WO2006081780A1 - Dopants for organic semiconductors - Google Patents

Dopants for organic semiconductors Download PDF

Info

Publication number
WO2006081780A1
WO2006081780A1 PCT/DE2005/000189 DE2005000189W WO2006081780A1 WO 2006081780 A1 WO2006081780 A1 WO 2006081780A1 DE 2005000189 W DE2005000189 W DE 2005000189W WO 2006081780 A1 WO2006081780 A1 WO 2006081780A1
Authority
WO
WIPO (PCT)
Prior art keywords
aryl
perfluoroalkyl
heteroaryl
organic
dopant
Prior art date
Application number
PCT/DE2005/000189
Other languages
German (de)
French (fr)
Inventor
Olaf Zeika
Horst Hartmann
Tatjana Wahl
Original Assignee
Novaled Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novaled Ag filed Critical Novaled Ag
Priority to JP2007553446A priority Critical patent/JP2008530773A/en
Priority to PCT/DE2005/000189 priority patent/WO2006081780A1/en
Publication of WO2006081780A1 publication Critical patent/WO2006081780A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/611Charge transfer complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to a dopant for doping an organic semiconductive matrix material for changing the electrical properties thereof, the use of the dopant, a doped semiconductive matrix material and an electronic component made therefrom.
  • organic semiconductors can also be strongly influenced by doping with regard to their electrical conductivity.
  • Such organic semiconducting matrix materials can be constructed from either compounds with good electron donating properties or from compounds having good electron accepting properties.
  • strong electron acceptors such as tetracyanoquinonedimethane (TCNQ) or 2,3,5,6-tetrafluoro-tetracyano-1,4-benzoquinone dimethyne (F4TCNQ) have become known.
  • TCNQ tetracyanoquinonedimethane
  • F4TCNQ 2,3,5,6-tetrafluoro-tetracyano-1,4-benzoquinone dimethyne
  • the compounds examined so far have disadvantages for the production of doped semiconducting organic layers or of corresponding electronic components with such doped layers, since the production processes in large-scale production plants or those on a pilot plant scale can not always be controlled sufficiently precisely, leading to high control and control effort within the processes leads to achieve a desired product quality, or undesirable tolerances of the products.
  • organic donors with respect to the electronic component structures such as light-emitting diodes (OLEDs), field effect transistor (FET) or solar cells themselves, since the mentioned production difficulties in handling the dopants to unwanted irregularities in the electronic components or unwanted aging effects of the electronic components being able to lead.
  • the dopants to be used have suitable electron affinities and other properties suitable for the application, since, for example, the dopants also determine the conductivity or other electrical properties of the organic semiconductive layer under given conditions.
  • the invention is therefore based on the object of providing organic dopants for doping organic semiconductors which are easier to handle in the production process and which lead to electronic components whose organic semiconducting materials can be produced in a reproducible manner.
  • this object is achieved by a dopant according to claim 1, wherein preferred embodiments result from the subclaims.
  • the dopants according to the invention exhibit an extremely high electron affinity, thermal stability, sublimability and diffusion resistance in semiconductor layers, whereby the combination of these properties could not be expected.
  • the volatility can be used as the under the same conditions (for example, a pressure of 2 x 10 "4 Pa and a predetermined evaporation temperature, for example 150 ° C) measured evaporation rate or rate of vapor deposition of a substrate measured as a layer thickness growth per unit time (nm / s) under otherwise identical conditions
  • the volatility of the compounds according to the invention is preferably ⁇ 0.95 or 0.9 times, particularly preferably ⁇ 0.8 times, more preferably ⁇ 0.5 times, particularly preferably ⁇ 0.1 -fold or ⁇ 0.05-fold or ⁇ 0.01-fold of F4TCNQ or less.
  • the evaporation rate of the substrate with the compounds according to the invention can be determined, for example, using a quartz thickness monitor, as is commonly used, for example, in the production of OLEDs.
  • the ratio of the occlusion rates of matrix materials and dopants can be measured by independent measurements using the same, using two separate quartz thickness monitors to adjust the doping ratio.
  • the volatility relative to that of F4TCNQ may refer respectively to that of the pure compound or to the volatility from a given matrix material, for example ZnPc.
  • the compounds of the invention are preferably such that they evaporate more or less or virtually undecomposed.
  • precursors as dopant source in a targeted manner which release the compounds used according to the invention, for example acid addition salts.
  • the dopant is selected such that under otherwise identical conditions such as in particular doping concentration (molar ratio of dopant: matrix, layer thickness, current strength) for a given matrix material (for example, zinc phthalocyanine or another matrix material mentioned below) generates a precisely as high or preferably a higher conductivity as F4TCNQ, for example, a conductivity (S / cm) of greater than or equal to 1.1 times, 1.2 times or greater / equal to 1.5 times or twice that of F4TCNQ as dopant.
  • the dopant used in the invention is selected such that the doped with this semiconducting organic matrix material after a temperature change of 100 ° C to room temperature (20 ° C) still> 20%, preferably> 30%, more preferably> 50% or 60% of Conductivity (S / cm) of the value at 100 ° C.
  • the dopants according to the invention have a high vaporization temperature or a low volatility, so that production processes for doping organic semiconducting materials can be better controlled and thus can be carried out with little effort and reproducibly.
  • the quinone derivative compounds which are proposed as dopants according to the present invention allow sufficient electrical conductivity of the organic semiconducting matrix with favorable electron affinity of the dopants, while at the same time providing low diffusion coefficients in the respective components which ensure component structures which are identical over time.
  • the charge carrier injection of contacts into the doped layer can be improved by the dopants according to the invention.
  • the doped organic semiconductor material or the resulting electronic component have improved long-term stability due to the compounds used in the invention. This concerns, for example, a reduction of the dopant concentration with time.
  • this relates to the stability of the doped layer disposed adjacent to undoped layers of an electro-optical device so that electro-optical devices having increased long-term stability of the electro-optical characteristics present the light output at a given wavelength, efficiency of a solar cell or the like.
  • dihydroquinone derivatives as synthetic precursors of the quinoid structures 40-48, which have the following structures:
  • Substituent S 12 is particularly suitable for structures 47a and 48a.
  • 1,4-quinones are best isolated by oxidation of the corresponding hydroquinones (WT Sumerford, DN Dalton, J. Am. Chem Soc 1944, 66, 1330, J. Miller, C. Vasquez, 1991 US506836, K. Koch J. Vitz, J. Prakt. Chem. 2000, 342/8 825-7) or the fluorinated and / or chlorinated aromatics. 1974, 107, 558-65, OIOsina, VD Steingarz, Zh. Org. Chim., 1974, 10, 329; VD Steingarz at al Zh. Org. Chim., 1970, 6 / 4, 833).
  • N, N'-dicyano-1,4-quinonediimines are prepared either by the action of N 5 N'-bistrimethylsilylcarbodiimide on 1,4-quinone compounds (A. Aumüller, S. Hünig, Liebigs Ann. Chem., 1986, 142 64,) or by oxidation of corresponding N, N'-dicyano-1,4-diamine compounds (GD Adreetti, S. Bradamante, PC Pizzarri, GA Pagani, Mol. Cryst. Liq. Cryst.
  • N, N'-dicyano-l, 4-diamine compounds can be obtained by cyanation of phenylene-l, 4-diamine with cyanogen halides or by desulfurization of corresponding thiourea derivatives.
  • Simple tetracyanoquinonedimethanes can be prepared via 1,4-cyclohexanedione by condensation in benzene with ammonium acetate buffer on a water separator and subsequent oxidation by bromine (DS Acker, WR Hertier, J. Am. Chem. Soc. 1962, 84, 3370).
  • Hertier and co-workers have also shown that these compounds can be synthesized via 1,4-xylene and its analogues by side chain bromination, substitution by cyanide, condensation with diethyl carbonate, conversion of the carboxylic acid methyl ester groups into cyanide groups and subsequent oxidation (J. Org. Chem. 1963, 28, 2719).
  • Acceptor-substituted tetracyanoquinonedimethanes can be prepared from the sodium salt of t-butyl malononitrile and acceptor-substituted 1,4-dihaloaromatic (R.C. Wheland, E.L. Martin, J. Org. Chem., 1975, 40, 3101).
  • Pyrazino-TCNQ compounds can be prepared via 5,8-diiodoquinoxa-line palladium-catalyzed with the sodium salt of malononitrile. (T. Miyashi et al, J. Org. Chem. 1992, 57, 6749-55)
  • Pyrazino-TCNQ compounds and other hetero-isolated derivatives can be prepared in various ways (Y. Yamashita et al. Chemistry Letters, 1986, 715-8, F. Wudl al., J. Org. Chem. 1977, 421666-7).
  • Annealed DCNQI compounds can be synthesized via the corresponding quinones according to Hünig (Tsunetsugu, J., et al., Chemistry Letters, 2002, 1004-5).
  • Hetero-annealed DCNQI compounds can be synthesized via the corresponding quinones according to Hünig (T. Suzuki et al., J. Org. Chem. 2001, 66, 216-24; N. Martin at al, J. Org. Chem. 1996, 61, Kobayashy et al., Chemistry Letters, 1991, 1033-6; K. Kobayashy, K. Takahashi, J. Org. Chem. 2000, 65, 2577-9).
  • Heterocyclic quinoid derivatives can be prepared according to N.F. Haley, J.C.S. Chem. Coirnn. 1979, 1031, F. Weydand, K. Henkel Chem. B. 1943, 76, 818; H.J. Knackmuss Angew. Chem. 1973, 85, 16; K.Fickentscher, Chem. B. 1969, 102, 2378-83, D.E. Burton et al J. Chem. Soc. (C) 1968, 1268-73.
  • Tetraacetylquinone methane compounds or their reduced forms are available via 1,4-benzoquinone and acetylacetone (J. Jenik, Chemicky prumysl 1985 35/60 1547, RJ Wikholm J. Org. Chem., 1985, 50, 382-4, E. Bernatek , S. Ramstad Acta Chem. Scand. 1953, 7, 1351-6).
  • Ditrifluoroacetamides can be prepared by means of trifluoroacetic acid via aromatic 1,4-diamines (R. Adams, J.M. Stewart J.A.C.S. 1952,20, 3660-4). By oxidation with Pb (rV) acetate, the diimine can be obtained.
  • suitable dopants are described for organic semiconductive materials, such as hole transport materials HT, which are commonly used in OLEDs or organic solar cells.
  • the semiconductive materials are preferably intrinsically hole-conducting.
  • the matrix material may be partially (> 10 or> 25 wt%) or substantially (> 50 wt% or> 75 wt%) or entirely composed of a metal phthalocyanine complex, a porphyrin complex, especially a metal porphyrin complex , an oligothiophene, oligophenyl, oligophenylenevinylene or oligofluorene compound, wherein the oligomer preferably comprises 2-500 or more, preferably 2-100 or 2-50 or 2-10 monomeric units.
  • the oligomer may also comprise>4,> 6 or> 10 or more monomeric units, in particular also for the ranges indicated above, ie for example 4 or 6-10 monomeric units, 6 or 10-100 monomeric units or 10-500 monomeric units ,
  • the monomers or oligomers may be substituted or unsubstituted, wherein block or copolymers may be present from said oligomers, a compound having a triarylamine unit or a spiro-bifluorene compound.
  • the matrix materials mentioned can also be present in combination with one another, if appropriate also in combination with other matrix materials.
  • the matrix materials may have electron donating substituents such as alkyl or alkoxy moieties which have reduced ionization energy or reduce the ionization energy of the matrix material.
  • the metal phthalocyanine complexes or porphyrin complexes used as the matrix material may have a main group metal atom or a subgroup metal atom.
  • the phthalocyanine complex or porphyrin complex may each be partially hydrogenated, but preferably the mesomeric ring system is not disturbed.
  • the same or different metal atoms or oxometal atoms may be present in the case of porphyrin complexes.
  • such dopable hole transport materials can be HT arylated benzidines, for example N, N'-perarylated benzidines or other diamines such as TPD (where one, more or all of the aryl groups may have aromatic heteroatoms), suitable arylated starburst compounds such as N, N ', N "-perarylated starburst compounds such as the compound TDATA (wherein one, more or all of the aryl groups may have aromatic heteroatoms)
  • the aryl radicals may in particular comprise phenyl, naphthyl, pyridine, quinoline, isoquinoline, peridazine, pyrimidine, pyrazine, pyrazole, imidazole, oxazole, furan, pyrrole, hidol or the like, for each of the abovementioned compounds
  • the phenyl groups of the respective compounds may be represented by thiophene groups partially or completely replaced.
  • the matrix material used consists entirely of a metal phthalocyanine complex, a porphyrin complex, a compound having a triarylamine unit or a spiro-bifluorene compound.
  • the doping may in particular be such that the molar ratio of matrix molecule to dopant or, in the case of oligomeric matrix materials, the ratio of matrix monomer number to dopant 1: 100000, preferably 1: 1 to 1: 10000, particularly preferably 1: 5 to 1: 1000, for example 1:10 to 1: 100, for example, about 1:50 to 1: 100 or even 1:25 to 1:50.
  • the doping of the respective matrix material (here preferably indicated as hole-conducting matrix material HT) with the dopants to be used according to the invention can be produced by one or a combination of the following processes:
  • the doping can be carried out in such a way that the dopant is evaporated out of a precursor compound which releases the dopant on heating and / or irradiation.
  • the Irradiation can be carried out by means of electromagnetic radiation, in particular visible light, UV light or IR light, for example, in each case laser light, or else by other types of radiation.
  • the irradiation can essentially provide the heat necessary for the evaporation, it can also be irradiated deliberately into specific bands of the compounds to be vaporized or precursors or compound complexes such as charge-transfer complexes in order, for example, to convert the compounds into excited states to facilitate by dissociation of the complexes. It is understood that the evaporation conditions described below are directed to those without irradiation and for comparison purposes uniform evaporation conditions are used.
  • Precursor compounds which can be used are, for example: a) mixtures or stoichiometric or mixed-crystalline compounds of the dopant and an inert, non-volatile substance, e.g. a polymer, molecular sieve, alumina, silica gel, oligomers or any other organic or inorganic substance having a high vaporization temperature, wherein the dopant is bound to this substance predominantly by van der Waals forces and / or hydrogen bonding.
  • an inert, non-volatile substance e.g. a polymer, molecular sieve, alumina, silica gel, oligomers or any other organic or inorganic substance having a high vaporization temperature, wherein the dopant is bound to this substance predominantly by van der Waals forces and / or hydrogen bonding.
  • the dopants according to the invention can be used for the production of organic light-emitting diodes (OLED), organic solar cells, organic diodes, in particular those with a high rectification ratio such as 10 3 -10 7 , preferably 10 4 -10 7 or 10 5 -10 7 or organic field effect transistors ,
  • OLED organic light-emitting diodes
  • the dopants according to the invention make it possible to improve the conductivity of the doped layers and / or to improve the charge carrier injection of contacts into the doped layer.
  • the component may have a pin structure or an inverse structure, without being limited thereto.
  • the use of the dopants according to the invention is not limited to the above-mentioned advantageous embodiments.

