WO2007101864A2 - Compounds that modulate ppar activity, their preparation and use - Google Patents

Compounds that modulate ppar activity, their preparation and use Download PDF

Info

Publication number
WO2007101864A2
WO2007101864A2 PCT/EP2007/052130 EP2007052130W WO2007101864A2 WO 2007101864 A2 WO2007101864 A2 WO 2007101864A2 EP 2007052130 W EP2007052130 W EP 2007052130W WO 2007101864 A2 WO2007101864 A2 WO 2007101864A2
Authority
WO
WIPO (PCT)
Prior art keywords
optionally substituted
aryl
prop
alkyl
compounds
Prior art date
Application number
PCT/EP2007/052130
Other languages
French (fr)
Other versions
WO2007101864A3 (en
Inventor
Per Sauerberg
Original Assignee
High Point Pharmaceuticals, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by High Point Pharmaceuticals, Llc filed Critical High Point Pharmaceuticals, Llc
Priority to CA002645719A priority Critical patent/CA2645719A1/en
Priority to EP07726688A priority patent/EP1999098A2/en
Priority to US12/282,244 priority patent/US7943612B2/en
Priority to JP2008557754A priority patent/JP2009529512A/en
Publication of WO2007101864A2 publication Critical patent/WO2007101864A2/en
Publication of WO2007101864A3 publication Critical patent/WO2007101864A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/58Unsaturated compounds containing ether groups, groups, groups, or groups
    • C07C59/64Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings
    • C07C59/66Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings the non-carboxylic part of the ether containing six-membered aromatic rings
    • C07C59/68Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings the non-carboxylic part of the ether containing six-membered aromatic rings the oxygen atom of the ether group being bound to a non-condensed six-membered aromatic ring
    • C07C59/70Ethers of hydroxy-acetic acid, e.g. substitutes on the ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/08Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/08Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms
    • C07D295/096Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings

Definitions

  • the present invention relates to novel compounds, to the use of these compounds as pharmaceutical compositions, to pharmaceutical compositions comprising the compounds and to a method of treatment employing these compounds and compositions.
  • the compounds are activators of peroxisome proliferator-activated receptors (PPAR)- ⁇ .
  • Coronary artery disease is the major cause of death in Type 2 diabetic and metabolic syndrome patients (i.e. patients that fall within the 'deadly quartet' category of im- paired glucose tolerance, insulin resistance, hypertriglyceridaemia and/or obesity).
  • hypolipidaemic fibrates and antidiabetic thiazolidinediones separately display moderately effective triglyceride-lowering activities although they are neither potent nor efficacious enough to be a single therapy of choice for the dyslipidaemia often observed in Type 2 diabetic or metabolic syndrome patients.
  • the thiazolidinediones also potently lower circu- lating glucose levels of Type 2 diabetic animal models and humans.
  • the fibrate class of compounds are without beneficial effects on glycaemia.
  • thiazolidinediones and fibrates exert their action by activating distinct transcription factors of the peroxisome proliferator activated receptor (PPAR) family, resulting in increased and decreased expression of specific enzymes and apolipoproteins respectively, both key-players in regulation of plasma triglyceride content.
  • PPAR peroxisome proliferator activated receptor
  • PPAR ⁇ activation was initially reported not to be involved in modulation of glucose or triglyceride levels. (Berger et a ⁇ ., j. Biol. Chem. , 1999, VoI 274, pp. 6718-6725). Later it has been shown that PPAR ⁇ activation leads to increased levels of HDL cholesterol in db/db mice (Leibowitz et al. FEBS letters 2000, 473, 333-336).
  • a PPAR ⁇ agonist when dosed to insulin-resistant middle-aged obese rhesus monkeys caused a dramitic dose- dependent rise in serum HDL cholesterol while lowering the levels of small dense LDL, fasting triglycerides and fasting insulin (Oliver et al. PNAS 2001 , 98, 5306-531 1 ).
  • the same paper also showed that PPAR ⁇ activation increased the reverse cholesterol transporter ATP- binding cassette A1 and induced apolipoprotein A1 -specific cholesterol efflux.
  • PPAR ⁇ activation is useful in the treatment and prevention of cardiovascular diseases and conditions including atherosclerosis, hypertriglyceridemia, and mixed dyslipidaemia (WO 01/00603).
  • PPAR ⁇ compounds have been reported to be useful in the treatment of hyperglycemia, hyperlipidemia and hypercholesterolemia (WO 02/59098, WO 01/603, WO 01/25181 , WO 02/14291 , WO 01/79197, WO 99/4815, WO 97/28149, WO 98/27974, WO 97/28115, WO 97/27857, WO 97/28137, WO 97/27847 WO 2004093879, WO 2004092117, WO 2004080947, WO 2004080943, WO 2004073606,WO 2004063166, WO 2004063165, WO 2003072100, WO 2004060871 , WO 2004005253, WO 2003097607, WO 2003035603, WO 2004000315, WO 2004000762, WO 2003074495, WO 2002070011 , WO 2003084916, US 20040209936, WO 2003074050, WO 2003
  • Glucose lowering as a single approach does not overcome the macrovascular complications associated with Type 2 diabetes and metabolic syndrome.
  • Novel treatments of Type 2 diabetes and metabolic syndrome must therefore aim at lowering both the overt hy- pertriglyceridaemia associated with these syndromes as well as alleviation of hyperglycae- mia.
  • This indicate that research for compounds displaying various degree of PPAR ⁇ activa- tion should lead to the discovery of efficacious triglyceride and/or cholesterol and/or glucose lowering drugs that have great potential in the treatment of diseases such as type 2 diabetes, dyslipidemia, syndrome X (including the metabolic syndrome, i.e. impaired glucose tolerance, insulin resistance, hypertrigyceridaemia and/or obesity), cardiovascular diseases (including atherosclerosis) and hypercholesteremia.
  • diseases such as type 2 diabetes, dyslipidemia, syndrome X (including the metabolic syndrome, i.e. impaired glucose tolerance, insulin resistance, hypertrigyceridaemia and/or obesity), cardiovascular diseases (including atherosclerosis
  • the present invention includes all isotopes of atoms occurring in the present compounds.
  • Isotopes include those atoms having the same atomic number but different mass numbers.
  • isotopes of hydrogen include tritium and deuterium.
  • Isotopes of carbon include C-13 and C-14.
  • O or S is listed as a substituent, oxo and sulfo, respectively, it is intended that a carbon atom be replaced by either the O or S.
  • alkyl were substituted by O, then an ether would be formed.
  • heteroatom-heteroatom bonds such as 0-0, 0-S, 0-N, S- S, and S-N are not formed.
  • C 1-6 -alkyl as used herein, alone or in combination, represent a linear or branched, saturated hydrocarbon chain having the indicated number of carbon atoms. Representative examples include, but are not limited to methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, sec-butyl, ferf-butyl, pentyl, isopentyl, hexyl, isohexyl and the like.
  • C 1-6 -alkylcarbonyl represents a "C 1-6 -alkyl” group as de- fined above having the indicated number of carbon atoms linked through a carbonyl group.
  • Representative examples include, but are not limited to, methylcarbonyl, ethylcarbonyl, n- propylcarbonyl, isopropylcarbonyl, butylcarbonyl, isobutylcarbonyl, sec-butylcarbonyl, tert- butylcarbonyl, n-pentylcarbonyl, isopentylcarbonyl, neopentylcarbonyl, ferf-pentylcarbonyl, n- hexylcarbonyl, isohexylcarbonyl and the like.
  • C 1-6 -alkylsulfonyl refers to a monovalent substituent comprising a "C 1-6 -alkyl” group as defined above linked through a sulfonyl group.
  • Representative examples include, but are not limited to, methylsulfonyl, ethylsulfonyl, n-propylsulfonyl, iso- propylsulfonyl, n-butylsulfonyl, isobutylsulfonyl, sec-butylsulfonyl, ferf-butylsulfonyl, n-pentyl- sulfonyl, isopentylsulfonyl, neopentylsulfonyl, ferf-pentylsulfonyl, n-hexylsulfonyl, isohexylsul- fonyl
  • C 1-6 -alkylamido refers to an acyl group linked through an amino group; Representative examples include, but are not limited to acetylamino, propionyl- amino, butyrylamino, isobutyrylamino, pivaloylamino, valerylamino and the like.
  • C 3-6 -cycloalkyl as used herein, alone or in combination, represent a satu- rated monocyclic hydrocarbon group having the indicated number of carbon atoms. Representative examples include, but are not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
  • C 2-6 -alkenyl represent an olefinically unsaturated branched or straight hydrocarbon group having from 2 to the specified number of carbon at- oms and at least one double bond.
  • Representative examples include, but are not limited to, vinyl, 1-propenyl, 2-propenyl, allyl, iso-propenyl, 1 ,3-butadienyl, 1-butenyl, hexenyl, pentenyl and the like.
  • C 2-6 -alkynyl represent an unsaturated branched or straight hydrocarbon group having from 2 to the specified number of carbon atoms and at least one triple bond. Representative examples include, but are not limited to, 1-propynyl, 2- propynyl, 1-butynyl, 2-butynyl, 1-pentynyl, 2-pentynyl and the like.
  • C 4-6 -alkenynyl represent an unsaturated branched or straight hydrocarbon group having from 4 to the specified number of carbon atoms and both at least one double bond and at least one triple bond.
  • Representative examples include, but are not limited to, 1-penten-4-ynyl, 3-penten-1-ynyl, 1 ,3-hexadiene-5-ynyl and the like.
  • C 1-6 -alkoxy refers to a straight or branched configuration linked through an ether oxygen having its free valence bond from the ether oxygen.
  • linear alkoxy groups are methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy and the like.
  • branched alkoxy are isopropoxy, sec-butoxy, tert-butoxy, isopentyloxy, isohexyloxy and the like.
  • C 3-6 -cycloalkoxy represent a saturated monocyclic hydrocarbon group having the indicated number of carbon atoms linked through an ether oxygen having its free valence bond from the ether oxygen.
  • Examples of cycloalkoxy groups are cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy and the like.
  • C 1-6 -alkylthio refers to a straight or branched monovalent substituent comprising a "C 1-6 -alkyl” group as defined above linked through a divalent sulfur atom having its free valence bond from the sulfur atom and having 1 to 6 carbon atoms.
  • Representative examples include, but are not limited to, methylthio, ethyl- thio, propylthio, butylthio, pentylthio and the like.
  • C 3-6 -cycloalkylthio represent a saturated monocyclic hydrocarbon group having the indicated number of carbon atoms linked through a divalent sulfur atom having its free valence bond from the sulfur atom.
  • Examples of cycloalkoxy groups are cyclopropylthio, cyclobutylthio, cyclopentylthio, cyclohexylthio and the like.
  • C 1-6 -alkylamino refers to a straight or branched monovalent substituent comprising a "C 1-6 -alkyl” group as defined above linked through amino having a free valence bond from the nitrogen atom.
  • Representative examples include, but are not limited to, methylamino, ethylamino, propylamine, butylamino, pentylamino and the like.
  • C ⁇ -alkylaminocarbonyl refers to a monovalent substituent comprising a C 1-6 -monoalkylamino group linked through a carbonyl group such as e.g. methyl- aminocarbonyl, ethylaminocarbonyl, n-propylaminocarbonyl, isopropylaminocarbonyl, n-butyl- aminocarbonyl, sec-butylaminocarbonyl, isobutylaminocarbonyl, tert-butylaminocarbonyl, n- pentylaminocarbonyl, 2-methylbutylaminocarbonyl, 3-methylbutylaminocarbonyl, n-hexylamino- carbonyl, 4-methylpentylaminocarbonyl, neopentylaminocarbonyl, n-hexylaminocarbonyl and 2-2-dimethylpropylaminocarbonyl and the like.
  • a carbonyl group
  • Ca-e-cycloalkylamino as used herein, alone or in combination, represent a saturated monocyclic hydrocarbon group having the indicated number of carbon atoms linked through amino having a free valence bond from the nitrogen atom.
  • Representative examples include, but are not limited to, cyclopropylamino, cyclobutylamino, cyclopentylamino, cyclo- hexylamino and the like.
  • C 1-6 -alkoxyC 1-6 -alkyr refers to a "C 1-6 -alkyl” group as defined above whereto is attached a "C 1-6 -alkoxy” group as defined above.
  • Representative examples include, but are not limited to, methoxymethyl, ethoxy- methyl, methoxyethyl, ethoxyethyl and the like.
  • aryl as used herein is intended to include monocyclic, bicyclic or poly- cyclic carbocyclic aromatic rings.
  • Representative examples are phenyl, naphthyl (e.g. naphth-1-yl, naphth-2-yl), anthryl (e.g. anthr-1-yl, anthr-9-yl), phenanthryl (e.g. phenanthr-1- yl, phenanthr-9-yl), and the like.
  • Aryl is also intended to include monocyclic, bicyclic or poly- cyclic carbocyclic aromatic rings substituted with carbocyclic aromatic rings.
  • Representative examples are biphenyl (e.g.
  • Aryl is also intended to include partially saturated bicyclic or polycyclic carbocyclic rings with at least one unsaturated moiety (e.g. a benzo moiety).
  • Representative examples are, indanyl (e.g. indan-1-yl, indan-5-yl), in- denyl (e.g. inden-1-yl, inden-5-yl), 1 ,2,3,4-tetrahydronaphthyl (e.g.
  • fluorenyl e.g. fluo- ren-1-yl, fluoren-4-yl, fluoren-9-yl
  • Aryl is also intended to include partially saturated bicyclic or polycyclic carbocyclic aromatic rings containing one or two bridges. Representative examples are, benzonorbornyl (e.g. benzonorborn-3-yl, benzonorborn-6-yl), 1 ,4- ethano-1 ,2,3,4-tetrahydronapthyl (e.g. 1 ,4-ethano-1 ,2,3,4-tetrahydronapth-2-yl,1 ,4-ethano- 1 ,2,3,4-tetrahydronapth-10-yl), and the like.
  • Aryl is also intended to include partially saturated bicyclic or polycyclic carbocyclic aromatic rings containing one or more spiro atoms.
  • spiro[cyclopentane-1 ,1 '-indane]-4-yl Representative examples are spiro[cyclopentane-1 ,1 '-indane]-4-yl, spiro[cyclopentane-1 ,1 '-indene]- 4-yl, spiro[piperidine-4, 1 '-indane]-1 -yl, spiro[piperidine-3,2'-indane]-1 -yl, spiro[piperidine-4,2'- indane]-1-yl, spiro[piperidine-4,1 '-indane]-3'-yl, spiro[pyrrolidine-3,2'-indane]-1-yl, spiro[pyrro- lidine-3,1 '-(3',4'-dihydronaphthalene)]-1-yl, spiro[piperidine-3,1 '-(3',4'
  • arylene refers to divalent aromatic monocyclic or a divalent aromatic fused bi- or tricyclic hydrocarbon group. Representative examples include, but are not limited to, phenylene, naphthylene and the like.
  • Representative examples are pyridinylcarbonyl (e.g. pyridin-2-ylcarbonyl, pyridin-4-ylcarbo- nyl), quinolinylcarbonyl (e.g. 2-(quinolin-2-yl)carbonyl, 1-(quinolin-2-yl)carbonyl), imidazolyl- carbonyl (e.g. imidazol-2-ylcarbonyl, imidazol-5-ylcarbonyl), and the like.
  • arylsulfonyl refers to an "aryl” group as defined above linked through a sulfonyl group. Representative examples include, but are not limited to, phenylsulfonyl, naphthylsulfonyl, anthracenylsulfonyl, phenanthrenylsulfonyl, azulenylsulfonyl, and the like.
  • arylamido refers to an arylcarbonyl group linked through an amino group. Representative examples include, but are not limited to phenylcarbonyl- amino, naphthylcarbonylamino, anthracenylcarbonylamino, phenanthrenylcarbonylamino, azulenylcarbonylamino and the like.
  • halogen means fluorine, chlorine, bromine or iodine.
  • perhalomethyl means trifluoromethyl, trichloromethyl, tribromomethyl or triiodomethyl.
  • perhalomethoxy means trifluoromethoxy, trichloromethoxy, tribromo- methoxy or triiodomethoxy.
  • C 1-6 -dialkylamino refers to an amino group wherein the two hydrogen atoms independently are substituted with a straight or branched, saturated hydrocarbon chain having the indicated number of carbon atoms.
  • Representative examples include, but are not limited to, N,N-dimethylamino, N-ethyl-N-methylamino, N,N-diethylamino, N,N-dipropylamino (e.g.
  • acyl refers to a monovalent substituent comprising a "C 1- 6 -alkyl” group as defined above linked through a carbonyl group. Representative examples include, but are not limited to, acetyl, propionyl, butyryl, isobutyryl, pivaloyl, valeryl and the like.
  • heteroaryl refers to a monovalent substituent comprising a 5-7 membered monocyclic aromatic system or a 8-10 membered bicyclic aromatic system containing one or more heteroatoms selected from nitrogen, oxygen and sulphur. Examples of “heteroaryl” are pyrrolyl (e.g.
  • phthalazinyl e.g. phthalazin-1-yl, phthalazin-5-yl
  • purinyl e.g. purin-2-yl, purin-6-yl, purin-7-yl, purin-8-yl, purin-9-yl
  • quinazolinyl e.g.
  • quinazolin-2-yl quinazolin-4-yl, quinazolin-6-yl
  • cinnolinyl quinoliny (e.g. quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-6-yl), isoquinolinyl (e.g. isoquinolin-1-yl, isoquinolin-3-yl, isoquinolin-4-yl), quinoxalinyl (e.g. quinoxalin-2-yl, quinoxalin-5-yl), pyrrolopyridinyl (e.g.
  • phenanthrolin-5-yl pyrrolinyl, pyrazolinyl, imidazolinyl (e.g. 4,5-dihydroimidazol-2-yl, 4,5-dihydroimidazol-1-yl), indolinyl (e.g. 2,3-dihydroindol-1-yl, 2,3-dihydroindol-5-yl), dihydrobenzofuranyl (e.g. 2,3-dihydrobenzo[b]furan-2-yl, 2,3- dihydrobenzo[b]furan-4-yl), dihydrobenzothienyl (e.g.
  • heteroaryl examples include furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, isothiazolyl, isoxa- zolyl, oxazolyl, oxadiazolyl, thiadiazolyl, quinolyl, isoquinolyl, quinazolinyl, quinoxalinnyl, indolyl, benzimidazolyl, benzofuranyl, benzothienyl, benzoxazolyl, tetrazolyl, carbazolyl, pteridinyl and purinyl.
  • heteroarylene refers to divalent 5-7 membered monocyclic aromatic system or a 8-10 membered bicyclic aromatic system containing one or more heteroatoms selected from nitrogen, oxygen and sulfur, e.g.
  • heteroaryloxy refers to a heteroaryl as defined herein linked to an oxygen atom having its free valence bond from the oxygen atom e.g. pyrrolyloxy, imidazolyloxy, pyrazolyloxy, triazolyloxy, pyrazinyloxy, pyri- midinyloxy, pyridazinyloxy, isothiazolyloxy, isoxazolyloxy, oxazolyloxy, oxadiazolyloxy, thiadiazolyloxy, quinolinyloxy, isoquinolinyloxy, quinazolinyloxy, quinoxalinyloxy, indoltloxy, benzimidazolyloxy, benzofuranyloxy, pteridinyloxy and purinyloxy and the like.
  • aralkyl refers to a straight or branched saturated carbon chain containing from 1 to 6 carbons substituted with an aromatic carbohydride. Represen- tative examples include, but are not limited to, benzyl, phenethyl, 3-phenylpropyl, 1-naphthyl- methyl, 2-(1-naphthyl)ethyl and the like.
  • aryloxy refers to phenoxy, 1-naphthyloxy, 2-naphthyloxy and the like.
  • aralkoxy refers to a C 1-6 -alkoxy group substituted with an aromatic carbohydride, such as benzyloxy, phenethoxy, 3-phenylpropoxy, 1-naphthyl- methoxy, 2-(1-naphtyl)ethoxy and the like.
  • heteroarylkyl refers to a straight or branched saturated carbon chain containing from 1 to 6 carbons substituted with a heteroaryl group; such as (2- furyl)methyl, (3-furyl)methyl, (2-thienyl)methyl, (3-thienyl)methyl, (2-pyridyl)methyl, 1-methyl- 1-(2-pyrimidyl)ethyl and the like.
  • heteroarylkoxy refers to a heteroarylalkyl as defined herein linked to an oxygen atom having its free valence bond from the oxygen atom.
  • Representative examples include, but are not limited to, (2-furyl)methyl, (3-furyl)methyl, (2- thienyl)methyl, (3-thienyl)methyl, (2-pyridyl)methyl, 1-methyl-1-(2-pyrimidyl)ethyl linked to oxygen, and the like.
  • arylthio refers to an aryl group linked through a divalent sulfur atom having its free valence bond from the sulfur atom, the aryl group optionally being mono- or polysubstituted with C 1-6 -alkyl, halogen, hydroxy or C 1-6 -alkoxy.
  • Representative examples include, but are not limited to, phenylthio, (4-methylphenyl)-thio, (2- chlorophenyl)thio and the like.
  • heterocyclyl or "heterocycle” signifies a mono-, bi-, or tricyclic ring consisting of carbon atoms and from one heteroatom to the maximum number designated, wherein the heteroatom is selected from oxygen, nitrogen, and sulphur. If sulphur is present, then it can be S, S(O), or S(O) 2 . If nitrogen is present, then it can be N, NH, substituted N, or N-oxide.
  • the heterocycle is a saturated or partially saturated ring. From 0-2 CH 2 groups of the heterocycle can be replaced by C(O).
  • the heterocycle can be attached via a carbon or nitrogen atom, unless linking the nitrogen atom would lead to a quaternary nitrogen.
  • heterocycle is bicyclic, then one or both of the rings may have a heteroatom(s) present. If the heterocycle is tricyclic, then one, two, or all three of the rings may have a heteroatom(s) present.
  • Exam- pies of "heterocycle" are aziridinyl (e.g. aziridin-1-yl), azetidinyl (e.g. azetidin-1-yl, azetidin-3-yl), oxetanyl, pyrrolidinyl (e.g. pyrrolidin-1-yl, pyrrolidin-2-yl, pyrrol id in-3-yl), imidazolidinyl (e.g.
  • decahydroquinolinyl e.g. decahydroquinolin-1-yl, decahydroquinolin-2-yl, decahydroquinolin-3-yl, decahydroquinolin-4-yl, decahydroquinolin-6-yl
  • decahydroquinoxalinyl e.g.
  • decahydroquinoxalin-1-yl decahydroquinoxalin-2-yl, decahydroquinoxalin-6-yl
  • 3-azabi- cyclo[3.2.2]nonyl 2-azabicyclo[2.2.1]heptyl, 3-azabicyclo[3.1.0]hexyl, 2,5-diazabicyclo-
  • heterocycle examples include pyrrolidinyl, pyrrolinyl, tetrahydrofuranyl, dihydrofuranyl, tetra- hydrothiophenyl, dihydrothiophenyl, imidzolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, oxa- zolidinyl, oxazoline, isoxazolidinyl, isoxazoline, thioxazolidinyl, thioxazoline, isothioxazolidinyl, isothioxazoline, triazolidinyl, triazolinyl, tetrazolidinyl, tetrazolinyl, tetrahydropyranyl, dihydro- pyranyl, pyran, piperidinyl, piperazinyl, homopiperazinyl, morpholino, thiomorpholino, and 1 ,
  • C 1-6 -alkyl as defined above whereto is attached a "heterocyclyl” group as defined above.
  • Representative examples include, but are not limited to pyrrolidinylmethyl, imida- zolinylmetyl, piperidinylmethyl, piperazinylmethyl, morpholinylmethyl, pyrrolidinylethyl, imida- zolinylethyl, piperidinylethyl, piperazinylethyl, morpholinylethyl, pyrrol id inyl propyl, imidazolinyl- propyl, piperidinylpropyl, piperazinylpropyl, morpholinylpropyl, and the like.
  • aryl-C 2-6 -alkynyl refers to a "C 2-6 - alkynyl” group as defined above whereto is attached a "aryl” group as defined above.
  • Representative examples include, but are not limited to phenylpropynyl, naphthylpropynyl, indenyl- propynyl, phenylbutynyl, naphthylbutynyl, indenylbutynyl, and the like.
  • heterocyclyl-C 2 - 6 -alkynyl refers to a "C 2-6 -alkynyl” group as defined above whereto is attached a "heterocyclyl” group as defined above.
  • Representative examples include, but are not limited to pyrrolidinylpropynyl, imi- dazolinylpropynyl, piperidinylpropynyl, piperazinylpropynyl, morpholinylpropynyl, and the like.
  • heteroaryl-C 2-6 -alkynyl refers to a "C 2-6 -alkynyl” group as defined above whereto is attached a “heteroaryl” group as defined above.
  • Representative examples include, but are not limited to furylpropynyl, thienylpropynyl, pyrrolylpropynyl, imidazolylpropynyl, pyrazolylpropynyl, quinolylpropynyl, benzofuranylpro- pynyl, and the like.
  • aryl-C 2-6 -alkenyl refers to a "C 2-6 - alkenyl” group as defined above whereto is attached a "aryl” group as defined above.
  • Representative examples include, but are not limited to phenylvinyl, naphthylvinyl, indenylvinyl, phenylpropenyl, naphthylpropenyl, indenylpropenyl, and the like.
  • heteroaryl-C 2-6 -alkenyl refers to a "C 2-6 -alkenyl” group as defined above whereto is attached a “heteroaryl” group as defined above.
  • Representative examples include, but are not limited to furylvinyl, thienylvinyl, pyrro- lylvinyl, imidazolylvinyl, pyrazolylvinyl, quinolylvinyl, benzofuranylvinyl, furylpropenyl, thienyl- propenyl, pyrrolylpropenyl, imidazolylpropenyl, pyrazolylpropenyl, quinolylpropenyl, benzofu- ranylpropenyl and the like.
  • heterocyclyl-C 2-6 -alkenyl refers to a "C 2-6 -alkenyl” group as defined above whereto is attached a “heterocyclyl” group as de- fined above.
  • Representative examples include, but are not limited to pyrrolidinylvinyl, imida- zolinylvinyl, piperidinylvinyl, piperazinylvinyl, morpholinylvinyl, pyrrolidinylpropenyl, imida- zolinylpropenyl, piperidinylpropenyl, piperazinylpropenyl, morpholinylpropynyl, and the like.
  • five to eight member ring refers to a saturated or unsatu- rated, substituted or unsubstituted hydrocarbon chain or hydrocarbon-heteroatom chain having from 3 to 6 atoms wherein the carbon atom in Ar, to which they are attached, and the adjacent carbon atom form a five to eight member ring.
  • prodrug as used herein includes biohydrolyzable amides and biohydro- lyzable esters and also encompasses a) compounds in which the biohydrolyzable functionality in such a prodrug is encompassed in the compound according to the present invention, and b) compounds which may be oxidized or reduced biologically at a given functional group to yield drug substances according to the present invention.
  • these functional groups include 1 ,4-dihydropyridine, N-alkylcarbonyl-1 ,4-dihydropyridine, 1 ,4-cyclohexadiene, tert-butyl, and the like.
  • treating cover the treatment of a disease-state in a mammal, particularly in a human, and include: (a) preventing the disease-state from occurring in a mammal, in particular, when such mammal is predisposed to the disease-state but has not yet been diagnosed as having it; (b) inhibiting the disease-state, e.g., arresting or slowing its de- velopment; and/or (c) relieving the disease-state, e.g., causing regression of the disease state itself or some symptom of the disease state.
  • pharmaceutically acceptable is defined as being suitable for administration to humans without adverse events.
  • terapéuticaally effective amount is intended to include an amount of a compound of the present invention that is effective when administered alone or in combination to activate glucokinase.
  • the present invention relates to compounds of the general formula (I):
  • X 1 is aryl, heteroaryl or heterocyclyl each of which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl, hydroxy, cyano, amino or carboxy; or
  • X 1 is aralkyl, heteroaralkyl or heterocyclyl-C 1-6 -alkyl, each of which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl, hydroxy, cyano, amino or carboxy; or
  • X 2 is hydrogen or halogen
  • X 2 is aryl-C 2-6 -alkynyl, heteroaryl-C 2-6 -alkynyl, heterocyclyl-C 2-6 -alkynyl, aryl-C 2-6 -alkenyl, het- eroaryl-C 2-6 -alkenyl, heterocyclyl-C ⁇ -alkenyl, aryl or heteroaryl each of which is optionally substituted with one or more substiuents selected from
  • Ar is arylene which is optionally substituted with one or more substituents selected from
  • Y 1 is O or S
  • Y 2 is O or S
  • Z is -(CH 2 ) n - wherein n is 1 , 2 or 3;
  • R is hydrogen, C 1-6 -alkyl, C 3-6 -cycloalkyl, C 2-6 -alkenyl, C 2-6 -alkynyl, C 4-6 -alkenynyl or aryl; or
  • the present invention is concerned with compounds of formula
  • the present invention is concerned with compounds of formula (I) wherein X 1 is aryl, heteroaryl or heterocyclyl each of which is optionally substituted with one or more substituents selected from
  • the present invention is concerned with compounds of for- mula (I) wherein X 1 is aryl, heteroaryl, heteroaralkyl, C 1-6 -alkoxy, C 1-6 -alkylthio, arylthio, C 3-6 -cycloalkylthio, C 1-6 -alkylcarbonyl, arylcarbonyl, C 1-6 -alkylsulfonyl, arylsulfonyl, C 1-6 -alkylamido, arylamido, C 1-6 -alkylaminocarbonyl, C 1-6 -alkylamino, C 1-6 -dialkylamino or C ⁇ s-cycloalkylamino, each of which is optionally substituted with one or more halogens.
  • the present invention is concerned with compounds of for- mula (I) wherein X 1 is aryl, heteroary
  • the present invention is concerned with compounds of formula (I) wherein X 1 is aryl, heteroaryl or heterocyclyl each of which is optionally substituted with one or more substituents selected from
  • the present invention is concerned with compounds of formula (I) wherein X 1 is aryl, which is optionally substituted with one or more substituents selected from
  • the present invention is concerned with compounds of for- mula (I) wherein X 1 is aryl, which is optionally substituted with one or more substituents selected from
  • the present invention is concerned with compounds of for- mula (I) wherein X 1 is heteroaryl, which is optionally substituted with one or more substituents selected from
  • C 1-6 -alkylaminocarbonyl C 1-6 -alkylamino, C 1-6 -dialkylamino or C 3-6 -cycloalkylamino, each of which is optionally substituted with one or more halogens.
  • the present invention is concerned with compounds of formula (I) wherein X 1 is heteroaryl, which is optionally substituted with one or more substituents selected from
  • halogen perhalomethyl or hydroxy
  • the present invention is concerned with compounds of formula (I) wherein X 1 is heteroaryl, which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or
  • the present invention is concerned with compounds of formula (I) wherein X 1 is heterocyclyl, which is optionally substituted with one or more substitu- ents selected from
  • the present invention is concerned with compounds of formula (I) wherein X 1 is heterocyclyl, which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or
  • halogen perhalomethyl or hydroxy
  • C 1-6 -alkyl, aryl, or C 1-6 -alkylsulfonyl each of which is optionally substituted with one or more halogens.
  • the present invention is concerned with compounds of formula (I) wherein X 1 aralkyl, heteroaralkyl or heterocyclyl-C 1-6 -alkyl each of which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl, hydroxy or carboxy; or
  • the present invention is concerned with compounds of formula (I) wherein X 1 is aralkyl, heteroaralkyl or heterocyclyl-C 1-6 -alkyl each of which is optionally substituted with one or more substituents selected from
  • the present invention is concerned with compounds of for- mula (I) wherein X 1 is aralkyl, heteroaralkyl or heterocyclyl-C 1-6 -alkyl each of which is optionally substituted with one or more substituents selected from
  • the present invention is concerned with compounds of formula (I) wherein X 1 is aralkyl, heteroaralkyl or heterocyclyl-C 1-6 -alkyl, each of which is optionally substituted with one or more substituents selected from
  • the present invention is concerned with compounds of formula (I) wherein X 1 is aralkyl, which is optionally substituted with one or more substituents selected from
  • the present invention is concerned with compounds of for- mula (I) wherein X 1 is aralkyl, which is optionally substituted with one or more substituents selected from
  • the present invention is concerned with compounds of for- mula (I) wherein X 1 is heteroaralkyl, which is optionally substituted with one or more substitu- ents selected from
  • the present invention is concerned with compounds of formula (I) wherein X 1 is heteroaralkyl, which is optionally substituted with one or more substitu- ents selected from • halogen, perhalomethyl or hydroxy; or
  • the present invention is concerned with compounds of formula (I) wherein X 1 is heteroaralkyl, which is optionally substituted with one or more substitu- ents selected from
  • the present invention is concerned with compounds of for- mula (I) wherein X 1 is heterocyclyl-C ⁇ -alkyl, which is optionally substituted with one or more substituents selected from
  • C 1-6 -alkylaminocarbonyl C 1-6 -alkylamino, C 1-6 -dialkylamino or Ca-e-cycloalkylamino, each of which is optionally substituted with one or more halogens.
  • the present invention is concerned with compounds of formula (I) wherein X 1 is heterocyclyl-C 1-6 -alkyl, which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or
  • the present invention is concerned with compounds of formula (I) wherein X 1 is heterocyclyl-C 1-6 -alkyl, which is optionally substituted with one or more substituents selected from
  • halogen perhalomethyl or hydroxy
  • the present invention is concerned with compounds of formula (I) wherein X 1 is heterocyclyl-C-i-e-alkyl, which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or
  • the present invention is concerned with compounds of formula (I) wherein X 1 is piperidinylmethylene or morpholinylmethylene. In another embodiment the present invention is concerned with compounds of formula (I) wherein X 2 is hydrogen.
  • the present invention is concerned with compounds of formula (I) wherein X 2 is halogen.
  • the present invention is concerned with compounds of for- mula (I) wherein X 2 is bromine.
  • the present invention is concerned with compounds of formula (I) wherein X 2 is aryl-C 2-6 -alkynyl, heteroaryl-C 2-6 -alkynyl, heterocyclyl-C 2-6 -alkynyl, aryl- C 2-6 -alkenyl, heteroaryl-C 2-6 -alkenyl, heterocyclyl-C 2-6 -alkenyl, aryl or heteroaryl each of which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl, hydroxy or carboxy; or
  • the present invention is concerned with compounds of formula (I) wherein X 2 is aryl-C 2 - 6 -alkynyl, heteroaryl-C 2 - 6 -alkynyl, heterocyclyl-C 2-6 -alkynyl, aryl- C 2-6 -alkenyl, heteroaryl-C 2-6 -alkenyl, heterocyclyl-C 2-6 -alkenyl, aryl or heteroaryl each of which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or
  • the present invention is concerned with compounds of formula (I) wherein X 2 is aryl-C 2-6 -alkynyl, heteroaryl-C 2-6 -alkynyl, heterocyclyl-C 2-6 -alkynyl, aryl- C 2-6 -alkenyl, heteroaryl-C 2-6 -alkenyl, heterocyclyl-C 2-6 -alkenyl, aryl or heteroaryl each of which is optionally substituted with one or more substituents selected from
  • halogen perhalomethyl or hydroxy
  • C- ⁇ - 6 -alkyl C 3-6 -cycloalkyl, aryl, aralkyl, C 1-6 -alkoxy, C 1-6 -alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
  • the present invention is concerned with compounds of formula (I) wherein X 2 aryl-C 2-6 -alkynyl, heteroaryl-C 2-6 -alkynyl, heterocyclyl-C 2-6 -alkynyl, aryl-C 2- 6 -alkenyl, heteroaryl-C 2-6 -alkenyl, heterocyclyl-C ⁇ -alkenyl, aryl or heteroaryl each of which is optionally substituted with one or more substituents selected from
  • the present invention is concerned with compounds of for- mula (I) wherein X 2 is aryl-C 2-6 -alkynyl, which is optionally substituted with one or more substituents selected from
  • the present invention is concerned with compounds of formula (I) wherein X 2 is aryl-C 2-6 -alkynyl, which is optionally substituted with one or more sub- stituents selected from • halogen, perhalomethyl or hydroxy; or
  • the present invention is concerned with compounds of formula (I) wherein X 2 is aryl-C 2-6 -alkynyl, which is optionally substituted with one or more sub- stituents selected from
  • halogen perhalomethyl or hydroxy
  • the present invention is concerned with compounds of formula (I) wherein X 2 is aryl-C 2-6 -alkynyl, which is optionally substituted with one or more sub- stituents selected from • halogen, perhalomethyl or hydroxy; or
  • the present invention is concerned with compounds of formula (I) wherein X 2 is phenylethynyl, which is optionally substituted with one or more sub- stituents selected from
  • the present invention is concerned with compounds of formula (I) wherein X 2 is heteroaryl-C 2-6 -alkynyl, which is optionally substituted with one or more substituents selected from
  • the present invention is concerned with compounds of formula (I) wherein X 2 is heteroaryl-C 2-6 -alkynyl, which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or • C- ⁇ - 6 -alkyl, C 3-6 -CyClOaIkYl, aryl, aralkyl, heteroaryl, heteroaralkyl, C 1-6 -alkoxy, C 1-6 -alkylthio, arylthio, Cs-e-cycloalkylthio, C 1-6 -alkylcarbonyl, arylcarbonyl, C 1-6 -alkylsulfonyl, arylsulfonyl, C 1-6 -alkylamido, arylamido, C-i-e-alkylaminocarbonyl, C 1-6 -alkylamino, C 1-6 -dialkylamino or Ca-e-cyclo
  • the present invention is concerned with compounds of formula (I) wherein X 2 is heteroaryl-C 2-6 -alkynyl, which is optionally substituted with one or more substituents selected from
  • halogen perhalomethyl or hydroxy
  • C 1-6 -alkyl, aryl, or C 1-6 -alkylsulfonyl each of which is optionally substituted with one or more halogens.
  • the present invention is concerned with compounds of formula (I) wherein X 2 is heterocyclyl-C 2-6 -alkynyl, which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl, hydroxy or carboxy; or
  • the present invention is concerned with compounds of formula (I) wherein X 2 is heterocyclyl-C 2-6 -alkynyl, which is optionally substituted with one or more substituents selected from
  • halogen perhalomethyl or hydroxy
  • the present invention is concerned with compounds of formula (I) wherein X 2 is heterocyclyl-C 2-6 -alkynyl, which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or
  • the present invention is concerned with compounds of formula (I) wherein X 2 is piperidinylpropynyl or morpholinylpropenyl, which is optionally substi- tuted with one or more substituents selected from
  • the present invention is concerned with compounds of for- mula (I) wherein X 2 is aryl-C 2-6 -alkenyl, heteroaryl-C 2-6 -alkenyl or heterocyclyl-C 2-6 -alkenyl, each of which is optionally substituted with one or more substituents selected from
  • the present invention is concerned with compounds of formula (I) wherein X 2 is aryl-C 2-6 -alkenyl, heteroaryl-C 2-6 -alkenyl or heterocyclyl-C 2-6 -alkenyl, each of which is optionally substituted with one or more substituents selected from
  • the present invention is concerned with compounds of formula (I) wherein X 2 is aryl-C 2-6 -alkenyl, heteroaryl-C 2 - 6 -alkenyl or heterocyclyl-C ⁇ -alkenyl, each of which is optionally substituted with one or more substituents selected from
  • halogen perhalomethyl or hydroxy
  • the present invention is concerned with compounds of formula (I) wherein X 2 is aryl-C 2-6 -alkenyl, heteroaryl-C 2-6 -alkenyl or heterocyclyl-C ⁇ -alkenyl, each of which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or
  • the present invention is concerned with compounds of formula (I) wherein X 2 is aryl, which is optionally substituted with one or more substituents se- lected from
