WO2009131216A1 - Lipid membrane structure modified with oligo(alkylene glycol) - Google Patents

Lipid membrane structure modified with oligo(alkylene glycol) Download PDF

Info

Publication number
WO2009131216A1
WO2009131216A1 PCT/JP2009/058172 JP2009058172W WO2009131216A1 WO 2009131216 A1 WO2009131216 A1 WO 2009131216A1 JP 2009058172 W JP2009058172 W JP 2009058172W WO 2009131216 A1 WO2009131216 A1 WO 2009131216A1
Authority
WO
WIPO (PCT)
Prior art keywords
glycol
lipid
membrane structure
lipid membrane
modified
Prior art date
Application number
PCT/JP2009/058172
Other languages
French (fr)
Japanese (ja)
Inventor
秀吉 原島
英万 秋田
智也 増田
健太朗 小暮
崇 西尾
謙一 新倉
邦治 居城
Original Assignee
国立大学法人 北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 北海道大学 filed Critical 国立大学法人 北海道大学
Publication of WO2009131216A1 publication Critical patent/WO2009131216A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • A61K48/0025Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • A61K48/0025Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
    • A61K48/0041Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid the non-active part being polymeric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to a lipid membrane structure comprising a lipid modified with an oligoalkylene glycol having an alkylene group polymerization degree of 4 to 25, and a lipid modified with an oligoalkylene glycol having an alkylene group polymerization degree of 4 to 25 And a method for producing an intracellular transcription promoter for nucleic acid encapsulated in a lipid membrane structure, and a lipid single membrane structure encapsulating a drug, wherein the alkylene group has a degree of polymerization of 4 to 25
  • the present invention relates to the above production method, wherein a drug is encapsulated using a lipid modified with glycol as a component of a membrane.
  • MEND Multifunctional-envelope-type-nano-device
  • lipid membrane structures such as liposomes and MEND have the problem of poor retention in blood when administered intravenously and are easily trapped in reticuloendothelial tissues such as the liver and spleen. ing.
  • these lipid membrane structures have also been pointed out as problems of leakage of inclusions and aggregation of lipid membrane structures. These problems have been a major obstacle in performing targeting therapy for delivering drugs, particularly nucleic acids, to target organs and cells using liposomes and MENDs.
  • Non-patent Document 1 means for modifying the surface of the lipid membrane structure with polyalkylene glycol such as polyethylene glycol (PEG) has been proposed (Non-patent Document 1).
  • PEG polyethylene glycol
  • the hydration layer of PEG covers the outer surface of the lipid membrane structure, so opsonization due to adsorption of serum proteins is suppressed, and as a result, phagocytosis by macrophages and uptake by reticuloendothelial tissue can be avoided.
  • a lipid membrane structure is prepared using a phospholipid modified with polyalkylene glycol, and a lipid membrane structure modified with polyalkylene glycol is actually produced.
  • Patent Document 1 discloses that a specific phospholipid modified with polyalkylene glycol or the like can be hydrolyzed by a matrix metalloprotease between a modified portion such as polyalkylene glycol and the phospholipid portion.
  • a lipid membrane structure using a peptide-mediated lipid is proposed.
  • the lipid membrane structure has a high retention in the blood due to the presence of a modification site such as polyalkylene glycol in the blood, while the lipid membrane structure reaches the target tumor tissue.
  • the oligopeptide part of the body is hydrolyzed by a matrix metalloprotease, and the modification site such as polyalkylene glycol is eliminated. As a result, it is efficiently taken up by the target tumor cell and the encapsulated drug is efficiently released.
  • Patent Document 1 it is necessary to synthesize a lipid in which an oligopeptide hydrolyzable by a matrix metalloprotease is interposed between a modifying portion such as polyalkylene glycol and a phospholipid portion, There is a problem that it can be used only for target cells expressing a matrix metalloprotease.
  • the present invention is a lipid membrane structure in which the drug delivery efficiency to a target cell, particularly the expression efficiency of a nucleic acid used for gene therapy or the like in a target cell is enhanced by an approach different from the technique according to Patent Document 1.
  • the purpose is to provide.
  • the present inventors have modified the lipid membrane structure with an oligoalkylene glycol having a specific degree of polymerization in place of the polyalkylene glycol that has been used for the purpose of enhancing hydrophilicity so far.
  • the inventors have found that the efficiency, in particular, the intracellular expression and transcription efficiency of nucleic acids can be dramatically increased, and the following inventions have been completed.
  • a lipid membrane structure comprising a lipid modified with an oligoalkylene glycol having an alkylene group polymerization degree of 4 to 25 as a constituent of the membrane.
  • oligoethylene glycol is one or more selected from the group consisting of triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, heptaethylene glycol and octaethylene glycol. Structure.
  • lipid membrane structure according to any one of (1) to (4), wherein the lipid modified with oligoalkylene glycol is phospholipid, glycolipid, sterol, long-chain aliphatic alcohol or glycerin fatty acid ester .
  • the sterol is one or more selected from the group consisting of cholesterol, cholesterol succinic acid, lanosterol, dihydrolanosterol, desmosterol, dihydrocholesterol, stigmasterol, sitosterol, campesterol, brassicasterol, thymosterol and ergosterol.
  • the lipid membrane structure according to (5) is one or more selected from the group consisting of cholesterol, cholesterol succinic acid, lanosterol, dihydrolanosterol, desmosterol, dihydrocholesterol, stigmasterol, sitosterol, campesterol, brassicasterol, thymosterol and ergosterol.
  • An intracellular transcription promoter for a nucleic acid encapsulated in a lipid membrane structure comprising a lipid modified with an oligoalkylene glycol having an alkylene group polymerization degree of 4 to 25.
  • oligoethylene glycol is one or more selected from the group consisting of triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, heptaethylene glycol and octaethylene glycol. Transfer accelerator.
  • the sterol is one or more selected from the group consisting of cholesterol, cholesterol succinic acid, lanosterol, dihydrolanosterol, desmosterol, dihydrocholesterol, stigmasterol, sitosterol, campesterol, brassicasterol, thymosterol and ergosterol.
  • the intracellular transcription promoter according to (12).
  • oligoethylene glycol is one or more selected from the group consisting of triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, heptaethylene glycol and octaethylene glycol.
  • lipid modified with oligoalkylene glycol is a phospholipid, glycolipid, sterol, long-chain aliphatic alcohol or glycerin fatty acid ester.
  • the sterol is one or more selected from the group consisting of cholesterol, cholesterol succinic acid, lanosterol, dihydrolanosterol, desmosterol, dihydrocholesterol, stigmasterol, sitosterol, campesterol, brassicasterol, thymosterol and ergosterol. (17) The manufacturing method as described.
  • the lipid membrane structure of the present invention is excellent in the ability to release inclusions in a target cell, and particularly when a nucleic acid is encapsulated, the amount of expression and transcription of the nucleic acid in the target cell is controlled. It is particularly useful as a vector for gene therapy.
  • FIG. 3 is a graph showing the effect of promoting the expression of TEGChol on nucleic acid (luciferase gene) in HeLa cells transformed with MENDs 1 to 3 prepared in Example 1.
  • FIG. It is a graph which shows the expression promotion effect with respect to the nucleic acid (luciferase gene) of TEGChol in the lipid membrane structure which does not contain stearyl octaarginine.
  • 2 is a graph showing the results of measuring the expression level of nucleic acid (luciferase gene) in the whole HeLa cells transformed with MENDs 1 to 3 prepared in Example 1 by real-time PCR.
  • FIG. 2 is a graph showing the results of measuring the expression level of nucleic acid (luciferase gene) in the nuclear fraction fractionated from HeLa cells transformed with MENDs 1 to 3 produced in Example 1 by real-time PCR. It is a graph which shows the nuclear transfer efficiency of the nucleic acid obtained by dividing the nuclear transfer amount of a nucleic acid by the amount of intracellular uptake based on the measured value of real-time PCR. It is a graph which shows the expression efficiency after a nuclear transfer obtained by dividing a nucleic acid expression level by a nuclear transfer amount based on the measured value of real-time PCR.
  • Example 2 is a SEM electron micrograph of MEND1 and MEND3 prepared in Example 1. It is a graph showing the influence of the ethylene polymerization degree with respect to the expression level of a nucleic acid.
  • Chol is MEND containing cholesterol modified with oligoethylene glycol in the membrane
  • STR is MEND containing stearic acid modified with oligoethylene glycol in the membrane
  • DSPE is distearoyl phosphatidyl ethanol modified with oligoethylene glycol.
  • Each of the MENDs containing an amine in the membrane is shown.
  • the present invention relates to a lipid membrane structure comprising a lipid modified with an oligoalkylene glycol having an alkylene group polymerization degree of 4 to 25 as a constituent component of the membrane.
  • the alkylene group in the present invention is an alkylene group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, such as a methylene group, an ethylene group, a propylene group, a butene group, or a pentene group, and particularly preferably ethylene. It is a group. That is, a preferred oligoalkylene glycol in the present invention is an oligoethylene glycol having an ethylene group polymerization degree of 4 to 25.
  • More preferable oligoalkylene glycol is one or more selected from the group consisting of tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, heptaethylene glycol and octaethylene glycol, and tetraethylene glycol is particularly preferable.
  • the oligoalkylene glycol having an alkylene group polymerization degree of 4 to 25 used in the present invention is represented as OAG.
  • the lipid modified with OAG may be any lipid that is generally used as a component of a lipid membrane structure, but is preferably a phospholipid, glycolipid, sterol, long-chain aliphatic alcohol, or glycerin fatty acid ester. .
  • Phospholipids include phosphatidylcholine (for example, dioleoylphosphatidylcholine, dilauroylphosphatidylcholine, dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine, etc.), phosphatidylglycerol (for example, dioleoylphosphatidylglycerol, dilauroylphosphatidylglycerol, dimyristoyl).
  • phosphatidylcholine for example, dioleoylphosphatidylcholine, dilauroylphosphatidylcholine, dimyristoyl
  • phosphatidylglycerol for example, dioleoylphosphatidylglycerol, dilauroylphosphatidylglycerol, dimyristoyl.
  • Phosphatidylglycerol dipalmitoylphosphatidylglycerol, distearoylphosphatidylglycerol
  • phosphatidylethanolamine eg dioleoylphosphatidylethanolamine (DOPE), dilauroylphosphatidylethanolamine, dimyristoylphosphatidylethanolamine, dipalmit Ylphosphatidylethanolamine, distearoylphosphatidiethanolamine), N-succinylphosphatidylethanolamine (N-succinyl PE), phosphatidylethylene glycol, phosphatidylserine, phosphatidylinositol, phosphatidic acid, cardiolipin, or hydrogenated products thereof, egg yolk, soybean Examples include natural lipids derived from other animals and plants (eg, egg yolk lecithin, soybean lecithin, etc.).
  • Said phospholipid is used as a main structural component of a lipid membrane structure.
  • the amount to be used is preferably 10 to 100% (molar ratio), more preferably 50 to 80% (molar ratio) as the amount of the lipid membrane structure relative to the total lipid. It is not limited.
  • glycolipids examples include glycolipids such as cephalin, cerebroside, ceramide, sphingomyelin, ganglioside, and one or more of these can be used.
  • sterols examples include sterols derived from animals such as cholesterol, cholesterol succinic acid, lanosterol, dihydrolanosterol, desmosterol and dihydrocholesterol, sterols (phytosterols) derived from plants such as stigmasterol, sitosterol, campesterol and brassicasterol, and timosterol. And sterols derived from microorganisms such as ergosterol. These sterols are generally used to physically or chemically stabilize lipid bilayers and to regulate membrane fluidity. The amount to be used is preferably 5 to 40% (molar ratio), more preferably 10 to 30% (molar ratio), based on the total lipid of the lipid membrane structure. It is not limited.
  • a fatty acid having 10 to 20 carbon atoms or an alcohol thereof can be used.
  • Preferred examples include palmitic acid, oleic acid, stearic acid, arachidonic acid, myristic acid, lauric acid, arachidic acid, linoleic acid, palmitoyl acid, oleyl alcohol, stearyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, linolyl alcohol Etc.
  • the amount to be used is preferably 5 to 40% (molar ratio), more preferably 10 to 30% (molar ratio), based on the total lipid of the lipid membrane structure. It is not limited.
  • glycerin fatty acid esters examples include monoacyl glycerides, diacyl glycerides, and triacyl glycerides.
  • the amount to be used is preferably 5 to 40% (molar ratio), more preferably 10 to 30% (molar ratio), based on the total lipid of the lipid membrane structure. It is not limited.
  • Lipids generally have a chemically activatable functional group such as a carbonyl group, an amino group or a hydroxyl group. Between these appropriate functional groups and functional groups on OAG or functional groups introduced into OAG. Through the chemical reaction, lipids modified with OAG can be prepared.
  • a chemically activatable functional group such as a carbonyl group, an amino group or a hydroxyl group.
  • PE phosphatidylethanolamine
  • the method of Martin et al. (Biochem. Biophys. Acta, 1992, 1113, 171-199) is known. That is, PE modified with OAG can be prepared by converting a hydroxyl group of OAG into a carboxylic acid and performing a condensation reaction between the carboxyl group and the amino group of PE.
  • an amino group is introduced into OAG, and a condensation reaction is performed between this amino group and a carboxyl group of the long chain fatty acid, thereby modifying the long chain modified with OAG.
  • Fatty acids can be prepared.
  • sterols modified with OAG can be prepared by activating the hydroxyl group of sterols with a tosyl group or the like and using the SN2 reaction with the hydroxyl group of OAG in an organic solvent.
  • the lipid membrane of the lipid membrane structure of the present invention includes tocopherol, propyl gallate, ascorbyl palmitate, butylated hydroxytoluene and other antioxidants, stearylamine, Charged substances that impart positive charges such as oleylamine, charged substances that impart negative charges such as dicetyl phosphate, membrane surface proteins, membrane proteins such as integral membrane proteins can be included, and the content is appropriate Can be adjusted.
  • cell membrane permeable peptides such as polyarginine peptides disclosed in International Patent Application Publication No. WO2005 / 032593 pamphlet, pH-responsive membrane fusion such as GALA peptides disclosed in International Patent Application Publication No. WO2005 / 032593 pamphlet Peptides, which can add functions to other lipid membrane structures, are used in the lipid membrane structure of the present invention according to the mode, amount used, production method, etc. described in each patent document. May be.
  • the lipid membrane structure When transferring the lipid membrane structure of the present invention into cells by endocytosis, the lipid membrane structure preferably contains a cationic lipid as a constituent component of the membrane.
  • the cationic lipid include dioctadecyldimethylammonium chloride (DODAC), N- (2,3-oleyloxy) propyl-N, N, N-trimethylammonium (N- (2,3-dioyloxy)).
  • DODAC dioctadecyldimethylammonium chloride
  • N- (2,3-oleyloxy) propyl-N N, N-trimethylammonium (N- (2,3-dioyloxy)).
  • the lipid membrane structure of the present invention moves into the cell by macropinocytosis, and the cationic lipid is converted into a lipid. It is not always necessary to be included in the membrane structure. That is, when the polyarginine peptide is added, the lipid membrane of the lipid membrane structure of the present invention may be composed of either a cationic lipid or a non-cationic lipid, or may be composed of both. Alternatively, oligoethylene glycol may be used by binding to these lipids.
  • the ratio of the cationic lipid to the total lipid constituting is preferably 0 to 40% (molar ratio), and more preferably 0 to 20% (molar ratio).
  • non-cationic lipid means a neutral lipid or an anionic lipid
  • examples of the neutral lipid include diacylphosphatidylcholine, diacylphosphatidylethanolamine, cholesterol, ceramide, sphingomyelin, cephalin, and cerebroside.
  • anionic lipids include, for example, cardiolipin, diacylphosphatidylserine, diacylphosphatidic acid, N-succinylphosphatidylethanolamine (N-succinyl PE), phosphatidic acid, phosphatidylinositol, phosphatidylglycerol, phosphatidylethylene glycol And cholesterol succinic acid.
  • the lipid membrane constituting the lipid membrane structure of the present invention may contain a plurality of types of lipids modified with OAG.
  • lipids not modified with OAG or other than OAG Lipids modified with these substances may be included as components.
  • a phospholipid modified with OAG and another phospholipid modified with OAG a phospholipid and sterol modified with OAG, a sterol and phospholipid modified with OAG, and a sterol and phospholipid modified with OAG
  • a combination of lipids such as a sterol modified with a functional peptide can be arbitrarily selected, and may further contain various components usable for the preparation of a functional peptide and other lipid membrane structures.
  • a preferred combination in the present invention is a lipid membrane structure in which sterols and phospholipids modified with OAG are used as constituent lipids of the lipid membrane and further modified with polyarginine peptide.
  • the lipid membrane structure of the present invention containing a lipid modified with OAG as a constituent component of the membrane effectively allows the substance enclosed therein to efficiently contain the substance in the cell, particularly in the nucleus. Can be released.
  • the substance enclosed inside is a nucleic acid
  • the expression and transcription efficiency of the nucleic acid in the cell, particularly in the nucleus can be dramatically increased. Therefore, lipids modified with OAG can be used as intracellular transcription promoters for nucleic acids encapsulated in lipid membrane structures.
  • the present invention provides an intracellular transcription promoter for nucleic acid encapsulated in a lipid membrane structure, which comprises a lipid modified with OAG, that is, an oligoalkylene glycol having an alkylene group polymerization degree of 4 to 25.
  • OAG is as described above.
  • the preferred form of the lipid membrane structure of the present invention is a closed vesicle composed of a single membrane.
  • the lipid membrane structure can be a closed vesicle composed of a single membrane.
  • a lipid membrane structure composed of a single lipid membrane is prepared by repeatedly passing a filter of an appropriate size.
  • OAG that is, a lipid modified with an oligoalkylene glycol having an alkylene group polymerization degree of 4 to 25 is used.
  • a lipid membrane structure composed of a lipid monolayer can be prepared without using a filter.
  • the present invention provides a method for producing a lipid single membrane structure in which a drug is encapsulated, and uses OAG, that is, a lipid modified with an oligoalkylene glycol having an alkylene group polymerization degree of 4 to 25 as a component of the membrane. And providing the above-described production method.
  • OAG is as described above.
  • the lipid membrane structure of the present invention is in the form of a closed vesicle composed of a single membrane, it is any one of SUV (small ilamela ic vesicle), LUV (large il unilamella vesicle), GUV (giant uniella vesicle), etc. Also good. Accordingly, the size of the lipid membrane structure of the present invention is not particularly limited, but it is preferably 50 to 800 nm in diameter, and more preferably 80 to 150 nm in diameter.
  • the lipid membrane structure of the present invention can be obtained by using known methods such as a hydration method, an ultrasonic treatment method, an ethanol injection method, an ether injection method, a reverse phase evaporation method, a surfactant method, and a freezing / thawing method.
  • a hydration method lipids modified with OAG, other lipids and optional components contained in the lipid membrane described above are dissolved in an organic solvent, and then the organic membrane is removed by evaporation to remove the lipid membrane. After being obtained, the lipid membrane is hydrated, stirred or sonicated to produce a lipid membrane structure containing a lipid modified with OAG as a constituent of the membrane.
  • the lipid membrane structure of the present invention having a polyarginine peptide or GALA peptide is obtained by dissolving a lipid modified with OAG and other lipids in an organic solvent, and then evaporating and removing the organic solvent to obtain a lipid membrane.
  • Liposomes can be produced by hydrating the lipid membrane, stirring or sonicating, and then adding the polypeptide to the external solution of the liposome to introduce these peptides onto the surface of the liposome. .
  • organic solvent for example, hydrocarbons such as pentane, hexane, heptane and cyclohexane, halogenated hydrocarbons such as methylene chloride and chloroform, aromatic hydrocarbons such as benzene and toluene, methanol, ethanol Lower alcohols such as methyl acetate, esters such as methyl acetate and ethyl acetate, ketones such as acetone and the like can be used alone or in combination of two or more.
  • hydrocarbons such as pentane, hexane, heptane and cyclohexane
  • halogenated hydrocarbons such as methylene chloride and chloroform
  • aromatic hydrocarbons such as benzene and toluene
  • methanol ethanol
  • Lower alcohols such as methyl acetate, esters such as methyl acetate and ethyl acetate, ketones such as acetone and the like can be used alone or in combination
  • lipid membrane structure having a certain particle size distribution can be obtained by passing through a filter having a predetermined pore size.
  • physiologically active substances such as drugs, nucleic acids, peptides, proteins, sugars or complexes thereof can be encapsulated in the lipid membrane structure of the present invention, which is appropriately selected according to the purpose of diagnosis, treatment, etc. be able to.
  • the physiologically active substance is water-soluble
  • the aqueous phase inside the lipid membrane structure can be obtained by adding the physiologically active substance to an aqueous solvent used for hydrating the lipid membrane in the production of the lipid membrane structure.
  • a physiologically active substance can be encapsulated.
  • the physiologically active substance is fat-soluble, the physiologically active substance is encapsulated in the membrane of the lipid membrane structure by adding the physiologically active substance to the organic solvent used in the production of the lipid membrane structure. Can do.
  • the lipid membrane structure of the present invention is useful for transferring a complex of a nucleic acid and a cationic substance to the cytoplasm and nucleus.
  • cationic substance as used herein means a substance having a cationic group in the molecule, and means a substance that can form a complex with a nucleic acid by electrostatic interaction.
  • the kind of the cationic substance is not particularly limited as long as it can form a complex with the nucleic acid.
  • a cationic lipid for example, Lipofectamine (Invitrogen)
  • a polymer having a cationic group for example, Lipofectamine (Invitrogen)
  • a polymer having a cationic group for example, Lipofectamine (Invitrogen)
  • a polymer having a cationic group for example, Lipofectamine (Invitrogen)
  • polylysine, polyarginine And a homopolymer or copolymer of a basic amino acid such as a copolymer of lysine and arginine or a derivative thereof (for example, stearylated derivative)
  • a polycationic polymer such as polyethyleneimine
  • protamine sulfate for example, Lipofectamine (Invitrogen)
  • a polymer having a cationic group for example, polylysine, polyarginine And a homopolymer or copolymer of a basic amino acid such as a copolymer of lys
  • the number of arginine residues constituting polyarginine is usually 4 to 20, preferably 6 to 12, and more preferably 7 to 10.
  • the number of cationic groups possessed by the cationic substance is not particularly limited, but is preferably 2 or more.
  • the cationic group is not particularly limited as long as it can be positively charged.
  • a monoalkylamino group such as an amino group, a methylamino group, and an ethylamino group
  • a dialkylamino group such as a dimethylamino group and a diethylamino group
  • an imino group Group guanidino group and the like.
  • the complex of the nucleic acid and the cationic substance has a positive charge or a negative charge as a whole depending on the composition ratio thereof, so that the above complex is formed inside the liposome by electrostatic interaction with a non-cationic lipid or a cationic lipid.
  • the body can be sealed efficiently.
  • the lipid membrane structure of the present invention can be used in the state of a dispersion, for example.
  • a dispersion solvent for example, a buffer solution such as physiological saline, phosphate buffer, citrate buffer, and acetate buffer can be used.
  • additives such as sugars, polyhydric alcohols, water-soluble polymers, nonionic surfactants, antioxidants, pH regulators, hydration accelerators may be added to the dispersion.
  • the lipid membrane structure of the present invention can also be used in a state where the dispersion is dried (for example, freeze-dried, spray-dried, etc.). The dried lipid membrane structure can be made into a dispersion by adding a buffer solution such as physiological saline, phosphate buffer, citrate buffer, or acetate buffer.
  • the lipid membrane structure of the present invention can be used both in vivo and in vitro.
  • examples of the administration route include parenteral administration such as intravenous, intraperitoneal, subcutaneous, and nasal administration.
  • the dose and the number of doses can be appropriately adjusted according to the type and amount of the drug encapsulated in the lipid membrane structure.
  • Such a lipid membrane structure can exhibit intracellular migration in a wide temperature range of 0 to 40 ° C. (an effective temperature range is 4 to 37 ° C.). Can be set.
  • the lipid membrane structure of the present invention can be used as an intracellular delivery vector or a nuclear delivery vector of a target substance.
  • the biological species from which the cell to which the target substance is to be delivered is not particularly limited and may be any animal, plant, microorganism, etc., but is preferably an animal, more preferably a mammal. preferable. Examples of mammals include humans, monkeys, cows, sheep, goats, horses, pigs, rabbits, dogs, cats, rats, mice, guinea pigs, and the like.
  • the kind of cell which should deliver a target substance is not specifically limited, For example, a somatic cell, a germ cell, a stem cell, or these cultured cells etc. are mentioned.
  • lipid membrane By reacting 10 g of cholesterol and 10 g of p-toluenesulfonic acid in a dry pyridine solution, the hydroxy group of cholesterol was derived into p-toluenesulfonic acid ester. By reacting 1 g of this esterified product and 2 g of tetraethylene glycol in 1,4-dioxane, cholesterol modified with tetraethylene glycol (hereinafter referred to as TEGChol) was produced. Further, an octaarginine peptide (STR-R8) modified with a stearyl group was prepared according to the method described in the pamphlet of Japanese Patent Application Publication No. WO2005 / 032593.
  • lipid membrane (control).
  • three types of lipid membranes were prepared in the same manner as described above except that 10%, 20%, and 30% of the cholesterol having the above composition were replaced with TEGChol.
  • a plasmid pEGFP-Luc (Clontech) encoding luciferase and protamine are mixed at a ratio of 1: 0.67 (mass ratio) in a HEPES buffer (10 mM HEPES / NaOH pH 7.4), so that an about 80 nm Aggregates were obtained.
  • nucleic acid-protamine aggregate solution 250 ⁇ L was added to each lipid membrane and hydrated for 10 minutes.
  • the hydrate was subjected to ultrasonic treatment with a water tank type ultrasonic generator for 30 seconds to 1 minute, whereby four types of MENDs with different aggregates and different TEGChol contents were produced.
  • Example 1 The expression level of the luciferase gene in HeLa cells transfected with MEND obtained in Example 1, 4) b) was determined using a real-time PCR measurement kit SYBR Green Realtime PCR Master Mix (TOYOBO) according to the manual of the kit. It was measured. The expression level was a value corrected by dividing the copy number of luciferase by the copy number of ⁇ -actin.
  • TOYOBO real-time PCR measurement kit SYBR Green Realtime PCR Master Mix
  • Example 2 The plasmid pEGFP-Luc of Example 1 2) was labeled with rhodamine using the same procedure as in Example 1 except that it was labeled with rhodamine using Label IT CX-Rhodamine reagent (Mirus) according to the manual of the same kit.
  • the gene was introduced into HeLa cells using MENDs 7 to 9 in which the nucleic acid aggregates were encapsulated.
  • FIG. 8 shows the result of observation using a confocal laser microscope after adding the fluorescent substance SYTO24 to the HeLa cells. As a result, it was confirmed that the expression site of the nucleic acid introduced into the cell was localized in the cell nucleus.
  • MEND8 (20%) and MEND9 (40%) shown in FIG. 8 the nucleic acid introduced into the cells (labeled with rhodamine and detected as red) is aggregated in one place in the cell without being unevenly distributed. It was confirmed to be scattered throughout the cell. This means that the MEND according to the present invention has good dispersibility in cells.
  • Example 3 The plasmid pEGFP-Luc of Example 1 2) was labeled with rhodamine using Label IT CX-Rhodamine reagent (Mirus) according to the manual of the kit, and further labeled with fluorescent substance NBD-labeled DOPE (Avanti). Otherwise, the same procedure as in Example 1 was performed, and the gene was introduced into HeLa cells using MENDs 10 to 12 in which a rhodamine-labeled nucleic acid aggregate was encapsulated and the lipid membrane was labeled with NBD.
  • Label IT CX-Rhodamine reagent Mirus
  • NBD-labeled DOPE Advanti
  • FIG. 9 shows the result of observation using a confocal laser microscope after adding a fluorescent substance Hoechst 33342 to the HeLa cells to label nuclei.
  • MEND10 the label of the nucleic acid and the lipid showed almost the same localization in the cell, and was detected as yellow, which is a mixed color of red indicating rhodamine labeling and green indicating NBD labeling.
  • MEND11 and 12 it was confirmed that the nucleic acid (rhodamine-labeled and detected as red) was localized independently of lipid (NBD-labeled and detected as green) as the TEGChol content increased. It was done.
  • TEGChol was shown to be a useful element for smoothly dissociating the drug encapsulated in the lipid membrane structure.
  • Example 5 Using oligoethylene glycol having an ethylene polymerization degree of 4, 10, 25, 45 and 50, stearic acid modified with each oligoethylene glycol was prepared in the same manner as in Example 1). Similarly, cholesterol modified with oligoethylene glycol having an ethylene polymerization degree of 4 and DSPE (distearoylphosphatidylethanolamine) modified with oligoethylene glycol having an ethylene polymerization degree of 45 were prepared.
  • DSPE disearoylphosphatidylethanolamine

Abstract

Disclosed is a lipid membrane structure comprising, as a membrane-constituting component, a lipid modified with an oligo(alkylene glycol) having a degree of polymerization of an alkylene group of 4 to 25. The lipid membrane structure has an excellent ability to release a substance enclosed therein in a target cell. Particularly, when a nucleic acid is enclosed in the lipid membrane structure, the level of expression/transfer of the nucleic acid in a target cell can be remarkably increased compared to that of a control lipid membrane structure. Therefore, the lipid membrane structure is particularly useful as a vector for gene therapy.