Abstract

The invention relates to dopants for doping a semiconductor organic matrix material, to the use thereof, to a method for producing said dopants and an electronic component produced by means of said doped semiconductor organic matrix material.

Description

DOTANDEN FÜR ORGANISHE HABLEITER DOTANDEN FOR ORGANISM HOLDITER
Beschreibungdescription
Die Erfindung betrifft einen Dotanden zur Dotierung eines organischen halbleitenden Matrixmaterials zur Veränderung der elektrischen Eigenschaften desselben, die Verwendung des Dotanden, ein dotiertes halbleitendes Matrixmaterial sowie ein aus diesem hergestelltes elektronisches Bauelement.The invention relates to a dopant for doping an organic semiconductive matrix material for changing the electrical properties thereof, the use of the dopant, a doped semiconductive matrix material and an electronic component made therefrom.
Schon seit einigen Jahrzehnten ist das Dotieren von Siliziumhalbleitern Stand der Technik. Danach wird durch Erzeugung von Ladungsträgern im Material eine Erhöhung der zunächst recht niedrigen Leitfähigkeit sowie je nach Art des verwendeten Dotanden eine Veränderung im Fermi-Niveau des Halbleiters erreicht.For some decades doping of silicon semiconductors has been state of the art. Thereafter, an increase in the initially low conductivity and, depending on the type of dopant used, a change in the Fermi level of the semiconductor is achieved by generating charge carriers in the material.
Seit einigen Jahren ist nun aber auch bekannt geworden, dass man organische Halbleiter ebenfalls durch Dotierung hinsichtlich ihrer elektrischen Leitfähigkeit stark beeinflussen kann. Solche organischen halbleitenden Matrixmaterialien können entweder aus Verbindungen mit guten Elektronendonator-Eigenschaften oder aus Verbindungen mit guten Elektronenalczeptor-Eigenschaften aufgebaut werden. Zum Dotieren von Elektronendonator- Materialien sind starke Elektronen-Akzeptoren wie Tetracyanochinondimethan (TCNQ) oder 2,3,5,6-Tetrafluoro-tetracyano-l,4-benzochinondimethan (F4TCNQ) bekannt geworden. M. Pfeiffer, A. Beyer, T. Fritz, K. Leo, Appl. Phys. Lett, 73 (22), 3202-3204 (1998). und J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, Appl. Phys. Lett., 73 (6), 729-731 (1998). Diese erzeugen durch Elektronentransferprozesse in elektronendonatorartigen Basismaterialien (Löchertransportmaterialien) sog. Löcher, durch deren Anzahl und Beweglichkeit sich die Leitfähigkeit des Basismaterials mehr oder weniger signifikant verändert. Als Matrixmaterialien mit Löchertransporteigenschaften sind beispielsweise N,N'-perarylierte Benzidine TPD oder N,N',N"-perarylierte Starburstverbindungen, wie die Substanz TDATA, oder aber auch bestimmte Metallphthalocyanine, wie insbesondere Zinkphthalocyanin ZnPc bekannt.For some years now it has become known that organic semiconductors can also be strongly influenced by doping with regard to their electrical conductivity. Such organic semiconducting matrix materials can be constructed from either compounds with good electron donating properties or from compounds having good electron accepting properties. For doping electron donating materials, strong electron acceptors such as tetracyanoquinonedimethane (TCNQ) or 2,3,5,6-tetrafluoro-tetracyano-1,4-benzoquinone dimethyne (F4TCNQ) have become known. M. Pfeiffer, A. Beyer, T. Fritz, K. Leo, Appl. Phys. Lett, 73 (22), 3202-3204 (1998). and J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, Appl. Phys. Lett., 73 (6), 729-731 (1998). These generate by electron transfer processes in electron donor-like base materials (hole transport materials) so-called. Holes, the number and mobility of which changes the conductivity of the base material more or less significantly. Examples of matrix materials with hole transport properties are N, N'-perarylated Benzidine TPD or N, N ', N "-perarylated starburst compounds, such as the substance TDATA, or else certain metal phthalocyanines, in particular zinc phthalocyanine ZnPc known.
Die bisher untersuchten Verbindungen haben jedoch für eine technische Anwendung Nachteile in der Produktion dotierter halbleitender organischer Schichten oder von entsprechenden elektronischen Bauteilen mit derartigen dotierten Schichten, da die Fertigungsprozesse in großtechnischen Produktionsanlagen oder solchen im Technikumsmaßstab nicht immer ausreichend präzise gesteuert werden können, was zu hohem Steuerungs- und Regelaufwand innerhalb der Prozesse fuhrt, um eine gewünschte Produktqualität zu erzielen, oder zu unerwünschten Toleranzen der Produkte. Ferner bestehen Nachteile bei der Verwendung bisher bekannter organischer Donatoren bezüglich der elektronischen Bauelementstrukturen wie Leuchtdioden (OLEDs), Feldeffekttransistor (FET) oder Solarzellen selber, da die genannten Produktionsschwierigkeiten bei der Handhabung der Dotanden zu unerwünschten Ungleichmäßigkeiten in den elektronischen Bauteilen oder unerwünschten Alterungseffekten der elektronischen Bauteile führen können. Gleichzeitig ist jedoch zu beachten, dass die zu verwendenden Dotanden geeignete Elektronenaffinitäten und andere für den Anwendungsfall geeignete Eigenschaften aufweisen, da beispielsweise die Dotanden unter gegebenen Bedingungen auch die Leitfähigkeit oder andere elektrische Eigenschaften der organisch halbleitenden Schicht mit bestimmen.However, the compounds examined so far have disadvantages for the production of doped semiconducting organic layers or of corresponding electronic components with such doped layers, since the production processes in large-scale production plants or those on a pilot plant scale can not always be controlled sufficiently precisely, leading to high control and control effort within the processes leads to achieve a desired product quality, or undesirable tolerances of the products. Furthermore, there are disadvantages in the use of previously known organic donors with respect to the electronic component structures such as light-emitting diodes (OLEDs), field effect transistor (FET) or solar cells themselves, since the mentioned production difficulties in handling the dopants to unwanted irregularities in the electronic components or unwanted aging effects of the electronic components being able to lead. At the same time, however, it should be noted that the dopants to be used have suitable electron affinities and other properties suitable for the application, since, for example, the dopants also determine the conductivity or other electrical properties of the organic semiconductive layer under given conditions.
Der Erfindung liegt daher die Aufgabe zugrunde, organische Dotanden zur Dotierung organischer Halbleiter bereitzustellen, die im Produktionsprozess leichter handhabbar sind und die zu elektronischen Bauteilen führen, deren organische halbleitende Materialien reproduzierbarer herstellbar sind.The invention is therefore based on the object of providing organic dopants for doping organic semiconductors which are easier to handle in the production process and which lead to electronic components whose organic semiconducting materials can be produced in a reproducible manner.
Erfindungsgemäß wird diese Aufgabe durch einen Dotanden gemäß Anspruch 1 gelöst, wobei sich bevorzugte Ausführungsformen aus den Unteransprüchen ergeben. Die erfmdungsgemäßen Dotanden zeigen überraschenderweise eine äußerst hohe Elektronenaffinität, thermische Stabilität, Sublimierbarkeit und Diffusionsbeständigkeit in Halbleiterschichten, wobei die Kombination dieser Eigenschaften nicht erwartet werden konnte.According to the invention, this object is achieved by a dopant according to claim 1, wherein preferred embodiments result from the subclaims. Surprisingly, the dopants according to the invention exhibit an extremely high electron affinity, thermal stability, sublimability and diffusion resistance in semiconductor layers, whereby the combination of these properties could not be expected.
Die Flüchtigkeit kann als die unter gleichen Bedingungen (beispielsweise einem Druck von 2 x 10"4 Pa und einer vorgegebenen Verdampfungstemperatur, beispielsweise 150°C) gemessene Verdampfungsrate oder als Bedampfungsrate eines Substrats gemessen als Schichtdickenwachstum je Zeiteinheit (nm/s) unter sonst gleichen Bedingungen bestimmt werden. Vorzugsweise beträgt die Flüchtigkeit der erfindungsgemäßen Verbindungen das < 0,95- oder 0,9-fache, besonders bevorzugt das < 0,8-fache, weiter bevorzugt das < 0,5-fache, besonders bevorzugt das < 0,1 -fache oder das < 0,05-fache oder < 0,01 -fache von F4TCNQ oder weniger.The volatility can be used as the under the same conditions (for example, a pressure of 2 x 10 "4 Pa and a predetermined evaporation temperature, for example 150 ° C) measured evaporation rate or rate of vapor deposition of a substrate measured as a layer thickness growth per unit time (nm / s) under otherwise identical conditions The volatility of the compounds according to the invention is preferably <0.95 or 0.9 times, particularly preferably <0.8 times, more preferably <0.5 times, particularly preferably <0.1 -fold or <0.05-fold or <0.01-fold of F4TCNQ or less.
Die Bedampfungsrate des Substrats mit den erfindungsgemäßen Verbindungen kann beispielsweise unter Verwendung eines Quartzdickenmonitors bestimmt wird, wie er beispielsweise bei der Herstellung von OLEDs üblicherweise eingesetzt wird. Insbesondere kann das Verhältnis der Bedarnpfungsraten von Matrixmaterialien und Dotanden durch unabhängige Messungen , derselben unter Verwendung von zwei getrennten Quartzdickenmonitoren gemessen werden, um das Dotierungsverhältnis einzustellen.The evaporation rate of the substrate with the compounds according to the invention can be determined, for example, using a quartz thickness monitor, as is commonly used, for example, in the production of OLEDs. In particular, the ratio of the occlusion rates of matrix materials and dopants can be measured by independent measurements using the same, using two separate quartz thickness monitors to adjust the doping ratio.
Die Flüchtigkeit relativ zu der von F4TCNQ kann sich jeweils auf die der reinen Verbindung oder auf die Flüchtigkeit aus einem gegebenen Matrixmaterial, beispielsweise ZnPc, beziehen.The volatility relative to that of F4TCNQ may refer respectively to that of the pure compound or to the volatility from a given matrix material, for example ZnPc.
Es versteht sich, dass die erfindungsgemäßen Verbindungen vorzugsweise derart beschaffen sind, dass sie mehr oder weniger oder praktisch unzersetzt verdampfen. Es können unter Umständen jedoch auch zielgerichtet Precursor als Dotandenquelle eingesetzt werden, die die erfindungsgemäß verwendeten Verbindungen freisetzen, beispielsweise Säureadditionssalze, beispielsweise einer flüchtigen oder nichtflüchtigen anorganischen oder organischen Säure, oder Charge-Transfer-Komplexe derselben, wobei die Säuren bzw. Elektronen-Donatoren vorzugsweise nicht oder nur gering flüchtig sind oder der Charge-Transfer-Komplex selber als Dotand wirkt.It is understood that the compounds of the invention are preferably such that they evaporate more or less or virtually undecomposed. However, under certain circumstances, it is also possible to use precursors as dopant source in a targeted manner which release the compounds used according to the invention, for example acid addition salts. for example, a volatile or nonvolatile inorganic or organic acid, or charge-transfer complexes thereof, wherein the acids or electron donors are preferably not or only slightly volatile or the charge-transfer complex itself acts as a dopant.