  • the present invention is concerned with compounds of formula (I) wherein X 2 is aryl, which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or
  • halogen perhalomethyl or hydroxy
  • C 1-6 -alkyl, aryl, or C 1-6 -alkylsulfonyl each of which is optionally substituted with one or more halogens.
  • the present invention is concerned with compounds of formula (I) wherein X 2 is heteroaryl, which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl, hydroxy or carboxy; or
  • the present invention is concerned with compounds of formula (I) wherein X 2 is heteroaryl, which is optionally substituted with one or more substituents selected from
  • halogen or • C 1-6 -alkyl, C 1-6 -alkoxy, aryloxy or aralkoxy each of which is optionally substituted with one or more halogens; or
  • the present invention is concerned with compounds of for- mula (I) wherein Ar is phenylene which is optionally substituted with one or more substituents selected from
  • the present invention is concerned with compounds of formula (I) wherein Ar is phenylene which is optionally substituted with one or more substituents selected from halogen or C 1-6 -alkyl. In another embodiment, the present invention is concerned with compounds of formula (I) wherein Ar is phenylene which is optionally substituted with halogen.
  • the present invention is concerned with compounds of formula (I) wherein Ar is phenylene which is optionally substituted with one or more of C 1-6 -alkyl optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein Ar is phenylene which is optionally substituted with one or more of C 1-6 - alkoxy optionally substituted with one or more halogens.
  • the present invention is concerned with compounds of formula (I) wherein Ar is phenylene which is optionally substituted with one or more of aryloxy optionally substituted with one or more halogens.
  • the present invention is concerned with compounds of formula (I) wherein Ar is phenylene which is optionally substituted with one or more of aralkoxy optionally substituted with one or more halogens.
  • the present invention is concerned with compounds of for- mula (I) wherein Ar is phenylene which is optionally substituted with methyl. In another embodiment, the present invention is concerned with compounds of formula (I) wherein Ar is phenylene.
  • the present invention is concerned with compounds of formula (I) wherein Y 1 is S. In another embodiment, the present invention is concerned with compounds of formula (I) wherein Y 1 is O.
  • the present invention is concerned with compounds of formula (I) wherein Y 2 is O.
  • the present invention is concerned with compounds of for- mula (I) wherein Y 2 is S.
  • the present invention is concerned with compounds of formula (I) wherein Y 2 is CH 2 .
  • the present invention is concerned with compounds of formula (I) wherein n is 1. In another embodiment, the present invention is concerned with compounds of formula (I) wherein n is 2.
  • the present invention is concerned with compounds of formula (I) wherein R is hydrogen or C 1-6 -alkyl.
  • the present invention is concerned with compounds of formula (I) wherein R is hydrogen.
  • the present invention is concerned with compounds of formula (I) wherein R is methyl or ethyl.
  • the present invention is concerned with compounds of formula I wherein alkyl is methyl or ethyl. In another embodiment, the present invention is concerned with compounds of formula I wherein alkenyl is vinyl or 1-propenyl.
  • the present invention is concerned with compounds of formula I wherein alkynyl is 1-propynyl.
  • the present invention is concerned with compounds of formula I wherein alkenynyl is 1-pentene-4-yne.
  • the present invention is concerned with compounds of formula I wherein alkoxy is methoxy, ethoxy, isopropoxy or cyclopropoxy.
  • the present invention is concerned with compounds of formula I wherein aryl is phenyl. In another embodiment, the present invention is concerned with compounds of formula I wherein arylene is phenylene.
  • the present invention is concerned with compounds of formula I wherein halogen is bromine, fluorine or chlorine. In another embodiment, the present invention is concerned with compounds of formula I wherein perhalomethyl is trifluoromethyl.
  • the present invention is concerned with compounds of formula I wherein perhalomethoxy is trifluoromethoxy
  • the present invention is concerned with compounds of formula I wherein heteroaryl is furyl or thienyl.
  • the present invention is concerned with compounds of formula I wherein heteroaryl is pyrazolyl, pyrrolyl or pyridyl.
  • the present invention is concerned with compounds of formula I wherein heteroaryl is benzofuryl or benzothienyl.
  • the present invention is concerned with compounds of formula I wherein heterocyclyl is pyrrolidinyl, piperidinyl, piperazinyl or morpholinyl.
  • the present invention is concerned with compounds of formula I wherein heteroarylene is thienylene.
  • the present invention is concerned with compounds of formula I wherein aralkyl is benzyl.
  • the present invention is concerned with compounds of formula I wherein aryloxy is phenoxy.
  • the present invention is concerned with compounds of formula I wherein aralkoxy is benzyloxy. In another embodiment, the present invention is concerned with compounds of formula I which are PPAR ⁇ agonists.
  • the present invention is concerned with compounds of formula I which are selective PPAR ⁇ agonists.
  • the present invention is concerned with compounds of formula I which are selective, partial PPAR ⁇ agonists.
  • the present invention also encompasses pharmaceutically acceptable salts of the present compounds.
  • Such salts include pharmaceutically acceptable acid addition salts, pharmaceutically acceptable base addition salts, pharmaceutically acceptable metal salts, ammonium and alkylated ammonium salts.
  • Acid addition salts include salts of inorganic acids as well as organic acids. Representative examples of suitable inorganic acids include hydrochloric, hydrobromic, hydroiodic, phosphoric, sulfuric, nitric acids and the like.
  • suitable organic acids include formic, acetic, trichloroacetic, trifluoroacetic, propionic, benzoic, cinnamic, citric, fumaric, glycolic, lactic, maleic, malic, malonic, mandelic, oxalic, picric, pyruvic, salicylic, succinic, methanesulfonic, ethanesulfonic, tartaric, ascorbic, pamoic, bismethylene salicylic, ethanedisulfonic, gluconic, citraconic, aspartic, stearic, palmitic, EDTA, glycolic, p-aminobenzoic, glutamic, benzenesulfonic, p-toluenesulfonic acids, sulphates, nitrates, phosphates, perchlorates, borates, acetates, benzoates, hydroxynaph- thoates, glycero
  • compositions include the pharmaceutically acceptable salts listed in J. Pharm. Sci. 1977, 66, 2, which is incorporated herein by reference.
  • metal salts include lithium, sodium, potassium, magnesium, zinc, calcium salts and the like.
  • amines and organic amines include ammonium, methylamine, di- methylamine, trimethylamine, ethylamine, diethylamine, propylamine, butylamine, tetrame- thylamine, ethanolamine, diethanolamine, triethanolamine, meglumine, ethylenediamine, choline, N,N'-dibenzylethylenediamine, N-benzylphenylethylamine, N-methyl-D-glucamine, guanidine and the like.
  • cationic amino acids include lysine, arginine, histidine and the like.
  • the pharmaceutically acceptable salts are prepared by reacting the compound of formula I with 1 to 4 equivalents of a base such as sodium hydroxide, sodium methoxide, sodium hydride, potassium t-butoxide, calcium hydroxide, magnesium hydroxide and the like, in solvents like ether, THF, methanol, t-butanol, dioxane, isopropanol, ethanol etc. Mixture of solvents may be used. Organic bases like lysine, arginine, diethanolamine, choline, guandine and their derivatives etc. may also be used.
  • a base such as sodium hydroxide, sodium methoxide, sodium hydride, potassium t-butoxide, calcium hydroxide, magnesium hydroxide and the like
  • solvents like ether, THF, methanol, t-butanol, dioxane, isopropanol, ethanol etc.
  • Organic bases like lysine, arginine, diethanolamine, choline
  • acid addition salts wherever applicable are prepared by treatment with acids such as hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid, p-toluenesulphonic acid, methanesulfonic acid, acetic acid, citric acid, maleic acid salicylic acid, hydroxynaphthoic acid, ascorbic acid, palmitic acid, succinic acid, benzoic acid, benzenesulfonic acid, tartaric acid and the like in solvents like ethyl acetate, ether, alcohols, acetone, THF, dioxane etc. Mixture of solvents may also be used.
  • acids such as hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid, p-toluenesulphonic acid, methanesulfonic acid, acetic acid, citric acid, maleic acid salicylic acid, hydroxynaphthoic acid, ascorbic
  • stereoisomers of the compounds forming part of this invention may be prepared by using reactants in their single enantiomeric form in the process wherever possible or by conducting the reaction in the presence of reagents or catalysts in their single enantiomer form or by resolving the mixture of stereoisomers by conventional methods.
  • Some of the preferred methods include use of microbial resolution, enzymatic resolution, resolving the diastereomeric salts formed with chiral acids such as mandelic acid, camphorsulfonic acid, tartaric acid, lactic acid, and the like wherever applicable or chiral bases such as brucine, (R)- or (S)-phenylethylamine, cinchona alkaloids and their derivatives and the like.
  • the compound of formula I may be converted to a 1 :1 mixture of diastereomeric amides by treating with chiral amines, aminoacids, aminoalcohols derived from aminoacids; conventional reaction conditions may be employed to convert acid into an amide; the dia-stereomers may be separated either by fractional crystallization or chromatography and the stereoisomers of compound of formula I may be prepared by hydrolysing the pure diastereomeric amide.
  • polymorphs of compound of general formula I forming part of this invention may be prepared by crystallization of compound of formula I under different conditions. For example, using different solvents commonly used or their mixtures for recrystallization; crys- tallizations at different temperatures; various modes of cooling, ranging from very fast to very slow cooling during crystallizations. Polymorphs may also be obtained by heating or melting the compound followed by gradual or fast cooling. The presence of polymorphs may be determined by solid probe nmr spectroscopy, ir spectroscopy, differential scanning calorimetry, powder X-ray diffraction or such other techniques.
  • the compounds of the present invention may form solvates with standard low molecular weight solvents using methods well known to the person skilled in the art. Such solvates are also contemplated as being within the scope of the present invention. Examples of solvates are the hydrates, which the present compounds are able to form.
  • the invention also encompasses prodrugs of the present compounds, which on administration undergo chemical conversion by metabolic processes before becoming active pharmacological substances. In general, such prodrugs will be functional derivatives of the present compounds, which are readily convertible in vivo into the required compound of the formula (I). Conventional procedures for the selection and preparation of suitable prodrug derivatives are described, for example, in "Design of Prodrugs", ed. H. Bundgaard, Elsevier, 1985.
  • the invention also encompasses active metabolites of the present compounds.
  • the invention also relates to pharmaceutical compositions comprising, as an active ingredient, at least one compound of the formula I or any optical or geometric isomer or tautomeric form thereof including mixtures of these or a pharmaceutically acceptable salt thereof together with one or more pharmaceutically acceptable carriers or diluents.
  • the invention also provides novel compounds of the formula I for use in therapy.
  • the present invention provides novel compounds or pharmaceutically acceptable salts thereof that are useful as PPAR- ⁇ activators.
  • the present invention provides novel compounds that improves mitochondrial energy output.
  • the present invention provides novel pharmaceutical compositions comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of at least one of the compounds of the present invention or a pharmaceutically acceptable salt thereof.
  • the present invention relates to a method of treating and/or preventing Type I or Type Il diabetes.
  • the present invention relates to the use of one or more compounds of the general formula I or pharmaceutically acceptable salts thereof for the preparation of a pharmaceutical composition for the treatment and/or prevention of Type I or Type Il diabetes.
  • the present compounds are useful for the treatment and/or prevention of IGT. In a still further aspect, the present compounds are useful for the treatment and/or prevention of Type 2 diabetes.
  • the present compounds are useful for the delaying or prevention of the progression from IGT to Type 2 diabetes.
  • the present compounds are useful for the delaying or pre-vention of the progression from non-insulin requiring Type 2 diabetes to insulin requiring Type 2 diabetes.
  • the present compounds reduce blood glucose and triglyceride levels and are accordingly useful for the treatment and/or prevention of ailments and disorders such as diabetes and/or obesity.
  • the present compounds are useful for the treatment and/or prophylaxis of insulin resistance (Type 2 diabetes), impaired glucose tolerance, dyslipidemia, disorders related to Syndrome X such as hypertension, obesity, insulin resistance, hypergly- caemia, atherosclerosis, artherosclerosis, hyperlipidemia, coronary artery disease, myocardial ischemia and other cardiovascular disorders.
  • the present compounds are useful for the treatment and/or prophylaxis of diseases or complications related to atherosclerosis such as coronary artery diseases, coronary heart diseases, heart attack, myocardial infarct, coronary infarct, transient ischemic attack (TIA) or stroke.
  • diseases or complications related to atherosclerosis such as coronary artery diseases, coronary heart diseases, heart attack, myocardial infarct, coronary infarct, transient ischemic attack (TIA) or stroke.
  • the present compounds are effective in decreasing apoptosis in mammalian cells such as beta cells of Islets of Langerhans.
  • the present compounds are useful for the treatment of certain renal diseases including glomerulonephritis, glomerulosclerosis, nephrotic syndrome, hypertensive nephrosclerosis.
  • the present compounds may also be useful for improving cognitive functions in dementia, treating diabetic complications, psoriasis, polycystic ovarian syndrome (PCOS) and prevention and treatment of bone loss, e.g. osteoporosis.
  • PCOS polycystic ovarian syndrome
  • the invention also relates to the use of the present compounds, which after administration lower the bio-markers of atherosclerosis like, but not limited to, c-reactive protein (CRP), TNF ⁇ and IL-6.
  • CRP c-reactive protein
  • the present compounds may also be administered in combination with one or more further pharmacologically active substances eg., selected from antiobesity agents, antidiabetics, antihypertensive agents, agents for the treatment and/or prevention of complications resulting from or associated with diabetes and agents for the treatment and/or prevention of complications and disorders resulting from or associated with obesity.
  • the present compounds may be administered in combination with one or more antiobesity agents or appetite regulating agents.
  • agents may be selected from the group consisting of CART (cocaine amphetamine regulated transcript) agonists, NPY (neuropeptide Y) antagonists, MC4 (melano- cortin 4) agonists, orexin antagonists, TNF (tumor necrosis factor) agonists, CRF (corticotropin releasing factor) agonists, CRF BP (corticotropin releasing factor binding protein) antagonists, urocortin agonists, ⁇ 3 agonists, MSH (melanocyte-stimulating hormone) agonists, MCH (melanocyte-concentrating hormone) antagonists, CCK (cholecystokinin) agonists, serotonin re-uptake inhibitors, serotonin and noradrenaline re-uptake inhibitors, mixed sero- tonin and noradrenergic compounds
  • CART cocaine amp
  • the antiobesity agent is dexamphetamine or amphetamine. In another embodiment the antiobesity agent is fenfluramine or dexfenfluramine. In still another embodiment the antiobesity agent is sibutramine. In a further embodiment the antiobesity agent is orlistat. In another embodiment the antiobesity agent is mazindol or phentermine.
  • Suitable antidiabetics comprise insulin, GLP-1 (glucagon like peptide-1 ) derivatives such as those disclosed in WO 98/08871 to Novo Nordisk A/S, which is incorporated herein by reference as well as orally active hypoglycaemic agents.
  • the orally active hypoglycaemic agents preferably comprise sulphonylureas, bigua- nides, meglitinides, glucosidase inhibitors, glucagon antagonists such as those disclosed in WO 99/01423 to Novo Nordisk A/S and Agouron Pharmaceuticals, Inc., GLP-1 agonists, potassium channel openers such as those disclosed in WO 97/26265 and WO 99/03861 to Novo Nordisk A/S which are incorporated herein by reference, DPP-IV (dipeptidyl peptidase- IV) inhibitors, inhibitors of hepatic enzymes involved in stimulation of gluconeogenesis and/or glycogenosis, glucose uptake modulators, compounds modifying the lipid metabolism such as antihyperlipidemic agents and antilipidemic agents as HMG CoA inhibitors (statins), compounds lowering food intake, RXR agonists and agents acting on the ATP-dependent potassium channel of the ⁇ -cells.
  • the present compounds are administered in combination with insulin.
  • the present compounds are administered in combination with a sulphonylurea eg. tolbutamide, glibenclamide, glipizide or glicazide.
  • a sulphonylurea eg. tolbutamide, glibenclamide, glipizide or glicazide.
  • present compounds are administered in combination with a biguanide eg. metformin.
  • present compounds are administered in combination with a meglitinide eg. repaglinide or senaglinide.
  • the present compounds are administered in combination with an ⁇ -glucosidase inhibitor eg. miglitol or acarbose.
  • an ⁇ -glucosidase inhibitor eg. miglitol or acarbose.
  • the present compounds are administered in combination with an agent acting on the ATP-dependent potassium channel of the ⁇ -cells eg. tolbutamide, glibenclamide, glipizide, glicazide or repaglinide.
  • an agent acting on the ATP-dependent potassium channel of the ⁇ -cells eg. tolbutamide, glibenclamide, glipizide, glicazide or repaglinide.
  • the present compounds may be administered in combination with nateglinide.
  • the present compounds are administered in combination with an antihyperlipidemic agent or antilipidemic agent eg. cholestyramine, colestipol, clofi- brate, gemfibrozil, fenofibrate, bezafibrate, tesaglitazar, EML-4156, LY-518674, LY-519818, MK-767, atorvastatin, fluvastatin, lovastatin, pravastatin, simvastatin, cerivastin, acipimox, ezetimibe probucol, dextrothyroxine or nicotinic acid.
  • an antihyperlipidemic agent or antilipidemic agent eg. cholestyramine, colestipol, clofi- brate, gemfibrozil, fenofibrate, bezafibrate, tesaglitazar, EML-4156, LY-518674, LY-519818, MK-767
  • the present compounds are administered in combination with a thiazolidinedione e.g. troglitazone, ciglitazone, pioglitazone or rosiglitazone.
  • a thiazolidinedione e.g. troglitazone, ciglitazone, pioglitazone or rosiglitazone.
  • the present compounds are administered in combination with more than one of the above-mentioned compounds eg. in combination with a sulphonylurea and metformin, a sulphonylurea and acarbose, repaglinide and metformin, insulin and a sulphonylurea, insulin and metformin, insulin, insulin and lovastatin, etc.
  • the present compounds may be administered in combination with one or more antihypertensive agents.
  • antihypertensive agents examples include ⁇ -blockers such as alprenolol, atenolol, timolol, pindolol, propranolol and metoprolol, ACE (angiotensin converting enzyme) inhibitors such as benazepril, captopril, enalapril, fosinopril, lisinopril, quinapril and ramipril, calcium channel blockers such as nifedipine, felodipine, nicardipine, isradipine, nimodipine, diltiazem and verapamil, and ⁇ -blockers such as doxazosin, urapidil, prazosin and terazosin. Further reference can be made to Remington: The Science and Practice of Pharmacy, 19 th Edition, Gennaro, Ed., Mack Publishing Co., Easton, PA, 1995.
  • the present invention also relates to a process for the preparation of the above said novel compounds, their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their pharmaceutically acceptable salts or pharmaceutically acceptable solvates.
  • the compounds of the invention may be administered alone or in combination with pharmaceutically acceptable carriers or excipients, in either single or multiple doses.
  • the pharmaceutical compositions according to the invention may be formulated with phar- maceutically acceptable carriers or diluents as well as any other known adjuvants and excipients in accordance with conventional techniques such as those disclosed in Remington: The Science and Practice of Pharmacy, 19 th Edition, Gennaro, Ed., Mack Publishing Co., Easton, PA, 1995.
  • the compositions may appear in conventional forms, for example capsules, tablets, aerosols, solutions, suspensions or topical applications.
  • compositions include a compound of formula I or a pharmaceutically acceptable acid addition salt thereof, associated with a pharmaceutically acceptable excipient which may be a carrier or a diluent or be diluted by a carrier, or enclosed within a carrier which can be in the form of a capsule, sachet, paper or other container.
  • a pharmaceutically acceptable excipient which may be a carrier or a diluent or be diluted by a carrier, or enclosed within a carrier which can be in the form of a capsule, sachet, paper or other container.
  • the active compound will usually be mixed with a carrier, or diluted by a carrier, or enclosed within a carrier which may be in the form of a ampoule, capsule, sachet, paper, or other container.
  • the carrier When the carrier serves as a diluent, it may be solid, semi-solid, or liquid material which acts as a vehicle, excipient, or medium for the active compound.
  • the active compound can be adsorbed on a granular solid container for example in a sachet.
  • suitable carriers are water, salt solutions, alcohols, polyethylene glycols, polyhydroxyethoxylated castor oil, peanut oil, olive oil, gelatine, lactose, terra alba, sucrose, cyclodextrin, amylose, magnesium stearate, talc, gelatin, agar, pectin, acacia, stearic acid or lower alkyl ethers of cellulose, silicic acid, fatty acids, fatty acid amines, fatty acid monoglycerides and diglycerides, pentaerythritol fatty acid esters, polyoxyethylene, hydroxymethylcellulose and polyvinylpyrrolidone.
  • the carrier or diluent may include any sustained release material known in the art, such as glyceryl monostearate or glyceryl distearate, alone or mixed with a wax.
  • the formulations may also include wetting agents, emulsifying and suspending agents, preserving agents, sweetening agents or flavouring agents.
  • the formulations of the invention may be formulated so as to provide quick, sustained, or delayed release of the active ingredient after administration to the patient by employing procedures well known in the art.
  • compositions can be sterilized and mixed, if desired, with auxiliary agents, emulsifiers, salt for influencing osmotic pressure, buffers and/or colouring sub- stances and the like, which do not deleteriously react with the active compounds.
  • the route of administration may be any route, which effectively transports the active compound to the appropriate or desired site of action, such as oral, nasal, pulmonary, transdermal or parenteral e.g. rectal, depot, subcutaneous, intravenous, intra urethra I, intramuscular, intranasal, ophthalmic solution or an ointment, the oral route being preferred.
  • a solid carrier is used for oral administration, the preparation may be tabletted, placed in a hard gelatin capsule in powder or pellet form or it can be in the form of a troche or lozenge.
  • the preparation may be in the form of a syrup, emulsion, soft gelatin capsule or sterile injectable liquid such as an aqueous or non-aqueous liquid suspension or solution.
  • the preparation may contain a compound of formula I dissolved or suspended in a liquid carrier, in particular an aqueous carrier, for aerosol application.
  • the carrier may contain additives such as solubilizing agents, e.g. propylene glycol, surfactants, absorption enhancers such as lecithin (phosphatidylcholine) or cyclodextrin, or preservatives such as parabenes.
  • solubilizing agents e.g. propylene glycol
  • surfactants e.g. propylene glycol
  • absorption enhancers such as lecithin (phosphatidylcholine) or cyclodextrin
  • preservatives such as parabenes.
  • injectable solutions or suspensions preferably aqueous solutions with the active compound dissolved in polyhydroxylated cast
  • Tablets, dragees, or capsules having talc and/or a carbohydrate carrier or binder or the like are particularly suitable for oral application.
  • Preferable carriers for tablets, dragees, or capsules include lactose, corn starch, and/or potato starch.
  • a syrup or elixir can be used in cases where a sweetened vehicle can be employed.
  • a typical tablet which may be prepared by conventional tabletting techniques may contain:
  • the pharmaceutical composition of the invention may comprise the compound of formula (I) in combination with further pharmacologically active substances such as those described in the foregoing.
  • the compounds of the invention may be administered to a mammal, especially a human in need of such treatment, prevention, elimination, alleviation or amelioration of diseases related to the regulation of blood sugar.
  • Such mammals include also animals, both domestic animals, e.g. household pets, and non-domestic animals such as wildlife.
  • the compounds of the invention are effective over a wide dosage range.
  • a typical oral dosage is in the range of from about 0.001 to about 100 mg/kg body weight per day, preferably from about 0.01 to about 50 mg/kg body weight per day, and more preferred from about 0.05 to about 10 mg/kg body weight per day administered in one or more dosages such as 1 to 3 dosages.
  • the exact dosage will depend upon the frequency and mode of ad- ministration, the sex, age, weight and general condition of the subject treated, the nature and severity of the condition treated and any concomitant diseases to be treated and other factors evident to those skilled in the art.
  • a typical unit dosage form for oral administration one or more times per day such as 1 to 3 times per day may contain of from 0.05 to about 1000 mg, preferably from about 0.1 to about 500 mg, and more preferred from about 0.5 mg to about 200 mg.
  • CDCI 3 deutorated chloroform DMF: N,N-dimethylformamide min: minutes h: hours
  • Step D By chemical or enzymatic saponification of a compound of formula I wherein Ar, Y 1 , Y 2 , Z, X 1, X 2 and R are as defined above except that R is not hydrogen, to give a compound of formula wherein Ar, Y 1 , Y 2 , Z, X 1, X 2 and R are as defined above, except that R is hydrogen.
  • reaction mixture was filtered through Decalite and the filtrate was evaporated.
  • residue was purified on column chromatography using ethyl ace- tate/methanol mixtures to give (2-methyl-4- ⁇ 3-[3-(3-piperidin-1-yl-prop-1-ynyl)-5-(4-trifluoro- methyl-phenylethynyl)-phenyl]-prop-2-ynyloxy ⁇ -phenoxy)-acetic acid methyl ester in 30 mg (26%) yield.
  • reaction mixture was filtered through Decalite and the filtrate was evaporated.
  • residue was purified on column chromatography using ethyl acetate/methanol mixtures to give (2-methyl-4- ⁇ 3-[3-(3-morpholin-4-yl-prop-1-ynyl)-5-(4- trifluoromethyl-phenylethynyl)-phenyl]-prop-2-ynyloxy ⁇ -phenoxy)-acetic acid methyl ester in 18 mg (10%) yield.
  • reaction mixture was filtered through Decalite and the filtrate was evaporated.
  • residue was purified on column chromatography using methylene chlo- ride/THF mixtures to give (4- ⁇ 3-[3-(4-chloro-phenylethynyl)-5-(3-morpholin-4-yl-prop-1-ynyl)- phenyl]-prop-2-ynyloxy ⁇ -2-methyl-phenoxy)-acetic acid methyl ester in 63 mg (54%) yield.
  • reaction mixture was filtered through Decalite and the filtrate was evaporated.
  • residue was purified on column chromatography using methylene chloride/THF mixtures to give (4- ⁇ 3-[3-(4-methanesulfonyl-phenylethynyl)-5-(3- morpholin-4-yl-prop-1 -ynyl)-phenyl]-prop-2-ynyloxy ⁇ -2-methyl-phenoxy)-acetic acid methyl ester in 50 mg (34%) yield.
  • the PPAR transient transactivation assay is based on transient transfection into human HEK293 cells of two plasmids encoding a chimeric test protein and a reporter protein respectively.
  • the chimeric test protein is a fusion of the DNA binding domain (DBD) from the yeast GAL4 transcription factor to the ligand binding domain (LBD) of the human PPAR proteins.
  • the GAL4 DBD will direct the chimeric protein to bind only to Gal4 enhancers (of which none existed in HEK293 cells).
  • the reporter plas- mid contained a Gal4 enhancer driving the expression of the firefly luciferase protein.
  • HEK293 cells expressed the GAL4-DBD-PPAR-LBD fusion protein.
  • the fusion protein will in turn bind to the Gal4 enhancer controlling the luciferase expression, and do nothing in the absence of ligand.
  • luciferase pro- tein Upon addition to the cells of a PPAR ligand luciferase pro- tein will be produced in amounts corresponding to the activation of the PPAR protein.
  • the amount of luciferase protein is measured by light emission after addition of the appropriate substrate.
  • CELL CULTURE AND TRANSFECTION HEK293 cells were grown in DMEM + 10% FCS. Cells were seeded in 96-well plates the day before transfection to give a confluency of 50-80 % at transfection. A total of 0,8 ⁇ g DNA containing 0,64 ⁇ g pM1 ⁇ / ⁇ LBD, 0,1 ⁇ g pCMV ⁇ Gal, 0,08 ⁇ g pGL2(Gal4) 5 and 0,02 ⁇ g pADVANTAGE was transfected per well using FuGene transfection reagent according to the manufacturers instructions (Roche). Cells were allowed to express protein for 48 h followed by addition of compound.
  • Plasmids Human PPAR- ⁇ was obtained by PCR amplification using cDNA synthesized by reverse transcription of mRNA from human liver, adipose tissue and plancenta respectively. Amplified cDNAs were cloned into pCR2.1 and sequenced. The ligand binding domain (LBD) of each PPAR isoform was generated by PCR (PPAR ⁇ : aa 128 - C-terminus) and fused to the DNA binding domain (DBD) of the yeast transcription factor GAL4 by sub- cloning fragments in frame into the vector pM1 (Sadowski et al.
  • the reporter was constructed by inserting an oligonucleotide encoding five repeats of the GAL4 recognition sequence (5 x CGGAGTACTGTCCTCCG(AG)) (Webster et al. (1988), Nucleic Acids Res. 16, 8192) into the vector pGL2 promotor (Promega) generating the plasmid pGL2(GAL4) 5 .
  • pCMV ⁇ Gal was purchased from Clontech and pADVANTAGE was purchased from Promega.
  • Luciferase assay Medium including test compound was aspirated and 100 ⁇ l PBS incl. 1 mM Mg++ and Ca++ were added to each well. The luciferase assay was performed using the LucLite kit according to the manufacturer's instructions (Packard Instruments). Light emission was quantified by counting on a Packard LumiCounter.
  • ⁇ -galactosi- dase activity 25 ⁇ l supernatant from each transfection lysate was transferred to a new mi- croplate.
  • ⁇ -Galactosidase assays were performed in the microwell plates using a kit from Promega and read in a Labsystems Ascent Multiscan reader. The ⁇ -galactosidase data were used to normalize (transfection efficiency, cell growth etc.) the luciferase data.
  • the activity of a compound is calculated as fold induction compared to an untreated sample.
  • the efficacy maximal activity
  • the EC50 is the concentration giving 50% of maximal observed activity.
  • EC50 values were calculated via non-linear regression using GraphPad PRISM 3.02 (GraphPad Software, San Diego, Ca). The results were expressed as means ⁇ SD.
  • X 1 is aralkyl, heteroaralkyl or heterocyclyl-C 1-6 -alkyl, each of which is optionally substituted with one or more substituents selected from
  • X 2 is hydrogen or halogen
  • X 2 is aryl-C 2-6 -alkynyl, heteroaryl-C 2-6 -alkynyl, heterocyclyl-C 2-6 -alkynyl, aryl-C 2-6 -alkenyl, het- eroaryl-C 2-6 -alkenyl, heterocyclyl-C ⁇ -alkenyl, aryl or heteroaryl each of which is optionally substituted with one or more substiuents selected from
  • Ar is arylene which is optionally substituted with one or more substituents selected from • halogen, hydroxy or cyano; or
  • Y 1 is O or S
  • Y 2 is O or S
  • Z is -(CH 2 ),,- wherein n is 1 , 2 or 3;
  • R is hydrogen, C 1-6 -alkyl, C 3-6 -cycloalkyl, C 2-6 -alkenyl, C 2-6 -alkynyl, C 4-6 -alkenynyl or aryl; or
  • X 1 is aryl, heteroaryl or heterocyclyl each of which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or
  • X 2 is aryl-C 2-6 -alkynyl, heteroaryl-C 2-6 -alkynyl, heterocyclyl-C 2-6 -alkynyl, aryl-C 2-6 -alkenyl, heteroaryl-C 2-6 -alkenyl, heterocyclyl-C 2-6 -alkenyl, aryl or heteroaryl each of which is optionally substituted with one or more substituents selected from
  • X 2 is aryl-C 2-6 -alkynyl, heteroaryl-C 2-6 - alkynyl, heterocyclyl-C 2-6 -alkynyl, aryl-C 2-6 -alkenyl, heteroaryl-C 2-6 -alkenyl, heterocyclyl-C 2-6 - alkenyl, aryl or heteroaryl each of which is optionally substituted with one or more substitu- ents selected from • halogen, perhalomethyl or hydroxy; or
  • X 2 is aryl-C 2-6 -alkynyl, which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or
  • X 2 is heterocyclyl-C 2-6 -alkynyl, which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or • C- ⁇ - 6 -alkyl, C 3-6 -CyClOaIkYl, aryl, aralkyl, C 1-6 -alkoxy, C 1-6 -alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
  • halogen or • C 1-6 -alkyl, C 1-6 -alkoxy, aryloxy or aralkoxy each of which is optionally substituted with one or more halogens; or
  • a compound according to any one of the preceding clauses which is: ⁇ 4-[3-(3-Bromo-5-phenylethynyl-phenyl)-prop-2-ynyloxy]-phenoxy ⁇ -acetic acid; ⁇ 4-[3-(3,5-Bis-phenylethynyl-phenyl)-prop-2-ynyloxy]-phenoxy ⁇ -acetic acid;
  • a pharmaceutical composition comprising, as an active ingredient, at least one compound according to any one of the clauses 1-28 together with one or more pharmaceutically acceptable carriers or excipients.
  • a pharmaceutical composition according to clause 30 in unit dosage form comprising from about 0.05 mg to about 1000 mg, preferably from about 0.1 to about 500 mg of and es- pecially preferred from about 0.5 mg to about 200 mg per day of compound according to any one of the clauses'! -28.
  • a pharmaceutical composition for the treatment and/or prevention of type I diabetes, type Il diabetes, impaired glucose tolerance, insulin resistance or obesity comprising a compound according to any of the clauses 1-28 together with one or more pharmaceutically acceptable carriers or excipients.
  • a method for the treatment and/or prevention of type I diabetes, type Il diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound according to any one of the clauses 1-28 or of a pharmaceutical composition comprising the same.
  • the effective amount of the compound according to any one of the clauses 1-28 is in the range of from about 0.05 mg to about 1000 mg, preferably from about 0.1 to about 500 mg of and especially preferred from about 0.5 mg to about 200 mg per day.