Description

オリゴアルキレングリコールで修飾された脂質膜構造体Lipid membrane structure modified with oligoalkylene glycol
 本発明は、アルキレン基の重合度が4~25のオリゴアルキレングリコールで修飾された脂質を構成成分とする脂質膜構造体、アルキレン基の重合度が4~25のオリゴアルキレングリコールで修飾された脂質からなる、脂質膜構造体に封入された核酸の細胞内転写促進剤、及び薬剤が封入された脂質一重膜構造体を製造する方法であって、アルキレン基の重合度が4~25のオリゴアルキレングリコールで修飾された脂質を膜の構成成分として用いて薬剤を封入することを特徴とする前記製造方法に関する。 The present invention relates to a lipid membrane structure comprising a lipid modified with an oligoalkylene glycol having an alkylene group polymerization degree of 4 to 25, and a lipid modified with an oligoalkylene glycol having an alkylene group polymerization degree of 4 to 25 And a method for producing an intracellular transcription promoter for nucleic acid encapsulated in a lipid membrane structure, and a lipid single membrane structure encapsulating a drug, wherein the alkylene group has a degree of polymerization of 4 to 25 The present invention relates to the above production method, wherein a drug is encapsulated using a lipid modified with glycol as a component of a membrane.
 薬剤を患部に特異的に輸送する手段として、リポソーム等の脂質膜構造体に薬剤を封入して投与する方法が提案されている。特に、多機能性エンベロープ型ナノ構造体(MEND:Multifunctional envelope-type nano device、以下、本明細書において「MEND」と表す)と呼ばれる脂質膜構造体は、特に細胞内で発現可能な形態にある核酸を特定の細胞内に選択的に送達するためのドラッグデリバリーシステムとして用いることができ、例えば、腫瘍の遺伝子治療等に有用であることが知られている。 As a means for specifically transporting a drug to the affected area, a method of encapsulating the drug in a lipid membrane structure such as a liposome and administering it has been proposed. In particular, a lipid membrane structure called a multifunctional envelope-type nanostructure (MEND: Multifunctional-envelope-type-nano-device, hereinafter referred to as “MEND” in this specification) is in a form that can be expressed in a cell. It can be used as a drug delivery system for selectively delivering a nucleic acid into a specific cell, and is known to be useful, for example, for gene therapy of tumors.
 しかしながら、リポソームやMEND等の脂質膜構造体は、静脈内に投与された場合に、血液中での滞留性が悪く、肝臓や脾臓等の細網内皮系組織に捕捉され易いという問題を有している。また、これらの脂質膜構造体には、封入物の漏出や脂質膜構造体同士の凝集という問題も指摘されている。これらの問題は、リポソームやMENDを用いて標的臓器や標的細胞に薬剤、特に核酸を送達させるターゲッティング療法を行うに際して、大きな障害となっていた。 However, lipid membrane structures such as liposomes and MEND have the problem of poor retention in blood when administered intravenously and are easily trapped in reticuloendothelial tissues such as the liver and spleen. ing. In addition, these lipid membrane structures have also been pointed out as problems of leakage of inclusions and aggregation of lipid membrane structures. These problems have been a major obstacle in performing targeting therapy for delivering drugs, particularly nucleic acids, to target organs and cells using liposomes and MENDs.
 上記の問題を回避するための手段として、脂質膜構造体の表面をポリアルキレングリコール、例えばポリエチレングリコール(PEG)等で修飾する手段が提案されている(非特許文献1)。この手段は、PEGによる水和層が脂質膜構造体の外表面を覆うことによって血清タンパクの吸着等によるオプソニン化が抑制され、その結果、マクロファージによる貪食と細網内皮系組織による取り込みを回避できることに基づく。またこの着想に基づき、ポリアルキレングリコールで修飾したリン脂質を用いて脂質膜構造体を調製し、ポリアルキレングリコールで修飾された脂質膜構造体が実際に作製されている。 As means for avoiding the above problem, means for modifying the surface of the lipid membrane structure with polyalkylene glycol such as polyethylene glycol (PEG) has been proposed (Non-patent Document 1). This means that the hydration layer of PEG covers the outer surface of the lipid membrane structure, so opsonization due to adsorption of serum proteins is suppressed, and as a result, phagocytosis by macrophages and uptake by reticuloendothelial tissue can be avoided. based on. Based on this idea, a lipid membrane structure is prepared using a phospholipid modified with polyalkylene glycol, and a lipid membrane structure modified with polyalkylene glycol is actually produced.
 しかしながら、脂質膜構造体の表面をポリアルキレングリコールで修飾した場合には、血中滞留性は改善するものの、標的細胞の内部に脂質膜構造体が取り込まれにくくなるという新たな問題が生じることが知られている。その結果、ポリアルキレングリコールで修飾した脂質膜構造体に薬剤を封入して標的細胞に送達させるターゲッティング治療において、期待したほどの治療効果が得られないばかりか、標的細胞に送達されなかった薬剤による副作用が生じる等の問題が生じた。 However, when the surface of the lipid membrane structure is modified with polyalkylene glycol, the retention in the blood is improved, but a new problem that the lipid membrane structure becomes difficult to be taken into the target cell may occur. Are known. As a result, in the targeting treatment in which a drug is encapsulated in a lipid membrane structure modified with polyalkylene glycol and delivered to a target cell, not only the expected therapeutic effect is obtained, but also due to the drug not delivered to the target cell. Problems such as side effects occurred.
 かかる問題を解消する手段として、特許文献1は、ポリアルキレングリコール等で修飾した特定のリン脂質において、ポリアルキレングリコール等の修飾部分とリン脂質部分との間にマトリックスメタロプロテアーゼにより加水分解可能なオリゴペプチドを介在させた脂質を用いた脂質膜構造体を提唱している。この脂質膜構造体は、血中においてはポリアルキレングリコール等の修飾部位の存在により該脂質膜構造体の高い血中滞留性が保たれる一方、標的である腫瘍組織に到達した該脂質膜構造体の該オリゴペプチド部分がマトリックスメタロプロテアーゼにより加水分解されて、ポリアルキレングリコール等の修飾部位が脱離される結果、標的腫瘍細胞に効率的に取り込まれ、封入された薬剤を効率的に放出する。 As a means for solving such a problem, Patent Document 1 discloses that a specific phospholipid modified with polyalkylene glycol or the like can be hydrolyzed by a matrix metalloprotease between a modified portion such as polyalkylene glycol and the phospholipid portion. A lipid membrane structure using a peptide-mediated lipid is proposed. The lipid membrane structure has a high retention in the blood due to the presence of a modification site such as polyalkylene glycol in the blood, while the lipid membrane structure reaches the target tumor tissue. The oligopeptide part of the body is hydrolyzed by a matrix metalloprotease, and the modification site such as polyalkylene glycol is eliminated. As a result, it is efficiently taken up by the target tumor cell and the encapsulated drug is efficiently released.
 しかし、特許文献1に記載された方法では、ポリアルキレングリコール等の修飾部分とリン脂質部分との間にマトリックスメタロプロテアーゼにより加水分解可能なオリゴペプチドを介在させた脂質を合成しなければならない、またマトリクスメタロプロテアーゼを発現している標的細胞に対してしか使用することができない等の問題を有する。 However, in the method described in Patent Document 1, it is necessary to synthesize a lipid in which an oligopeptide hydrolyzable by a matrix metalloprotease is interposed between a modifying portion such as polyalkylene glycol and a phospholipid portion, There is a problem that it can be used only for target cells expressing a matrix metalloprotease.
特開2007-99750号公報JP 2007-99750 A
 本発明は、特許文献1にかかる手法とは異なるアプローチにより、標的となる細胞への薬剤送達効率、特に遺伝子治療等に用いられる核酸の標的細胞内での発現効率が高められた脂質膜構造体を提供することを目的とする。 The present invention is a lipid membrane structure in which the drug delivery efficiency to a target cell, particularly the expression efficiency of a nucleic acid used for gene therapy or the like in a target cell is enhanced by an approach different from the technique according to Patent Document 1. The purpose is to provide.
 本発明者らは、これまでに親水性を高めることを目的に使用されてきたポリアルキレングリコールに代えて、特定の重合度を有するオリゴアルキレングリコールで脂質膜構造体を修飾することにより、薬物送達効率、特に核酸の細胞内発現転写効率を飛躍的に高めることができることを見いだし、下記の各発明を完成させた。 The present inventors have modified the lipid membrane structure with an oligoalkylene glycol having a specific degree of polymerization in place of the polyalkylene glycol that has been used for the purpose of enhancing hydrophilicity so far. The inventors have found that the efficiency, in particular, the intracellular expression and transcription efficiency of nucleic acids can be dramatically increased, and the following inventions have been completed.
(1)アルキレン基の重合度が4~25のオリゴアルキレングリコールで修飾された脂質を膜の構成成分として含む、脂質膜構造体。 (1) A lipid membrane structure comprising a lipid modified with an oligoalkylene glycol having an alkylene group polymerization degree of 4 to 25 as a constituent of the membrane.
(2)脂質膜が一重膜である、(1)に記載の脂質膜構造体。 (2) The lipid membrane structure according to (1), wherein the lipid membrane is a single membrane.
(3)オリゴアルキレングリコールがオリゴエチレングリコールである、(1)又は(2)に記載の脂質膜構造体。 (3) The lipid membrane structure according to (1) or (2), wherein the oligoalkylene glycol is oligoethylene glycol.
(4)オリゴエチレングリコールが、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコール、ヘプタエチレングリコール及びオクタエチレングリコールよりなる群から選ばれる一種以上である、(3)に記載の脂質膜構造体。 (4) The lipid membrane according to (3), wherein the oligoethylene glycol is one or more selected from the group consisting of triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, heptaethylene glycol and octaethylene glycol. Structure.
(5)オリゴアルキレングリコールで修飾された脂質が、リン脂質、糖脂質、ステロール、長鎖脂肪族アルコール又はグリセリン脂肪酸エステルである、(1)~(4)のいずれかに記載の脂質膜構造体。 (5) The lipid membrane structure according to any one of (1) to (4), wherein the lipid modified with oligoalkylene glycol is phospholipid, glycolipid, sterol, long-chain aliphatic alcohol or glycerin fatty acid ester .
(6)ステロールが、コレステロール、コレステロールコハク酸、ラノステロール、ジヒドロラノステロール、デスモステロール、ジヒドロコレステロール、スチグマステロール、シトステロール、カンペステロール、ブラシカステロール、チモステロール及びエルゴステロールよりなる群から選ばれる一種以上である、(5)に記載の脂質膜構造体。 (6) The sterol is one or more selected from the group consisting of cholesterol, cholesterol succinic acid, lanosterol, dihydrolanosterol, desmosterol, dihydrocholesterol, stigmasterol, sitosterol, campesterol, brassicasterol, thymosterol and ergosterol. The lipid membrane structure according to (5).
(7)核酸が封入されてなる、(1)~(6)のいずれかに記載の脂質膜構造体。 (7) The lipid membrane structure according to any one of (1) to (6), wherein a nucleic acid is encapsulated.
(8)アルキレン基の重合度が4~25のオリゴアルキレングリコールで修飾された脂質からなる、脂質膜構造体に封入された核酸の細胞内転写促進剤。 (8) An intracellular transcription promoter for a nucleic acid encapsulated in a lipid membrane structure, comprising a lipid modified with an oligoalkylene glycol having an alkylene group polymerization degree of 4 to 25.
(9)脂質膜が一重膜である、(8)に記載の細胞内転写促進剤。 (9) The intracellular transcription promoter according to (8), wherein the lipid membrane is a single membrane.
(10)オリゴアルキレングリコールがオリゴエチレングリコールである、(8)又は(9)に記載の細胞内転写促進剤。 (10) The intracellular transcription promoter according to (8) or (9), wherein the oligoalkylene glycol is oligoethylene glycol.
(11)オリゴエチレングリコールが、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコール、ヘプタエチレングリコール及びオクタエチレングリコールよりなる群から選ばれる一種以上である、(10)に記載の細胞内転写促進剤。 (11) The intracellular cell according to (10), wherein the oligoethylene glycol is one or more selected from the group consisting of triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, heptaethylene glycol and octaethylene glycol. Transfer accelerator.
(12)オリゴアルキレングリコールで修飾された脂質が、リン脂質、糖脂質、ステロール、長鎖脂肪族アルコール又はグリセリン脂肪酸エステルである、(8)~(11)のいずれかに記載の細胞内転写促進剤。 (12) The intracellular transcription promotion according to any one of (8) to (11), wherein the lipid modified with oligoalkylene glycol is phospholipid, glycolipid, sterol, long-chain aliphatic alcohol or glycerin fatty acid ester Agent.
(13)ステロールが、コレステロール、コレステロールコハク酸、ラノステロール、ジヒドロラノステロール、デスモステロール、ジヒドロコレステロール、スチグマステロール、シトステロール、カンペステロール、ブラシカステロール、チモステロール及びエルゴステロールよりなる群から選ばれる一種以上である、(12)に記載の細胞内転写促進剤。 (13) The sterol is one or more selected from the group consisting of cholesterol, cholesterol succinic acid, lanosterol, dihydrolanosterol, desmosterol, dihydrocholesterol, stigmasterol, sitosterol, campesterol, brassicasterol, thymosterol and ergosterol. The intracellular transcription promoter according to (12).
(14)薬剤が封入された脂質一重膜構造体を製造する方法であって、アルキレン基の重合度が4~25のオリゴアルキレングリコールで修飾された脂質を膜の構成成分として用いて薬剤を封入することを特徴とする、前記製造方法。 (14) A method for producing a lipid single membrane structure in which a drug is encapsulated, wherein the drug is encapsulated using a lipid modified with an oligoalkylene glycol having an alkylene group polymerization degree of 4 to 25 as a component of the membrane. The manufacturing method described above.
(15)オリゴアルキレングリコールがオリゴエチレングリコールである、(14)に記載の製造方法。 (15) The production method according to (14), wherein the oligoalkylene glycol is oligoethylene glycol.
(16)オリゴエチレングリコールが、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコール、ヘプタエチレングリコール及びオクタエチレングリコールよりなる群から選ばれる一種以上である、(15)に記載の製造方法。 (16) The production method according to (15), wherein the oligoethylene glycol is one or more selected from the group consisting of triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, heptaethylene glycol and octaethylene glycol. .
(17)オリゴアルキレングリコールで修飾された脂質が、リン脂質、糖脂質、ステロール、長鎖脂肪族アルコール又はグリセリン脂肪酸エステルである、請求項(14)~(16)のいずれかに記載の製造方法。 (17) The production method according to any one of (14) to (16), wherein the lipid modified with oligoalkylene glycol is a phospholipid, glycolipid, sterol, long-chain aliphatic alcohol or glycerin fatty acid ester. .