Vorzugsweise ist der Dotand derart ausgewählt, dass er unter sonst gleichen Bedingungen wie insbesondere Dotierungskonzentration (Molverhältnis Dotand:Matrix, Schichtdicke, Stromstärke) bei gegebenem Matrixmaterial (beispielsweise Zinkphtalocyanin oder einem anderen weiter unten genannten Matrixmaterial) eine genau so hohe oder vorzugsweise eine höhere Leitfähigkeit erzeugt als F4TCNQ, beispielsweise eine Leitfähigkeit (S/cm) von größer/gleich dem 1,1 -fachen, 1,2-fachen oder größer/gleich dem 1,5 -fachen oder zweifachen derjenigen von F4TCNQ als Dotand.Preferably, the dopant is selected such that under otherwise identical conditions such as in particular doping concentration (molar ratio of dopant: matrix, layer thickness, current strength) for a given matrix material (for example, zinc phthalocyanine or another matrix material mentioned below) generates a precisely as high or preferably a higher conductivity as F4TCNQ, for example, a conductivity (S / cm) of greater than or equal to 1.1 times, 1.2 times or greater / equal to 1.5 times or twice that of F4TCNQ as dopant.
Vorzugsweise ist der erfindungsgemäß verwendete Dotand derart ausgewählt, dass das mit diesem dotierte halbleitende organische Matrixmaterial nach einer Temperaturänderung von 100°C auf Raumtemperatur (20°C) noch > 20%, vorzugsweise > 30%, besonders bevorzugt > 50% oder 60% der Leitfähigkeit (S/cm) des Wertes bei 100°C aufweist.Preferably, the dopant used in the invention is selected such that the doped with this semiconducting organic matrix material after a temperature change of 100 ° C to room temperature (20 ° C) still> 20%, preferably> 30%, more preferably> 50% or 60% of Conductivity (S / cm) of the value at 100 ° C.
Die erfindungsgemäßen Dotanden weisen eine hohe Verdampfungstemperatur bzw. eine geringe Flüchtigkeit auf, so daß Produktionsprozesse zum Dotieren von organischen halbleitenden Materialien besser kontrolliert und damit mit geringem Aufwand und reproduzierbar durchgeführt werden können. Die Chinonderivat- Verbindungen, die gemäß der vorliegenden Erfindung als Dotanden vorgeschlagen werden, ermöglichen eine ausreichende elektrische Leitfähigkeit der organischen halbleitenden Matrix bei günstiger Elektronenaffinität der Dotanden, wobei gleichzeitig in den jeweiligen Bauteilen geringe Diffusionskoeffizienten, die zeitlich gleichbleibende Bauelementstrukturen gewährleisten, bereitgestellt werden. Ferner kann durch die erfindungsgemäßen Dotanden die Ladungsträgerinjektion von Kontakten in die dotierte Schicht verbessert werden. Ferner kann das dotierte organische Halleitermaterial bzw. das resultierende elektronische Bauteil aufgrund der erfindungsgemäß verwendeten Verbindungen eine verbesserte Langzeitstabilität aufweisen. Dies betrifft beispielsweise eine Verringerung der Dotandenkonzentration mit der Zeit. Ferner betrifft dies die Stabilität der dotierten Schicht, die benachbart zu undotierten Schichten eines elektrooptischen Bauteils angeordnet ist, so daß elelctrooptische Bauteile mit erhöhter Langzeitstabilität der elektrooptischen Eigenschaften die Lichtausbeute bei einer vorgegebenen Wellenlänge, Wirksamkeit einer Solarzelle oder dergleichen präsentieren.The dopants according to the invention have a high vaporization temperature or a low volatility, so that production processes for doping organic semiconducting materials can be better controlled and thus can be carried out with little effort and reproducibly. The quinone derivative compounds which are proposed as dopants according to the present invention allow sufficient electrical conductivity of the organic semiconducting matrix with favorable electron affinity of the dopants, while at the same time providing low diffusion coefficients in the respective components which ensure component structures which are identical over time. Furthermore, the charge carrier injection of contacts into the doped layer can be improved by the dopants according to the invention. Furthermore, the doped organic semiconductor material or the resulting electronic component have improved long-term stability due to the compounds used in the invention. This concerns, for example, a reduction of the dopant concentration with time. Further, this relates to the stability of the doped layer disposed adjacent to undoped layers of an electro-optical device so that electro-optical devices having increased long-term stability of the electro-optical characteristics present the light output at a given wavelength, efficiency of a solar cell or the like.
Darstellung der DotandenRepresentation of the dopants
Von wesentlicher Bedeutung für die Herstellung der erfindungsgemäßen Dotanden sind die Dihydrochinon-Derivate als synthetische Vorstufen der chinoiden Strukturen 40 — 48, die die folgenden Strukturen aufweisen:Of essential importance for the preparation of the dopants according to the invention are the dihydroquinone derivatives as synthetic precursors of the quinoid structures 40-48, which have the following structures:
Figure imgf000006_0001
Figure imgf000006_0001
Figure imgf000006_0002
Figure imgf000006_0002
47a 48a Dabei können die Substituenten A, B, C und D die folgende Bedeutung haben:47a 48a The substituents A, B, C and D may have the following meaning:
NN
NC^CN NCT^CF3 N OH ONC ^ CN NCT ^ CF 3 N OH O
S1 S14 S11 S12a S12S1 S14 S11 S12a S12
Der Substituent S 12 kommt insbesondere bei den Strukturen 47a und 48a in Betracht.Substituent S 12 is particularly suitable for structures 47a and 48a.
Darstellungsmöglichkeiten der Dotanden auf einer Basis von Chinonderivaten sind wie folgt:Representation possibilities of the dopants on the basis of quinone derivatives are as follows:
1,4-Chinone lassen sich am Besten durch Oxidation der entsprechenden Hydrochinone (W. T. Sumerford, D. N. Dalton, J. Am. Chem. Soc. 1944, 66, 1330; J. Miller, C. Vasquez, 1991 Patent US506836;K. Koch, J. Vitz, J. Prakt. Chem. 2000, 342/8 825-7)oder der fluorierten und/oder chlorierten Aromaten darstellen. (A. Roedig at al. Chem. B. 1974, 107, 558-65; O.I.Osina, V.D. Steingarz, Zh. Org. Chim. 1974, 10, 329; V.D. Steingarz at al Zh. Org. Chim. 1970, 6/4, 833).1,4-quinones are best isolated by oxidation of the corresponding hydroquinones (WT Sumerford, DN Dalton, J. Am. Chem Soc 1944, 66, 1330, J. Miller, C. Vasquez, 1991 US506836, K. Koch J. Vitz, J. Prakt. Chem. 2000, 342/8 825-7) or the fluorinated and / or chlorinated aromatics. 1974, 107, 558-65, OIOsina, VD Steingarz, Zh. Org. Chim., 1974, 10, 329; VD Steingarz at al Zh. Org. Chim., 1970, 6 / 4, 833).
1,3-Indandionverbindungen wurden von V. Khodorkovsky at al synthetisiert^ V. Khodorkovsky at al Tetrahedron Lett. 1999, 40, 4851-4)1,3-indandione compounds were synthesized by V. Khodorkovsky at al ^ V. Khodorkovsky at al Tetrahedron Lett. 1999, 40, 4851-4)
N,N'-Dicyan-l,4-chinondiimine sind entweder durch Einwirkung von N5N'- Bistrimethylsilylcarbodiimid auf 1,4-Chinonverbin-dungen (A. Aumüller, S. Hünig, Liebigs Ann. Chem., 1986, 142-64,) oder durch Oxidation entsprechender N,N'-Dicyan-l,4-diamin- verbindungen (G. D. Adreetti, S. Bradamante, P. C. Pizzarri, G. A. Pagani, Mol. Cryst. Liq. Cryst. 1985, 120, 309-14) zugänglich, wobei die N,N'-Dicyan-l,4-diaminverbindungen durch Cyanierung von Phenylen-l,4-diamin mit Cyanhalogeniden oder durch Entschwefelung entsprechender Thioharnstoffderivate erhalten werden können. Einfache Tetracyanochinondimethane können über das 1,4-Cyclohexandion durch Kondensation in Benzen mit Ammoniumacetatpuffer am Wasserabscheider und nachfolgender Oxidation durch Brom dargestellt werden (D. S. Acker, W. R. Hertier, J. Am. Chem. Soc. 1962, 84, 3370). Weiterhin konnten ebenfalls Hertier und Mitarbeiter zeigen, dass diese Verbindungen über 1,4-Xylen und deren Analoge durch Seitenkettenbromierung, Substitution mittels Cyanid, Kondensation mit Kohlensäurediethylester, Überführung der Carbonsäuremethylestergruppierungen in Cyanidgruppen und anschließender Oxidation synthetisierbar sind (J. Org. Chem. 1963, 28, 2719).N, N'-dicyano-1,4-quinonediimines are prepared either by the action of N 5 N'-bistrimethylsilylcarbodiimide on 1,4-quinone compounds (A. Aumüller, S. Hünig, Liebigs Ann. Chem., 1986, 142 64,) or by oxidation of corresponding N, N'-dicyano-1,4-diamine compounds (GD Adreetti, S. Bradamante, PC Pizzarri, GA Pagani, Mol. Cryst. Liq. Cryst. 1985, 120, 309-14 ), wherein the N, N'-dicyano-l, 4-diamine compounds can be obtained by cyanation of phenylene-l, 4-diamine with cyanogen halides or by desulfurization of corresponding thiourea derivatives. Simple tetracyanoquinonedimethanes can be prepared via 1,4-cyclohexanedione by condensation in benzene with ammonium acetate buffer on a water separator and subsequent oxidation by bromine (DS Acker, WR Hertier, J. Am. Chem. Soc. 1962, 84, 3370). Furthermore, Hertier and co-workers have also shown that these compounds can be synthesized via 1,4-xylene and its analogues by side chain bromination, substitution by cyanide, condensation with diethyl carbonate, conversion of the carboxylic acid methyl ester groups into cyanide groups and subsequent oxidation (J. Org. Chem. 1963, 28, 2719).
Akzeptor-substituierte Tetracyanochinondimethane können aus dem Natriumsalz des t-Butyl- malonsäuredinitriPs und Akzeptor-substituierten 1,4-Dihalogenaromaten dargestellt werden (R. C. Wheland, E. L. Martin, J. Org. Chem., 1975, 40, 3101).Acceptor-substituted tetracyanoquinonedimethanes can be prepared from the sodium salt of t-butyl malononitrile and acceptor-substituted 1,4-dihaloaromatic (R.C. Wheland, E.L. Martin, J. Org. Chem., 1975, 40, 3101).
Es gelang außerdem aus 1,4-Dihalogenaromaten Pd-katalysiert mit Malodinitril-Anion und nachfolgender Oxidation Tetracyanochinondimethane darzustellen (S. Takahashi at. al. , Tetrahedron Letters, 1985, 26, 1553).It was also possible from 1,4-dihalogenated Pd-catalyzed malodinitrile anion and subsequent oxidation Tetracyanochinondimethane represent (S. Takahashi al., Tetrahedron Letters, 1985, 26, 1553).
Chinoide 1,4-Polyphenylene E. A. Shalom, J. Y. Becker, I, Agranat, Nouveau Journal de Chimie 1979, 3, 643-5.Chinoids 1,4-polyphenylenes E.A. Shalom, J.Y. Becker, I., Agranat, Nouveau Journal de Chimie 1979, 3, 643-5.
Heteroannelierte Chinone wurden über mehrstufige Syntheseweg dargestellt. (B. Skibo at al, J. Med. 1991, 34, 2954-61; H. Bock, P. Dickmann, H. F. Herrmann, Z. Naturforsch. 1991, 46b, 326-8, J. Druey, P. Schmidt, HeIv. Chim. Acta 1950, 140, 1080-7)Heteroannelated quinones were synthesized via a multistep synthetic route. Bib, P. Dickmann, HF Herrmann, Z. Naturforsch., 1991, 46b, 326-8, J. Druey, P. Schmidt, (B. HeIv. Chim. Acta 1950, 140, 1080-7)
