules t
CN105324396A (zh) 2013-03-15 2016-02-10 艾伯维公司 针对IL-1β和/或IL-17的双重特异性结合蛋白
US10519242B2 (en) 2013-03-15 2019-12-31 Xencor, Inc. Targeting regulatory T cells with heterodimeric proteins
US10858417B2 (en) 2013-03-15 2020-12-08 Xencor, Inc. Heterodimeric proteins
US9764039B2 (en) 2013-07-10 2017-09-19 Sutro Biopharma, Inc. Antibodies comprising multiple site-specific non-natural amino acid residues, methods of their preparation and methods of their use
AU2014312190A1 (en) 2013-08-28 2016-02-18 Bioasis Technologies Inc. CNS-targeted conjugates of antibodies
WO2015048008A2 (fr) 2013-09-24 2015-04-02 Medimmune, Llc Molécules de liaison spécifiques de her3 et utilisation desdites molécules
WO2015054658A1 (fr) 2013-10-11 2015-04-16 Sutro Biopharma, Inc. Acides aminés modifiés comprenant des groupes fonctionnels de tétrazine, procédés de préparation et procédés d'utilisation associés
WO2015117121A1 (fr) 2014-02-03 2015-08-06 Bioasis Technologies, Inc. Protéines hybrides p97
WO2015126729A1 (fr) 2014-02-19 2015-08-27 Bioasis Technologies, Inc. Protéines de fusion p97-ids
SG10202008629XA (en) 2014-03-28 2020-10-29 Xencor Inc Bispecific antibodies that bind to cd38 and cd3
US10745490B2 (en) 2014-04-11 2020-08-18 Celldex Therapeutics, Inc. Anti-ErbB antibodies and methods of use thereof
EP3137610B1 (fr) 2014-05-01 2019-03-06 Bioasis Technologies, Inc. Conjugués p97-polynucléotides
US20170216403A1 (en) 2014-08-12 2017-08-03 Massachusetts Institute Of Technology Synergistic tumor treatment with il-2, a therapeutic antibody, and an immune checkpoint blocker
LT3223845T (lt) 2014-11-26 2021-08-25 Xencor, Inc. Heterodimeriniai antikūnai, kurie suriša cd3 ir cd20
EA037065B1 (ru) 2014-11-26 2021-02-01 Ксенкор, Инк. Гетеродимерные антитела, связывающие cd3 и cd38
US10259887B2 (en) 2014-11-26 2019-04-16 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
WO2016094881A2 (fr) 2014-12-11 2016-06-16 Abbvie Inc. Protéines de liaison à lrp-8
EP3237449A2 (fr) 2014-12-22 2017-11-01 Xencor, Inc. Anticorps trispécifiques
US10227411B2 (en) 2015-03-05 2019-03-12 Xencor, Inc. Modulation of T cells with bispecific antibodies and FC fusions
TW201710286A (zh) 2015-06-15 2017-03-16 艾伯維有限公司 抗vegf、pdgf及/或其受體之結合蛋白
CN108135968A (zh) 2015-08-28 2018-06-08 阿穆尼克斯运营公司 嵌合多肽组装体及其制备和使用方法
PL3377103T3 (pl) * 2015-11-19 2021-10-04 Revitope Limited Komplementacja funkcjonalnego fragmentu przeciwciała dla dwuskładnikowego układu do przekierowanego zabijania niepożądanych komórek
US11623957B2 (en) 2015-12-07 2023-04-11 Xencor, Inc. Heterodimeric antibodies that bind CD3 and PSMA
WO2017201488A1 (fr) 2016-05-20 2017-11-23 Harpoon Therapeutics, Inc. Protéine de liaison à l'albumine sérique à domaine unique
US11623958B2 (en) 2016-05-20 2023-04-11 Harpoon Therapeutics, Inc. Single chain variable fragment CD3 binding proteins
US10787518B2 (en) 2016-06-14 2020-09-29 Xencor, Inc. Bispecific checkpoint inhibitor antibodies
US11098107B2 (en) 2016-06-15 2021-08-24 Sutro Biopharma, Inc. Antibodies with engineered CH2 domains, compositions thereof and methods of using the same
CA3029328A1 (fr) 2016-06-28 2018-01-04 Xencor, Inc. Anticorps heterodimeriques qui se lient au recepteur 2 de la somatostatine
US10793632B2 (en) 2016-08-30 2020-10-06 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
MX2019004327A (es) 2016-10-14 2019-10-14 Xencor Inc Proteinas de fusion heterodimericas biespecificas que contienen proteinas de fusion fc il-15/il-15ra y fragmentos de anticuerpo pd-1.
WO2018160754A2 (fr) 2017-02-28 2018-09-07 Harpoon Therapeutics, Inc. Protéine monovalente inductible de fixation d' antigène
KR102376863B1 (ko) 2017-05-12 2022-03-21 하푼 테라퓨틱스, 인크. 메소텔린 결합 단백질
MA49517A (fr) 2017-06-30 2020-05-06 Xencor Inc Protéines de fusion fc hétérodimères ciblées contenant il-15/il-15ra et domaines de liaison à l'antigène