(18)ステロールが、コレステロール、コレステロールコハク酸、ラノステロール、ジヒドロラノステロール、デスモステロール、ジヒドロコレステロール、スチグマステロール、シトステロール、カンペステロール、ブラシカステロール、チモステロール及びエルゴステロールよりなる群から選ばれる一種以上である、(17)に記載の製造方法。 (18) The sterol is one or more selected from the group consisting of cholesterol, cholesterol succinic acid, lanosterol, dihydrolanosterol, desmosterol, dihydrocholesterol, stigmasterol, sitosterol, campesterol, brassicasterol, thymosterol and ergosterol. (17) The manufacturing method as described.
 本発明の脂質膜構造体は、標的細胞内における封入物の放出能に優れており、特に核酸を封入させた場合に、標的細胞内での当該核酸の発現転写量をコントロールの脂質膜構造体に比べて著しく高めることができ、遺伝子治療用のベクターとして特に有用である。 The lipid membrane structure of the present invention is excellent in the ability to release inclusions in a target cell, and particularly when a nucleic acid is encapsulated, the amount of expression and transcription of the nucleic acid in the target cell is controlled. It is particularly useful as a vector for gene therapy.
実施例1で作製されたMEND1~3で形質転換されたHeLa細胞におけるTEGCholの核酸(ルシフェラーゼ遺伝子)に対する発現促進効果を示すグラフである。3 is a graph showing the effect of promoting the expression of TEGChol on nucleic acid (luciferase gene) in HeLa cells transformed with MENDs 1 to 3 prepared in Example 1. FIG. ステアリルオクタアルギニンを含まない脂質膜構造体における、TEGCholの核酸(ルシフェラーゼ遺伝子)に対する発現促進効果を示すグラフである。It is a graph which shows the expression promotion effect with respect to the nucleic acid (luciferase gene) of TEGChol in the lipid membrane structure which does not contain stearyl octaarginine. 実施例1で作製されたMEND1~3で形質転換されたHeLa細胞全体における核酸(ルシフェラーゼ遺伝子)の発現量をリアルタイムPCRで測定した結果を示すグラフである。2 is a graph showing the results of measuring the expression level of nucleic acid (luciferase gene) in the whole HeLa cells transformed with MENDs 1 to 3 prepared in Example 1 by real-time PCR. 実施例1で作製されたMEND1~3で形質転換されたHeLa細胞から分画された核画分における核酸(ルシフェラーゼ遺伝子)の発現量をリアルタイムPCRで測定した結果を示すグラフである。2 is a graph showing the results of measuring the expression level of nucleic acid (luciferase gene) in the nuclear fraction fractionated from HeLa cells transformed with MENDs 1 to 3 produced in Example 1 by real-time PCR. リアルタイムPCRの測定値に基づいて、核酸の核移行量を細胞内取込量で割ることで得られる核酸の核移行効率を示すグラフである。It is a graph which shows the nuclear transfer efficiency of the nucleic acid obtained by dividing the nuclear transfer amount of a nucleic acid by the amount of intracellular uptake based on the measured value of real-time PCR. リアルタイムPCRの測定値に基づいて、核酸発現量を核移行量で割ることで得られる核移行後発現効率を示すグラフである。It is a graph which shows the expression efficiency after a nuclear transfer obtained by dividing a nucleic acid expression level by a nuclear transfer amount based on the measured value of real-time PCR. リアルタイムPCRの測定値に基づいて、核酸の発現量を形質転換されたHeLa細胞全体のmRNA発現量で割ることで得られる翻訳効率を示すグラフである。It is a graph which shows the translation efficiency obtained by dividing the expression level of a nucleic acid by the mRNA expression level of the whole transformed HeLa cell based on the measured value of real-time PCR. ローダミン標識した核酸が封入されたMENDで形質転換されたHeLa細胞を蛍光物質SYTO24を加えた後、共焦点レーザー顕微鏡を用いて撮影した写真である。It is a photograph taken using a confocal laser microscope after adding a fluorescent substance SYTO24 to HeLa cells transformed with MEND encapsulating a rhodamine-labeled nucleic acid. ローダミン標識した核酸が封入され、NBEで脂質膜が標識されたMENDで形質転換されたHeLa細胞にHoechst33342を加えて核を標識化した後、共焦点レーザー顕微鏡を用いて撮影した写真である。This is a photograph taken using a confocal laser microscope after Hoechst 33342 was added to HeLa cells transformed with MEND in which a rhodamine-labeled nucleic acid was encapsulated and a lipid membrane was labeled with NBE to label the nucleus. 実施例1で調製されたMEND1とMEND3のSEM電子顕微鏡写真である。2 is a SEM electron micrograph of MEND1 and MEND3 prepared in Example 1. 核酸の発現量に対するエチレン重合度の影響を表すグラフである。図中Cholはオリゴエチレングリコールで修飾されたコレステロールを膜に含むMENDを、STRはオリゴエチレングリコールで修飾されたステアリン酸を膜に含むMENDを、DSPEはオリゴエチレングリコールで修飾されたジステアロイルホスファチジルエタノールアミンを膜に含むMENDをそれぞれ示す。It is a graph showing the influence of the ethylene polymerization degree with respect to the expression level of a nucleic acid. In the figure, Chol is MEND containing cholesterol modified with oligoethylene glycol in the membrane, STR is MEND containing stearic acid modified with oligoethylene glycol in the membrane, and DSPE is distearoyl phosphatidyl ethanol modified with oligoethylene glycol. Each of the MENDs containing an amine in the membrane is shown.
 本発明は、アルキレン基の重合度が4~25のオリゴアルキレングリコールで修飾された脂質を膜の構成成分として含む、脂質膜構造体に関する。本発明における前記アルキレン基は、炭素数が1~10、好ましくは炭素数が1~5のアルキレン基、例えばメチレン基、エチレン基、プロピレン基、ブテン基、ペンテン基等であり、特に好ましくはエチレン基である。すなわち本発明における好ましいオリゴアルキレングリコールは、エチレン基の重合度が4~25のオリゴエチレングリコールである。より好ましいオリゴアルキレングリコールは、テトラエチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコール、ヘプタエチレングリコール及びオクタエチレングリコールよりなる群から選ばれる一種以上であり、特に好ましくはテトラエチレングリコールである。以下、本発明で使用されるアルキレン基の重合度が4~25のオリゴアルキレングリコールを、OAGと表すこととする。 The present invention relates to a lipid membrane structure comprising a lipid modified with an oligoalkylene glycol having an alkylene group polymerization degree of 4 to 25 as a constituent component of the membrane. The alkylene group in the present invention is an alkylene group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, such as a methylene group, an ethylene group, a propylene group, a butene group, or a pentene group, and particularly preferably ethylene. It is a group. That is, a preferred oligoalkylene glycol in the present invention is an oligoethylene glycol having an ethylene group polymerization degree of 4 to 25. More preferable oligoalkylene glycol is one or more selected from the group consisting of tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, heptaethylene glycol and octaethylene glycol, and tetraethylene glycol is particularly preferable. Hereinafter, the oligoalkylene glycol having an alkylene group polymerization degree of 4 to 25 used in the present invention is represented as OAG.
 OAGで修飾される脂質は、脂質膜構造体の構成成分として一般に使用される脂質であればいずれでもよいが、好ましくはリン脂質、糖脂質、ステロール、長鎖脂肪族アルコール又はグリセリン脂肪酸エステルである。 The lipid modified with OAG may be any lipid that is generally used as a component of a lipid membrane structure, but is preferably a phospholipid, glycolipid, sterol, long-chain aliphatic alcohol, or glycerin fatty acid ester. .
 リン脂質としては、ホスファチジルコリン(例えば、ジオレオイルホスファチジルコリン、ジラウロイルホスファチジルコリン、ジミリストイルホスファチジルコリン、ジパルミトイルホスファチジルコリン、ジステアロイルホスファチジルコリン等)、ホスファチジルグリセロール(例えば、ジオレオイルホスファチジルグリセロール、ジラウロイルホスファチジルグリセロール、ジミリストイルホスファチジルグリセロール、ジパルミトイルホスファチジルグリセロール、ジステアロイルホスファチジグリセロール)、ホスファチジルエタノールアミン(例えば、ジオレオイルホスファチジルエタノールアミン(DOPE)、ジラウロイルホスファチジルエタノールアミン、ジミリストイルホスファチジルエタノールアミン、ジパルミトイルホスファチジルエタノールアミン、ジステアロイルホスファチジエタノールアミン)、N-スクシニルホスファチジルエタノールアミン(N-スクシニルPE)、ホスファチジルエチレングリコール、ホスファチジルセリン、ホスファチジルイノシトール、ホスファチジン酸、カルジオリピン、又はそれらの水素添加物、卵黄、大豆その他の動植物に由来する天然脂質(例えば、卵黄レシチン、大豆レシチン等)等を挙げることができる。上記のリン脂質は、脂質膜構造体の主要な構成成分として用いられる。その使用量は、脂質膜構造体の総脂質に対する量として10~100%(モル比)であることが好ましく、50~80%(モル比)であることがさらに好ましいが、これらの値に特に限定されるものではない。 Phospholipids include phosphatidylcholine (for example, dioleoylphosphatidylcholine, dilauroylphosphatidylcholine, dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine, etc.), phosphatidylglycerol (for example, dioleoylphosphatidylglycerol, dilauroylphosphatidylglycerol, dimyristoyl). Phosphatidylglycerol, dipalmitoylphosphatidylglycerol, distearoylphosphatidylglycerol), phosphatidylethanolamine (eg dioleoylphosphatidylethanolamine (DOPE), dilauroylphosphatidylethanolamine, dimyristoylphosphatidylethanolamine, dipalmit Ylphosphatidylethanolamine, distearoylphosphatidiethanolamine), N-succinylphosphatidylethanolamine (N-succinyl PE), phosphatidylethylene glycol, phosphatidylserine, phosphatidylinositol, phosphatidic acid, cardiolipin, or hydrogenated products thereof, egg yolk, soybean Examples include natural lipids derived from other animals and plants (eg, egg yolk lecithin, soybean lecithin, etc.). Said phospholipid is used as a main structural component of a lipid membrane structure. The amount to be used is preferably 10 to 100% (molar ratio), more preferably 50 to 80% (molar ratio) as the amount of the lipid membrane structure relative to the total lipid. It is not limited.
 糖脂質としては、セファリン、セレブロシド、セラミド、スフィンゴミエリン、ガングリオシド等の糖脂質が挙げられ、これらのうち1種又は2種以上を使用することができる。 Examples of glycolipids include glycolipids such as cephalin, cerebroside, ceramide, sphingomyelin, ganglioside, and one or more of these can be used.
 ステロールとしては、コレステロール、コレステロールコハク酸、ラノステロール、ジヒドロラノステロール、デスモステロール、ジヒドロコレステロール等の動物由来のステロール、スチグマステロール、シトステロール、カンペステロール、ブラシカステロール等の植物由来のステロール(フィトステロール)、チモステロール、エルゴステロール等の微生物由来のステロール等を挙げることができる。これらのステロールは、一般には脂質二重層を物理的又は化学的に安定させたり、膜の流動性を調節したりするために用いられる。その使用量は、脂質膜構造体の総脂質に対する量として5~40%(モル比)であることが好ましく、10~30%(モル比)であることがさらに好ましいが、これらの値に特に限定されるものでない。 Examples of sterols include sterols derived from animals such as cholesterol, cholesterol succinic acid, lanosterol, dihydrolanosterol, desmosterol and dihydrocholesterol, sterols (phytosterols) derived from plants such as stigmasterol, sitosterol, campesterol and brassicasterol, and timosterol. And sterols derived from microorganisms such as ergosterol. These sterols are generally used to physically or chemically stabilize lipid bilayers and to regulate membrane fluidity. The amount to be used is preferably 5 to 40% (molar ratio), more preferably 10 to 30% (molar ratio), based on the total lipid of the lipid membrane structure. It is not limited.
 長鎖脂肪酸又は長鎖脂肪族アルコールとしては、炭素数10~20の脂肪酸又はそのアルコールを使用することができる。好ましい例としては、パルミチン酸、オレイン酸、ステアリン酸、アラキドン酸、ミリスチン酸、ラウリン酸、アラキジン酸、リノール酸、パルミトイル酸、オレイルアルコール、ステアリルアルコール、ラウリルアルコール、ミリスチルアルコール、セチルアルコール、リノリルアルコール等を挙げることができる。その使用量は、脂質膜構造体の総脂質に対する量として5~40%(モル比)であることが好ましく、10~30%(モル比)であることがさらに好ましいが、これらの値に特に限定されるものでない。 As the long-chain fatty acid or long-chain aliphatic alcohol, a fatty acid having 10 to 20 carbon atoms or an alcohol thereof can be used. Preferred examples include palmitic acid, oleic acid, stearic acid, arachidonic acid, myristic acid, lauric acid, arachidic acid, linoleic acid, palmitoyl acid, oleyl alcohol, stearyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, linolyl alcohol Etc. The amount to be used is preferably 5 to 40% (molar ratio), more preferably 10 to 30% (molar ratio), based on the total lipid of the lipid membrane structure. It is not limited.
 グリセリン脂肪酸エステルとしては、モノアシルグリセリド、ジアシルグリセリド、トリアシルグリセリドを挙げることができる。その使用量は、脂質膜構造体の総脂質に対する量として5~40%(モル比)であることが好ましく、10~30%(モル比)であることがさらに好ましいが、これらの値に特に限定されるものでない。 Examples of glycerin fatty acid esters include monoacyl glycerides, diacyl glycerides, and triacyl glycerides. The amount to be used is preferably 5 to 40% (molar ratio), more preferably 10 to 30% (molar ratio), based on the total lipid of the lipid membrane structure. It is not limited.
 脂質は一般にカルボニル基、アミノ基又は水酸基等の化学的に活性化可能な官能基を有しており、これらの適当な官能基とOAG上の官能基又はOAGに導入された官能基との間の化学反応によって、OAGで修飾された脂質を調製することができる。 Lipids generally have a chemically activatable functional group such as a carbonyl group, an amino group or a hydroxyl group. Between these appropriate functional groups and functional groups on OAG or functional groups introduced into OAG. Through the chemical reaction, lipids modified with OAG can be prepared.
 例えば、脂質がフォスファチジルエタノールアミン(PE)である場合には、Martinらの方法(Biochem.Biophys.Acta,1992年、第1113巻、第171-199頁)が知られている。すなわち、OAGの水酸基をカルボン酸に変換し、そのカルボキシル基とPEのアミノ基との間で縮合反応を行うことで、OAGで修飾されたPEを調製することができる。 For example, when the lipid is phosphatidylethanolamine (PE), the method of Martin et al. (Biochem. Biophys. Acta, 1992, 1113, 171-199) is known. That is, PE modified with OAG can be prepared by converting a hydroxyl group of OAG into a carboxylic acid and performing a condensation reaction between the carboxyl group and the amino group of PE.
 また、長鎖脂肪酸をOAGで修飾する方法としては、OAGにアミノ基を導入し、このアミノ基と長鎖脂肪酸のカルボキシル基との間で縮合反応を行うことで、OAGで修飾された長鎖脂肪酸を調製することができる。 In addition, as a method of modifying a long chain fatty acid with OAG, an amino group is introduced into OAG, and a condensation reaction is performed between this amino group and a carboxyl group of the long chain fatty acid, thereby modifying the long chain modified with OAG. Fatty acids can be prepared.