Verbrückte chinoide Verbindungen werden dargestellt von M. Matsuoka, H. Oka, T. Kitao, Chemistry Letters, 1990, 2061-4; J. Dieckmann, W. R. Hertier, R. E. Benson, J. A. C. S. 1963, 28, 2719-24 ; K. Takahashi, S. Tarutani, J. C. S. Chem. Comm. 1994, 519-20; N.N. Woroschzov, W. A. Barchasch, Doklady Akad. SSSR 1966, 166/3, 598. Annelierte TCNQ-Verbindungen werden dargestellt von M. Matsuoka, H. Oka, T. Kitao, Chemistry Letters, 1990, 2061-4; B. S. Ong, B. Koeshkerian, , J. Org. Chem. 1984, 495002-3.Bridged quinoidal compounds are presented by M. Matsuoka, H. Oka, T. Kitao, Chemistry Letters, 1990, 2061-4; J. Dieckmann, WR Hertier, RE Benson, JACS 1963, 28, 2719-24; K. Takahashi, S. Tarutani, JCS Chem. Comm. 1994, 519-20; NN Voroshzov, WA Barchash, Dokady Akad. SSSR 1966, 166/3, 598. Annealed TCNQ compounds are presented by M. Matsuoka, H. Oka, T. Kitao, Chemistry Letters, 1990, 2061-4; BS Ong, B. Koeshkerian, J. Org. Chem. 1984, 495002-3.
Pyrazino-TCNQ- Verbindungen lassen sich über 5,8-Diiodochinoxa-line Palladium-katalysiert mit dem Natriumsalz des Malodinitrils darstellen. (T. Miyashi at al, J. Org. Chem. 1992, 57, 6749-55)Pyrazino-TCNQ compounds can be prepared via 5,8-diiodoquinoxa-line palladium-catalyzed with the sodium salt of malononitrile. (T. Miyashi et al, J. Org. Chem. 1992, 57, 6749-55)
Pyrazino-TCNQ-Verbindungen sowie weitere heteroannelierte Derivate lassen sich auf verschiedene Weise herstellen (Y. Yamashita at al Chemistry Letters, 1986, 715-8, F. Wudl at al, J. Org. Chem. 1977, 421666-7).Pyrazino-TCNQ compounds and other hetero-isolated derivatives can be prepared in various ways (Y. Yamashita et al. Chemistry Letters, 1986, 715-8, F. Wudl al., J. Org. Chem. 1977, 421666-7).
Annelierte DCNQI-Verbindungen lassen sich über die entsprechenden Chinone nach Hünig synthetisieren (J. Tsunetsugu at al, Chemistry Letters, 2002, 1004-5).Annealed DCNQI compounds can be synthesized via the corresponding quinones according to Hünig (Tsunetsugu, J., et al., Chemistry Letters, 2002, 1004-5).
Heteroannelierte DCNQI-Verbindungen lassen sich über die entsprechenden Chinone nach Hünig synthetisieren (T. Suzuki at al, J. Org. Chem. 2001, 66, 216-24; N. Martin at al, J. Org. Chem. 1996, 61, 3041-54; K. Kobayashy at al, Chemistry Letters, 1991, 1033-6; K. Kobayashy, K. Takahashi, J. Org. Chem. 2000, 65, 2577-9).Hetero-annealed DCNQI compounds can be synthesized via the corresponding quinones according to Hünig (T. Suzuki et al., J. Org. Chem. 2001, 66, 216-24; N. Martin at al, J. Org. Chem. 1996, 61, Kobayashy et al., Chemistry Letters, 1991, 1033-6; K. Kobayashy, K. Takahashi, J. Org. Chem. 2000, 65, 2577-9).
Heterocyclische Chinoide Derivate lassen sich herstellen nach N. F. Haley, J. C. S. Chem. Coirnn. 1979, 1031, F. Weydand, K. Henkel Chem. B. 1943, 76, 818; H. J. Knackmuss Angew. Chem. 1973, 85, 16; K.Fickentscher, Chem. B. 1969, 102, 2378-83, D. E. Burton at al J. Chem. Soc. (C) 1968, 1268-73.Heterocyclic quinoid derivatives can be prepared according to N.F. Haley, J.C.S. Chem. Coirnn. 1979, 1031, F. Weydand, K. Henkel Chem. B. 1943, 76, 818; H.J. Knackmuss Angew. Chem. 1973, 85, 16; K.Fickentscher, Chem. B. 1969, 102, 2378-83, D.E. Burton et al J. Chem. Soc. (C) 1968, 1268-73.
Chinoide Strukturen mit unterschiedlichen Resten X, Y wurden in verschiedenen Arbeitskreisen synthetisiert (T. Itoh, N. Tanaka, S. Iwatsuki, Macromolecules 1995, 28, 421- 4; J. A. Hyatt, J. Org. Chem. 1983, 48 129-31; M. R. Bryce et al, J. Org. Chem. 1992, 57, 1690-6; A. Schönberg, E. Singer, Chem. Ber. 1970, 103, 3871-4; S. Iwatsuki, T. Itoh, H. Itoh Chemistry Letters, 1988, 1187-90; T. Itoh, K. Fujikawa, M. Kubo, J. Org. Chem. 1996, 61, 8329-31; S. Iwatsuki, T. Itoh, T. Sato, T. Higuchi, Macromolecules, 1987, 20, 2651-4; T. Itoh et al Macromolecule2000, 33, 269-77; B. S. Ong, B. Koeshkerian, , J. Org. Chem. 1984, 495002-3; H. Junek, H. Hamböck, B. Hornischer, Mh.Chem.1967, 98, 315-23; P.W.Pastors et al Doldady Akad. SSSR 1972, 204, 874-5; A. R. Katritzky et al Heterocyclic Chem. 1989, 26, 1541-5; N. N. Vorozhtsov, V. A. Barkash, S. A. Anichkina, Doldady Akad. SSSR 1966, 166, 598).Chinoids Structures with different X, Y residues have been synthesized in various circles (T. Itoh, N. Tanaka, S. Iwatsuki, Macromolecules 1995, 28, 421-4; JA Hyatt, J. Org. Chem. 1983, 48 129-31 1992, 57, 1690-6; A. Schoenberg, E. Singer, Chem. Ber. 1970, 103, 3871-4, S. Iwatsuki, T. Itoh, H., J. Org. Chem. Itoh Chemistry Letters, 1988, 1187-90; T. Itoh, K. Fujikawa, M. Kubo, J. Org. Chem. 1996, 61, 8329-31; Iwatsuki, T. Itoh, T. Sato, T. Higuchi, Macromolecules, 1987, 20, 2651-4; T. Itoh et al. Macromolecule 2000, 33, 269-77; BS Ong, B. Koeshkerian, J. Org. Chem. 1984, 495002-3; H. Junek, H. Hamböck, B. Hornischer, Mh.Chem.1967, 98, 315-23; PW Pastors et al Doldady Akad. SSSR 1972, 204, 874-5; AR Katritzky et al Heterocyclic Chem. 1989, 26, 1541-5; NN Vorozhtsov, VA Barkash, SA Anichkina, Doldady Akad. SSSR 1966, 166, 598).
Tetraacetylchinonmethan- Verbindungen bzw. deren reduzierte Formen sind über 1,4- Benzochinon und Acetylaceton erhältlich (J. Jenik, Chemicky prumysl 1985 35/60 1547, R. J. Wikholm J. Org. Chem. 1985, 50, 382-4; E. Bernatek, S. Ramstad Acta Chem. Scand. 1953, 7, 1351-6).Tetraacetylquinone methane compounds or their reduced forms are available via 1,4-benzoquinone and acetylacetone (J. Jenik, Chemicky prumysl 1985 35/60 1547, RJ Wikholm J. Org. Chem., 1985, 50, 382-4, E. Bernatek , S. Ramstad Acta Chem. Scand. 1953, 7, 1351-6).
Ditrifluoracetamide lassen sich mittels Trifluoressigsäure über aromatische 1,4-Diamine herstellen (R. Adams, J. M. Stewart J. A. C. S. 1952,20, 3660-4). Durch Oxidation mit Pb(rV)-acetat kann das Diimin erhalten werden.Ditrifluoroacetamides can be prepared by means of trifluoroacetic acid via aromatic 1,4-diamines (R. Adams, J.M. Stewart J.A.C.S. 1952,20, 3660-4). By oxidation with Pb (rV) acetate, the diimine can be obtained.
Weitere Diimid- bzw. Amidstrukturen wurden hergestellt von B.C.McKusick at al J. A. C. S. 1958, 80, 2806-15.Other diimide or amide structures were prepared by B.C. McKusick et al., J.A.C.S., 1958, 80, 2806-15.
Matrixmaterialienmatrix materials
In der vorliegenden Erfindung werden geeignete Dotanden für organische halbleitende Materialien wie Lochtransportmaterialen HT beschrieben, die üblicherweise in OLEDs oder organischen Solarzellen verwendet werden. Die halbleitenden Materialien sind vorzugsweise intrinsisch lochleitend. Das Matrixmaterial kann teilweise (> 10 oder > 25 Gew.-%) oder im Wesentlichen (> 50 Gew.-% oder > 75 Gew.-%)) oder vollständig bestehen aus einem Metallphtalocyanin- Komplex, einem Porphyrin-Komplex, insbesondere Metallporphyrinkomplex, einer Oligothiophen-, Oligophenyl-, Oligophenylenvinylen oder Oligofluoren- Verbindung, wobei das Oligomere vorzugsweise 2-500 oder mehr, vorzugsweise 2-100 oder 2-50 oder 2-10 monomere Einheiten umfasst. Gegebenenfalls kann das Oligomer auch > 4, > 6 oder > 10 oder mehr monomere Einheiten umfassen, insbesondere auch für die oben angegebenen Bereiche, also beispielsweise 4 oder 6-10 monomere Einheiten, 6 oder 10-100 monomere Einheiten oder 10-500 monomere Einheiten. Die Monomere bzw. Oligomere können substituiert oder unsubstituiert sein, wobei auch Block- oder Mischpolymerisate aus den genannten Oligomeren vorliegen können, einer Verbindung mit einer Triarylamin-Einheit oder eine Spiro-Bifluoren- Verbindung. Die genannten Matrixmaterialien können auch in Kombination miteinander vorliegen, gegebenenfalls auch in Kombination mit anderen Matrixmaterialien. Die Matrixmaterialien können elektronenschiebende Substituenten wie Alkyl- oder Alkoxy-Reste aufweisen, die eine verminderte Ionisierungsenergie aufweisen oder die Ionisierungsenergie des Matrixmaterials vermindern.In the present invention, suitable dopants are described for organic semiconductive materials, such as hole transport materials HT, which are commonly used in OLEDs or organic solar cells. The semiconductive materials are preferably intrinsically hole-conducting. The matrix material may be partially (> 10 or> 25 wt%) or substantially (> 50 wt% or> 75 wt%) or entirely composed of a metal phthalocyanine complex, a porphyrin complex, especially a metal porphyrin complex , an oligothiophene, oligophenyl, oligophenylenevinylene or oligofluorene compound, wherein the oligomer preferably comprises 2-500 or more, preferably 2-100 or 2-50 or 2-10 monomeric units. Optionally, the oligomer may also comprise>4,> 6 or> 10 or more monomeric units, in particular also for the ranges indicated above, ie for example 4 or 6-10 monomeric units, 6 or 10-100 monomeric units or 10-500 monomeric units , The monomers or oligomers may be substituted or unsubstituted, wherein block or copolymers may be present from said oligomers, a compound having a triarylamine unit or a spiro-bifluorene compound. The matrix materials mentioned can also be present in combination with one another, if appropriate also in combination with other matrix materials. The matrix materials may have electron donating substituents such as alkyl or alkoxy moieties which have reduced ionization energy or reduce the ionization energy of the matrix material.
Die als Matrixmaterial eingesetzten Metallphtalocyaninkomplexe oder Porphyrinkomplexe können ein Hauptgruppenmetallatom oder Nebengruppenmetallatom aufweisen. Das Metallatom Me kann jeweils 4-, 5- oder 6-fach koordiniert sein, beispielsweise in Form von Oxo- (Me=O), Dioxo- (O=Me=O), Imin-, Diimin-, Hydroxo-, Dihydroxo-, Amino- oder Diaminokomplexen, ohne hierauf beschränkt zu sein. Der Phtalocyaninkomplex oder Porphyrinkomplex kann jeweils teilweise hydriert sein, wobei jedoch vorzugsweise das mesomere Ringsystem nicht gestört wird. Die Phtalocyaninkomplexe können als Zentralatom beispielsweise Magnesium, Zink, Eisen, Nickel, Kobalt, Magnesium, Kupfer oder Vanadyl (= VO) enthalten. Die gleichen oder andere Metallatome bzw. Oxometallatome können im Falle von Porphyrinkomplexen vorliegen.The metal phthalocyanine complexes or porphyrin complexes used as the matrix material may have a main group metal atom or a subgroup metal atom. The metal atom Me may in each case be coordinated 4-, 5- or 6-fold, for example in the form of oxo (Me = O), dioxo (O = Me = O), imine, diimine, hydroxo, dihydroxy. , Amino or diamino complexes, without being limited thereto. The phthalocyanine complex or porphyrin complex may each be partially hydrogenated, but preferably the mesomeric ring system is not disturbed. The phthalocyanine complexes may contain, for example, magnesium, zinc, iron, nickel, cobalt, magnesium, copper or vanadyl (= VO) as the central atom. The same or different metal atoms or oxometal atoms may be present in the case of porphyrin complexes.