WO2019094637A1 (fr) 2017-11-08 2019-05-16 Xencor, Inc. Anticorps bispécifiques et monospécifiques utilisant de nouvelles séquences anti-pd-1
US10981992B2 (en) 2017-11-08 2021-04-20 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
SG11202005732XA (en) 2017-12-19 2020-07-29 Xencor Inc Engineered il-2 fc fusion proteins
WO2019195623A2 (fr) 2018-04-04 2019-10-10 Xencor, Inc. Anticorps hétérodimères qui se lient à la protéine d'activation des fibroblastes
WO2019195959A1 (fr) 2018-04-08 2019-10-17 Cothera Biosciences, Inc. Polythérapie pour cancers à mutation de braf
WO2019204665A1 (fr) 2018-04-18 2019-10-24 Xencor, Inc. Protéines de fusion hétérodimères ciblant pd-1 contenant des protéines de fusion fc d'il-15/il-15ra, domaines de liaison à l'antigène pd-1 et utilisations associées
EP3781598A1 (fr) 2018-04-18 2021-02-24 Xencor, Inc. Protéines de fusion hétérodimères ciblant tim-3 contenant des protéines de fusion fc d'il-15/il-15ra et domaines de liaison à l'antigène de tim-3
SG11202103022WA (en) 2018-09-25 2021-04-29 Harpoon Therapeutics Inc Dll3 binding proteins and methods of use
KR20210068478A (ko) 2018-09-28 2021-06-09 메사추세츠 인스티튜트 오브 테크놀로지 콜라겐-국재화된 면역조정성 분자 및 그의 방법
WO2020072821A2 (fr) 2018-10-03 2020-04-09 Xencor, Inc. Protéines de fusion fc hétérodimères d'il -12
WO2020154032A1 (fr) 2019-01-23 2020-07-30 Massachusetts Institute Of Technology Schéma posologique de dosage d'immunothérapie combinée pour un blocage de points de contrôle immunitaires
KR20210134725A (ko) 2019-03-01 2021-11-10 젠코어 인코포레이티드 Enpp3과 cd3에 결합하는 이종이량체 항체
WO2020252043A1 (fr) 2019-06-10 2020-12-17 Sutro Biopharma, Inc. Composés 5h-pyrrolo[3,2-d]pyrimidine-2,4-diamino et conjugués d'anticorps associés
US11246906B2 (en) 2019-06-11 2022-02-15 Alkermes Pharma Ireland Limited Compositions and methods for subcutaneous administration of cancer immunotherapy
JP2022536800A (ja) 2019-06-17 2022-08-18 ストロ バイオファーマ インコーポレーテッド Toll様受容体(tlr)7/8アゴニストとしての1-(4-(アミノメチル)ベンジル)-2-ブチル-2h-ピラゾロ[3,4-c]キノリン-4-アミン誘導体および関連化合物、ならびにがん療法および診断に使用するためのその抗体薬物コンジュゲート
JP2022538974A (ja) 2019-06-26 2022-09-07 マサチューセッツ インスチテュート オブ テクノロジー 免疫調節融合タンパク質-金属水酸化物錯体およびその方法
KR20220053587A (ko) * 2019-08-09 2022-04-29 에이투 바이오쎄라퓨틱스, 인크. 이형접합성 소실에 반응성인 세포 표면 수용체
WO2021178597A1 (fr) 2020-03-03 2021-09-10 Sutro Biopharma, Inc. Anticorps comprenant des étiquettes de glutamine spécifiques à un site, leurs procédés de préparation et d'utilisation
WO2021231976A1 (fr) 2020-05-14 2021-11-18 Xencor, Inc. Anticorps hétérodimères qui se lient à l'antigène membranaire spécifique de la prostate (psma) et cd3
CA3128035A1 (fr) 2020-08-13 2022-02-13 Bioasis Technologies, Inc. Polytherapies pour l'administration dans l'ensemble de la barriere hemato-encephalique
AU2021329375A1 (en) 2020-08-20 2023-04-20 A2 Biotherapeutics, Inc. Compositions and methods for treating ceacam positive cancers
CA3188862A1 (fr) 2020-08-20 2022-02-24 Carl Alexander Kamb Compositions et methodes de traitement de cancers positifs a la mesotheline
WO2022103983A2 (fr) 2020-11-11 2022-05-19 Sutro Biopharma, Inc. Composés de fluorénylméthyloxycarbonyle et de fluorénylméthylaminocarbonyle, conjugués protéines associés et méthodes d'utilisation
KR20230156079A (ko) 2021-03-09 2023-11-13 젠코어 인코포레이티드 Cd3과 cldn6에 결합하는 이종이량체 항체
WO2022192586A1 (fr) 2021-03-10 2022-09-15 Xencor, Inc. Anticorps hétérodimères qui se lient au cd3 et au gpc3
KR102415292B1 (ko) 2022-04-04 2022-07-01 (주)청수 고농도 복합 악취 처리시스템
US20240091365A1 (en) 2022-06-27 2024-03-21 Sutro Biopharma, Inc. Beta-glucuronide linker-payloads, protein conjugates thereof, and methods thereof
WO2024015229A1 (fr) 2022-07-15 2024-01-18 Sutro Biopharma, Inc. Charges utiles-lieurs clivables par une protéase/enzyme et conjugués protéiques