Abstract

Compounds of the general formula (I), the use of these compounds as pharmaceutical compositions, pharmaceutical compositions comprising the compounds and methods of treatment employing these compounds and compositions. The present compounds are activators of PPAR& and should be useful for treating conditions mediated by the same.

Description

NOVEL COMPOUNDS, THEIR PREPARATION AND USE
FIELD OF THE INVENTION
The present invention relates to novel compounds, to the use of these compounds as pharmaceutical compositions, to pharmaceutical compositions comprising the compounds and to a method of treatment employing these compounds and compositions. The compounds are activators of peroxisome proliferator-activated receptors (PPAR)-δ.
BACKGROUND OF THE INVENTION
Coronary artery disease (CAD) is the major cause of death in Type 2 diabetic and metabolic syndrome patients (i.e. patients that fall within the 'deadly quartet' category of im- paired glucose tolerance, insulin resistance, hypertriglyceridaemia and/or obesity).
The hypolipidaemic fibrates and antidiabetic thiazolidinediones separately display moderately effective triglyceride-lowering activities although they are neither potent nor efficacious enough to be a single therapy of choice for the dyslipidaemia often observed in Type 2 diabetic or metabolic syndrome patients. The thiazolidinediones also potently lower circu- lating glucose levels of Type 2 diabetic animal models and humans. However, the fibrate class of compounds are without beneficial effects on glycaemia. Studies on the molecular actions of these compounds indicate that thiazolidinediones and fibrates exert their action by activating distinct transcription factors of the peroxisome proliferator activated receptor (PPAR) family, resulting in increased and decreased expression of specific enzymes and apolipoproteins respectively, both key-players in regulation of plasma triglyceride content.
PPARδ activation was initially reported not to be involved in modulation of glucose or triglyceride levels. (Berger et a\., j. Biol. Chem. , 1999, VoI 274, pp. 6718-6725). Later it has been shown that PPARδ activation leads to increased levels of HDL cholesterol in db/db mice (Leibowitz et al. FEBS letters 2000, 473, 333-336). Further, a PPARδ agonist when dosed to insulin-resistant middle-aged obese rhesus monkeys caused a dramitic dose- dependent rise in serum HDL cholesterol while lowering the levels of small dense LDL, fasting triglycerides and fasting insulin (Oliver et al. PNAS 2001 , 98, 5306-531 1 ).The same paper also showed that PPARδ activation increased the reverse cholesterol transporter ATP- binding cassette A1 and induced apolipoprotein A1 -specific cholesterol efflux. The involve- ment of PPARδ in fatty acid oxidation in muscles was further substantiated in PPARα knockout mice. Muoio et al. (J. Biol. Chem. 2002, 277, 26089-26097) showed that the high levels of PPARδ in skeletal muscle can compensate for deficiency in PPARα. Taken together these observations suggest that PPARδ activation is useful in the treatment and prevention of cardiovascular diseases and conditions including atherosclerosis, hypertriglyceridemia, and mixed dyslipidaemia (WO 01/00603).
A number of PPARδ compounds have been reported to be useful in the treatment of hyperglycemia, hyperlipidemia and hypercholesterolemia (WO 02/59098, WO 01/603, WO 01/25181 , WO 02/14291 , WO 01/79197, WO 99/4815, WO 97/28149, WO 98/27974, WO 97/28115, WO 97/27857, WO 97/28137, WO 97/27847 WO 2004093879, WO 2004092117, WO 2004080947, WO 2004080943, WO 2004073606,WO 2004063166, WO 2004063165, WO 2003072100, WO 2004060871 , WO 2004005253, WO 2003097607, WO 2003035603, WO 2004000315, WO 2004000762, WO 2003074495, WO 2002070011 , WO 2003084916, US 20040209936, WO 2003074050, WO 2003074051 , WO 2003074052, JP 2003171275, WO 2003033493, WO 2003016291 , WO 2002076957, WO 2002046154, WO 2002014291 , WO 2001079197, WO 2003024395, WO 2002059098, WO 2002062774, WO 2002050048, WO 2002028434, WO 2001000603, WO 2001060807, WO 9728149, WO 2001034200, WO 9904815, WO 200125226, WO 2005097098, WO 2005097762, and WO 2005097763. Glucose lowering as a single approach does not overcome the macrovascular complications associated with Type 2 diabetes and metabolic syndrome. Novel treatments of Type 2 diabetes and metabolic syndrome must therefore aim at lowering both the overt hy- pertriglyceridaemia associated with these syndromes as well as alleviation of hyperglycae- mia. This indicate that research for compounds displaying various degree of PPARδ activa- tion should lead to the discovery of efficacious triglyceride and/or cholesterol and/or glucose lowering drugs that have great potential in the treatment of diseases such as type 2 diabetes, dyslipidemia, syndrome X (including the metabolic syndrome, i.e. impaired glucose tolerance, insulin resistance, hypertrigyceridaemia and/or obesity), cardiovascular diseases (including atherosclerosis) and hypercholesteremia.
DEFINITIONS
All references described herein are incorporated in there entirety by reference.
"Substituted" signifies that one or more hydrogen atoms are replaced by the designated substituent. Only pharmaceutically stable compounds are intended to be covered.
When examples of definitions are provided, the definition is not meant to be limited to the specific examples.
The present invention includes all isotopes of atoms occurring in the present compounds. Isotopes include those atoms having the same atomic number but different mass numbers. By way of general example and without limitation, isotopes of hydrogen include tritium and deuterium. Isotopes of carbon include C-13 and C-14. When O or S is listed as a substituent, oxo and sulfo, respectively, it is intended that a carbon atom be replaced by either the O or S. For example if alkyl were substituted by O, then an ether would be formed. Preferably heteroatom-heteroatom bonds such as 0-0, 0-S, 0-N, S- S, and S-N are not formed. The term "C1-6-alkyl" as used herein, alone or in combination, represent a linear or branched, saturated hydrocarbon chain having the indicated number of carbon atoms. Representative examples include, but are not limited to methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, sec-butyl, ferf-butyl, pentyl, isopentyl, hexyl, isohexyl and the like.
The term "C1-6-alkylcarbonyl as used herein, represents a "C1-6-alkyl" group as de- fined above having the indicated number of carbon atoms linked through a carbonyl group. Representative examples include, but are not limited to, methylcarbonyl, ethylcarbonyl, n- propylcarbonyl, isopropylcarbonyl, butylcarbonyl, isobutylcarbonyl, sec-butylcarbonyl, tert- butylcarbonyl, n-pentylcarbonyl, isopentylcarbonyl, neopentylcarbonyl, ferf-pentylcarbonyl, n- hexylcarbonyl, isohexylcarbonyl and the like. The term "C1-6-alkylsulfonyl" as used herein refers to a monovalent substituent comprising a "C1-6-alkyl" group as defined above linked through a sulfonyl group. Representative examples include, but are not limited to, methylsulfonyl, ethylsulfonyl, n-propylsulfonyl, iso- propylsulfonyl, n-butylsulfonyl, isobutylsulfonyl, sec-butylsulfonyl, ferf-butylsulfonyl, n-pentyl- sulfonyl, isopentylsulfonyl, neopentylsulfonyl, ferf-pentylsulfonyl, n-hexylsulfonyl, isohexylsul- fonyl and the like.
The term "C1-6-alkylamido" as used herein, refers to an acyl group linked through an amino group; Representative examples include, but are not limited to acetylamino, propionyl- amino, butyrylamino, isobutyrylamino, pivaloylamino, valerylamino and the like.
The term "C3-6-cycloalkyl" as used herein, alone or in combination, represent a satu- rated monocyclic hydrocarbon group having the indicated number of carbon atoms. Representative examples include, but are not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
The term "C2-6-alkenyl" as used herein, represent an olefinically unsaturated branched or straight hydrocarbon group having from 2 to the specified number of carbon at- oms and at least one double bond. Representative examples include, but are not limited to, vinyl, 1-propenyl, 2-propenyl, allyl, iso-propenyl, 1 ,3-butadienyl, 1-butenyl, hexenyl, pentenyl and the like.
The term "C2-6-alkynyl" as used herein, represent an unsaturated branched or straight hydrocarbon group having from 2 to the specified number of carbon atoms and at least one triple bond. Representative examples include, but are not limited to, 1-propynyl, 2- propynyl, 1-butynyl, 2-butynyl, 1-pentynyl, 2-pentynyl and the like.
The term "C4-6-alkenynyl" as used herein, represent an unsaturated branched or straight hydrocarbon group having from 4 to the specified number of carbon atoms and both at least one double bond and at least one triple bond. Representative examples include, but are not limited to, 1-penten-4-ynyl, 3-penten-1-ynyl, 1 ,3-hexadiene-5-ynyl and the like.
The term "C1-6-alkoxy" as used herein, alone or in combination, refers to a straight or branched configuration linked through an ether oxygen having its free valence bond from the ether oxygen. Examples of linear alkoxy groups are methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy and the like. Examples of branched alkoxy are isopropoxy, sec-butoxy, tert-butoxy, isopentyloxy, isohexyloxy and the like.
The term "C3-6-cycloalkoxy" as used herein, alone or in combination, represent a saturated monocyclic hydrocarbon group having the indicated number of carbon atoms linked through an ether oxygen having its free valence bond from the ether oxygen. Examples of cycloalkoxy groups are cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy and the like.
The term "C1-6-alkylthio" as used herein, alone or in combination, refers to a straight or branched monovalent substituent comprising a "C1-6-alkyl" group as defined above linked through a divalent sulfur atom having its free valence bond from the sulfur atom and having 1 to 6 carbon atoms. Representative examples include, but are not limited to, methylthio, ethyl- thio, propylthio, butylthio, pentylthio and the like.
The term "C3-6-cycloalkylthio" as used herein, alone or in combination, represent a saturated monocyclic hydrocarbon group having the indicated number of carbon atoms linked through a divalent sulfur atom having its free valence bond from the sulfur atom. Examples of cycloalkoxy groups are cyclopropylthio, cyclobutylthio, cyclopentylthio, cyclohexylthio and the like.
The term "C1-6-alkylamino" as used herein, alone or in combination, refers to a straight or branched monovalent substituent comprising a "C1-6-alkyl" group as defined above linked through amino having a free valence bond from the nitrogen atom. Representative examples include, but are not limited to, methylamino, ethylamino, propylamine, butylamino, pentylamino and the like.
The term "C^-alkylaminocarbonyl" as used herein refers to a monovalent substituent comprising a C1-6-monoalkylamino group linked through a carbonyl group such as e.g. methyl- aminocarbonyl, ethylaminocarbonyl, n-propylaminocarbonyl, isopropylaminocarbonyl, n-butyl- aminocarbonyl, sec-butylaminocarbonyl, isobutylaminocarbonyl, tert-butylaminocarbonyl, n- pentylaminocarbonyl, 2-methylbutylaminocarbonyl, 3-methylbutylaminocarbonyl, n-hexylamino- carbonyl, 4-methylpentylaminocarbonyl, neopentylaminocarbonyl, n-hexylaminocarbonyl and 2-2-dimethylpropylaminocarbonyl and the like.
The term "Ca-e-cycloalkylamino" as used herein, alone or in combination, represent a saturated monocyclic hydrocarbon group having the indicated number of carbon atoms linked through amino having a free valence bond from the nitrogen atom. Representative examples include, but are not limited to, cyclopropylamino, cyclobutylamino, cyclopentylamino, cyclo- hexylamino and the like.
The term "C1-6-alkoxyC1-6-alkyr as used herein, alone or in combination, refers to a "C1-6-alkyl" group as defined above whereto is attached a "C1-6-alkoxy" group as defined above. Representative examples include, but are not limited to, methoxymethyl, ethoxy- methyl, methoxyethyl, ethoxyethyl and the like.
The term "aryl" as used herein is intended to include monocyclic, bicyclic or poly- cyclic carbocyclic aromatic rings. Representative examples are phenyl, naphthyl (e.g. naphth-1-yl, naphth-2-yl), anthryl (e.g. anthr-1-yl, anthr-9-yl), phenanthryl (e.g. phenanthr-1- yl, phenanthr-9-yl), and the like. Aryl is also intended to include monocyclic, bicyclic or poly- cyclic carbocyclic aromatic rings substituted with carbocyclic aromatic rings. Representative examples are biphenyl (e.g. biphenyl-2-yl, biphenyl-3-yl, biphenyl-4-yl), phenylnaphthyl (e.g.1-phenylnaphth-2-yl, 2-phenylnaphth-1-yl), and the like. Aryl is also intended to include partially saturated bicyclic or polycyclic carbocyclic rings with at least one unsaturated moiety (e.g. a benzo moiety). Representative examples are, indanyl (e.g. indan-1-yl, indan-5-yl), in- denyl (e.g. inden-1-yl, inden-5-yl), 1 ,2,3,4-tetrahydronaphthyl (e.g. 1 ,2,3,4-tetrahydronaphth- 1-yl, 1 ,2,3,4-tetrahydronaphth-2-yl, 1 ,2,3,4-tetrahydronaphth-6-yl), 1 ,2-dihydronaphthyl (e.g. 1 ,2-dihydronaphth-1-yl, 1 ,2-dihydronaphth-4-yl, 1 ,2-dihydronaphth-6-yl), fluorenyl (e.g. fluo- ren-1-yl, fluoren-4-yl, fluoren-9-yl), and the like. Aryl is also intended to include partially saturated bicyclic or polycyclic carbocyclic aromatic rings containing one or two bridges. Representative examples are, benzonorbornyl (e.g. benzonorborn-3-yl, benzonorborn-6-yl), 1 ,4- ethano-1 ,2,3,4-tetrahydronapthyl (e.g. 1 ,4-ethano-1 ,2,3,4-tetrahydronapth-2-yl,1 ,4-ethano- 1 ,2,3,4-tetrahydronapth-10-yl), and the like. Aryl is also intended to include partially saturated bicyclic or polycyclic carbocyclic aromatic rings containing one or more spiro atoms. Representative examples are spiro[cyclopentane-1 ,1 '-indane]-4-yl, spiro[cyclopentane-1 ,1 '-indene]- 4-yl, spiro[piperidine-4, 1 '-indane]-1 -yl, spiro[piperidine-3,2'-indane]-1 -yl, spiro[piperidine-4,2'- indane]-1-yl, spiro[piperidine-4,1 '-indane]-3'-yl, spiro[pyrrolidine-3,2'-indane]-1-yl, spiro[pyrro- lidine-3,1 '-(3',4'-dihydronaphthalene)]-1-yl, spiro[piperidine-3,1 '-(3',4'-dihydronaphthalene)]-1- yl, spiro[piperidine-4,1 '-(3',4'-dihydronaphthalene)]-1-yl, spiro[imidazolidine-4,2'-indane]-1-yl, spiro[piperidine-4,1 '-indene]-1-yl, and the like. Other examples of "aryl" are phenyl, naphthyl, anthracenyl, phenanthrenyl, azulenyl, fluorenyl, indenyl and pentalenyl.
The term "arylene" as used herein refers to divalent aromatic monocyclic or a divalent aromatic fused bi- or tricyclic hydrocarbon group. Representative examples include, but are not limited to, phenylene, naphthylene and the like.
The term "arylcarbonyl" as used herein refers to the radical aryl-C(=O)-. Representative examples are benzoyl, naphthylcarbonyl, 4-phenylbenzoyl, anthrylcarbonyl, phenanthryl- carbonyl, azulenylcarbonyl and the like.
The term "heteroarylcarbonyl" as used herein refers to the radical heteroaryl-C(=O)-. Representative examples are pyridinylcarbonyl (e.g. pyridin-2-ylcarbonyl, pyridin-4-ylcarbo- nyl), quinolinylcarbonyl (e.g. 2-(quinolin-2-yl)carbonyl, 1-(quinolin-2-yl)carbonyl), imidazolyl- carbonyl (e.g. imidazol-2-ylcarbonyl, imidazol-5-ylcarbonyl), and the like.
The term "arylsulfonyl" as used herein refers to an "aryl" group as defined above linked through a sulfonyl group. Representative examples include, but are not limited to, phenylsulfonyl, naphthylsulfonyl, anthracenylsulfonyl, phenanthrenylsulfonyl, azulenylsulfonyl, and the like.
The term "arylamido" as used herein refers to an arylcarbonyl group linked through an amino group. Representative examples include, but are not limited to phenylcarbonyl- amino, naphthylcarbonylamino, anthracenylcarbonylamino, phenanthrenylcarbonylamino, azulenylcarbonylamino and the like.
The term "halogen" means fluorine, chlorine, bromine or iodine.
The term "perhalomethyl" means trifluoromethyl, trichloromethyl, tribromomethyl or triiodomethyl.
The term "perhalomethoxy" means trifluoromethoxy, trichloromethoxy, tribromo- methoxy or triiodomethoxy.
The term "C1-6-dialkylamino" as used herein refers to an amino group wherein the two hydrogen atoms independently are substituted with a straight or branched, saturated hydrocarbon chain having the indicated number of carbon atoms. Representative examples include, but are not limited to, N,N-dimethylamino, N-ethyl-N-methylamino, N,N-diethylamino, N,N-dipropylamino (e.g. N,N-(prop-1-yl)2amino, N,N-(prop-2-yl)2amino, N,N-(prop-3-yl)2- amino), N-(but-1-yl)-N-methylamino, N,N-(pent-1-yl)2amino, and the like.
The term "acyl" as used herein refers to a monovalent substituent comprising a "C1- 6-alkyl" group as defined above linked through a carbonyl group. Representative examples include, but are not limited to, acetyl, propionyl, butyryl, isobutyryl, pivaloyl, valeryl and the like. The term "heteroaryl" as used herein, alone or in combination, refers to a monovalent substituent comprising a 5-7 membered monocyclic aromatic system or a 8-10 membered bicyclic aromatic system containing one or more heteroatoms selected from nitrogen, oxygen and sulphur. Examples of "heteroaryl" are pyrrolyl (e.g. pyrrol-1-yl, pyrrol-2- yl, pyrrol-3-yl), furanyl (e.g. furan-2-yl, furan-3-yl), thienyl (e.g. thien-2-yl, thien-3-yl), oxazolyl (e.g. oxazol-2-yl, oxazol-4-yl, oxazol-5-yl), thiazolyl (e.g. thiazol-2-yl, thiazol-4-yl, thiazol-5-yl), imidazolyl (e.g. imidazol-2-yl, imidazol-4-yl, imidazol-5-yl), pyrazolyl (e.g. pyrazol-1-yl, pyrazol-3-yl, pyrazol-5-yl), isoxazolyl (e.g. isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl), isothiazolyl (e.g. isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl), 1 ,2,3-triazolyl (e.g. 1 ,2,3- triazol-1-yl, 1 ,2,3-triazol-4-yl, 1 ,2,3-triazol-5-yl), 1 ,2,4-triazolyl (e.g. 1 ,2,4-triazol-1-yl, 1 ,2,4- triazol-3-yl, 1 ,2,4-triazol-5-yl), 1 ,2,3-oxadiazolyl (e.g. 1 ,2,3-oxadiazol-4-yl, 1 ,2,3-oxadiazol-5- yl), 1 ,2,4-oxadiazolyl (e.g. 1 ,2,4-oxadiazol-3-yl, 1 ,2,4-oxadiazol-5-yl), 1 ,2,5-oxadiazolyl (e.g. 1 ,2,5-oxadiazol-3-yl, 1 ,2,5-oxadiazol-4-yl), 1 ,3,4-oxadiazolyl (e.g. 1 ,3,4-oxadiazol-2-yl, 1 ,3,4- oxadiazol-5-yl), 1 ,2,3-thiadiazolyl (e.g. 1 ,2,3-thiadiazol-4-yl, 1 ,2,3-thiadiazol-5-yl), 1 ,2,4- thiadiazolyl (e.g. 1 ,2,4-thiadiazol-3-yl, 1 ,2,4-thiadiazol-5-yl), 1 ,2,5-thiadiazolyl (e.g. 1 ,2,5- thiadiazol-3-yl, 1 ,2,5-thiadiazol-4-yl), 1 ,3,4-thiadiazolyl (e.g. 1 ,3,4-thiadiazol-2-yl, 1 ,3,4- thiadiazol-5-yl), tetrazolyl (e.g. tetrazol-1-yl, tetrazol-5-yl), pyranyl (e.g. pyran-2-yl), pyridinyl (e.g. pyridine-2-yl, pyridine-3-yl, pyridine-4-yl), pyridazinyl (e.g. pyridazin-2-yl, pyridazin-3-yl), pyrimidinyl (e.g. pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl), pyrazinyl, 1 ,2,3-triazinyl, 1 ,2,4- triazinyl, 1 ,3,5-triazinyl, thiadiazinyl, azepinyl, azecinyl, indolyl (e.g. indol-1-yl, indol-2-yl, indol-3-yl, indol-5-yl), isoindolyl, benzofuranyl (e.g. benzo[b]furan-2-yl, benzo[b]furan-3-yl, benzo[b]furan-5-yl, benzo[c]furan-2-yl, benzo[c]furan-3-yl, benzo[c]furan-5-yl), benzothienyl (e.g. benzo[b]thien-2-yl, benzo[b]thien-3-yl, benzo[b]thien-5-yl, benzo[c]thien-2-yl, benzo- [c]thien-3-yl, benzo[c]thien-5-yl), indazolyl (e.g. indazol-1-yl, indazol-3-yl, indazol-5-yl), indolizinyl (e.g. indolizin-1-yl, indolizin-3-yl), benzopyranyl (e.g. benzo[b]pyran-3-yl, benzo- [b]pyran-6-yl, benzo[c]pyran-1-yl, benzo[c]pyran-7-yl), benzimidazolyl (e.g. benzimidazol-1-yl, benzimidazol-2-yl, benzimidazol-5-yl), benzothiazolyl (e.g. benzothiazol-2-yl, benzothiazol-5- yl), benzisothiazolyl, benzoxazolyl, benzisoxazolyl, benzoxazinyl, benzotriazolyl, naphthyri- dinyl (e.g. 1 ,8-naphthyridin-2-yl, 1 ,7-naphthyridin-2-yl, 1 ,6-naphthyridin-2-yl), phthalazinyl (e.g. phthalazin-1-yl, phthalazin-5-yl), pteridinyl, purinyl (e.g. purin-2-yl, purin-6-yl, purin-7-yl, purin-8-yl, purin-9-yl), quinazolinyl (e.g. quinazolin-2-yl, quinazolin-4-yl, quinazolin-6-yl), cinnolinyl, quinoliny (e.g. quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-6-yl), isoquinolinyl (e.g. isoquinolin-1-yl, isoquinolin-3-yl, isoquinolin-4-yl), quinoxalinyl (e.g. quinoxalin-2-yl, quinoxalin-5-yl), pyrrolopyridinyl (e.g. pyrrolo[2,3-b]pyridinyl, pyrrolo[2,3-c]pyridinyl, pyrrolo[3,2-c]pyridinyl), furopyridinyl (e.g. furo[2,3-b]pyridinyl, furo[2,3-c]pyridinyl, furo[3,2- c]pyrϊdinyl), thienopyridinyl (e.g. thieno[2,3-b]pyrϊdinyl, thieno[2,3-c]pyrϊdinyl, thieno[3,2- c]pyridinyl), imidazopyridinyl (e.g. imidazo[4,5-b]pyridinyl, imidazo[4,5-c]pyridinyl, imidazo[1 ,5-a]pyrϊdinyl, imidazo[1 ,2-a]pyridinyl), imidazopyrimidinyl (e.g. imidazo[1 ,2- a]pyrimidinyl, imidazo[3,4-a]pyrimidinyl), pyrazolopyridinyl (e.g. pyrazolo[3,4-b]pyridinyl, pyrazolo[3,4-c]pyrϊdinyl, pyrazolo[1 ,5-a]pyridinyl), pyrazolopyrimidinyl (e.g. pyrazolo[1 ,5- a]pyrimidinyl, pyrazolo[3,4-d]pyrimidinyl), thiazolopyridinyl (e.g. thiazolo[3,2-d]pyridinyl), thiazolopyrimidinyl (e.g. thiazolo[5,4-d]pyrimidinyl), imdazothiazolyl (e.g. imidazo[2,1- b]thiazolyl), triazolopyridinyl (e.g. triazolo[4,5-b]pyridinyl), triazolopyrimidinyl (e.g. 8- azapurinyl), carbazolyl (e.g. carbazol-2-yl, carbazol-3-yl, carbazol-9-yl), phenoxazinyl (e.g. phenoxazin-10-yl), phenazinyl (e.g. phenazin-5-yl), acridinyl (e.g. acridin-9-yl, acridin-10-yl), phenothiazinyl (e.g. phenothiazin-10-yl), carbolinyl (e.g. pyrϊdo[3,4-b]indol-1-yl, pyrϊdo[3,4- b]indol-3-yl), phenanthrolinyl (e.g. phenanthrolin-5-yl), pyrrolinyl, pyrazolinyl, imidazolinyl (e.g. 4,5-dihydroimidazol-2-yl, 4,5-dihydroimidazol-1-yl), indolinyl (e.g. 2,3-dihydroindol-1-yl, 2,3-dihydroindol-5-yl), dihydrobenzofuranyl (e.g. 2,3-dihydrobenzo[b]furan-2-yl, 2,3- dihydrobenzo[b]furan-4-yl), dihydrobenzothienyl (e.g. 2,3-dihydrobenzo[b]thien-2-yl, 2,3- dihydrobenzo[b]thien-5-yl), 4,5,6,7-tetrahydrobenzo[b]furan-5-yl), dihydrobenzopyranyl (e.g. 3,4-dihydrobenzo[b]pyran-3-yl, 3,4-dihydrobenzo[b]pyran-6-yl, 3,4-dihydrobenzo[c]pyran-1-yl, dihydrobenzo[c]pyran-7-yl), oxazolinyl (e.g. 4,5-dihydrooxazol-2-yl, 4,5-dihydrooxazol-4-yl, 4,5-dihydrooxazol-5-yl), isoxazolinyl, oxazepinyl, tetrahydroindazolyl (e.g. 4,5,6,7-tetrahydro- indazol-1-yl, 4,5,6,7-tetrahydroindazol-3-yl, 4,5,6,7-tetrahydroindazol-4-yl, 4,5,6,7-tetrahydro- indazol-6-yl), tetrahydrobenzimidazolyl (e.g. 4,5,6,7-tetrahydrobenzimidazol-1-yl, 4,5,6,7- tetrahydrobenzimidazol-5-yl), tetrahydroimidazo[4,5-c]pyridyl (e.g. 4,5,6,7-tetrahydroimidazo- [4,5-c]pyrid-1-yl, 4,5,6,7-tetrahydroimidazo[4,5-c]pyrid-5-yl, 4,5,6,7-tetrahydroimidazo[4,5- c]pyrid-6-yl), tetrahydroquinolinyl (e.g. 1 ,2,3,4-tetrahydroquinolinyl, 5,6,7,8-tetrahydroquino- linyl), tetrahydroisoquinolinyl (e.g. 1 ,2,3,4-tetrahydroisoquinolinyl, 5,6,7,8-tetrahydroisoquino- linyl), tetrahydroquinoxalinyl (e.g. 1 ,2,3,4-tetrahydroquinoxalinyl, 5,6,7,8-tetrahydroquinoxa- linyl), spiro[isoquinoline-3,1 '-cyclohexan]-1-yl, spiro[piperidine-4,1 '-benzo[c]thiophen]-1-yl, spiro[piperidine-4,1 '-benzo[c]furan]-1-yl, spiro[piperidine-4,3'-benzo[b]furan]-1-yl, spiro- [piperidine-4,3'-coumarin]-1-yl. Other examples of "heteroaryl" are furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, isothiazolyl, isoxa- zolyl, oxazolyl, oxadiazolyl, thiadiazolyl, quinolyl, isoquinolyl, quinazolinyl, quinoxalinnyl, indolyl, benzimidazolyl, benzofuranyl, benzothienyl, benzoxazolyl, tetrazolyl, carbazolyl, pteridinyl and purinyl.
The term "heteroarylene" as used herein, alone or in combination, refers to divalent 5-7 membered monocyclic aromatic system or a 8-10 membered bicyclic aromatic system containing one or more heteroatoms selected from nitrogen, oxygen and sulfur, e.g. furylene, thienylene, pyrrolylene, imidazolylene, pyrazolylene, triazolylene, pyridylene, pyrazinylene, pyrimidinylene, pyridazinylene, isothiazolylene, isoxazolylene, oxazolylene, oxadiazolylene, thiadiazolylene, quinolylene, isoquinolylene, quinazolinylene, quinoxalinnylene, indolylene, benzimidazolylene, benzofuranylene, benzothienylene, pteridinylene and purinylene and the like.
The term "heteroaryloxy" as used herein, alone or in combination, refers to a heteroaryl as defined herein linked to an oxygen atom having its free valence bond from the oxygen atom e.g. pyrrolyloxy, imidazolyloxy, pyrazolyloxy, triazolyloxy, pyrazinyloxy, pyri- midinyloxy, pyridazinyloxy, isothiazolyloxy, isoxazolyloxy, oxazolyloxy, oxadiazolyloxy, thiadiazolyloxy, quinolinyloxy, isoquinolinyloxy, quinazolinyloxy, quinoxalinyloxy, indoltloxy, benzimidazolyloxy, benzofuranyloxy, pteridinyloxy and purinyloxy and the like.
The term "aralkyl" as used herein refers to a straight or branched saturated carbon chain containing from 1 to 6 carbons substituted with an aromatic carbohydride. Represen- tative examples include, but are not limited to, benzyl, phenethyl, 3-phenylpropyl, 1-naphthyl- methyl, 2-(1-naphthyl)ethyl and the like.
The term "aryloxy" as used herein refers to phenoxy, 1-naphthyloxy, 2-naphthyloxy and the like.
The term "aralkoxy" as used herein refers to a C1-6-alkoxy group substituted with an aromatic carbohydride, such as benzyloxy, phenethoxy, 3-phenylpropoxy, 1-naphthyl- methoxy, 2-(1-naphtyl)ethoxy and the like.
The term "heteroaralkyl" as used herein refers to a straight or branched saturated carbon chain containing from 1 to 6 carbons substituted with a heteroaryl group; such as (2- furyl)methyl, (3-furyl)methyl, (2-thienyl)methyl, (3-thienyl)methyl, (2-pyridyl)methyl, 1-methyl- 1-(2-pyrimidyl)ethyl and the like.
The term "heteroaralkoxy" as used herein refers to a heteroarylalkyl as defined herein linked to an oxygen atom having its free valence bond from the oxygen atom. Representative examples include, but are not limited to, (2-furyl)methyl, (3-furyl)methyl, (2- thienyl)methyl, (3-thienyl)methyl, (2-pyridyl)methyl, 1-methyl-1-(2-pyrimidyl)ethyl linked to oxygen, and the like.
The term "arylthio" as used herein, alone or in combination, refers to an aryl group linked through a divalent sulfur atom having its free valence bond from the sulfur atom, the aryl group optionally being mono- or polysubstituted with C1-6-alkyl, halogen, hydroxy or C1-6-alkoxy. Representative examples include, but are not limited to, phenylthio, (4-methylphenyl)-thio, (2- chlorophenyl)thio and the like. The term Ηeterocyclyl" or "heterocycle" signifies a mono-, bi-, or tricyclic ring consisting of carbon atoms and from one heteroatom to the maximum number designated, wherein the heteroatom is selected from oxygen, nitrogen, and sulphur. If sulphur is present, then it can be S, S(O), or S(O)2. If nitrogen is present, then it can be N, NH, substituted N, or N-oxide. The heterocycle is a saturated or partially saturated ring. From 0-2 CH2 groups of the heterocycle can be replaced by C(O). The heterocycle can be attached via a carbon or nitrogen atom, unless linking the nitrogen atom would lead to a quaternary nitrogen. If the heterocycle is bicyclic, then one or both of the rings may have a heteroatom(s) present. If the heterocycle is tricyclic, then one, two, or all three of the rings may have a heteroatom(s) present. Exam- pies of "heterocycle" are aziridinyl (e.g. aziridin-1-yl), azetidinyl (e.g. azetidin-1-yl, azetidin-3-yl), oxetanyl, pyrrolidinyl (e.g. pyrrolidin-1-yl, pyrrolidin-2-yl, pyrrol id in-3-yl), imidazolidinyl (e.g. imi- dazolidin-1-yl, imidazolidin-2-yl, imidazolidin-4-yl), oxazolidinyl (e.g. oxazolidin-2-yl, oxazolidin- 3-yl, oxazolidin-4-yl), thiazolidinyl (e.g. thiazolidin-2-yl, thiazolidin-3-yl, thiazolidin-4-yl), isothia- zolidinyl, piperidinyl (e.g. piperidin-1-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl), homopiperi- dinyl (e.g. homopiperidin-1-yl, homopiperidin-2-yl, homopiperidin-3-yl, homopiperidin-4-yl), piperazinyl (e.g. piperazin-1-yl, piperazin-2-yl), morpholinyl (e.g. morpholin-2-yl, morpholin-3-yl, morpholin-4-yl), thiomorpholinyl (e.g. thiomorpholin-2-yl, thiomorpholin-3-yl, thiomorpholin-4-yl), 1-oxo-thiomorpholinyl, 1 ,1-dioxo-thiomorpholinyl, tetrahydrofuranyl (e.g. tetrahydrofuran-2-yl, tetrahydrofuran-3-yl), tetrahydrothienyl, tetrahydro-1 ,1-dioxothienyl, tetrahydropyranyl (e.g. 2- tetrahydropyranyl), tetrahydrothiopyranyl (e.g. 2-tetrahydrothiopyranyl), 1 ,4-dioxanyl, 1 ,3- dioxanyl, octahydroindolyl (e.g. octahydroindol-1-yl, octahydroindol-2-yl, octahydroindol-3-yl, octahydroindol-5-yl), decahydroquinolinyl (e.g. decahydroquinolin-1-yl, decahydroquinolin-2-yl, decahydroquinolin-3-yl, decahydroquinolin-4-yl, decahydroquinolin-6-yl), decahydroquinoxalinyl (e.g. decahydroquinoxalin-1-yl, decahydroquinoxalin-2-yl, decahydroquinoxalin-6-yl), 3-azabi- cyclo[3.2.2]nonyl, 2-azabicyclo[2.2.1]heptyl, 3-azabicyclo[3.1.0]hexyl, 2,5-diazabicyclo-
[2.2.1]heptyl, atropinyl, tropinyl, quinuclidinyl, 1 ,4-diazabicyclo[2.2.2]octanyl, 1 ,4-dioxaspiro- [4.5]decanyl (e.g. 1 ,4-dioxaspiro[4.5]decan-2-yl, 1 ,4-dioxaspiro[4.5]decan-7-yl), 1 ,4-dioxa-8- azaspiro[4.5]decanyl (e.g. 1 ,4-dioxa-8-azaspiro[4.5]decan-2-yl, 1 ,4-dioxa-8-azaspiro[4.5]- decan-8-yl), 8-azaspiro[4.5]decanyl (e.g. 8-azaspiro[4.5]decan-1-yl, 8-azaspiro[4.5]decan-8-yl), 2-azaspiro[5.5]undecanyl (e.g. 2-azaspiro[5.5]undecan-2-yl), 2,8-diazaspiro[4.5]decanyl (e.g. 2,8-diazaspiro[4.5]decan-2-yl, 2,8-diazaspiro[4.5]decan-8-yl), 2,8-diazaspiro[5.5]undecanyl (e.g. 2,8-diazaspiro[5.5]undecan-2-yl), 1 ,3,8-triazaspiro[4.5]decanyl (e.g. 1 ,3,8-triazaspiro- [4.5]decan-1-yl, 1 ,3,8-triazaspiro[4.5]decan-3-yl, and 1 ,3,8-triazaspiro[4.5]decan-8-yl). Other examples of "heterocycle" are pyrrolidinyl, pyrrolinyl, tetrahydrofuranyl, dihydrofuranyl, tetra- hydrothiophenyl, dihydrothiophenyl, imidzolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, oxa- zolidinyl, oxazoline, isoxazolidinyl, isoxazoline, thioxazolidinyl, thioxazoline, isothioxazolidinyl, isothioxazoline, triazolidinyl, triazolinyl, tetrazolidinyl, tetrazolinyl, tetrahydropyranyl, dihydro- pyranyl, pyran, piperidinyl, piperazinyl, homopiperazinyl, morpholino, thiomorpholino, and 1 ,1- dioxothiomorpholino. The term "heteiOcyclyl-C1-6-alkyr as used herein, alone or in combination, refers to a
"C1-6-alkyl" group as defined above whereto is attached a "heterocyclyl" group as defined above. Representative examples include, but are not limited to pyrrolidinylmethyl, imida- zolinylmetyl, piperidinylmethyl, piperazinylmethyl, morpholinylmethyl, pyrrolidinylethyl, imida- zolinylethyl, piperidinylethyl, piperazinylethyl, morpholinylethyl, pyrrol id inyl propyl, imidazolinyl- propyl, piperidinylpropyl, piperazinylpropyl, morpholinylpropyl, and the like.
The term "aryl-C2-6-alkynyl" as used herein, alone or in combination, refers to a "C2-6- alkynyl" group as defined above whereto is attached a "aryl" group as defined above. Representative examples include, but are not limited to phenylpropynyl, naphthylpropynyl, indenyl- propynyl, phenylbutynyl, naphthylbutynyl, indenylbutynyl, and the like. The term "heterocyclyl-C2-6-alkynyl" as used herein, alone or in combination, refers to a "C2-6-alkynyl" group as defined above whereto is attached a "heterocyclyl" group as defined above. Representative examples include, but are not limited to pyrrolidinylpropynyl, imi- dazolinylpropynyl, piperidinylpropynyl, piperazinylpropynyl, morpholinylpropynyl, and the like. The term "heteroaryl-C2-6-alkynyl" as used herein, alone or in combination, refers to a "C2-6-alkynyl" group as defined above whereto is attached a "heteroaryl" group as defined above. Representative examples include, but are not limited to furylpropynyl, thienylpropynyl, pyrrolylpropynyl, imidazolylpropynyl, pyrazolylpropynyl, quinolylpropynyl, benzofuranylpro- pynyl, and the like.
The term "aryl-C2-6-alkenyl" as used herein, alone or in combination, refers to a "C2-6- alkenyl" group as defined above whereto is attached a "aryl" group as defined above. Representative examples include, but are not limited to phenylvinyl, naphthylvinyl, indenylvinyl, phenylpropenyl, naphthylpropenyl, indenylpropenyl, and the like.
The term "heteroaryl-C2-6-alkenyl" as used herein, alone or in combination, refers to a "C2-6-alkenyl" group as defined above whereto is attached a "heteroaryl" group as defined above. Representative examples include, but are not limited to furylvinyl, thienylvinyl, pyrro- lylvinyl, imidazolylvinyl, pyrazolylvinyl, quinolylvinyl, benzofuranylvinyl, furylpropenyl, thienyl- propenyl, pyrrolylpropenyl, imidazolylpropenyl, pyrazolylpropenyl, quinolylpropenyl, benzofu- ranylpropenyl and the like.
The term "heterocyclyl-C2-6-alkenyl" as used herein, alone or in combination, refers to a "C2-6-alkenyl" group as defined above whereto is attached a "heterocyclyl" group as de- fined above. Representative examples include, but are not limited to pyrrolidinylvinyl, imida- zolinylvinyl, piperidinylvinyl, piperazinylvinyl, morpholinylvinyl, pyrrolidinylpropenyl, imida- zolinylpropenyl, piperidinylpropenyl, piperazinylpropenyl, morpholinylpropynyl, and the like.
