WO2004108811A1 - Verfahren zur herstellung von expandierbaren thermoplastischen elastomeren - Google Patents

Verfahren zur herstellung von expandierbaren thermoplastischen elastomeren Download PDF

Info

Publication number
WO2004108811A1
WO2004108811A1 PCT/EP2004/006034 EP2004006034W WO2004108811A1 WO 2004108811 A1 WO2004108811 A1 WO 2004108811A1 EP 2004006034 W EP2004006034 W EP 2004006034W WO 2004108811 A1 WO2004108811 A1 WO 2004108811A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
thermoplastic
expandable
microspheres
tpu
Prior art date
Application number
PCT/EP2004/006034
Other languages
English (en)
French (fr)
Inventor
Marcus Leberfinger
Carsten GÜNTHER
Berend Eling
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to US10/558,417 priority Critical patent/US20060235095A1/en
Priority to EP04739588A priority patent/EP1636301A1/de
Priority to CN2004800157835A priority patent/CN1802408B/zh
Priority to MXPA05012694A priority patent/MXPA05012694A/es
Priority to JP2006508274A priority patent/JP2006527270A/ja
Publication of WO2004108811A1 publication Critical patent/WO2004108811A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G71/00Macromolecular compounds obtained by reactions forming a ureide or urethane link, otherwise, than from isocyanate radicals in the main chain of the macromolecule
    • C08G71/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2410/00Soles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/024Preparation or use of a blowing agent concentrate, i.e. masterbatch in a foamable composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/22Expandable microspheres, e.g. Expancel®
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2431/00Characterised by the use of copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, or carbonic acid, or of a haloformic acid