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943533A (en) 1984-03-01 1990-07-24 The Regents Of The University Of California Hybrid cell lines that produce monoclonal antibodies to epidermal growth factor receptor
US4954617A (en) * 1986-07-07 1990-09-04 Trustees Of Dartmouth College Monoclonal antibodies to FC receptors for immunoglobulin G on human mononuclear phagocytes
WO1989006692A1 (fr) 1988-01-12 1989-07-27 Genentech, Inc. Procede de traitement de cellules tumorales par inhibition de la fonction receptrice du facteur de croissance
US5470571A (en) 1988-01-27 1995-11-28 The Wistar Institute Method of treating human EGF receptor-expressing gliomas using radiolabeled EGF receptor-specific MAB 425
AU4128089A (en) 1988-09-15 1990-03-22 Rorer International (Overseas) Inc. Monoclonal antibodies specific to human epidermal growth factor receptor and therapeutic methods employing same
US5705157A (en) 1989-07-27 1998-01-06 The Trustees Of The University Of Pennsylvania Methods of treating cancerous cells with anti-receptor antibodies
US5459061A (en) 1990-01-26 1995-10-17 W. Alton Jones Cell Science Center, Inc. Hybridomas producing monoclonal antibodies which specifically bind to continuous epitope on the human EGF receptor and compete with EGF for binding to the EGF receptor
US5218090A (en) 1990-06-12 1993-06-08 Warner-Lambert Company EGF receptor truncates
US5874299A (en) 1990-08-29 1999-02-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993000917A1 (fr) 1991-07-05 1993-01-21 Seragen, Inc. Molecules ciblees sur un recepteur du facteur de croissance epidermique, et utilisees dans le traitement de l'arthrite inflammatoire
EP0586002B1 (fr) 1992-08-18 2000-01-19 CENTRO de IMMUNOLOGIA MOLECULAR Anticorps monoclonaux contre le récepteur du facteur épidermique de croissance, cellules et méthodes pour leur préparation et compositions qui les contiennent
DE4337197C1 (de) * 1993-10-30 1994-08-25 Biotest Pharma Gmbh Verfahren zur selektiven Herstellung von Hybridomazellinien, die monoklonale Antikörper mit hoher Zytotoxizität gegen humanes CD16-Antigen produzieren, sowie Herstellung bispezifischer monoklonaler Antikörper unter Verwendung derartiger monoklonaler Antikörper und des CD30-HRS-3-Antikörpers zur Therapie menschlicher Tumore
IT1271461B (it) 1993-12-01 1997-05-28 Menarini Ricerche Sud Spa Anticorpo monoclonale bispecifico anti-cd3/anti-egfr,processo per la produzione e suo uso.
GB9401182D0 (en) 1994-01-21 1994-03-16 Inst Of Cancer The Research Antibodies to EGF receptor and their antitumour effect
HU221001B1 (hu) * 1994-03-17 2002-07-29 Merck Patent Gmbh. Egyláncú anti-EGFR Fv-k és anti-EGFR ellenanyagok
PT706799E (pt) 1994-09-16 2002-05-31 Merck Patent Gmbh Imunoconjugados ii
US6538114B1 (en) * 1996-04-19 2003-03-25 Karolina Innovations Ab Human monoclonal antibodies specific for hepatitis C virus (HCV) E2 antigen
US5708156A (en) 1996-05-31 1998-01-13 Ilekis; John V. Epidermal growth factor receptor-like gene product and its uses
US6235883B1 (en) * 1997-05-05 2001-05-22 Abgenix, Inc. Human monoclonal antibodies to epidermal growth factor receptor
ATE322909T1 (de) 1998-12-21 2006-04-15 Ludwig Inst Cancer Res Antikörper gegen verkürzten vegf-d und deren verwendungen
MXPA02000962A (es) * 1999-07-29 2002-07-02 Medarex Inc Anticuerpos monoclonales humanos para her2/neu.
US6794132B2 (en) * 1999-10-02 2004-09-21 Biosite, Inc. Human antibodies
US6680209B1 (en) * 1999-12-06 2004-01-20 Biosite, Incorporated Human antibodies as diagnostic reagents
BR0110610A (pt) 2000-04-11 2003-04-29 Genentech Inc Anticorpos isolados, imunoconjugados, cadeias de polipeptìdeos, ácido nucléico isolado, vetor, célula hospedeira, processo de produção de anticorpo ou cadeia de polipeptìdeos, método de tratamento de disfunções em mamìferos, método de indução da apoptose de uma célula cancerosa, método para matar uma célula b, método para matar uma célula que expresse um receptor de erbb e usos dos anticorpos isolados
KR100480985B1 (ko) 2000-05-19 2005-04-07 이수화학 주식회사 표피 성장 인자 수용체에 대한 사람화된 항체
EP1170011A1 (fr) 2000-07-06 2002-01-09 Boehringer Ingelheim International GmbH Nouvelle utilisation des inhibiteurs de facteur de croissance épidermique
AU9500201A (en) 2000-08-09 2002-02-18 Imclone Systems Inc Treatment of hyperproliferative diseases with epidermal growth factor receptor antagonists