Insbesondere können solche dotierbaren Lochtransportmaterialen HT arylierte Benzidine, beispielsweise N,N'-perarylierte Benzidine oder andere Diamine wie des Typs TPD (wobei eine, mehrere oder sämtliche der Arylgruppen aromatische Heteroatome aufweisen können), geeignete arylierte Starburst- Verbindungen wie N,N',N"-perarylierte Starburstverbindungen, wie die Verbindung TDATA (wobei eine, mehrere oder sämtliche der Arylgruppen aromatische Heteroatome aufweisen können), sein. Die Arylreste können insbesondere für jede der oben genannten Verbindungen Phenyl, Naphtyl, Pyridin, Chinolin, Isochinolin, Peridazin, Pyrimidin, Pyrazin, Pyrazol, Imidazol, Oxazol, Furan, Pyrrol, hidol oder dergleichen umfassen. Die Phenylgruppen der jeweiligen Verbindungen können durch Thiophengruppen teilweise oder vollständig ersetzt sein.In particular, such dopable hole transport materials can be HT arylated benzidines, for example N, N'-perarylated benzidines or other diamines such as TPD (where one, more or all of the aryl groups may have aromatic heteroatoms), suitable arylated starburst compounds such as N, N ', N "-perarylated starburst compounds such as the compound TDATA (wherein one, more or all of the aryl groups may have aromatic heteroatoms) The aryl radicals may in particular comprise phenyl, naphthyl, pyridine, quinoline, isoquinoline, peridazine, pyrimidine, pyrazine, pyrazole, imidazole, oxazole, furan, pyrrole, hidol or the like, for each of the abovementioned compounds The phenyl groups of the respective compounds may be represented by thiophene groups partially or completely replaced.
Figure imgf000012_0001
Figure imgf000012_0001
TPD TDATA ZnPcTPD TDATA ZnPc
Vorzugsweise besteht das verwendete Matrixmaterial vollständig aus einem Metallphtalocyanin-Komplex, einem Porphyrin-Komplex, einer Verbindung mit einer Triarylamin-Einheit oder einer Spiro-Bifluoren-Verbindung.Preferably, the matrix material used consists entirely of a metal phthalocyanine complex, a porphyrin complex, a compound having a triarylamine unit or a spiro-bifluorene compound.
Es versteht sich, dass auch geeignete andere organische Matrixmaterialien, insbesondere lochleitende Materialien verwendet werden können, die halbleitende Eigenschaften aufweisen.It is understood that suitable other organic matrix materials, in particular hole-conducting materials can be used which have semiconducting properties.
Dotierung Die Dotierung kann insbesondere derart erfolgen, dass das molare Verhältnis von Matrixmolekül zu Dotand oder im Falle von oligomeren Matrixmaterialien das Verhältnis von Matrixmonome-renanzahl zu Dotand 1:100000, vorzugsweise 1:1 bis 1:10000, besonders bevorzugt 1:5 bis 1:1000 beispielsweise 1:10 bis 1:100, beispielsweise ca. 1:50 bis 1:100 oder auch 1:25 bis 1:50 beträgt.endowment The doping may in particular be such that the molar ratio of matrix molecule to dopant or, in the case of oligomeric matrix materials, the ratio of matrix monomer number to dopant 1: 100000, preferably 1: 1 to 1: 10000, particularly preferably 1: 5 to 1: 1000, for example 1:10 to 1: 100, for example, about 1:50 to 1: 100 or even 1:25 to 1:50.
Verdampfung der DotandenEvaporation of the dopants
Die Dotierung des jeweiligen Matrixmaterials (hier vorzugsweise angegeben als löcherleitendes Matrixmaterial HT) mit den erfindungsgemäß zu verwendenden Dotanden kann durch eines oder eine Kombination der folgenden Verfahren hergestellt wird:The doping of the respective matrix material (here preferably indicated as hole-conducting matrix material HT) with the dopants to be used according to the invention can be produced by one or a combination of the following processes:
a) Mischverdampfung im Vakuum mit einer Quelle für HT und einer für den Dotand.a) Mixed evaporation in vacuo with a source of HT and one for the dopant.
b) Sequentielles Deponieren von HT und Dotand mit anschliessender Eindiffusion des Dotanden durch thermische Behandlungb) Sequential deposition of HT and dopant with subsequent diffusion of the dopant by thermal treatment
c) Dotierung einer HT-Schicht durch eine Lösung von Dotanden mit anschliessendem Verdampfen des Lösungsmittels durch thermische Behandlungc) doping of an HT layer by a solution of dopants with subsequent evaporation of the solvent by thermal treatment
d) Oberflächendotierung einer HT-Schicht durch eine oberflächlich aufgebrachte Schicht von Dotandend) Surface doping of an HT layer by a superficially applied layer of dopants
Die Dotierung kann derart erfolgen, dass der Dotand aus einer Precursor- Verbindung heraus verdampft wird, die beim Erhitzen und/oder Bestrahlung den Dotanden freisetzt. Die Bestrahlung kann mittels elektromagnetischer Strahlung, insbesondere sichtbarem Licht, UV- Licht oder IR-Licht erfolgen, beispielsweise jeweils Laserlicht, oder auch durch andere Strahlungsarten. Durch die Bestrahlung kann im wesentlichen die zur Verdampfung notwendige Wärme bereitgestellt werden, es kann auch gezielt in bestimmte Banden der zu verdampfenden Verbindungen bzw. Precursor oder Verbindungskomplexe wie Charge- Transfer-Komplexe eingestrahlt werden, um beispielsweise durch Überführung in angeregte Zustände die Verdampfung der Verbindungen durch Dissoziation der Komplexe zu erleichtern. Es versteht sich, dass die nachfolgend beschriebenen Verdampfungsbedingungen sich auf solche ohne Bestrahlung richten und für Vergleichszwecke einheitliche Verdampfungsbedingungen heranzuziehen sind.The doping can be carried out in such a way that the dopant is evaporated out of a precursor compound which releases the dopant on heating and / or irradiation. The Irradiation can be carried out by means of electromagnetic radiation, in particular visible light, UV light or IR light, for example, in each case laser light, or else by other types of radiation. The irradiation can essentially provide the heat necessary for the evaporation, it can also be irradiated deliberately into specific bands of the compounds to be vaporized or precursors or compound complexes such as charge-transfer complexes in order, for example, to convert the compounds into excited states to facilitate by dissociation of the complexes. It is understood that the evaporation conditions described below are directed to those without irradiation and for comparison purposes uniform evaporation conditions are used.
Als Precursorverbindungen könne beispielsweise zum Einsatz kommen: a) Gemische oder stöchiometrische oder mischkristalline Verbindungen aus dem Dotand und einer inerten, nicht-flüchtigen Substanz, z.B. einem Polymer, Molsieb, Aluminiumoxid, Kieselgel, Oligomeren oder einer anderen organischen oder anorganischen Substanz mit hoher Verdampfungstemperatur, wobei der Dotand vorwiegend durch van-der-Waals Kräfte und/oder Wasserstoffbrückenbindung an dieser Substanz gebunden ist.Precursor compounds which can be used are, for example: a) mixtures or stoichiometric or mixed-crystalline compounds of the dopant and an inert, non-volatile substance, e.g. a polymer, molecular sieve, alumina, silica gel, oligomers or any other organic or inorganic substance having a high vaporization temperature, wherein the dopant is bound to this substance predominantly by van der Waals forces and / or hydrogen bonding.
b) Gemisch oder stöchiometrische oder mischkristalline Verbindung aus dem Dotand und einer mehr oder weniger Elelctronendonor-artigen, nicht flüchtigen Verbindung V, wobei ein mehr oder weniger vollständiger Ladungstransfer zwischen dem Dotanden und der Verbindung V auftritt, wie in Charge-Transfer-Komplexen mit mehr oder weniger elektronenreichen Polyaromaten oder Heteroaromaten oder einer anderen organischen oder anorganischen Substanz mit hoher Verdampfungstemperatur.b) Mixture or stoichiometric or mixed crystalline compound of the dopant and a more or less Elelctronendonor-like, non-volatile compound V, wherein a more or less complete charge transfer between the dopant and the compound V occurs, as in charge-transfer complexes with more or less electron-rich polyaromatic or heteroaromatic or other organic or inorganic high-vapor-phase substance.
c) Gemisch oder stöchiometrische oder mischkristalline Verbindung aus dem Dotand und einer Substanz, welche zusammen mit dem Dotand verdampft und eine gleiche oder höhere Ionisierungsenergie aufweist wie die zu dotierende Substanz HT, so dass die Substanz in dem organischen Matrixmaterial keine Haftstelle für Löcher bildet. Hierbei kann die Substanz erfindungsgemäß auch mit dem Matrixmaterial identisch sein, beispielsweise ein Metallphtalocyanin oder Benzidin-Derivat darstellen. Weitere geeignete flüchtige Co- Substanzen, wie Hydrochinone, 1,4-Phenylendiamine oder l-Amino-4-hydroxybenze oder sonstige Verbindungen bilden Chinhydrone oder andere Charge-Transfer-Komplexe.c) mixture or stoichiometric or mixed crystalline compound of the dopant and a substance which evaporates together with the dopant and has an ionization energy equal to or higher than the substance to be doped HT, so that the substance in the organic matrix material does not form a trap for holes. This may be the substance According to the invention also be identical to the matrix material, for example, represent a metal phthalocyanine or benzidine derivative. Other suitable volatile co-substances, such as hydroquinones, 1,4-phenylenediamines or 1-amino-4-hydroxybenze or other compounds form quinhydrones or other charge-transfer complexes.
Elektronisches BauelementElectronic component
Unter Verwendung der erfindungsgemäßen organischen Verbindungen zur Herstellung dotierter organischer halbleitender Materialien, die insbesondere in Form von Schichten oder elektrischen Leitungspfaden angeordnet sein können, können eine Vielzahl elektronischer Bauelemente oder diese enthaltende Einrichtungen hergestellt werden. Insbesondere können die erfindungsgemäßen Dotanden zur Herstellung von organischen lichtemitierenden Dioden (OLED), organischen Solarzellen, organischen Dioden, insbesondere solchen mit hohem Gleichrichtungsverhältnis wie 103-107,vorzugsweise 104-107 oder 105-107 oder organischen Feldeffekttransistoren verwendet werden. Durch die erfindungsgemäßen Dotanden kann die Leitfälligkeit der dotierten Schichten und/oder die Verbesserung der Ladungsträgerinjektion von Kontakten in die dotierte Schicht verbessert werden. Insbesondere bei OLEDs kann das Bauelement eine pin-Struktur oder eine inverse Struktur aufweisen, ohne hierauf beschränkt zu sein. Die Verwendung der erfindungsgemäßen Dotanden ist jedoch auf die oben genannten vorteilhaften Ausführungsbeispiele nicht beschränkt.Using the organic compounds according to the invention for producing doped organic semiconducting materials, which may be arranged in particular in the form of layers or electrical conduction paths, a multiplicity of electronic components or devices containing them can be produced. In particular, the dopants according to the invention can be used for the production of organic light-emitting diodes (OLED), organic solar cells, organic diodes, in particular those with a high rectification ratio such as 10 3 -10 7 , preferably 10 4 -10 7 or 10 5 -10 7 or organic field effect transistors , The dopants according to the invention make it possible to improve the conductivity of the doped layers and / or to improve the charge carrier injection of contacts into the doped layer. Particularly in the case of OLEDs, the component may have a pin structure or an inverse structure, without being limited thereto. However, the use of the dopants according to the invention is not limited to the above-mentioned advantageous embodiments.
Die in der vorstehenden Beschreibung sowie in den Ansprüchen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausführungsformen wesentlich sein. The features of the invention disclosed in the foregoing description and in the claims may be essential both individually and in any combination for the realization of the invention in its various embodiments.