 さらにステロール類をOAGで修飾する方法としては、Bhattacharyaらの報告(Langmuir、2001年、第17巻、第2067-2075頁) が知られている。すなわち、ステロール類が有する水酸基をトシル基等で活性化し、有機溶媒中でOAGの水酸基によるSN2反応を用いることで、OAGで修飾されたステロール類を調製することができる。 Furthermore, as a method for modifying sterols with OAG, Bhattacharya et al. (Langmuir, 2001, Vol. 17, pp. 2067-2075) is known. That is, sterols modified with OAG can be prepared by activating the hydroxyl group of sterols with a tosyl group or the like and using the SN2 reaction with the hydroxyl group of OAG in an organic solvent.
 本発明の脂質膜構造体の脂質膜には、上記の脂質あるいはOAGで修飾された脂質の他に、トコフェロール、没食子酸プロピル、パルミチン酸アスコルビル、ブチル化ヒドロキシトルエン等の抗酸化剤、ステアリルアミン、オレイルアミン等の正荷電を付与する荷電物質、ジセチルホスフェート等の負電荷を付与する荷電物質、膜表在性タンパク質、膜内在性タンパク質等の膜タンパク質を含有させることができ、その含有量は適宜調節することができる。 In addition to the above lipids or lipids modified with OAG, the lipid membrane of the lipid membrane structure of the present invention includes tocopherol, propyl gallate, ascorbyl palmitate, butylated hydroxytoluene and other antioxidants, stearylamine, Charged substances that impart positive charges such as oleylamine, charged substances that impart negative charges such as dicetyl phosphate, membrane surface proteins, membrane proteins such as integral membrane proteins can be included, and the content is appropriate Can be adjusted.
 例えば国際特許出願公開第WO2005/032593号パンフレットに開示されているポリアルギニンペプチド等の細胞膜透過性ペプチド、国際特許出願公開第WO2005/032593号パンフレットに開示されているGALAペプチド等のpH応答性膜融合性ペプチド、その他の脂質膜構造体に機能を付加することのできるペプチドを、それぞれの特許文献に記載されている態様、使用量、製造方法等に準じて、本発明の脂質膜構造体において使用してもよい。 For example, cell membrane permeable peptides such as polyarginine peptides disclosed in International Patent Application Publication No. WO2005 / 032593 pamphlet, pH-responsive membrane fusion such as GALA peptides disclosed in International Patent Application Publication No. WO2005 / 032593 pamphlet Peptides, which can add functions to other lipid membrane structures, are used in the lipid membrane structure of the present invention according to the mode, amount used, production method, etc. described in each patent document. May be.
 本発明の脂質膜構造体をエンドサイトーシスによって細胞内に移行させる場合には、脂質膜構造体はその膜の構成成分としてカチオン性脂質を含ませることが望ましい。カチオン性脂質としては、例えば、ジオクタデシルジメチルアンモニウムクロライド(dioctadecyldimethylammonium chloride、DODAC)、N-(2,3-オレイルオキシ)プロピル-N,N,N-トリメチルアンモニウム(N-(2,3-dioleyloxy)propyl-N,N,N-trimethylammonium、DOTMA)、ジドデシルアンモニウムブロミド(didodecylammonium bromide、DDAB)、1,2-ジオレイルオキシ-3-トリメチルアンモニウムプロパン(1,2-dioleoyloxy-3-trimethylammonio propane、DOTAP)、3β-N-(N’,N’-ジメチルアミノエタン)カルバモールコレステロール(3β-N-(N’,N’,-dimethyl-aminoethane)-carbamol cholesterol、DC-Chol)、1,2-ジミリストイルオキシプロピル-3-ジメチルヒドロキシエチルアンモニウム(1,2-dimyristoyloxypropyl-3-dimethylhydroxyethyl ammonium、DMRIE)、2,3-ジオレイルオキシ-N-[2(スペルミンカルボキサミド)エチル]-N,N-ジメチル-1-プロパンアンモニウムトリフルオロアセテート(2,3-dioleyloxy-N-[2(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanaminum trifluoroacetate、DOSPA)等が挙げられる。 When transferring the lipid membrane structure of the present invention into cells by endocytosis, the lipid membrane structure preferably contains a cationic lipid as a constituent component of the membrane. Examples of the cationic lipid include dioctadecyldimethylammonium chloride (DODAC), N- (2,3-oleyloxy) propyl-N, N, N-trimethylammonium (N- (2,3-dioyloxy)). (propyl-N, N, N-trimethylammonium, DOTMA), didodecylammonium bromide (DDAB), 1,2-dioleoyloxy-3-trimethylammoniumpropane (1,2-dioleoyl-3-trimethylammonium ) 3β-N- (N ′, N′-dimethylaminoethane) carbamo Cholesterol (3β-N- (N ′, N ′,-dimethyl-aminoethane) -carbamol cholesterol, DC-Chol), 1,2-dimyristoyloxypropyl-3-dimethylhydroxyethylammonium (1,2-dimethyltripropylpropyl-3 -Dimethylhydroxyethyl ammonium, DMRIE), 2,3-dioleyloxy-N- [2 (sperminecarboxamido) ethyl] -N, N-dimethyl-1-propaneammonium trifluoroacetate (2,3-dioyloxy-N- [2 (Sperminecarboxamido) ethyl] -N, N-dimethyl-1-propanamine trifluorocet te, DOSPA), and the like.
 なお、本発明の脂質膜構造体に、例えば前記ポリアルギニンペプチドを付加する等をした場合には、脂質膜構造体はマクロピノサイトーシスによって細胞内に移行するものとなり、上記カチオン性脂質が脂質膜構造体に含まれている必要は必ずしもない。すなわち、前記ポリアルギニンペプチドを付加した場合の本発明の脂質膜構造体の脂質膜は、カチオン性脂質及び非カチオン性脂質のいずれか一方で構成されていてもよいし、両方で構成されていてもよく、オリゴエチレングリコールはそれらの脂質に結合させて使用すればよい。なお、カチオン性脂質は細胞毒性を有するので、本発明のリポソームの細胞毒性を低減させる点からは、脂質二重層に含まれるカチオン性脂質の量を出来る限り少なくすることが好ましく、脂質二重層を構成する総脂質に対するカチオン性脂質の割合は0~40%(モル比)であることが好ましく、0~20%(モル比)であることがさらに好ましい。 When, for example, the polyarginine peptide is added to the lipid membrane structure of the present invention, the lipid membrane structure moves into the cell by macropinocytosis, and the cationic lipid is converted into a lipid. It is not always necessary to be included in the membrane structure. That is, when the polyarginine peptide is added, the lipid membrane of the lipid membrane structure of the present invention may be composed of either a cationic lipid or a non-cationic lipid, or may be composed of both. Alternatively, oligoethylene glycol may be used by binding to these lipids. Since the cationic lipid has cytotoxicity, it is preferable to reduce the amount of the cationic lipid contained in the lipid bilayer as much as possible from the viewpoint of reducing the cytotoxicity of the liposome of the present invention. The ratio of the cationic lipid to the total lipid constituting is preferably 0 to 40% (molar ratio), and more preferably 0 to 20% (molar ratio).
 上記の「非カチオン性脂質」とは、中性脂質又はアニオン性脂質を意味し、中性脂質の例としては、例えば、ジアシルホスファチジルコリン、ジアシルホスファチジルエタノールアミン、コレステロール、セラミド、スフィンゴミエリン、セファリン、セレブロシド等が挙げられ、アニオン性脂質の例としては、例えば、カルジオリピン、ジアシルホスファチジルセリン、ジアシルホスファチジン酸、N-スクシニルホスファチジルエタノールアミン(N-スクシニルPE)、ホスファチジン酸、ホスファチジルイノシトール、ホスファチジルグリセロール、ホスファチジルエチレングリコール、コレステロールコハク酸等が挙げられる。 The above-mentioned “non-cationic lipid” means a neutral lipid or an anionic lipid, and examples of the neutral lipid include diacylphosphatidylcholine, diacylphosphatidylethanolamine, cholesterol, ceramide, sphingomyelin, cephalin, and cerebroside. Examples of anionic lipids include, for example, cardiolipin, diacylphosphatidylserine, diacylphosphatidic acid, N-succinylphosphatidylethanolamine (N-succinyl PE), phosphatidic acid, phosphatidylinositol, phosphatidylglycerol, phosphatidylethylene glycol And cholesterol succinic acid.
 本発明の脂質膜構造体を構成する脂質膜は、OAGで修飾された脂質を複数種類含んでいてもよく、またOAGで修飾された脂質の他に、OAGで修飾されていない脂質あるいはOAG以外の物質で修飾された脂質等を成分として含んでいてもよい。例えば、OAGで修飾されたリン脂質とOAGで修飾された別のリン脂質、OAGで修飾されたリン脂質とステロール、OAGで修飾されたステロールとリン脂質、OAGで修飾されたステロールとリン脂質と機能性ペプチドで修飾されたステロール等、脂質の組合せは任意に選択することができ、さらに機能性ペプチドその他の脂質膜構造体の調製に利用可能な種々の成分を含んでいてもよい。本発明で好ましい組合せは、OAGで修飾されたステロールとリン脂質を脂質膜の構成脂質とし、さらにポリアルギニンペプチドで修飾された脂質膜構造体である。 The lipid membrane constituting the lipid membrane structure of the present invention may contain a plurality of types of lipids modified with OAG. In addition to lipids modified with OAG, lipids not modified with OAG or other than OAG Lipids modified with these substances may be included as components. For example, a phospholipid modified with OAG and another phospholipid modified with OAG, a phospholipid and sterol modified with OAG, a sterol and phospholipid modified with OAG, and a sterol and phospholipid modified with OAG A combination of lipids such as a sterol modified with a functional peptide can be arbitrarily selected, and may further contain various components usable for the preparation of a functional peptide and other lipid membrane structures. A preferred combination in the present invention is a lipid membrane structure in which sterols and phospholipids modified with OAG are used as constituent lipids of the lipid membrane and further modified with polyarginine peptide.
 後の実施例において詳細に述べるように、OAGで修飾された脂質を膜の構成成分として含む本発明の脂質膜構造体は、その内部に封入される物質を効率的に細胞内、特に核において放出することができる。特に内部に封入される物質が核酸の場合、細胞内、特に核における核酸の発現転写効率を飛躍的に高めることができる。従って、OAGで修飾された脂質は、脂質膜構造体に封入された核酸の細胞内転写促進剤として利用することができる。従って本発明は、OAGすなわちアルキレン基の重合度が4~25のオリゴアルキレングリコールで修飾された脂質からなる、脂質膜構造体に封入された核酸の細胞内転写促進剤を提供するものである。OAGについては、先に説明したとおりである。 As will be described in detail later in the examples, the lipid membrane structure of the present invention containing a lipid modified with OAG as a constituent component of the membrane effectively allows the substance enclosed therein to efficiently contain the substance in the cell, particularly in the nucleus. Can be released. In particular, when the substance enclosed inside is a nucleic acid, the expression and transcription efficiency of the nucleic acid in the cell, particularly in the nucleus, can be dramatically increased. Therefore, lipids modified with OAG can be used as intracellular transcription promoters for nucleic acids encapsulated in lipid membrane structures. Accordingly, the present invention provides an intracellular transcription promoter for nucleic acid encapsulated in a lipid membrane structure, which comprises a lipid modified with OAG, that is, an oligoalkylene glycol having an alkylene group polymerization degree of 4 to 25. OAG is as described above.
 また本発明の脂質膜構造体の好ましい形態は、一重膜からなる閉鎖小胞である。意外なことに、OAGで修飾された脂質を膜の構成成分として利用することにより、脂質膜構造体を一重膜からなる閉鎖小胞とすることができる。 The preferred form of the lipid membrane structure of the present invention is a closed vesicle composed of a single membrane. Surprisingly, by using a lipid modified with OAG as a component of the membrane, the lipid membrane structure can be a closed vesicle composed of a single membrane.
 一般に、脂質一重膜からなる脂質膜構造体は、適当な大きさのフィルターを繰り返し通すことで作製されるが、OAGすなわちアルキレン基の重合度が4~25のオリゴアルキレングリコールで修飾された脂質を膜の構成成分として利用することによって、フィルターを用いなくとも脂質一重膜からなる脂質膜構造体を作成することができる。 In general, a lipid membrane structure composed of a single lipid membrane is prepared by repeatedly passing a filter of an appropriate size. However, OAG, that is, a lipid modified with an oligoalkylene glycol having an alkylene group polymerization degree of 4 to 25 is used. By using it as a component of the membrane, a lipid membrane structure composed of a lipid monolayer can be prepared without using a filter.
 従って本発明は、薬剤が封入された脂質一重膜構造体を製造する方法であって、OAGすなわちアルキレン基の重合度が4~25のオリゴアルキレングリコールで修飾された脂質を膜の構成成分として用いて薬剤を封入することを特徴とする、前記製造方法を提供するものである。OAGについては、先に説明したとおりである。 Accordingly, the present invention provides a method for producing a lipid single membrane structure in which a drug is encapsulated, and uses OAG, that is, a lipid modified with an oligoalkylene glycol having an alkylene group polymerization degree of 4 to 25 as a component of the membrane. And providing the above-described production method. OAG is as described above.
 なお、本発明の脂質膜構造体は、一重膜からなる閉鎖小胞の形態である限り、SUV(small unilamella vesicle)、LUV(large unilamella vesicle)、GUV(giant unilamella vesicle)等のいずれであってもよい。従って本発明の脂質膜構造体のサイズは特に限定されるものではないが、直径50~800nmであることが好ましく、直径80~150nmであることがさらに好ましい。 In addition, as long as the lipid membrane structure of the present invention is in the form of a closed vesicle composed of a single membrane, it is any one of SUV (small ilamela ic vesicle), LUV (large il unilamella vesicle), GUV (giant uniella vesicle), etc. Also good. Accordingly, the size of the lipid membrane structure of the present invention is not particularly limited, but it is preferably 50 to 800 nm in diameter, and more preferably 80 to 150 nm in diameter.
 本発明の脂質膜構造体は、例えば、水和法、超音波処理法、エタノール注入法、エーテル注入法、逆相蒸発法、界面活性剤法、凍結・融解法等の公知の方法を用いて作製することができる。例えば水和法の場合、OAGで修飾された脂質、さらにはその他の脂質や先に記載した脂質膜に含まれる任意成分を有機溶剤に溶解した後、有機溶剤を蒸発除去することにより脂質膜を得た後、脂質膜を水和させ、攪拌又は超音波処理することにより、OAGで修飾された脂質を膜の構成成分として含む脂質膜構造体を製造することができる。 The lipid membrane structure of the present invention can be obtained by using known methods such as a hydration method, an ultrasonic treatment method, an ethanol injection method, an ether injection method, a reverse phase evaporation method, a surfactant method, and a freezing / thawing method. Can be produced. For example, in the case of the hydration method, lipids modified with OAG, other lipids and optional components contained in the lipid membrane described above are dissolved in an organic solvent, and then the organic membrane is removed by evaporation to remove the lipid membrane. After being obtained, the lipid membrane is hydrated, stirred or sonicated to produce a lipid membrane structure containing a lipid modified with OAG as a constituent of the membrane.