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HEINER ET AL., J. IMMUNOL. METHODS, vol. 248, 2001, pages 17 - 30

Cited By (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8853366B2 (en) 2001-01-17 2014-10-07 Emergent Product Development Seattle, Llc Binding domain-immunoglobulin fusion proteins
US8586041B2 (en) 2001-06-13 2013-11-19 Genmab A/S Human monoclonal antibodies to epidermal growth factor receptor (EGFR)
US9458236B2 (en) 2001-06-13 2016-10-04 Genmab A/S Human monoclonal antibodies to epidermal growth factor receptor (EGFR)
US7595378B2 (en) 2001-06-13 2009-09-29 Genmab A/S Human monoclonal antibodies to epidermal growth factor receptor (EGFR)
EP1572746A2 (fr) * 2002-12-16 2005-09-14 Genmab A/S Anticorps monoclonaux humains contre le recepteur de facteur de croissance epidermique (egfr)
EP1572746A4 (fr) * 2002-12-16 2006-06-07 Genmab As Anticorps monoclonaux humains contre le recepteur de facteur de croissance epidermique (egfr)
WO2004085474A3 (fr) * 2003-03-20 2004-12-23 Imclone Systems Inc Procede de production d'un anticorps contre le recepteur du facteur de croissance epidermique
WO2004085474A2 (fr) * 2003-03-20 2004-10-07 Imclone Systems Incorporated Procede de production d'un anticorps contre le recepteur du facteur de croissance epidermique
EP1786918A4 (fr) * 2004-07-17 2009-02-11 Imclone Systems Inc Nouveau anticorps bispecifique tetravalent
EP1786918A2 (fr) * 2004-07-17 2007-05-23 Imclone Systems, Inc. Nouveau anticorps bispecifique tetravalent
US10906970B2 (en) 2004-07-22 2021-02-02 Erasmus University Medical Centre Methods of making heavy chain only antibodies using transgenic animals
US9346877B2 (en) 2004-07-22 2016-05-24 Erasmus University Medical Centre Binding molecules
US8921522B2 (en) 2004-07-22 2014-12-30 Erasmus University Medical Centre Binding molecules
US9353179B2 (en) 2004-07-22 2016-05-31 Erasmus University Medical Centre Binding molecules
US8921524B2 (en) 2004-07-22 2014-12-30 Erasmus University Medical Centre Binding molecules
US7696320B2 (en) 2004-08-24 2010-04-13 Domantis Limited Ligands that have binding specificity for VEGF and/or EGFR and methods of use therefor
CN100362018C (zh) * 2005-03-02 2008-01-16 上海张江生物技术有限公司 重组抗egfr单克隆抗体
EP2551282A2 (fr) 2005-03-23 2013-01-30 Genmab A/S Anticorps diriges contre CD38 pour le traitement du myelome multiple
EP3312196A1 (fr) 2005-03-23 2018-04-25 Genmab A/S Anticorps dirigés contre cd38 pour le traitement du myélome multiple
EP2535355A2 (fr) 2005-03-23 2012-12-19 Genmab A/S Anticorps diriges contre CD38 pour le traitement du myelome multiple
EP2567976A2 (fr) 2005-03-23 2013-03-13 Genmab A/S Anticorps diriges contre CD38 pour le traitement du myelome multiple
EP3153525A1 (fr) 2005-03-23 2017-04-12 Genmab A/S Anticorps dirigés contre cd38 pour le traitement du myélome multiple
EP1877420A1 (fr) * 2005-05-04 2008-01-16 Duke University Polytherapie destinee au traitement du cancer
EP1877420A4 (fr) * 2005-05-04 2010-03-17 Univ Duke Polytherapie destinee au traitement du cancer
WO2007002223A3 (fr) * 2005-06-20 2007-04-19 Medarex Inc Anticorps cd19 et utilisations
US8097703B2 (en) 2005-06-20 2012-01-17 Medarex, Inc. CD19 antibodies and their uses
US9580506B2 (en) 2005-07-21 2017-02-28 Genmab A/S Potency assays for antibody drug substance binding to an Fc receptor
US10307481B2 (en) 2005-07-25 2019-06-04 Aptevo Research And Development Llc CD37 immunotherapeutics and uses thereof
US10143748B2 (en) 2005-07-25 2018-12-04 Aptevo Research And Development Llc B-cell reduction using CD37-specific and CD20-specific binding molecules
US9505845B2 (en) 2005-12-08 2016-11-29 E. R. Squibb & Sons, L.L.C. Treating lung cancer using human monoclonal antibodies to protein tyrosine kinase 7 (PTK7)
CN101058609B (zh) * 2006-05-26 2011-04-13 神州细胞工程有限公司 人源抗体及其表达
US8409577B2 (en) 2006-06-12 2013-04-02 Emergent Product Development Seattle, Llc Single chain multivalent binding proteins with effector function