Definitions

  • Thermoplastic polyurethanes are semi-crystalline materials and belong to the class of thermoplastic elastomers. They are characterized by good strength, abrasion, tear resistance and chemical resistance, among other things, and can be produced in almost any hardness by suitable raw material composition.
  • the production takes place according to the known processes in the one-shot or prepolymer process on the belt system or on the reaction extruder.
  • the reaction components diisocyanate, long-chain diol and short-chain diol (chain extender) are combined together or in a specific order and brought to reaction.
  • the reactants are mixed in a ratio of NCO groups to the sum of all hydrogen atoms reacting with the NCO groups of 1: 0.9-1.2, preferably 1: 0.95-1.05, in particular in a ratio of 1: 1.
  • TPE thermoplastics
  • Chemical blowing agents such as citric acid, hydrogen carbonates or azodicarbonamides such as Celegoene are used as blowing agents; Tracel; Hydrocerols etc., ("Hydrocerols: chemical blowing and nucleating agents for plastics; processing instructions; injection molding; rigid PVC foam; foam extrusion; product range; Clariant March 2000";"new blowing agent developments in the field of injection molding; Lübke, G .; Holzberg , T .; seminars on plastics processing IKV; February 4, 2003 ”) or liquids that are inert due to physical blowing agents and evaporate under the foaming conditions, or expandable microspheres (eg Expancel ® from Akzo or microspheres from Lehmann & Voss).
  • thermoplastic polyurethanes with blowing agents.
  • chemical blowing agents lead to a comparatively very coarse foam structure and an increased formation of voids.
  • Expandable microspheres are hollow microspheres that consist of a thin plastic shell, for example polyacrylonitrile or copolymers thereof. These hollow microspheres are filled with gas, usually with hydrocarbons. The temperature acting in the thermoplastic processing softens the plastic cover and at the same time expands the enclosed gas. This leads to an expansion of the microspheres.
  • the expandability of the microspheres can be described by determining the TMA density [kg / m 3 ] (Stare Thermal Analysis System from Mettler Toledo; heating rate 20 ° C./min).
  • the TMA density is the minimum density that can be achieved at a certain temperature T msx under normal pressure before the microspheres collapse.
  • EP-A-1174459 the process described in WO 00/44821 is improved by adding a flow agent to the TPU. This was intended to improve the surface of the moldings and reduce the molding time.
  • a very narrow processing window is also noted. If this processing area is not met, the desired densities cannot be achieved, that is, the foam collapses, and, on the other hand, the formation of voids is increasingly observed, which becomes visible or even closed in the cross section of the molded article, for example a shoe sole visible sink marks on the surface.
  • the application of pressure in injection molding to compensate for such sink marks is not possible here, since this procedure leads to a rapid collapse or compression of the foam in the mold and would thus result in an insufficient reduction in density.
  • These disadvantages are very disruptive, particularly at low densities. Blowholes are comparatively large gas bubbles that stand out from their surrounding, finer foam structure and can be identified, for example, by touching them or by visible sink marks on the surface of the end product.
  • the object of this invention was to expand TPU with a density of ⁇ 1.2 g / cm 3 , preferably 0.3-1.0 g / cm 3 , particularly preferably 0.4-0.8 g / cm 3 , without formation blowholes, without sink marks, in a wide processing window in injection molding and extrusion through the use of a suitable blowing agent. Since the blowing agents to be used are mostly the cost-driving factors, the amount of blowing agents used should be reduced at the same time at comparable densities.
  • the expandable microspheres used have a TMA density of less than 10 kg / m 3 , preferably from 2 to 10 kg / m 3 and particularly preferably from 2 to 7 kg / m 3 , in particular between 2 and 6 kg / have m 3 .
  • the density of the end product is reduced.
  • the invention accordingly relates to a method for producing expanded TPU, comprising the steps a) mixing of blowing agents to form a TPU and optionally drying, b) thermoplastic processing of this mixture with expansion of the blowing agent,
  • expandable microspheres with a TMA density of less than 10 kg / m 3 , preferably 2-10 kg / m 3 and particularly preferably 2-7 kg / m 3 are used as blowing agents.
  • the invention further relates to expanded TPUs produced by this process. These preferably have a density of ⁇ 1.2 g / cm 3 , preferably 0.3-1.0 g / cm 3 , particularly preferably 0.4-0.8 g / cm 3 .
  • the invention further relates to expandable TPUs containing expandable microspheres with a TMA density of less than 10 kg / m 3 , preferably 2-10 kg / m 3 and particularly preferably 2-7 kg / m 3
  • microspheres according to the invention preferably have a diameter between 20 ⁇ m and 40 ⁇ m.
  • Corresponding microspheres are available from Akzo Nobel, Casco Products GmbH, Essen under the brand Expancel® 093 DU 120 (powder).
  • thermoplastic processing means any processing which is associated with melting the TPU.
  • the thermoplastic processing is carried out at 80-240 ° C., preferably at 120-230 ° C., particularly preferably at 170-220 ° C., on the Injection molding and extrusion systems or powder sintering systems known to those skilled in the art.
  • the content of expandable microspheres in the mixture depends on the desired density of the expanded TPU. Per 100 parts by weight of the TPU or TPU blend to be expanded, ie foamed, between 0.1 part by weight and 10 parts by weight, preferably between 0.2 part by weight and 6.5 Parts by weight of the expandable microspheres according to the invention are used.
  • Expandable TPU or expanded TPU are particularly preferred, the following
  • Components include:
  • TPU 0.5% by weight to 15% by weight, preferably between 2% by weight and 8% by weight
  • Microspheres masterbatch 0 to 10% by weight, preferably 0.1% to 2% by weight
  • Dye e.g. commonly known black paste or dye additions in the form of
  • the microspheres masterbatch preferably contains:
  • Carrier preferably thermoplastic carrier, for example the carrier materials shown later, particularly preferably EVA (ethylene vinyl acetate).
  • expandable microspheres used according to the invention, expanded TPUs which have a fine, void-free foam structure and free from sink marks are achieved over a wide processing range.
  • the reason for this could be that expandable microspheres with a low TMA density exert a higher internal pressure when the tool is filled, thus significantly reducing or preventing the risk of blowholes and sink marks, as is e.g. Even in conventional injection molding without the use of a blowing agent, this can only be achieved by applying external pressure.
  • TMA densities also allow the weight-based use of microspheres to be minimized with a comparable density. This leads to cost savings, since the microspheres are usually the price-determining factor with regard to the raw materials of the end product.
  • co-blowing agents can be dispensed with entirely by using the expandable microspheres used according to the invention. Nevertheless, it is possible that co-blowing agents can also be used in certain applications.
  • the expandable microspheres used according to the invention can, as stated, in the form of powder, and the application to the TPU granules can be carried out with or without a binder, such as 0.05-2% by weight mineral or paraffin oil, or preferably as masterbatches become.
  • a binder such as 0.05-2% by weight mineral or paraffin oil, or preferably as masterbatches become.
  • a masterbatch is to be understood that the expandable microspheres in a carrier, for example binders, waxes, or a thermoplastic, such as TPU, EVA (ethylene vinyl acetate), polyvinyl chloride, polyethylene, polypropylene, polyester, polystyrene, or thermoplastic rubber, or blends from this, preferably a carrier with a melt index (MFR; 190 ° C / 2.16 kg; ASTM D 1238) of 5-700 g / 10 min, preferably 50-600 g / 10 min, particularly preferably 150-500 g / 10 min and a melting point between 60 and 110 ° C, particularly preferably EVA, in granular form.
  • a carrier for example binders, waxes, or a thermoplastic, such as TPU, EVA (ethylene vinyl acetate), polyvinyl chloride, polyethylene, polypropylene, polyester, polystyrene, or thermoplastic rubber, or blends from this, preferably a carrier with a melt
  • thermoplastics with a very low melting point and very low viscosities or high melt indices are generally used, in order to thereby reduce the temperatures as low as possible master batch production to avoid premature expansion.
  • the use of such masterbatches avoids the formation of dust, such as occurs in the use and handling of expandable microspheres in powder form, and it is therefore possible to dispense with expensive explosion protection of the systems and buildings in which the expanded TPUs according to the invention are produced.
  • the homogeneous mixing of the expandable microspheres with the TPU is easier when using masterbatches.
  • the microspher masterbatches can be produced, for example, on kneaders, single-screw or twin-screw extruders.
  • TPU The usual and known compounds can be used as the TPU, as described, for example, in the plastics handbook, volume 7 "Polyurethane", Carl Hanser Verlag, Kunststoff, Vienna, 3rd edition 1993, pages 455 to 466.
  • TPUs with a melt index or MFR melt flow ratio; 190 ° C / 3.8 kg; DIN EN 1133) of 1 to 350 g / 10 min, preferably 30 to 150 g / 10 min, are preferably used.
  • MFR melt index or MFR (melt flow ratio; 190 ° C / 3.8 kg; DIN EN 1133) of 1 to 350 g / 10 min, preferably 30 to 150 g / 10 min, are preferably used.
  • MFR melt flow ratio; 190 ° C / 3.8 kg; DIN EN 1133
  • TPU can be understood to mean plasticizer-free and plasticizer-containing TPUs, in particular those with a content of 0-50% by weight, based on the weight of the mixture, of conventional plasticizers.
  • Compounds known for this purpose generally come as plasticizers, e.g. Phthalates and especially benzoates.
  • blends made of TPU with up to 70% by weight, based on the weight of the blend, of a further plastic from the group of thermoplastic plastics, in particular from the group of thermoplastic elastomers or rubbers can also be used for the process according to the invention.
  • Mixtures containing TPU and other thermoplastic elastomers between 99% by weight and 50% by weight of TPU and between 1% by weight and 50% by weight of another thermoplastic elastomer are preferred, particularly preferably between 90% by weight and 70 % By weight of TPU and between 10% by weight and 30% by weight of another thermoplastic elastomer.
  • thermoplastic elastomers for example rubber, for example butadiene-acrylonitrile copolymers, are preferably used.
  • the TPU is produced by the customary process by reacting diisocyanates with compounds having at least two hydrogen atoms reactive with isocyanate groups, preferably difunctional alcohols.
  • Typical aromatic, aliphatic and / or cycloaliphatic diisocyanates for example diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), tri, tetra, penta-, hexa-, hepta- and / or octamethylene diisocyanate, 2 -Methyl-pentamethylene-diisocyanate-1, 5, 2-ethyl-butylene-diisocyanate-1, 4, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane (isophorone diisocyanate, IPDI), 1, 4- and / or 1, 3-bis (isocyanatomethyl) cyclohexane (HXDI), 1, 4-cyclohexane diisocyanate, 1-methyl-2,4- and / or -2,6-cyclohexane diisocyanate, 4,4'-, 2,4
  • polyesterols 600 to 6000, in particular 800 to 4000, and preferably an average functionality of 1.8 to 2.6, preferably 1.9 to 2.2, in particular 2, are used, for example polyesterols, polyetherols and / or polycarbonate diols.
  • Polyester diols are preferably used, which are obtainable by reacting butanediol and hexanediol as the diol with adipic acid as the dicarboxylic acid, the weight ratio of butanediol to hexanediol preferably being 2 to 1.
  • polytetrahydrofuran with a molecular weight of 750 to 2500 g / mol, preferably 750 to 1200 g / mol.
  • chain extenders for example diamines and / or alkanediols having 2 to 10 carbon atoms in the alkylene radical, in particular ethylene glycol and / or 1,4-butanediol, and / or hexanediol and / or di- and / or tri- oxyalkylene glycols with 3 to 8 carbon atoms in the oxyalkylene radical, preferably corresponding oligo-polyoxypropylene glycols, it also being possible to use mixtures of the chain extenders.
  • diamines and / or alkanediols having 2 to 10 carbon atoms in the alkylene radical in particular ethylene glycol and / or 1,4-butanediol, and / or hexanediol and / or di- and / or tri- oxyalkylene glycols with 3 to 8 carbon atoms in the oxyalkylene radical, preferably corresponding oligo-polyoxypropylene
  • Preferred chain extenders are ethylene glycol and hexanediol, particularly preferably ethylene glycol.
  • Catalysts are usually used which accelerate the reaction between the NCO groups of the diisocyanates and the hydroxyl groups of the structural components, for example tertiary amines, such as triethylamine, dimethylcyclohexylamine, N-methylmorpholine, N, N'-dimethylpiperazine, 2- (dimethylaminoethoxy) - ethanol, diazabicyclo (2,2,2) octane and the like, and in particular organic metal Compounds such as titanium acid esters, iron compounds such as, for example, iron (III) acetyl acetonate, tin compounds such as tin diacetate, tin dilaurate or the tin dialkyl salts of aliphatic carboxylic acids such as dibutyltin diacetate, dibutyltin dilaurate or the like.
  • the catalysts are usually used in amounts of 0.0001 to 0.1 part by weight per 100 parts by weight of polyhydroxy
  • auxiliaries can also be added to the structural components.
  • examples include surface-active substances, flame retardants, nucleating agents, lubricants and mold release agents, dyes and pigments, inhibitors, stabilizers against hydrolysis, light, heat, oxidation or discoloration, protective agents against microbial degradation, inorganic and / or organic fillers, reinforcing agents and plasticizers.
  • isocyanate-reactive monofunctional compounds preferably monoalcohols.
  • the TPU is usually manufactured using customary processes, such as belt systems or reaction extruders.
  • the TPUs are mixed with the expandable microspheres and thermoplastic processed to the desired moldings. This can be done for example by means of injection molding, sintering or by means of extrusion.
  • the temperature during thermoplastic processing leads to an expansion of the expandable microspheres and thus to the formation of the expanded TPU.
  • the melt is preferably introduced into molds and solidified or recrystallized.
  • TPU or TPU blends with the expandable microspher powders can be done in simple plastic granule mixers such as Tumble mixers with or without previous application of 0.05 - 2% binder, e.g. Paraffin or mineral oil.
  • Mixing the TPU or TPU blends with the expandable microspher masterbatches can also be done in simple plastic granulate mixers such as Tumble mixers can be done mechanically or in simple plastic boxes by hand to create a so-called dry blend.
  • the expanded TPUs according to the invention can be used, for example, as foils, hoses, profiles, fibers, cables, shoe soles, other shoe parts, ear tags, automotive parts, agricultural products, electrical products, damping elements; armrests; Plastic furniture elements, ski boots, bumpers, rollers, ski goggles, powder slush surfaces can be used.
  • Shoe soles in particular those with a compact skin and a foamed core, in particular colored, in particular black colored shoe soles.
  • Light-resistant aliphatic TPUs or blends made from them can also be foamed according to the invention. Examples include products for automotive interiors and exteriors such as instrument panel surfaces, gear knobs, control elements and buttons, antennas and antenna feet, handles, housings, switches, cladding and cladding elements, etc.
  • the present invention thus also relates to expanded thermoplastic polyurethanes, in particular shoe soles, in particular with a compact skin and a foamed core, containing expanded microspheres with an original TMA density of less than 10 kg / m 3 .
  • 092MB120 microspheres masterbatch d Akzo consisting of 65% 092DU120 (microspheres powder from Akzo) in EVA as carrier
  • MB Masterbatch MB1 microspheres masterbatch consisting of 65% 093DU120 (microspheres powder from Akzo) in 35% EVA Escorene Ultra (from ExxonMobil) Melt Index 150 g / 10min (ASTM D1238) produced on a compounding system at 80 - 100 ° C
  • TMA-D TMA density measured on the microspheres powder incorporated in the masterbatch minimum achievable density [kg / m 3 ] until the microspheres collapse;
  • Type of thermoplastic processing S Injection molding on Klöckner Ferromatic; Tool temperature 25 ° C; Shoe tool;
  • CT460 Hydrocerol CT460; Clariant; chemical blowing agent masterbatch
  • S70A10W commercially available polyester TPU containing plasticizer from Elastogran GmbH; Application for e.g. B. shoe soles
  • Blend 1 blend of 80% by weight Elastollan ® S80A10 from Elastogran GmbH and 20% by weight Chemigum ® 615D from the company
  • microspheres powder or microspheres masterbatch is used.