 なお、ポリアルギニンペプチドやGALAペプチドを有する本発明の脂質膜構造体は、OAGで修飾された脂質その他の脂質を有機溶剤に溶解した後、有機溶剤を蒸発除去することにより脂質膜を得、この脂質膜を水和させ、攪拌又は超音波処理することによりリポソームを製造し、次いで、このリポソームの外液に前記ポリペプチドを添加することにより、リポソームの表面にこれらのペプチドを導入することもできる。 The lipid membrane structure of the present invention having a polyarginine peptide or GALA peptide is obtained by dissolving a lipid modified with OAG and other lipids in an organic solvent, and then evaporating and removing the organic solvent to obtain a lipid membrane. Liposomes can be produced by hydrating the lipid membrane, stirring or sonicating, and then adding the polypeptide to the external solution of the liposome to introduce these peptides onto the surface of the liposome. .
 上記の方法において、有機溶媒として、例えば、ペンタン、ヘキサン、ヘプタン、シクロヘキサン等の炭化水素類、塩化メチレン、クロロホルム等のハロゲン化炭化水素類、ベンゼン、トルエン等の芳香族炭化水素類、メタノール、エタノール等の低級アルコール類、酢酸メチル、酢酸エチル等のエステル類、アセトン等のケトン類等を、単独で又は2種以上を組み合わせて使用することができる。 In the above method, as the organic solvent, for example, hydrocarbons such as pentane, hexane, heptane and cyclohexane, halogenated hydrocarbons such as methylene chloride and chloroform, aromatic hydrocarbons such as benzene and toluene, methanol, ethanol Lower alcohols such as methyl acetate, esters such as methyl acetate and ethyl acetate, ketones such as acetone and the like can be used alone or in combination of two or more.
 また、所定のポアサイズのフィルターを通過させることにより、一定の粒度分布を持った脂質膜構造体を得ることができる。 Also, a lipid membrane structure having a certain particle size distribution can be obtained by passing through a filter having a predetermined pore size.
 本発明の脂質膜構造体には、薬剤、核酸、ペプチド、タンパク質、糖又はこれらの複合体等の種々の生理活性物質を封入することができ、診断、治療等の目的に応じて適宜選択することができる。生理活性物質が水溶性である場合には、脂質膜構造体の製造にあたり脂質膜を水和する際に使用される水性溶媒に生理活性物質を添加することにより、脂質膜構造体内部の水相に生理活性物質を封入することができる。また、生理活性物質が脂溶性である場合には、脂質膜構造体の製造にあたり使用される有機溶剤に生理活性物質を添加することにより、脂質膜構造体の膜に生理活性物質を封入することができる。 Various physiologically active substances such as drugs, nucleic acids, peptides, proteins, sugars or complexes thereof can be encapsulated in the lipid membrane structure of the present invention, which is appropriately selected according to the purpose of diagnosis, treatment, etc. be able to. When the physiologically active substance is water-soluble, the aqueous phase inside the lipid membrane structure can be obtained by adding the physiologically active substance to an aqueous solvent used for hydrating the lipid membrane in the production of the lipid membrane structure. A physiologically active substance can be encapsulated. In addition, when the physiologically active substance is fat-soluble, the physiologically active substance is encapsulated in the membrane of the lipid membrane structure by adding the physiologically active substance to the organic solvent used in the production of the lipid membrane structure. Can do.
 本発明の脂質膜構造体は、核酸とカチオン性物質との複合体を細胞質及び核に移行させるために有益である。ここにいう「カチオン性物質」とは、その分子中にカチオン性基を有する物質を意味し、静電的相互作用により核酸と複合体を形成することができる物質をいう。カチオン性物質の種類は核酸と複合体を形成し得る限り特に限定されるものではなく、例えば、カチオン性脂質(例えば、Lipofectamine(Invitrogen社))、カチオン性基を有する高分子、ポリリジン、ポリアルギニン、リジンとアルギニンの共重合体等の塩基性アミノ酸の単独重合体若しくは共重合体又はこれらの誘導体(例えばステアリル化誘導体)、ポリエチレンイミン等のポリカチオン性ポリマー、硫酸プロタミン等が挙げられる。 The lipid membrane structure of the present invention is useful for transferring a complex of a nucleic acid and a cationic substance to the cytoplasm and nucleus. The term “cationic substance” as used herein means a substance having a cationic group in the molecule, and means a substance that can form a complex with a nucleic acid by electrostatic interaction. The kind of the cationic substance is not particularly limited as long as it can form a complex with the nucleic acid. For example, a cationic lipid (for example, Lipofectamine (Invitrogen)), a polymer having a cationic group, polylysine, polyarginine And a homopolymer or copolymer of a basic amino acid such as a copolymer of lysine and arginine or a derivative thereof (for example, stearylated derivative), a polycationic polymer such as polyethyleneimine, and protamine sulfate.
 ポリアルギニンを構成するアルギニン残基の数は通常4~20個であり、好ましくは6~12個、さらに好ましくは7~10個である。カチオン性物質が有するカチオン性基の数は特に限定されるものではないが、好ましくは2個以上である。カチオン性基は正に荷電し得る限り特に限定されるものではなく、例えば、アミノ基、メチルアミノ基、エチルアミノ基等のモノアルキルアミノ基、ジメチルアミノ基、ジエチルアミノ基等のジアルキルアミノ基、イミノ基、グアニジノ基等が挙げられる。核酸とカチオン性物質との複合体は、その構成比率によって全体としてプラス電荷又はマイナス電荷を帯びているので、非カチオン性脂質又はカチオン性脂質との静電的相互作用により、リポソーム内部に上記複合体を効率よく封入することができる。 The number of arginine residues constituting polyarginine is usually 4 to 20, preferably 6 to 12, and more preferably 7 to 10. The number of cationic groups possessed by the cationic substance is not particularly limited, but is preferably 2 or more. The cationic group is not particularly limited as long as it can be positively charged. For example, a monoalkylamino group such as an amino group, a methylamino group, and an ethylamino group, a dialkylamino group such as a dimethylamino group and a diethylamino group, and an imino group Group, guanidino group and the like. The complex of the nucleic acid and the cationic substance has a positive charge or a negative charge as a whole depending on the composition ratio thereof, so that the above complex is formed inside the liposome by electrostatic interaction with a non-cationic lipid or a cationic lipid. The body can be sealed efficiently.
 本発明の脂質膜構造体は、例えば、分散液の状態で使用することができる。分散溶媒としては、例えば、生理食塩水、リン酸緩衝液、クエン緩衝液、酢酸緩衝液等の緩衝液を使用することができる。分散液には、例えば、糖類、多価アルコール、水溶性高分子、非イオン界面活性剤、抗酸化剤、pH調節剤、水和促進剤等の添加剤を添加して使用してもよい。また本発明の脂質膜構造体は、分散液を乾燥(例えば、凍結乾燥、噴霧乾燥等)させた状態で使用することもできる。乾燥させた脂質膜構造体は、生理食塩水、リン酸緩衝液、クエン緩衝液、酢酸緩衝液等の緩衝液を加えて分散液とすることができる。 The lipid membrane structure of the present invention can be used in the state of a dispersion, for example. As the dispersion solvent, for example, a buffer solution such as physiological saline, phosphate buffer, citrate buffer, and acetate buffer can be used. For example, additives such as sugars, polyhydric alcohols, water-soluble polymers, nonionic surfactants, antioxidants, pH regulators, hydration accelerators may be added to the dispersion. The lipid membrane structure of the present invention can also be used in a state where the dispersion is dried (for example, freeze-dried, spray-dried, etc.). The dried lipid membrane structure can be made into a dispersion by adding a buffer solution such as physiological saline, phosphate buffer, citrate buffer, or acetate buffer.
 本発明の脂質膜構造体は、インビボ及びインビトロのいずれにおいても使用することができる。インビボにおいて使用する場合、投与経路としては、例えば、静脈、腹腔内、皮下、経鼻等の非経口投与が挙げられる。投与量及び投与回数は、脂質膜構造体に封入された薬剤の種類や量等に応じて適宜調節することができる。この様な脂質膜構造体は、0~40℃という広範な温度域(効果的な温度域は4~37℃)において細胞内移行性を発揮することができるので、目的に応じた温度条件を設定することができる。 The lipid membrane structure of the present invention can be used both in vivo and in vitro. When used in vivo, examples of the administration route include parenteral administration such as intravenous, intraperitoneal, subcutaneous, and nasal administration. The dose and the number of doses can be appropriately adjusted according to the type and amount of the drug encapsulated in the lipid membrane structure. Such a lipid membrane structure can exhibit intracellular migration in a wide temperature range of 0 to 40 ° C. (an effective temperature range is 4 to 37 ° C.). Can be set.
 本発明の脂質膜構造体は、目的物質の細胞内送達用ベクター又は核内送達用ベクターとして使用することができる。目的物質を送達すべき細胞が由来する生物種は特に限定されるものではなく、動物、植物、微生物等のいずれであってもよいが、動物であることが好ましく、哺乳動物であることがさらに好ましい。哺乳動物としては、例えば、ヒト、サル、ウシ、ヒツジ、ヤギ、ウマ、ブタ、ウサギ、イヌ、ネコ、ラット、マウス、モルモット等が挙げられる。また、目的物質を送達すべき細胞の種類は特に限定されるものではなく、例えば、体細胞、生殖細胞、幹細胞又はこれらの培養細胞等が挙げられる。 The lipid membrane structure of the present invention can be used as an intracellular delivery vector or a nuclear delivery vector of a target substance. The biological species from which the cell to which the target substance is to be delivered is not particularly limited and may be any animal, plant, microorganism, etc., but is preferably an animal, more preferably a mammal. preferable. Examples of mammals include humans, monkeys, cows, sheep, goats, horses, pigs, rabbits, dogs, cats, rats, mice, guinea pigs, and the like. Moreover, the kind of cell which should deliver a target substance is not specifically limited, For example, a somatic cell, a germ cell, a stem cell, or these cultured cells etc. are mentioned.
 以下、実施例を示して本発明をさらに詳しく説明するが、本発明はこれら実施例に限定して解釈されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention should not be construed as being limited to these examples.
<実施例1>
1)脂質膜の調製
 コレステロール10gとp-トルエンスルホン酸10gをドライピリジン溶液中で反応させる事で、コレステロールのヒドロキシ基をp-トルエンスルホン酸エステルに誘導した。このエステル化体1gとテトラエチレングリコール2gを1,4-ジオキサン中で反応させることで、テトラエチレングリコールで修飾されたコレステロール(以下、TEGCholと表す)を作製した。また、特許出願公開第WO2005/032593号パンフレットに記載された方法に従って、ステアリル基を修飾されたオクタアルギニンペプチド(STR-R8)を作製した。
<Example 1>
1) Preparation of lipid membrane By reacting 10 g of cholesterol and 10 g of p-toluenesulfonic acid in a dry pyridine solution, the hydroxy group of cholesterol was derived into p-toluenesulfonic acid ester. By reacting 1 g of this esterified product and 2 g of tetraethylene glycol in 1,4-dioxane, cholesterol modified with tetraethylene glycol (hereinafter referred to as TEGChol) was produced. Further, an octaarginine peptide (STR-R8) modified with a stearyl group was prepared according to the method described in the pamphlet of Japanese Patent Application Publication No. WO2005 / 032593.
 総脂質重量比で下記の組成からなる成分をガラス試験管に分取し、全量で250μLとなるようにクロロホルムを加えて溶解させた後、デシケーターにより溶媒を留去することで、3種類の脂質膜を形成させた。 Ingredients consisting of the following composition in a total lipid weight ratio were collected in a glass test tube, dissolved in chloroform by adding chloroform so that the total amount was 250 μL, and then the solvent was distilled off with a desiccator to obtain three types of lipids. A film was formed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
2)核酸-プロタミン凝集体の調製
 ルシフェラーゼをコードするプラスミドpEGFP-Luc(Clontech社)とプロタミンとを1:0.67(質量比)でHEPES緩衝液(10mM HEPES/NaOH pH7.4)中で混合してすることで、約80nmの凝集体を得た。
2) Preparation of Nucleic Acid-Protamine Aggregate Plasmid pEGFP-Luc (Clontech) encoding luciferase and protamine were mixed at 1: 0.67 (mass ratio) in HEPES buffer (10 mM HEPES / NaOH pH 7.4). Thus, an aggregate of about 80 nm was obtained.
3)核酸が封入された脂質膜構造体の調製
 1)で得た3種類の脂質膜それぞれに2)の250μLの凝集体溶液を添加し、10分間水和した。この水和物に対して、水槽型超音波発生装置で超音波処理を30秒~1分間行うことで、凝集体が封入され、TEGCHolの含有量が異なる、オクタアルギニンペプチド(総脂質量の5mol%)を有する3種類のMEND1~3を作製した。
3) Preparation of lipid membrane structure encapsulating nucleic acid To each of the three lipid membranes obtained in 1), 250 μL of the aggregate solution of 2) was added and hydrated for 10 minutes. This hydrate is subjected to ultrasonic treatment with a water tank type ultrasonic generator for 30 seconds to 1 minute, whereby aggregates are enclosed and octaarginine peptides having different contents of TEGChol (5 mol of total lipid amount). %) Were prepared.
4)MEND1~3の評価
a)膜電位の測定
 2)で調製した凝集体と、3)で得られたMEND1~3のサイズと膜電位(Zeta potential)を、Zetasizer(Malvern社)を用いて測定した。その結果を表に示す。
4) Evaluation of MENDs 1 to 3 a) Measurement of membrane potential The aggregate prepared in 2), the size of MENDs 1 to 3 obtained in 3) and the membrane potential (Zeta potential) were measured using Zetasizer (Malvern). It was measured. The results are shown in the table.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この測定により、MENDの作製によって膜電位が反転しており、凝集体が脂質膜によって封入されていることが確認された。また、脂質膜構造体のサイズは、TEGCholの含有量の上昇と共に単調減少する傾向が確認された。 From this measurement, it was confirmed that the membrane potential was reversed by the production of MEND, and the aggregate was encapsulated by the lipid membrane. In addition, it was confirmed that the size of the lipid membrane structure tends to monotonously decrease as the content of TEGChol increases.
b)HeLa細胞への導入
 24ウェルプレートに4×10cells/wellのHeLa細胞を播き、MEND1~3それぞれを、プラスミドDNAが0.4μgとなるように加え、37℃、5%COで6時間培養した後、細胞を回収し、ルシフェラーゼ活性及びタンパク質の定量を行った。
b) Introduction into HeLa cells 4 × 10 4 cells / well HeLa cells are seeded in a 24-well plate, MENDs 1 to 3 are added to each plasmid so that the plasmid DNA becomes 0.4 μg, and at 37 ° C. and 5% CO 2 . After culturing for 6 hours, the cells were collected, and luciferase activity and protein were quantified.
 その結果、TEGCholの含有量の上昇に伴って、ルシフェラーゼ活性の上昇が確認され、TEGCholを含まないMEND1と比べて、MEND3におけるルシフェラーゼ活性は約120倍にまで上昇することが確認された(図1)。 As a result, an increase in luciferase activity was confirmed with an increase in the content of TEGCol, and it was confirmed that the luciferase activity in MEND3 was increased to about 120 times compared to MEND1 not containing TEGChol (FIG. 1). ).