WO2008003319A1 (fr) 2006-07-04 2008-01-10 Genmab A/S Molécules de liaison à cd20 pour le traitement de copd
EP3569245A1 (fr) 2006-09-26 2019-11-20 Genmab A/S Traitement combiné de tumeurs exprimant la cd38
EP3753576A1 (fr) 2006-09-26 2020-12-23 Genmab A/S Traitement combine de tumeurs exprimant la cd38
US7887805B2 (en) 2007-03-01 2011-02-15 Symphogen A/S Recombinant anti-epidermal growth factor receptor antibody compositions
US8414896B2 (en) 2007-03-01 2013-04-09 Symphogen A/S Recombinant anti-epidermal growth factor receptor antibody compositions
WO2008119353A1 (fr) * 2007-03-29 2008-10-09 Genmab A/S Anticorps bispécifiques et procédés de production de ceux-ci
US9212230B2 (en) 2007-03-29 2015-12-15 Genmab A/S Bispecific antibodies and methods for production thereof
EP2626372A1 (fr) 2007-03-29 2013-08-14 Genmab A/S Anticorps bispécifiques et procédés de production de ceux-ci
US10906991B2 (en) 2007-03-29 2021-02-02 Genmab A/S Bispecific antibodies and methods for production thereof
EP2615175A1 (fr) 2007-05-31 2013-07-17 Genmab A/S Animaux transgéniques produisant des anticorps humains monovalents et anticorps pouvant s'obtenir à partir de ces animaux
EP4119579A1 (fr) 2007-05-31 2023-01-18 Genmab A/S Anticorps igg4 stables
US9540450B2 (en) 2007-09-06 2017-01-10 Genmab A/S Methods and antibodies for treating cancer
WO2009030239A1 (fr) * 2007-09-06 2009-03-12 Genmab A/S Nouveaux procédés et anticorps destinés au traitement du cancer
US9101609B2 (en) 2008-04-11 2015-08-11 Emergent Product Development Seattle, Llc CD37 immunotherapeutic and combination with bifunctional chemotherapeutic thereof
US8663640B2 (en) 2008-08-29 2014-03-04 Symphogen A/S Methods using recombinant anti-epidermal growth factor receptor antibody compositions
US9365655B2 (en) 2009-03-24 2016-06-14 Erasmus University Medical Center Soluble heavy-chain only antibodies
US8883150B2 (en) 2009-03-24 2014-11-11 Erasmus University Medical Center Soluble “heavy-chain only” antibodies
KR101108642B1 (ko) 2009-09-29 2012-02-09 주식회사 녹십자 표피 성장 인자 수용체에 특이적으로 결합하는 항체
WO2011040668A1 (fr) * 2009-09-29 2011-04-07 Green Cross Corporation Anticorps se liant spécifiquement au récepteur du facteur de croissance épidermique
EP2483309A4 (fr) * 2009-09-29 2013-07-17 Green Cross Corp Anticorps se liant spécifiquement au récepteur du facteur de croissance épidermique
US8748175B2 (en) 2009-09-29 2014-06-10 Green Cross Corporation Antibodies specifically binding to the epidermal growth factor receptor
EP2483309A1 (fr) * 2009-09-29 2012-08-08 Green Cross Corporation Anticorps se liant spécifiquement au récepteur du facteur de croissance épidermique
WO2011131746A2 (fr) 2010-04-20 2011-10-27 Genmab A/S Protéines contenant des anticorps fc hétérodimères et leurs procédés de production
US10597464B2 (en) 2010-04-20 2020-03-24 Genmab A/S Heterodimeric antibody Fc-containing proteins and methods for production thereof
US9150663B2 (en) 2010-04-20 2015-10-06 Genmab A/S Heterodimeric antibody Fc-containing proteins and methods for production thereof
US11866514B2 (en) 2010-04-20 2024-01-09 Genmab A/S Heterodimeric antibody Fc-containing proteins and methods for production thereof
EP2560683B2 (fr) 2010-04-23 2022-07-20 F. Hoffmann-La Roche AG Production de protéines hétéromultimères
US11091553B2 (en) 2010-05-27 2021-08-17 Genmab A/S Monoclonal antibodies against HER2
US11046771B2 (en) 2010-05-27 2021-06-29 Genmab A/S Monoclonal antibodies against HER2
EP3613774A1 (fr) 2010-06-09 2020-02-26 Genmab A/S Anticorps diriges contre le cd38 humain
WO2011154453A1 (fr) 2010-06-09 2011-12-15 Genmab A/S Anticorps dirigés contre le cd38 humain
WO2012036392A2 (fr) * 2010-09-17 2012-03-22 주식회사 아이지세라피 Anticorps fab anti-récepteur de facteur de croissance épidermique humain et composition pharmaceutique pour le traitement de tumeurs le comprenant
