WO2005092388A1 - リポソーム製剤 - Google Patents

リポソーム製剤 Download PDF

Info

Publication number
WO2005092388A1
WO2005092388A1 PCT/JP2005/005577 JP2005005577W WO2005092388A1 WO 2005092388 A1 WO2005092388 A1 WO 2005092388A1 JP 2005005577 W JP2005005577 W JP 2005005577W WO 2005092388 A1 WO2005092388 A1 WO 2005092388A1
Authority
WO
WIPO (PCT)
Prior art keywords
ribosome
drug
lipid
membrane
preparation according
Prior art date
Application number
PCT/JP2005/005577
Other languages
English (en)
French (fr)
Inventor
Masashi Isozaki
Keisuke Yoshino
Kyoko Taguchi
Masayo Kondo
Original Assignee
Terumo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Kabushiki Kaisha filed Critical Terumo Kabushiki Kaisha
Priority to KR1020067019769A priority Critical patent/KR101245990B1/ko
Priority to US10/594,427 priority patent/US8241663B2/en
Priority to EP05721504.8A priority patent/EP1731172B1/en
Priority to CN2005800097595A priority patent/CN1938048B/zh
Priority to JP2006511537A priority patent/JP4833836B2/ja
Publication of WO2005092388A1 publication Critical patent/WO2005092388A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to a ribosome preparation useful for a drug delivery system.
  • DDS drug delivery system
  • RES reticuloendothelial tissues
  • oposinin proteins and plasma proteins in blood should be avoided. It is necessary to prevent blood coagulation due to the interaction (adsorption) and enhance blood stability.
  • a modifying agent for modifying the membrane with a hydrophilic polymer generally, a polyethylene glycol derivative in which a lipid such as a phospholipid or cholesterol is bonded to polyethylene glycol (PEG) is preferably used.
  • PEG polyethylene glycol
  • a commercially available general purpose modifier is a polyethylene glycol derivative to which a phospholipid such as diphosphyl phosphatidylethanolamine is attached.
  • the ribosome to be modified as described above is a closed vesicle formed by a lipid bilayer membrane, and contains an aqueous phase (inner aqueous phase) in the vesicle space.
  • Ribosomes consist of unilamellar vesicles (SUV, Large Unilamellar Vesicle, LUV) consisting of a single membrane of lipid bilayer and multilamellar vesicles (MLV) consisting of multiple pieces. Such a film structure is known.
  • Patent Document 1 Japanese Patent Publication No. 5-505173
  • Patent Document 2 Japanese Patent Publication No. 7-20857
  • Patent Document 3 Japanese Patent No. 2667051
  • Patent document 4 International publication 01Z000173 pamphlet
  • Patent Document 5 US Pat. No. 5,077,056
  • Patent Document 6 Japanese Patent No. 2847065
  • Patent Document 7 Patent No. 2659136
  • Non-Patent Document 2 Br.J. Cancer., 1997, 76 (1), p.83
  • Non-Patent Document 3 D.D.Lasic, ⁇ LIPOSOMES from Physics to Applications, Elsevier, 1993
  • Patent Document 4 Martin C. Woodle, Gerrit Storm ed., ⁇ Long Circulating Liposomes: Old Drugs, New TherapeuticsJ, Springer, 1997
  • Non-Patent Document 6 G. Gregoriadis, ed., “Liposome Technology Liposome Preparation and Related Techniques,” 2nd edition, Vol. I-III, CRC Press
  • the drugs to be carried on the ribosome as described above some drugs have poor stability in a pH range higher than neutral conditions, and in this case, the drug is incorporated into the lipid bilayer. Regardless of whether it is incorporated in the internal aqueous phase, the internal aqueous phase of the ribosome must be kept acidic.
  • a weakly basic drug is encapsulated (supported) in ribosomes using a pH gradient
  • the pH of the inner aqueous phase is adjusted to an acidic condition of about 4 using a citrate buffer solution, and the mixture is heated to a temperature higher than the phase transition point of the main membrane material of ribosome (for example, about 60 ° C.).
  • the present invention relates to a drug that needs to be kept acidic or a drug that has been kept under acidic conditions due to a means for encapsulating the drug, Especially when ribosomes are loaded on hydrophilic-polymer-modified ribosomes, we provide ribosome preparations with excellent membrane stability and storage stability while retaining the original membrane-modifying effect of hydrophilic polymers. It is intended to do so.
  • the present inventor has proposed a liposome in which a general phospholipid is used as a main membrane material and a ribosome membrane-modified with a hydrophilic polymer is used to hold a drug that needs to be held in an acidic environment in an internal aqueous phase. Further investigation of the formulation revealed that lipid hydrolysis occurred in the acidic environment of the internal aqueous phase, and as a result, the storage stability of the ribosome formulation was likely to be impaired. Based on this, further investigation was made, and it was found that a ribosome preparation whose retention stability was easily impaired had hydrophilic polymers modified on both the inner and outer surfaces of the membrane.
  • a lamella vesicle formed of a lipid bilayer membrane containing a phospholipid as a main membrane material, an inner aqueous phase having a pH of 5 or less present in the vesicle, and A ribosome carrying ribosomes, wherein the vesicles are modified only with an outer surface with a hydrophilic polymer.
  • ribosome preparation according to any one of (1) to (7), further including a lipid other than the phospholipid as a membrane component of the lipid bilayer membrane.
  • the hydrophilic polymer is a hydrophilic polymer phospholipid or cholesterol derivative
  • vesicles having a lipid bilayer membrane-lamellar layer structure containing a phospholipid were prepared so that the pH of the internal aqueous phase was 5 or less. After that, only the outer surface of the vesicle is modified by adding a hydrophilic high molecular lipid derivative, and the vesicle is added to the inner aqueous phase in advance when preparing the vesicle, or the vesicle external force is also reduced after the vesicle preparation.
  • the method for producing a ribosome preparation according to the above (1) wherein the drug is encapsulated and the drug is encapsulated to carry the drug.
  • the encapsulated drug can be stably supported at a high concentration, and membrane modification such as the inherently high retention of hydrophilic polymers in blood.
  • a ribosome preparation with excellent storage stability can be obtained while maintaining the effect. From these characteristics, the ribosome preparation of the present invention It has an effect on the treatment of disease and z or diagnosis.
  • FIG. 1 shows TLC images of a hydrophilic polymer lipid derivative (PEG-DSPE) after a stability test.
  • PEG-DSPE hydrophilic polymer lipid derivative
  • FIG. 3 is a view showing the residual ratio of PEG-DSPE in a storage test.
  • FIG. 4 is a view showing a ratio (%) of a decomposition product of HSPC in a storage test.
  • FIG. 5 is a view showing a ratio (%) of a decomposition product of HSPC in a storage test.
  • Ribosomes are closed vesicles composed of a phospholipid bilayer membrane, and contain an aqueous phase (inner aqueous phase) in the vesicle space.
  • the ribosome preparation uses the ribosome as a carrier and carries a drug on the ribosome.
  • ribosomes are known as lamella (single membrane) vesicles (SUV, LUV) consisting of a single layer of lipid bilayer, and multilamellar vesicles (MLV) consisting of multiple lamellae.
  • the ribosome according to the present invention is a single membrane. Among them, especially LUV (large unilamellar vesicle) Rihoso ⁇ . S LJV (small unilamellar visicie) is also preferred.
  • the ratio of the lamella vesicles in all the vesicles constituting the ribosome preparation is preferably 80% or more, more preferably 50% or more of the whole.
  • the ribosome carrying the drug contains an inner aqueous phase having a pH of 5 or less, and the lamella lipid bilayer has a hydrophilic polymer selectively only on the outer membrane surface, as described later. And has a specific membrane-modified structure surface-modified.
  • the lipid bilayer contains at least a phospholipid as its main membrane material.
  • a phospholipid is generally an amphiphilic substance having a hydrophobic group composed of a long-chain alkyl group and a hydrophilic group composed of a phosphate group in a molecule.
  • Glycetophospholipids such as atidylinositol; Sphingolipids such as sphingomyelin; natural or synthetic diphosphatidyl phospholipids such as cardiolipin and derivatives thereof; hydrogenated in accordance with a conventional method (For example, hydrogenated soybean phosphatidylcholine) and the like.
  • these phospholipids may be referred to as “phospholipids”.
  • hydrogenated caroline phospholipids such as hydrogenated kamuna soybean phosphatidylcholine (HSPC) and sphingomyelin (SM) are preferred.
  • Ribosomes can contain a single type of phospholipid or multiple types of phospholipids as the main membrane material.
  • a phospholipid having a phase transition temperature higher than the in-vivo temperature (35 to 37 ° C) is preferable to use as a main membrane material.
  • These liposomes are preferably manufactured at a temperature equal to or higher than the phase transition temperature of the main film material. This is because it is difficult to control the particle size at a temperature lower than the phase transition temperature of the main film material. For example, when the phase transition temperature of the main film material is around 50 ° C., it is preferably about 50-80 ° C., more specifically, about 60-70 ° C.
  • the above-mentioned main membrane material may contain other membrane components.
  • lipids include lipids that do not contain phosphoric acid, and include, but are not limited to, glycerol glycolipids, glycosphingolipids, and sterols such as cholesterol described below as stabilizers, and hydrogenated products thereof. Derivatives can be mentioned.
  • the liposome is preferably formed of a membrane made of a mixed lipid containing other lipids together with a phospholipid as a main membrane material.
  • the proportion of the phospholipid as the main membrane material in the whole membrane lipid constituting the lipid bilayer membrane is usually 20 to 100 mol%, preferably 40 to 100 mol%.
  • the ratio of the other lipids in the whole membrane lipid is usually 0 to 80 mol%, preferably 0 to 60 mol%.
  • the outer membrane side of the lipid bilayer as described above is selectively modified with a hydrophilic polymer.
  • the hydrophilic polymer include, but are not particularly limited to, polyethylene glycol, polyglycerin, polypropylene glycol, ficoll, polyvinylinole alcohol, styrene-maleic anhydride alternating copolymer, dibutyl ether-maleic anhydride alternating copolymer, Polyvinylpyrrolidone, polyvinylmethylether, polyvinylmethyloxazoline, polyethyloxazoline, polyhydroxypropyloxazoline, polyhydroxypropylmethacrylamide, polymethacrylamide, polydimethylacrylamide, polyhydroxypropylmethacrylate, Examples include polyhydroxyethyl acrylate, hydroxymethylcellulose, hydroxyshethylcellulose, polyaspartamide, and synthetic polyamino acids.
  • these hydrophilic polymers are bonded to
  • polyethylene glycol PEG
  • polyglycerin PG
  • polypropylene glycol PPG
  • the molecular weight of PEG is not particularly limited.
  • the molecular weight of PEG is usually between 500 and 10,000 daltons, preferably ⁇ 1,000 to 7,000 daltons and more preferably ⁇ 2,000 to 5,000 daltons.
  • the molecular weight of PG is not particularly limited.
  • the molecular weight of PG is usually 100-10000 daltons, preferably 200-7000 daltons, more preferably 400-5000 daltons.
  • the molecular weight of PPG is not particularly limited.
  • the molecular weight of PPG is usually between 100 and 10,000 daltons, preferably ⁇ 200 to 7,000 daltons and more preferably ⁇ 1,000 to 5,000 daltons.
  • polyethylene glycol is the most widely used and has the effect of improving blood retention, and is therefore preferred.
  • Polyethylene glycol is a linear polymer having a repeating structure of (CH 2 CH 2 O).
  • Polyethylene glycol is a polymer having an amphipathic property that is soluble in water and organic solvents, and has low toxicity. Therefore, polyethylene glycol is used for stabilizing drugs and improving pharmacokinetics. Widely applied. It is known that this drug has low toxicity.
  • a drug carrier eg, a ribosome formulation
  • a drug is loaded in a polyethylene glycol-modified carrier (eg, a ribosome) has high safety.
  • retention in blood means, for example, in a host to which a drug carrier has been administered, the property that the drug is present in the blood in a state of being enclosed in the carrier.
  • the drug Upon release from the carrier, the drug rapidly disappears from the blood and is exposed. With good blood retention, the drug can be administered in smaller amounts.
  • exposure means that the drug released to the outside of the carrier has an effect on the external environment. Specifically, the released drug exerts its action (for example, an antitumor effect) by approaching and contacting the target site.
  • the drug exerts expected effects, such as locally acting on cells in the cell cycle in which DNA synthesis at the target site is performed.
  • Such a ribosome forms an unmodified liposome of a lamella vesicle of a lipid bilayer, as described later, and then modifies the membrane surface with a hydrophilic polymer from the outside. Only the outer membrane of the heavy membrane can be selectively surface-modified.
  • a hydrophilic polymer lipid derivative is used as a modifier for introducing the hydrophilic polymer
  • the lipid portion which is a hydrophobic portion, is formed while the hydrophilic polymer portion protrudes outward. Since it enters the liposome lipid bilayer membrane and is stably retained, the hydrophilic polymer bound to the lipid can be present and distributed on the outer membrane surface of the ribosome lipid bilayer membrane.
  • the lipid (hydrophobic portion) of the hydrophilic polymer lipid derivative is not particularly limited !.
  • hydrophobic compound a compound having a hydrophobic region
  • hydrophobic conjugate examples include other lipids such as phospholipids and sterols, which constitute the mixed lipid described below, and straight-chain aliphatic alcohols, straight-chain aliphatic amines, and glycerin fatty acid esters.
  • a phospholipid is one of the preferred embodiments.
  • the acyl chain contained in the phospholipid is preferably a saturated fatty acid.
  • the chain length of the acyl chain is desirably CC or even CC.
  • Examples of the phospholipid include dipalmitoyl, distearoyl, and palmitoyl stearoyl.
  • the phospholipid is not particularly limited.
  • As the phospholipid for example, those having a functional group capable of reacting with the above-mentioned hydrophilic polymer can be used.
  • a phospholipid having a functional group capable of reacting with a hydrophilic polymer examples include phosphatidylethanolamine having an amino group, phosphatidylglycerol having a hydroxy group, and phosphatidyl having a carboxyl group. Serine. Use of the above phosphatidylethanolamine is one of the preferred embodiments.
  • the lipid derivative of the hydrophilic polymer is derived from the hydrophilic polymer and the lipid.
  • the combination of the hydrophilic polymer and the lipid is not particularly limited, and those appropriately combined depending on the purpose can be used.