<実施例2>
 41.25μLの1mM DOTAP、55μLの1mM DOPE及び41.3μLの1mM コレステロール(DOTAP:DOPE:コレステロール=3:4:3)をガラス試験管に分取し、全量250μLとなるよう112.5μLのクロロホルムを加えて混合し、デシケーターにより溶媒を留去することで、脂質膜(コントロール)を形成させた。さらに、上記組成のコレステロールの10%、20%及び30%をそれぞれTEGCholに置き換えた他は上記と同様にして、3種類の脂質膜を調製した。
<Example 2>
41.25 μL of 1 mM DOTAP, 55 μL of 1 mM DOPE, and 41.3 μL of 1 mM cholesterol (DOTAP: DOPE: cholesterol = 3: 4: 3) were dispensed into a glass test tube, and 112.5 μL of chloroform to a total volume of 250 μL. Were added and mixed, and the solvent was distilled off with a desiccator to form a lipid membrane (control). Further, three types of lipid membranes were prepared in the same manner as described above except that 10%, 20%, and 30% of the cholesterol having the above composition were replaced with TEGChol.
 ルシフェラーゼをコードするプラスミドpEGFP-Luc(Clontech社)とプロタミンとを1:0.67(質量比)でHEPES緩衝液(10mM HEPES/NaOH pH7.4)中で混合してすることで、約80nmの凝集体を得た。 A plasmid pEGFP-Luc (Clontech) encoding luciferase and protamine are mixed at a ratio of 1: 0.67 (mass ratio) in a HEPES buffer (10 mM HEPES / NaOH pH 7.4), so that an about 80 nm Aggregates were obtained.
 上記の各脂質膜に250μLの核酸-プロタミン凝集体溶液を添加し、10分間水和した。この水和物に対して、水槽型超音波発生装置で超音波処理を30秒~1分間行うことで、凝集体が封入され、TEGCHolの含有量が異なる、4種類のMENDを作製した。 250 μL of the nucleic acid-protamine aggregate solution was added to each lipid membrane and hydrated for 10 minutes. The hydrate was subjected to ultrasonic treatment with a water tank type ultrasonic generator for 30 seconds to 1 minute, whereby four types of MENDs with different aggregates and different TEGChol contents were produced.
 24ウェルプレートに4×10cells/wellのHeLa細胞を播き、MEND4~7それぞれプラスミドDNAが0.4μgとなるよう加え、37℃、5% COで6時間培養した後、細胞を回収し、ルシフェラーゼ活性及びタンパク質の定量を行った。 Inoculate 4 × 10 4 cells / well HeLa cells in a 24-well plate, add each of MEND4-7 to a plasmid DNA of 0.4 μg, and incubate at 37 ° C., 5% CO 2 for 6 hours. Quantification of luciferase activity and protein was performed.
 その結果、STR-R8を含まない脂質膜構造体においても、TEGCholの含有量の上昇に伴って、ルシフェラーゼ活性の上昇が確認され、TEGCholを含まないコントロールと比べて、MEND6におけるルシフェラーゼ活性は約24倍に上昇することが確認された(図2)。 As a result, even in the lipid membrane structure not containing STR-R8, an increase in luciferase activity was confirmed with an increase in the content of TEGChol, and the luciferase activity in MEND6 was about 24 compared to the control not containing TEGChol. A double increase was confirmed (FIG. 2).
<試験例1>
 実施例1、4)のb)で得たMENDによって遺伝子導入されたHeLa細胞におけるルシフェラーゼ遺伝子の発現量を、リアルタイムPCR測定用キットSYBR Green Realtime PCRMaster Mix(TOYOBO社)を用い、同キットのマニュアルに従って測定した。発現量は、ルシフェラーゼのコピー数をβアクチンのコピー数で割って修正した値とした。
<Test Example 1>
The expression level of the luciferase gene in HeLa cells transfected with MEND obtained in Example 1, 4) b) was determined using a real-time PCR measurement kit SYBR Green Realtime PCR Master Mix (TOYOBO) according to the manual of the kit. It was measured. The expression level was a value corrected by dividing the copy number of luciferase by the copy number of β-actin.
 その結果、HeLa細胞におけるルシフェラーゼの発現量はTEGCholを含まないMEND1に対して、MEND3の発現量は約6倍に上昇していることが確認された(図3)。 As a result, it was confirmed that the expression level of luciferase in HeLa cells was increased about 6-fold in the expression level of MEND3 with respect to MEND1 not containing TEGChol (FIG. 3).
 また、前記遺伝子導入されたHeLa細胞から岩朝らの方法(文献Biochim Biophys Acta.2006;1758:713-720)に従って細胞核画分を回収して、細胞核におけるルシフェラーゼの発現量を上記と同様にして測定した。その結果、形質転換されたHeLa細胞の核においても、細胞全体と同程度の発現量の上昇が確認された(図4)。 In addition, the nuclear fraction was collected from the HeLa cells into which the gene had been introduced according to the method of Iwasa et al. (Literature BiochimphBiophys Acta. 2006; 1758: 713-720), It was measured. As a result, in the nucleus of the transformed HeLa cell, an increase in the expression level comparable to that of the whole cell was confirmed (FIG. 4).
 このことから、本発明の脂質膜構造体(MEND2、3)におけるルシフェラーゼ活性の上昇は、核内でのルシフェラーゼ遺伝子の発現量が上昇していることによってもたらされているものと推察された。 From this, it was speculated that the increase in the luciferase activity in the lipid membrane structure (MEND2, 3) of the present invention was caused by the increase in the expression level of the luciferase gene in the nucleus.
 また、上記リアルタイムPCRの測定値に基づいて、核酸の核移行量を細胞内取込量で割ることで得られる核酸の核移行効率を算出すると、MEND1~3の間に大きな差は認められなかった(図5)が、核酸発現量を核移行量で割ることで得られる核移行後発現効率は、TMEND2、3において上昇していた(図6)。さらに、核酸の発現量を形質転換されたHeLa細胞全体のmRNA発現量で割ることで得られる翻訳効率は、MEND1~3の間に大きな違いはなかった(図7)。以上から、本発明の脂質膜構造体による核酸の発現上昇は、核酸の転写量の上昇によるものと推察される。 Further, when calculating the nuclear translocation efficiency of the nucleic acid obtained by dividing the nuclear translocation amount of the nucleic acid by the intracellular uptake amount based on the measurement value of the real-time PCR, there is no significant difference between MENDs 1 to 3. However, the post-nuclear translocation expression efficiency obtained by dividing the nucleic acid expression level by the nuclear translocation amount increased in TMENDs 2 and 3 (FIG. 6). Furthermore, the translation efficiency obtained by dividing the expression level of the nucleic acid by the mRNA expression level of the whole transformed HeLa cells was not significantly different between MENDs 1 to 3 (FIG. 7). From the above, it is presumed that the increase in nucleic acid expression by the lipid membrane structure of the present invention is due to the increase in the transcription amount of the nucleic acid.
<試験例2>
 実施例1の2)のプラスミドpEGFP-Lucを、Label IT CX-Rhodamine reagent(Mirus社)を用い、同キットのマニュアルに従ってローダミン標識した以外は、実施例1と同様の操作を行い、ローダミン標識された核酸凝集体が封入されたMEND7~9を用いてHeLa細胞に遺伝子導入を行った。このHeLa細胞に蛍光物質SYTO24を加えた後、共焦点レーザー顕微鏡を用いて観察した結果を図8に示す。その結果、細胞内に導入された核酸の発現部位が細胞核に局在していることが確認された。
<Test Example 2>
The plasmid pEGFP-Luc of Example 1 2) was labeled with rhodamine using the same procedure as in Example 1 except that it was labeled with rhodamine using Label IT CX-Rhodamine reagent (Mirus) according to the manual of the same kit. The gene was introduced into HeLa cells using MENDs 7 to 9 in which the nucleic acid aggregates were encapsulated. FIG. 8 shows the result of observation using a confocal laser microscope after adding the fluorescent substance SYTO24 to the HeLa cells. As a result, it was confirmed that the expression site of the nucleic acid introduced into the cell was localized in the cell nucleus.
 また、図8に示すMEND8(20%)及びMEND9(40%)において、細胞に導入された核酸(ローダミン標識されて赤色として検出される)が細胞内において一カ所に凝集して偏在することなく細胞全体にわたって点在していることが確認された。このことは、本発明に係るMENDは、細胞内における良好な分散性を有することを意味する。 In addition, in MEND8 (20%) and MEND9 (40%) shown in FIG. 8, the nucleic acid introduced into the cells (labeled with rhodamine and detected as red) is aggregated in one place in the cell without being unevenly distributed. It was confirmed to be scattered throughout the cell. This means that the MEND according to the present invention has good dispersibility in cells.
<試験例3>
 実施例1の2)のプラスミドpEGFP-Lucを、Label IT CX-Rhodamine reagent(Mirus社)を用い、同キットのマニュアルに従ってローダミン標識し、さらに蛍光物質NBD標識DOPE(Avanti社)を用いて標識した他は、実施例1と同様の操作を行い、ローダミン標識された核酸凝集体が封入され、脂質膜がNBDで標識されたMEND10~12用いてHeLa細胞に遺伝子導入を行った。
<Test Example 3>
The plasmid pEGFP-Luc of Example 1 2) was labeled with rhodamine using Label IT CX-Rhodamine reagent (Mirus) according to the manual of the kit, and further labeled with fluorescent substance NBD-labeled DOPE (Avanti). Otherwise, the same procedure as in Example 1 was performed, and the gene was introduced into HeLa cells using MENDs 10 to 12 in which a rhodamine-labeled nucleic acid aggregate was encapsulated and the lipid membrane was labeled with NBD.
 このHeLa細胞に蛍光物質Hoechst33342を加えて核を標識化した後、共焦点レーザー顕微鏡を用いて観察した結果を図9に示す。MEND10では、細胞内で核酸と脂質のラベルがほぼ同じ局在を示し、ローダミン標識を示す赤色とNBD標識を示す緑との混合色である黄色として検出された。一方、MEND11及び12ではTEGCholの含有量の上昇に伴い、核酸(ローダミン標識されて赤色として検出される)が脂質(NBD標識されて緑色として検出される)と独立して局在することが確認された。このことは、脂質膜構造体に封入された核酸が細胞内で効率的に脂質膜から解離(decoating)されるためと推察される。従って、TEGCholは、脂質膜構造体に封入された薬剤の解離をスムーズに行うために有用な素子であることが示された。 FIG. 9 shows the result of observation using a confocal laser microscope after adding a fluorescent substance Hoechst 33342 to the HeLa cells to label nuclei. In MEND10, the label of the nucleic acid and the lipid showed almost the same localization in the cell, and was detected as yellow, which is a mixed color of red indicating rhodamine labeling and green indicating NBD labeling. On the other hand, in MEND11 and 12, it was confirmed that the nucleic acid (rhodamine-labeled and detected as red) was localized independently of lipid (NBD-labeled and detected as green) as the TEGChol content increased. It was done. This is presumably because the nucleic acid encapsulated in the lipid membrane structure is efficiently detached from the lipid membrane in the cell. Therefore, TEGChol was shown to be a useful element for smoothly dissociating the drug encapsulated in the lipid membrane structure.
<試験例4>
 実施例1で調製されたMEND1とMEND3をSEM電子顕微鏡で観察したところ、MEND3の殆どが脂質一重膜の形態にあることが確認された(図10)。
<Test Example 4>
When MEND1 and MEND3 prepared in Example 1 were observed with a SEM electron microscope, it was confirmed that most of MEND3 was in the form of a lipid monolayer (FIG. 10).
<試験例5>
 エチレン重合度が4、10、25、45及び50のオリゴエチレングリコールを用い、実施例1)と同様にそれぞれのオリゴエチレングリコールで修飾されたステアリン酸を調製した。また同様にして、エチレン重合度が4のオリゴエチレングリコールで修飾されたコレステロール、エチレン重合度が45のオリゴエチレングリコールで修飾されたDSPE(ジステアロイルホスファチジルエタノールアミン)を調製した。
<Test Example 5>
Using oligoethylene glycol having an ethylene polymerization degree of 4, 10, 25, 45 and 50, stearic acid modified with each oligoethylene glycol was prepared in the same manner as in Example 1). Similarly, cholesterol modified with oligoethylene glycol having an ethylene polymerization degree of 4 and DSPE (distearoylphosphatidylethanolamine) modified with oligoethylene glycol having an ethylene polymerization degree of 45 were prepared.
 上記の各脂質を40%含む他は、実施例1と同様にして実験を行い、各オリゴエチレングリコールで修飾された脂質を膜の構成成分として含み、ステアリルオクタアルギニンを有するMENDを用いてHeLa細胞に遺伝子導入を行い、6時間後のルシフェラーゼ活性及びタンパク質の定量を行った。 An experiment was conducted in the same manner as in Example 1 except that each lipid was 40%, and a HeLa cell was prepared using MEND having lipids modified with each oligoethylene glycol as a component of the membrane and having stearyl octaarginine. Then, the gene was introduced, and luciferase activity and protein were quantified 6 hours later.
 この遺伝子導入されたHeLa細胞におけるルシフェラーゼ活性を測定した結果(図11)、重合度が4のオリゴエチレングリコールで修飾されたステアリン酸を構成成分とするMENDと重合度が4のオリゴエチレングリコールで修飾されたコレステロールを構成成分とするMENDの間では、ルシフェラーゼ発現量に殆ど差がなく、また、重合度が45のオリゴエチレングリコールで修飾されたステアリン酸を構成成分とするMENDと重合度が45のオリゴエチレングリコールで修飾されたDSPEを構成成分とするMENDの間においても、ルシフェラーゼ発現量に殆ど差がなかったことから、オリゴエチレングリコールの修飾による効果は、修飾される脂質に依存しないことが確認された。 As a result of measuring the luciferase activity in this HeLa cell into which this gene was introduced (FIG. 11), it was modified with MEND composed of stearic acid modified with oligoethylene glycol having a polymerization degree of 4 and oligoethylene glycol having a polymerization degree of 4. There is almost no difference in the amount of luciferase expressed between the MENDs containing cholesterol as a constituent, and MEND having a degree of polymerization of 45 and MEND containing stearic acid modified with oligoethylene glycol having a degree of polymerization of 45. There was almost no difference in the luciferase expression level among MENDs composed of DSPE modified with oligoethylene glycol, confirming that the effect of modification with oligoethylene glycol does not depend on the lipid to be modified. It was done.
 また、エチレン重合度が4、10、25、45及び55のオリゴエチレングリコールで修飾されたステアリン酸を膜の構成成分とするMENDの間では、重合度が25の場合にはルシフェラーゼ活性の上昇が認められるが、重合度が45の場合には未修飾のMENDよりもルシフェラーゼ活性が低下することが確認された。 In addition, among MENDs using stearic acid modified with oligoethylene glycol having a degree of ethylene polymerization of 4, 10, 25, 45 and 55 as a constituent of the membrane, when the degree of polymerization is 25, luciferase activity increases. As can be seen, it was confirmed that when the degree of polymerization was 45, the luciferase activity was lower than that of unmodified MEND.
 この結果から、エチレン基の重合数は4~25が核酸の発現転写効率を高めるために好ましいことが確認された。 From this result, it was confirmed that an ethylene group polymerization number of 4 to 25 is preferable in order to increase the expression and transfer efficiency of nucleic acid.