WO2012036392A3 (fr) * 2010-09-17 2012-05-10 주식회사 아이지세라피 Anticorps fab anti-récepteur de facteur de croissance épidermique humain et composition pharmaceutique pour le traitement de tumeurs le comprenant
US11578141B2 (en) 2011-04-20 2023-02-14 Genmab A/S Bispecific antibodies against HER2 and CD3
WO2012143523A1 (fr) 2011-04-20 2012-10-26 Genmab A/S Anticorps bispécifiques contre her2
WO2012143524A2 (fr) 2011-04-20 2012-10-26 Genmab A/S Anticorps bispécifiques contre her2 et cd3
WO2012143495A2 (fr) 2011-04-21 2012-10-26 Bayer Intellectual Property Gmbh Nouveaux conjugués liant-principe actif (adc) et leur utilisation
WO2012143499A2 (fr) 2011-04-21 2012-10-26 Bayer Intellectual Property Gmbh Nouveaux conjugués liant-principe actif (adc) et leur utilisation
WO2012143496A2 (fr) 2011-04-21 2012-10-26 Bayer Intellectual Property Gmbh Nouveaux conjugués liant-principe actif (adc) et leur utilisation
WO2013004842A2 (fr) 2011-07-06 2013-01-10 Genmab A/S Variants d'anticorps et leurs utilisations
EP3970746A2 (fr) 2011-07-06 2022-03-23 Genmab B.V. Variants polypeptidiques et leurs utilisations
WO2013060867A2 (fr) 2011-10-27 2013-05-02 Genmab A/S Production de protéines hétérodimères
US11492371B2 (en) 2011-10-27 2022-11-08 Genmab A/S Production of heterodimeric proteins
US10344050B2 (en) 2011-10-27 2019-07-09 Genmab A/S Production of heterodimeric proteins
US9637543B2 (en) 2011-11-09 2017-05-02 The Uab Research Foundation HER3 antibodies and uses thereof
US9944707B2 (en) 2012-05-17 2018-04-17 Sorrento Therapeutics, Inc. Antibodies that bind epidermal growth factor receptor (EGFR)
US20210230301A1 (en) * 2012-07-06 2021-07-29 Genmab B.V. Dimeric protein with triple mutations
WO2014064682A1 (fr) * 2012-10-24 2014-05-01 Yeda Research And Development Co. Ltd. Combinaisons d'anticorps ciblant les récepteurs du facteur de croissance épidermique pour traiter le cancer
EP3584259A1 (fr) * 2012-10-24 2019-12-25 Yeda Research and Development Co., Ltd. Combinaisons d'anticorps ciblant les récepteurs du facteur de croissance épidermique pour traiter le cancer
KR101739489B1 (ko) * 2012-11-16 2017-05-24 샹하이 세럼 바이오테크놀로지 씨오, 엘티디. 인간 유래 항-인간 표피 생장인자 수용체 항체 및 그의 코딩 유전자와 용도
EP2921503A4 (fr) * 2012-11-16 2016-06-15 Shanghai Serum Biotechnology Co Ltd Anticorps humanisé dirigé contre le récepteur du facteur de croissance épidermique humain, gène codant pour ledit anticorps et ses applications
WO2014081954A1 (fr) 2012-11-21 2014-05-30 Janssen Biotech, Inc. Anticorps egfr/c-met bispécifiques
US9593164B2 (en) 2012-11-21 2017-03-14 Janssen Biotech, Inc. Bispecific EGFR/c-Met antibodies
US9695242B2 (en) 2012-11-21 2017-07-04 Janssen Biotech, Inc. Bispecific EGFR/c-Met antibodies
EP3447069A1 (fr) * 2012-11-21 2019-02-27 Janssen Biotech, Inc. Anticorps egfr/c-met bispécifiques
AU2019200441B2 (en) * 2012-11-21 2021-01-28 Janssen Biotech, Inc. Bispecific EGFR/c-Met antibodies
US9580508B2 (en) 2012-11-21 2017-02-28 Janssen Biotech, Inc. Bispecific EGFR/c-Met antibodies
EP4023670A1 (fr) * 2012-11-21 2022-07-06 Janssen Biotech, Inc. Molécules de liaison à domaine d'egfr et de c-met-fibronectine de type iii
EP2922872A4 (fr) * 2012-11-21 2016-07-06 Janssen Biotech Inc Anticorps egfr/c-met bispécifiques
EP3808767A1 (fr) * 2012-11-21 2021-04-21 Janssen Biotech, Inc. Anticorps egfr/c-met bispécifiques
AU2013347962B2 (en) * 2012-11-21 2018-10-25 Janssen Biotech, Inc. Bispecific EGFR/c-Met antibodies
WO2014108198A1 (fr) 2013-01-10 2014-07-17 Genmab B.V. Variantes de la région fc d'igg1 humaine et leurs utilisations
US10993420B2 (en) 2013-03-15 2021-05-04 Erasmus University Medical Center Production of heavy chain only antibodies in transgenic mammals
EP2985292A4 (fr) * 2013-04-07 2016-12-21 Genrix(Shanghai) Biopharmacertical Co Ltd Anticorps anti-récepteur du facteur de croissance épidermique
US9644031B2 (en) 2013-04-07 2017-05-09 Genrix (Shanghai) Biopharmacertical Co., Ltd. Epidermal growth factor receptor antibody