Claims

Ansprüche claims
1. Dotand zur Dotierung eines organischen halbleitenden Matrixmaterials, dadurch gekennzeichnet, daß der Dotand ausgewählt ist aus der Gruppe von organischen, chinoiden, mesomeren Verbindungen, die eines der folgenden Grundgerüste aufweisen:1. dopant for doping an organic semiconductive matrix material, characterized in that the dopant is selected from the group of organic, quinoid, mesomeric compounds having one of the following basic skeletons:
Figure imgf000016_0001
Figure imgf000016_0001
40 41 42 4340 41 42 43
Figure imgf000016_0002
Figure imgf000016_0002
Figure imgf000016_0003
Figure imgf000016_0003
47 48 wobei in Grundgerüst (40) R]-R4 unabhängig Cl, CN, Aryl oder Heteroaryl ist, wobei Aryl und Heteroaryl einen oder mehrere Substituenten ausgewählt aus CN, NO2, Perfluoralkyl, SO3R und/oder Halogen aufweisen, wobei A und B ausgewählt sind aus47 48 wherein in backbone (40) R] -R 4 is independently Cl, CN, aryl or heteroaryl, wherein aryl and heteroaryl have one or more substituents selected from CN, NO 2 , perfluoroalkyl, SO 3 R and / or halogen, wherein A and B are selected off
NN
I lI l
NC^CN NC^CF3 NNC ^ CN NC ^ CF 3 N
S1 S14 S11S1 S14 S11
wobei in Struktur (41) Rt - R8 unabhängig Cl, F, CN, NO2, Perfluoralkyl, Aryl oder Heteroaryl ist, wobei Aryl und Heteroaryl einen oder1 mehrere Substituenten ausgewählt aus CN, NO2, NO, Perfluoralkyl, SO3R und/oder Halogen aufweisen;wherein in structure t (41) R - R 8 is independently Cl, F, CN, NO2, perfluoroalkyl, aryl or heteroaryl, wherein aryl and heteroaryl one or 1 more substituents selected from CN, NO 2, NO, perfluoroalkyl, SO 3 R and / or halogen have;
wobei in Struktur (42) R1-R6 unabhängig Cl, F, CN, NO2, NO, Perfluoralkyl, Aryl oder Heteroaryl ist, wobei Aryl und Heteroaryl einen oder mehrere Substituenten ausgewählt aus CN, NO2, Perfluoralkyl, SO3R und/oder Halogen aufweisen, wobei A und B ausgewählt sind aus der Gruppe bestehend auswherein in structure (42) R 1 -R 6 is independently Cl, F, CN, NO 2 , NO, perfluoroalkyl, aryl or heteroaryl, wherein aryl and heteroaryl have one or more substituents selected from CN, NO 2 , perfluoroalkyl, SO 3 R and / or halogen, wherein A and B are selected from the group consisting of
NN
I lI l
NC^CN NC^CF3 NNC ^ CN NC ^ CF 3 N
S1 S14 S11S1 S14 S11
wobei in Struktur (43) R, -R8 unabhängig Cl, F, Perfluoralkyl, CN, NO2, NO, Aryl oder Heteroaryl ist, wobei Aryl und Heteroaryl einen oder mehrere Substituenten ausgewählt aus CN, NO2, Perfluoralkyl, SO3R und/oder Halogen aufweisen, wobei A und B ausgewählt sind aus der Gruppe bestehend aus Nwherein in structure (43) R, -R 8 is independently Cl, F, perfluoroalkyl, CN, NO 2 , NO, aryl or heteroaryl, wherein aryl and heteroaryl have one or more substituents selected from CN, NO 2 , perfluoroalkyl, SO 3 R and / or halogen, wherein A and B are selected from the group consisting of N
NCΓ CN NC XF3 NNCΓ CN NC XF 3 N
S1 S14 S11S1 S14 S11
wobei in Struktur (44) Ri-R6 unabhängig Cl, F, CN, NO2, NO, Perfluoralkyl, Aryl oder Heteroaryl ist, wobei Aryl und Heteroaryl einen oder mehrere Substituenten ausgewählt aus CN, NO2, Perfluoralkyl, SO3R und/oder Halogen aufweisen;wherein in structure (44) R 1 -R 6 is independently Cl, F, CN, NO 2 , NO, perfluoroalkyl, aryl or heteroaryl, wherein aryl and heteroaryl have one or more substituents selected from CN, NO 2 , perfluoroalkyl, SO 3 R and or halogen;
wobei in Struktur (45) Ri-R4 unabhängig Cl, F, NO2, NO, Perfluoralkyl, Aryl oder Heteroaryl ist, wobei Aryl und Heteroaryl einen oder mehrere Substituenten ausgewählt aus CN, NO2, Perfluoralkyl, SO3R und/oder Halogen aufweisen;wherein in structure (45) R 1 -R 4 is independently Cl, F, NO 2 , NO, perfluoroalkyl, aryl or heteroaryl, wherein aryl and heteroaryl have one or more substituents selected from CN, NO 2 , perfluoroalkyl, SO 3 R and / or Have halogen;
wobei in Struktur (46) R1-R6 unabhängig Cl, F, CN, NO2, NO, Perfluoralkyl, Aryl oder Heteroaryl ist, wobei Aryl und Heteroaryl einen oder mehrere Substituenten ausgewählt aus CN, NO2, Perfluoralkyl, SO3R und/oder Halogen aufweisen;wherein in structure (46) R 1 -R 6 is independently Cl, F, CN, NO 2 , NO, perfluoroalkyl, aryl or heteroaryl, wherein aryl and heteroaryl have one or more substituents selected from CN, NO 2 , perfluoroalkyl, SO 3 R and / or halogen;
wobei in Struktur (47) R]-Ri2 unabhängig Cl, F, CN, NO2, NO, Perfluoralkyl, Aryl oder Heteroaryl ist, wobei Aryl un4 Heteroaryl einen oder mehrere Substituenten ausgewählt aus CN, NO2, Perfluoralkyl, SO3R und/oder Halogen aufweisen; oder wobei Ri, R3, R9 und R]2 Wasserstoff sind und R2, R4 — R8, Rio und Rn unabhängig Cl, F, CN, NO2, NO, Perfluoralkyl, Aryl oder Heteroaryl ist, wobei Aryl und Heteroaryl einen oder mehrere Substituenten ausgewählt aus CN, NO2, Perfluoralkyl, SO3R und/oder Halogen aufweisen;wherein in structure (47) R] -Ri 2 is independently Cl, F, CN, NO 2 , NO, perfluoroalkyl, aryl or heteroaryl, wherein aryl and heteroaryl one or more substituents selected from CN, NO 2 , perfluoroalkyl, SO 3 R and / or halogen; or wherein Ri, R 3 , R 9 and R] 2 are hydrogen and R 2 , R 4 - R 8 , R 1 and R n are independently Cl, F, CN, NO 2 , NO, perfluoroalkyl, aryl or heteroaryl, wherein aryl and Heteroaryl one or more substituents selected from CN, NO 2 , perfluoroalkyl, SO 3 R and / or halogen;
wobei in Struktur (48) Ri-Ri2 unabhängig Cl, F5 CN, NO2, NO, Perfluoralkyl, Aryl oder Heteroaryl ist, wobei Aryl und Heteroaryl einen oder mehrere Substituenten ausgewählt aus CN, NO2, Perfluoralkyl, SO3R und/oder Halogen aufweisen, wobei der Dotand unter gleichen Verdampfungsbedingungen eine geringere Flüchtigkeit als Tetrafluorotetracyanochinondimefhan (F4TCNQ) aufweist.wherein in structure (48) Ri-Ri 2 is independently Cl, F 5 CN, NO 2 , NO, perfluoroalkyl, aryl or heteroaryl, wherein aryl and heteroaryl have one or more substituents selected from CN, NO 2 , perfluoroalkyl, SO 3 R and / or have halogen, wherein the dopant under the same evaporation conditions has a lower volatility than tetrafluorotetracyanoquinone dimefan (F 4 TCNQ).
2. Dotand nach Anspruch 1, dadurch gekennzeichnet, daß die Substituenten A, B, C und D in Strukturen (41) und (43) bis (48) gleich oder verschieden sind und ausgewählt sind aus der Gruppe bestehend aus:2. Dotand according to claim 1, characterized in that the substituents A, B, C and D in structures (41) and (43) to (48) are the same or different and are selected from the group consisting of:
NN
NC CN NC^CF3 N ONC CN NC ^ CF 3 NO
S1 S14 S11 S12S1 S14 S11 S12
3. Dotand nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß Perfluoralkyl CF3 und Halogen Fluor oder Chlor ist.3. Dotand according to claim 1 or 2, characterized in that perfluoroalkyl CF 3 and halogen is fluorine or chlorine.
4. Dotand nach einem der vorangehenden Ansprüche, dadurchgekennzeichnet, daß der Dotand ein chinoides System mit einem chinoiden Ring und einem, zwei oder drei anellierten aromatischen Ringen darstellt.4. Dotand according to one of the preceding claims, characterized in that the dopant represents a quinoid system with a quinoid ring and one, two or three fused aromatic rings.
5. Dotand nach Anspruch 4, dadurch gekennzeichnet, daß die aromatischen Ringe ein oder mehrere Heteroatom(e) aufweisen.5. Dotand according to claim 4, characterized in that the aromatic rings have one or more heteroatom (s).
6. Verwendung eines Dotanden nach einem der Ansprüche 1 bis 5 zur Dotierung eines organischen halbleitenden Matrixmaterials zur Veränderung der elektrischen Eigenschaften desselben. 6. Use of a dopant according to any one of claims 1 to 5 for the doping of an organic semiconductive matrix material for changing the electrical properties thereof.
7: Verwendung nach Anspruch 6, dadurch gekennzeichnet, daß das Matrixmaterial lochleitend ist.7: Use according to claim 6, characterized in that the matrix material is hole-conducting.
8. Verwendung nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß das Matrixmaterial teilweise oder vollständig besteht aus einem Metallphthalocyanin- Komplex, einem Poiphyrin-Komplex, einer Oligothiophenverbindung, Oligophenylverbindung, Oligophenylenlvinylenverbindung, Oligofluoren- Verbindung, einer Pentazenverbindung, eine Verbindung mit einer Triarylamin- Einheit und/oder einer Spiro-Bifluoren-Verbindung.8. Use according to claim 6 or 7, characterized in that the matrix material consists partially or completely of a metal phthalocyanine complex, a Poiphyrin complex, an oligothiophene compound, Oligophenylverbindung, Oligophenylenlvinylenverbindung, Oligofluoren- connection, a Pentazenverbindung, a compound with a triarylamine Unit and / or a spiro-bifluorene compound.
9. Verwendung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß das molare Dotierungsverhältnis von Dotand zu Matrixmolekül bzw. monomeren Einheit eines polymeren Matrixmoleküls zwischen 1:1 und 1:10.000 beträgt.9. Use according to one of claims 6 to 8, characterized in that the molar doping ratio of dopant to matrix molecule or monomeric unit of a polymeric matrix molecule between 1: 1 and 1: 10,000.
10. Organisches halbleitendes Material enthaltend ein organisches Matrixmolekül und einen organischen Dotanden nach einem der Ansprüche 1 bis 5.10. An organic semiconductive material containing an organic matrix molecule and an organic dopant according to any one of claims 1 to 5.
11. Organisches halbleitendes Material nach Anspruch 10, dadurch gekennzeichnet, daß das molare Dotierungsverhältnis von Dotand zu Matrixmolekül bzw. monomeren Einheit eines polymeren Matrixmoleküls zwischen 1:1 und 1 : 10.000 beträgt.11. Organic semiconductive material according to claim 10, characterized in that the molar doping ratio of dopant to matrix molecule or monomeric unit of a polymeric matrix molecule between 1: 1 and 1: 10,000.
12. Elektronisches Bauelement mit einem organischen halbleitenden Material, welches mit einem organischen Dotanden zur Veränderung der elektronischen Eigenschaft des halbleitenden Matrixmaterials nach einem der Ansprüche' 1 bis 5 dotiert ist.12. Electronic component with an organic semiconducting material, which is doped with an organic dopant for changing the electronic property of the semiconducting matrix material according to one of claims' 1 to 5.
13. Elektronisches Bauelement nach! Anspruch 12 in Form einer organischen i lichtemitierenden Diode (OLED), einer photovo Itaischen Zelle, einer . organischen13. Electronic component after! Claim 12 in the form of an organic light-emitting diode (OLED), a photovoltaic cell, a. organic
Solarzelle, einer organischen Diode oder eines organischen Feldeffektransistors. Solar cell, an organic diode or an organic field effect transistor.
PCT/DE2005/000189 2005-02-04 2005-02-04 Dopants for organic semiconductors WO2006081780A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007553446A JP2008530773A (en) 2005-02-04 2005-02-04 Additives to organic semiconductors
PCT/DE2005/000189 WO2006081780A1 (en) 2005-02-04 2005-02-04 Dopants for organic semiconductors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2005/000189 WO2006081780A1 (en) 2005-02-04 2005-02-04 Dopants for organic semiconductors

Publications (1)

Publication Number Publication Date
WO2006081780A1 true WO2006081780A1 (en) 2006-08-10

Family

ID=34982282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/000189 WO2006081780A1 (en) 2005-02-04 2005-02-04 Dopants for organic semiconductors

Country Status (2)

Country Link
JP (1) JP2008530773A (en)
WO (1) WO2006081780A1 (en)