The term "five to eight member ring" as used herein refers to a saturated or unsatu- rated, substituted or unsubstituted hydrocarbon chain or hydrocarbon-heteroatom chain having from 3 to 6 atoms wherein the carbon atom in Ar, to which they are attached, and the adjacent carbon atom form a five to eight member ring.
Certain of the above defined terms may occur more than once in the structural formulae, and upon such occurrence each term shall be defined independently of the other. The term "optionally substituted" as used herein means that the groups in question are either unsubstituted or substituted with one or more of the substituents specified. When the groups in question are substituted with more than one substituent the substituents may be the same or different.
The term "prodrug" as used herein includes biohydrolyzable amides and biohydro- lyzable esters and also encompasses a) compounds in which the biohydrolyzable functionality in such a prodrug is encompassed in the compound according to the present invention, and b) compounds which may be oxidized or reduced biologically at a given functional group to yield drug substances according to the present invention. Examples of these functional groups include 1 ,4-dihydropyridine, N-alkylcarbonyl-1 ,4-dihydropyridine, 1 ,4-cyclohexadiene, tert-butyl, and the like.
The term "treating" or "treatment" cover the treatment of a disease-state in a mammal, particularly in a human, and include: (a) preventing the disease-state from occurring in a mammal, in particular, when such mammal is predisposed to the disease-state but has not yet been diagnosed as having it; (b) inhibiting the disease-state, e.g., arresting or slowing its de- velopment; and/or (c) relieving the disease-state, e.g., causing regression of the disease state itself or some symptom of the disease state.
The term "pharmaceutically acceptable" is defined as being suitable for administration to humans without adverse events.
The term "therapeutically effective amount" is intended to include an amount of a compound of the present invention that is effective when administered alone or in combination to activate glucokinase.
DESCRIPTION OF THE INVENTION
The present invention relates to compounds of the general formula (I):
Figure imgf000014_0001
wherein X1 is aryl, heteroaryl or heterocyclyl each of which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl, hydroxy, cyano, amino or carboxy; or
• C-ι-6-alkyl, C3-6-CyClOa!!^, C2-6-alkenyl, C2-6-alkynyl, aryl, aralkyl, heteroaryl, hetero- aralkyl, C1-6-alkoxy, C3-6-CyClOaIkOXy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, Cs-e-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsul- fonyl, C1-6-alkylamido, arylamido, Ci-e-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkyl- amino or Ca-e-cycloalkylamino, each of which is optionally substituted with one or more hydroxyl or halogens; or
X1 is aralkyl, heteroaralkyl or heterocyclyl-C1-6-alkyl, each of which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl, hydroxy, cyano, amino or carboxy; or
• C1-6-alkyl, Ca-e-cycloalkyl, C2-6-alkenyl, C2-6-alkynyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6-CyClOaIkOXy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, Ca-e-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsul- fonyl, C1-6-alkylamido, arylamido, C-i-e-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkyl- amino or Ca-e-cycloalkylamino each of which is optionally substituted with one or more hydroxyl or halogens;
X2 is hydrogen or halogen; or
X2 is aryl-C2-6-alkynyl, heteroaryl-C2-6-alkynyl, heterocyclyl-C2-6-alkynyl, aryl-C2-6-alkenyl, het- eroaryl-C2-6-alkenyl, heterocyclyl-C^-alkenyl, aryl or heteroaryl each of which is optionally substituted with one or more substiuents selected from
• halogen, perhalomethyl,, hydroxy, cyano, amino or carboxy; or
• C1-6-alkyl, Ca-e-cycloalkyl, C2-6-alkenyl, C2-6-alkynyl, aryl, aralkyl, heteroaryl, heteroaralkyl, heterocyclyl-Ci-e-alkyl, C1-6-alkoxy, C3-6-CyClOaIkOXy, aryloxy, aralkoxy, het- eroaralkoxy, C1-6-alkylthio, arylthio, Ca-e-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6-alkylaminocarbonyl, C1-6- alkylamino, C1-6-dialkylamino or Ca-e-cycloalkylamino each of which is optionally substituted with one or more hydroxyl or halogens;
Ar is arylene which is optionally substituted with one or more substituents selected from
• halogen, hydroxy or cyano; or
• C1-6-alkyl, Ca-e-cycloalkyl, C2-6-alkenyl, C2-6-alkynyl, aryl, heteroaryl, aralkyl, heteroaral- kyl, C1-6-alkoxy, C3-6-CyClOaIkOXy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, aryl- thio or Ca^-cycloalkylthio each of which is optionally substituted with one or more halo- gens; or
• two of the substituents when placed in adjacent positions together with the atoms to which they are attached may form a five to eight member ring; and
Y1 is O or S; and
Y2 is O or S; and
Z is -(CH2)n- wherein n is 1 , 2 or 3; and
R is hydrogen, C1-6-alkyl, C3-6-cycloalkyl, C2-6-alkenyl, C2-6-alkynyl, C4-6-alkenynyl or aryl; or
a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable solvate thereof, or any tautomeric forms, stereoisomers, mixture of stereoisomers including a racemic mixture, or polymorphs. In one embodiment, the present invention is concerned with compounds of formula
(I) wherein X1 is aryl, heteroaryl or heterocyclyl each of which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl, hydroxy or carboxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6- cycloalkoxy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, Cs-e-cycloalkylthio,
C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or Cs-e-cycloalkylamino, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is aryl, heteroaryl or heterocyclyl each of which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or • C1-6-alkyl, C3-6-CyClOa!!^, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C1-6-alkylthio, arylthio, C3-6-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or C^s-cycloalkylamino, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of for- mula (I) wherein X1 is aryl, heteroaryl or heterocyclyl each of which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, Cs-e-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is aryl, heteroaryl or heterocyclyl each of which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, aryl, or C1-6-alkylsulfonyl, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is aryl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl, hydroxy or carboxy; or • C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6- cycloalkoxy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, C3-6-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C-i-e-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or Cs-e-cycloalkylamino, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is aryl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C1-6-alkylthio, arylthio, C3-6-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or Ca-e-cycloalkylamino, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is aryl, which is optionally substituted with one or more substituents se- lected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, Cs-e-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of for- mula (I) wherein X1 is aryl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C-ι-6-alkyl, aryl, or C1-6-alkylsulfonyl, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is phenyl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl, C1-6-alkyl or C1-6-alkylsulfonyl.
In another embodiment, the present invention is concerned with compounds of for- mula (I) wherein X1 is heteroaryl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl, hydroxy or carboxy; or
• C-ι-6-alkyl, Ca-e-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6- cycloalkoxy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, C3-6-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido,
C1-6-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or C3-6-cycloalkylamino, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is heteroaryl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, Cs-e-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C1-6-alkylthio, arylthio, C3-6-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or C3-6-cycloalkylamino, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is heteroaryl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or • C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is heteroaryl, which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, aryl, or C1-6-alkylsulfonyl, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is heterocyclyl, which is optionally substituted with one or more substitu- ents selected from
• halogen, perhalomethyl, hydroxy or carboxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6- cycloalkoxy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, C3-6-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or C3-6-cycloalkylamino, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is heterocyclyl, which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C1-6-alkylthio, arylthio, C3-6-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or C3-6-cycloalkylamino, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is heterocyclyl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is heterocyclyl, which is optionally substituted with one or more substitu- ents selected from
• halogen, perhalomethyl or hydroxy; or • C1-6-alkyl, aryl, or C1-6-alkylsulfonyl, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 aralkyl, heteroaralkyl or heterocyclyl-C1-6-alkyl each of which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl, hydroxy or carboxy; or
• C-ι-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6- cycloalkoxy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, C3-6-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or Cs-e-cycloalkylamino, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is aralkyl, heteroaralkyl or heterocyclyl-C1-6-alkyl each of which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or • C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C1-6-alkylthio, arylthio, C3-6-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or C3-6-cycloalkylamino, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of for- mula (I) wherein X1 is aralkyl, heteroaralkyl or heterocyclyl-C1-6-alkyl each of which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, Cs-e-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is aralkyl, heteroaralkyl or heterocyclyl-C1-6-alkyl, each of which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, aryl, or C1-6-alkylsulfonyl, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is aralkyl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl, hydroxy or carboxy; or • C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6- cycloalkoxy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, C3-6-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or C3-6-cycloalkylamino, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is aralkyl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C1-6-alkylthio, arylthio, Cs-e-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl,
C1-6-alkylamido, arylamido, C1-6-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or Ca-e-cycloalkylamino, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is aralkyl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of for- mula (I) wherein X1 is aralkyl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, aryl, or C1-6-alkylsulfonyl, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is heteroaralkyl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl, hydroxy or carboxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6- cycloalkoxy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, C3-6-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C-i-e-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or Ca-e-cycloalkylamino, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of for- mula (I) wherein X1 is heteroaralkyl, which is optionally substituted with one or more substitu- ents selected from
• halogen, perhalomethyl or hydroxy; or
• C-ι-6-alkyl, Ca-e-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C1-6-alkylthio, arylthio, Ca^-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido,
Figure imgf000021_0001
C1-6-alkylamino, C1-6-dialkylamino or
Ca^-cycloalkylamino, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is heteroaralkyl, which is optionally substituted with one or more substitu- ents selected from • halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, Ca-e-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is heteroaralkyl, which is optionally substituted with one or more substitu- ents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, aryl, or C1-6-alkylsulfonyl, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of for- mula (I) wherein X1 is heterocyclyl-C^-alkyl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl, hydroxy or carboxy; or
• C-ι-6-alkyl, Ca-e-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6- cycloalkoxy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, C3-6-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido,
C1-6-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or Ca-e-cycloalkylamino, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is heterocyclyl-C1-6-alkyl, which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or
• C-ι-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C1-6-alkylthio, arylthio, Ca-e-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C-i-e-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or Ca-e-cycloalkylamino, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is heterocyclyl-C1-6-alkyl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or • C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is heterocyclyl-C-i-e-alkyl, which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, aryl, or C1-6-alkylsulfonyl, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein X1 is piperidinylmethylene or morpholinylmethylene. In another embodiment the present invention is concerned with compounds of formula (I) wherein X2 is hydrogen.
In another embodiment the present invention is concerned with compounds of formula (I) wherein X2 is halogen.
In another embodiment the present invention is concerned with compounds of for- mula (I) wherein X2 is bromine.
In another embodiment the present invention is concerned with compounds of formula (I) wherein X2 is aryl-C2-6-alkynyl, heteroaryl-C2-6-alkynyl, heterocyclyl-C2-6-alkynyl, aryl- C2-6-alkenyl, heteroaryl-C2-6-alkenyl, heterocyclyl-C2-6-alkenyl, aryl or heteroaryl each of which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl, hydroxy or carboxy; or
• C1-6-alkyl, Cs-e-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6- cycloalkoxy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, C3-6-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido,
Figure imgf000022_0001
each of which is optionally substituted with one or more halogens. In another embodiment the present invention is concerned with compounds of formula (I) wherein X2 is aryl-C2-6-alkynyl, heteroaryl-C2-6-alkynyl, heterocyclyl-C2-6-alkynyl, aryl- C2-6-alkenyl, heteroaryl-C2-6-alkenyl, heterocyclyl-C2-6-alkenyl, aryl or heteroaryl each of which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or
• C-ι-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C1-6-alkylthio, arylthio, Ca^-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido,
Figure imgf000023_0001
C1-6-alkylamino, C1-6-dialkylamino or Ca^-cycloalkylamino, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein X2 is aryl-C2-6-alkynyl, heteroaryl-C2-6-alkynyl, heterocyclyl-C2-6-alkynyl, aryl- C2-6-alkenyl, heteroaryl-C2-6-alkenyl, heterocyclyl-C2-6-alkenyl, aryl or heteroaryl each of which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or • C-ι-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein X2 aryl-C2-6-alkynyl, heteroaryl-C2-6-alkynyl, heterocyclyl-C2-6-alkynyl, aryl-C2- 6-alkenyl, heteroaryl-C2-6-alkenyl, heterocyclyl-C^-alkenyl, aryl or heteroaryl each of which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, aryl, or C1-6-alkylsulfonyl, each of which is optionally substituted with one or more halogens.
In another embodiment the present invention is concerned with compounds of for- mula (I) wherein X2 is aryl-C2-6-alkynyl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl, hydroxy or carboxy; or
• C-ι-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6-cyclo- alkoxy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, Ca-e-cycloalkylthio, C1-6- alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6- alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or Ca-e-cycloalkylamino, each of which is optionally substituted with one or more halogens.
In another embodiment the present invention is concerned with compounds of formula (I) wherein X2 is aryl-C2-6-alkynyl, which is optionally substituted with one or more sub- stituents selected from • halogen, perhalomethyl or hydroxy; or
• C-ι-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C1-6-alkylthio, arylthio, Ca-e-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C-i-e-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or Ca-e-cycloalkylamino, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein X2 is aryl-C2-6-alkynyl, which is optionally substituted with one or more sub- stituents selected from
• halogen, perhalomethyl or hydroxy; or • C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein X2 is aryl-C2-6-alkynyl, which is optionally substituted with one or more sub- stituents selected from • halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, aryl, or C1-6-alkylsulfonyl, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein X2 is phenylethynyl, which is optionally substituted with one or more sub- stituents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, aryl, or C1-6-alkylsulfonyl.
In another embodiment the present invention is concerned with compounds of formula (I) wherein X2 is heteroaryl-C2-6-alkynyl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl, hydroxy or carboxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6-cyclo- alkoxy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, Cs-e-cycloalkylthio, C1-6- alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6- alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or C3-6-cycloalkylamino, each of which is optionally substituted with one or more halogens.
In another embodiment the present invention is concerned with compounds of formula (I) wherein X2 is heteroaryl-C2-6-alkynyl, which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or • C-ι-6-alkyl, C3-6-CyClOaIkYl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C1-6-alkylthio, arylthio, Cs-e-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C-i-e-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or Ca-e-cycloalkylamino, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein X2 is heteroaryl-C2-6-alkynyl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein X2 is heteroaryl-C2-6-alkynyl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or • C1-6-alkyl, aryl, or C1-6-alkylsulfonyl, each of which is optionally substituted with one or more halogens.
In another embodiment the present invention is concerned with compounds of formula (I) wherein X2 is heterocyclyl-C2-6-alkynyl, which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl, hydroxy or carboxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6-cyclo- alkoxy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, C3-6-cycloalkylthio, C1-6- alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6- alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or C3-6-cycloalkylamino, each of which is optionally substituted with one or more halogens.
In another embodiment the present invention is concerned with compounds of formula (I) wherein X2 is heterocyclyl-C2-6-alkynyl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or • C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C1-6-alkylthio, arylthio, C3-6-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or C3-6-cycloalkylamino, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein X2 is heterocyclyl-C2-6-alkynyl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or • C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein X2 is heterocyclyl-C2-6-alkynyl, which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, aryl, or C1-6-alkylsulfonyl, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein X2 is piperidinylpropynyl or morpholinylpropenyl, which is optionally substi- tuted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, aryl, or C1-6-alkylsulfonyl, each of which is optionally substituted with one or more halogens.
In another embodiment the present invention is concerned with compounds of for- mula (I) wherein X2 is aryl-C2-6-alkenyl, heteroaryl-C2-6-alkenyl or heterocyclyl-C2-6-alkenyl, each of which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl, hydroxy or carboxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6-cyclo- alkoxy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, Cs-e-cycloalkylthio, C1-6- alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6- alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or C3-6-cycloalkylamino, each of which is optionally substituted with one or more halogens.
In another embodiment the present invention is concerned with compounds of formula (I) wherein X2 is aryl-C2-6-alkenyl, heteroaryl-C2-6-alkenyl or heterocyclyl-C2-6-alkenyl, each of which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C1-6-alkylthio, arylthio, C3-6-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or C3-6-cycloalkylamino, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein X2 is aryl-C2-6-alkenyl, heteroaryl-C2-6-alkenyl or heterocyclyl-C^-alkenyl, each of which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or • C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein X2 is aryl-C2-6-alkenyl, heteroaryl-C2-6-alkenyl or heterocyclyl-C^-alkenyl, each of which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or
• C-ι-6-alkyl, aryl, or C1-6-alkylsulfonyl, each of which is optionally substituted with one or more halogens.
In another embodiment the present invention is concerned with compounds of formula (I) wherein X2 is aryl, which is optionally substituted with one or more substituents se- lected from
• halogen, perhalomethyl, hydroxy or carboxy; or
• C-ι-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6- cycloalkoxy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, Cs-e-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C^-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or C3-6-cycloalkylamino, each of which is optionally substituted with one or more halogens.
In another embodiment the present invention is concerned with compounds of formula (I) wherein X2 is aryl, which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, Cs-e-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C1-6-alkylthio, arylthio, C3-6-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C-i-e-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or Ca-e-cycloalkylamino, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein X2 is aryl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein X2 is aryl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or • C1-6-alkyl, aryl, or C1-6-alkylsulfonyl, each of which is optionally substituted with one or more halogens.
In another embodiment the present invention is concerned with compounds of formula (I) wherein X2 is heteroaryl, which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl, hydroxy or carboxy; or
• C-ι-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6-cyclo- alkoxy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, Cs-e-cycloalkylthio, C1-6- alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6- alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or C3-6-cycloalkylamino, each of which is optionally substituted with one or more halogens.
In another embodiment the present invention is concerned with compounds of formula (I) wherein X2 is heteroaryl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or • C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C1-6-alkylthio, arylthio, C3-6-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or C3-6-cycloalkylamino, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of for- mula (I) wherein X2 is heteroaryl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein X2 is heteroaryl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, aryl, or C1-6-alkylsulfonyl, each of which is optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein Ar is arylene which is optionally substituted with one or more substituents selected from
• halogen; or • C1-6-alkyl, C1-6-alkoxy, aryloxy or aralkoxy each of which is optionally substituted with one or more halogens; or
• two of the substituents when placed in adjacent positions together with the atoms to which they are attached form a five membered carbon cycle.
In another embodiment, the present invention is concerned with compounds of for- mula (I) wherein Ar is phenylene which is optionally substituted with one or more substituents selected from
• halogen; or
• C1-6-alkyl, C1-6-alkoxy, aryloxy or aralkoxy each of which is optionally substituted with one or more halogens; or • two of the substituents when placed in adjacent positions together with the atoms to which they are attached form a five membered carbon cycle.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein Ar is phenylene which is optionally substituted with one or more substituents selected from halogen or C1-6-alkyl. In another embodiment, the present invention is concerned with compounds of formula (I) wherein Ar is phenylene which is optionally substituted with halogen.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein Ar is phenylene which is optionally substituted with one or more of C1-6-alkyl optionally substituted with one or more halogens. In another embodiment, the present invention is concerned with compounds of formula (I) wherein Ar is phenylene which is optionally substituted with one or more of C1-6- alkoxy optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein Ar is phenylene which is optionally substituted with one or more of aryloxy optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein Ar is phenylene which is optionally substituted with one or more of aralkoxy optionally substituted with one or more halogens.
In another embodiment, the present invention is concerned with compounds of for- mula (I) wherein Ar is phenylene which is optionally substituted with methyl. In another embodiment, the present invention is concerned with compounds of formula (I) wherein Ar is phenylene.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein Y1 is S. In another embodiment, the present invention is concerned with compounds of formula (I) wherein Y1 is O.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein Y2 is O.
In another embodiment, the present invention is concerned with compounds of for- mula (I) wherein Y2 is S.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein Y2 is CH2.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein n is 1. In another embodiment, the present invention is concerned with compounds of formula (I) wherein n is 2.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein R is hydrogen or C1-6-alkyl.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein R is hydrogen.
In another embodiment, the present invention is concerned with compounds of formula (I) wherein R is methyl or ethyl.
In another embodiment, the present invention is concerned with compounds of formula I wherein alkyl is methyl or ethyl. In another embodiment, the present invention is concerned with compounds of formula I wherein alkenyl is vinyl or 1-propenyl.
In another embodiment, the present invention is concerned with compounds of formula I wherein alkynyl is 1-propynyl.
In another embodiment, the present invention is concerned with compounds of formula I wherein alkenynyl is 1-pentene-4-yne.
In another embodiment, the present invention is concerned with compounds of formula I wherein alkoxy is methoxy, ethoxy, isopropoxy or cyclopropoxy.
In another embodiment, the present invention is concerned with compounds of formula I wherein aryl is phenyl. In another embodiment, the present invention is concerned with compounds of formula I wherein arylene is phenylene.
In another embodiment, the present invention is concerned with compounds of formula I wherein halogen is bromine, fluorine or chlorine. In another embodiment, the present invention is concerned with compounds of formula I wherein perhalomethyl is trifluoromethyl.
In another embodiment, the present invention is concerned with compounds of formula I wherein perhalomethoxy is trifluoromethoxy,
In another embodiment, the present invention is concerned with compounds of formula I wherein heteroaryl is furyl or thienyl.
In another embodiment, the present invention is concerned with compounds of formula I wherein heteroaryl is pyrazolyl, pyrrolyl or pyridyl.
In another embodiment, the present invention is concerned with compounds of formula I wherein heteroaryl is benzofuryl or benzothienyl. In another embodiment, the present invention is concerned with compounds of formula I wherein heterocyclyl is pyrrolidinyl, piperidinyl, piperazinyl or morpholinyl.
In another embodiment, the present invention is concerned with compounds of formula I wherein heteroarylene is thienylene.
In another embodiment, the present invention is concerned with compounds of formula I wherein aralkyl is benzyl.
In another embodiment, the present invention is concerned with compounds of formula I wherein aryloxy is phenoxy.
In another embodiment, the present invention is concerned with compounds of formula I wherein aralkoxy is benzyloxy. In another embodiment, the present invention is concerned with compounds of formula I which are PPARδ agonists.
In another embodiment, the present invention is concerned with compounds of formula I which are selective PPARδ agonists.
In another embodiment, the present invention is concerned with compounds of formula I which are selective, partial PPARδ agonists.
Examples of compounds of the invention are:
{^^-(S-Bromo-δ-phenylethynyl-phenyO-prop^-ynyloxyl-phenoxyJ-acetic acid; {4-[3-(3,5-Bis-phenylethynyl-phenyl)-prop-2-ynyloxy]-phenoxy}-acetic acid; (4-{3-[3-Bromo-5-(3-piperidin-1-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2-methyl-phenoxy)- acetic acid; (2-Methyl-4-{3-[3-(3-piperidin-1-yl-prop-1-ynyl)-5-(4-trifluoromethyl-phenylethynyl)-phenyl]- prop-2-ynyloxy}-phenoxy)-acetic acid;
(4-{3-[3,5-Bis-(3-piperidin-1-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2-methyl-phenoxy)-acetic acid; (4-{3-[3-Bromo-5-(3-morpholin-4-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2-methyl-phenoxy)- acetic acid;
(2-Methyl-4-{3-[3-(3-morpholin-4-yl-prop-1-ynyl)-5-(4-trifluoromethyl-phenylethynyl)-phenyl]- prop-2-ynyloxy}-phenoxy)-acetic acid; (2-Methyl-4-{3-[3-(3-morpholin-4-yl-prop-1-ynyl)-5-phenylethynyl-phenyl]-prop-2-ynyloxy}- phenoxy)-acetic acid;
(4-{3-[3-(4-Chloro-phenylethynyl)-5-(3-morpholin-4-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2- methyl-phenoxy)-acetic acid;
(4-{3-[3-(4-Methanesulfonyl-phenylethynyl)-5-(3-morpholin-4-yl-prop-1-ynyl)-phenyl]-prop-2- ynyloxy}-2-methyl-phenoxy)-acetic acid ; (4-{3-[3-Bromo-5-(4-trifluoromethyl-phenylethynyl)-phenyl]-prop-2-ynyloxy}-2-methyl- phenoxy)-acetic acid; or a salt thereof with a pharmaceutically acceptable acid or base, or any optical isomer or mixture of optical isomers, including a racemic mixture, or any tautomeric forms.