  • at least one selected from other lipids such as phospholipids and sterols, linear aliphatic alcohols, linear aliphatic amines, and glycerin fatty acid esters, and at least one selected from among PEG, PG, and PPG.
  • a derivative of a hydrophilic polymer to which is bonded is bonded.
  • the hydrophilic polymer is PEG
  • one of the preferred embodiments is to select phospholipid or cholesterol as the lipid.
  • the lipid derivative of PEG by such a combination include a phospholipid derivative of PEG and a cholesterol derivative of PEG.
  • the lipid derivative of the hydrophilic polymer can be selected from a positive charge, a negative charge, and neutral depending on the selection of the lipid.
  • DSPE a lipid derivative showing a negative charge due to the influence of a phosphate group
  • cholesterol a lipid derivative
  • the choice of lipid can be made according to its purpose.
  • a phospholipid derivative of PEG is mentioned as one of preferred embodiments.
  • Specific examples of the phospholipid derivative of PEG include polyethylene glycol distearoylphosphatidylethanolamine (PEG-DSPE).
  • PEG-DSPE is preferable because it is a general-purpose compound and easily available.
  • Such a hydrophilic polymer lipid derivative can be produced by a conventionally known method.
  • Synthesize phospholipid derivative of PEG which is an example of lipid derivative of hydrophilic polymer
  • Examples of the method include a method in which a phospholipid having a functional group capable of reacting with PEG and PEG are reacted using a catalyst.
  • the catalyst includes, for example, salted saline, carbodiimide, acid anhydride, and dartalaldehyde.
  • the ribosome may contain the hydrophilic polymer or the lipid derivative of the hydrophilic polymer singly or in combination of two or more.
  • the modification rate of the membrane lipid (total lipid) by the hydrophilic polymer lipid derivative is usually 0.1 to 20 mol%, preferably 0.1 to 5 mol%, more preferably 0.5 to 0.5 in terms of the ratio to the membrane lipid. — Can be 5 mol%.
  • the modification rate is set to 0.25 to 5 mol% with the main purpose of storage stability of the ribosome preparation. Is preferred.
  • the total lipid here is the total amount of all lipids constituting the membrane other than the hydrophilic polymer lipid derivative, and specifically includes phospholipids, other lipids, and other surface modifiers. In some cases, this surface modifier is also included.
  • the ribosome surface-modified with the lipid derivative of the hydrophilic polymer prevents the opsonin protein or the like in plasma from adsorbing to the surface of the ribosome, and thus the liposome is modified. It is possible to enhance the stability of the drug in blood, avoid the capture by RES, and improve the delivery of the drug to the target tissue or cell.
  • the ribosome is formed under conditions in which the hydrophilic polymer is distributed only on the outer surface of the ribosome, and the outer membrane of the lipid bilayer is selectively modified with the hydrophilic polymer.
  • the hydrophilic polymer chains on the outer membrane surface are distributed toward the outer side of the ribosome, while the inner aqueous phase inner membrane of the lipid bilayer is not surface-modified. No hydrophilic polymer chains are substantially distributed in the inner aqueous phase.
  • the ribosome according to the present invention can retain the above-mentioned membrane structure together with the above-mentioned phospholipids, other lipids, hydrophilic polymers and lipid derivatives thereof, and can be contained in the ribosome.
  • Membrane components can be included as long as the object of the present invention is not impaired.
  • membrane components include surface modifiers other than the above-mentioned hydrophilic polymer for changing the physical properties of lipids and imparting desired properties to the membrane components of the carrier.
  • the other surface modifier is not particularly limited, and examples thereof include those in which a compound other than the hydrophilic polymer is bonded to lipid.
  • the compound other than the hydrophilic polymer is not particularly limited, and examples thereof include aqueous solutions of glucuronic acid, sialic acid, dextran, pullulan, amylose, amylopectin, chitosan, mannan, cyclodextrin, pectin, carrageenan, and the like.
  • a basic compound can be contained as a substance that suppresses lipid hydrolysis.
  • lipids are known to be hydrolyzed by temperature and pH.
  • fatty acid esters at the Sn-1 and Sn-2 positions are known to decompose to lysolipids and fatty acids immediately after hydrolysis (Grit et al., Chem. Phys. Lipids 64, 3-18, 1993). ). These degradation products disrupt the stability of ribosomes by disrupting conventional lipid membrane composition and thereby improving lipid membrane permeability.
  • a basic compound is contained in a membrane. This makes it possible to suppress the hydrolysis of lipids by positively charging the ribosome surface.
  • the basic conjugate is not particularly limited, but includes octadecylamine (ODA), N-methyl-n-octadecylamine (MODA), ⁇ , ⁇ -dimethyl-n- And octadecylamine (DMODA), stearyltrimethylammonium bromide (TMODA), and other amines (including ammonium salts).
  • ODA octadecylamine
  • MODA N-methyl-n-octadecylamine
  • DMODA
  • TODA stearyltrimethylammonium bromide
  • Lipid derivatives having a quaternary ammonium salt such as TMODA are desirable because they can positively charge the lipid membrane surface at low concentrations.
  • Examples of basic conjugates include DOTMA disclosed in JP-A-61-161246, and DOTAP disclosed in Table 5-508626, Transphetam disclosed in Japanese Patent Application Laid-Open No. 2-292246, TMAG disclosed in Japanese Patent Application Laid-Open No. 4-108391, and 3 disclosed in International Publication No. 97Z42166. , 5-dipentadecyloxybenzamidine hydrochloride, DOS PA, TfxTM-50, DDAB, DC-CHOL, DMRIE and the like.
  • the other surface modifying agent is a substance in which a compound having a basic functional group is bonded to lipid, it is referred to as a cationized lipid.
  • the lipid portion of the cationic lipid is stabilized in the lipid bilayer membrane of the liposome, and the basic functional group portion is on the membrane surface of the lipid bilayer of the carrier (on the outer membrane surface and Z or on the inner membrane surface).
  • the internal aqueous phase of the ribosome is pH5 or lower, preferably pH2 to pH5, more preferably pH3 to pH5, and particularly preferably about pH4.
  • the pH of the internal aqueous phase can be adjusted with a physiologically acceptable physiological pH buffer during liposome preparation.
  • the ribosome as described above can carry various drugs.
  • therapeutic drugs include, specifically, nucleic acids, polynucleotides, genes and their analogs, anticancer agents, antibiotics, enzymes, antioxidants, lipid uptake inhibitors, hormones, anti-inflammatory agents, steroids , Vasodilators, angiotensin converting enzyme inhibitors, angiotensin receptor antagonists, smooth muscle cell proliferation and migration inhibitors, platelet aggregation inhibitors, anticoagulants, chemical mediator release inhibitors, vascular endothelial cells Growth inhibitor or inhibitor, aldose reductase inhibitor, mesangial cell growth inhibitor, lipoxygenase inhibitor, immunosuppressant, immunostimulant, antiviral agent, Maillard reaction inhibitor, amyloidosis inhibitor, monoxide Nitrogen synthesis inhibitor, AGEs (Advanced glycation endproducts) inhibitor, radical force venture, protein, peptide, glycosami Darikan and its derivatives, oligosaccharides and
  • the ribosome preparation of the present invention can stably carry a drug that is unstable at a pH higher than pH 5.
  • drugs include dopamine hydrochloride, mesyl Gabexate acid, norlepinephrine, bromhexine hydrochloride, metoclopramide, epinephrine, vitamin Bl, vitamin B6, carboplatin, gemcitabine hydrochloride, pinorebin tartrate, vincristine sulfate, doxorubicin hydrochloride, epilubicin hydrochloride, daunorubicin hydrochloride and the like.
  • Examples of drugs for diagnosis include X-ray contrast agents, ultrasound diagnostic agents, radioisotope labeling nuclear medicine diagnostic agents, and diagnostic agents for nuclear magnetic resonance diagnosis.
  • a therapeutic drug and a diagnostic drug can be loaded without any particular limitation.
  • the desired loading amount of the drug varies depending on the type of the drug, but it is generally desirable that the drug has a high loading rate.
  • the drug when the pH of the internal aqueous phase is 5 or less, the drug can be loaded at a high concentration using the ion gradient method.
  • a preferable amount of the drug to be loaded is at least 0.005 mol of drug Zmol lipid, more preferably at least 0.1 mol of drug Zmol lipid, based on the total lipid of the ribosome membrane.
  • the total lipid as used herein refers to the total amount of all lipids constituting the membrane other than the hydrophilic polymer lipid derivative, and specifically includes the case where phospholipids, other lipids, and other surface modifiers are included. Also includes this surface modifier.
  • the term “support” essentially refers to a state in which a drug is encapsulated in a closed space of a ribosome (carrier), but a state in which a part of the drug is contained in a membrane or a liposome (carrier). It may be included in the state of being attached to the outer surface of the system.
  • the ribosome preparation of the present invention may further contain a pharmaceutically acceptable stabilizer and Z or an antioxidant depending on the administration route.
  • the stabilizer examples include, but are not particularly limited to, saccharides such as glycerol, mannitol, sorbitol, ratatose, and sucrose.
  • saccharides such as glycerol, mannitol, sorbitol, ratatose, and sucrose.
  • sterols such as cholesterol (Cholesterol) described above as other lipids constituting the membrane component act as this stabilizing agent.
  • the antioxidant is not particularly limited, for example, ascorbic acid, uric acid, tocoffe Roll congeners (eg, vitamin E). Note that there are four isomers of ⁇ , ⁇ , ⁇ , and ⁇ in tocofurol, and any of them can be used in the present invention.
  • the stabilizer and the antioxidant used are appropriately selected from the above depending on the dosage form, but are not limited thereto. These stabilizers and anti-oxidation agents can be used alone or in combination of two or more. Further, from the viewpoint of preventing oxidation, it is desirable that the dispersion be a nitrogen-filled package.
  • the ribosome preparation of the present invention may further contain a pharmaceutically acceptable additive depending on the administration route.
  • a pharmaceutically acceptable additive include water, saline, pharmaceutically acceptable organic solvents, collagen, polybutyl alcohol, polybutylpyrrolidone, carboxybutyl polymer, sodium carboxymethylcellulose, sodium polyacrylate, alginic acid Sodium, water-soluble dextran, sodium carboxymethyl starch, pectin, methylcellulose, ethylcellulose, xanthan gum, gum arabic, casein, gelatin, agar, diglycerin, propylene glycol, polyethylene glycol, glycerin, paraffin, stearyl alcohol, Stearic acid, human serum albumin (HSA), mannitol, sorbitol, ratatose, PBS, biodegradable polymer, serum-free medium, surfactants acceptable as pharmaceutical additives, And the like buffers at physiological pH acceptable in vivo.
  • HSA human serum albumin
  • the additive is appropriately selected from the above, or used in combination, but is not limited thereto.
  • the size of the ribosome preparation of the present invention is not particularly limited.
  • the diameter of the particle outer diameter is 70 nm-140 nm, preferably 80 nm-130 nm for LUV. More preferably, it is 90 nm to 120 nm. In the case of SUV, it is 4 Onm-140 nm, preferably 50-130 nm, more preferably 60-120 nm.
  • the diameter of the particle outer diameter is an average value of the diameters of all the particles of the ribosome preparation measured by the dynamic light scattering method.
  • Zetasizer Mervern Instruments. 3000 HS or S ZEM 5002 is used. It measured using.
  • a filtration sterilization method is used as a final sterilization method.
  • ribosomes are used as indicator bacteria Brevundimonas diminuta (size, about 0.3 X 0.8 m) is required to be unfiltered, so it must be sufficiently small particles as compared to Brevundimonas diminuta. It is important that the particle size is around 100 nm to make this filtration sterilization process more reliable.
  • a ribosome preparation containing these additives can be provided as a pharmaceutical composition.
  • the pharmaceutical composition of the present invention can be stored in a conventional manner, for example, refrigerated at 0-8 ° C or at room temperature of 1-130 ° C.
  • a membrane component such as a phospholipid is mixed with an organic solvent such as a black form, and the organic solvent is distilled off, followed by vacuum drying to form a thin film on the inner wall of the flask.
  • an internal aqueous solution is added to the flask and vigorously stirred to obtain a ribosome dispersion.
  • the pH of the internal aqueous phase of the ribosome can be adjusted by adjusting the internal aqueous phase solution to be added to a desired pH with a pH adjuster or the like as necessary.
  • the obtained ribosome dispersion is centrifuged, and the supernatant is decanted and purified to obtain a ribosome dispersion.
  • a derivative of polyethylene glycol (PEG) with a phospholipid, cholesterol, or the like is preferably used, and a polyethylene glycol derivative is added to the ribosome dispersion obtained by the above-described method.
  • PEG polyethylene glycol
  • ribosomes in which PEG chains are distributed only on the outer surface can be produced.
  • a ribosome containing a membrane-constituting lipid such as a phospholipid having a reactive functional group is produced by an ordinary method
  • one-terminal-activated PEG is added to the external ribosome solution to give a functional group. It is a method of producing ribosomes by binding to a lipid constituting a membrane such as a phospholipid having a group.
  • the ribosome can also be obtained by mixing the above-mentioned respective components and discharging the ribosome with a high-pressure discharge type chiller.
  • This method is specifically described in "Ribosomes in Life Science” (Terada, Yoshimura et al .; Springer's Fairlark Tokyo (1992)), and the description herein is cited with reference to this description. I do.
  • several techniques are used for sizing ribosomes to a desired size. Technology Liposome Preparation and Related Techniques "2ndedition, Vol.I-III, CRC Press). This description is cited and described in the present specification.
  • the ribosome dispersion can be made into a unilamella by forcibly passing through a filter a plurality of times using an eta-stroder.
  • a filter Usually, two or more types of filters having a pore diameter larger than a desired diameter and finally having a different diameter from a filter having a desired diameter are used.
  • filters with different diameters and increasing the number of etastrusion increases the rate of lamellarization, and can be regarded as a substantially monolayer ribosome.