WO2015038984A2 (fr) 2013-09-12 2015-03-19 Halozyme, Inc. Anticorps anti-récepteur du facteur de croissance épidermique modifiés et procédés pour les utiliser
US10022453B2 (en) 2013-12-23 2018-07-17 Bayer Pharma Aktiengesellschaft Antibody drug conjugates (ADCs) with kinesin spindel protein (KSP)
US10941190B2 (en) 2014-05-06 2021-03-09 Genentech, Inc. Production of heteromultimeric proteins using mammalian cells
EP3659625A1 (fr) 2014-10-23 2020-06-03 Innate Pharma Traitement de cancers à l'aide d'agents anti-nkg2a
WO2016062851A1 (fr) 2014-10-23 2016-04-28 Innate Pharma Traitement des cancers au moyen d'agents anti-nkg2a
WO2016097300A1 (fr) 2014-12-19 2016-06-23 Genmab A/S Protéines hétérodimères bispécifiques de rongeurs
US10865253B2 (en) 2014-12-19 2020-12-15 Genmab A/S Rodent bispecific heterodimeric proteins
WO2016171365A1 (fr) * 2015-04-23 2016-10-27 신일제약주식회사 Fragment fab se liant spécifiquement à l'egfr
WO2016207089A1 (fr) 2015-06-22 2016-12-29 Bayer Pharma Aktiengesellschaft Conjugués anticorps-médicament (adc) et conjugués lieur-promédicament (apdc) à groupes enzymatiquement clivables
US11123439B2 (en) 2015-06-22 2021-09-21 Bayer Pharma Aktiengesellschaft Antibody drug conjugates (ADCS) and antibody prodrug conjugates (APDCS) with enzymatically cleavable groups
US10465011B2 (en) 2015-06-26 2019-11-05 Novartis Ag Factor XI antibodies and methods of use
WO2017005649A1 (fr) 2015-07-09 2017-01-12 Genmab A/S Anticorps bispécifiques et multispécifiques et procédé pour l'isolement de ceux-ci
US11352426B2 (en) 2015-09-21 2022-06-07 Aptevo Research And Development Llc CD3 binding polypeptides
WO2017060322A2 (fr) 2015-10-10 2017-04-13 Bayer Pharma Aktiengesellschaft Conjugué anticorps-médicament (adc) inhibiteur de ptefb
WO2017161206A1 (fr) 2016-03-16 2017-09-21 Halozyme, Inc. Conjugués contenant des anticorps à activité conditionnelle ou des fragments de liaison à un antigène associés, et procédés d'utilisation
WO2017162663A1 (fr) 2016-03-24 2017-09-28 Bayer Pharma Aktiengesellschaft Promédicaments de principes actifs cytotoxiques contenant des groupes fissibles par voie enzymatique
US11685714B2 (en) 2016-03-24 2023-06-27 Bayer Pharma Aktiengesellschaft Prodrugs of cytotoxic active agents having enzymatically cleavable groups
US10647780B2 (en) 2016-05-25 2020-05-12 Novartis Ag Reversal binding agents for anti-factor XI/XIa antibodies and uses thereof
US11001636B2 (en) 2016-06-15 2021-05-11 Bayer Pharma Aktiengesellschaft Specific antibody-drug-conjugates (ADCs) with KSP inhibitors and anti-CD123-antibodies
US11643469B2 (en) 2016-06-15 2023-05-09 Bayer Pharma Aktiengesellschaft Specific antibody-drug-conjugates (ADCs) with KSP inhibitors and anti-CD123-antibodies
US11478554B2 (en) 2016-12-21 2022-10-25 Bayer Pharma Aktiengesellschaft Antibody drug conjugates (ADCS) having enzymatically cleavable groups
US11433140B2 (en) 2016-12-21 2022-09-06 Bayer Pharma Aktiengesellschaft Specific antibody drug conjugates (ADCs) having KSP inhibitors
WO2018114798A1 (fr) 2016-12-21 2018-06-28 Bayer Aktiengesellschaft Promédicaments de principes actifs cytotoxiques contenant des groupes divisibles par voie enzymatique
US11660351B2 (en) 2016-12-21 2023-05-30 Bayer Aktiengesellschaft Antibody drug conjugates (ADCs) having enzymatically cleavable groups
US11168147B2 (en) 2016-12-23 2021-11-09 Novartis Ag Factor XI antibodies and methods of use
WO2018146317A1 (fr) 2017-02-10 2018-08-16 Genmab B.V. Variants polypeptidiques et ses utilisations
WO2019243626A1 (fr) 2018-06-22 2019-12-26 Genmab A/S Procédé de production d'un mélange contrôlé d'au moins deux anticorps différents
WO2020136147A1 (fr) 2018-12-26 2020-07-02 Innate Pharma Composés et méthodes de traitement du cancer de la tête et du cou
WO2021113212A1 (fr) 2019-12-02 2021-06-10 Celgene Corporation Thérapie pour le traitement du cancer