Abstract

Gegenstand der Erfindung sind expandierbare thermoplastische Polyurethane, herstellbar durch Mischung von thermoplastischen Polyurethanen mit expandierbaren Mikrospheren, dadurch gekennzeichnet, dass die expandierbaren Mikrospheren eine TMA-Dichte von kleiner 10 kg/m3 aufweisen.

Description

Verfahren zur Herstellung von expandierbaren thermoplastischen Elastomeren
Beschreibung
Thermoplastische Polyurethane (TPU) sind teilkristalline Werkstoffe und gehören zu der Klasse der thermoplastischen Elastomere. Sie zeichnen sich unter anderem durch gute Festigkeiten, Abriebe, Weiterreißfestigkeiten und Chemikalienbeständigkeit aus, und können in nahezu beliebiger Härte durch geeignete Rohstoffzusammensetzung hergestellt werden.
Die Herstellung erfolgt nach den bekannten Verfahren im One-shot- oder Prepolymer- verfahren auf der Bandanlage oder auf dem Reaktionsextruder. Hierbei werden die Reaktionskomponenten Diisocyanat, langkettiges Diol und kurzkettiges Diol (Ketten- verlängerer) gemeinsam oder in bestimmter Reihenfolge vereinigt und zur Reaktion gebracht. Die Reaktionspartner werden in einem Verhältnis NCO-Gruppen zur Summe aller mit den NCO-Gruppen reagierenden Wasserstoffatomen von 1 : 0,9 - 1 ,2, vorzugsweise 1 : 0,95 - 1 ,05 insbesondere im Verhältnis 1 : 1 gemischt.
Es ist allgemein bekannt, thermoplastische Kunststoffe (TPE) unter Verwendung von Treibmitteln zu verschäumen. Insbesondere Polystyrol und Polyolefine werden in großem Umfang verschäumt.
Als Treibmittel kommen hierbei chemische Treibmittel wie Zitronensäure, Hydrogen- carbonate oder Azodicarbonamide, wie Celegoene; Tracel; Hydrocerole etc., („Hydro- cerole: Chemische Treib- und Nukleierungsmittel für Kunststoffe; Verarbeitungshinweise; Spritzguss; Hart-PVC-Schaum; Schaumextrusiuon; Produktprogramm; Clariant März 2000"; „Neue Treibmittelentwicklungen im Bereich Spritzguss; Lübke, G.; Holzberg, T.; Seminare zur Kunststoffverarbeitung IKV; 04. Februar 2003") oder durch physikalische Treibmittel inerte, bei den Verschäumbedingungen verdampfende Flüssigkeiten, oder expandierbare Mikrospheren (z.B. Expancel® der Akzo oder Mikrospheren von Lehmann & Voss) zum Einsatz. Auch Kombinationen aus chemischen Treibmitteln und expandierbaren Mikrospheren können eingesetzt werden (Foaming Plastics with Expancel Microspheres; Elfving, K.; Blowing Agent Systems: Formulations and Processing; Paper 9, Page 1 - 5; Mikrohohlkugeln aus Kunststoffen; N.N.; Kunst- Stoffe 82 (1992) 4 (36366).
Es sind auch Verfahren bekannt, thermoplastische Polyurethane mit Treibmitteln zu verschäumen. Im Falle von TPU führen chemische Treibmittel zu einer vergleichsweisen sehr groben Schaumstruktur und zu einer vermehrten Bildung von Lunkern. Zur Behebung dieses Mangels beschreibt EP-A-692516 ein Verfahren zur Herstellung von Schaumstoffen auf Basis von TPU, bei dem als Treibmittel eine Mischung von chemischen Treibmitteln und Mikrospheren vom Typ Expancel® eingesetzt wird.
Expandierbare Mikrospheren sind Mikrohohlkugeln, die aus einer dünnen Kunststoffhülle, beispielsweise Polyacrylnitril oder Copolymere hiervon, bestehen. Diese Mikrohohlkugeln sind mit Gas, in der Regel mit Kohlenwasserstoffen gefüllt. Durch die einwirkende Temperatur in der thermoplastischen Verarbeitung kommt es zu einer Erweichung der Kunststoffhülle und gleichzeitig zu einer Expansion des ein- geschlossenen Gases. Hierdurch kommt es zu einer Expansion der Mikrospheren. Die Expansionsfähigkeit der Mikrospheren kann durch die Bestimmung der TMA-Dichte [kg/m3] beschrieben werden (Stare Thermal Analysis System Fa. Mettler Toledo; Heizrate 20 °C/min). Die TMA-Dichte ist hierbei die minimal erreichbare Dichte bei einer bestimmten Temperatur Tmsx unter Normaldruck, bevor die Mikrospheren kollabieren.
In WO 00/44821 wird der Einsatz einer Treibmittelkombination aus Mikrospheren vom Typ Expancel® vorgeschlagen, bei der die Mikrospheren mit Kohlenwasserstoffen gefüllt sind.
In EP-A-1174459 wird das in WO 00/44821 beschriebene Verfahren verbessert, indem dem TPU ein Fließmittel zugesetzt wird. Damit sollte die Oberfläche der Formkörper verbessert und die Formzeit gesenkt werden.
In EP-A-1174458 soll der gleiche Effekt durch Zusatz von Plastif izierungsmitteln erreicht werden.
Es hat sich jedoch gezeigt, dass auch die nach diesen Verfahren hergestellten Formkörper eine vergleichsweise grobe Schaumstruktur und Lunker aufweisen.
Zudem wird ein sehr enges Verarbeitungsfenster festgestellt. Wird dieser Verarbeitungsbereich nicht getroffen, so können zum einen die angestrebten Dichten nicht erzielt werden, d.h., der Schaum kollabiert, und zum anderen wird vermehrt die Bildung von Lunkern beobachtet, die im Querschnitt des gefertigten Formkörpers, z.B. einer Schuhsohle, sichtbar wird oder sogar zu sichtbaren Einfallstellen an der Oberfläche führen. Die Anwendung von Nachdruck im Spritzguss zum Ausgleich solcher Einfallstellen ist hier nicht möglich, da diese Verfahrensweise zu einem schnellen Kollabieren oder Zusammenpressen des Schaums im Werkzeug führen und somit in einer ungenügenden Dichteerniedrigung resultieren würde. Diese Nachteile machen sich insbesondere bei geringen Dichten sehr störend bemerkbar. Lunker sind vergleichsweise große Gasblasen, die sich von ihrer umgebenden feineren Schaumstruktur abheben und etwa durch Tasten oder durch sichtbare Einfallstellen an der Oberfläche des Endproduktes auszumachen sind.
Aufgabe dieser Erfindung war es, expandierte TPU mit einer Dichte von <1 ,2 g/cm3, bevorzugt 0,3 - 1 ,0 g/cm3, besonders bevorzugt 0,4 - 0,8 g/cm3, ohne Bildung von Lunkern, ohne Einfallstellen, in einem weiten Verarbeitungsfenster im Spritzguss und in der Extrusion durch die Verwendung eines geeigneten Treibmittels herzustellen. Da die einzusetzenden Treibmittel zumeist die kostentreibenden Faktoren sind, sollte gleichzeitig, bei vergleichbaren Dichten, die eingesetzte Menge an Treibmittel reduziert werden.
Die Aufgabe konnte überraschend durch den Einsatz von expandierbaren Mikro- spheren, bevorzugt in Form von Pulver oder besonders bevorzugt gebunden als
Masterbatches, gelöst werden, wobei die eingesetzten expandierbaren Mikrospheren eine TMA-Dichte von kleiner 10 kg/m3, bevorzugt von 2 - 10 kg/m3 und besonders bevorzugt von 2 -7 kg/m3, insbesondere zwischen 2 und 6 kg/m3 aufweisen.
Es wurde festgestellt, dass durch die Verwendung von expandierbaren Mikrospheren mit einer TMA-Dichte von kleiner 10 kg/m3, bevorzugt von 2 - 10 kg/m3 und insbesondere bevorzugt von 2 - 7 kg/m3, in Pulverform oder Masterbatchform im Vergleich zu rein chemischen Treibmitteln oder Mischungen von chemischen Treibmitteln mit expandierbaren Mikrospheren, deren TMA-Dichte außerhalb des erfindungs- gemäßen Bereichs liegt, eine deutlich feinere Zellstruktur, keine Lunkerbildung und keine Bildung von Einfallstellen zu beobachten war und zudem das Verarbeitungsfenster, beispielsweise bezüglich der Temperatur, deutlich größer war.
Von besonderem Vorteil ist, dass neben den erfindungsgemäßen expandierbaren Mikrospheren keine weiteren Treibmittel eingesetzt werden müssen. Bevorzugt werden somit zusätzlich zu den expandierbaren Mikrospheres, insbesondere zusätzlich zu den erfindungsgemäßen expandierbaren Mikrospheren keine weiteren Treibmittel, insbesondere keine chemischen Treibmittel, eingesetzt.
Werden die TPU mit solchen Mikrospheren versetzt und thermoplastisch verarbeitet, so kommt es zu einer Dichtereduzierung des Endproduktes.
Gegenstand der Erfindung ist demzufolge ein Verfahren zur Herstellung von expandierten TPU, umfassend die Schritte a) Mischen von Treibmitteln zu einem TPU und gegebenenfalls Trocknung, b) thermoplastische Verarbeitung dieser Mischung unter Expansion des Treibmittels,
dadurch gekennzeichnet, dass als Treibmittel expandierbare Mikrospheren mit einer TMA-Dichte von kleiner 10 kg/m3, bevorzugt von 2 - 10 kg/m3 und insbesondere bevorzugt von 2 - 7 kg/m3 eingesetzt werden.
Gegenstand der Erfindung sind weiterhin nach diesem Verfahren hergestellte expandierte TPU. Diese haben vorzugsweise eine Dichte von <1,2 g/cm3, bevorzugt 0,3 - 1,0 g/cm3, besonders bevorzugt 0,4 - 0,8 g/cm3.