  • lamella vesicles are specifically defined as the proportion of unilamella vesicles in all carriers (vesicles) that make up a ribosome preparation. It is preferably at least 80%.
  • the remote loading method can be achieved by forming a pH gradient between the inner aqueous phase and the outer aqueous phase.
  • a ribosome can be prepared by the above-described method at a low pH and then the outer water phase can be replaced to form a pH gradient.
  • a method of forming a pH gradient between the inside and the outside of the ribosome uses an ammonium ion concentration gradient having a high inside and a low Z outside, and a concentration gradient of an organic compound having an amino group capable of Z or protonation.
  • the organic compound having an amino group capable of protonation include, but are not limited to, methylamine, ethylamine, propylamine, getylamine, ethylenediamine, aminoethanol, and the like, which are desirably low in molecular weight.
  • the internal ammonium ion is equilibrated by ammonia and protons, and the ammonia is eliminated from the inside of the ribosome by diffusing through the lipid membrane. With the disappearance of ammonia, the equilibrium in the ribosome moves continuously in the direction of proton generation. As a result, protons accumulate in the ribosome, forming a pH gradient inside / outside the ribosome. By adding a drug to the ribosome dispersion having this pH gradient, the drug is encapsulated in the ribosome.
  • ammonium salt that forms the ammonium ion gradient is not particularly limited, but ammonium sulfate, ammonium hydroxide, ammonium acetate, ammonium chloride, ammonium phosphate, and the like. Includes ammonium, ammonium citrate, ammonium succinate, ammonium muratatobionate, ammonium carbonate, ammonium tartrate, and ammonium oxalate.
  • membrane components such as phospholipids are mixed with an organic solvent such as black form, and the organic solvent is distilled off, followed by vacuum drying to form a thin film on the inner wall of the flask.
  • an acidic buffer eg, a buffer of PH4
  • sizing of the ribosome particle size is performed, and the ribosome external solution is replaced with an external aqueous phase having a pH around neutrality by a method such as gel filtration, or the liposome external water is adjusted by a suitable pH adjuster.
  • a pH gradient is formed by adjusting the pH of the phase to around neutral (for example, around pH 7-7.5), and an aqueous solution containing the drug is added to the ribosome dispersion, and this solution is heated for a certain time. By doing so, the drug can be loaded.
  • the modification of the hydrophilic polymer can be performed either before or after the drug loading operation, as long as it is after the formation of the lipid bilayer membrane vesicles as described above.
  • intravenous injection such as infusion, intramuscular injection, intraperitoneal injection, or subcutaneous injection
  • intravenous injection such as infusion, intramuscular injection, intraperitoneal injection, or subcutaneous injection
  • the administration method can be appropriately selected.
  • the pharmaceutical composition can be administered by syringe or infusion.
  • a force table is inserted into the body of a patient or a host, for example, into a lumen, for example, into a blood vessel, and the tip is guided to the vicinity of the target site, and the desired target site or its vicinity or the target site is passed through the catheter. It is also possible to administer to the site where blood flow is expected.
  • the ribosome formulation of the present invention is administered to a patient already suffering from a disease in an amount sufficient to cure or at least partially arrest the symptoms of the disease.
  • the effective dose of a drug encapsulated in a liposome preparation is usually selected from the range of 0.1 to 100 mg / kg of body weight per day.
  • the ribosome preparation of the present invention is not limited to these dosages.
  • the administration may be carried out by force when a disease occurs, or may be administered prophylactically when the onset of the disease is predicted to alleviate the symptoms at the onset.
  • the administration period can be appropriately selected depending on the age and symptoms of the patient.
  • the molecular weights of the components used in each example are as follows.
  • Hydrogenated soybean lecithin (abbreviated as HSPC, molecular weight 790, SPC3 manufactured by Lipoid)
  • Cholesterol (abbreviated as Choi, molecular weight 386.65, manufactured by Solvay)
  • Sphingomyelin (abbreviated as SM, molecular weight 703.3, manufactured by Avanti Polar Lipidos)
  • Octadecylamine (abbreviated as ODA) (Tokyo Kasei: molecular weight 269.51), N-methyl-n-octadecylamine (abbreviated as N-MethyHi-octadecylamine; MODA) (Tokyo Chemical: molecular weight) 283. 54),
  • DMODA N-DimethyHi-octadecylamine
  • TMOD A Stearyltrimethylammonium bromide
  • Doxorubicin Doxorubicin Hydrochloride USP23 (BORYUNG): molecular weight 579.99
  • Example 1 shows an example of the ribosome preparation of the present invention. As shown below, ribosomes prepared under low pH conditions (pH 4) were added to hydrophilic high molecular lipid derivatives (PEG-DSPE:
  • the mixture was stirred at 60 ° C for 30 minutes, and PEG-DSPE was introduced.
  • doxorubicin hydrochloride ZHSP C 0.2 (wZw)
  • the required amount of doxorubicin hydrochloride was calculated based on the calculation result.
  • a predetermined amount of a doxorubicin hydrochloride solution (10 mg Z mL) was stirred in the ribosome dispersion at 60 ° C. for 60 minutes to introduce doxorubicin hydrochloride.
  • Example 1 ribosomal phospholipids were quantified using phospholipid C test @ Ko (manufactured by Wako Pure Chemical Industries, Ltd.).
  • the concentration of doxorubicin encapsulated in the ribosome was determined by measuring the absorbance at 480 nm with a spectrophotometer of a solution prepared by adding 2 mL of methanol to 40 ⁇ L of doxorubicin ribosome.
  • Comparative Example 1 shows an example of a ribosome preparation outside the scope of the present invention.
  • hydrophilic polymer lipid derivative PEG-DSPE
  • a ribosome preparation was produced using the same ribosome components as in Example 1 except that the hydrophilic polymer (PEG chain) was distributed on both sides of the inner and outer membranes of the heavy membrane.
  • PEG chain hydrophilic polymer
  • Example 1 0.073 g was weighed, ethanol (1 mL) was added, and the mixture was dissolved in a 65 ° C constant temperature bath for 30 minutes. After confirming complete dissolution, 10 mL of the internal aqueous phase was added, and the mixture was further heated and stirred at 65 ° C for 60 minutes to prepare a crude ribosome dispersion. The same operation as in Example 1 was performed using an Etasuruder, and the sample after the Etastrofusion was ice-cooled.
  • a gel column (Sepharose 4 Fast) in which the prepared ribosome is sufficiently replaced with an external aqueous phase.
  • doxorubicin hydrochloride solution 10 mg ZmL was added to the ribosome dispersion, and doxorubicin hydrochloride was introduced in the same manner as in Example 1 to remove the doxorubicin hydrochloride encapsulated in the ribosome.
  • Example 1 As in Example 1, the quantification of ribosomal phospholipids, the amount of doxorubicin encapsulated in ribosomes, and the particle size were measured. Table 1 shows the obtained ribosomes.
  • SM Choi at a molar ratio of 55:45 It was dissolved in the mixture, and the solvent was distilled off under reduced pressure to form a thin film.
  • a 300 mM citrate solution and a 300 mM trisodium citrate solution were mixed and adjusted to pH 4.0 to obtain an internal aqueous phase solution. 0.30 g of the mixed lipid was weighed, and 5 mL of the internal aqueous phase solution was weighed and hydrated at 70 ° C for 10 minutes. Occasionally, ultrasonic waves were applied with a bath-type soaker heated to 55 ° C to evenly disperse the lipids.
  • the obtained lipid dispersion was passed through a filter with a pore size of 400 nm three times using an etastruder (manufactured by Lipex Biomembranes) kept at 65 ° C., and further exchanged with a filter with a pore size of 200 nm, and further passed through three times. After replacing the filter, the same operation was further performed twice ( ⁇ 400 ⁇ 3, 200 nm X 3, ⁇ 100 ⁇ 5, ⁇ 100 nm X 5). The sample after eta-strosion was ice-cooled.
  • the amount of doxorubicin hydrochloride 20 mol% is calculated based on the total amount of lipids in the ribosome.
  • a solution of lOmgZmL was prepared using.
  • a predetermined amount of doxorubicin hydrochloride solution (10 mg ZmL) was added to the ribosome dispersion, adjusted to pH 7.4 with IN NaOH or saturated aqueous sodium hydrogen carbonate, and then stirred at 65 ° C for 30 minutes to introduce doxorubicin hydrochloride.
  • the sample after doxorubicin hydrochloride introduction was ice-cooled. Gel filtration was performed using a column (Sepharose 4 Fast Flow) sufficiently substituted with physiological saline to remove doxorubicin hydrochloride that had been enclosed in the liposome.
  • Example 1 As in Example 1, the quantification of ribosomal phospholipids, the amount of doxorubicin encapsulated in ribosomes, and the particle size were measured. Table 1 shows the obtained ribosomes.
  • HSPC Choi: 3,5-dipentadecyxixenbenzamidine hydrochloride was dissolved in t-butanol in a molar ratio of 50/42/8 and lyophilized to obtain a mixed lipid.
  • a 300 mM citrate solution and a 300 mM trisodium citrate solution were mixed to obtain an inner aqueous phase solution adjusted to pH 4.
  • the ribosome dispersion prepared above was added to a column (Sepharose 4 Fast Flow, ⁇ 1.5 cm ⁇ 25 cm), eluted with physiological saline, subjected to gel filtration, and the outer aqueous phase was replaced with physiological saline.
  • PEG-DSPE was dissolved in physiological saline to a concentration of lOmgZmL, and the solution was added to the external aqueous phase.
  • Doxorubicin is dissolved in physiological saline to a concentration of 10 mg / mL, and this solution is added so that the concentration of doxorubicin is 20 mol% with respect to the total lipid content of the ribosome. After adjustment, the mixture was incubated at 65 ° C for 30 minutes.
  • the particle size is determined by diluting 100 ⁇ L of the ribosome dispersion to 3 mL with physiological saline, and It was measured by ZEM 5002 (Malvern Instruments.).
  • Buffer solution (1) ammonium sulfate (250 mM)
  • Buffer (2) L-Histidine (lOmM), 10% Sucrose pH 6.5
  • Buffer (3) citrate (300 mM) pH 4.0
  • Buffer (4) citrate (300 mM) pH 7.5
  • Fig. 2 shows the results of TLC.
  • Test Example 1 was performed using a hydrophilic polymer lipid derivative (PEG-DSPE) under acidic conditions.
  • PEG-DSPE hydrophilic polymer lipid derivative
  • PEG-DSPE was prepared under acidic conditions (buffer (3) citric acid pH 4.0
  • the ribosomes produced in the above process have an acidic inner aqueous phase and are distributed on the inner aqueous phase side. E decomposition is also expected. The results are shown in Test Example 2.
  • Example 1 The two ribosomes prepared in Example 1 and Comparative Example 1 were stored at 40 ° C. for 1 week and 2 weeks, and then PEG-DSPE quantified by HPLC. Transfer the results to PEG ribosomes stored at 4 ° C
  • Figure 3 shows the percentage of PEG-DSPE remaining.
  • Test Example 2 indicate that the ribosome of Comparative Example 1 had a lower residual ratio of PEG-DSPE.
  • PEG-DSPE remains unchanged in posomes Degradation of PEG-DSPE occurs
  • PEG-DSPE After heating and stirring for 0 minutes, PEG-DSPE is introduced. The sample after the introduction was ice-cooled.
  • the ribosome dispersion prepared above was subjected to gel filtration using a gel column (Sepharose 4 Fast Flow) in which a 10% sucrose (pH 9.0) solution was sufficiently substituted to form a pH gradient.
  • the sample after gel filtration was ice-cooled.
  • Dox / Total Lipid (w / w) 0)
  • the amount of doxorubicin hydrochloride was calculated so that 18).
  • the required amount of doxorubicin hydrochloride was weighed based on the calculation results, and a 10 mg / mL solution was prepared using a 10% sucrose (pH 9.0) solution.
  • doxorubicin hydrochloride solution 10 mg ZmL was added to the liposome dispersion, and the mixture was stirred at 60 ° C. for 60 minutes to introduce doxorubicin hydrochloride.
  • the sample after doxorubicin hydrochloride introduction was ice-cooled. Gel filtration was performed using a column (Sepharose 4 Fast Flow, ⁇ 2.8 cm ⁇ 20 cm) that had been sufficiently replaced with a 10% sucrose (pH 6.5) solution, and the gel was encapsulated in ribosomes! In addition, doxorubicin hydrochloride was removed.
  • the ribosome phospholipid was quantified using a phospholipid C test @ Ko (manufactured by Wako Pure Chemical Industries, Ltd.).
  • Particle size is determined by diluting 20 L of ribosome dispersion to 3 mL with saline. It is an average particle diameter measured by Zetasizer3000HS (Malvern Instruments.). The particle size is the average particle size measured by diluting 20 ⁇ L of the liposome dispersion with physiological saline to 3 mL and measuring with Zetasizer3000HS (Malvern Instruments.).
  • the zeta potential was measured as follows.
  • Table 2 shows the measurement results of the ribosome preparations (1)-(4) of Example 4 together with the measurement results of the ribosome preparation of Example 1.
  • ribosome preparations prepared in Examples 4 and 5 were stored at 40 ° C. for 2 weeks, and then PEG-DSPE was quantified by HPLC.
  • Example 1 (Salt)
  • Table 3 shows the residual ratio of PEG-DSPE to PEG liposome stored at 4 ° C together with the results (Test Example 2) of the ribosome preparation (without basic conjugate). Contains a basic compound
  • the ratio (%) of the decomposition product of HSPC was quantified using an HPLC method.
  • HSPC degradation product ratio (%) of the decomposition product of HSPC was quantified using an HPLC method.
  • the ribosome preparation of Example 4 has a lower percentage (%) of the degradation product of HSPC than the ribosome of Example 1, indicating that the hydrolysis of HSPC is suppressed. . It is also clear that the ratio (%) of the decomposition product of HSPC does not largely depend on the structure of the basic conjugate.
  • Figure 5 shows the content (mol) of the basic conjugate (TMODA) of the ribosome preparation of Example 4 during the 0-, 1-, and 2-week (OW, 1W, and 2W) test periods. The results are shown for the ratio (%) of the digest of HSPC to%). As shown in Figure 5, the content of basic compounds It can be seen that as the (mol%) becomes higher, the ratio (%) of the decomposition product of HSPC is suppressed.
  • TODA basic conjugate
  • PEG lipids are placed on the outside of the liposome lipid bilayer.
  • the ribosome preparation can be stabilized even when a drug that needs to be maintained in an acidic environment is contained in the internal aqueous phase.
  • the lipid bilayer in the ribosome preparation is destabilized, the drug carried on the ribosome leaks out, the ribosome is aggregated, the effect of preventing the ribosome from adsorbing to plasma proteins and opon proteins is reduced, and Problems such as loss of stability can be overcome.