Claims (18)

  1.  アルキレン基の重合度が4~25のオリゴアルキレングリコールで修飾された脂質を膜の構成成分として含む、脂質膜構造体。 A lipid membrane structure comprising a lipid modified with an oligoalkylene glycol having an alkylene group polymerization degree of 4 to 25 as a component of the membrane.
  2.  脂質膜が一重膜である、請求項1に記載の脂質膜構造体。 The lipid membrane structure according to claim 1, wherein the lipid membrane is a single membrane.
  3.  オリゴアルキレングリコールがオリゴエチレングリコールである、請求項1又は2に記載の脂質膜構造体。 The lipid membrane structure according to claim 1 or 2, wherein the oligoalkylene glycol is oligoethylene glycol.
  4.  オリゴエチレングリコールが、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコール、ヘプタエチレングリコール及びオクタエチレングリコールよりなる群から選ばれる一種以上である、請求項3に記載の脂質膜構造体。 The lipid membrane structure according to claim 3, wherein the oligoethylene glycol is at least one selected from the group consisting of triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, heptaethylene glycol and octaethylene glycol.
  5.  オリゴアルキレングリコールで修飾された脂質が、リン脂質、糖脂質、ステロール、長鎖脂肪族アルコール又はグリセリン脂肪酸エステルである、請求項1~4のいずれかに記載の脂質膜構造体。 The lipid membrane structure according to any one of claims 1 to 4, wherein the lipid modified with oligoalkylene glycol is phospholipid, glycolipid, sterol, long-chain aliphatic alcohol or glycerin fatty acid ester.
  6.  ステロールが、コレステロール、コレステロールコハク酸、ラノステロール、ジヒドロラノステロール、デスモステロール、ジヒドロコレステロール、スチグマステロール、シトステロール、カンペステロール、ブラシカステロール、チモステロール及びエルゴステロールよりなる群から選ばれる一種以上である、請求項5に記載の脂質膜構造体。 The sterol is one or more selected from the group consisting of cholesterol, cholesterol succinic acid, lanosterol, dihydrolanosterol, desmosterol, dihydrocholesterol, stigmasterol, sitosterol, campesterol, brassicasterol, timosterol and ergosterol. 5. The lipid membrane structure according to 5.
  7.  核酸が封入されてなる、請求項1~6のいずれかに記載の脂質膜構造体。 The lipid membrane structure according to any one of claims 1 to 6, wherein a nucleic acid is encapsulated.
  8.  アルキレン基の重合度が4~25のオリゴアルキレングリコールで修飾された脂質からなる、脂質膜構造体に封入された核酸の細胞内転写促進剤。 An intracellular transcription promoter for a nucleic acid encapsulated in a lipid membrane structure, comprising a lipid modified with an oligoalkylene glycol having an alkylene group polymerization degree of 4 to 25.
  9.  脂質膜が一重膜である、請求項8に記載の細胞内転写促進剤。 The intracellular transcription promoter according to claim 8, wherein the lipid membrane is a single membrane.
  10.  オリゴアルキレングリコールがオリゴエチレングリコールである、請求項8又は9に記載の細胞内転写促進剤。 The intracellular transcription promoter according to claim 8 or 9, wherein the oligoalkylene glycol is oligoethylene glycol.
  11.  オリゴエチレングリコールが、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコール、ヘプタエチレングリコール及びオクタエチレングリコールよりなる群から選ばれる一種以上である、請求項10に記載の細胞内転写促進剤。 The intracellular transcription promoter according to claim 10, wherein the oligoethylene glycol is at least one selected from the group consisting of triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, heptaethylene glycol and octaethylene glycol. .
  12.  オリゴアルキレングリコールで修飾された脂質が、リン脂質、糖脂質、ステロール、長鎖脂肪族アルコール又はグリセリン脂肪酸エステルである、請求項8~11のいずれかに記載の細胞内転写促進剤。 The intracellular transcription promoter according to any one of claims 8 to 11, wherein the lipid modified with oligoalkylene glycol is phospholipid, glycolipid, sterol, long-chain aliphatic alcohol or glycerin fatty acid ester.
  13.  ステロールが、コレステロール、コレステロールコハク酸、ラノステロール、ジヒドロラノステロール、デスモステロール、ジヒドロコレステロール、スチグマステロール、シトステロール、カンペステロール、ブラシカステロール、チモステロール及びエルゴステロールよりなる群から選ばれる一種以上である、請求項12に記載の細胞内転写促進剤。 The sterol is one or more selected from the group consisting of cholesterol, cholesterol succinic acid, lanosterol, dihydrolanosterol, desmosterol, dihydrocholesterol, stigmasterol, sitosterol, campesterol, brassicasterol, timosterol and ergosterol. 12. The intracellular transcription promoter according to 12.
  14.  薬剤が封入された脂質一重膜構造体を製造する方法であって、アルキレン基の重合度が4~25のオリゴアルキレングリコールで修飾された脂質を膜の構成成分として用いて薬剤を封入することを特徴とする、前記製造方法。 A method for producing a lipid single membrane structure in which a drug is encapsulated, comprising encapsulating a drug using a lipid modified with an oligoalkylene glycol having an alkylene group polymerization degree of 4 to 25 as a component of the membrane. The manufacturing method characterized by the above-mentioned.
  15.  オリゴアルキレングリコールがオリゴエチレングリコールである、請求項14に記載の製造方法。 The production method according to claim 14, wherein the oligoalkylene glycol is oligoethylene glycol.
  16.  オリゴエチレングリコールが、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコール、ヘプタエチレングリコール及びオクタエチレングリコールよりなる群から選ばれる一種以上である、請求項15に記載の製造方法。 The production method according to claim 15, wherein the oligoethylene glycol is at least one selected from the group consisting of triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, heptaethylene glycol and octaethylene glycol.
  17.  オリゴアルキレングリコールで修飾された脂質が、リン脂質、糖脂質、ステロール、長鎖脂肪族アルコール又はグリセリン脂肪酸エステルである、請求項14~16のいずれかに記載の製造方法。 The production method according to any one of claims 14 to 16, wherein the lipid modified with oligoalkylene glycol is phospholipid, glycolipid, sterol, long-chain aliphatic alcohol or glycerin fatty acid ester.
  18.  ステロールが、コレステロール、コレステロールコハク酸、ラノステロール、ジヒドロラノステロール、デスモステロール、ジヒドロコレステロール、スチグマステロール、シトステロール、カンペステロール、ブラシカステロール、チモステロール及びエルゴステロールよりなる群から選ばれる一種以上である、請求項17に記載の製造方法。 The sterol is one or more selected from the group consisting of cholesterol, cholesterol succinic acid, lanosterol, dihydrolanosterol, desmosterol, dihydrocholesterol, stigmasterol, sitosterol, campesterol, brassicasterol, timosterol and ergosterol. 18. The production method according to 17.
PCT/JP2009/058172 2008-04-25 2009-04-24 Lipid membrane structure modified with oligo(alkylene glycol) WO2009131216A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008115388 2008-04-25
JP2008-115388 2008-04-25