Gegenstand der Erfindung sind weiterhin expandierbare TPU, enthaltend expandierbare Mikrospheren mit einer TMA-Dichte von kleiner 10 kg/m3, bevorzugt von 2 - 10 kg/m3 und insbesondere bevorzugt von 2 - 7 kg/m3
Die erfindungsgemäßen Mikrospheren weisen bevorzugt einen Durchmesser zwischen 20 μm und 40 μm auf. Entsprechende Mikrospheres sind erhältlich bei Akzo Nobel, Casco Products GmbH, Essen unter der Marke Expancel® 093 DU 120 (Pulver).
Unter dem Begriff „thermoplastische Verarbeitung" ist jede Verarbeitung gemeint, die mit einem Aufschmelzen des TPU verbunden ist. Die thermoplastische Verarbeitung erfolgt hierbei bei 80 - 240 °C bevorzugt bei 120 - 230 °C insbesondere bevorzugt bei 170 -220 °C, auf dem Fachmann bekannten Spritzguss- und Extrusionsanlagen oder Pulversinteranlagen.
Der Gehalt an expandierbaren Mikrospheren in der Mischung ist abhängig von der angestrebten Dichte der expandierten TPU. Bevorzugt werden pro 100 Gew.-Teilen des zu expandierenden, das heißt zu schäumendem TPU oder TPU-Blend, zwischen 0,1 Gew.-Teilen und 10 Gew.-Teilen, bevorzugt zwischen 0,2 Gew.-Teilen und 6,5 Gew.-Teilen der erfindungsgemäßen expandierbaren Mikrospheres eingesetzt.
Besonders bevorzugt sind expandierbare TPU bzw. expandierte TPU, die folgende
Komponenten enthalten:
85 Gew.-% bis 99,5 Gew.-%, bevorzugt zwischen 90 Gew.-% und 99,5 Gew.-%, besonders bevorzugt zwischen 92 Gew.-% und 98 Gew.-% TPU oder Blend enthaltend
TPU, 0,5 Gew.-% bis 15 Gew.-%, bevorzugt zwischen 2 Gew.-% und 8 Gew.-%
Mikrospheren-Masterbatch, 0 bis 10 Gew.-%, bevorzugt 0,1 Gew.-% bis 2 Gew.-%
Farbstoff, z.B. allgemein bekannte Schwarzpaste oder Farbstoffzugaben in Form von
Farbmasterbatches. Das Mikrospheren-Masterbatch enthält bevorzugt:
5 Gew.-% bis 90 Gew.-%, bevorzugt 25 Gew.-% bis 65 Gew.-% Mikrospheren und 10 Gew.-% bis 95 Gew.-%, bevorzugt 35 Gew.-% bis 75 Gew.-% Träger, bevorzugt thermoplastische Träger, beispielsweise die an späterer Stelle dargestellten Träger- materialen, besonders bevorzugt EVA (Ethylenvinylacetat).
Durch den Einsatz der erfindungsgemäß verwendeten expandierbaren Mikrospheren werden über einen weiten Verarbeitungsbereich expandierte TPU, die eine feine, lunkerfreie und von Einfallstellen freie Schaumstrukturen aufweisen, erzielt. Der Grund hierfür könnte darin liegen, dass expandierbare Mikrospheren mit niedriger TMA-Dichte einen höheren Innendruck bei Befüllung des Werkzeuges ausüben und somit die Gefahr der Lunker- und Einfallstellenbildung deutlich verringert bzw. verhindert wird, wie dies z.B. auch im herkömmlichen Spritzguss ohne die Verwendung eines Treibmittels nur durch das Aufbringen eines Nachdruckes von Außen erreicht wird.
Durch diese niedrigen TMA-Dichten kann zudem bei vergleichbarer Dichte der gewichtsanteilige Einsatz von Mikrospheren minimiert werden. Dies führt zu Kosteneinsparungen, da in der Regel die Mikrospheren der preisbestimmende Faktor bzgl. der Rohstoffe des Endproduktes ist.
Überraschenderweise kann durch den Einsatz der erfindungsgemäß verwendeten expandierbaren Mikrospheren auf den Einsatz von Co-Treibmitteln völlig verzichtet werden. Dennoch ist es möglich, dass bei bestimmten Anwendungen auch Co- Treibmittel eingesetzt werden können.
Die erfindungsgemäß verwendeten expandierbaren Mikrospheren können, wie ausgeführt, in Form von Pulver, die Aufbringung auf das TPU-Granulat kann hierbei mit und ohne Bindemittel, wie 0,05 - 2 Gew.-% Mineral- oder Parafinöl erfolgen, oder bevorzugt als Masterbatches eingesetzt werden. Als Masterbatch ist zu verstehen, dass die expandierbaren Mikrospheren in einem Träger, beispielsweise Bindemittel, Wachse, oder einem Thermoplasten, wie TPU, EVA (Ethylenvinylacetat), Polyvinylchlorid,, Polyethylen, Polypropylen, , Polyester, Polystyrol,, oder thermoplastic rubber, oder Blends hieraus, bevorzugt einem Träger mit einem Schmelzindex (MFR; 190 °C/2,16 kg; ASTM D 1238) von 5 - 700 g/10 min, bevorzugt 50 - 600 g/10 min, besonders bevorzugt 150 - 500 g/10 min und einem Schmelzpunkt zwischen 60 und 110 °C, besonders bevorzugt EVA, in Granulatform gebunden sind. Bei der Herstellung dieser Mikrospheren-Masterbatches werden in der Regel Thermoplaste mit einem sehr niedrigen Schmelzpunkt und sehr niedrigen Viskositäten bzw. hohen Schmelzindizes, wie oben beschrieben, eingesetzt, um hierdurch möglichst niedrige Temperaturen bei der Masterbatchherstellung verwenden zu können, um eine vorzeitige Expansion zu vermeiden.
Durch den Einsatz solcher Masterbatches werden Staubbildungen, wie sie bei der Verwendung und dem Handling von expandierbaren Mikrospheren in Pulverform entstehen, vermieden und man kann hierdurch auf einen kostspieligen Explosionsschutz der Anlagen und Gebäude, in denen die erfindungsgemäßen expandierten TPU hergestellt werden, verzichten. Außerdem ist die homogene Vermischung der expandierbaren Mikrospheren mit dem TPU bei der Verwendung von Masterbatches einfacher. Die Herstellung der Mikrospher-Masterbatches kann beispielsweise auf Knetern, Einwellen- oder Zweiwellenextrudern erfolgen.
Als TPU können die üblichen und bekannten Verbindungen eingesetzt werden, wie sie beispielsweise im Kunststoffhandbuch, Band 7 „Polyurethane", Carl Hanser Verlag München Wien, 3. Auflage 1993, Seiten 455 bis 466 beschrieben sind.
Bevorzugt werden TPU eingesetzt, die einen Schmelzindex oder MFR (Meltflowratio; 190 °C/3,8 kg; DIN EN 1133) von 1 - 350 g/10 min, bevorzugt von 30 - 150 g/10 min besitzen. Die Verwendung von TPU für expandierbare bzw. expandierte TPU ist jedoch nicht auf einen bestimmten MFR beschränkt.
Unter TPU können im Sinne der vorliegenden Erfindung weichmacherfreie und weichmacherhaltige TPU, insbesondere solche mit einem Gehalt von 0 - 50 Gew.-%, bezogen auf das Gewicht der Mischung, an üblichen Weichmacher verstanden werden. Als Weichmacher kommen allgemein für diesen Zweck bekannte Verbindungen, z.B. Phthalate und insbesondere Benzoate in Betracht.
Weiterhin können für das erfindungsgemäße Verfahren auch Blends aus TPU mit bis zu 70 Gew.-%, bezogen auf das Gewicht des Blends, eines weiteren Kunststoffs aus der Gruppe der thermoplastischen Kunststoffe, insbesondere aus der Gruppe der thermoplastischen Elastomere oder Kautschuke, eingesetzt werden. Bevorzugt sind Mischungen enthaltend TPU und andere thermoplastische Elastomere zwischen 99 Gew.-% und 50 Gew. -% TPU und zwischen 1 Gew.-% und 50 Gew.-% eines anderen thermoplastischen Elastomeren, besonders bevorzugt zwischen 90 Gew.-% und 70 Gew. -% TPU und zwischen 10 Gew.-% und 30 Gew.-% eines anderen thermoplastischen Elastomeren. Als andere thermoplastische Elastomere kommen bevorzugt z.B. Gummi, z.B. Butadien-Acrylnitril-Copolymere, zum Einsatz. Die Herstellung der TPU erfolgt nach üblichem Verfahren durch Umsetzung von Diisocyanaten mit Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen, vorzugsweise difunktionellen Alkoholen.
Als Diisocyanate können übliche aromatische, aliphatische und/oder cycloaliphatische Diisocyanate, beispielsweise Diphenyl-Methan-Diisocyanat (MDI), Toluylendiiso- cyanat (TDI), Tri-, Tetra-, Penta-, Hexa-, Hepta- und/oder Oktamethylendiisocyanat, 2-Methyl-pentamethylen-diisocyanat-1 ,5, 2-Ethyl-butylen-diisocyanat-1 ,4, 1-lso- cyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan (Isophoron-diisocyanat, IPDI), 1 ,4- und/oder 1 ,3-Bis(isocyanatomethyl)cyclohexan (HXDI), 1 ,4-Cyclohexan-diiso- cyanat, 1-Methyl-2,4- und/oder -2,6-cyclohexan-diisocyanat, 4,4'-, 2,4'- und/oder 2,2'-Dicyclohexylmethan-diisocyanat eingesetzt werden.
Als gegenüber Isocyanaten reaktive Verbindungen können allgemein bekannte Polyhydroxylverbindungen mit Molekulargewichten von 500 bis 8000, bevorzugt
600 bis 6000, insbesondere 800 bis 4000, und bevorzugt einer mittleren Funktionalität von 1 ,8 bis 2,6, bevorzugt 1 ,9 bis 2,2, insbesondere 2 eingesetzt werden, beispielsweise Polyesterole, Polyetherole und/oder Polycarbonatdiole. Bevorzugt werden Polyesterdiole eingesetzt, die erhältlich sind durch Umsetzung von Butandiol und Hexandiol als Diol mit Adipinsäure als Dicarbonsäure, wobei das Gewichtsverhältnis von Butandiol zu Hexandiol bevorzugt 2 zu 1 beträgt. Bevorzugt ist weiterhin Polytetra- hydrofuran mit einem Molekulargewicht von 750 bis 2500 g/mol, bevorzugt 750 bis 1200 g/mol.