Abstract

 親水性高分子による膜修飾による血中安定性などの効果を損なわず、酸性下に安定性を損なう薬物を安定して担持することができる保存安定性に優れたリポソーム製剤として、リン脂質を主膜材として含む脂質二重膜で形成されたユニラメラ小胞と、該小胞内に存在するpHが5以下の内水相とを備え、かつ薬物を担持させたリポソームであって、前記小胞は、外表面のみが親水性高分子で修飾されたリポソーム製剤を提供する。

Description

明 細 書
リボソーム製剤
技術分野
[0001] 本発明は、ドラッグデリバリーシステムに有用なリボソーム製剤に関する。
背景技術
[0002] 近年、薬物を安全にかつ効率よく目的病巣部位に送達 '分布させるドラッグデリバリ 一システム(DDS)が盛んに研究されている。その方法のひとつとして、リボソーム、 ェマルジヨン、リピッドマイクロスフェア、ナノパーティクルなどの閉鎖小胞を薬物の運 搬体 (担体)として利用することが検討されている。し力しながら閉鎖小胞を用いる D DSの実用化に際しては克服すべき様々な課題があり、中でも、生体側の異物認識 機構からの回避および体内動態の制御は重要である。つまり、閉鎖小胞を標的部位 に高い選択性で送達させるためには、肝臓、脾臓等の細網内皮系組織 (RES)での 捕捉を回避し、血液中のォプソニン蛋白質や血しょう蛋白質などとの相互作用(吸着 )による凝集を防止して血中安定性を高める必要がある。
[0003] この課題を解決する方法として、親水性高分子による膜修飾が知られている。親水 性高分子で修飾された閉鎖小胞、特にリボソームは、高い血中滞留性が得られること により、腫瘍組織や炎症部位などの血管透過性が亢進した組織への受動的な集積 が可能となり、実用化が進められている (特許文献 1一 3および非特許文献 3— 5など 参照)。親水性高分子で膜修飾するための修飾剤としては、一般的に、ポリエチレン グリコール (PEG)に、リン脂質またはコレステロールなどの脂質を結合したポリエチレ ングリコール誘導体が好適に用いられる。商業的に入手可能な汎用の修飾剤は、ジ ァシルフォスファチジルエタノールァミンなどのリン脂質を結合したポリエチレングリコ ール誘導体である。
[0004] 上記のような修飾が施されるリボソームは脂質二重膜で形成される閉鎖された小胞 であり、その小胞空間内に水相(内水相)を含む。リボソームは、脂質二重膜層の一 枚膜からなるュ-ラメラ小胞(Small Unilamellar Vesicle, SUV, Large Unilamellar Vesicle, LUV)および複数枚からなる多重ラメラ小胞(Multilamellar Vesicle, MLV) などの膜構造が知られている。リボソームに内包された薬物の漏出を抑制するために
、リボソームの膜構造を MLV膜とする提案もある (特許文献 4参照)。
[0005] また、上記のようなリボソーム内への薬物封入方法は種々あるが、 pH勾配法などの イオン勾配法 (特許文献 5— 7、非特許文献 6など参照)を利用すれば、薬物を高濃 度に封入できることが知られて 、る。
[0006] 特許文献 1:特表平 5— 505173号公報
特許文献 2:特公平 7 - 20857号公報
特許文献 3:特許第 2667051号公報
特許文献 4 :国際公開 01Z000173号パンフレット
特許文献 5:米国特許第 5077056号明細書
特許文献 6:特許第 2847065号公報
特許文献 7 :特許第 2659136号公報
非特許文献 l : Cancer Lett., 1997, 118(2), p.153
非特許文献 2 : Br.J.Cancer., 1997, 76(1), p.83
非特許文献 3 : D.D. Lasic著「LIPOSOMES from Physics to Applications , Elsevier, 1993
特許文献 4 : Martin C.Woodle, Gerrit Storm編「Long Circulating Liposomes: Old Drugs, New TherapeuticsJ , Springer,1997
¥ .5: D.D.Lasic^ D.Papahadjopoulos編 「Medical Applications of
LIPOSOMES] , Elsevier, 1998
非特許文献 6 : G. Gregoriadis編「Liposome Technology Liposome Preparation and Related Techniques」2nd edition, Vol. I— III, CRC Press
発明の開示
発明が解決しょうとする課題
[0007] 上記のようなリボソームに担持させる薬物のうちには、中性条件より高い pH領域で は安定性が悪い薬物があり、この場合には、薬物が脂質二重膜中に取り込まれてい るにせよ、内水相に取り込まれているにせよ、リボソームの内水相を酸性に保つ必要 がある。また pH勾配を利用して弱塩基性の薬物をリボソームに封入 (担持)する場合 には、クェン酸緩衝液を用いて内水相の pHを 4前後の酸性条件とし、リボソームの主 膜材の相転移点以上の温度 (例えば 60°C程度)まで加温する。しかしながら、このよ うにリボソーム内が酸性条件であり、場合によっては高温に晒されることにより、製造 時および保存期間中に、膜の劣化により安定性が低下することが懸念される。この点 に着目し、酸性で保持する必要のある薬物を、特に親水性高分子で膜修飾したリポ ノームに担持させたリボソーム製剤の保存性にっ 、て検討したところ、 V、くつかの親 水性高分子修飾リボソームでは、未修飾のリボソームよりも製造時あるいは保存期間 中に担持している薬剤の分解が起こりやすい場合があり、その結果、リボソーム製剤 としての保存安定性を損ないやすいという知見を得た。本発明は、このような知見に 基づいて、酸性で保持する必要のある薬物あるいは薬物を封入するための手段に起 因して結果的に酸性条件下に保持された力 ちとなった薬物を、特に親水性高分子 で膜修飾したリボソームに担持させる場合にぉ ヽて、親水性高分子本来の膜修飾効 果を保持したまま、膜安定性に優れ、保存安定性に優れたリボソーム製剤を提供す ることを目的としている。
課題を解決するための手段
本発明者は、上記に鑑みて、一般的なリン脂質を主膜材とし、親水性高分子で膜 修飾したリボソームで、酸性環境で保持する必要のある薬物を内水相に保持したリポ ソーム製剤についてさらに検討したところ、内水相の酸性環境に対して脂質の加水 分解が起こり、その結果、リボソーム製剤としての保存安定性が損なわれやすいとい う知見を得た。これに基づいてさらに検討し、保持安定性が損なわれ易いリボソーム 製剤は、親水性高分子が膜の内外表面ともに修飾されたものであることを知見した。 これらから、リボソームの外表面のみを親水性高分子で修飾すればょ 、ことを想到し た。そしてこのような構造のリボソーム製剤は、内水相が酸性環境であっても保存安 定性を確保できることを確認することができた。さら〖こ、アミノ基、アミジノ基、グアジ- ノ基などを含む塩基性化合物 (カチオン化剤)〖こよる膜修飾は、内水相が酸性環境 であってもリボソーム膜を安定ィ匕する効果があり、したがってこのような塩基性ィ匕合物 を膜成分として含むリボソーム製剤は保存安定性に優れることを見出し、以下のよう な本発明を完成するに至った。 [0009] (1)リン脂質を主膜材として含む脂質二重膜で形成されたュ-ラメラ小胞と、該小胞 内に存在する pHが 5以下の内水相とを備え、かつ薬物を担持させたリボソームであ つて、前記小胞は、外表面のみが親水性高分子で修飾されたものである、リボソーム 製剤。
[0010] (2)前記薬物が、 pH5より大きい pH領域で不安定な薬物である前記(1)のリポソ一 ム製剤。
(3)前記薬物を、少なくとも 0. O5mol薬物 Zmol脂質の濃度で担持する前記(1)また は(2)のリボソーム製剤。
(4)前記薬物を、少なくとも 0. Imol薬物 Zmol脂質の濃度で担持する前記(1)または (2)のリボソーム製剤。
[0011] (5)前記主膜材が、相転移点 50°C以上のリン脂質である前記(1)一(4)のいずれか のリボソーム製剤。
(6)前記リン脂質が、水素添加されたリン脂質である前記(1)一 (5)の 、ずれかのリ ポソーム製剤。
(7)前記リン脂質が、スフインゴリン脂質である前記(1)一 (5)の 、ずれかのリポソ一 ム製剤。
[0012] (8)前記脂質二重膜の膜成分として、前記リン脂質以外の他の脂質類をさらに含む 前記(1)一 (7)の 、ずれかのリボソーム製剤。
(9)前記脂質二重膜の膜成分として、コレステロールをさらに含む前記 (6)または(7 )のリボソーム製剤。
(10)前記脂質二重膜の膜成分として、アミノ基、アミジノ基およびグアジニノ基から 選ばれる基を含む塩基性ィ匕合物をさらに含む前記(1)一(9)のいずれかのリポソ一 ム製剤。
(11)前記塩基性化合物が、 3,5-ジペンタデシ口キシベンズアミジン塩酸塩である前 記(10)のリボソーム製剤。
[0013] (12)前記親水性高分子が、分子量 500— 10,000ダルトンのポリエチレングリコール である前記(1)一(11)のいずれかのリボソーム製剤。
(13)前記親水性高分子は、親水性高分子のリン脂質またはコレステロール誘導体 で導入される前記(1)一(12)のいずれかに記載のリボソーム製剤。
[0014] (14)前記リボソーム製剤の平均粒子径カ 40— 140nm程度である前記(1)一(13 )の!、ずれかのリボソーム製剤。
(15)前記リボソーム製剤の平均粒子径が、 50— 130nmである前記( 1)一( 13)のい ずれかのリボソーム製剤。
(16)前記リボソーム製剤の平均粒子径が、 60— 120nmである前記( 1)一( 13)のい ずれかのリボソーム製剤。
[0015] (17)内水相の pHが 2— 5である前記(1)一(16)のいずれかのリボソーム製剤。
[0016] (18)上記のようなリボソーム製剤の製造方法として、内水相の pHが 5以下となるよう に、リン脂質を含む脂質二重膜のュ-ラメラ層構造の小胞を調製した後、親水性高 分子脂質誘導体を添加して前記小胞の外表面のみを修飾し、小胞の調製時に内水 相にあらかじめ添加するか、小胞調製後に小胞外力も前記脂質二重膜を通過せしめ て薬物を封入して薬物を封入して薬物を担持させた上記(1)のリボソーム製剤の製 造方法。
(19)薬物の封入は小胞調製後にイオン勾配法を用いて小胞外力 前記脂質二重 膜を通過せしめることにより行われるものである上記(18)に記載のリボソーム製剤の 製造方法。
発明の効果
[0017] 上記のような特定構造のリボソームであれば、膜内外双方ともに親水性高分子を付 カロして膜修飾する場合に比べ、全体では相対的に低い修飾率で親水性高分子の効 果を発現することができる。すなわち無用な修飾を含まないため、リボソーム膜の安 定性に優れ、また、酸性環境下における内水相での脂質の無用な加水分解を抑制 することができる。特に、本発明に係るリボソーム製剤は、上述した制約により酸性で 保持されている内水相において製剤の構造上、必要ないものを的確に排除し、それ に伴い、無用な脂質の加水分解を抑制することによって、製造時および保存時の分 解を抑制して、内封した薬物を高濃度に安定して担持することができ、かつ親水性高 分子本来の高い血中滞留性などの膜修飾効果を保持したまま、保存安定性に優れ たリボソーム製剤とすることができる。このような特徴から、本発明のリボソーム製剤は 、疾患の治療および zまたは診断に効果を有する。
図面の簡単な説明
[0018] [図 1]親水性高分子脂質誘導体 (PEG - DSPE)の安定試験後の TLCの撮像を示
5000
す。
[図 2]親水性高分子脂質誘導体 (PEG -DSPE)の安定試験後の TLCの撮像を示
5000
す。
[図 3]保存試験における PEG -DSPEの残存率を示す図である。
5000
[図 4]保存試験における HSPCの分解物の割合(%)を示す図である。
[図 5]保存試験における HSPCの分解物の割合(%)を示す図である。
発明を実施するための最良の形態
[0019] 以下、本発明をより詳細に説明する。
リボソームは、リン脂質二重膜からなる閉鎖小胞であり、その小胞空間内に水相(内 水相)を含む。リボソーム製剤は、このリボソームを担体とし、これに薬物を担持させた ものである。リボソームは、前述したように脂質二重膜の 1枚層からなるュ-ラメラ(一 枚膜)小胞 (SUV、 LUV)および複数枚カゝらなる多重ラメラ小胞 (MLV)などが知ら れているが、本発明に係るリボソームは一枚膜である。そのうちでも特に、 LUV (large unilamellar vesicle)リホソ ~~ムで ¾> 。また、 S LJV (small unilamellar visicie)も好まし い。
なお本発明では、リボソーム製剤を構成する全小胞中、ュ-ラメラ小胞が占める割 合は、存在比で全体の 50%以上であればよぐ 80%以上であることが好ましい。 また、本発明において薬剤を担持させるリボソームは、 pH5以下の内水相を含み、 かつュ-ラメラ脂質二重膜は、後述するように、その外膜表面のみが選択的に、親水 性高分子で表面修飾された特定の膜修飾構造を有する。
[0020] 上記脂質二重膜は、その主膜材として、少なくともリン脂質を含む。
リン脂質は、一般的に、分子内に長鎖アルキル基より構成される疎水性基とリン酸 基より構成される親水性基とを持つ両親媒性物質である。本発明で使用されるリン脂 質としては、フォスファチジルコリン(=レシチン)、フォスファチジルグリセロール、フォ スファチジン酸、フォスファチジルエタノールァミン、フォスファチジルセリン、フォスフ ァチジルイノシトールなどのグリセ口リン脂質;スフインゴミエリン(Sphingomyelin)など のスフインゴリン脂質;カルジォリピンなどの天然あるいは合成のジフォスファチジル 系リン脂質およびこれらの誘導体;これらを常法に従って水素添加したもの(例えば、 水素添加大豆フォスファチジルコリン)などを挙げることができる。以下、これらのリン 脂質を「リン脂質類」と称することもある。
これらのうちでも、水素添カ卩大豆フォスファチジルコリン(HSPC)などの水素添カロさ れたリン脂質、スフインゴミエリン(SM)などが好まし 、。
リボソームは、主膜材として単一種のリン脂質を、または複数種のリン脂質を含むこ とがでさる。
[0021] また、リボソームは、主膜材として相転移温度が生体内温度(35— 37°C)より高いリ ン脂質を用いることが好適である。なぜなら、このようなリン脂質を用いることにより、保 存時に、または、血液などの生体中で、リボソーム内に封入された薬物がリボソーム から外部へ容易に漏出しな 、ようにすることが可能となるからである。これらのリポソ一 ムは、主膜材の相転移温度以上で製造することが好ましい。なぜなら、主膜材の相 転移温度以下の温度では、粒子径制御が困難であるからである。例えば、主膜材の 相転移温度が 50°C付近である場合、 50— 80°C程度が好ましぐより具体的には 60 一 70°C程度で製造されることが好ま 、。
[0022] 本発明の特定形態のリボソームを安定的に形成できるものであれば、上記主膜材と ともに他の膜成分を含んでいてもよい。例えば、リン脂質以外の脂質もしくはその誘 導体 (以下、他の脂質類と称することもある)を含み、上記リン脂質とともに混合脂質 による膜を形成することが好まし 、。
他の脂質類としては、リン酸を含まない脂質が挙げられ、特に限定されないがグリセ 口糖脂質、スフインゴ糖脂質および安定化剤として後述するコレステロールなどのス テロール等およびこれらの水素添加物などの誘導体を挙げることができる。リポソ一 ムは、主膜材としてのリン脂質とともに、他の脂質類を含む混合脂質による膜で形成 されるのが好ましい。
[0023] 脂質二重膜を構成する膜脂質全体中、主膜材であるリン脂質の割合は、通常 20— 100mol%であり、好ましくは 40— 100mol%である。 また上記他の脂質類の膜脂質全体中の割合は、通常 0— 80mol%であり、好ましく は 0— 60mol%である。
[0024] 本発明において、上記のような脂質二重膜は、外膜側が選択的に親水性高分子で 修飾されている。親水性高分子としては、特に限定されないがポリエチレングリコール 、ポリグリセリン、ポリプロピレングリコール、フイコール、ポリビニノレアルコール、スチレ ン-無水マレイン酸交互共重合体、ジビュルエーテル -無水マレイン酸交互共重合 体、ポリビニルピロリドン、ポリビニルメチルエーテル、ポリビニルメチルォキサゾリン、 ポリェチルォキサゾリン、ポリヒドロキシプロピルォキサゾリン、ポリヒドロキシプロピルメ タアクリルアミド、ポリメタアクリルアミド、ポリジメチルアクリルアミド、ポリヒドロキシプロ ピルメタアタリレート、ポリヒドロキシェチルアタリレート、ヒドロキシメチルセルロース、ヒ ドロキシェチルセルロース、ポリアスバルトアミド、合成ポリアミノ酸などが挙げられる。 なおこれら親水性高分子は、脂質に結合して 、な 、側の末端がアルコキシィ匕 (例え ば、メトキシ化、エトキシ化、プロポキシ化)されているものが保存安定性に優れること 力 好ましい。
[0025] これらの中でも、製剤の血中滞留性を優れたものにする効果があることから、ポリエ チレングリコール(PEG)、ポリグリセリン(PG)、ポリプロピレングリコール(PPG)が好 ましい。