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1912268A1 (en) * 2006-10-09 2008-04-16 Novaled AG Method for spatial structuring the emission density of an OLED, semiconductor device obtained by the method and its use
JP2008244430A (en) * 2007-01-11 2008-10-09 Toppoly Optoelectronics Corp Image display system
CN102074657A (en) * 2009-10-12 2011-05-25 三星移动显示器株式会社 Organic light-emitting diode
CN102097594A (en) * 2009-10-12 2011-06-15 三星移动显示器株式会社 Organic light-emitting device
DE102010056519A1 (en) 2010-12-27 2012-06-28 Heliatek Gmbh Optoelectronic component with doped layers
DE102012205945A1 (en) 2012-04-12 2013-10-17 Siemens Aktiengesellschaft Organic super donors with at least two coupled carbene groups and their use as n-dopants
WO2015082046A2 (en) 2013-12-06 2015-06-11 Merck Patent Gmbh Substituted oxepines
EP3056504A1 (en) 2015-02-16 2016-08-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3061763A1 (en) 2015-02-27 2016-08-31 Universal Display Corporation Organic electroluminescent materials and devices
EP3098229A1 (en) 2015-05-15 2016-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3101021A1 (en) 2015-06-01 2016-12-07 Universal Display Corporation Organic electroluminescent materials and devices
EP3124488A1 (en) 2015-07-29 2017-02-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3159350A1 (en) 2015-09-03 2017-04-26 Universal Display Corporation Organic electroluminescent materials and devices
EP3205658A1 (en) 2016-02-09 2017-08-16 Universal Display Corporation Organic electroluminescent materials and devices
EP3231809A2 (en) 2016-04-11 2017-10-18 Universal Display Corporation Organic electroluminescent materials and devices
EP3261146A2 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3261147A1 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3270435A2 (en) 2016-06-20 2018-01-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3297051A1 (en) 2016-09-14 2018-03-21 Universal Display Corporation Organic electroluminescent materials and devices
EP3301088A1 (en) 2016-10-03 2018-04-04 Universal Display Corporation Condensed pyridines as organic electroluminescent materials and devices
EP3305796A1 (en) 2016-10-07 2018-04-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3321258A1 (en) 2016-11-09 2018-05-16 Universal Display Corporation 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds
EP3323822A1 (en) 2016-09-23 2018-05-23 Universal Display Corporation Organic electroluminescent materials and devices
EP3345984A1 (en) 2013-12-06 2018-07-11 Merck Patent GmbH Connections and organic electronic devices
EP3345914A1 (en) 2017-01-09 2018-07-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3354654A2 (en) 2016-11-11 2018-08-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3381927A1 (en) 2017-03-29 2018-10-03 Universal Display Corporation Organic electroluminescent materials and devices
WO2018189134A1 (en) 2017-04-13 2018-10-18 Merck Patent Gmbh Composition for organic electronic devices
EP3401318A1 (en) 2017-05-11 2018-11-14 Universal Display Corporation Organic electroluminescent materials and devices
EP3418286A1 (en) 2017-06-23 2018-12-26 Universal Display Corporation Organic electroluminescent materials and devices
WO2019002198A1 (en) 2017-06-26 2019-01-03 Merck Patent Gmbh Homogeneous mixtures
WO2019007866A1 (en) 2017-07-05 2019-01-10 Merck Patent Gmbh Composition for organic electronic devices
WO2019007867A1 (en) 2017-07-05 2019-01-10 Merck Patent Gmbh Composition for organic electronic devices
EP3444258A2 (en) 2017-08-10 2019-02-20 Universal Display Corporation Organic electroluminescent materials and devices
WO2019096717A2 (en) 2017-11-14 2019-05-23 Merck Patent Gmbh Composition for organic electronic devices
EP3489243A1 (en) 2017-11-28 2019-05-29 University of Southern California Carbene compounds and organic electroluminescent devices
EP3492528A1 (en) 2017-11-30 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
WO2019229011A1 (en) 2018-05-30 2019-12-05 Merck Patent Gmbh Composition for organic electronic devices
EP3613751A1 (en) 2018-08-22 2020-02-26 Universal Display Corporation Organic electroluminescent materials and devices
EP3690973A1 (en) 2019-01-30 2020-08-05 University Of Southern California Organic electroluminescent materials and devices
EP3689889A1 (en) 2019-02-01 2020-08-05 Universal Display Corporation Organic electroluminescent materials and devices
WO2020178230A1 (en) 2019-03-04 2020-09-10 Merck Patent Gmbh Ligands for nano-sized materials
EP3715353A1 (en) 2019-03-26 2020-09-30 Universal Display Corporation Organic electroluminescent materials and devices
US10822363B2 (en) 2016-10-12 2020-11-03 Arizona Board Of Regents On Behalf Of Arizona State University Narrow band red phosphorescent tetradentate platinum (II) complexes
EP3750897A1 (en) 2019-06-10 2020-12-16 Universal Display Corporation Organic electroluminescent materials and devices
US10886478B2 (en) 2014-07-24 2021-01-05 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues
EP3771717A1 (en) 2019-07-30 2021-02-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3778614A1 (en) 2019-08-16 2021-02-17 Universal Display Corporation Organic electroluminescent materials and devices
US10944064B2 (en) 2014-11-10 2021-03-09 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
EP3816175A1 (en) 2019-11-04 2021-05-05 Universal Display Corporation Organic electroluminescent materials and devices
US11011712B2 (en) 2014-06-02 2021-05-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
EP3845545A1 (en) 2020-01-06 2021-07-07 Universal Display Corporation Organic electroluminescent materials and devices
US11063228B2 (en) 2017-05-19 2021-07-13 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters employing benzo-imidazo-phenanthridine and analogues
EP3858945A1 (en) 2020-01-28 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
US11101435B2 (en) 2017-05-19 2021-08-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complexes based on biscarbazole and analogues
US11114626B2 (en) 2012-09-24 2021-09-07 Arizona Board Of Regents On Behalf Of Arizona State University Metal compounds, methods, and uses thereof
US11183670B2 (en) 2016-12-16 2021-11-23 Arizona Board Of Regents On Behalf Of Arizona State University Organic light emitting diode with split emissive layer
US11189808B2 (en) 2013-10-14 2021-11-30 Arizona Board Of Regents On Behalf Of Arizona State University Platinum complexes and devices
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP3978583A1 (en) 2020-10-02 2022-04-06 Universal Display Corporation Organic electroluminescent materials and devices
US11329244B2 (en) 2014-08-22 2022-05-10 Arizona Board Of Regents On Behalf Of Arizona State University Organic light-emitting diodes with fluorescent and phosphorescent emitters
US11335865B2 (en) 2016-04-15 2022-05-17 Arizona Board Of Regents On Behalf Of Arizona State University OLED with multi-emissive material layer
EP4001287A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4001286A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4016659A1 (en) 2020-11-16 2022-06-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4019526A1 (en) 2018-01-26 2022-06-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4039692A1 (en) 2021-02-03 2022-08-10 Universal Display Corporation Organic electroluminescent materials and devices
EP4053137A1 (en) 2021-03-05 2022-09-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4056578A1 (en) 2021-03-12 2022-09-14 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4059941A1 (en) 2021-03-15 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
DE102021108497A1 (en) 2021-04-06 2022-10-06 Heliatek Gmbh Dopants for electronic components, their use in electronic components, and electronic components with such dopants
US11472827B2 (en) 2015-06-03 2022-10-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
EP4074723A1 (en) 2021-04-05 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4075530A1 (en) 2021-04-14 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4079743A1 (en) 2021-04-23 2022-10-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4086266A1 (en) 2021-04-23 2022-11-09 Universal Display Corporation Organic electroluminescent materials and devices
EP4112701A2 (en) 2021-06-08 2023-01-04 University of Southern California Molecular alignment of homoleptic iridium phosphors
DE102021116886A1 (en) 2021-06-30 2023-01-05 Heliatek Gmbh Process for producing at least one doped charge transport layer of a layer system of an organic electronic component
US11594691B2 (en) 2019-01-25 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters
US11594688B2 (en) 2017-10-17 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Display and lighting devices comprising phosphorescent excimers with preferred molecular orientation as monochromatic emitters
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
US11647643B2 (en) 2017-10-17 2023-05-09 Arizona Board Of Regents On Behalf Of Arizona State University Hole-blocking materials for organic light emitting diodes
EP4185086A1 (en) 2017-07-26 2023-05-24 Universal Display Corporation Organic electroluminescent materials and devices
EP4212539A1 (en) 2021-12-16 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
US11708385B2 (en) 2017-01-27 2023-07-25 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters employing pyrido-pyrrolo-acridine and analogues
EP4231804A2 (en) 2022-02-16 2023-08-23 Universal Display Corporation Organic electroluminescent materials and devices
EP4242285A1 (en) 2022-03-09 2023-09-13 Universal Display Corporation Organic electroluminescent materials and devices
US11785838B2 (en) 2019-10-02 2023-10-10 Arizona Board Of Regents On Behalf Of Arizona State University Green and red organic light-emitting diodes employing excimer emitters
EP4265626A2 (en) 2022-04-18 2023-10-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4282863A1 (en) 2022-05-24 2023-11-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
EP4299693A1 (en) 2022-06-28 2024-01-03 Universal Display Corporation Organic electroluminescent materials and devices
US11878988B2 (en) 2019-01-24 2024-01-23 Arizona Board Of Regents On Behalf Of Arizona State University Blue phosphorescent emitters employing functionalized imidazophenthridine and analogues
EP4326030A1 (en) 2022-08-17 2024-02-21 Universal Display Corporation Organic electroluminescent materials and devices
US11930698B2 (en) 2014-01-07 2024-03-12 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US11945985B2 (en) 2020-05-19 2024-04-02 Arizona Board Of Regents On Behalf Of Arizona State University Metal assisted delayed fluorescent emitters for organic light-emitting diodes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0061264A1 (en) * 1981-03-13 1982-09-29 Matsushita Electric Industrial Co., Ltd. Tetracyanoanthraquinodimethane compounds and processes for the production thereof, polymers and charge-transfer complexes derived therefrom
WO2003010778A1 (en) * 2001-07-24 2003-02-06 Northwestern University n-TYPE THIOPHENE SEMICONDUCTORS
EP1463130A2 (en) * 2003-03-18 2004-09-29 Eastman Kodak Company P-type materials and mixtures for electronic devices
EP1538684A1 (en) * 2003-12-04 2005-06-08 Novaled GmbH Process for doping organic semiconductors with derivatives of diiminoquinones

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149259A (en) * 1981-03-13 1982-09-14 Matsushita Electric Ind Co Ltd Tetracyanoquinodimethane derivative

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0061264A1 (en) * 1981-03-13 1982-09-29 Matsushita Electric Industrial Co., Ltd. Tetracyanoanthraquinodimethane compounds and processes for the production thereof, polymers and charge-transfer complexes derived therefrom
WO2003010778A1 (en) * 2001-07-24 2003-02-06 Northwestern University n-TYPE THIOPHENE SEMICONDUCTORS
EP1463130A2 (en) * 2003-03-18 2004-09-29 Eastman Kodak Company P-type materials and mixtures for electronic devices
EP1538684A1 (en) * 2003-12-04 2005-06-08 Novaled GmbH Process for doping organic semiconductors with derivatives of diiminoquinones

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOBAYASHI, K. AND GAJUREL, C. L.: "Thiophene-fused tetracyanoquinodimethanes as electron acceptors for conducting charge-transfer salts", JOURNAL OF THE CHEMICAL SOCIETY, CHEMICAL COMMUNICATIONS, vol. 24, 1986, pages 1779 - 1780, XP008053605 *
PFEIFFER M ET AL: "Controlled p-doping of pigment layers by cosublimation: Basic mechanisms and implications for their use in organic photovoltaic cells", SOLAR ENERGY MATERIALS AND SOLAR CELLS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 63, no. 1, June 2000 (2000-06-01), pages 83 - 99, XP004201249, ISSN: 0927-0248 *