Als Kettenverlängerungsmittel können allgemein bekannte Verbindungen eingesetzt werden, beispielsweise Diamine und/oder Alkandiole mit 2 bis 10 C-Atomen im Alkylenrest, insbesondere Ethylenglykol und/oder Butandiol-1 ,4, und/oder Hexandiol und/oder Di- und/oder Tri-oxyalkylenglykole mit 3 bis 8 Kohlenstoffatomen im Oxy- alkylenrest, bevorzugt entsprechende Oligo-Polyoxypropylenglykole, wobei auch Mischungen der Kettenverlängerer eingesetzt werden können. Als Kettenverlängerer können auch 1 ,4-Bis-(hydroxymethyl)-benzol (1 ,4-BHMB), 1 ,4-Bis-(hydroxyethyl)- benzol (1,4-BHEB) oder 1 ,4-Bis-(2-hydroxyethoxy)-benzol (1 ,4-HQEE) zum Einsatz kommen. Bevorzugt werden als Kettenverlängerer Ethylenglykol und Hexandiol, besonders bevorzugt Ethylenglykol.
Üblicherweise werden Katalysatoren eingesetzt, welche die Reaktion zwischen den NCO-Gruppen der Diisocyanate und den Hydroxylgruppen der Aufbaukomponenten beschleunigen, beispielsweise tertiäre Amine, wie Triethylamin, Dimethylcyclohexyl- amin, N-Methylmorpholin, N,N'-Dimethylpiperazin, 2-(Dimethylaminoethoxy)-ethanol, DiazabicycIo-(2,2,2)-octan und ähnliche sowie insbesondere organische Metall- Verbindungen wie Titansäureester, Eisenverbindungen wie z.B. Eisen— (III)— acetyl- acetonat, Zinnverbindungen, wie Zinndiacetat, Zinndilaurat oder die Zinndialkylsalze aliphatischer Carbonsäuren wie Dibutylzinndiacetat, Dibutylzinndilaurat oder ähnliche. Die Katalysatoren werden üblicherweise in Mengen von 0,0001 bis 0,1 Gew.-Teilen pro 100 Gew. -Teile Polyhydroxylverbindung eingesetzt.
Neben Katalysatoren können den Aufbaukomponenten bis auch übliche Hilfsstoffe hinzugefügt werden. Genannt seien beispielsweise oberflächenaktive Substanzen, Flammschutzmittel, Keimbildungsmittel, Gleit- und Entformungshilfen, Farbstoffe und Pigmente, Inhibitoren, Stabilisatoren gegen Hydrolyse, Licht, Hitze, Oxidation oder Verfärbung, Schutzmittel gegen mikrobiellen Abbau, anorganische und/oder organische Füllstoffe, Verstärkungsmittel und Weichmacher.
Zur Einstellung des Molekulargewichtes können gegenüber Isocyanat reaktive monofunktionelle Verbindungen, bevorzugt Monoalkohole eingesetzt werden.
Die Herstellung der TPU erfolgt zumeist nach üblichen Verfahren, wie mittels Bandanlagen oder Reaktionsextruder.
Zur Herstellung der expandierten TPU werden die TPU mit den expandierbaren Mikrospheren gemischt und thermoplastisch zu den gewünschten Formkörpern verarbeitet. Dies kann beispielsweise mittels Spritzguss, Sintern oder mittels Extrusion erfolgen. Durch die Temperatur bei der thermoplastischen Verarbeitung kommt es zu einer Expansion der expandierbaren Mikrospheren und somit zur Ausbildung der expandierten TPU. Vorzugsweise wird die Schmelze in Formen eingetragen und erstarrt bzw. rekristallisiert.
Das Mischen der TPU oder TPU-Blends mit den expandierbaren Mikrospher-Pulvern kann in einfachen Kunststoffgranulatmischern wie z.B. Taumelmischern mit oder ohne vorheriges Aufbringen von 0,05 - 2 % Bindemittel, z.B. Parafin- oder Mineralöl erfolgen. Das Mischen der TPU oder TPU-Blends mit den expandierbaren Mikrospher- Masterbatches kann ebenfalls in einfachen Kunststoffgranulatmischern wie z.B. Taumelmischern maschinell oder in einfachen Kunststoffboxen von Hand zu einem sogenannten Dryblend erfolgen.
Die erfindungsgemäßen expandierten TPU können beispielsweise als Folien, Schläuche, Profile, Fasern, Kabel, Schuhsohlen, sonstige Schuhteile, Ohrmarken, Automobilteile, Landwirtschaftliche Produkte, Elektroprodukte, Dämpfungselemente; Armlehnen; Kunststoffmöbelelemente, Skischuhe, Anschlagpuffer, Rollen, Skibrillen, Powderslushoberflächen verwendet werden. Bevorzugt sind erfindungsgemäß Schuhsohlen, insbesondere solche mit einer kompakten Haut und einem geschäumten Kern, insbesondere gefärbte, insbesondere schwarz gefärbte Schuhsohlen. Auch lichtbeständige aliphatische TPU oder Blends hieraus lassen sich erfindungsgemäß verschäumen. Beispiele sind etwa Produkte für das Automobil-Interieur- und Exterieur wie z.B. Instrumententafeloberflächen, Schaltknäufe, Bedienelemente- und Knöpfe, Antennen und Antennenfüße, Griffe, Gehäuse, Schalter, Verkleidungen und Verkleidungselemente, etc..
Gegenstand der vorliegenden Erfindung sind somit auch expandierte thermoplastische Polyurethane, insbesondere Schuhsohlen, insbesondere mit einer kompakten Haut und einem geschäumten Kern, enthaltend expandierte Mikrospheren mit einer ursprünglichen TMA-Dichte von kleiner 10 kg/m3.
Die Erfindung soll an den nachfolgenden Beispielen näher beschrieben werden.
> c m (Q
CΩ CD
CD C
C 13
J cn cn
CD
H
B)
O σ
CD
CD
3 cn 01 CD c !-• Ξ. Q.
Φ m
CQ
CD σ
C/3 cα cn o CD
Q.
CD cn
CD
3,
*D
Q.
C n
CQ
Q.
03
Figure imgf000011_0001
tεo9θo/tooz«ι:ϊ/iD«ι ΠL ΪΪ880Ϊ/H)0Z OΛV
Figure imgf000012_0001
tεo9θo/tooz«ι:ϊ/i3«ι LL ΪΪ880Ϊ/H)0Z OΛV σ 2. 33 o
33 cn
α> 3-
Figure imgf000013_0001
£0900/ 00ZdΑ/lDd 7.V ΪΪ880Ϊ/H)0Z OΛV Erklärung der Abkürzungen::
R Referenzversuch
MP Mikrospheren
092MB120 Microspheren-Masterbatch d. Fa. Akzo bestehend aus 65 % 092DU120 (Mikrospherenpulver d. Fa. Akzo) in EVA als Träger
MB Masterbatch MB1 Microspheren-Masterbatch bestehend aus 65 % 093DU120 (Mikrospherenpulver Fa. Akzo) in 35 % EVA Escorene Ultra (Fa. ExxonMobil) Melt Index 150 g/10min (ASTM D1238) hergestellt auf Compoundieranlage bei 80 - 100 °C
STMP = Starttemperatur, bei der die Mikrospheren beginnen zu expandieren
TMA-D TMA-Dichte gemessen an dem im Masterbatch eingearbeiteten Mikrospherenpulver: minimal erreichbare Dichte [kg/m3] bis Mikrospheren kollabieren;
Stare Thermal Analysis System Fa. Mettler Toledo; Heizrate 20 °C/min; Einwaage ca. 0,5 mg
GTMP-MB eingesetzter Gewichtsanteil des Mikrospheren-Masterbatches in Bezug auf TPU CT chemisches Treibmittel
STCT Starttemperatur, bei der das chemische Treibmittel beginnt zu expandieren GTCT eingesetzter Gewichtsanteil des chemischen Treibmittel-Masterbatches in Bezug auf TPU Verfahren Art der thermoplastischen Verarbeitung S Spritzguss auf Klöckner Ferromatic; Werkzeugtemperatur = 25 °C; Schuhwerkzeug;
Schussgewicht 178 g bei einer Dichte von 1 ,20 g/cm3 im Falle Elastollan S70A10W
E Extrusion mit Profilwerkzeug auf Thyssen Henschel 0 60 mm; Schneckenverhältnis 1 :2,5 Lunker = Beurteilung der Lunker im Querschnitt, immer an der dicksten Stelle des Fertigteiles
0 = keine Lunker
0+ = sehr kleine Lunker
4- = deutlich erkennbare Lunker 4-4- = extrem starke Lunkerbildung
Einfallstellen = Einfallstellen an der Oberfläche des Fertigteiles
0 = keine Einfallstellen
04- = sehr kleine Einfallstellen
4- = deutlich erkennbare Einfallstellen
4-4- = extrem starke Einfallstellen n. b. = nicht bestimmbar aufgrund stark unterschiedlicher und unregelmäßiger Zellstruktur mit starker Lunkerbildung
CT460 = Hydrocerol CT460; Fa. Clariant; chemisches Treibmittel-Masterbatch
S70A10W = handelsübliches Polyester-TPU weichmacherhaltig der Elastogran GmbH ; Anwendung für z. B. Schuhsohlen
Blend 1 = Blend aus 80 Gew.-% Elastollan® S80A10 der Elastogran GmbH und 20 Gew.-% Chemigum® 615D der Firma
Eliochem, hergestellt auf 043 mm Zweiwellenextruder Elastollan® 1180A10 = handelsübliches Polyether-TPU 80ShA der Elastogran GmbH
Wie aus obiger Tabelle ersichtlich, kommt es im Falle einer Mischung aus chemischem Treibmittel und expandierbaren Mikrospheren durch Temperaturerhöhung von lediglich 5 °C zu einem Kollaps der Zellstruktur und bei einer Absenkung der Verarbeitungstemperatur um 5 °C zu einem nicht vollständigen Füllen des Werkzeuges. Bewegt man sich nicht stets innerhalb des optimalen Verarbeitungsfensters, so führt dies stets zu Problemen. Lunkerbildung und Einfallstellen können jedoch nie vollständig verhindert werden.
Im Falle der Verwendung von reinen expandierbaren Mikrospheren mit einer niedrigen TMA-Dichte von kleiner 10 kg/m3, bevorzugt von 2 - 10 kg/m3 und insbesondere bevorzugt von 2 - 7 kg/m3 treten solch enge Verarbeitungsfenster nicht auf, wie obige Versuche zeigen.
Im Falle der sehr niedrigen TMA-Dichte von <6 kg/m3 im Falle des Masterbatches MB1 kann sogar die Hälfte des Treibmittel im Vergleich zu 092MB120 eingespart werden.
Bei den erzielten Ergebnissen ist es unerheblich, ob von Mikrospheren-Pulver oder Mikrospheren-Masterbatch ausgegangen wird.