Publications (1)

Publication Number Publication Date
WO2009131216A1 true WO2009131216A1 (en) 2009-10-29

Family

ID=41216942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058172 WO2009131216A1 (en) 2008-04-25 2009-04-24 Lipid membrane structure modified with oligo(alkylene glycol)

Country Status (1)

Country Link
WO (1) WO2009131216A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135905A1 (en) * 2010-04-28 2011-11-03 国立大学法人北海道大学 Lipid membrane structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971803A (en) * 1985-04-08 1990-11-20 California Institute Of Technology Lamellar vesicles formed of cholesterol derivatives
WO2007102481A1 (en) * 2006-03-07 2007-09-13 National University Corporation Hokkaido University Vector for nuclear transport of substance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971803A (en) * 1985-04-08 1990-11-20 California Institute Of Technology Lamellar vesicles formed of cholesterol derivatives
WO2007102481A1 (en) * 2006-03-07 2007-09-13 National University Corporation Hokkaido University Vector for nuclear transport of substance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALLEN, T.M. ET AL., BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1066, 1991, pages 29 - 36 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135905A1 (en) * 2010-04-28 2011-11-03 国立大学法人北海道大学 Lipid membrane structure
US20130195962A1 (en) * 2010-04-28 2013-08-01 National University Corporation Hokkaido University Lipid membrane structure
JP5787323B2 (en) * 2010-04-28 2015-09-30 国立大学法人北海道大学 Lipid membrane structure

Similar Documents

Publication Publication Date Title
Maurer et al. Developments in liposomal drug delivery systems
L Arias et al. Lipid-based drug delivery systems for cancer treatment
US8658204B2 (en) Transpulmonary liposome for controlling drug arrival
US20090305409A1 (en) Liposome Capable of Effective Delivery of Given Substance Into Nucleus
US9617562B2 (en) Nonviral targeted nanoparticle system for gene transfer and drug delivery
JPWO2008105178A1 (en) Biocomponent resistance enhancer for liposome and liposome modified by the same
CA2652475A1 (en) Liposome having lipid membrane containing bacterial cell component
WO2013140643A1 (en) Carrier for intracellular delivery of functional protein
JP6238366B2 (en) Lipid membrane structure encapsulating bacterial cell component dispersible in nonpolar solvent and method for producing the same
CN100566810C (en) Method with coating particle with lipid film
JP5787323B2 (en) Lipid membrane structure
WO2009131216A1 (en) Lipid membrane structure modified with oligo(alkylene glycol)
JP2007210953A (en) pH-RESPONSIVE MOLECULAR AGGREGATE
JP2006238839A (en) Composition for improving intracellular delivery efficiency or intracellular expression efficiency of nucleic acid
JP2006167521A (en) Novel encapsulation technology for gene utilizing membrane fusion of suv type liposome
JP2007166946A (en) Composition for suppressing expression of target gene
JP2014114267A (en) Peptide for imparting transition ability to lipid membrane structure into hepatic endothelial cell and/or enhancing the same, lipid membrane structure having transition ability into hepatic endothelial cell or having had enhanced transition ability into hepatic endothelial cell, and agent for imparting transition ability to lipid membrane structure into hepatic endothelial cell and/or enhancing the same
Crommelin et al. Liposomes
JP2010126505A (en) Liposome vector excellent in releasability of nucleic acid
Wu et al. Lipid-based nanoparticulate drug delivery systems
WO2012117971A1 (en) Lipid membrane structure, lipid membrane structure production method, and method for encapsulating one of the target substance with a single lipid membrane
JP2009286709A (en) Liposome for targeting golgi apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09735542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09735542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP