WO2015068847A1 - Antigen-binding molecule containing modified antibody variable region - Google Patents

Antigen-binding molecule containing modified antibody variable region Download PDF

Info

Publication number
WO2015068847A1
WO2015068847A1 PCT/JP2014/079785 JP2014079785W WO2015068847A1 WO 2015068847 A1 WO2015068847 A1 WO 2015068847A1 JP 2014079785 W JP2014079785 W JP 2014079785W WO 2015068847 A1 WO2015068847 A1 WO 2015068847A1
Authority
WO
WIPO (PCT)
Prior art keywords
antigen
antibody
binding
variable region
amino acid
Prior art date
Application number
PCT/JP2014/079785
Other languages
French (fr)
Japanese (ja)
Inventor
智之 井川
正次郎 門野
奈緒香 廣庭
実香 櫻井
Original Assignee
中外製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EA201600354A priority Critical patent/EA201600354A1/en
Priority to JP2015546719A priority patent/JPWO2015068847A1/en
Priority to KR1020167015015A priority patent/KR102551410B1/en
Priority to AU2014347565A priority patent/AU2014347565B2/en
Priority to CA2929044A priority patent/CA2929044A1/en
Priority to CN201480072799.3A priority patent/CN105940107B/en
Priority to US15/035,098 priority patent/US20160280787A1/en
Priority to BR112016010025A priority patent/BR112016010025A2/en
Priority to EP14859814.7A priority patent/EP3070168A4/en
Priority to MX2016005762A priority patent/MX2016005762A/en
Priority to KR1020237022012A priority patent/KR20230104764A/en
Application filed by 中外製薬株式会社 filed Critical 中外製薬株式会社
Publication of WO2015068847A1 publication Critical patent/WO2015068847A1/en
Priority to TW104137120A priority patent/TWI740809B/en
Priority to TW110132433A priority patent/TWI831044B/en
Priority to US15/525,603 priority patent/US11154615B2/en
Priority to EP15859972.0A priority patent/EP3219724A4/en
Priority to PCT/JP2015/081693 priority patent/WO2016076345A1/en
Priority to TW111148920A priority patent/TW202313697A/en
Priority to JP2016559082A priority patent/JP7125248B2/en
Priority to US16/704,464 priority patent/US11739149B2/en
Priority to JP2021069644A priority patent/JP2021120375A/en
Priority to US17/506,733 priority patent/US20220040297A1/en
Priority to JP2023070625A priority patent/JP2023083522A/en
Priority to US18/345,750 priority patent/US20240026000A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2839Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the integrin superfamily
    • C07K16/2848Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the integrin superfamily against integrin beta3-subunit-containing molecules, e.g. CD41, CD51, CD61
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2875Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF/TNF superfamily, e.g. CD70, CD95L, CD153, CD154
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • C07K16/4283Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/526CH3 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction

Definitions

  • the present invention relates to a variable region of an antibody that can bind to two different antigens (first antigen and second antigen) but does not bind to both antigens at the same time, and a third antigen different from these antigens.
  • An antigen-binding molecule comprising an antibody variable region that binds to a pharmaceutical composition, a pharmaceutical composition comprising the antigen-binding molecule, and methods for producing them.
  • Antibodies are attracting attention as pharmaceuticals because of their high stability in plasma and fewer side effects (Nat. Biotechnol. (2005) 23, 1073-1078 (Non-Patent Document 1) and Eur J Pharm Biopharm. (2005) 59 (3), 389-396 (Non-Patent Document 2)).
  • Antibodies are not only antigen-binding, agonistic and antagonistic, but also ADCC (Antibody Dependent Cytotoxicity), ADCP (Antibody Dependent Cell phagocytosis), CDC (complementary) It induces cytotoxic activity (also referred to as effector function) by effector cells such as body-dependent cytotoxic activity).
  • cytotoxic activity also referred to as effector function
  • IgG1 subclass antibodies exhibit effector functions on cancer cells, many antibody drugs have been developed in the oncology region.