PEGの分子量は、特に限定されない。 PEGの分子量は、通常 500— 10,000ダル 卜ンであり、好まし <は 1,000— 7,000ダル卜ン、より好まし <は 2,000— 5,000ダル卜ン である。
PGの分子量は、特に限定されない。 PGの分子量は、通常 100— 10000ダルトン であり、好ましくは 200— 7000ダルトン、より好ましくは 400— 5000ダルトンである。
PPGの分子量は、特に限定されない。 PPGの分子量は、通常 100— 10,000ダル 卜ンであり、好まし <は 200— 7,000ダル卜ン、より好まし <は 1,000— 5,000ダル卜ンで ある。
[0026] これらの中でも、ポリエチレングリコールは最も汎用であり、血中滞留性を向上させ る効果があり、好ましい。
ポリエチレングリコールは、— (CH CH O)一の繰り返し構造を有する直鎖状の高分
2 2 η 子である。ポリエチレングリコールは、水にも有機溶媒にも可溶な両親媒性の特性( amphipathic property)を有する高分子であり、かつ毒性が低いことから、医薬品の安 定化、体内動態の改善のために広く応用されている。この毒性の低いことが知られて V、るポリエチレングリコールで修飾された担体 (例えばリボソーム)中に薬物を担持し た薬物担体 (例えばリボソーム製剤)は安全性が高 、。
[0027] なお、本発明において、「血中滞留性」とは、例えば薬物担体が投与された宿主に おいて、薬物が担体に内封された状態で血液中に存在する性質を意味する。
薬物は、担体から放出されると速やかに血中から消失し、暴露する。血中滞留性が 良 、と、薬物をより少な 、量で投与することが可能である。
また、本発明において、「暴露」とは、担体の外部に放出された薬物が外部環境に対 し作用を及ぼすことを意味する。具体的には、放出された薬物は標的部位に近接し 、接触することによりその作用(例えば、抗腫瘍効果)を発揮する。薬物が標的部位に 作用することにより、標的部位の DNA合成が行われている細胞周期にある細胞に局 所的に作用するなどの、期待された効果を示す。
[0028] このようなリボソームは、後述するように脂質二重膜のュ-ラメラ小胞の未修飾リポソ ームを形成した後、外部より親水性高分子で膜表面を修飾すれば、脂質二重膜の外 膜のみを選択的に表面修飾することができる。この際、親水性高分子の導入ための 修飾剤として、親水性高分子脂質誘導体を用いると、親水性高分子部分が外方に向 力つて突出した状態で、疎水性部分である脂質部分がリボソームの脂質二重膜中に 入り込み安定して保持されるので、リボソームの脂質二重膜の外膜表面上に、脂質 に結合した親水性高分子を存在させ、分布させることができる。
[0029] 上記親水性高分子脂質誘導体の脂質 (疎水性部分)としては、特に限定されな!、。
例えば、疎水性の領域を有する化合物 (疎水性ィ匕合物)を挙げることができる。疎水 性ィ匕合物としては、後述する混合脂質を構成するリン脂質、ステロールなどの他の脂 質類、あるいは直鎖脂肪族アルコール、直鎖脂肪族ァミン、グリセリン脂肪酸エステ ルなどが挙げられる。中でも、リン脂質が好ましい態様の一つである。
[0030] 上記リン脂質に含まれるァシル鎖は、飽和脂肪酸であることが望ま U、。ァシル鎖 の鎖長は、 C C が望ましぐさらには C C であることが望ましい。ァシル鎖とし ては、例えば、ジパルミトイル、ジステアロイル、パルミトイルステアロイルが挙げられる リン脂質は、特に制限されない。リン脂質としては、例えば、上記の親水性高分子と 反応可能な官能基を有するものを使用することができる。このような親水性高分子と 反応可能な官能基を有するリン脂質の具体例としては、アミノ基を有するフォスファチ ジルエタノールァミン、ヒドロキシ基を有するフォスファチジルグリセロール、カルボキ シ基を有するフォスファチジルセリンが挙げられる。上記フォスファチジルエタノール アミンを使用するのが好適な態様の 1つである。
[0031] 親水性高分子の脂質誘導体は、上記親水性高分子と上記脂質とから誘導される。
親水性高分子と脂質との組み合わせは、特に限定されず、目的に応じて適宜組み合 わせたものを使用することができる。例えば、リン脂質、ステロール等の他の脂質類、 直鎖脂肪族アルコール、直鎖脂肪族ァミン、グリセリン脂肪酸エステルの中から選ば れる少なくとも 1つと、 PEG、 PG、 PPGの中力も選ばれる少なくとも 1つとが結合した 親水性高分子の誘導体が挙げられる。親水性高分子が PEGである場合、脂質として リン脂質、コレステロールを選択するのが好適な態様の 1つである。このような組み合 わせによる PEGの脂質誘導体としては、例えば、 PEGのリン脂質誘導体または PEG のコレステロール誘導体が挙げられる。
[0032] 親水性高分子の脂質誘導体は、脂質の選択により、正電荷、負電荷、中性の選択 が可能である。例えば、脂質として DSPEを選択した場合、リン酸基の影響で負電荷 を示す脂質誘導体となり、また脂質としてコレステロールを選択した場合、中性の脂 質誘導体となる。脂質の選択は、その目的に応じ、選択することが可能である。
[0033] 本発明では、上記例示した親水性高分子の脂質誘導体の中でも、 PEGのリン脂質 誘導体が好ましい態様の一つとして挙げられる。 PEGのリン脂質誘導体の具体例と しては、ポリエチレングリコール ジステアロイルフォスファチジルエタノールァミン(P EG-DSPE)が挙げられる。 PEG-DSPEは、汎用の化合物であり入手容易であるこ とから好ましい。
[0034] このような親水性高分子の脂質誘導体は、従来公知の方法によって製造することが できる。親水性高分子の脂質誘導体の一例である PEGのリン脂質誘導体を合成す る方法としては、例えば、 PEGに対し反応可能な官能基を有するリン脂質と、 PEGと を、触媒を用いて反応させる方法が挙げられる。この触媒としては、例えば、塩ィ匕シ ァヌル、カルボジイミド、酸無水物、ダルタルアルデヒドが挙げられる。このような反応 により、前記官能基と PEGとを共有結合させて PEGのリン脂質誘導体を得ることがで きる。
[0035] 本発明において、リボソームは、上記親水性高分子あるいは親水性高分子の脂質 誘導体を単独でまたは 2種以上の組み合わせで含んで 、てもよ 、。
上記親水性高分子脂質誘導体による膜脂質 (総脂質)の修飾率は、膜脂質に対す る比率で、通常 0. 1— 20mol%、好ましくは 0. 1— 5mol%、より好ましくは 0. 5— 5 mol%とすることができる。なお、肝臓内で作用させる薬剤を内封させた場合など、血 中滞留性をそれほど必要としないときは、リボソーム製剤の保存時安定性を主目的と して修飾率を 0.25— 5mol%に設定することが好ましい。
ここでの総脂質とは、親水性高分子脂質誘導体以外の膜を構成するすべての脂質 の総量であり、具体的に、リン脂質類および他の脂質類、さらに他の表面修飾剤を含 む場合にはこの表面修飾剤も含む。
[0036] このような親水性高分子の脂質誘導体を用いて表面修飾されたリボソームは、血漿 中のォプソニンタンパク質等が当該リボソームの表面へ吸着するのを防止して当該リ ポソ一ムの血中安定性を高め、 RESでの捕捉を回避することが可能となり、薬物の送 達目的とする組織や細胞への送達性を高めることができる。
[0037] 特に本発明では、リボソームは、親水性高分子がリボソーム外表面にのみ分布する 条件下で形成され、脂質二重膜の外膜が上記親水性高分子で選択的に修飾されて いる。このようなリボソームでは、その外膜表面の親水性高分子鎖はリボソーム外方 に向力つて分布しており、一方、脂質二重膜の内水相側内膜は表面修飾されていな いため、内水相内には実質的に親水性高分子鎖が分布しない。このような分布構造 であれば、内水相が酸性条件であっても、二重膜の内外膜の両側上に親水性高分 子が分布するものに比して、膜の安定性を確保することができる。また二重膜の内外 膜の両側上に分布するものに比して、全体量として少ない親水性高分子で血中安定 性の効果を得ることができる。 [0038] 本発明に係るリボソームは、上記リン脂質、他の脂質、親水性高分子およびその脂 質誘導体とともに、上記膜構造を保持しうるものであって、リボソームに含むことがで きる他の膜成分を、本発明の目的を損なわない範囲で含むことができる。
他の膜成分としては、脂質の物性を変化させ担体の膜成分に所望の特性を付与す るための、前記親水性高分子以外の表面修飾剤が挙げられる。他の表面修飾剤とし ては、特に限定されないが、脂質に、前記親水性高分子以外の化合物が結合したも のが挙げられる。
[0039] 親水性高分子以外の化合物としては、特に限定されないが、例えばグルクロン酸、 シアル酸、デキストラン、プルラン、アミロース、アミロぺクチン、キトサン、マンナン、シ クロデキストリン、ぺクチン、カラギーナンなどの水溶性多糖類;酸性官能基を有する 化合物;アミノ基、アミジノ基、グアジニノ基などの塩基性官能基を有する塩基性ィ匕合 物などが挙げられる。
[0040] 特に、本発明では、これら化合物のうちでも、塩基性化合物を脂質の加水分解を抑 制する物質として含有することができる。一般的に脂質は、温度、 pHによって加水分 解が起こることが知られている。特に Sn-1と Sn-2位における脂肪酸エステルは、加 水分解を受けやすぐリゾ脂質および脂肪酸に分解することが知られている (Gritら, Chem. Phys. Lipids 64,3-18,1993)。これら分解物は、従来の脂質膜組成を乱し、そ れにより脂質膜の透過性を向上させることにより、リボソームの安定性が損なわれる。 このため特に、酸性環境で保持する必要のある薬剤を内水相に保持するためには 、酸性環境における脂質の安定性を向上させる必要があるが、本発明では、塩基性 化合物を膜に含有させることにより、リボソーム表面を正に帯電させることにより脂質 の加水分解を抑制することができる。
[0041] 塩基性ィ匕合物としては特に限定されな 、が、ォクタデシルァミン (ODA)、 N-メチル - n-ォクタデシルァミン(MODA)、 Ν,Ν-ジメチル- n-ォクタデシルァミン(DMODA )、臭化ステアリルトリメチルアンモ -ゥム (TMODA)などのァミン(アンモ-ゥム塩も 含む)化合物が挙げられる。 TMODAなどの 4級アンモ-ゥム塩を有する脂質誘導 体は低い濃度で、脂質膜表面を正に帯電することが可能であることから望ましい。
[0042] また、塩基性ィ匕合物としては、特開昭 61— 161246号に開示された DOTMA、特 表平 5— 508626号に開示された DOTAP、特開平 2— 292246号に開示されたトラン スフエタタム(Transfectam)、特開平 4— 108391号に開示された TMAG、国際公開 第 97Z42166号に開示された 3,5-ジペンタデシロキシベンズアミジン塩酸塩、 DOS PA、 TfxTM- 50、 DDAB、 DC- CHOL、 DMRIEなどの化合物も挙げられる。
[0043] 上記他の表面修飾剤が、脂質に、塩基性官能基を有する化合物が結合した物質 である場合には、カチオン化脂質と称される。カチオンィ匕脂質の脂質部分はリポソ一 ムの脂質二重膜中に安定化され、塩基性官能基部分は担体の脂質二重層の膜表 面上 (外膜表面上および Zまたは内膜表面上)に存在することができる。カチオンィ匕 脂質で膜を修飾することにより、リボソーム膜と細胞との接着性等を高めることができ る。
[0044] 本発明において、上記リボソームの内水相は、 pH5以下であり、好ましくは pH2— p H5であり、より好ましくは pH3— pH5であり、特に好ましくは約 pH4である。これによ り、 pH5を超えると不安定な薬物を安定に担持することができる。内水相の pHは、リ ポソーム調製時に、生体内で許容し得る生理的 pHの緩衝液で調整することができる
[0045] 上記のようなリボソームには、種々の薬物を担持させることができる。例えば治療の ための薬物としては、具体的に、核酸、ポリヌクレオチド、遺伝子およびその類縁体、 抗癌剤、抗生物質、酵素剤、抗酸化剤、脂質取り込み阻害剤、ホルモン剤、抗炎症 剤、ステロイド剤、血管拡張剤、アンジォテンシン変換酵素阻害剤、アンジォテンシン 受容体拮抗剤、平滑筋細胞の増殖,遊走阻害剤、血小板凝集阻害剤、抗凝固剤、 ケミカルメディエーターの遊離阻害剤、血管内皮細胞の増殖促進または抑制剤、ァ ルドース還元酵素阻害剤、メサンギゥム細胞増殖阻害剤、リポキシゲナーゼ阻害剤、 免疫抑制剤、免疫賦活剤、抗ウィルス剤、メイラード反応抑制剤、アミロイド一シス阻 害剤、一酸化窒素合成阻害剤、 AGEs (Advanced glycation endproducts)阻害剤、ラ ジカルス力ベンチャー、タンパク質、ペプチド、グリコサミノダリカンおよびその誘導体 、オリゴ糖および多糖およびそれらの誘導体等が挙げられる。
[0046] 本発明のリボソーム製剤は、 pH5より大きい pHでは不安定になるような薬物を特に 安定に担持することができる。このような薬物としては、具体的に塩酸ドパミン、メシル 酸ガべキサート、ノルェピネフリン、塩酸ブロムへキシン、メトクロプラミド、ェピネフリン 、ビタミン Bl、ビタミン B6、カルボプラチン、塩酸ゲムシタビン、酒石酸ピノレビン、硫 酸ビンクリスチン、塩酸ドキソルビシン、塩酸ェピルビシン、塩酸ダウノルビシン等が 挙げられる。
[0047] また診断のための薬物としては、 X線造影剤、超音波診断剤、放射性同位元素標 識核医学診断薬、核磁気共鳴診断用診断薬などの体内診断薬が挙げられる。この 他、本発明のリボソームの膜形態を損なわず、 pH5以下の液成分に含有あるいは接 触しても影響されない薬物、さらには pH5以下の内水相に封入するのに適した薬物 であれば、治療用の薬物も診断用の薬物も特に限定することなく担持させることがで きる。
[0048] 薬物はその種類によっても所望担持量が異なるが、一般的には高担持率であるこ とが望ましい。本発明では、内水相 pHが 5以下であることにより、イオン勾配法を利 用して薬物を高濃度に担持することができる。
本発明のリボソーム製剤において、好ましい薬物担持量は、リボソーム膜の総脂質 に対する濃度で、少なくとも 0. O5mol薬物 Zmol脂質であり、より好ましくは少なくとも 0. lmol薬物 Zmol脂質である。ここでの総脂質とは、親水性高分子脂質誘導体以外 の膜を構成するすべての脂質の総量であり、具体的に、リン脂質類および他の脂質 類、さらに他の表面修飾剤を含む場合にはこの表面修飾剤も含む。
なお本発明において「担持」とは、本質的に、リボソーム (担体)の閉鎖空間内に薬 物が封入された状態をいうが、薬物の一部を、膜内に含む状態で、あるいはリポソ一 ムの外表面に付着した状態で含んで 、てもよ 、。
[0049] 本発明のリボソーム製剤は、投与経路次第で医薬的に許容される安定化剤および Zまたは酸ィ匕防止剤をさらに含むものであってもよい。
安定化剤としては、特に限定されないが、例えば、グリセロール、マン-トール、ソル ビトール、ラタトース、またはシュクロースのような糖類が挙げられる。また、膜構成成 分の他の脂質として上述したコレステロール(Cholesterol)などのステロールはこの安 定化剤として作用する。
酸ィ匕防止剤としては、特に限定されないが、例えば、ァスコルビン酸、尿酸、トコフエ ロール同族体(例えば、ビタミン E)が挙げられる。なお、トコフ ロールには、 α、 β、 Ύ 、 δの 4個の異性体が存在するが本発明においてはいずれも使用できる。使用さ れる安定化剤および Ζまたは酸ィ匕防止剤は、剤型に応じて上記の中から適宜選択さ れるが、これらに限定されるものではない。このような安定化剤および酸ィ匕防止剤は、 それぞれ単独でまたは 2種以上組み合わせて使用することができる。また、酸化防止 の観点力 は、上記分散体は窒素充填包装とすることが望まし 、。
[0050] 本発明のリボソーム製剤は、投与経路次第で医薬的に許容される添加物をさらに 含むものであってもよい。このような添加物の例として、水、生理食塩水、医薬的に許 容される有機溶媒、コラーゲン、ポリビュルアルコール、ポリビュルピロリドン、カルボ キシビュルポリマー、カルボキシメチルセルロースナトリウム、ポリアクリル酸ナトリウム 、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ぺ クチン、メチルセルロース、ェチルセルロース、キサンタンガム、アラビアゴム、カゼィ ン、ゼラチン、寒天、ジグリセリン、プロピレングリコール、ポリエチレングリコール、ヮセ リン、パラフィン、ステアリルアルコール、ステアリン酸、ヒト血清アルブミン(HSA)、マ ン-トール、ソルビトール、ラタトース、 PBS、生体内分解性ポリマー、無血清培地、医 薬添加物として許容される界面活性剤、前述した生体内で許容し得る生理的 pHの 緩衝液などが挙げられる。
添加物は、上記の中から適宜選択され、あるいはそれらを組合せて使用されるが、 これらに限定されるものではない。
[0051] 本発明のリボソーム製剤の大きさは特に限定されないが、球状またはそれに近い形 態をとる場合には、粒子外径の直径力 LUVの場合は、 70nm— 140nm、好ましく は 80nm— 130nm、より好ましくは 90nm— 120nmである。また、 SUVの場合は、 4 Onm— 140nm、好ましくは 50— 130應、より好ましくは 60— 120應である。
粒子外径の直径とは、動的光散乱法により測定されるリボソーム製剤全粒子の直径 の平均値であり、本発明において具体的には、 Zetasizer (Malvern Instruments. 3000 HSまたは S ZEM 5002)を用いて測定した。
[0052] リボソーム製剤の製造においては、最終滅菌法として、濾過滅菌法が用いられる。
濾過滅菌法においては、リボソームは透過する力 指標菌として用いられる Brevundimonas diminuta (サイズ、約 0. 3 X 0. 8 m)は濾過されないことが要求され るため、 Brevundimonas diminutaに較べ十分に小さい粒子であることが必要である。 粒径が lOOnm付近であることは、この濾過滅菌工程をより確実にする上でも重要で ある。
[0053] 本発明では、これら添加物を含む態様のリボソーム製剤を、医薬組成物として供す ることができる。本発明の医薬組成物は、通常の方法、例えば 0— 8°Cでの冷蔵ある いは 1一 30°Cの室温で保存することができる。
[0054] 次に、本発明の特定構造のリボソームの好ましい製造方法を例示する力 これに限 定されるものではない。
例えばフラスコ内で、リン脂質等の膜構成成分を、クロ口ホルム等の有機溶媒により 混合し、有機溶媒を留去後に真空乾燥することによりフラスコ内壁に薄膜を形成させ る。次に、当該フラスコ内に内水溶液を加え、激しく撹拌することにより、リボソーム分 散液を得る。リボソームの内水相の pHは、添加する内水相溶液を必要に応じ pH調 整剤などで所望の pHに調整することにより調整できる。次いで、得られたリボソーム 分散液を遠心分離し、上清をデカンテーシヨンし精製することにより、リボソーム分散 液として得ることができる。親水性高分子によりリボソーム表面を修飾する手段として 、ポリエチレングリコール(PEG)のリン脂質やコレステロールなどとの誘導体が好適 に用いられ、上述の手法などを用いて得たリボソーム分散液にポリエチレングリコー ル誘導体をそのままあるいは水溶液として添加することにより PEG鎖が外表面にの み分布するリボソームを製造することができる。
[0055] また上記とは別に、反応活性な官能基を持つリン脂質等の膜構成脂質を含有する リボソームを常法にて製造した後、リボソーム外液に片末端活性化 PEGを添加して 官能基を持つリン脂質等の膜構成脂質と結合させることにより、リボソームを製造する ことちでさる。
[0056] またリボソームは、上記方法以外にも、上記の各構成成分を混合し、高圧吐出型乳 ィ匕機により高圧吐出させることにより得ることもできる。この方法は、「ライフサイエンス におけるリボソーム」(寺田、吉村ら;シュプリンガー'フエアラーク東京(1992) )に具体 的に記載されており、この記載を引用して本明細書の記載されて 、るものとする。 [0057] 上記において、リボソームを所望のサイズにサイジングするために、いくつかの技術 力ネ II用ロ丁會である
Figure imgf000018_0001
Technology Liposome Preparation and Related Techniques」2ndedition,Vol.I- III、 CRC Press)。この記載を引用して本 明細書の記載されているものとする。
リボソーム分散液は、エタストルーダーを用いて、フィルターを複数回強制通過させ ること〖こよりュニラメラ化することができる。通常、フィルタ一は、所望径より大径の孔 径をもつもの、最後に所望径の得られるものの孔径の異なるものを 2種以上使用する 。 口径の異なるフィルターを用いて、エタストルージョンの回数を多くするほどュ-ラメ ラ化率が高くなり、実質的に一枚膜リボソームとみなすことができる。実質的にュ-ラ メラ小胞とは、具体的には、リボソーム製剤を構成する全担体 (小胞)中、ュニラメラ小 胞が占める割合力 存在比で全体の 50%以上であればよぐ 80%以上であることが 好ましい。
[0058] 上記のようなリボソームに薬物を担持するには、薬物を含む水溶液でリボソームを 構成する脂質膜を水和させることにより薬物をリボソームに担持させる方法 (Passive loading)、あるいはリボソーム膜の内側/外側にイオン勾配を形成することで、薬物 はこのイオン勾配に従いリボソーム膜を透過させ担持させる方法(Remote loading)が ある(前記サイジング技術を記載した文献および米国特許第 5192549号、米国特許 第 5316771号など参照)。本発明におけるリボソーム製剤の好適な製造方法は、 Remote loadingである。この方法では高い薬物 Z脂質を達成でき、臨床に有効な高 担持率のリボソーム製剤を得ることができる。
[0059] Remote loading法は、内水相と外水相の間に pH勾配を形成することにより達成する ことができる。 pH勾配を形成する方法として、あら力じめ、低い pHで上記の方法にて リボソームを調製し、その後外水相を置換することで pH勾配を形成することができる
[0060] リボソーム膜を隔てて形成される勾配として Na+ZK+濃度勾配を用いる方法がある 。 Na+ZK+濃度勾配に対する Remote loading法により予め形成されているリボソーム 中に薬剤を添加する技術は、米国特許第 5077056号に記載されており、これを参 照して行うことができる。なおこの記載を引用して本明細書に記載されているものとす ることがでさる。
[0061] リボソームの内側と外側との間に pH勾配を形成する方法は、内側が高く Z外側が 低いアンモ-ゥムイオン濃度勾配および Zまたはプロトンィ匕しうるアミノ基を有する有 機化合物濃度勾配を用いてもょ 、。プロトンィ匕しうるアミノ基を有する有機化合物は、 低分子量のものが望ましぐメチルァミン、ェチルァミン、プロピルァミン、ジェチルアミ ン、エチレンジァミン、アミノエタノール等が挙げられるがこれに限定されるものではな い。
[0062] なお、アンモ-ゥムイオン濃度勾配に対する Remote loading法により予め形成され ているリボソーム中に薬剤を添加する技術は、米国特許 5192549号に記載されてお り、これを参照して行うことができる。なおこの記載を引用して本明細書に記載されて いるものとすることができる。具体的には、 0. 1-0. 3Mのアンモ-ゥム塩(例えば硫 酸アンモ-ゥム)を含有する水性緩衝液中で予めリボソームを形成し、外部媒体をァ ンモ -ゥムイオンを含有して ヽな 、媒質、例えばシュクロース溶液と交換することでァ ンモ -ゥムイオン勾配を形成する。内部アンモ-ゥムイオンはアンモニア及びプロトン により平衡ィ匕し、アンモニアは脂質膜を透過して拡散することでリボソーム内部から消 失する。アンモニアの消失に伴ってリボソーム内の平衡がプロトン生成の方向に連続 的に移動する。その結果、リボソーム内にプロトンが蓄積され、リボソームの内側/外 側に pH勾配が形成される。この pH勾配を有するリボソーム分散液に薬剤を添加す ることによって薬剤がリボソーム中に内封される。
[0063] アンモ-ゥムイオン勾配を形成するアンモ-ゥム塩は、特には限定されないが硫酸 アンモ-ゥム、水酸化アンモ-ゥム、酢酸アンモ-ゥム、塩化アンモ-ゥム、リン酸アン モ-ゥム、クェン酸アンモ-ゥム、コハク酸アンモ-ゥム、アンモ-ゥムラタトビオネート 、炭酸アンモ-ゥム、酒石酸アンモ-ゥム、及びシユウ酸アンモ-ゥムが含まれる。
[0064] リボソームの内側と外側との間に pH勾配を形成する方法は、 Ionophoreを用いる方 法もある。 Ionophoreを用いてリボソームの内側と外側との間に pH勾配を形成し、 Remote loading法によりリボソーム中に薬剤を導入する技術は、米国特許第 583728 2号に記載されており、これを参照して行うことができる。なおこの記載を引用して本 明細書に記載されているものとすることができる。 [0065] リボソームの内側と外側との間に pH勾配を形成し、 Remote loading法の具体例とし ては以下の方法がある。
フラスコ内で、リン脂質等の膜構成成分を、クロ口ホルム等の有機溶媒により混合し 、有機溶媒を留去後に真空乾燥することによりフラスコ内壁に薄膜を形成させる。次 いで、酸性緩衝液 (例えば PH4の緩衝液)をカ卩ぇ振とうしリボソーム分散液を得る。さ らに必要に応じリボソーム粒径のサイジングを行 、、リボソーム外液をゲルろ過などの 方法により pHが中性付近の外水相に置換する方法や適当な pH調整剤によりリポソ 一ム外水相の pHを中性付近 (例えば pH7— 7. 5付近)に調整する方法等により pH 勾配を形成し、このリボソーム分散液に薬物を含む水溶液をカ卩え、この溶液をある時 間加温することにより薬物を担持させることができる。なお、本発明において、親水性 高分子の修飾は、前述した通り脂質二重膜のュ-ラメラ小胞を形成した後であれば、 薬物担持操作の前後どちらでも行うことができる。
[0066] リボソーム製剤の非経口的投与の経路としては、例えば点滴などの静脈内注射 (静 注)、筋肉内注射、腹腔内注射、皮下注射を選択することができ、患者の年齢、症状 により適宜投与方法を選択することができる。リボソーム製剤の具体的な投与方法と しては、医薬組成物をシリンジや点滴によって投与することができる。また、力テーテ ルを患者または宿主の体内、例えば管腔内、例えば血管内に挿入して、その先端を 標的部位付近に導き、当該カテーテルを通して、所望の標的部位またはその近傍あ るいは標的部位への血流が期待される部位力 投与することも可能である。
[0067] 本発明のリボソーム製剤は、病気に既に悩まされる患者に、疾患の症状を治癒する 力 あるいは少なくとも部分的に阻止するために十分な量で投与される。例えばリポ ソーム製剤に封入される薬物の有効投与量は、通常、一日にっき体重 lkgあたり 0. Olmgから lOOmgの範囲で選ばれる。しカゝしながら、本発明のリボソーム製剤はこれ らの投与量に制限されるものではない。投与時期は、疾患が生じて力 投与してもよ いし、あるいは疾患の発症が予測される時に発症時の症状緩和のために予防的に 投与してもよい。また、投与期間は、患者の年齢、症状により適宜選択することができ る。
実施例 [0068] 次に実施例、試験例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの 実施例、試験例に限定されるべきものではな 、。
なお、各例で用いた成分の分子量は次のとおりである。
水素添カ卩大豆レシチン(HSPCと略記、分子量 790、リポイド (Lipoid)社製 SPC3) コレステロール(Choiと略記、分子量 386. 65、ソルべィ (Solvay)社製)
スフインゴミエリン(Sphingomyelin ; SMと略記、分子量 703. 3、アバンチポーラーリピ ッズ (Avanti Polar Lipidos)社製)
ポリエチレングリコール 5000—フォスファチジルエタノールァミン(PEG - DSPEと略
5000
記、分子量 6075、日本油脂社製)
3,5-ジペンタデシロキシベンズアミジン塩酸塩(分子量 609. 41)
ォクタデシルァミン(Octadecylamine ;ODAと略記)(東京化成:分子量 269. 51)、 N-メチル -n-ォクタデシルァミン(N- MethyHi- octadecylamine; MODAと略記)(東 京化成:分子量 283. 54)、
Ν,Ν—ジメチル— n—ォクタデシルァミン(N,N— DimethyHi— octadecylamine; DMODAと 略記)(東京化成:分子量 297. 56)
臭化ステアリルトリメチルアンモ -ゥム(Stearyltrimethylammonium Bromide ;TMOD Aと略記)(東京化成:分子量 392. 5)
ドキソルビシン(塩酸ドキソルビシン: Doxorubicin Hydrochloride USP23 (BORYUNG) :分子量 579. 99)
[0069] (実施例 1)ドキソルビシン内封リボソームの製造例
この実施例 1では、本発明のリボソーム製剤例を示す。以下に示すように、低 pH条 件下 (pH4)で製造したリボソームに、親水性高分子脂質誘導体 (PEG -DSPE:
5000
分子量 5000ダルトンのポリエチレングリコールのジステアロイルフォスファチジルエタ ノールァミン誘導体)を添加することにより、リボソームの外膜表面に親水性高分子 (P EG鎖)を分布させ、さらにイオン勾配法により薬物を導入することで LUVリボソーム を製造した。
水素添カ卩大豆フォスファチジルコリン(HSPC):コレステロール(Choi) = 54 :46の モル比で t-ブタノールに溶解し、凍結乾燥させて膜成分の混合脂質を調製した。 300mMのクェン酸溶液と、 300mMのクェン酸三ナトリウム溶液とを混合し、 pH4 . 0に調整した内水相溶液と、 pH7. 5に調整した外水相溶液とを調製した。
[0070] 上記で調製した混合脂質を 0. 37g秤量した後に、内水相溶液 10mLを加え、 68 °Cの恒温槽にて 15分間膨潤したのち、ボルテックにて攪拌し、リボソーム粗分散液を 調製した。 68°Cに加温したエタストルーダー (Lipex Biomembranes社製)を用いて孔 径 200nmのフィルターを 5回通し、孔径 lOOnmのフィルターに交換後、さらに 2回同 様の操作を行 ヽ( φ 200nm X 5、 φ lOOnm X 5、 φ lOOnm X 5)、 LUVリボソーム 分散液を調製した。エタストルージョン後のサンプルは氷冷した。
[0071] 上記で調製したリボソーム分散液を、外水相で充分に置換したゲルカラム(
Sepharose 4 Fast Flow)にてゲルろ過を行い、 pH勾配を开成した。ゲルろ過後のサ ンプルは氷冷した。
[0072] ゲルろ過後のリボソームの脂質定量 (HSPC定量)を行い、 HSPC定量より算出さ れた HSPC濃度をもとに、 PEG - DSPE (日本油脂社製)を、 1. Omol%になるよう
5000
にカロえ、 60°C、 30分攪拌し、 PEG —DSPEを導入した。
5000
[0073] さらに HSPC定量より算出された HSPC濃度をもとに、塩酸ドキソルビシン ZHSP C = 0. 2 (wZw)になるように塩酸ドキソルビシン量を計算し、計算結果をもとに必要 量の塩酸ドキソルビシンを秤量し 10% Sucrose (pH9. 0)溶液を用いて 10mg/mL の溶液を調製した。リボソーム分散液に所定量の塩酸ドキソルビシン溶液(lOmgZ mL)をカ卩ぇ 60°Cで 60分攪拌を行い塩酸ドキソルビシンの導入を行った。塩酸ドキソ ルビシン導入後のサンプルは氷冷した。 10% Sucrose (pH6. 5)で充分に置換した カラム(Sepharose 4 Fast Flow, 2. 8cm X 20cm)を用いてゲルろ過を行いリポソ ームに封入されて ヽな 、塩酸ドキソルビシンを除去した。
[0074] 実施例 1において、リボソームリン脂質は、リン脂質 Cテストヮコー(和光純薬社製) を用いて定量した。
またリボソーム内に封入されたドキソルビシン濃度は、ドキソルビシンリボソーム 40 μ Lにメタノール 2mLをカ卩えた溶液について、 480nmでの吸光度を分光光度計で 測定して求めた。
粒子径は、リボソーム分散液 20 Lを生理食塩水で 3mLに希釈し、 Zetasizer 3000HS (Malvern Instruments.)で測定した平均粒子径である。得られたリボソームを 表 1に示す。
[0075] (比較例 1)ドキソルビシン内封リボソームの製造例
この比較例 1では、本発明範囲外のリボソーム製剤例を示す。親水性高分子脂質 誘導体 (PEG -DSPE)をリボソーム形成時に共存させることにより、リボソームの二
5000
重膜の内外膜の両側上に親水性高分子 (PEG鎖)を分布させた以外は、実施例 1と 同様のリボソーム成分を使用して、リボソーム製剤を製造した。
すなわち、実施例 1と同じ混合脂質 (HSPC : Chol= 54 :46)を 0. 37g秤量し、その 後 HSPC濃度をもとに PEG - DSPEを 2. Omol%になるように PEG - DSPEを 0
5000 5000
. 073g秤量し、エタノール lmLを加え、 65°Cの恒温槽にて 30分間溶解させた。完 全溶解確認後、内水相 10mLを加え、さらに 65°Cで 60分加温攪拌を行いリボソーム 粗分散液を調製した。エタストルーダー用いて、実施例 1と同じ操作を行い、エタスト ルージョン後のサンプルは氷冷した。
[0076] 調製したリボソームを、外水相で充分に置換したゲルカラム(Sepharose 4 Fast
Flow)にてゲルろ過を行い、実施例 1と同様に pH勾配を形成し、ゲルろ過後のサン プルは氷冷した。
[0077] ゲルろ過後のリボソームの脂質定量 (HSPC定量)により算出された HSPC濃度を もとに、塩酸ドキソルビシン ZHSPC = 0. 2 (wZw)になるように塩酸ドキソルビシン 量を計算し、計算結果をもとに必要量の塩酸ドキソルビシンを秤量し、 10%Sucrose ( pH9. 0)溶液を用いて lOmgZmLの溶液を調製した。
リボソーム分散液に所定量の塩酸ドキソルビシン溶液(lOmgZmL)を加え、実施 例 1と同様に塩酸ドキソルビシンの導入操作を行 、、リボソームに封入されて ヽな ヽ 塩酸ドキソルビシンを除去した。