Claims

Patentansprüche
1. Expandierbare thermoplastische Polyurethane, enthaltend expandierbare Mikrosphere, die eine TMA-Dichte von kleiner 10 kg/m3 aufweisen.
2. Expandierbare thermoplastische Polyurethane nach Anspruch 1 , herstellbar durch Mischung von thermoplastischen Polyurethanen mit expandierbaren Mikrospheren, dadurch gekennzeichnet, dass die expandierbaren Mikrospheren eine TMA-Dichte von 2 - 10 kg/m3 aufweisen.
3. Expandierbare thermoplastische Polyurethane nach Anspruch 1 , herstellbar durch Mischung von thermoplastischen Polyurethanen mit expandierbaren Mikrospheren, dadurch gekennzeichnet, dass die expandierbaren Mikrospheren eine TMA-Dichte von 2 - 7 kg/m3 aufweisen.
4. Expandierbare thermoplastische Polyurethane nach Anspruch 1 dadurch gekennzeichnet, dass das thermoplastische Polyurethan 0 - 50 Gew.-%, bezogen auf die Mischung, Weichmacher enthält.
5. Expandierbare thermoplastische Polyurethane nach Anspruch 1 dadurch gekennzeichnet, dass als thermoplastisches Polyurethan ein Blend aus thermoplastischem Polyurethan und 0 - 70 Gew.-% bezogen auf das Gewicht des Blends, eines weiteren Kunstsoffs aus der Gruppe der thermoplastischen Kunststoffe, insbesondere aus der Gruppe der thermoplastischen Elastomere oder Kautschuke, eingesetzt wird.
6. Expandierbare thermoplastische Polyurethane gemäß Anspruch 1 , die folgende Komponenten enthalten:
90 Gew.-% bis 99,5 Gew.-%TPU oder Blend enthaltend TPU, 0,5 Gew.-% bis 10 Gew.-%, Masterbatch enthaltend expandierbare
Mikrospheren, 0 bis 10 Gew.-% Farbstoff.
7. Verfahren zur Herstellung von expandierten thermoplastischen Polyurethanen, umfassend die Schritte
a) Mischen von Treibmitteln zu thermoplastischen Polyurethanen und ggf. Trocknung b) thermoplastische Verarbeitung dieser Mischung unter Expansion des Treibmittels,
dadurch gekennzeichnet, dass als Treibmittel expandierbare Mikrospheren mit einer TMA-Dichte von kleiner 10 kg/m3, bevorzugt von 2 - 10 kg/m3 und insbesondere bevorzugt von 2 - 7 kg/m3 eingesetzt werden.
8. Expandierte thermoplastische Polyurethane, herstellbar nach Anspruch 7.
9. Expandierte thermoplastische Polyurethane nach Anspruch 7, dadurch gekennzeichnet, dass sie eine Dichte von <1,2 g/cm3 aufweisen.
10. Expandierte thermoplastische Polyurethane nach Anspruch 8, dadurch gekennzeichnet, dass sie eine Dichte im Bereich zwischen 0,2 - 1,0 g/cm3 aufweisen.
11. Expandierte thermoplastische Polyurethane, insbesondere Schuhsohlen, insbesondere mit einer kompakten Haut und einem geschäumten Kern, enthaltend expandierte Mikrospheren mit einer ursprünglichen TMA-Dichte von kleiner 10 kg/m3.
12. Masterbatch enthaltend 5 Gew.-% bis 80 Gew.-%, bevorzugt 25 Gew.-% bis
65 Gew.-% Mikrospheren und 20 Gew.-% bis 95 Gew.-%, bevorzugt 35 Gew.-% bis 75 Gew.-% thermoplastischen Träger, insbesondere EVA (Ethylenvinylacetat).
PCT/EP2004/006034 2003-06-06 2004-06-04 Verfahren zur herstellung von expandierbaren thermoplastischen elastomeren WO2004108811A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/558,417 US20060235095A1 (en) 2003-06-06 2004-06-04 Method for the production of expanding thermoplastic elastomers
EP04739588A EP1636301A1 (de) 2003-06-06 2004-06-04 Verfahren zur herstellung von expandierbaren thermoplastischen elastomeren
CN2004800157835A CN1802408B (zh) 2003-06-06 2004-06-04 可发泡热塑性弹性体的生产方法
MXPA05012694A MXPA05012694A (es) 2003-06-06 2004-06-04 Metodo para la produccion de elastomeros termoplasticos expandibles.
JP2006508274A JP2006527270A (ja) 2003-06-06 2004-06-04 発泡性の熱可塑性エラストマーの製造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10326138A DE10326138A1 (de) 2003-06-06 2003-06-06 Verfahren zur Herstellung von expandierbaren thermoplastischen Elastomeren
DE10326138.9 2003-06-06

Publications (1)

Publication Number Publication Date
WO2004108811A1 true WO2004108811A1 (de) 2004-12-16

Family

ID=33482751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/006034 WO2004108811A1 (de) 2003-06-06 2004-06-04 Verfahren zur herstellung von expandierbaren thermoplastischen elastomeren

Country Status (8)

Country Link
US (1) US20060235095A1 (de)
EP (1) EP1636301A1 (de)
JP (1) JP2006527270A (de)
KR (1) KR20060009381A (de)
CN (1) CN1802408B (de)
DE (1) DE10326138A1 (de)
MX (1) MXPA05012694A (de)
WO (1) WO2004108811A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005066250A1 (de) * 2004-01-06 2005-07-21 Basf Aktiengesellschaft Verfahren zur herstellung von schuhen
WO2007045586A1 (de) * 2005-10-19 2007-04-26 Basf Se Schuhsohlen auf basis von geschäumtem thermoplastischen polyurethan (tpu)
US20120329892A1 (en) * 2006-01-18 2012-12-27 Basf Se Foams based on thermoplastic polyurethanes
CN104014287A (zh) * 2014-06-12 2014-09-03 合肥工业大学 一种热膨胀型发泡微球及其制备方法
CN109537093A (zh) * 2018-12-05 2019-03-29 浙江华峰氨纶股份有限公司 一种微孔中空聚氨酯弹性纤维的制备方法