  • Fc ⁇ RIa, Fc ⁇ RIIa, and Fc ⁇ RIIIa have a domain called ITAM (Immunoreceptor Tyrosine-based Activation Motif) in the intracellular domain and transmit an activation signal.
  • ITAM Immunoreceptor Tyrosine-based Activation Motif
  • Fc ⁇ RIIb has a domain called ITIM (Immunoreceptor Tyrosine-based Inhibitory Motif) in the intracellular domain and transmits an inhibitory signal.
  • ITIM Immunoreceptor Tyrosine-based Inhibitory Motif
  • Natural immunoglobulins bind to antigens in the variable region, and to receptors and complements such as Fc ⁇ R, FcRn, Fc ⁇ R, and Fc ⁇ R in the constant region.
  • FcRn one of the binding molecules that interact in the Fc region of IgG, binds one molecule to each antibody heavy chain, and it has been reported that two molecules of FcRn bind to one IgG antibody molecule. ing.
  • Fc ⁇ R interacts with the hinge region and CH2 domain of an antibody, and binds only to one molecule of an IgG type antibody (J. Bio. Chem., (20001) 276, 16469). -16477).
  • This variant has a binding activity ratio (A / I ratio) to Fc ⁇ RIIIa and Fc ⁇ IIb of about 9 times that of the wild type.
  • Shinkawa et al. Succeeded in increasing the binding activity to Fc ⁇ RIIIa to about 100 times by deleting the sugar chain fucose added to 297th Asn of EU numbering (J. Biol. Chem. ( 2003) 278, 3466-3473 (Non-Patent Document 10)).
  • ADCC activity of human IgG1 can be greatly improved compared to natural human IgG1.
  • a normal natural IgG type antibody recognizes and binds to one epitope by its variable region (Fab), and therefore can bind to only one antigen.
  • Fab variable region
  • many types of proteins are involved in cancer and inflammation, and the proteins may have crosstalk.
  • TNF, IL1 and IL6 are involved in immune diseases (Nat. Biotech., (2011) 28, 502-10 (Non-patent Document 11)).
  • other receptors are activated as one mechanism for acquiring drug resistance in cancer (EndocrocRelat Cancer (2006) 200613, 45-51 (Non-patent Document 12)). In such a case, a normal antibody that recognizes one epitope cannot inhibit a plurality of proteins.
  • bispecific antibody As a molecule that inhibits multiple targets, an antibody that binds to two or more types of antigens per molecule (referred to as a bispecific antibody) has been studied. It is possible to confer binding activity to two different antigens (first antigen and second antigen) by improving the natural IgG antibody (MAbs. (2012) Mar 1, 4 (2)). Therefore, it not only has the effect of neutralizing two or more antigens with a single molecule, but also has the effect of enhancing antitumor activity by cross-linking cells with cytotoxic activity with cancer cells.
  • Bispecific antibodies includes molecules that have added an antigen binding site to the N-terminus or C-terminus of the antibody (DVD-Ig or scFv-IgG), and molecules that have two different Fab regions (common L Chain bispecific antibodies and hybrid hybridomas), molecules that recognize two antigens in one Fab region (Two-in-one IgG), and molecules that use the CH3 region loop site as a new antigen binding site (Fcab) have been reported. (Nat. Rev. (2010), 10, 301-316 (Non-Patent Document 13), Peds (2010), 23 (4), 289-297 (Non-Patent Document 14)). Since any bispecific antibody interacts with Fc ⁇ R in the Fc region, the effector function of the antibody is conserved. Therefore, any antigen recognized by the Bispecific antibody binds simultaneously with Fc ⁇ R and exhibits ADCC activity against cells expressing the antigen.
  • any antigen recognized by the bispecific antibody is an antigen that is specifically expressed in cancer, it recognizes one antigen because it binds to any antigen and shows cytotoxic activity against cancer cells. Efficient anticancer effect can be expected compared to conventional antibody drugs.
  • any one of the antigens recognized by the Bispecific antibody is expressed in normal tissues or cells that are expressed in immune cells, normal tissue damage and cytokine release are caused by cross-linking with Fc ⁇ R. (J.JImmunol. (1999) Aug 1, 163 (3), 1246-52 (Non-patent Document 15)). As a result, strong side effects are induced.
  • Catumaxomab is known as a Bispecific antibody that recognizes a protein expressed in T cells and a protein (cancer antigen) expressed in cancer cells.
  • Catumaxomab binds to the CD3 ⁇ chain expressed in cancer antigen (EpCAM) and T cells by two Fabs, respectively.
  • Catumaxomab induces cytotoxic activity by T cells by simultaneously binding cancer antigen and CD3 ⁇ , and induces cytotoxic activity by antigen-presenting cells such as NK cells and macrophages by simultaneously binding cancer antigen and Fc ⁇ R. .
  • EpCAM cancer antigen
  • Fabs cancer antigen-presenting cells
  • NK cells and macrophages by simultaneously binding cancer antigen and Fc ⁇ R.
  • Non-patent Document 16 Cancer Reat Rev. (2010) Oct 36 (6), 67 458-67
  • an example of an antibody that reacts against cancer cells by the administration of Catumaxomab has been reported, and acquired immunity is induced (Future Oncol. (2012) Jan 8 (1), 73-85 (Non-patent Document 17)). From these results, antibodies that have both cytotoxic activity by T cells and actions by cells such as NK cells and macrophages via Fc ⁇ R (especially called trifunctional antibodies) are expected to have strong antitumor effects and induction of acquired immunity. Has been.
  • trifunctional antibody binds CD3 ⁇ and Fc ⁇ R simultaneously even in the absence of cancer antigen
  • CD3 ⁇ -expressing T cells and Fc ⁇ R-expressing cells are cross-linked even in the absence of cancer cells.
  • various cytokines are produced in large quantities. Due to the induction of production of various cytokines independent of cancer antigens, the administration of trifunctional antibodies is currently limited to the abdominal cavity (Cancer Treat Rev. 2010 Oct 36 (6), 458-67 (non-patent literature) 16)), systemic administration is extremely difficult due to serious cytokine storm-like side effects (Cancer Immunol Immunother. 2007 Sep; 56 (9): 1397-406 (Non-patent Document 18)).
  • both the antigen of cancer antigen (EpCAM) as the first antigen and the antigen of CD3 ⁇ as the second antigen can bind simultaneously with Fc ⁇ R. It is molecularly impossible to avoid such side effects due to simultaneous binding of antigen CD3 ⁇ .
  • the present invention has been made in view of such circumstances, and the problem is that one variable region has binding activity to two different antigens (first antigen and second antigen).
  • An antigen-binding molecule comprising a variable region of an antibody that does not bind to these antigens simultaneously and a variable region that binds to an antigen different from these antigens (third antigen), a pharmaceutical composition comprising the antigen-binding molecule,
  • the present invention also provides a method for producing the antigen-binding molecule.
  • variable regions of an antibody in which one variable region has binding activity to two different antigens first antigen and second antigen
  • An antigen-binding molecule comprising a region and a variable region that binds to an antigen different from these antigens (third antigen), and utilizing the binding activity of the antigen-binding molecule to three different antigens
  • multispecific antigen-binding molecules so far as pharmaceuticals, it avoids cross-linking between the different cells caused by binding to antigens expressed on different cells, which may cause side effects. Succeeded in producing an antigen-binding molecule capable of
  • the present invention relates to the following.
  • a variable region of an antibody that can bind to a first antigen and a second antigen different from the first antigen, but does not bind to the first antigen and the second antigen simultaneously, and
  • An antigen binding molecule comprising a variable region that binds to a third antigen different from the first antigen and the second antigen.
  • the heavy chain variable region can be bound to the first antigen and a second antigen different from the first antigen, but not simultaneously bound to the first antigen and the second antigen.
  • An antigen-binding molecule comprising a variable region of an antibody in which amino acids have been modified.
  • a variable region that does not bind to the first antigen and the second antigen simultaneously is a variable region that does not bind to the first antigen and the second antigen that are expressed on different cells, respectively.