実施例 1と同様に、リボソームリン脂質の定量、リボソーム内に封入されたドキソルビ シン量、粒子径を測定した。得られたリボソームを表 1に示す。
[0078] (実施例 2)本発明のドキソルビシン内封リボソームの製造例
膜成分に、スフインゴミエリン (SM): Chol= 55 :45の混合脂質を用いて、本発明の リボソーム製剤を製造した。 SM: Choiを 55: 45のモル比でクロ口ホルム Zメタノール 混液に溶解し、溶媒を減圧留去し薄膜を形成した。 300mMのクェン酸溶液と、 300 mMのクェン酸三ナトリウム溶液を混合し pH4.0に調整して内水相溶液とした。混合 脂質 0. 30gを秤量し、内水相溶液 5mLをカ卩え、 70°Cで 10分間水和させた。時々、 55°Cに暖めたバス型ソ-ケ一ターで超音波をかけることで、脂質を均一に分散させ た。
得られた脂質分散液を 65°Cに保温したエタストルーダー (Lipex Biomembranes社 製)を用いて、孔径 400nmのフィルターを 3回通し、孔径 200nmのフィルターに交換 後さらに 3回通し、孔径 lOOnmのフィルターに交換後さらに 2回同様の操作を行った ( φ 400ηπι Χ 3、 200nm X 3, φ 100ηπι Χ 5、 φ lOOnm X 5)。エタストルージョ ン後のサンプルは氷冷した。
調製したリボソームを生理食塩水にて充分に置換したゲルカラム(Sepharose 4 Fast Flow)にてゲルろ過を行った。ゲルろ過後のサンプルは氷冷した。
[0079] ゲルろ過後のリボソームの脂質定量(SM定量)を行い、 SM定量より算出された S M濃度をもとに、 PEG - DSPEを 0. 75mol%になるように加え 60°C
5000 、 30分攪拌し
、 PEG -DSPEを導入した。
5000
さらに SM定量より算出された SM濃度をもとに、リボソームの総脂質量に対して 20 mol%塩酸ドキソルビシン量を計算し、計算結果をもとに必要量の塩酸ドキソルビシン を秤量し、生理食塩水を用いて lOmgZmLの溶液を調製した。リボソーム分散液に 所定量の塩酸ドキソルビシン溶液(lOmgZmL)を加え IN NaOHまたは飽和炭酸 水素ナトリウム水で PH7. 4に調整した後、 65°Cで 30分攪拌を行い塩酸ドキソルビシ ンの導入を行った。塩酸ドキソルビシン導入後のサンプルは氷冷した。生理食塩水 で充分に置換したカラム(Sepharose 4 Fast Flow)を用いてゲルろ過を行いリポソ一 ムに封入されて ヽな 、塩酸ドキソルビシンを除去した。
[0080] 実施例 1と同様に、リボソームリン脂質の定量、リボソーム内に封入されたドキソルビ シン量、粒子径を測定した。得られたリボソームを表 1に示す。
[0081] [表 1] 表 1
Figure imgf000025_0001
[0082] (実施例 3)
HSPC: Choi: 3,5-ジペンタデシ口キシベンズアミジン塩酸塩を、 50/42/8のモル比 で、 t-ブタノールに溶解し、凍結乾燥させて混合脂質を得た。
300mMのクェン酸溶液と、 300mMのクェン酸 3ナトリウム溶液を混合して pH4に 調整した内水相溶液とした。
混合脂質 0. 30gを秤量し、 pH4に調整した内水相溶液 5mlを加え、 70°Cで 10分 間水和させた。時々、 55°Cに暖めたバス型ソ-ケ一ターで超音波をかけることで、脂 質を均一に分散させた。得られた脂質分散液を 73°Cに保温したエタストルーダー (Lipex Biomembranes社製)を用いて、 φ θ. 4 μ mのメンブレンフィルターを 3回、 φ 0 . を 3回、 φ 0.1 mを 10回通すことによって LUVの分散液を得た。得られたリ ポソームの粒子径は 111. 3nmであった。
上記で調製したリボソーム分散液を、カラム(Sepharose 4 Fast Flow, φ 1. 5cm X 25cm)に添加し、生理食塩水で溶出させてゲル濾過し、外水相を生理食塩水で置 換した。
[0083] PEG - DSPEを生理食塩水に lOmgZmLになるよう溶解し、これを外水相にリ
5000
ポソ一ムの総脂質量に対して 0. 75mol%分の PEG -DSPEとなるように加えて、
5000
攪拌しながら 60°Cで 30分間インキュベートした。
ドキソルビシンを生理食塩水に 10mg/mLになるよう溶解し、この液をリボソームの 総脂質量に対して 20mol%のドキソルビシンとなるように加え、 IN NaOHまたは飽 和炭酸水素ナトリウム水で PH7. 4に調整した後、 65°Cで 30分インキュベートした。
[0084] 上記において、リボソームリン脂質は、実施例 1と同様に定量した。
粒子径はリボソーム分散液 100 μ Lを生理食塩水で 3mLに希釈して、 Zetasizer S ZEM 5002 (Malvern Instruments.)で測定した。リボソーム内に封入されたドキソルビ シン量 (薬物担持量 =薬剤 Z脂質)は、ドキソルビシンリボソーム 0. lmLに IN HC1 0. 3mLとイソプロパノール 3. 6mLとを混合した液について、 480nmでの吸光度を 分光光度計で測定して求めた。ドキソルビシン量は、 0. 12molZmolであった。
[0085] (試験例 1)
以下の 4種の緩衝液に、 PEG -DSPE (日本油脂社製)を、 5mgZmLとなるよう
5000
溶かし、 65°Cで 90分間加熱した。また、 PEG - DSPEを、同様の緩衝液に lOmg
5000
ZmLとなるよう溶かし、 40°Cで 1週間保存した。
緩衝液(1):硫酸アンモニゥム(250mM)
緩衝液(2): L-Histidine (lOmM) ,10% Sucrose pH6. 5
緩衝液(3):クェン酸(300mM) pH4. 0
緩衝液 (4):クェン酸(300mM) pH7. 5
[0086] 保存後の溶液を 10 μ Lとり、 20cm X 20cmのシリカゲル薄層板の下部より lcmの ところへスポットした。予めクロ口ホルム Zメタノール Zアンモニア水 (28)混液(85: 14: 1)の展開溶媒で平衡ィヒしたガラス容器の中へ、シリカゲル薄層板を入れ、展開溶媒 にて約 15cm展開し、ヨウ素発色法により分解物を検索した。この薄層クロマトグラフィ 一(TLC)を図 1一 2に示す。図 1は、 PEG - DSPE溶液を 65°C
5000 、 90分間加温後の
TLCの結果であり、図 2は、 PEG - DSPE溶液を 40°C
5000 、 1週間加温後の TLCの結 果である。その結果、 pH5以上の緩衝液に溶カゝしたものについては、加温前後で分 解物(リゾ体)の位置(Lyso- PEG Stdのスポット参照)にスポットの増大を認めなかつ た力 pH4の緩衝液中に溶解させた物にっ ヽては明確に分解物(リゾ体)のスポット の増大を認めた。
[0087] 試験例 1は、酸性条件下における親水性高分子脂質誘導体 (PEG -DSPE)の
5000
安定性のデータを示す。 PEG -DSPEは、酸性条件 (緩衝液 (3)クェン酸 pH4. 0
5000
)で加温すると分解が進行することを示している。すなわち、比較例 1に例示した酸性 緩衝液条件下に PEG -DSPEが存在する方法で製造するリボソームでは、製造時
5000
および保存時において PEG -DSPEの分解が予想される。また、比較例 1の方法
5000
で製造したリボソームは、内水相が酸性であり、内水相側に分布する PEG -DSP Eの分解も予想される。その結果を試験例 2に示す。
[0088] (試験例 2)実施例 1と比較例 1のリボソームにおける PEGの分解挙動比較
実施例 1と比較例 1によって調製したリボソーム 2種を 40°Cで 1週間 · 2週間保存後 、 HPLC法を用いて PEG -DSPE定量した。結果を、 4°C保存の PEGリボソームに
5000
対する PEG -DSPEの残存率で図 3に示す。
5000
試験例 2の結果は、比較例 1のリボソームでは、 PEG -DSPEの残存率が低下し
5000
、 PEG -DSPEの分解が起きていることを示している。一方、実施例 1の本発明のリ
5000
ポソームでは PEG -DSPEの残存率に変化がなぐ PEG -DSPEの分解が起き
5000 5000
てないことを示している。
すなわち PEG -DSPEの分解を防ぐことにより、 PEG -DSPEの分解に伴う脂
5000 5000
質二重膜の不安定化、リボソームの担持薬剤の漏出、リボソームの凝集、リボソーム の血しょう蛋白やォプソニン蛋白との吸着防止効果の低下、リボソームの血中での安 定性を損なう等の課題を克服することができる。
[0089] (実施例 4)
113?じ:0101 :塩基性脂質((1) 00八、(2) MODA、(3) DMODAまたは(4)TM ODA) = 50 :42 : 8 (mol比)になるように各脂質を秤量し、エタノールに溶解させた。 完全溶解確認後、硫酸アンモ-ゥム溶液(250mM)を 9mLカ卩え、 68°Cにて加温攪 拌を行った。加温攪拌終了後 68°Cに加温したエタストルーダーを用いて 1. OMPaに て孔径 200nmのフィルターを 2. OMPaにて 5回通し、孔径 lOOnmのフィルターに交 換しさらに 5回通した。再度孔径 lOOnmのフィルターに交換し、 2. OMPaにてさらに 5回通した。エタストルージョン後のサンプルに、 PEG -DSPE導入率 O. 75mol
5000
%になるように PEG -DSPE溶液(36. 74mgZmL (RO水)を 2mL加え 60°C、 3
5000
0分加温攪拌を行 、、 PEG -DSPEを導入する。導入後のサンプルは氷冷した。
5000
上記で用いた塩基性脂質の各構造を以下に示す。 [0090] [化 1]
ODA
Figure imgf000028_0001
Figure imgf000028_0002
TMODA / Me
Me
[0091] 上記で調製したリボソーム分散液を、 10% Sucrose (pH9. 0)の溶液で充分に置換 したゲルカラム(Sepharose 4 Fast Flow)にてゲルろ過を行い、 pH勾配を形成した。 ゲルろ過後のサンプルは氷冷した。
[0092] さらに HSPC定量より算出された HSPC濃度をもとに、塩酸ドキソルビシン (Dox) Z 総脂質(Total Lipid) (mol/mol) =0. 16 (Dox /Total Lipid (w/w) =0. 18)になるよう に塩酸ドキソルビシン量を計算した。計算結果をもとに必要量の塩酸ドキソルビシン を秤量し、 10% Sucrose (pH9. 0)溶液を用いて 10mg/mLの溶液を調製した。リ ポソーム分散液に所定量の塩酸ドキソルビシン溶液(lOmgZmL)を加え 60°Cで 60 分攪拌を行 、塩酸ドキソルビシンの導入を行った。塩酸ドキソルビシン導入後のサン プルは氷冷した。 10%Sucrose (pH6. 5)の溶液で充分に置換したカラム(Sepharose 4 Fast Flow, φ 2. 8cm X 20cm)を用いてゲルろ過を行い、リボソームに封入され て!ヽな 、塩酸ドキソルビシンを除去した。
[0093] 上記各塩基性脂質に対応してで得られたリボソーム製剤(1)一 (4)のリン脂質の定 量、粒子径及び Zeta電位を測定した。
この実施例において、リボソームリン脂質は、リン脂質 Cテストヮコー(和光純薬社製 )を用いて定量した。
粒子径は、リボソーム分散液 20 Lを生理食塩水で 3mLに希釈し、 Zetasizer3000HS (Malvern Instruments.)で測定した平均粒子径である。粒子径は、リ ポソーム分散液 20 μ Lを生理食塩水で 3mLに希釈し、 Zetasizer3000HS (Malvern Instruments.)で測定した平均粒子径である。
ゼータ (Zeta)電位を以下のように測定した。
2. 5mLのシリンジに RO水を約 2. 5mL量る。押し子を引きながらシリンジ先端部か らリボソーム分散液を 20 μ Lおよびダルベッコ(Dulbecco's) PBSを 20 μ L加えたのち 、押し子を押しエアーを抜く。転倒混和し均一に分散させた後 Zetasizer3000HSにて Zeta電位測定を行う。
実施例 4のリボソーム製剤(1)一(4)についての測定結果を、実施例 1のリボソーム 製剤についての測定結果とともに表 2に示す。
[0094] (実施例 5)
HSPC: Choi:塩基性脂質 (TMODA) = ( (1)53. 5:45. 5:1)、 (2) (53:45:2) 、 (3) (52:44:4)、 (4) (45.4:38.6:16) (mol比)になるように各脂質を秤量し、ェ タノールに溶解させた。以降の操作は (実施例 4)と同様の操作手順で調製した。 実施例 4と同様に、上記各塩基性脂質比に対応して得られたリボソーム製剤(1)一 (4)のリン脂質の定量、粒子径および Zeta電位を測定した。結果を表 2に示す。
[0095] [表 2]
表 2
粒径 Zeta電位
膜構成 (mol比)
nm m V
HSPC: Choi: PEGeooo-DSPE
実施例 1 110.9 -6.1
=54: 46: 0.75
実施例 4 HSPC: Chol:ODA: PEGBOoo-DSPE
119.7 2.2
( 1 ) =50: 42: 8: 0.75
実施例 4 HSPC: Choi: MODA:PEG匿 DSPE
118.2 1.9
( 2 ) =50: 42: 8: 0.75
実施例 4 HSPC: Chol:DMODA:PEGeooo-DSPE
120.3 2.7
(3) =50: 42: 8: 0.75
実施例 4 HSPC: ChoLTMOD A:PEGBooo-D SPE
113.1 4.6
(4) =50: 42: 8: 0.75
実施例 5 HSPC: C ol MOD A:PEGBOOO-D SPE
119.0 -3.3
( 1 ) =53.5: 45.5: 1 : 0.75
実施例 5 HSPC: CholTMOD A:PEGBOoo-D SPE
120.6 -3.0
( 2 ) =53 : 45 : 2 : 0.75
実施例 5 HSPC: ChoLTMOD A:PEGBooo-D SPE
124.3 -1.6
(3) =52 : 45 : 4 : 0.75
実施例 5 HSPC: CholTMOD A:PEGBOOO-D SPE
110.3 5.1
(4) =45.4: 38.6: 16: 0.75 [0096] (試験例 3)リボソーム製剤における PEGの分解挙動
実施例 4および実施例 5で調製したリボソーム製剤 (各実施例のリボソーム製剤 (4) )を 40°Cで 2週間保存後、 HPLC法を用 、て PEG - DSPE定量した。実施例 1 (塩
5000
基性ィ匕合物なし)のリボソーム製剤の結果 (試験例 2)とともに、 4°C保存の PEGリポソ ームに対する PEG -DSPEの残存率で表 3に示す。塩基性化合物を含有すること
5000
により、塩基性化合物の含量依存的に PEG -DSPEの含量低下力 より一層抑え
5000
られていることがわかった。
[0097] [表 3]
表 3
Figure imgf000030_0001
[0098] (試験例 4)リボソーム製剤における HSPCの分解挙動
実施例 4および実施例 1で調製したリボソーム製剤を 40°Cで 1週間 Z2週間保存後
、 HPLC法を用いて HSPCの分解物の割合(%)を定量した。 HSPC分解物の割合(
%)の計算方法を以下に示す。
[0099] [数 1]
HSPCの分解物の総ピ一ク面積
HSPCの分解物の害 Ϊ合 (%) = χΙΟΟ
HSPCの総ピーク面積 + HSPCの分解物の総ピーク面積
[0100] 試験例 4の結果を、図 4および図 5に示す。
図 4に示すように、実施例 4のリボソーム製剤は、実施例 1のリボソームに比べて HS PCの分解物の割合(%)が少なぐ HSPCの加水分解が抑制されていることを示して いる。また HSPCの分解物の割合 (%)は塩基性ィ匕合物の構造に大きく依存していな いことがわ力る。
図 5は、実施例 4のリボソーム製剤の 0週, 1週, 2週(図中、 OW, 1W, 2W)の各試 験期間における、塩基性ィ匕合物 (TMODA)の含有率 (mol%)に対する HSPCの分 解物の割合(%)についての結果を示す。図 5に示すように、塩基性化合物の含有率 (mol%)が高くなるに伴い、 HSPCの分解物の割合(%)が抑えられていることがわか る。
上記に示すように、 PEG脂質 (PEG - DSPE)をリボソームの脂質二重膜の外側
5000
に担持することで、 PEG -DSPEの分解を防ぐことができる。さらに、塩基性化合物
5000
を脂質膜に導入することで PEG -DSPEの分解の更なる抑制、 HSPCの加水分解
5000
も抑制することができ、酸性環境で保持する必要のある薬物を内水相に含ませる場 合であってもリボソーム製剤を安定ィ匕することができる。本発明により、リボソーム製剤 における脂質二重膜の不安定化、リボソームの担持薬剤の漏出、リボソームの凝集、 リボソームの血しょう蛋白やオプノ-ン蛋白との吸着防止効果の低下、リボソームの血 中での安定性を損なう等の課題を克服することができる。