The present invention also encompasses pharmaceutically acceptable salts of the present compounds. Such salts include pharmaceutically acceptable acid addition salts, pharmaceutically acceptable base addition salts, pharmaceutically acceptable metal salts, ammonium and alkylated ammonium salts. Acid addition salts include salts of inorganic acids as well as organic acids. Representative examples of suitable inorganic acids include hydrochloric, hydrobromic, hydroiodic, phosphoric, sulfuric, nitric acids and the like. Representative examples of suitable organic acids include formic, acetic, trichloroacetic, trifluoroacetic, propionic, benzoic, cinnamic, citric, fumaric, glycolic, lactic, maleic, malic, malonic, mandelic, oxalic, picric, pyruvic, salicylic, succinic, methanesulfonic, ethanesulfonic, tartaric, ascorbic, pamoic, bismethylene salicylic, ethanedisulfonic, gluconic, citraconic, aspartic, stearic, palmitic, EDTA, glycolic, p-aminobenzoic, glutamic, benzenesulfonic, p-toluenesulfonic acids, sulphates, nitrates, phosphates, perchlorates, borates, acetates, benzoates, hydroxynaph- thoates, glycerophosphates, ketoglutarates and the like. Further examples of pharmaceutically acceptable inorganic or organic acid addition salts include the pharmaceutically acceptable salts listed in J. Pharm. Sci. 1977, 66, 2, which is incorporated herein by reference. Examples of metal salts include lithium, sodium, potassium, magnesium, zinc, calcium salts and the like. Examples of amines and organic amines include ammonium, methylamine, di- methylamine, trimethylamine, ethylamine, diethylamine, propylamine, butylamine, tetrame- thylamine, ethanolamine, diethanolamine, triethanolamine, meglumine, ethylenediamine, choline, N,N'-dibenzylethylenediamine, N-benzylphenylethylamine, N-methyl-D-glucamine, guanidine and the like. Examples of cationic amino acids include lysine, arginine, histidine and the like.
The pharmaceutically acceptable salts are prepared by reacting the compound of formula I with 1 to 4 equivalents of a base such as sodium hydroxide, sodium methoxide, sodium hydride, potassium t-butoxide, calcium hydroxide, magnesium hydroxide and the like, in solvents like ether, THF, methanol, t-butanol, dioxane, isopropanol, ethanol etc. Mixture of solvents may be used. Organic bases like lysine, arginine, diethanolamine, choline, guandine and their derivatives etc. may also be used. Alternatively, acid addition salts wherever applicable are prepared by treatment with acids such as hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid, p-toluenesulphonic acid, methanesulfonic acid, acetic acid, citric acid, maleic acid salicylic acid, hydroxynaphthoic acid, ascorbic acid, palmitic acid, succinic acid, benzoic acid, benzenesulfonic acid, tartaric acid and the like in solvents like ethyl acetate, ether, alcohols, acetone, THF, dioxane etc. Mixture of solvents may also be used.
The stereoisomers of the compounds forming part of this invention may be prepared by using reactants in their single enantiomeric form in the process wherever possible or by conducting the reaction in the presence of reagents or catalysts in their single enantiomer form or by resolving the mixture of stereoisomers by conventional methods. Some of the preferred methods include use of microbial resolution, enzymatic resolution, resolving the diastereomeric salts formed with chiral acids such as mandelic acid, camphorsulfonic acid, tartaric acid, lactic acid, and the like wherever applicable or chiral bases such as brucine, (R)- or (S)-phenylethylamine, cinchona alkaloids and their derivatives and the like. Commonly used methods are compiled by Jaques et al in "Enantiomers, Racemates and Resolution" (Wiley Interscience, 1981 ). More specifically the compound of formula I may be converted to a 1 :1 mixture of diastereomeric amides by treating with chiral amines, aminoacids, aminoalcohols derived from aminoacids; conventional reaction conditions may be employed to convert acid into an amide; the dia-stereomers may be separated either by fractional crystallization or chromatography and the stereoisomers of compound of formula I may be prepared by hydrolysing the pure diastereomeric amide.
Various polymorphs of compound of general formula I forming part of this invention may be prepared by crystallization of compound of formula I under different conditions. For example, using different solvents commonly used or their mixtures for recrystallization; crys- tallizations at different temperatures; various modes of cooling, ranging from very fast to very slow cooling during crystallizations. Polymorphs may also be obtained by heating or melting the compound followed by gradual or fast cooling. The presence of polymorphs may be determined by solid probe nmr spectroscopy, ir spectroscopy, differential scanning calorimetry, powder X-ray diffraction or such other techniques.
The compounds of the present invention may form solvates with standard low molecular weight solvents using methods well known to the person skilled in the art. Such solvates are also contemplated as being within the scope of the present invention. Examples of solvates are the hydrates, which the present compounds are able to form. The invention also encompasses prodrugs of the present compounds, which on administration undergo chemical conversion by metabolic processes before becoming active pharmacological substances. In general, such prodrugs will be functional derivatives of the present compounds, which are readily convertible in vivo into the required compound of the formula (I). Conventional procedures for the selection and preparation of suitable prodrug derivatives are described, for example, in "Design of Prodrugs", ed. H. Bundgaard, Elsevier, 1985.
The invention also encompasses active metabolites of the present compounds. The invention also relates to pharmaceutical compositions comprising, as an active ingredient, at least one compound of the formula I or any optical or geometric isomer or tautomeric form thereof including mixtures of these or a pharmaceutically acceptable salt thereof together with one or more pharmaceutically acceptable carriers or diluents.
The invention also provides novel compounds of the formula I for use in therapy. In an aspect, the present invention provides novel compounds or pharmaceutically acceptable salts thereof that are useful as PPAR-δ activators. In another aspect, the present invention provides novel compounds that improves mitochondrial energy output.
In another aspect, the present invention provides novel pharmaceutical compositions comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of at least one of the compounds of the present invention or a pharmaceutically acceptable salt thereof.
In another aspect, the present invention relates to a method of treating and/or preventing Type I or Type Il diabetes.
In a still further aspect, the present invention relates to the use of one or more compounds of the general formula I or pharmaceutically acceptable salts thereof for the preparation of a pharmaceutical composition for the treatment and/or prevention of Type I or Type Il diabetes.
In a still further aspect, the present compounds are useful for the treatment and/or prevention of IGT. In a still further aspect, the present compounds are useful for the treatment and/or prevention of Type 2 diabetes.
In a still further aspect, the present compounds are useful for the delaying or prevention of the progression from IGT to Type 2 diabetes.
In a still further aspect, the present compounds are useful for the delaying or pre- vention of the progression from non-insulin requiring Type 2 diabetes to insulin requiring Type 2 diabetes.
In another aspect, the present compounds reduce blood glucose and triglyceride levels and are accordingly useful for the treatment and/or prevention of ailments and disorders such as diabetes and/or obesity. In still another aspect, the present compounds are useful for the treatment and/or prophylaxis of insulin resistance (Type 2 diabetes), impaired glucose tolerance, dyslipidemia, disorders related to Syndrome X such as hypertension, obesity, insulin resistance, hypergly- caemia, atherosclerosis, artherosclerosis, hyperlipidemia, coronary artery disease, myocardial ischemia and other cardiovascular disorders. In still another aspect, the present compounds are useful for the treatment and/or prophylaxis of diseases or complications related to atherosclerosis such as coronary artery diseases, coronary heart diseases, heart attack, myocardial infarct, coronary infarct, transient ischemic attack (TIA) or stroke.
In still another aspect, the present compounds are effective in decreasing apoptosis in mammalian cells such as beta cells of Islets of Langerhans.
In still another aspect, the present compounds are useful for the treatment of certain renal diseases including glomerulonephritis, glomerulosclerosis, nephrotic syndrome, hypertensive nephrosclerosis.
In still another aspect, the present compounds may also be useful for improving cognitive functions in dementia, treating diabetic complications, psoriasis, polycystic ovarian syndrome (PCOS) and prevention and treatment of bone loss, e.g. osteoporosis.
In yet another aspect, the invention also relates to the use of the present compounds, which after administration lower the bio-markers of atherosclerosis like, but not limited to, c-reactive protein (CRP), TNFα and IL-6. The present compounds may also be administered in combination with one or more further pharmacologically active substances eg., selected from antiobesity agents, antidiabetics, antihypertensive agents, agents for the treatment and/or prevention of complications resulting from or associated with diabetes and agents for the treatment and/or prevention of complications and disorders resulting from or associated with obesity.
Thus, in a further aspect of the invention the present compounds may be administered in combination with one or more antiobesity agents or appetite regulating agents. Such agents may be selected from the group consisting of CART (cocaine amphetamine regulated transcript) agonists, NPY (neuropeptide Y) antagonists, MC4 (melano- cortin 4) agonists, orexin antagonists, TNF (tumor necrosis factor) agonists, CRF (corticotropin releasing factor) agonists, CRF BP (corticotropin releasing factor binding protein) antagonists, urocortin agonists, β3 agonists, MSH (melanocyte-stimulating hormone) agonists, MCH (melanocyte-concentrating hormone) antagonists, CCK (cholecystokinin) agonists, serotonin re-uptake inhibitors, serotonin and noradrenaline re-uptake inhibitors, mixed sero- tonin and noradrenergic compounds, 5HT (serotonin) agonists, bombesin agonists, galanin antagonists, growth hormone, growth hormone releasing compounds, TRH (thyreotropin releasing hormone) agonists, UCP 2 or 3 (uncoupling protein 2 or 3) modulators, leptin agonists, DA agonists (bromocriptin, doprexin), lipase/amylase inhibitors, RXR (retinoid X receptor) modulators or TR β agonists. In one embodiment of the invention the antiobesity agent is leptin.
In another embodiment the antiobesity agent is dexamphetamine or amphetamine. In another embodiment the antiobesity agent is fenfluramine or dexfenfluramine. In still another embodiment the antiobesity agent is sibutramine. In a further embodiment the antiobesity agent is orlistat. In another embodiment the antiobesity agent is mazindol or phentermine.
Suitable antidiabetics comprise insulin, GLP-1 (glucagon like peptide-1 ) derivatives such as those disclosed in WO 98/08871 to Novo Nordisk A/S, which is incorporated herein by reference as well as orally active hypoglycaemic agents.
The orally active hypoglycaemic agents preferably comprise sulphonylureas, bigua- nides, meglitinides, glucosidase inhibitors, glucagon antagonists such as those disclosed in WO 99/01423 to Novo Nordisk A/S and Agouron Pharmaceuticals, Inc., GLP-1 agonists, potassium channel openers such as those disclosed in WO 97/26265 and WO 99/03861 to Novo Nordisk A/S which are incorporated herein by reference, DPP-IV (dipeptidyl peptidase- IV) inhibitors, inhibitors of hepatic enzymes involved in stimulation of gluconeogenesis and/or glycogenosis, glucose uptake modulators, compounds modifying the lipid metabolism such as antihyperlipidemic agents and antilipidemic agents as HMG CoA inhibitors (statins), compounds lowering food intake, RXR agonists and agents acting on the ATP-dependent potassium channel of the β-cells.
In one embodiment of the invention the present compounds are administered in combination with insulin.
In a further embodiment the present compounds are administered in combination with a sulphonylurea eg. tolbutamide, glibenclamide, glipizide or glicazide.
In another embodiment the present compounds are administered in combination with a biguanide eg. metformin. In yet another embodiment the present compounds are administered in combination with a meglitinide eg. repaglinide or senaglinide.
In a further embodiment the present compounds are administered in combination with an α-glucosidase inhibitor eg. miglitol or acarbose.
In another embodiment the present compounds are administered in combination with an agent acting on the ATP-dependent potassium channel of the β-cells eg. tolbutamide, glibenclamide, glipizide, glicazide or repaglinide.
Furthermore, the present compounds may be administered in combination with nateglinide.
In still another embodiment the present compounds are administered in combination with an antihyperlipidemic agent or antilipidemic agent eg. cholestyramine, colestipol, clofi- brate, gemfibrozil, fenofibrate, bezafibrate, tesaglitazar, EML-4156, LY-518674, LY-519818, MK-767, atorvastatin, fluvastatin, lovastatin, pravastatin, simvastatin, cerivastin, acipimox, ezetimibe probucol, dextrothyroxine or nicotinic acid.
In yet another embodiment the present compounds are administered in combination with a thiazolidinedione e.g. troglitazone, ciglitazone, pioglitazone or rosiglitazone.
In a further embodiment the present compounds are administered in combination with more than one of the above-mentioned compounds eg. in combination with a sulphonylurea and metformin, a sulphonylurea and acarbose, repaglinide and metformin, insulin and a sulphonylurea, insulin and metformin, insulin, insulin and lovastatin, etc. Furthermore, the present compounds may be administered in combination with one or more antihypertensive agents. Examples of antihypertensive agents are β-blockers such as alprenolol, atenolol, timolol, pindolol, propranolol and metoprolol, ACE (angiotensin converting enzyme) inhibitors such as benazepril, captopril, enalapril, fosinopril, lisinopril, quinapril and ramipril, calcium channel blockers such as nifedipine, felodipine, nicardipine, isradipine, nimodipine, diltiazem and verapamil, and α-blockers such as doxazosin, urapidil, prazosin and terazosin. Further reference can be made to Remington: The Science and Practice of Pharmacy, 19th Edition, Gennaro, Ed., Mack Publishing Co., Easton, PA, 1995.
It should be understood that any suitable combination of the compounds according to the invention with one or more of the above-mentioned compounds and optionally one or more further pharmacologically active substances are considered to be within the scope of the present invention.
The present invention also relates to a process for the preparation of the above said novel compounds, their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their pharmaceutically acceptable salts or pharmaceutically acceptable solvates.
PHARMACEUTICAL COMPOSITIONS
The compounds of the invention may be administered alone or in combination with pharmaceutically acceptable carriers or excipients, in either single or multiple doses. The pharmaceutical compositions according to the invention may be formulated with phar- maceutically acceptable carriers or diluents as well as any other known adjuvants and excipients in accordance with conventional techniques such as those disclosed in Remington: The Science and Practice of Pharmacy, 19th Edition, Gennaro, Ed., Mack Publishing Co., Easton, PA, 1995. The compositions may appear in conventional forms, for example capsules, tablets, aerosols, solutions, suspensions or topical applications. Typical compositions include a compound of formula I or a pharmaceutically acceptable acid addition salt thereof, associated with a pharmaceutically acceptable excipient which may be a carrier or a diluent or be diluted by a carrier, or enclosed within a carrier which can be in the form of a capsule, sachet, paper or other container. In making the compositions, conventional techniques for the preparation of pharmaceutical compositions may be used. For example, the active compound will usually be mixed with a carrier, or diluted by a carrier, or enclosed within a carrier which may be in the form of a ampoule, capsule, sachet, paper, or other container. When the carrier serves as a diluent, it may be solid, semi-solid, or liquid material which acts as a vehicle, excipient, or medium for the active compound. The active compound can be adsorbed on a granular solid container for example in a sachet. Some examples of suitable carriers are water, salt solutions, alcohols, polyethylene glycols, polyhydroxyethoxylated castor oil, peanut oil, olive oil, gelatine, lactose, terra alba, sucrose, cyclodextrin, amylose, magnesium stearate, talc, gelatin, agar, pectin, acacia, stearic acid or lower alkyl ethers of cellulose, silicic acid, fatty acids, fatty acid amines, fatty acid monoglycerides and diglycerides, pentaerythritol fatty acid esters, polyoxyethylene, hydroxymethylcellulose and polyvinylpyrrolidone. Similarly, the carrier or diluent may include any sustained release material known in the art, such as glyceryl monostearate or glyceryl distearate, alone or mixed with a wax. The formulations may also include wetting agents, emulsifying and suspending agents, preserving agents, sweetening agents or flavouring agents. The formulations of the invention may be formulated so as to provide quick, sustained, or delayed release of the active ingredient after administration to the patient by employing procedures well known in the art.
The pharmaceutical compositions can be sterilized and mixed, if desired, with auxiliary agents, emulsifiers, salt for influencing osmotic pressure, buffers and/or colouring sub- stances and the like, which do not deleteriously react with the active compounds.
The route of administration may be any route, which effectively transports the active compound to the appropriate or desired site of action, such as oral, nasal, pulmonary, transdermal or parenteral e.g. rectal, depot, subcutaneous, intravenous, intra urethra I, intramuscular, intranasal, ophthalmic solution or an ointment, the oral route being preferred. If a solid carrier is used for oral administration, the preparation may be tabletted, placed in a hard gelatin capsule in powder or pellet form or it can be in the form of a troche or lozenge. If a liquid carrier is used, the preparation may be in the form of a syrup, emulsion, soft gelatin capsule or sterile injectable liquid such as an aqueous or non-aqueous liquid suspension or solution. For nasal administration, the preparation may contain a compound of formula I dissolved or suspended in a liquid carrier, in particular an aqueous carrier, for aerosol application. The carrier may contain additives such as solubilizing agents, e.g. propylene glycol, surfactants, absorption enhancers such as lecithin (phosphatidylcholine) or cyclodextrin, or preservatives such as parabenes. For parenteral application, particularly suitable are injectable solutions or suspensions, preferably aqueous solutions with the active compound dissolved in polyhydroxylated castor oil.
Tablets, dragees, or capsules having talc and/or a carbohydrate carrier or binder or the like are particularly suitable for oral application. Preferable carriers for tablets, dragees, or capsules include lactose, corn starch, and/or potato starch. A syrup or elixir can be used in cases where a sweetened vehicle can be employed.
A typical tablet which may be prepared by conventional tabletting techniques may contain:
Core: Active compound (as free compound or salt thereof) 5 mg Colloidal silicon dioxide (Aerosil) 1.5 mg
Cellulose, microcryst. (Avicel) 70 mg
Modified cellulose gum (Ac-Di-SoI) 7.5 mg
Magnesium stearate Ad.
Coating:
HPMC approx. 9 mg
*Mywacett 9-40 T approx. 0.9 mg
*Acylated monoglyceride used as plasticizer for film coating.
If desired, the pharmaceutical composition of the invention may comprise the compound of formula (I) in combination with further pharmacologically active substances such as those described in the foregoing. The compounds of the invention may be administered to a mammal, especially a human in need of such treatment, prevention, elimination, alleviation or amelioration of diseases related to the regulation of blood sugar.
Such mammals include also animals, both domestic animals, e.g. household pets, and non-domestic animals such as wildlife. The compounds of the invention are effective over a wide dosage range. A typical oral dosage is in the range of from about 0.001 to about 100 mg/kg body weight per day, preferably from about 0.01 to about 50 mg/kg body weight per day, and more preferred from about 0.05 to about 10 mg/kg body weight per day administered in one or more dosages such as 1 to 3 dosages. The exact dosage will depend upon the frequency and mode of ad- ministration, the sex, age, weight and general condition of the subject treated, the nature and severity of the condition treated and any concomitant diseases to be treated and other factors evident to those skilled in the art.
The formulations may conveniently be presented in unit dosage form by methods known to those skilled in the art. A typical unit dosage form for oral administration one or more times per day such as 1 to 3 times per day may contain of from 0.05 to about 1000 mg, preferably from about 0.1 to about 500 mg, and more preferred from about 0.5 mg to about 200 mg.
Any novel feature or combination of features described herein is considered essential to this invention. EXAMPLES
The following examples and general procedures refer to intermediate compounds and final products identified in the specification and in the synthesis schemes. The preparation of the compounds of the present invention is described in detail using the following ex- amples. Occasionally, the reaction may not be applicable as described to each compound included within the disclosed scope of the invention. The compounds for which this occurs will be readily recognised by those skilled in the art. In these cases the reactions can be successfully performed by conventional modifications known to those skilled in the art, that is, by appropriate protection of interfering groups, by changing to other conventional reagents, or by routine modification of reaction conditions. Alternatively, other reactions disclosed herein or otherwise conventional will be applicable to the preparation of the corresponding compounds of the invention. In all preparative methods, all starting materials are known or may easily be prepared from known starting materials. The structures of the compounds are confirmed nuclear magnetic resonance (NMR). NMR shifts (δ) are given in parts per million (ppm. Mp is melting point and is given in 0C.
The abbreviations as used in the examples have the following meaning: THF: tetrahydrofuran
DMSO: dimethylsulfoxide
CDCI3: deutorated chloroform DMF: N,N-dimethylformamide min: minutes h: hours
General procedure (A) Step A:
Reacting a compound of formula (II)
Figure imgf000041_0001
wherein hlg is halogen, with a compound of formula
Figure imgf000041_0002
wherein Ar, Y1, Y2, Z and R are as defined above, using Sonogashira reaction conditions to give a compound of formula (IV)
hlg
Figure imgf000042_0001
wherein hlg, Ar, Y1, Y2, Z and R are as defined above except that R is not hydrogen. Step B:
Reacting a compound of formula (IV), wherein hlg, Ar, Y1, Y2, Z and R are as defined above except that R is not hydrogen, with a compound of formula (V)
Figure imgf000042_0002
wherein X1 is a defined above, using Sonogashira reaction conditions to give a compound of formula (Vl)
Figure imgf000042_0003
wherein hlg, Ar, Y1, Y2, Z, X1 and R are as defined above except that R is not hydrogen. Step C:
Reacting a compound of formula (Vl), wherein hlg, Ar, Y1, Y2, Z, X1 and R are as de- fined above except that R is not hydrogen, with X2, where X2 is defined as described above, using appropriate coupling conditions to give a compound of formula (I), wherein Ar, Y1, Y2, Z, X1, X2 and R are as defined above except that R is not hydrogen.
Step D: By chemical or enzymatic saponification of a compound of formula I wherein Ar, Y1, Y2, Z, X1, X2 and R are as defined above except that R is not hydrogen, to give a compound of formula wherein Ar, Y1, Y2, Z, X1, X2 and R are as defined above, except that R is hydrogen.
General procedure (B)
The order in which formula (II) is reacted with the compounds of formula (III), (V) and X2 , step A-C in general procedure A, can be changed.
Intermediate 1
(2-Methyl-4-prop-2-ynyloxy-phenoxy)-acetic acid methyl ester
Figure imgf000043_0001
To a solution of (4-hydroxy-2-methyl-phenoxy)-acetic acid methyl ester (5.1 g, 25.8 mmol) and K2CO3 (7.1 g, 51.5 mmol) in acetone (85 ml) was added propagylbromide (3.1 g, 25.7 mmol) at room temperature. The reaction mixture was stirred at room temperature for 2 days, and then filtered and evaporated in vacuo. The residue was purified on column chro- matography using methylene chloride as eluent to give the title compound in 6.0 (100%) yield.
1H NMR (CDCI3): δ 2.29 (3H, s), 2.50 (1 H, t), 3.80 (3H, s), 4.60 (2H, s), 4.62 (2H, d), 6.63- 6.84 (3H, m).
Intermediate 2 {4-[3-(3,5-Dibromo-phenyl)-prop-2-ynyloxy]-2-methyl-phenoxy}-acetic acid
Figure imgf000043_0002
A solution of 1 ,3,5-tribromophenyl (4.12 g, 13.1 mmol), (2-methyl-4-prop-2-ynyloxy- phenoxy)-acetic acid methyl ester (4.6 g, 19.6 mmol, intermediate 1 ), Pd(PPh3)4 (1.5 g, 1.3 mmol) and CuI (0.7 g, 3.7 mmol) in triethylamine (200 ml) was heated in a sealed tube in a microwave own at 65 0C for 30 min. The reaction mixture was filtered and the filtrate was evaporated. The residue was purified on column chromatography using methylene chloride as eluent to give {4-[3-(3,5-dibromo-phenyl)-prop-2-ynyloxy]-2-methyl-phenoxy}-acetic acid methyl ester in 1.18 g (52%) yield. 1H NMR (CDCI3): δ 2.99 (3H, s), 3.82 (2H, s), 4.63 (2H, s), 4.83 (2H, s), 6.77-6.86 (3H, m), 7.50 (2H, m), 7.64 (1 H, m).
A solution of {4-[3-(3,5-dibromo-phenyl)-prop-2-ynyloxy]-2-methyl-phenoxy}-acetic acid methyl ester (207 mg, 0.44 mmol) in ethanol (50 ml) and 1 N NaOH (5 ml) was stirred at 75 oC for 30 min. The reaction mixture was evaporated and the residue dissolved in water (10 ml). Aqueous 1 N HCI (5 ml) was added and the mixture was extracted with methylene chloride (3 x 10 ml). The combined organic phases were dried and evaporated to give the title compound in 187 mg (93 %) yield.
1H NMR (CDCI3): δ 2.28 (3H, s), 4.65 (2H, s), 4.84 (2H, s), 6.65-6.87 (3H, m), 7.49 (2H, m), 7.64 (1 H, m).
Intermediate 3
1 ,3-Dibromo-5-phenylethynyl-benzene
Figure imgf000044_0001
To a solution of 1 ,3,5-tribromophenyl ( 2.7 g, 8.5 mmol), Pd(PPh3)4 (0.8 g, 0.7 mmol) and CuI (0.7 g, 3.6 mmol) in diisopropulamine (42 ml) was added dropwise a solution of phenylacetylene ( 1.7 g, 17.0 mmol) in diisoprolylamine (21 ml) under nitrogen atmosphere. The reaction mixture was stirred at 60 0C for 6 hours, and filtered through filter-aid. The filtrate was evaporated and residue was purified on column chromatography using heptane as eluent to give the title compound in 1.5 g (52%) yield. 1H NMR (CDCI3): δ 7.34-7.65 (8H, m).
Example 1
{4-[3-(3-Bromo-5-phenylethynyl-phenyl)-prop-2-ynyloxy]-phenoxy}-acetic acid
Figure imgf000044_0002
A mixture of 1 ,3-dibromo-5-phenylethynyl-benzene (0.1 g, 0.3 mmol, intermediate 3), (4-prop-2-ynyloxy-phenoxy)-acetic acid methyl ester (66 mg, 0.3 mmol), Pd(PPh3)2CI2 (10 mg, 0.015 mmol), CuI (16 mg, 0.008 mmol) in dry DMF (1.5 ml) and triethylamine (1.5 ml) was heated in a microwave own for 10 min at 70 0C in a sealed tube. The reaction mixture was filtered through Decalite and the filtrate was evaporated. The residue was purified on column chromatography to give {4-[3-(3-bromo-5-phenylethynyl-phenyl)-prop-2-ynyloxy]- phenoxy}-acetic acid methyl ester in 27 mg (20%) yield.
1H NMR (CDCI3): δ 3.80 (3H, s), 4.61 (2H, s), 4.85 (2H, s), 6.85-6.99 (4H, m), 7.36 (3H, m), 7.50 (4H, m), 7.63 (1 H, m).
To a solution of {4-[3-(3-bromo-5-phenylethynyl-phenyl)-prop-2-ynyloxy]-phenoxy}- acetic acid methyl ester (66 mg, 0.14 mmol) in THF (1.5 ml) and methanol (0.3 ml) was added a ice-cold solution of LiOH (1 M, 2 ml). The reaction mixture was stirred at 0 0C for 45 min., after which water (10 ml) and aqueous HCI (1 M, 2 ml) were added. The mixture was extracted with ethyl acetate (2 x 5 ml), and the combined organic phases were dried and evaporated to give the title compound in 64 mg (100%) yield. 1H NMR (CDCI3): 5 4.65 (2H, s), 4.87 (2H, s), 6.87-7.00 (4H, m), 7.36 (3H, m), 7.51 (4H, m), 7.63 (1 H, m).
Example 2
{4-[3-(3,5-Bis-phenylethynyl-phenyl)-prop-2-ynyloxy]-phenoxy}-acetic acid
Figure imgf000045_0001
A solution of phenylacetylene (0.20 g, 1.98 mmol), {4-[3-(3,5-dibromo-phenyl)-prop- 2-ynyloxy]-phenoxy}-acetic acid methyl ester (0.3 g, 0.66 mmol), Pd(PPh3)4 (0.1 1 g, 0.1 mmol) and CuI (0.05 g, 0.26 mmol) in triethylamine (10 ml) was heated in a sealed tube in a microwave own at 65 0C for 1 hour. The reaction mixture was filtered and the filtrate was evaporated. The residue was purified on HPLC using acetonitril/water as eluent to give {4-[3- (3,5-bis-phenylethynyl-phenyl)-prop-2-ynyloxy]-phenoxy}-acetic acid methyl ester in 150 mg (46%) yield.
1H NMR (CDCI3): δ 3.79 (3H, s), 4.60 (2H, s), 4.85 (2H, s), 6.85-7.00 (4H, m),7.35 (6H, m), 7.54 (6H, m), 7.64 (1 H, m).
To a solution of {4-[3-(3,5-bis-phenylethynyl-phenyl)-prop-2-ynyloxy]-phenoxy}- acetic acid methyl ester (0.26 g, 0.51 mmol) in THF (5.6 ml) and methanol (1.1 ml) was added a ice-cold solution of LiOH (1 M, 5.6 ml). The reaction mixture was stirred at 0 0C for 45 min., after which water (37 ml) and aqueous HCI (1 M, 7.5 ml) were added. The mixture was extracted with ethyl acetate (2 x 25 ml), and the combined organic phases were dried and evaporated to give the title compound in 240 mg (96%) yield.
1H NMR (CDCI3): δ 4.65 (2H, s), 4.87 (2H, s), 6.85-7.04 (4H, m), 7.35 (6H, m), 7.53 (6H, m), 7.64 (1 H, m).
Example 3
(4-{3-[3-Bromo-5-(3-piperidin-1-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2-methyl-phenoxy)- acetic acid
Figure imgf000046_0001
A mixture of 1-prop-2-ynyl-piperidine (53 mg, 0.44 mmol), {4-[3-(3,5-dibromo- phenyl)-prop-2-ynyloxy]-2-methyl-phenoxy}-acetic acid methyl ester (204 mg, 0.44 mmol, intermediate 2), Pd(PPh3)4 (50 mg, 0.044 mmol), CuI (23 mg, 0.12 mmol) in dry DMF (2 ml) and triethylamine (2 ml) was heated in a microwave own for 30 min at 60 0C in a sealed tube. The reaction mixture was filtered through Decalite and the filtrate was evaporated. The residue was purified on column chromatography using ethyl acetate/methanol mixtures to give (4-{3-[3-bromo-5-(3-piperidin-1-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2-methyl-phenoxy)- acetic acid methyl ester in 105 mg (47%) yield. 1H NMR (CDCI3): δ 1.38-1.70 (6H, m), 2.30 (3H, s), 2.55 (4H, br.s), 3.47 (2H, s), 3.79 (3H, s), 4.62 (2H, s), 4.83 (2H, s), 6.65-6.87 (3H, m), 7.38-7.54 (3H, m).
A solution of (4-{3-[3-bromo-5-(3-piperidin-1-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}- 2-methyl-phenoxy)-acetic acid methyl ester (45 mg, 0.088 mmol) in ethanol (5 ml) and 1 N NaOH (0.5 ml) was stirred at 75 oC for 30 min. The reaction mixture was evaporated and the residue dissolved in water (2 ml). Aqueous 1 N HCI (0.5 ml) was added and the mixture was extracted with methylene chloride (3 x 15 ml). The combined organic phases were dried and evaporated to give the title compound in 36 mg (88 %) yield.
1H NMR (CDCI3): δ 1.48-1.95 (3H, m), 2.10-2.27 (3H, m), 2.27 (3H, s), 2.98 (2H, m), 3.54 (2H, m), 4.15 (2H, s), 4.60 (2H, s), 4.82 (2H, s), 6.67-6.84 (3H, m), 7.40-7.58 (3H, m). Example 4
(2-Methyl-4-{3-[3-(3-piperidin-1-yl-prop-1-ynyl)-5-(4-trifluoromethyl-phenylethynyl)-phenyl]- prop-2-ynyloxy}-phenoxy)-acetic acid
Figure imgf000047_0001
A mixture of 1-ethynyl-4-trifluoromethyl-benzene (300 mg, 1.77 mmol), (4-{3-[3- bromo-5-(3-piperidin-1-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2-methyl-phenoxy)-acetic acid methyl ester (100 mg, 0.2 mmol, example 3), Pd(PPh3)4 (22 mg, 0.02 mmol), CuI (10 mg, 0.055 mmol) in dry DMF (2 ml) and triethylamine (2 ml) was heated in a microwave own for 50 min at 60 0C in a sealed tube. The reaction mixture was filtered through Decalite and the filtrate was evaporated. The residue was purified on column chromatography using ethyl ace- tate/methanol mixtures to give (2-methyl-4-{3-[3-(3-piperidin-1-yl-prop-1-ynyl)-5-(4-trifluoro- methyl-phenylethynyl)-phenyl]-prop-2-ynyloxy}-phenoxy)-acetic acid methyl ester in 30 mg (26%) yield. 1H NMR (CDCI3): δ 1.46 (2H, m), 1.64 (4H, m), 2.30 (3H, s), 2.56 (4H, m), 3.48 (2H, s), 3.60 (3H, s), 4.62 (2H, s), 4.84 (2H, s), 6.65-6.87 (3H, m), 7.45-7.64 (7H, m).