  • variable region of the antibody capable of binding to the first antigen and the second antigen is a variable region into which at least one amino acid modification has been introduced.
  • Substitution of the amino acid sequence of the variable region that binds to the first antigen to the amino acid sequence that binds to the second antigen, or the amino acid of the variable region that binds to the first antigen The antigen-binding molecule according to [7] or [8], which is an insertion of an amino acid sequence that binds to the second antigen into the sequence.
  • the antigen-binding molecule according to any one of [7] to [10], wherein the amino acid to be modified is an amino acid of a CDR1, CDR2, CDR3, or FR3 region of an antibody variable region.
  • the antigen-binding molecule according to any one of [7] to [11], wherein the amino acid to be modified is a loop region amino acid.
  • the amino acids to be modified include Kabat numbering 31 to 35, 50 to 65, 71 to 74 and 95 to 102 of the heavy chain variable region of the antibody, and Kabat numbering 24 to 34, 50 to 56 and 89 of the light chain variable region.
  • the antigen-binding molecule according to any one of [7] to [11], which is at least one amino acid selected from -97.
  • Either one of the first antigen and the second antigen is a molecule that is specifically expressed on the surface of T cells, and the other antigen is expressed on the surface of T cells or other immune cells.
  • the antigen-binding molecule according to any one of [1] to [13], which is a molecule.
  • Either one of the first antigen or the second antigen is CD3, and the other antigen is Fc ⁇ R, TLR, lectin, IgA, immune checkpoint molecule, TNF superfamily molecule, TNFR superfamily molecule or NK receptor
  • the antigen-binding molecule according to [14] which is a molecule.
  • a pharmaceutical composition comprising the antigen-binding molecule according to any one of [1] to [16] and a medically acceptable carrier.
  • variable region of an antibody that can bind to the first antigen and the second antigen, but does not bind to the first antigen and the second antigen at the same time, and / or the third antigen.
  • the first antigen and the second antigen that are contained in the antigen-binding molecule selected in step (ii) and that do not bind simultaneously to the first antigen and the second antigen are expressed on different cells.
  • the production method according to [18] which is a variable region that does not bind to two antigens simultaneously.
  • [27] Modifications from Kabat numbering 31-35, 50-65, 71-74 and 95-102 of the heavy chain variable region of the antibody, and Kabat numbering 24-34, 50-56 and 89-97 of the light chain variable region
  • Either one of the first antigen and the second antigen is a molecule that is specifically expressed on the surface of T cells, and the other antigen is expressed on the surface of T cells or other immune cells.
  • Either one of the first antigen and the second antigen is CD3, and the other antigen is Fc ⁇ R, TLR, IgA, lectin, immune checkpoint molecule, TNF superfamily molecule, TNFR superfamily molecule or NK receptor
  • the production method according to [28] which is a molecule.
  • the production method according to [28] or [29], wherein the third antigen is a molecule expressed specifically in cancer tissue.
  • a method for treating cancer comprising a step of administering the antigen-binding molecule according to any one of [1] to [16].
  • the “variable region of an antibody” usually means a region composed of four framework regions (FR) and three complementarity-determining regions (CDRs) sandwiched between them. As long as it has an activity of binding to a part or all of the partial sequence, the partial sequence is also included. Particularly preferred is a region comprising an antibody light chain variable region (VL) and an antibody heavy chain variable region (VH).
  • the variable region of the antibody of the present invention may be of any sequence, mouse antibody, rat antibody, rabbit antibody, goat antibody, camel antibody, humanized antibody obtained by humanizing these non-human antibodies, and human It may be a variable region of an antibody of any origin, such as an antibody.
  • Humanized antibody refers to an antibody derived from a mammal other than a human, also referred to as a reshaped human antibody, such as a complementarity determination region (CDR) of a mouse antibody to the CDR of a human antibody. It is transplanted.
  • CDR complementarity determination region
  • Methods for identifying CDRs are known (Kabat et al., Sequence of Proteins of Immunological Interest (1987), National Institute of Health, Bethesda, Md .; Chothia et al., Nature (1989) 342: 877) .