Claims

請求の範囲
[I] リン脂質を主膜材として含む脂質二重膜で形成されたュ-ラメラ小胞と、該小胞内 に存在する pHが 5以下の内水相とを備え、かつ薬物を担持させたリボソームであつ て、前記小胞は、外表面のみが親水性高分子で修飾されたものである、リボソーム製 剤。
[2] 前記薬物が、 pH5より大き 、pH領域で不安定な薬物である請求項 1に記載のリポ ソーム製剤。
[3] 前記薬物を、少なくとも 0. O5mol薬物 Zmol脂質の濃度で担持する請求項 1または
2に記載のリボソーム製剤。
[4] 前記薬物を、少なくとも 0. Imol薬物 Zmol脂質の濃度で担持する請求項 1または 2 に記載のリボソーム製剤。
[5] 前記主膜材が、相転移点 50°C以上のリン脂質である請求項 1一 4のいずれかに記 載のリボソーム製剤。
[6] 前記リン脂質が、水素添加されたリン脂質である請求項 1一 5のいずれかに記載の リボソーム製剤。
[7] 前記リン脂質が、スフインゴリン脂質である請求項 1一 5のいずれかに記載のリポソ ーム製剤。
[8] 前記脂質二重膜の膜成分として、前記リン脂質以外の他の脂質類をさらに含む請 求項 1一 7のいずれかに記載のリボソーム製剤。
[9] 前記脂質二重膜の膜成分として、コレステロールをさらに含む請求項 6または 7に 記載のリボソーム製剤。
[10] 前記脂質二重膜の膜成分として、アミノ基、アミジノ基およびグアジニノ基力 選ば れる基を含む塩基性ィ匕合物をさらに含む請求項 1一 9のいずれかに記載のリポソ一 ム製剤。
[II] 前記塩基性化合物が、 3,5-ジペンタデシ口キシベンズアミジン塩酸塩である請求項 10に記載のリボソーム製剤。
[12] 前記親水性高分子が、分子量 500— 10,000ダルトンのポリエチレングリコールで ある請求項 1一 11のいずれかに記載のリボソーム製剤。
[13] 前記親水性高分子は、親水性高分子のリン脂質またはコレステロール誘導体として 導入される請求項 1一 12のいずれかに記載のリボソーム製剤。
[14] 前記リボソーム製剤の平均粒子径カ 40— 140nmである請求項 1一 13のいずれ かに記載のリボソーム製剤。
[15] 前記リボソーム製剤の平均粒子径カ 50— 130nmである請求項 1一 13のいずれ かに記載のリボソーム製剤。
[16] 前記リボソーム製剤の平均粒子径カ 60— 120nmである請求項 1一 13のいずれ かに記載のリボソーム製剤。
[17] 前記内水相の pHが 2— 5である請求項 1一 15のいずれかに記載のリボソーム製剤
[18] 内水相の pHが 5以下となるように、リン脂質を含む脂質二重膜のュ-ラメラ層構造 の小胞を調製した後、親水性高分子脂質誘導体を添加して前記小胞の外表面のみ を修飾し、小胞の調製時に内水相にあらかじめ添加するか、小胞調製後に小胞外か ら前記脂質二重膜を通過せしめて薬物を封入して薬物を封入して薬物を担持させる 請求項 1に記載のリボソーム製剤の製造方法。
PCT/JP2005/005577 2004-03-26 2005-03-25 リポソーム製剤 WO2005092388A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020067019769A KR101245990B1 (ko) 2004-03-26 2005-03-25 리포솜 제제
US10/594,427 US8241663B2 (en) 2004-03-26 2005-03-25 Liposome preparation
EP05721504.8A EP1731172B1 (en) 2004-03-26 2005-03-25 Liposome preparation
CN2005800097595A CN1938048B (zh) 2004-03-26 2005-03-25 脂质体制剂
JP2006511537A JP4833836B2 (ja) 2004-03-26 2005-03-25 リポソーム製剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004091704 2004-03-26
JP2004-091704 2004-03-26

Publications (1)

Publication Number Publication Date
WO2005092388A1 true WO2005092388A1 (ja) 2005-10-06

Family

ID=35055997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005577 WO2005092388A1 (ja) 2004-03-26 2005-03-25 リポソーム製剤

Country Status (6)

Country Link
US (1) US8241663B2 (ja)
EP (1) EP1731172B1 (ja)
JP (1) JP4833836B2 (ja)
KR (1) KR101245990B1 (ja)
CN (1) CN1938048B (ja)
WO (1) WO2005092388A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004542A1 (fr) * 2006-07-03 2008-01-10 Terumo Kabushiki Kaisha Procédé de séparation de vésicules, procédé de fabrication d'une préparation médicinale et procédé d'évaluation
WO2008050807A1 (fr) 2006-10-25 2008-05-02 Terumo Kabushiki Kaisha Procede de production d'une preparation de liposome
JP2010168334A (ja) * 2009-01-26 2010-08-05 Tsumura Lifescience Co Ltd 水中油型乳化組成物
WO2012117971A1 (ja) * 2011-02-28 2012-09-07 国立大学法人北海道大学 脂質膜構造体、脂質膜構造体の製造方法および1の目的物質を1枚の脂質膜で封入する方法
JP2012206948A (ja) * 2011-03-29 2012-10-25 Kose Corp リポソーム組成物、並びにそれを用いた化粧料、皮膚外用剤及びその製造方法
US9445975B2 (en) 2008-10-03 2016-09-20 Access Business Group International, Llc Composition and method for preparing stable unilamellar liposomal suspension

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102038641B (zh) * 2009-10-26 2013-04-17 石药集团中奇制药技术(石家庄)有限公司 一种外层经亲水聚合物修饰的脂质体药物的制备方法
CA2894846A1 (en) 2012-12-12 2014-06-19 Temple University - Of The Commonwealth System Of Higher Education Compositions and methods for treatment of cancer
CN103690957B (zh) * 2013-12-24 2015-07-15 四川省中医药科学院 一种肾小球靶向微粒给药系统及其制备方法
MA40428A (fr) * 2014-08-14 2016-02-18 L E A F Holdings Group Llc Médicament à affinité encapsulé dans un liposome
CN114931516B (zh) * 2022-06-13 2023-09-15 江苏集萃先进高分子材料研究所有限公司 一种含有一氧化氮脂质体的乳液及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196713A (ja) * 1988-09-28 1990-08-03 Yissum Res Dev Co Of Hebrew Univ Of Jerusalem 両親媒性分子を有効に充填かつ制御放出するリポソーム
JPH06501246A (ja) * 1990-07-31 1994-02-10 ザ リポソーム カンパニー,インコーポレイテッド アミノ酸及びペプチドのリポソーム内への蓄積
JP2001055343A (ja) * 1998-11-02 2001-02-27 Terumo Corp リポソーム
WO2003015753A1 (fr) * 2001-08-20 2003-02-27 Terumo Kabushiki Kaisha Preparations de liposomes

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4429008B1 (en) * 1981-12-10 1995-05-16 Univ California Thiol reactive liposomes
CA1338702C (en) 1987-03-05 1996-11-12 Lawrence D. Mayer High drug:lipid formulations of liposomal- antineoplastic agents
MX9203808A (es) * 1987-03-05 1992-07-01 Liposome Co Inc Formulaciones de alto contenido de medicamento: lipido, de agentes liposomicos-antineoplasticos.
JPH0720857B2 (ja) * 1988-08-11 1995-03-08 テルモ株式会社 リポソームおよびその製法
US5013556A (en) 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
JP3455755B2 (ja) 1993-06-30 2003-10-14 カシオ計算機株式会社 音楽情報入力方法及び音楽情報入力装置
KR0148706B1 (ko) 1994-10-05 1998-08-17 신재인 전방향 유성차륜 장치
KR100679906B1 (ko) * 1998-09-16 2007-02-07 알자 코포레이션 리포솜-엔트랩된 토포이소머라제 억제제
US6562371B1 (en) 1998-11-02 2003-05-13 Terumo Kabushiki Kaisha Liposomes
US20030129224A1 (en) * 2001-11-13 2003-07-10 Paul Tardi Lipid carrier compositions and methods for improved drug retention

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196713A (ja) * 1988-09-28 1990-08-03 Yissum Res Dev Co Of Hebrew Univ Of Jerusalem 両親媒性分子を有効に充填かつ制御放出するリポソーム
JPH06501246A (ja) * 1990-07-31 1994-02-10 ザ リポソーム カンパニー,インコーポレイテッド アミノ酸及びペプチドのリポソーム内への蓄積
JP2001055343A (ja) * 1998-11-02 2001-02-27 Terumo Corp リポソーム
WO2003015753A1 (fr) * 2001-08-20 2003-02-27 Terumo Kabushiki Kaisha Preparations de liposomes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1731172A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004542A1 (fr) * 2006-07-03 2008-01-10 Terumo Kabushiki Kaisha Procédé de séparation de vésicules, procédé de fabrication d'une préparation médicinale et procédé d'évaluation
WO2008050807A1 (fr) 2006-10-25 2008-05-02 Terumo Kabushiki Kaisha Procede de production d'une preparation de liposome
US9445975B2 (en) 2008-10-03 2016-09-20 Access Business Group International, Llc Composition and method for preparing stable unilamellar liposomal suspension
JP2010168334A (ja) * 2009-01-26 2010-08-05 Tsumura Lifescience Co Ltd 水中油型乳化組成物
WO2012117971A1 (ja) * 2011-02-28 2012-09-07 国立大学法人北海道大学 脂質膜構造体、脂質膜構造体の製造方法および1の目的物質を1枚の脂質膜で封入する方法
JP2012206948A (ja) * 2011-03-29 2012-10-25 Kose Corp リポソーム組成物、並びにそれを用いた化粧料、皮膚外用剤及びその製造方法

Also Published As

Publication number Publication date
EP1731172A1 (en) 2006-12-13
EP1731172A4 (en) 2012-07-11
US20080279916A1 (en) 2008-11-13
EP1731172B1 (en) 2013-06-05
CN1938048B (zh) 2010-05-12
CN1938048A (zh) 2007-03-28
KR101245990B1 (ko) 2013-03-20
US8241663B2 (en) 2012-08-14
JP4833836B2 (ja) 2011-12-07
JPWO2005092388A1 (ja) 2008-02-07
KR20070011331A (ko) 2007-01-24

Similar Documents

Publication Publication Date Title
US11173178B2 (en) Liposomes for drug delivery and methods for preparation thereof
WO2005092388A1 (ja) リポソーム製剤
JP5770336B2 (ja) リポソーム組成物の製造方法
JP4885715B2 (ja) イリノテカン製剤
US20080058274A1 (en) Combination Therapy
Nekkanti et al. Recent advances in liposomal drug delivery: a review
JP2017502985A (ja) 修飾シクロデキストリン複合体をカプセル化するリポソーム組成物およびその使用
JP4791067B2 (ja) リポソーム製剤の製造方法
CA2699671C (en) Liposomes comprising amphiphiles with pyridinium head groups and uses thereof
US20060198882A1 (en) Stable liposomes or micelles comprising a sphinolipid and a peg-lipopolymer
WO2010095964A1 (en) A method for amphiphilic drug loading in liposomes by ion gradient
WO2000025748A1 (fr) Liposomes
JP2024505154A (ja) ウチデロンリポソーム組成物、及びその製造方法並びに使用
JPWO2005021012A1 (ja) ゲムシタビン封入薬剤担体
JP2006280389A (ja) Dds製剤
WO2011037252A1 (ja) スピカマイシン誘導体を含有するリポソーム製剤
JP2014506918A (ja) 抗腫瘍活性物質を含むリポソーム製剤、その調製のための方法、及び、それを含む医薬組成物
WO2014050509A1 (ja) リポソームおよびリポソーム製剤
Johnston Studies of factors influencing drug efflux rates from liposomes and their impact on antitumor efficacy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511537

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067019769

Country of ref document: KR

Ref document number: 1145/MUMNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2005721504

Country of ref document: EP

Ref document number: 200580009759.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005721504

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067019769

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10594427

Country of ref document: US