Cited By (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1912268A1 (en) * 2006-10-09 2008-04-16 Novaled AG Method for spatial structuring the emission density of an OLED, semiconductor device obtained by the method and its use
JP2008244430A (en) * 2007-01-11 2008-10-09 Toppoly Optoelectronics Corp Image display system
US7919195B2 (en) 2007-01-11 2011-04-05 Chimei Innolux Corporation System for displaying images
US8617721B2 (en) 2009-10-12 2013-12-31 Samsung Display Co., Ltd. Organic light-emitting device
CN102074657A (en) * 2009-10-12 2011-05-25 三星移动显示器株式会社 Organic light-emitting diode
CN102097594A (en) * 2009-10-12 2011-06-15 三星移动显示器株式会社 Organic light-emitting device
CN102074657B (en) * 2009-10-12 2015-08-12 三星显示有限公司 Organic light emitting apparatus
EP2309565A3 (en) * 2009-10-12 2012-08-15 Samsung Mobile Display Co., Ltd. Organic light-emitting device
CN103943784A (en) * 2009-10-12 2014-07-23 三星显示有限公司 Organic light-emitting device
WO2012089624A1 (en) 2010-12-27 2012-07-05 Heliatek Gmbh Optoelectronic component having doped layers
DE102010056519A1 (en) 2010-12-27 2012-06-28 Heliatek Gmbh Optoelectronic component with doped layers
WO2013153025A1 (en) 2012-04-12 2013-10-17 Siemens Aktiengesellschaft Organic electronic components having organic superdonors having at least two coupled carbene groups and use thereof as an n-type dopants
DE102012205945A1 (en) 2012-04-12 2013-10-17 Siemens Aktiengesellschaft Organic super donors with at least two coupled carbene groups and their use as n-dopants
US11114626B2 (en) 2012-09-24 2021-09-07 Arizona Board Of Regents On Behalf Of Arizona State University Metal compounds, methods, and uses thereof
US11189808B2 (en) 2013-10-14 2021-11-30 Arizona Board Of Regents On Behalf Of Arizona State University Platinum complexes and devices
WO2015082046A2 (en) 2013-12-06 2015-06-11 Merck Patent Gmbh Substituted oxepines
EP3345984A1 (en) 2013-12-06 2018-07-11 Merck Patent GmbH Connections and organic electronic devices
EP3693437A1 (en) 2013-12-06 2020-08-12 Merck Patent GmbH Compounds and organic electronic devices
US11930698B2 (en) 2014-01-07 2024-03-12 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US11839144B2 (en) 2014-06-02 2023-12-05 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US11011712B2 (en) 2014-06-02 2021-05-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US10886478B2 (en) 2014-07-24 2021-01-05 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues
US11329244B2 (en) 2014-08-22 2022-05-10 Arizona Board Of Regents On Behalf Of Arizona State University Organic light-emitting diodes with fluorescent and phosphorescent emitters
US10944064B2 (en) 2014-11-10 2021-03-09 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US11653560B2 (en) 2014-11-10 2023-05-16 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
EP3056504A1 (en) 2015-02-16 2016-08-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3061763A1 (en) 2015-02-27 2016-08-31 Universal Display Corporation Organic electroluminescent materials and devices
EP3098229A1 (en) 2015-05-15 2016-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3101021A1 (en) 2015-06-01 2016-12-07 Universal Display Corporation Organic electroluminescent materials and devices
US11472827B2 (en) 2015-06-03 2022-10-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
EP3124488A1 (en) 2015-07-29 2017-02-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3159350A1 (en) 2015-09-03 2017-04-26 Universal Display Corporation Organic electroluminescent materials and devices
EP3760635A1 (en) 2015-09-03 2021-01-06 Universal Display Corporation Organic electroluminescent materials and devices
EP3205658A1 (en) 2016-02-09 2017-08-16 Universal Display Corporation Organic electroluminescent materials and devices
EP3858842A1 (en) 2016-02-09 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP4122941A1 (en) 2016-04-11 2023-01-25 Universal Display Corporation Organic electroluminescent materials and devices
EP3231809A2 (en) 2016-04-11 2017-10-18 Universal Display Corporation Organic electroluminescent materials and devices
US11335865B2 (en) 2016-04-15 2022-05-17 Arizona Board Of Regents On Behalf Of Arizona State University OLED with multi-emissive material layer
EP3920254A1 (en) 2016-06-20 2021-12-08 Universal Display Corporation Organic electroluminescent materials and devices
EP3261146A2 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP4349935A2 (en) 2016-06-20 2024-04-10 Universal Display Corporation Organic electroluminescent materials and devices
EP3843171A1 (en) 2016-06-20 2021-06-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3261147A1 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3270435A2 (en) 2016-06-20 2018-01-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3758084A1 (en) 2016-06-20 2020-12-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3297051A1 (en) 2016-09-14 2018-03-21 Universal Display Corporation Organic electroluminescent materials and devices
EP3323822A1 (en) 2016-09-23 2018-05-23 Universal Display Corporation Organic electroluminescent materials and devices
EP3301088A1 (en) 2016-10-03 2018-04-04 Universal Display Corporation Condensed pyridines as organic electroluminescent materials and devices
EP3305796A1 (en) 2016-10-07 2018-04-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3858844A1 (en) 2016-10-07 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
US10822363B2 (en) 2016-10-12 2020-11-03 Arizona Board Of Regents On Behalf Of Arizona State University Narrow band red phosphorescent tetradentate platinum (II) complexes
EP3789379A1 (en) 2016-11-09 2021-03-10 Universal Display Corporation 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds
EP3321258A1 (en) 2016-11-09 2018-05-16 Universal Display Corporation 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds
EP3354654A2 (en) 2016-11-11 2018-08-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4092036A1 (en) 2016-11-11 2022-11-23 Universal Display Corporation Organic electroluminescent materials and devices
US11183670B2 (en) 2016-12-16 2021-11-23 Arizona Board Of Regents On Behalf Of Arizona State University Organic light emitting diode with split emissive layer
EP3689890A1 (en) 2017-01-09 2020-08-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3345914A1 (en) 2017-01-09 2018-07-11 Universal Display Corporation Organic electroluminescent materials and devices
EP4212540A1 (en) 2017-01-09 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
US11708385B2 (en) 2017-01-27 2023-07-25 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters employing pyrido-pyrrolo-acridine and analogues
EP3985012A1 (en) 2017-03-29 2022-04-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3730506A1 (en) 2017-03-29 2020-10-28 Universal Display Corporation Organic electroluminescent materials and devices
EP3381927A1 (en) 2017-03-29 2018-10-03 Universal Display Corporation Organic electroluminescent materials and devices
WO2018189134A1 (en) 2017-04-13 2018-10-18 Merck Patent Gmbh Composition for organic electronic devices
EP4141010A1 (en) 2017-05-11 2023-03-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3401318A1 (en) 2017-05-11 2018-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US11101435B2 (en) 2017-05-19 2021-08-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complexes based on biscarbazole and analogues
US11063228B2 (en) 2017-05-19 2021-07-13 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters employing benzo-imidazo-phenanthridine and analogues
EP3418286A1 (en) 2017-06-23 2018-12-26 Universal Display Corporation Organic electroluminescent materials and devices
WO2019002198A1 (en) 2017-06-26 2019-01-03 Merck Patent Gmbh Homogeneous mixtures
WO2019007867A1 (en) 2017-07-05 2019-01-10 Merck Patent Gmbh Composition for organic electronic devices
EP4186898A1 (en) 2017-07-05 2023-05-31 Merck Patent GmbH Composition for organic electronic compounds
WO2019007866A1 (en) 2017-07-05 2019-01-10 Merck Patent Gmbh Composition for organic electronic devices
EP4185086A1 (en) 2017-07-26 2023-05-24 Universal Display Corporation Organic electroluminescent materials and devices
EP3444258A2 (en) 2017-08-10 2019-02-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3783006A1 (en) 2017-08-10 2021-02-24 Universal Display Corporation Organic electroluminescent materials and devices
US11647643B2 (en) 2017-10-17 2023-05-09 Arizona Board Of Regents On Behalf Of Arizona State University Hole-blocking materials for organic light emitting diodes
US11594688B2 (en) 2017-10-17 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Display and lighting devices comprising phosphorescent excimers with preferred molecular orientation as monochromatic emitters
WO2019096717A2 (en) 2017-11-14 2019-05-23 Merck Patent Gmbh Composition for organic electronic devices
EP3489243A1 (en) 2017-11-28 2019-05-29 University of Southern California Carbene compounds and organic electroluminescent devices
EP3878855A1 (en) 2017-11-28 2021-09-15 University of Southern California Carbene compounds and organic electroluminescent devices
EP3492528A1 (en) 2017-11-30 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
EP4019526A1 (en) 2018-01-26 2022-06-29 Universal Display Corporation Organic electroluminescent materials and devices
WO2019229011A1 (en) 2018-05-30 2019-12-05 Merck Patent Gmbh Composition for organic electronic devices
EP4206210A1 (en) 2018-08-22 2023-07-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3613751A1 (en) 2018-08-22 2020-02-26 Universal Display Corporation Organic electroluminescent materials and devices
US11878988B2 (en) 2019-01-24 2024-01-23 Arizona Board Of Regents On Behalf Of Arizona State University Blue phosphorescent emitters employing functionalized imidazophenthridine and analogues
US11594691B2 (en) 2019-01-25 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters
EP3690973A1 (en) 2019-01-30 2020-08-05 University Of Southern California Organic electroluminescent materials and devices
EP3689889A1 (en) 2019-02-01 2020-08-05 Universal Display Corporation Organic electroluminescent materials and devices
EP4301117A2 (en) 2019-02-01 2024-01-03 Universal Display Corporation Organic electroluminescent materials and devices
WO2020178230A1 (en) 2019-03-04 2020-09-10 Merck Patent Gmbh Ligands for nano-sized materials
EP3715353A1 (en) 2019-03-26 2020-09-30 Universal Display Corporation Organic electroluminescent materials and devices
EP4134371A2 (en) 2019-03-26 2023-02-15 Universal Display Corporation Organic electroluminescent materials and devices
EP3750897A1 (en) 2019-06-10 2020-12-16 Universal Display Corporation Organic electroluminescent materials and devices
EP3771717A1 (en) 2019-07-30 2021-02-03 Universal Display Corporation Organic electroluminescent materials and devices
EP4219515A1 (en) 2019-07-30 2023-08-02 Universal Display Corporation Organic electroluminescent materials and devices
EP3778614A1 (en) 2019-08-16 2021-02-17 Universal Display Corporation Organic electroluminescent materials and devices
US11785838B2 (en) 2019-10-02 2023-10-10 Arizona Board Of Regents On Behalf Of Arizona State University Green and red organic light-emitting diodes employing excimer emitters
EP3816175A1 (en) 2019-11-04 2021-05-05 Universal Display Corporation Organic electroluminescent materials and devices
EP4151644A1 (en) 2020-01-06 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP3845545A1 (en) 2020-01-06 2021-07-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4294157A2 (en) 2020-01-28 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3858945A1 (en) 2020-01-28 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
US11945985B2 (en) 2020-05-19 2024-04-02 Arizona Board Of Regents On Behalf Of Arizona State University Metal assisted delayed fluorescent emitters for organic light-emitting diodes
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP3978583A1 (en) 2020-10-02 2022-04-06 Universal Display Corporation Organic electroluminescent materials and devices
EP4016659A1 (en) 2020-11-16 2022-06-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4001287A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4001286A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4329463A2 (en) 2020-11-24 2024-02-28 Universal Display Corporation Organic electroluminescent materials and devices
EP4039692A1 (en) 2021-02-03 2022-08-10 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4053137A1 (en) 2021-03-05 2022-09-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4056578A1 (en) 2021-03-12 2022-09-14 Universal Display Corporation Organic electroluminescent materials and devices
EP4059941A1 (en) 2021-03-15 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4074723A1 (en) 2021-04-05 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
DE102021108497A1 (en) 2021-04-06 2022-10-06 Heliatek Gmbh Dopants for electronic components, their use in electronic components, and electronic components with such dopants
WO2022214137A1 (en) 2021-04-06 2022-10-13 Heliatek Gmbh Dopants for electronic components, their use in electronic components, and electronic components with such dopants
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4075530A1 (en) 2021-04-14 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4079743A1 (en) 2021-04-23 2022-10-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4086266A1 (en) 2021-04-23 2022-11-09 Universal Display Corporation Organic electroluminescent materials and devices
EP4112701A2 (en) 2021-06-08 2023-01-04 University of Southern California Molecular alignment of homoleptic iridium phosphors
WO2023274452A1 (en) 2021-06-30 2023-01-05 Heliatek Gmbh Method for producing at least one doped charge transport layer of a layer system of an organic electronic component
DE102021116886A1 (en) 2021-06-30 2023-01-05 Heliatek Gmbh Process for producing at least one doped charge transport layer of a layer system of an organic electronic component
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4212539A1 (en) 2021-12-16 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4231804A2 (en) 2022-02-16 2023-08-23 Universal Display Corporation Organic electroluminescent materials and devices
EP4242285A1 (en) 2022-03-09 2023-09-13 Universal Display Corporation Organic electroluminescent materials and devices
EP4265626A2 (en) 2022-04-18 2023-10-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4282863A1 (en) 2022-05-24 2023-11-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
EP4299693A1 (en) 2022-06-28 2024-01-03 Universal Display Corporation Organic electroluminescent materials and devices
EP4326030A1 (en) 2022-08-17 2024-02-21 Universal Display Corporation Organic electroluminescent materials and devices

Also Published As

Publication number Publication date
JP2008530773A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
WO2006081780A1 (en) Dopants for organic semiconductors
EP1596445B2 (en) Process for doping organic semiconductors with derivatives of diiminoquinones
EP1988587B1 (en) Oxocarbon, pseudo oxocarbon and radialene compounds and their use
DE102006053320B4 (en) Use of a coordination compound for doping organic semiconductors
EP2002492B1 (en) Use of heterocyclic radicals for doping organic semiconductors
EP2009014B1 (en) Application of a precursor of an n-dopant for doping an organic semi-conducting material, precursor and electronic or optoelectronic component
EP1861886B1 (en) Organic photoactive component
Nakahara et al. Suppression of trion formation in CsPbBr3 perovskite nanocrystals by postsynthetic surface modification
EP2845239B1 (en) Main group metal complexes as p-dopants for organic electronic matrix materials
DE102012101652B4 (en) Organic semiconducting material and electronic component
DE102006054523B4 (en) Dithiolene transition metal complexes and selenium-analogous compounds, their use as dopant, organic semiconductive material containing the complexes, and electronic or optoelectronic device containing a complex
EP1668718B1 (en) Organic electroluminescent element
EP1476881A2 (en) Doped organic semiconductor material and method for production thereof
WO2013153025A1 (en) Organic electronic components having organic superdonors having at least two coupled carbene groups and use thereof as an n-type dopants
EP1786050A1 (en) Doped organic semiconductor material
EP2180029A1 (en) Radialene compounds and their use
EP2229699B1 (en) Dithiol transition metal complexes, and electronic or optoelectronic components
DE102011003192B4 (en) Semiconductor component and method for its production
EP1697483B1 (en) Organic electroluminescent element
DE102013205093A1 (en) New substituted tetraheterocyclic compounds useful in optoelectronic or electronic components, preferably e.g. organic light-emitting diodes, organic solar cells, dye-sensitized solar cells, batteries and accumulators, and organic diodes
WO2023274452A1 (en) Method for producing at least one doped charge transport layer of a layer system of an organic electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007553446

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10592979

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05714940

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5714940

Country of ref document: EP