Also Published As

Publication number Publication date
BR0210405A (pt) 2005-04-19
BRPI0210405B8 (pt) 2021-05-25
CZ200438A3 (cs) 2004-06-16
EP1417232B1 (fr) 2014-12-03
AU2002345673B2 (en) 2007-04-26
WO2002100348A8 (fr) 2003-04-10
KR20090125840A (ko) 2009-12-07
CN1966525A (zh) 2007-05-23
US20030091561A1 (en) 2003-05-15
KR20040016883A (ko) 2004-02-25
NZ530212A (en) 2006-09-29
KR100945108B1 (ko) 2010-03-02
JP4298498B2 (ja) 2009-07-22
RU2004100834A (ru) 2005-03-27
RU2335507C2 (ru) 2008-10-10
JP2005501529A (ja) 2005-01-20
CA2450285C (fr) 2016-08-02
EP1417232A4 (fr) 2005-04-27
BRPI0210405B1 (pt) 2018-11-27
HK1064685A1 (en) 2005-02-04
US7247301B2 (en) 2007-07-24
EP1417232A2 (fr) 2004-05-12
MXPA03011365A (es) 2005-03-07
CN100497389C (zh) 2009-06-10
CN1610695A (zh) 2005-04-27
JP2009148282A (ja) 2009-07-09
IL159225A (en) 2009-09-01
HUP0600225A2 (hu) 2006-06-28
WO2002100348A3 (fr) 2003-02-27
CA2450285A1 (fr) 2002-12-19
HUP0600225A3 (en) 2010-01-28
IL159225A0 (en) 2004-06-01

Similar Documents

Publication Publication Date Title
US7247301B2 (en) Human monoclonal antibodies to epidermal growth factor receptor (EGFR)
US9458236B2 (en) Human monoclonal antibodies to epidermal growth factor receptor (EGFR)
EP1210372B1 (fr) Anticorps monoclonaux humains diriges contre her2/neu
EP1210374B1 (fr) Anticorps monoclonaux humains de l'antigene d'enveloppe prostatique specifique
AU2003205055B8 (en) Human monoclonal antibodies against CD30
AU2003224604B2 (en) Human monoclonal antibodies to prostate specific membrane antigen (PSMA)
AU2002345673A1 (en) Human monoclonal antibodies to epidermal growth factor receptor (EGFR)
AU2003224604A1 (en) Human monoclonal antibodies to prostate specific membrane antigen (PSMA)
EP1471938A2 (fr) Anticorps monoclonaux humains contre cd30
EP1710256A1 (fr) Anticorps monoclonaux humains de l'antigène d'enveloppe prostatique spécifique
AU2006201671A1 (en) Human monoclonal antibodies to HER2/neu

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: UNDER (30) REPLACE "69/298172" BY "60/298172"

WWE Wipo information: entry into national phase

Ref document number: 159225

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/011365

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2450285

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003503174

Country of ref document: JP

Ref document number: 1020037016294

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002345673

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 530212

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: PV2004-38

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 70/CHENP/2004

Country of ref document: IN

Ref document number: 2002744320

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002815939X

Country of ref document: CN

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2002744320

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2004-38

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 2002345673

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020097022335

Country of ref document: KR