A solution of (2-methyl-4-{3-[3-(3-piperidin-1-yl-prop-1-ynyl)-5-(4-trifluoromethyl- phenylethynyl)-phenyl]-prop-2-ynyloxy}-phenoxy)-acetic acid methyl ester (30 mg, 0.05 mmol) in ethanol (1 ml) and 1 N NaOH (0.25 ml) was stirred at 75 0C for 30 min. The reaction mixture was evaporated and the residue dissolved in water (2 ml). Aqueous 1 N HCI (0.25 ml) was added and the mixture was extracted with methylene chloride (2 x 10 ml). The combined organic phases were dried and evaporated to give the title compound in 25 mg (86 %) yield. 1H NMR (CDCI3): δ 1.50-2.15 (6H, m), 2.27 (3H, s), 2.90-3.50 (4H, m), 4.10 (2H, s), 4.56 (2H, s), 4.83 (2H, s), 6.67-6.85 (3H, m), 7.43-7.65 (7H, m).
Example 5 (4-{3-[3,5-Bis-(3-piperidin-1-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2-methyl-phenoxy)-acetic acid
Figure imgf000048_0001
A mixture of 1-prop-2-ynyl-piperidine (322 mg, 2.62 mmol), (4-{3-[3-bromo-5-(3- piperidin-1-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2-methyl-phenoxy)-acetic acid methyl ester (204 mg, 0.4 mmol, example 3), Pd(PPh3)4 (50 mg, 0.044 mmol), CuI (23 mg, 0.122 mmol) in dry DMF (2 ml) and triethylamine (2 ml) was heated in a microwave own for 30 min at 60 0C in a sealed tube. The reaction mixture was filtered through Decalite and the filtrate was evaporated. The residue was purified on column chromatography using ethyl ace- tate/methanol mixtures to give (4-{3-[3,5-bis-(3-piperidin-1-yl-prop-1-ynyl)-phenyl]-prop-2- ynyloxy}-2-methyl-phenoxy)-acetic acid methyl ester in 138 mg (57%) yield. 1H NMR (CDCI3): δ 1.36-1.74 (12H, m), 2.99 (3H, s), 2.40-2.65 (8H, m), 3.36 (2H, s), 3.79 (2H, s), 4.62 (2H, s), 4.84 (2H, s), 6.65-6.87 (3H, m), 7.44 (3H, m).
A solution of (4-{3-[3,5-bis-(3-piperidin-1-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2- methyl-phenoxy)-acetic acid methyl ester (126 mg, 0.247 mmol) in ethanol (5 ml) and 1 N NaOH (0.5 ml) was stirred at 75 0C for 30 min. The reaction mixture was evaporated and the residue dissolved in water (2 ml). Aqueous 1 N HCI (0.5 ml) was added and the mixture was extracted with methylene chloride (3 x 15 ml). The combined organic phases were dried and evaporated to give the title compound in 1 15 mg (93 %) yield.
1H NMR (CDCI3): δ 1.40-1.82 (12H, m), 2.32 (3H, s), 2.64-2.92 (8H, m), 3.66 (4H, s), 4.57 (2H, s), 4.81 (2H, s), 6.74-6.86 (3H, m), 7.30-7.40 (3H, m).
Example 6
(4-{3-[3-Bromo-5-(3-morpholin-4-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2-methyl-phenoxy)- acetic acid
Figure imgf000048_0002
A mixture of 4-prop-2-ynyl-morpholine (330 mg, 2.64 mmol), {4-[3-(3,5-dibromo- phenyl)-prop-2-ynyloxy]-2-methyl-phenoxy}-acetic acid methyl ester (206 mg, 0.44 mmol, intermediate 2), Pd(PPh3)2CI2 (50 mg, 0.044 mmol), CuI (23 mg, 0.123 mmol) in dry DMF (2 ml) and triethylamine (2 ml) was heated in a microwave own for 30 min at 60 0C in a sealed tube. The reaction mixture was filtered through Decalite and the filtrate was evaporated. The residue was purified on column chromatography using methylene chloride/THF mixtures to give (4-{3-[3-bromo-5-(3-morpholin-4-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2-methyl- phenoxy)-acetic acid methyl ester in 130 mg (58%) yield. 1H NMR (CDCI3): δ 2.29 (3H, s), 2.63 (4H, t), 3.50 (2H, s), 3.77 (4H, t), 3.78 (3H, s), 4.61 (2H, s), 4.83 (2H, s), 6.65-6.85 (3H, m), 7.25-7-73 (3H, m).
A solution of (4-{3-[3-bromo-5-(3-morpholin-4-yl-prop-1-ynyl)-phenyl]-prop-2- ynyloxy}-2-methyl-phenoxy)-acetic acid methyl ester (45 mg, 0.088 mmol) in ethanol (5 ml) and 1 N NaOH (0.5 ml) was stirred at 75 0C for 30 min. The reaction mixture was evaporated and the residue dissolved in water (2 ml). Aqueous 1 N HCI (0.6 ml) was added and the mixture was extracted with methylene chloride (3 x 15 ml). The combined organic phases were dried and evaporated to give the title compound in 44 mg (99 %) yield. 1H NMR (CDCI3): δ 2.27 (3H, s), 3.24 (4H, m), 4.02 (4H, t), 4.06 (2H, s), 4.58 (2H, s), 4.82 (2H, s), 6.65-6.85 (3H, m), 7.35-7.55 (3H, m).
Example 7
(2-Methyl-4-{3-[3-(3-morpholin-4-yl-prop-1-ynyl)-5-(4-trifluoromethyl-phenylethynyl)-phenyl]- prop-2-ynyloxy}-phenoxy)-acetic acid
Figure imgf000049_0001
A mixture of 1-ethynyl-4-trifluoromethyl-benzene (159 mg, 0.94 mmol), (4-{3-[3- bromo-5-(3-morpholin-4-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2-methyl-phenoxy)-acetic acid methyl ester (160 mg, 0.31 mmol, example 6), Pd(PPh3)2CI2 (36 mg, 0.031 mmol), CuI (16 mg, 0.087 mmol) in dry DMF (2 ml) and triethylamine (2 ml) was heated in a microwave own for 1 hour at 60 0C in a sealed tube. The reaction mixture was filtered through Decalite and the filtrate was evaporated. The residue was purified on column chromatography using ethyl acetate/methanol mixtures to give (2-methyl-4-{3-[3-(3-morpholin-4-yl-prop-1-ynyl)-5-(4- trifluoromethyl-phenylethynyl)-phenyl]-prop-2-ynyloxy}-phenoxy)-acetic acid methyl ester in 18 mg (10%) yield.
1H NMR (CDCI3): δ 2.31 (3H, s), 2.64 (4H, t), 3.53 (2H s), 3.77 (4H, t), 3.79 (3H, s), 4.63 (2H, s), 4.85 (2H, s), 6.65-6.87 (3H, m), 7.45-7.64 (7H, m). To a solution of (2-methyl-4-{3-[3-(3-morpholin-4-yl-prop-1-ynyl)-5-(4-trifluoromethyl- phenylethynyl)-phenyl]-prop-2-ynyloxy}-phenoxy)-acetic acid methyl ester (0.26 g, 0.51 mmol) in THF (5.3 ml) and methanol (1 ml) was added a ice-cold solution of LiOH (1 M, 5.3 ml). The reaction mixture was stirred at 0 0C for 45 min., after which water (10 ml) and aque- ous HCI (1 M, 7.4 ml) were added. The mixture was extracted with ethyl acetate (2 x 80 ml), and the combined organic phases were dried and evaporated to give the title compound in 272 mg (94%) yield.
1H NMR (CDCI3): δ 2.29 (3H, s), 3.13 (4H, br. s), 3.93 (2H, s), 3.99 (4H, t), 4.63 (2H, s), 4.84 (2H, s), 6.70-6.88 (3H, m), 7.35-7.64 (7H, m).
Example 8
(2-Methyl-4-{3-[3-(3-morpholin-4-yl-prop-1-ynyl)-5-phenylethynyl-phenyl]-prop-2-ynyloxy}- phenoxy)-acetic acid
Figure imgf000050_0001
A mixture of phenylacetylene (169 mg, 1.66 mmol), (4-{3-[3-bromo-5-(3-morpholin- 4-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2-methyl-phenoxy)-acetic acid methyl ester (100 mg, 0.195 mmol, example 6), Pd(PPh3)2CI2 (22 mg, 0.02 mmol), CuI (10 mg, 0.055 mmol) in dry DMF (2 ml) and triethylamine (2 ml) was heated in a microwave own for 1 hour at 60 0C in a sealed tube. The reaction mixture was filtered through Decalite and the filtrate was evaporated. The residue was purified on column chromatography using methylene chlo- ride/THF mixtures to give (2-methyl-4-{3-[3-(3-morpholin-4-yl-prop-1-ynyl)-5-phenylethynyl- phenyl]-prop-2-ynyloxy}-phenoxy)-acetic acid methyl ester in 70 mg (67%) yield. 1H NMR (CDCI3): δ 2.29 (3H, s), 2.63 (4H, t), 3.51 (2H, s), 3.77 (4H, t), 3.79 (3H, s), 4.61 (2H, s), 4.84 (2H, s), 6.65-6.86 (3H, m), 7.32-7.55 (8H, m).
To a solution of (2-methyl-4-{3-[3-(3-morpholin-4-yl-prop-1-ynyl)-5-phenylethynyl- phenyl]-prop-2-ynyloxy}-phenoxy)-acetic acid methyl ester (70 mg, 0.13 mmol) in THF (1.25 ml) and methanol (0.25 ml) was added a ice-cold solution of LiOH (1 M, 1.25 ml). The reaction mixture was stirred at 0 0C for 460 min., after which water (10 ml) and aqueous HCI (1 M, 1.75 ml) were added. The mixture was extracted with ethyl acetate (2 x 10 ml), and the com- bined organic phases were dried and evaporated to give the title compound in 68 mg (100%) yield.
1H NMR (CDCI3): δ 2.29 (3H, s), 2.97 (4H, t), 3.83 (2H, s), 3.89 (4H, t), 4.59 (2H, s), 4.82
(2H, s), 6.67-6.85 (3H, m), 7.31-7.54 (8H, m).
Example 9
(4-{3-[3-(4-Chloro-phenylethynyl)-5-(3-morpholin-4-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2- methyl-phenoxy)-acetic acid
Figure imgf000051_0001
A mixture of 1-chloro-4-ethynyl-benzene (240 mg, 1.76 mmol), (4-{3-[3-bromo-5-(3- morpholin-4-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2-methyl-phenoxy)-acetic acid methyl ester (106 mg, 0.207 mmol, example 6), Pd(PPh3)4 (23 mg, 0.021 mmol), CuI (1 1 mg, 0.058 mmol) in dry DMF (2 ml) and triethylamine (2 ml) was heated in a microwave own for 120 min at 60 0C in a sealed tube. The reaction mixture was filtered through Decalite and the filtrate was evaporated. The residue was purified on column chromatography using methylene chlo- ride/THF mixtures to give (4-{3-[3-(4-chloro-phenylethynyl)-5-(3-morpholin-4-yl-prop-1-ynyl)- phenyl]-prop-2-ynyloxy}-2-methyl-phenoxy)-acetic acid methyl ester in 63 mg (54%) yield. 1H NMR (CDCI3): δ 2.29 (3H, s), 2.63 (4H, t), 3.51 (2H, s), 3.77 (4H, t), 3.79 (3H, s), 4.61 (2H, s), 4.82 (2H, s), 6.65-6.87 (3H, m), 7.29-7.55 (7H, m).
To a solution of (4-{3-[3-(4-chloro-phenylethynyl)-5-(3-morpholin-4-yl-prop-1-ynyl)- phenyl]-prop-2-ynyloxy}-2-methyl-phenoxy)-acetic acid methyl ester (63 mg, 0.1 1 mmol) in THF (1.25 ml) and methanol (0.25 ml) was added a ice-cold solution of LiOH (1 M, 1.25 ml). The reaction mixture was stirred at 0 0C for 460 min., after which water (10 ml) and aqueous HCI (1 M, 1.75 ml) were added. The mixture was extracted with ethyl acetate (2 x 10 ml), and the combined organic phases were dried and evaporated to give the title compound in 29 mg (48%) yield.
1H NMR (CDCI3): δ 2.29 (3H, s), 2.93 (4H, t), 3.75 (2H, s), 3.89 (4H, t), 4.65 (2H, s), 4.85 (2H, s), 6.67-6.85 (3H, m), 7.31-7.54 (7H, m). Example 10
(4-{3-[3-(4-Methanesulfonyl-phenylethynyl)-5-(3-morpholin-4-yl-prop-1-ynyl)-phenyl]-prop-2- ynyloxy}-2-methyl-phenoxy)-acetic acid
Figure imgf000052_0001
A mixture of 1-ethynyl-4-methanesulfonyl-benzene (346 mg, 1.92 mmol), (4-{3-[3- bromo-5-(3-morpholin-4-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2-methyl-phenoxy)-acetic acid methyl ester (123 mg, 0.24 mmol, example 6), Pd(PPh3)2CI2 (17 mg, 0.024 mmol), CuI (12 mg, 0.067 mmol) in dry DMF (2 ml) and triethylamine (2 ml) was heated in a microwave own for 1 hour at 65 0C in a sealed tube. The reaction mixture was filtered through Decalite and the filtrate was evaporated. The residue was purified on column chromatography using methylene chloride/THF mixtures to give (4-{3-[3-(4-methanesulfonyl-phenylethynyl)-5-(3- morpholin-4-yl-prop-1 -ynyl)-phenyl]-prop-2-ynyloxy}-2-methyl-phenoxy)-acetic acid methyl ester in 50 mg (34%) yield. 1H NMR (CDCI3): δ 2.29 (3H, s), 2.65 (4H, t), 3.08 (3H,s), 3.52 (2H, s), 3.77 (4H, t), 3.79 (3H, s), 4.62 (2H, s), 4.84 (2H, s), 6.65-7.00 (3H, m), 7.43-7.97 (7H, m).
To a solution of (4-{3-[3-(4-methanesulfonyl-phenylethynyl)-5-(3-morpholin-4-yl- prop-i-ynyO-phenylJ-prop^-ynyloxyJ^-methyl-phenoxy^acetic acid methyl ester (50 mg, 0.08 mmol) in THF (1.25 ml) and methanol (0.25 ml) was added a ice-cold solution of LiOH (1 M, 1.25 ml). The reaction mixture was stirred at 0 0C for 460 min., after which water (10 ml) and aqueous HCI (1 M, 1.75 ml) were added. The mixture was extracted with ethyl acetate (2 x 10 ml), and the combined organic phases were dried and evaporated to give the title compound in 15 mg (31 %) yield.
1H NMR (CDCI3): δ 2.29 (3H, s), 3.07 (3H, s), 3.22 (4H, br. s), 4.04 (2H, s), 4.03 (4H, br. s), 4.60 (2H, s), 4.84 (2H, s), 6.67-6.85 (3H, m), 7.44 (1 H, s), 7.57 (2H, s), 7.67 (2H, d), 7.94 (2H, d).
Example 11
(4-{3-[3-Bromo-5-(4-trifluoromethyl-phenylethynyl)-phenyl]-prop-2-ynyloxy}-2-methyl- phenoxy)-acetic acid
Figure imgf000053_0001
A mixture of 1-ethynyl-4-trifluoromethyl-benzene (149 mg, 0.88 mmol), {4-[3-(3,5- dibromo-phenyl)-prop-2-ynyloxy]-2-methyl-phenoxy}-acetic acid methyl ester (412 mg, 0.88 mmol, intermediate 2), Pd(PPh3)2CI2 (101 mg, 0.088 mmol), CuI (46 mg, 0.246 mmol) in dry DMF (2 ml) and triethylamine (2 ml) was heated in a microwave own for 20 min. at 75 0C in a sealed tube. The reaction mixture was filtered through Decalite and the filtrate was evaporated. The residue was purified on column chromatography using methylene chloride/heptanes mixtures to give (4-{3-[3-bromo-5-(4-trifluoromethyl-phenylethynyl)-phenyl]-prop-2- ynyloxy}-2-methyl-phenoxy)-acetic acid methyl ester in 94 mg (19%) yield. 1H NMR (CDCI3): δ 2.29 (3H, s), 3.79 (3H, s), 4.62 (2H, s), 4.84 (2H, s), 6.65-6.87 (3H, m), 7.50-7.66 (7H, m).
A solution of (4-{3-[3-bromo-5-(4-trifluoromethyl-phenylethynyl)-phenyl]-prop-2- ynyloxy}-2-methyl-phenoxy)-acetic acid methyl ester (94 mg, 0.169 mmol) in ethanol (5 ml) and 1 N NaOH (0.5 ml) was stirred at 75 0C for 30 min. The reaction mixture was evaporated and the residue dissolved in water (2 ml). Aqueous 1 N HCI (0.6 ml) was added and the mixture was extracted with methylene chloride (3 x 15 ml). The combined organic phases were dried and evaporated to give the title compound in 79 mg (86 %) yield. 1H NMR (CDCI3): δ 2.29 (3H, s), 4.64 (2H, s), 4.84 (2H, s), 6.65-6.88 (3H, m), 7.48-7.66 (3H, m).
PHARMACOLOGICAL METHODS
IN VITRO PPARδ ACTIVATION ACTIVITY
The PPAR transient transactivation assay is based on transient transfection into human HEK293 cells of two plasmids encoding a chimeric test protein and a reporter protein respectively. The chimeric test protein is a fusion of the DNA binding domain (DBD) from the yeast GAL4 transcription factor to the ligand binding domain (LBD) of the human PPAR proteins. The PPAR-LBD moiety harbored in addition to the ligand binding pocket also the native activation domain (activating function 2 = AF2) allowing the fusion protein to function as a PPAR ligand dependent transcription factor. The GAL4 DBD will direct the chimeric protein to bind only to Gal4 enhancers (of which none existed in HEK293 cells). The reporter plas- mid contained a Gal4 enhancer driving the expression of the firefly luciferase protein. After transfection, HEK293 cells expressed the GAL4-DBD-PPAR-LBD fusion protein. The fusion protein will in turn bind to the Gal4 enhancer controlling the luciferase expression, and do nothing in the absence of ligand. Upon addition to the cells of a PPAR ligand luciferase pro- tein will be produced in amounts corresponding to the activation of the PPAR protein. The amount of luciferase protein is measured by light emission after addition of the appropriate substrate.
CELL CULTURE AND TRANSFECTION HEK293 cells were grown in DMEM + 10% FCS. Cells were seeded in 96-well plates the day before transfection to give a confluency of 50-80 % at transfection. A total of 0,8 μg DNA containing 0,64 μg pM1 α/γLBD, 0,1 μg pCMVβGal, 0,08 μg pGL2(Gal4)5 and 0,02 μg pADVANTAGE was transfected per well using FuGene transfection reagent according to the manufacturers instructions (Roche). Cells were allowed to express protein for 48 h followed by addition of compound.
Plasmids: Human PPAR-δ was obtained by PCR amplification using cDNA synthesized by reverse transcription of mRNA from human liver, adipose tissue and plancenta respectively. Amplified cDNAs were cloned into pCR2.1 and sequenced. The ligand binding domain (LBD) of each PPAR isoform was generated by PCR (PPARδ: aa 128 - C-terminus) and fused to the DNA binding domain (DBD) of the yeast transcription factor GAL4 by sub- cloning fragments in frame into the vector pM1 (Sadowski et al. (1992), Gene 1 18, 137) generating the plasmids pMi αLBD, pMiγLBD and pM1 δ. Ensuing fusions were verified by sequencing. The reporter was constructed by inserting an oligonucleotide encoding five repeats of the GAL4 recognition sequence (5 x CGGAGTACTGTCCTCCG(AG)) (Webster et al. (1988), Nucleic Acids Res. 16, 8192) into the vector pGL2 promotor (Promega) generating the plasmid pGL2(GAL4)5. pCMVβGal was purchased from Clontech and pADVANTAGE was purchased from Promega.
IN VITRO TRANSACTIVATION ASSAY Compounds: All compounds were dissolved in DMSO and diluted 1 :1000 upon addition to the cells. Compounds were tested in quadruple in concentrations ranging from 0.001 to 300 μM. Cells were treated with compound for 24 h followed by luciferase assay. Each compound was tested in at least two separate experiments. Luciferase assay: Medium including test compound was aspirated and 100 μl PBS incl. 1 mM Mg++ and Ca++ were added to each well. The luciferase assay was performed using the LucLite kit according to the manufacturer's instructions (Packard Instruments). Light emission was quantified by counting on a Packard LumiCounter. To measure β-galactosi- dase activity 25 μl supernatant from each transfection lysate was transferred to a new mi- croplate. β-Galactosidase assays were performed in the microwell plates using a kit from Promega and read in a Labsystems Ascent Multiscan reader. The β-galactosidase data were used to normalize (transfection efficiency, cell growth etc.) the luciferase data.
STATISTICAL METHODS
The activity of a compound is calculated as fold induction compared to an untreated sample. For each compound the efficacy (maximal activity) is given as a relative activity compared to Wy14,643 for PPARα, Rosiglitazone for PPARγ and Carbacyclin for PPARδ. The EC50 is the concentration giving 50% of maximal observed activity. EC50 values were calculated via non-linear regression using GraphPad PRISM 3.02 (GraphPad Software, San Diego, Ca). The results were expressed as means ± SD.
While the invention has been described and illustrated with reference to certain preferred embodiments thereof, those skilled in the art will appreciate that various changes, modifications, and substitutions can be made therein without departing from the spirit and scope of the present invention. For example, effective dosages other than the preferred dosages as set forth herein may be applicable as a consequence of variations in the responsiveness of the mammal being treated for PPAR-δ mediated disease(s). Likewise, the specific pharmacological responses observed may vary according to and depending on the particular active compound selected or whether there are present pharmaceutical carriers, as well as the type of formulation and mode of administration employed, and such expected variations or differences in the results are contemplated in accordance with the objects and practices of the present invention. Accordingly, the invention is not to be limited as by the appended claims.
The features disclosed in the foregoing description and/or in the claims may both separately ans in any combination thereof be material for realising the invention in diverse forms thereof.
Preferred features of the invention:
1. A compound of the general formula (I):
Figure imgf000056_0001
wherein X1 is aryl, heteroaryl or heterocyclyl each of which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl, hydroxy, cyano, amino or carboxy; or • C1-6-alkyl, C3-6-CyClOa!!^, C2-6-alkenyl, C2-6-alkynyl, aryl, aralkyl, heteroaryl, hetero- aralkyl, C1-6-alkoxy, C3-6-CyClOaIkOXy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, Cs-e-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsul- fonyl, C1-6-alkylamido, arylamido, C-i-e-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkyl- amino or Cs-e-cycloalkylamino, each of which is optionally substituted with one or more hydroxyl or halogens; or
X1 is aralkyl, heteroaralkyl or heterocyclyl-C1-6-alkyl, each of which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl, hydroxy, cyano, amino or carboxy; or • C1-6-alkyl, C3-6-cycloalkyl, C2-6-alkenyl, C2-6-alkynyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6-CyClOaIkOXy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, Cs-e-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsul- fonyl, C1-6-alkylamido, arylamido, C1-6-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkyl- amino or Cs-e-cycloalkylamino each of which is optionally substituted with one or more hydroxyl or halogens;
X2 is hydrogen or halogen; or
X2 is aryl-C2-6-alkynyl, heteroaryl-C2-6-alkynyl, heterocyclyl-C2-6-alkynyl, aryl-C2-6-alkenyl, het- eroaryl-C2-6-alkenyl, heterocyclyl-C^-alkenyl, aryl or heteroaryl each of which is optionally substituted with one or more substiuents selected from
• halogen, perhalomethyl,, hydroxy, cyano, amino or carboxy; or
• C1-6-alkyl, C3-6-cycloalkyl, C2-6-alkenyl, C2-6-alkynyl, aryl, aralkyl, heteroaryl, heteroaralkyl, heterocyclyl-C-i-e-alkyl, C1-6-alkoxy, C3-6-CyClOaIkOXy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, Cs-e-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C-i-e-alkylaminocarbonyl, C1-6- alkylamino, C1-6-dialkylamino or Ca-e-cycloalkylamino each of which is optionally substituted with one or more hydroxyl or halogens;
Ar is arylene which is optionally substituted with one or more substituents selected from • halogen, hydroxy or cyano; or
• C-ι-6-alkyl, Ca-e-cycloalkyl, C2-6-alkenyl, C2-6-alkynyl, aryl, heteroaryl, aralkyl, heteroaral- kyl, C1-6-alkoxy, C3-6-CyClOaIkOXy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, aryl- thio or Ca^-cycloalkylthio each of which is optionally substituted with one or more halogens; or • two of the substituents when placed in adjacent positions together with the atoms to which they are attached may form a five to eight member ring; and
Y1 is O or S; and
Y2 is O or S; and
Z is -(CH2),,- wherein n is 1 , 2 or 3; and
R is hydrogen, C1-6-alkyl, C3-6-cycloalkyl, C2-6-alkenyl, C2-6-alkynyl, C4-6-alkenynyl or aryl; or
a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable solvate thereof, or any tautomeric forms, stereoisomers, mixture of stereoisomers including a racemic mixture, or polymorphs.
2. A compound according to clause 1 wherein X1 is aryl, heteroaryl or heterocyclyl each of which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl, hydroxy or carboxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6-cyclo- alkoxy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, Ca-e-cycloalkylthio, C1-6- alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6- alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or Ca-e-cycloalkylamino, each of which is optionally substituted with one or more halogens.
3. A compound according to clause 2 wherein X1 is aryl, heteroaryl or heterocyclyl each of which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or
• C-ι-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
4. A compound according to clause 3 wherein X1 is aryl, heteroaryl or heterocyclyl each of which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, aryl, or C1-6-alkylsulfonyl, each of which is optionally substituted with one or more halogens.
5. A compound according to clause 2 wherein wherein X1 is aryl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl, hydroxy or carboxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6-cyclo- alkoxy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, C3-6-cycloalkylthio, C1-6- alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6- alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or C3-6-cycloalkylamino, each of which is optionally substituted with one or more halogens.
6. A compound according to clause 5 wherein X1 is aryl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
7. A compound according to clause 1 wherein X1 aralkyl, heteroaralkyl or heterocyclyl-C1-6- alkyl each of which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl, hydroxy or carboxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6-cyclo- alkoxy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, C3-6-cycloalkylthio, C1-6- alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6- alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or C3-6-cycloalkylamino, each of which is optionally substituted with one or more halogens. 8. A compound according clause 7 wherein X1 is aralkyl, heteroaralkyl or heterocyclyl-C1-6- alkyl each of which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C-ι-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
9. A compound according to clause 7 wherein X1 is heterocyclyl-C^-alkyl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl, hydroxy or carboxy; or • C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6-cyclo- alkoxy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, Cs-e-cycloalkylthio, C1-6- alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6- alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or C3-6-cycloalkylamino, each of which is optionally substituted with one or more halogens.
10. A compound according to clause 9 wherein X1 is heterocyclyl-C1-6-alkyl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
11. A compound according to any one of the preceding clauses wherein X2 is halogen.
12. A compound according to any one of the clauses 1-10 wherein X2 is aryl-C2-6-alkynyl, heteroaryl-C2-6-alkynyl, heterocyclyl-C2-6-alkynyl, aryl-C2-6-alkenyl, heteroaryl-C2-6-alkenyl, heterocyclyl-C2-6-alkenyl, aryl or heteroaryl each of which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl, hydroxy or carboxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6- cycloalkoxy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, C3-6-cycloalkylthio,
C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or C3-6-cycloalkylamino, each of which is optionally substituted with one or more halogens. 13. A compound according to clause 12 wherein X2 is aryl-C2-6-alkynyl, heteroaryl-C2-6- alkynyl, heterocyclyl-C2-6-alkynyl, aryl-C2-6-alkenyl, heteroaryl-C2-6-alkenyl, heterocyclyl-C2-6- alkenyl, aryl or heteroaryl each of which is optionally substituted with one or more substitu- ents selected from • halogen, perhalomethyl or hydroxy; or
• C-ι-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
14. A compound according to clause 12 wherein X2 is aryl-C2-6-alkynyl, which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl, hydroxy or carboxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6-cyclo- alkoxy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, Cs-e-cycloalkylthio, C1-6- alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6- alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or Ca-e-cycloalkylamino, each of which is optionally substituted with one or more halogens.
15. A compound according to clause 14 wherein X2 is aryl-C2-6-alkynyl, which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
16. A compound according to clause 12 wherein X2 is heterocyclyl-C2-6-alkynyl, which is op- tionally substituted with one or more substituents selected from
• halogen, perhalomethyl, hydroxy or carboxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6-cyclo- alkoxy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, Cs-e-cycloalkylthio, C1-6- alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C1-6- alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkylamino or Ca-e-cycloalkylamino, each of which is optionally substituted with one or more halogens.
17. A compound according to clause 16 wherein X2 is heterocyclyl-C2-6-alkynyl, which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or • C-ι-6-alkyl, C3-6-CyClOaIkYl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
18. A compound according to any one of the preceding clauses wherein Ar is arylene which is optionally substituted with one or more substituents selected from
• halogen; or
• C1-6-alkyl, C1-6-alkoxy, aryloxy or aralkoxy each of which is optionally substituted with one or more halogens; or
• two of the substituents when placed in adjacent positions together with the atoms to which they are attached form a five membered carbon cycle.
19. A compound according to clause 18 wherein Ar is phenylene which is optionally substituted with one or more substituents selected from
• halogen; or • C1-6-alkyl, C1-6-alkoxy, aryloxy or aralkoxy each of which is optionally substituted with one or more halogens; or
• two of the substituents when placed in adjacent positions together with the atoms to which they are attached form a five membered carbon cycle.
20. A compound according to clause 19 wherein Ar is phenylene, optionally substituted with one or more of C1-6-alkyl.
21. A compound according to any one of the preceding clauses wherein Y1 is O.
22. A compound according to any one of the preceding clauses wherein Y2 is O.
23. A compound according to any one of the preceding clauses wherein n is 1.
24. A compound according to any one of the preceding clauses wherein R is hydrogen or d-e-alkyl.
25. A compound according to any one of the preceding clauses wherein R is hydrogen.
26. A compound according to any one of the preceding clauses which is: {4-[3-(3-Bromo-5-phenylethynyl-phenyl)-prop-2-ynyloxy]-phenoxy}-acetic acid; {4-[3-(3,5-Bis-phenylethynyl-phenyl)-prop-2-ynyloxy]-phenoxy}-acetic acid;
(4-{3-[3-Bromo-5-(3-piperidin-1-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2-methyl-phenoxy)- acetic acid;
(2-Methyl-4-{3-[3-(3-piperidin-1-yl-prop-1-ynyl)-5-(4-trifluoromethyl-phenylethynyl)-phenyl]- prop-2-ynyloxy}-phenoxy)-acetic acid;
(4-{3-[3,5-Bis-(3-piperidin-1-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2-methyl-phenoxy)-acetic acid;
(4-{3-[3-Bromo-5-(3-morpholin-4-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2-methyl-phenoxy)- acetic acid; (2-Methyl-4-{3-[3-(3-morpholin-4-yl-prop-1-ynyl)-5-(4-trifluoromethyl-phenylethynyl)-phenyl]- prop-2-ynyloxy}-phenoxy)-acetic acid;
(2-Methyl-4-{3-[3-(3-morpholin-4-yl-prop-1-ynyl)-5-phenylethynyl-phenyl]-prop-2-ynyloxy}- phenoxy)-acetic acid;
(4-{3-[3-(4-Chloro-phenylethynyl)-5-(3-morpholin-4-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2- methyl-phenoxy)-acetic acid;
(4-{3-[3-(4-Methanesulfonyl-phenylethynyl)-5-(3-morpholin-4-yl-prop-1-ynyl)-phenyl]-prop-2- ynyloxy}-2-methyl-phenoxy)-acetic acid ;
(4-{3-[3-Bromo-5-(4-trifluoromethyl-phenylethynyl)-phenyl]-prop-2-ynyloxy}-2-methyl- phenoxy)-acetic acid; or a salt thereof with a pharmaceutically acceptable acid or base, or any optical isomer or mixture of optical isomers, including a racemic mixture, or any tautomeric forms.
27. A compound according to any one of the preceding clauses, which is a PPARδ agonist.
28. A compound according to clause 27, which is a selective PPARδ agonist.
29. The use of a compound according to any one of the preceding clauses as a pharmaceutical composition.
30. A pharmaceutical composition comprising, as an active ingredient, at least one compound according to any one of the clauses 1-28 together with one or more pharmaceutically acceptable carriers or excipients.
31. A pharmaceutical composition according to clause 30 in unit dosage form, comprising from about 0.05 mg to about 1000 mg, preferably from about 0.1 to about 500 mg of and es- pecially preferred from about 0.5 mg to about 200 mg per day of compound according to any one of the clauses'! -28.
32. A pharmaceutical composition for the treatment and/or prevention of conditions medi- ated by nuclear receptors, in particular PPARδ, the composition comprising a compound according to any one of the clauses 1-28 together with one or more pharmaceutically acceptable carriers or excipients.
33. A pharmaceutical composition for the treatment and/or prevention of type I diabetes, type Il diabetes, impaired glucose tolerance, insulin resistance or obesity comprising a compound according to any of the clauses 1-28 together with one or more pharmaceutically acceptable carriers or excipients.
34. A pharmaceutical composition according to any one of the clauses 30-33 for oral, nasal, transdermal, pulmonal or parenteral administration.
35. Use of a compound according to any one of the clauses 1-28 for the preparation of a pharmaceutical composition for the treatment and/or prevention of conditions mediated by nuclear receptors, in particular the PPARδ.
36. Use of a compound according to any one of the clauses 1-28 for the preparation of a pharmaceutical composition for the treatment and/or prevention of Type 1 diabetes, Type 2 diabetes, dyslipidemia, syndrome X (including the metabolic syndrome, i.e. impaired glucose tolerance, insulin resistance, hypertrigyceridaemia and/or obesity), cardiovascular diseases (including atherosclerosis) and hypercholesteremia.
37. A method for the treatment and/or prevention of conditions mediated by nuclear receptors, in particular the PPARδ, the method comprising administering to a subject in need thereof an effective amount of a compound according to any one of the clauses 1-28 or a pharmaceutical composition comprising the same.
38. A method for the treatment and/or prevention of type I diabetes, type Il diabetes, impaired glucose tolerance, insulin resistance or obesity, the method comprising administering to a subject in need thereof an effective amount of a compound according to any one of the clauses 1-28 or of a pharmaceutical composition comprising the same. 39. The method according to clauses 37 or 38 wherein the effective amount of the compound according to any one of the clauses 1-28 is in the range of from about 0.05 mg to about 1000 mg, preferably from about 0.1 to about 500 mg of and especially preferred from about 0.5 mg to about 200 mg per day.