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866906B2 (en) 2000-01-26 2005-03-15 International Paper Company Cut resistant paper and paper articles and method for making same
RU2330911C2 (ru) 2002-09-13 2008-08-10 Интернэшнл Пейпер Компани Бумага с улучшенной жесткостью и пухлостью и способ для ее изготовления
JP4945243B2 (ja) * 2004-09-13 2012-06-06 株式会社クレハ 熱発泡性マイクロスフェアー、その製造方法、その使用、それを含む組成物、及び物品
ITRN20050006A1 (it) * 2005-02-22 2006-08-23 Goldenplast Spa Miscela granulare di materiali termoplastici a base poliuretanica per la formatura di manufatti leggeri,espansi, in particolare parti di calzature
CN101137790A (zh) 2005-03-11 2008-03-05 国际纸业公司 含有可膨胀微球和离子化合物的组合物及其制造和使用方法
JP5398174B2 (ja) * 2008-05-30 2014-01-29 株式会社イックス 樹脂発泡シート、該樹脂発泡シートを備えた積層樹脂シートおよびその製造方法
WO2010025383A1 (en) 2008-08-28 2010-03-04 International Paper Company Expandable microspheres and methods of making and using the same
JP5396623B2 (ja) * 2009-06-12 2014-01-22 西川ゴム工業株式会社 ゴム製品
CN102660113B (zh) * 2012-04-11 2014-03-19 黎明化工研究院 一种热塑性聚氨酯微孔弹性体及其制备方法
DE102012206094B4 (de) * 2012-04-13 2019-12-05 Adidas Ag Sohlen für Sportschuhe, Schuhe und Verfahren zur Herstellung einer Schuhsohle
DE102013202306B4 (de) 2013-02-13 2014-12-18 Adidas Ag Sohle für einen Schuh
DE102013002519B4 (de) 2013-02-13 2016-08-18 Adidas Ag Herstellungsverfahren für Dämpfungselemente für Sportbekleidung
DE102013202291B4 (de) 2013-02-13 2020-06-18 Adidas Ag Dämpfungselement für Sportbekleidung und Schuh mit einem solchen Dämpfungselement
US9610746B2 (en) 2013-02-13 2017-04-04 Adidas Ag Methods for manufacturing cushioning elements for sports apparel
US9930928B2 (en) 2013-02-13 2018-04-03 Adidas Ag Sole for a shoe
US9375866B2 (en) * 2013-03-15 2016-06-28 Nike, Inc. Process for foaming thermoplastic elastomers
USD776410S1 (en) 2013-04-12 2017-01-17 Adidas Ag Shoe
USD740004S1 (en) 2013-04-12 2015-10-06 Adidas Ag Shoe
DE202013103055U1 (de) * 2013-07-10 2014-10-13 Heimbach Gmbh & Co. Kg Papiermaschinenband
US20170009039A1 (en) * 2014-02-04 2017-01-12 Matsumoto Yushi-Seiyaku Co., Ltd. Masterbatch and applications thereof
EP2910357A1 (de) * 2014-02-20 2015-08-26 Basf Se Verfahren zur Herstellung eines Verbundbauteils
DE102014215897B4 (de) 2014-08-11 2016-12-22 Adidas Ag adistar boost
DE102014216115B4 (de) 2014-08-13 2022-03-31 Adidas Ag Gemeinsam gegossene 3D Elemente
GB201420055D0 (en) 2014-11-11 2014-12-24 Technion Res & Dev Foundation Low density micropsheres
CN104788797B (zh) * 2015-04-03 2017-05-03 上海杰上杰化学有限公司 可发泡树脂粒子及用其制备发泡材料的方法
DE102015206486B4 (de) 2015-04-10 2023-06-01 Adidas Ag Schuh, insbesondere Sportschuh, und Verfahren zur Herstellung desselben
DE102015206900B4 (de) 2015-04-16 2023-07-27 Adidas Ag Sportschuh
DE102015209795B4 (de) 2015-05-28 2024-03-21 Adidas Ag Ball und Verfahren zu dessen Herstellung
TW201736423A (zh) * 2015-09-11 2017-10-16 三晃股份有限公司 發泡熱塑性聚氨基甲酸酯及其微波成型體
USD783264S1 (en) 2015-09-15 2017-04-11 Adidas Ag Shoe
CN106808638B (zh) * 2015-11-27 2019-07-02 法国圣戈班玻璃公司 注塑件及其形成方法、包边结构以及车窗
CN107286594A (zh) * 2016-03-31 2017-10-24 深圳光启高等理工研究院 吸波材料及其制备方法
CN107286578A (zh) * 2016-03-31 2017-10-24 深圳光启高等理工研究院 吸波材料及其制备方法
CN107286577A (zh) * 2016-03-31 2017-10-24 深圳光启高等理工研究院 吸波材料及其制备方法
USD840137S1 (en) 2016-08-03 2019-02-12 Adidas Ag Shoe midsole
USD840136S1 (en) 2016-08-03 2019-02-12 Adidas Ag Shoe midsole
CN106280404A (zh) * 2016-08-15 2017-01-04 吴冰滢 一种防噪音阻燃聚氨酯泡沫材料及其制备方法
USD852475S1 (en) 2016-08-17 2019-07-02 Adidas Ag Shoe
JP1582717S (de) 2016-09-02 2017-07-31
JP6756851B2 (ja) 2016-12-08 2020-09-16 プーマ エス イーPuma Se 靴底を製造する方法
USD899061S1 (en) 2017-10-05 2020-10-20 Adidas Ag Shoe
JP6582142B2 (ja) * 2017-10-13 2019-09-25 積水化学工業株式会社 発泡成形用マスターバッチ及び発泡成形体
CN108685259A (zh) * 2018-05-04 2018-10-23 双驰实业股份有限公司 一种注塑鞋底、模具及其制备方法
US10593441B1 (en) * 2018-07-13 2020-03-17 Superior Essex International LP Hybrid cable with low density filling compound
US10388429B1 (en) * 2018-07-13 2019-08-20 Superior Essex International LP Hybrid cable with low density filling compound
TWI773892B (zh) * 2019-04-18 2022-08-11 豐泰企業股份有限公司 用物理性製造的發泡鞋部件及其製造方法
CN112159540A (zh) * 2020-09-29 2021-01-01 快思瑞科技(上海)有限公司 母粒材料、发泡母粒制备方法及用途、发泡鞋制备方法
WO2022194985A1 (en) * 2021-03-19 2022-09-22 Huntsman International Llc Method for making a low density thermally recyclable polymer foam
CN113061284B (zh) * 2021-03-24 2023-03-14 中国科学院深圳先进技术研究院 一种轻质有机复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0692516A1 (de) * 1994-07-15 1996-01-17 Hans-Joachim Burger Massgenauer thermoplastischer syntaktischer Schaum
WO1999035327A2 (en) * 1998-01-12 1999-07-15 Mannington Mills, Inc. A surface covering backing containing polymeric microspheres and processes of making the same
WO2000044821A1 (en) * 1999-01-26 2000-08-03 Huntsman International Llc Foamed thermoplastic polyurethanes
JP2001089594A (ja) * 1999-09-21 2001-04-03 Achilles Corp 熱可塑性発泡ポリウレタン樹脂組成物
WO2003099875A2 (en) * 2002-05-27 2003-12-04 Huntsman International Llc Foamed supramolecular polymers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333374B1 (en) * 1990-05-21 2001-12-25 Applied Elastomerics, Inc. Fluffy, strong, solid elastic gels, articles and method of making same
US6235800B1 (en) * 1998-03-13 2001-05-22 Matsumoto Yushi-Seiyaku Co., Ltd. Heat-expandable microcapsules and method of utilizing the same
US7597946B2 (en) * 2003-08-29 2009-10-06 Nike, Inc. Gel reduction in blends of thermoplastic polyurethane and hydroxyl functional polymers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0692516A1 (de) * 1994-07-15 1996-01-17 Hans-Joachim Burger Massgenauer thermoplastischer syntaktischer Schaum
WO1999035327A2 (en) * 1998-01-12 1999-07-15 Mannington Mills, Inc. A surface covering backing containing polymeric microspheres and processes of making the same
WO2000044821A1 (en) * 1999-01-26 2000-08-03 Huntsman International Llc Foamed thermoplastic polyurethanes
JP2001089594A (ja) * 1999-09-21 2001-04-03 Achilles Corp 熱可塑性発泡ポリウレタン樹脂組成物
WO2003099875A2 (en) * 2002-05-27 2003-12-04 Huntsman International Llc Foamed supramolecular polymers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 21 3 August 2001 (2001-08-03) *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005066250A1 (de) * 2004-01-06 2005-07-21 Basf Aktiengesellschaft Verfahren zur herstellung von schuhen
WO2007045586A1 (de) * 2005-10-19 2007-04-26 Basf Se Schuhsohlen auf basis von geschäumtem thermoplastischen polyurethan (tpu)
US11292886B2 (en) 2006-01-18 2022-04-05 Basf Se Foams based on thermoplastic polyurethanes
US11053368B2 (en) 2006-01-18 2021-07-06 Basf Se Foams based on thermoplastic polyurethanes
CN105601980A (zh) * 2006-01-18 2016-05-25 巴斯夫欧洲公司 基于热塑性聚氨酯的泡沫
US9884947B2 (en) * 2006-01-18 2018-02-06 Basf Se Foams based on thermoplastic polyurethanes
US20180100049A1 (en) * 2006-01-18 2018-04-12 Basf Se Foams based on thermoplastic polyurethanes
CN115197462A (zh) * 2006-01-18 2022-10-18 巴斯夫欧洲公司 基于热塑性聚氨酯的泡沫
US11365303B2 (en) 2006-01-18 2022-06-21 Basf Se Foams based on thermoplastic polyurethanes
US11332594B2 (en) 2006-01-18 2022-05-17 Basf Se Foams based on thermoplastic polyurethanes
US11124620B2 (en) 2006-01-18 2021-09-21 Basf Se Foams based on thermoplastic polyurethanes
US11142621B2 (en) 2006-01-18 2021-10-12 Basf Se Foams based on thermoplastic polyurethanes
US20120329892A1 (en) * 2006-01-18 2012-12-27 Basf Se Foams based on thermoplastic polyurethanes
US11292887B2 (en) 2006-01-18 2022-04-05 Basf Se Foams based on thermoplastic polyurethanes
CN104014287A (zh) * 2014-06-12 2014-09-03 合肥工业大学 一种热膨胀型发泡微球及其制备方法
CN109537093B (zh) * 2018-12-05 2021-02-26 华峰化学股份有限公司 一种微孔中空聚氨酯弹性纤维的制备方法
CN109537093A (zh) * 2018-12-05 2019-03-29 浙江华峰氨纶股份有限公司 一种微孔中空聚氨酯弹性纤维的制备方法

Also Published As

Publication number Publication date
KR20060009381A (ko) 2006-01-31
CN1802408B (zh) 2010-06-16
DE10326138A1 (de) 2004-12-23
MXPA05012694A (es) 2006-02-22
US20060235095A1 (en) 2006-10-19
EP1636301A1 (de) 2006-03-22
CN1802408A (zh) 2006-07-12
JP2006527270A (ja) 2006-11-30

Similar Documents

Publication Publication Date Title
WO2004108811A1 (de) Verfahren zur herstellung von expandierbaren thermoplastischen elastomeren
EP1664169B1 (de) Expandierbare thermoplastische polyurethan-blends
EP2430097B1 (de) Hybridschaum
WO2005023920A1 (de) Verfahren zur herstellung von expandierten thermoplastischen polyurethanen
EP3055353B1 (de) Verfahren zur herstellung von expandierten thermoplastischen elastomerpartikeln
EP2109637B1 (de) Hybridsysteme aus geschäumten thermoplastischen elastomeren und polyurethanen
EP2882788B1 (de) Kombinationsschaum
EP1704177B1 (de) Verfahren zur herstellung von schuhen
WO2019122122A1 (de) Neue polyurethanweichschaumstoffe
EP3274387B1 (de) Gedächtnisschaum auf der basis von thermoplastischem polyurethan
WO2020136239A1 (de) Etpu mit hoher festigkeit
EP3909996A1 (de) Schaumstoff aus thermoplastischem polyurethan
WO2020174040A1 (de) Weicher partikelschaum aus thermoplastischem polyurethan
EP0826706A2 (de) Schäumfähige Polyurethanzubereitungen mit gutem Fliessverhalten sowie ein Verfahren zur Herstellung geschäumter Polyurethan-Formteile
EP3268408B1 (de) Polyurethanformkörper mit herausragender kälteflexibilität
EP3850037A1 (de) Schaumstoffe auf basis thermoplastischer elastomere
WO2019202091A1 (de) Schaumstoffe auf basis thermoplastischer elastomere
EP3755752A1 (de) Verbindung von körpern durch thermoplastisches elastomer mittels hochfrequenzstrahlung
WO2009141080A1 (de) Kunststoffverbundelemente und ein verfahren zu ihrer herstellung
WO2020136238A1 (de) Partikelschäume aus aromatischem-polyester-polyurethan-multiblockcopolymer
WO2022162048A1 (de) Partikelschaum aus tpe mit einer shorehärte zwischen 20d und 90d
WO2022043428A1 (de) Geschäumtes granulat aus thermoplastischem polyurethan
DE4224164A1 (de) Verfahren zur Herstellung von Formteilen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2004739588

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004739588

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/012694

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2006235095

Country of ref document: US

Ref document number: 10558417

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006508274

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057023423

Country of ref document: KR

Ref document number: 20048157835

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057023423

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004739588

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10558417

Country of ref document: US