Claims

1. A compound of the general formula (I):
Figure imgf000065_0001
wherein X1 is aryl, heteroaryl or heterocyclyl each of which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl, hydroxy, cyano, amino or carboxy; or
• C1-6-alkyl, C3-6-CyClOa!!^, C2-6-alkenyl, C2-6-alkynyl, aryl, aralkyl, heteroaryl, hetero- aralkyl, C1-6-alkoxy, C3-6-CyClOaIkOXy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, Cs-e-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsul- fonyl, C1-6-alkylamido, arylamido, C-i-e-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkyl- amino or C^s-cycloalkylamino, each of which is optionally substituted with one or more hydroxyl or halogens; or
X1 is aralkyl, heteroaralkyl or heterocyclyl-C1-6-alkyl, each of which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl, hydroxy, cyano, amino or carboxy; or
• C1-6-alkyl, C3-6-cycloalkyl, C2-6-alkenyl, C2-6-alkynyl, aryl, aralkyl, heteroaryl, heteroaralkyl, C1-6-alkoxy, C3-6-CyClOaIkOXy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, arylthio, Cs-e-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsul- fonyl, C1-6-alkylamido, arylamido, Ci-e-alkylaminocarbonyl, C1-6-alkylamino, C1-6-dialkyl- amino or Cs-e-cycloalkylamino each of which is optionally substituted with one or more hydroxyl or halogens;
X2 is hydrogen or halogen; or X2 is aryl-C2-6-alkynyl, heteroaryl-C2-6-alkynyl, heterocyclyl-C2-6-alkynyl, aryl-C2-6-alkenyl, het- eroaryl-C2-6-alkenyl, heterocyclyl-C^-alkenyl, aryl or heteroaryl each of which is optionally substituted with one or more substiuents selected from
• halogen, perhalomethyl,, hydroxy, cyano, amino or carboxy; or
• C1-6-alkyl, C3-6-cycloalkyl, C2-6-alkenyl, C2-6-alkynyl, aryl, aralkyl, heteroaryl, hetero- aralkyl, heterocyclyl-C-i-e-alkyl, C1-6-alkoxy, C3-6-CyClOaIkOXy, aryloxy, aralkoxy, het- eroaralkoxy, C1-6-alkylthio, arylthio, Ca-e-cycloalkylthio, C1-6-alkylcarbonyl, arylcarbonyl, C1-6-alkylsulfonyl, arylsulfonyl, C1-6-alkylamido, arylamido, C-i-e-alkylaminocarbonyl, C1-6- alkylamino, C1-6-dialkylamino or Ca-e-cycloalkylamino each of which is optionally substituted with one or more hydroxyl or halogens;
Ar is arylene which is optionally substituted with one or more substituents selected from
• halogen, hydroxy or cyano; or
• C1-6-alkyl, Ca-e-cycloalkyl, C2-6-alkenyl, C2-6-alkynyl, aryl, heteroaryl, aralkyl, heteroaral- kyl, C1-6-alkoxy, C3-6-CyClOaIkOXy, aryloxy, aralkoxy, heteroaralkoxy, C1-6-alkylthio, aryl- thio or Ca^-cycloalkylthio each of which is optionally substituted with one or more halogens; or
• two of the substituents when placed in adjacent positions together with the atoms to which they are attached may form a five to eight member ring; and
Y1 is O or S; and
Y2 is O or S; and
Z is -(CH2),,- wherein n is 1 , 2 or 3; and
R is hydrogen, C1-6-alkyl, C3-6-cycloalkyl, C2-6-alkenyl, C2-6-alkynyl, C4-6-alkenynyl or aryl; or
a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable solvate thereof, or any tautomeric forms, stereoisomers, mixture of stereoisomers including a racemic mix- ture, or polymorphs.
2. A compound according to claim 1 wherein X1 is aryl, heteroaryl or heterocyclyl each of which is optionally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or • C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
3. A compound according claim 1 wherein X1 is aralkyl, heteroaralkyl or heterocyclyl-C1-6- alkyl each of which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or • C-ι-6-alkyl, C3-6-CyClOaIkYl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
4. A compound according to any one of the preceding claims wherein X2 is halogen.
5. A compound according to any one of the claims 1-3 wherein X2 is aryl-C2-6-alkynyl, het- eroaryl-C2-6-alkynyl, heterocyclyl-C2-6-alkynyl, aryl-C2-6-alkenyl, heteroaryl-C2-6-alkenyl, het- erocyclyl-C2.6-alkenyl, aryl or heteroaryl each of which is optionally substituted with one or more substituents selected from • halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
6. A compound according to claim 5 wherein X2 is heterocyclyl-C2-6-alkynyl, which is option- ally substituted with one or more substituents selected from
• halogen, perhalomethyl or hydroxy; or
• C1-6-alkyl, C3-6-cycloalkyl, aryl, aralkyl, C1-6-alkoxy, C1-6-alkylsulfonyl or arylsulfonyl, each of which is optionally substituted with one or more halogens.
7. A compound according to any one of the preceding claims wherein Ar is phenylene which is optionally substituted with one or more substituents selected from
• halogen; or
• C1-6-alkyl, C1-6-alkoxy, aryloxy or aralkoxy each of which is optionally substituted with one or more halogens; or • two of the substituents when placed in adjacent positions together with the atoms to which they are attached form a five membered carbon cycle.
8. A compound according to any one of the preceding claims which is: {4-[3-(3-Bromo-5-phenylethynyl-phenyl)-prop-2-ynyloxy]-phenoxy}-acetic acid; {4-[3-(3,5-Bis-phenylethynyl-phenyl)-prop-2-ynyloxy]-phenoxy}-acetic acid;
(4-{3-[3-Bromo-5-(3-piperidin-1-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2-methyl-phenoxy)- acetic acid;
(2-Methyl-4-{3-[3-(3-piperidin-1-yl-prop-1-ynyl)-5-(4-trifluoromethyl-phenylethynyl)-phenyl]- prop-2-ynyloxy}-phenoxy)-acetic acid; (4-{3-[3,5-Bis-(3-piperidin-1-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2-methyl-phenoxy)-acetic acid;
(4-{3-[3-Bromo-5-(3-morpholin-4-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2-methyl-phenoxy)- acetic acid; (2-Methyl-4-{3-[3-(3-morpholin-4-yl-prop-1-ynyl)-5-(4-trifluoromethyl-phenylethynyl)-phenyl]- prop-2-ynyloxy}-phenoxy)-acetic acid;
(2-Methyl-4-{3-[3-(3-morpholin-4-yl-prop-1-ynyl)-5-phenylethynyl-phenyl]-prop-2-ynyloxy}- phenoxy)-acetic acid;
(4-{3-[3-(4-Chloro-phenylethynyl)-5-(3-morpholin-4-yl-prop-1-ynyl)-phenyl]-prop-2-ynyloxy}-2- methyl-phenoxy)-acetic acid;
(4-{3-[3-(4-Methanesulfonyl-phenylethynyl)-5-(3-morpholin-4-yl-prop-1-ynyl)-phenyl]-prop-2- ynyloxy}-2-methyl-phenoxy)-acetic acid ;
(4-{3-[3-Bromo-5-(4-trifluoromethyl-phenylethynyl)-phenyl]-prop-2-ynyloxy}-2-methyl- phenoxy)-acetic acid; or a salt thereof with a pharmaceutically acceptable acid or base, or any optical isomer or mixture of optical isomers, including a racemic mixture, or any tautomeric forms.
9. A compound according to any one of the preceding claims, which is a PPARδ agonist.
10. The use of a compound according to any one of the preceding claims as a pharmaceutical composition.
11. A pharmaceutical composition comprising, as an active ingredient, at least one compound according to any one of the claims 1-9 together with one or more pharmaceutically acceptable carriers or excipients.
12. A pharmaceutical composition for the treatment and/or prevention of conditions mediated by nuclear receptors, in particular PPARδ, the composition comprising a compound according to any one of the claims 1-9 together with one or more pharmaceutically acceptable carriers or excipients.
13. A pharmaceutical composition for the treatment and/or prevention of type I diabetes, type Il diabetes, impaired glucose tolerance, insulin resistance or obesity comprising a compound according to any of the claims 1-9 together with one or more pharmaceutically ac- ceptable carriers or excipients.
14. Use of a compound according to any one of the claims 1-9 for the preparation of a pharmaceutical composition for the treatment and/or prevention of conditions mediated by nuclear receptors, in particular the PPARδ.
15. Use of a compound according to any one of the claims 1-9 for the preparation of a pharmaceutical composition for the treatment and/or prevention of Type 1 diabetes, Type 2 diabetes, dyslipidemia, syndrome X (including the metabolic syndrome, i.e. impaired glucose tolerance, insulin resistance, hypertrigyceridaemia and/or obesity), cardiovascular diseases (including atherosclerosis) and hypercholesteremia.
PCT/EP2007/052130 2006-03-09 2007-03-07 Compounds that modulate ppar activity, their preparation and use WO2007101864A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002645719A CA2645719A1 (en) 2006-03-09 2007-03-07 Compounds that modulate ppar activity, their preparation and use
EP07726688A EP1999098A2 (en) 2006-03-09 2007-03-07 Compounds that modulate ppar activity, their preparation and use
US12/282,244 US7943612B2 (en) 2006-03-09 2007-03-07 Compounds that modulate PPAR activity, their preparation and use
JP2008557754A JP2009529512A (en) 2006-03-09 2007-03-07 Novel compounds, methods for their production and use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06110887.4 2006-03-09
EP06110887 2006-03-09

Publications (2)

Publication Number Publication Date
WO2007101864A2 true WO2007101864A2 (en) 2007-09-13
WO2007101864A3 WO2007101864A3 (en) 2007-10-25

Family

ID=36572326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/052130 WO2007101864A2 (en) 2006-03-09 2007-03-07 Compounds that modulate ppar activity, their preparation and use

Country Status (5)

Country Link
US (1) US7943612B2 (en)
EP (1) EP1999098A2 (en)
JP (1) JP2009529512A (en)
CA (1) CA2645719A1 (en)
WO (1) WO2007101864A2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009021740A2 (en) 2007-08-15 2009-02-19 Sanofis-Aventis Substituted tetrahydronaphthalenes, process for the preparation thereof and the use thereof as medicaments
US7943669B2 (en) 2005-06-30 2011-05-17 High Point Pharmaceuticals, Llc Phenoxy acetic acids as PPAR delta activators
EP2076122A4 (en) * 2007-06-29 2011-06-22 Acucela Inc Alkynyl phenyl derivative compounds for treating ophthalmic diseases and disorders
US7968723B2 (en) 2004-05-05 2011-06-28 High Point Pharmaceuticals, Llc Compounds, their preparation and use
WO2011107494A1 (en) 2010-03-03 2011-09-09 Sanofi Novel aromatic glycoside derivatives, medicaments containing said compounds, and the use thereof
WO2011157827A1 (en) 2010-06-18 2011-12-22 Sanofi Azolopyridin-3-one derivatives as inhibitors of lipases and phospholipases
WO2011161030A1 (en) 2010-06-21 2011-12-29 Sanofi Heterocyclic substituted methoxyphenyl derivatives having an oxo group, method for producing same, and use thereof as gpr40 receptor modulators
WO2012004269A1 (en) 2010-07-05 2012-01-12 Sanofi (2-aryloxy-acetylamino)-phenyl-propionic acid derivatives, method for producing same and use thereof as pharmaceuticals
WO2012004270A1 (en) 2010-07-05 2012-01-12 Sanofi Spirocyclically substituted 1,3-propane dioxide derivatives, methods for the production thereof and use of the same as medicament
WO2012010413A1 (en) 2010-07-05 2012-01-26 Sanofi Aryloxy-alkylene substituted hydroxyphenyl hexynoic acids, methods for the production thereof and use of the same as medicament
WO2012120055A1 (en) 2011-03-08 2012-09-13 Sanofi Di- and tri-substituted oxathiazine derivates, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof
WO2012120056A1 (en) 2011-03-08 2012-09-13 Sanofi Tetrasubstituted oxathiazine derivatives, method for producing them, their use as medicine and drug containing said derivatives and the use thereof
WO2012120054A1 (en) 2011-03-08 2012-09-13 Sanofi Di- and tri-substituted oxathiazine derivates, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof
WO2012120053A1 (en) 2011-03-08 2012-09-13 Sanofi Branched oxathiazine derivatives, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof
WO2012120052A1 (en) 2011-03-08 2012-09-13 Sanofi Oxathiazine derivatives substituted with carbocycles or heterocycles, method for producing same, drugs containing said compounds, and use thereof
WO2013037390A1 (en) 2011-09-12 2013-03-21 Sanofi 6-(4-hydroxy-phenyl)-3-styryl-1h-pyrazolo[3,4-b]pyridine-4-carboxylic acid amide derivatives as kinase inhibitors
WO2013045413A1 (en) 2011-09-27 2013-04-04 Sanofi 6-(4-hydroxy-phenyl)-3-alkyl-1h-pyrazolo[3,4-b]pyridine-4-carboxylic acid amide derivatives as kinase inhibitors
US9663481B2 (en) 2005-12-22 2017-05-30 Vtv Therapeutics Llc Phenoxy acetic acids and phenyl propionic acids as PPARδ agonists
US11267795B2 (en) 2020-07-22 2022-03-08 Reneo Pharmaceuticals, Inc. Crystalline PPAR-delta agonist
US11931365B2 (en) 2023-01-25 2024-03-19 Reneo Pharmaceuticals, Inc. Use of PPAR-delta agonists in the treatment of disease

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2347578T3 (en) * 2004-05-05 2010-11-02 High Point Pharmaceuticals, Llc DERIVATIVES OF THE PHENOXYACETIC ACID AS PPAR AGONISTS.
ATE515494T1 (en) * 2004-05-05 2011-07-15 High Point Pharmaceuticals Llc NEW COMPOUNDS, THEIR PRODUCTION AND USE
CN112759515B (en) * 2020-12-28 2023-06-13 广东药科大学 Novel FFA1 and PPAR alpha/gamma/delta quadruple agonist, preparation method thereof and application thereof as medicine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028115A1 (en) * 1996-02-02 1997-08-07 Merck & Co., Inc. Antidiabetic agents
US20040209936A1 (en) * 2003-04-17 2004-10-21 Bratton Larry D. Compounds that modulate PPAR activity and methods of preparation
US20050113440A1 (en) * 2002-04-05 2005-05-26 Auerbach Bruce J. Compounds that modulate PPAR activity and methods for their preparation
WO2005113506A1 (en) * 2004-05-14 2005-12-01 Irm Llc Compounds and compositions as ppar modulators

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4920132A (en) * 1987-11-03 1990-04-24 Rorer Pharmaceutical Corp. Quinoline derivatives and use thereof as antagonists of leukotriene D4
US5324743A (en) * 1992-12-10 1994-06-28 Eli Lilly And Company Leukotriene B4 antagonists
GB2279659B (en) 1993-07-05 1998-04-22 Merck Patent Gmbh Liquid crystalline material
ES2241036T3 (en) 1996-02-02 2005-10-16 MERCK & CO., INC. PROCESS OF TREATMENT OF DIABETES AND ASSOCIATED PATHOLOGICAL STATES.
AU1856997A (en) 1996-02-02 1997-08-22 Merck & Co., Inc. Method for raising hdl cholesterol levels
DE69720429T9 (en) 1996-02-02 2004-09-23 Merck & Co., Inc. HETEROCYCLIC COMPOUNDS AS AN ANTIDIABETIC AGENTS AND FOR THE TREATMENT OF OBESITY
AU719146B2 (en) 1996-02-02 2000-05-04 Merck & Co., Inc. Antidiabetic agents
WO1998027974A1 (en) 1996-12-23 1998-07-02 Merck & Co., Inc. Antidiabetic agents
JP4427825B2 (en) 1997-07-24 2010-03-10 アステラス製薬株式会社 Pharmaceutical composition having cholesterol lowering action
WO1999020275A1 (en) 1997-10-17 1999-04-29 Aventis Pharmaceuticals Products Inc. Therapeutic uses of quinoline derivatives
CA2374263A1 (en) * 1999-06-01 2000-12-07 The University Of Texas Southwestern Medical Center Method of treating hair loss using diphenylether derivatives
GB9914977D0 (en) 1999-06-25 1999-08-25 Glaxo Group Ltd Chemical compounds
TWI262185B (en) 1999-10-01 2006-09-21 Eisai Co Ltd Carboxylic acid derivatives having anti-hyperglycemia and anti-hyperlipemia action, and pharmaceutical composition containing the derivatives
US6369098B1 (en) 1999-10-05 2002-04-09 Bethesda Pharmaceuticals, Inc. Dithiolane derivatives
HUP0203837A2 (en) 1999-11-10 2003-03-28 Takeda Chemical Industries, Ltd. Body weight gain inhibitors
NZ517667A (en) 1999-11-11 2004-05-28 Lilly Co Eli Oncolytic combinations for the treatment of cancer
JP2003523336A (en) 2000-02-18 2003-08-05 メルク エンド カムパニー インコーポレーテッド Aryloxyacetic acid for diabetes and lipid disorders
JP2004500389A (en) 2000-03-09 2004-01-08 アベンティス・ファーマ・ドイチユラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Use of PPAR mediators in therapy
US6448293B1 (en) * 2000-03-31 2002-09-10 Pfizer Inc. Diphenyl ether compounds useful in therapy
JP2001354671A (en) 2000-04-14 2001-12-25 Nippon Chemiphar Co Ltd ACTIVATOR FOR PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR delta
US6787552B2 (en) 2000-08-11 2004-09-07 Nippon Chemiphar Co., Ltd. PPAR delta activators
US6630504B2 (en) * 2000-08-31 2003-10-07 Pfizer Inc. Phenoxyphenylheterocyclyl derivatives as SSRIs
GB0024361D0 (en) 2000-10-05 2000-11-22 Glaxo Group Ltd Medicaments
AU2002224138A1 (en) 2000-12-05 2002-06-18 Nippon Chemiphar Co. Ltd. Peroxisome proliferator activated receptor d activators
GB0031103D0 (en) 2000-12-20 2001-01-31 Glaxo Group Ltd Chemical compounds
GB0031109D0 (en) 2000-12-20 2001-01-31 Glaxo Group Ltd Chemical compounds
GB0031107D0 (en) 2000-12-20 2001-01-31 Glaxo Group Ltd Chemical compounds
US7238716B2 (en) 2000-12-28 2007-07-03 Takeda Pharmaceuticals Company Limited Alkanoic acid derivatives process for their production and use thereof
WO2002070011A2 (en) 2001-02-02 2002-09-12 Smithkline Beecham Corporation Treatment of ppar mediated diseases
JP4157381B2 (en) 2001-03-23 2008-10-01 日本ケミファ株式会社 Activator of peroxisome proliferator-responsive receptor
WO2002079162A1 (en) 2001-03-28 2002-10-10 Eisai Co., Ltd. Carboxylic acids
WO2002080899A1 (en) 2001-03-30 2002-10-17 Eisai Co., Ltd. Remedial agent for digestive disease
TWI311133B (en) 2001-04-20 2009-06-21 Eisai R&D Man Co Ltd Carboxylic acid derivativeand the salt thereof
WO2002098840A1 (en) 2001-06-04 2002-12-12 Eisai Co., Ltd. Carboxylic acid derivative and medicine comprising salt or ester of the same
FR2826574B1 (en) 2001-06-29 2005-08-26 Oreal COMPOSITIONS CONTAINING A HYDROXYDIPHENYL ETHER DERIVATIVE INHIBITING THE DEVELOPMENT OF BODY ODORS
KR100901683B1 (en) 2001-08-10 2009-06-08 닛뽕 케미파 가부시키가이샤 Activator of peroxisome proliferator-activated receptor ?
WO2003016265A1 (en) 2001-08-17 2003-02-27 Eisai Co., Ltd. Cyclic compound and ppar agonist
US6869975B2 (en) * 2001-09-14 2005-03-22 Tularik Inc. Linked biaryl compounds
PT1445258E (en) 2001-10-12 2009-07-02 Nippon Chemiphar Co Activator for peroxisome proliferator-activated receptor delta
CA2462514A1 (en) * 2001-10-17 2003-04-24 Lone Jeppesen Dicarboxylic acid derivatives, their preparation and therapeutical use
DE10151390A1 (en) 2001-10-18 2003-05-08 Bayer Ag acetic acid derivatives
JP2003171275A (en) 2001-12-11 2003-06-17 Sumitomo Pharmaceut Co Ltd Ppar delta agonist
EP1480640B1 (en) 2002-02-25 2007-08-15 Eli Lilly And Company Peroxisome proliferator activated receptor modulators
US7319104B2 (en) 2002-03-01 2008-01-15 Smithkline Beecham Corporation hPPARs activators
US6867224B2 (en) 2002-03-07 2005-03-15 Warner-Lambert Company Compounds that modulate PPAR activity and methods of preparation
US20030207924A1 (en) 2002-03-07 2003-11-06 Xue-Min Cheng Compounds that modulate PPAR activity and methods of preparation
US6833380B2 (en) 2002-03-07 2004-12-21 Warner-Lambert Company, Llc Compounds that modulate PPAR activity and methods of preparation
DE10222034A1 (en) 2002-05-17 2003-11-27 Bayer Ag New 2-benzenesulfonyl-3,4-dihydro-2(1H)-isoquinoline derivatives, are PPAR-delta activators useful e.g. for treating coronary heart disease, dyslipidemia or restenosis
GB0214149D0 (en) 2002-06-19 2002-07-31 Glaxo Group Ltd Chemical compounds
GB0214254D0 (en) 2002-06-20 2002-07-31 Glaxo Group Ltd Chemical compounds
DE10229777A1 (en) 2002-07-03 2004-01-29 Bayer Ag Indoline-phenylsulfonamide derivatives
JPWO2004007439A1 (en) 2002-07-10 2005-11-10 住友製薬株式会社 Biaryl derivatives
US7816385B2 (en) * 2002-12-20 2010-10-19 High Point Pharmaceuticals, Llc Dimeric dicarboxylic acid derivatives, their preparation and use
EP1578716A1 (en) 2002-12-20 2005-09-28 Novo Nordisk A/S Dicarboxylic acid derivatives as ppar-agonists
WO2004063165A1 (en) 2003-01-06 2004-07-29 Eli Lilly And Company A pyrazole derivative as ppar modulator
DE10300099A1 (en) 2003-01-07 2004-07-15 Bayer Healthcare Ag Indole-phenylsulfonamide derivatives
WO2004071447A2 (en) 2003-02-12 2004-08-26 Transtech Pharma Inc. Substituted azole derivatives as therapeutic agents
WO2004073606A2 (en) 2003-02-14 2004-09-02 Eli Lilly And Company Sulfonamide derivatives as ppar modulators
JPWO2004080943A1 (en) 2003-03-11 2006-06-08 小野薬品工業株式会社 Cinnamyl alcohol derivative compound and drug containing the compound as an active ingredient
MXPA05009730A (en) 2003-03-13 2005-11-04 Ono Pharmaceutical Co Imino ether derivative compounds and drugs containing the compounds as the active ingredient.
CA2521175A1 (en) 2003-04-07 2004-10-28 Kalypsys, Inc. Para-sulfonyl substituted phenyl compounds as modulators of ppars
ES2273282T3 (en) 2003-04-17 2007-05-01 Kalypsys, Inc. (3- (3- (2,4-BIS-TRIFLUOROMETIL-BENCIL) - (5-ETIL-PIRIMIDIN-2-IL) -AMINO) -PROPOXI) -PHENILE) -ACTICAL AND RELATED COMPOUNDS AS MODULATORS OF PPARS AND METHODS OF TREATMENT OF METABOLIC DISORDERS.
EA200501713A1 (en) 2003-04-30 2006-06-30 ДЗЕ ИНСТИТЬЮТС ФОР ФАРМАСЬЮТИКАЛ ДИСКАВЕРИ, ЭлЭлСи PHENYL SUBSTITUTE CARBONIC ACIDS
EP1697304B1 (en) 2003-11-25 2008-02-20 Eli Lilly And Company Peroxisome proliferator activated receptor modulators
DE602005027677D1 (en) 2004-04-01 2011-06-09 Aventis Pharma Inc 1,3,4-OXADIAZOL-2-ONE AS PPAR DELTA MODULATORS AND ITS USE
SG151336A1 (en) 2004-04-01 2009-04-30 Aventis Pharma Inc 1,3,4-oxadiazol-2-ones as ppar delta
CN1950077A (en) 2004-04-01 2007-04-18 安万特药物公司 Use of peroxisome proliferator activated receptor delta agonists for the treatment of ms and other demyelinating diseases
ES2352085T3 (en) * 2004-05-05 2011-02-15 High Point Pharmaceuticals, Llc NEW COMPOUNDS, THEIR PREPARATION AND USE.
AU2006265172B2 (en) * 2005-06-30 2011-09-15 Vtv Therapeutics Llc Phenoxy acetic acids as PPAR delta activators

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028115A1 (en) * 1996-02-02 1997-08-07 Merck & Co., Inc. Antidiabetic agents
US20050113440A1 (en) * 2002-04-05 2005-05-26 Auerbach Bruce J. Compounds that modulate PPAR activity and methods for their preparation
US20040209936A1 (en) * 2003-04-17 2004-10-21 Bratton Larry D. Compounds that modulate PPAR activity and methods of preparation
WO2005113506A1 (en) * 2004-05-14 2005-12-01 Irm Llc Compounds and compositions as ppar modulators

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7968723B2 (en) 2004-05-05 2011-06-28 High Point Pharmaceuticals, Llc Compounds, their preparation and use
US8217086B2 (en) 2005-06-30 2012-07-10 High Point Pharmaceuticals, Llc Phenoxy acetic acids as PPAR delta activators
US7943669B2 (en) 2005-06-30 2011-05-17 High Point Pharmaceuticals, Llc Phenoxy acetic acids as PPAR delta activators
US8426473B2 (en) 2005-06-30 2013-04-23 High Point Pharnaceuticals, LLC Phenoxy acetic acids as PPAR delta activators
US11420929B2 (en) 2005-12-22 2022-08-23 Vtv Therapeutics Llc Phenoxy acetic acids and phenyl propionic acids as PPAR delta agonists
US10947180B2 (en) 2005-12-22 2021-03-16 Vtv Therapeutics Llc Phenoxy acetic acids and phenyl propionic acids as PPAR delta agonists
US9855274B2 (en) 2005-12-22 2018-01-02 Vtv Therapeutics Llc Phenoxy acetic acids and phenyl propionic acids as PPAR delta agonists
US9663481B2 (en) 2005-12-22 2017-05-30 Vtv Therapeutics Llc Phenoxy acetic acids and phenyl propionic acids as PPARδ agonists
US9115056B2 (en) 2007-06-29 2015-08-25 Acucela Inc. Alkynyl phenyl derivative compounds for treating ophthalmic diseases and disorders
US8492589B2 (en) 2007-06-29 2013-07-23 Acucela Inc. Alkynyl phenyl derivative compounds for treating ophthalmic diseases and disorders
EP2076122A4 (en) * 2007-06-29 2011-06-22 Acucela Inc Alkynyl phenyl derivative compounds for treating ophthalmic diseases and disorders
US9464033B2 (en) 2007-06-29 2016-10-11 Acucela Inc. Alkynyl phenyl derivative compounds for treating ophthalmic diseases and disorders
US8895782B2 (en) 2007-06-29 2014-11-25 Acucela Inc. Alkynyl phenyl derivative compounds for treating ophthalmic diseases and disorders
US8766007B2 (en) 2007-06-29 2014-07-01 Acucela Inc Alkynyl phenyl derivative compounds for treating ophthalmic diseases and disorders
US8299307B2 (en) 2007-06-29 2012-10-30 Acucela Inc. Alkynyl phenyl derivative compounds for treating ophthalmic diseases and disorders
US8389771B2 (en) 2007-06-29 2013-03-05 Acucela, Inc. Alkynyl phenyl derivative compounds for treating ophthalmic diseases and disorders
WO2009021740A2 (en) 2007-08-15 2009-02-19 Sanofis-Aventis Substituted tetrahydronaphthalenes, process for the preparation thereof and the use thereof as medicaments
WO2011107494A1 (en) 2010-03-03 2011-09-09 Sanofi Novel aromatic glycoside derivatives, medicaments containing said compounds, and the use thereof
WO2011157827A1 (en) 2010-06-18 2011-12-22 Sanofi Azolopyridin-3-one derivatives as inhibitors of lipases and phospholipases
WO2011161030A1 (en) 2010-06-21 2011-12-29 Sanofi Heterocyclic substituted methoxyphenyl derivatives having an oxo group, method for producing same, and use thereof as gpr40 receptor modulators
WO2012004269A1 (en) 2010-07-05 2012-01-12 Sanofi (2-aryloxy-acetylamino)-phenyl-propionic acid derivatives, method for producing same and use thereof as pharmaceuticals
WO2012004270A1 (en) 2010-07-05 2012-01-12 Sanofi Spirocyclically substituted 1,3-propane dioxide derivatives, methods for the production thereof and use of the same as medicament
WO2012010413A1 (en) 2010-07-05 2012-01-26 Sanofi Aryloxy-alkylene substituted hydroxyphenyl hexynoic acids, methods for the production thereof and use of the same as medicament
WO2012120056A1 (en) 2011-03-08 2012-09-13 Sanofi Tetrasubstituted oxathiazine derivatives, method for producing them, their use as medicine and drug containing said derivatives and the use thereof
WO2012120054A1 (en) 2011-03-08 2012-09-13 Sanofi Di- and tri-substituted oxathiazine derivates, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof
WO2012120053A1 (en) 2011-03-08 2012-09-13 Sanofi Branched oxathiazine derivatives, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof
WO2012120052A1 (en) 2011-03-08 2012-09-13 Sanofi Oxathiazine derivatives substituted with carbocycles or heterocycles, method for producing same, drugs containing said compounds, and use thereof
WO2012120055A1 (en) 2011-03-08 2012-09-13 Sanofi Di- and tri-substituted oxathiazine derivates, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof
WO2013037390A1 (en) 2011-09-12 2013-03-21 Sanofi 6-(4-hydroxy-phenyl)-3-styryl-1h-pyrazolo[3,4-b]pyridine-4-carboxylic acid amide derivatives as kinase inhibitors
WO2013045413A1 (en) 2011-09-27 2013-04-04 Sanofi 6-(4-hydroxy-phenyl)-3-alkyl-1h-pyrazolo[3,4-b]pyridine-4-carboxylic acid amide derivatives as kinase inhibitors
US11267795B2 (en) 2020-07-22 2022-03-08 Reneo Pharmaceuticals, Inc. Crystalline PPAR-delta agonist
US11713301B2 (en) 2020-07-22 2023-08-01 Reneo Pharmaceuticals, Inc. Crystalline PPARδ agonist
US11931365B2 (en) 2023-01-25 2024-03-19 Reneo Pharmaceuticals, Inc. Use of PPAR-delta agonists in the treatment of disease

Also Published As

Publication number Publication date
WO2007101864A3 (en) 2007-10-25
US20090048257A1 (en) 2009-02-19
CA2645719A1 (en) 2007-09-13
JP2009529512A (en) 2009-08-20
EP1999098A2 (en) 2008-12-10
US7943612B2 (en) 2011-05-17

Similar Documents

Publication Publication Date Title
US7943612B2 (en) Compounds that modulate PPAR activity, their preparation and use
US11420929B2 (en) Phenoxy acetic acids and phenyl propionic acids as PPAR delta agonists
EP2298742B1 (en) phenoxy acetic acids as PPAR delta activators
AU2011253593A1 (en) Phenoxy acetic acids as PPAR delta activators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008557754

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2645719

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12282244

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007726688

Country of ref document: EP