  • general gene recombination techniques are also known (see European Patent Application Publication No. EP-125023 and WO96 / 02576).
  • variable region of the antibody of the present invention does not bind to the first antigen and the second antigen at the same time in the state where the variable region of the antibody of the present invention is bound to the first antigen. This means that it cannot bind to the second antigen, and conversely, when the variable region is bound to the second antigen, it cannot bind to the first antigen.
  • does not bind to the first antigen and the second antigen at the same time means that the two cells of the cell expressing the first antigen and the cell expressing the second antigen are cross-linked. Or not simultaneously binding to the first and second antigens expressed in separate cells.
  • variable region of such an antibody is not particularly limited as long as it has the function.
  • the variable region of a variable region of an IgG-type antibody may be modified so that it binds to a desired antigen.
  • An area can be mentioned.
  • the amino acid to be modified for example, an amino acid that does not lose binding to the antigen by amino acid modification is selected from the variable region of the antibody that binds to the first antigen or the second antigen.
  • “expressed on different cells” is only required to be expressed on different cells.
  • a T cell and another T cell can be the same type of cell. There may be different types of cells such as T cells and NK cells.
  • the amino acid modification of the present invention may be used alone or in combination.
  • the number of combinations is not particularly limited, and can be set as appropriate within the range in which the object of the invention can be achieved. For example, 2 to 30 or less, preferably 2 to 25 or less, 2 2 or more and 20 or less, 2 or more and 15 or less, 2 or more and 10 or less, 2 or more and 5 or less, 2 or more and 3 or less.
  • the amino acid modification may be added only to the heavy chain variable region or the light chain variable region of the antibody, or may be appropriately distributed to both the heavy chain variable region and the light chain variable region.
  • the binding activity of the antibody before modification is maintained, for example, 50% or more, preferably 80% or more, more preferably compared to before modification.
  • the binding activity may be increased by amino acid modification.
  • the binding activity may be 2 times, 5 times, 10 times, etc., compared to before the modification.
  • regions for amino acid modification include a region exposed to the solvent in the variable region and a loop region.
  • CDR1, CDR2, CDR3, FR3 region and loop region are preferable.
  • Kabat numbering 31 to 35, 50 to 65, 71 to 74, 95 to 102 of the heavy chain variable region, Kabat numbering 24 to 34, 50 to 56, 89 to 97 of the light chain variable region are preferable.
  • More preferred are Kabat numbering 31, 52a-61, 71-74, 97-101 of the chain variable region, and Kabat numbering 24-34, 51-56, 89-96 of the L chain variable region.
  • an amino acid that increases the binding activity with the antigen may be introduced together.
  • the “loop region” means a region where there are residues that are not involved in maintaining the ⁇ -barrel structure of immunoglobulin.
  • the amino acid modification means any one of substitution, deletion, addition, insertion, modification, or a combination thereof.
  • amino acid modification can be rephrased as amino acid mutation and is used interchangeably.
  • the purpose is to modify, for example, the following points (a) to (c) by substituting with another amino acid residue.
  • Amino acid residues are classified into the following groups based on general side chain properties: (1) Hydrophobicity: norleucine, met, ala, val, leu, ile; (2) Neutral hydrophilicity: cys, ser , Thr, asn, gln; (3) Acidity: asp, glu; (4) Basicity: his, lys, arg; (5) Residues that affect chain orientation: gly, pro; and (6) Aromatic Sex: trp, tyr, phe.
  • substitution of amino acid residues within each of these groups is called conservative substitution, while substitution of amino acid residues between other groups is called non-conservative substitution.
  • the substitution in the present invention may be a conservative substitution, a non-conservative substitution, or a combination of a conservative substitution and a non-conservative substitution.
  • variable regions of antibodies that bind to the first antigen or the second antigen amino acids that do not lose binding to the antigen by amino acid modification are randomly modified.
  • Select a variable region that can bind to the first antigen and the second antigen, but cannot bind at the same time, or have a binding activity to the desired antigen in advance are modifications that insert a known peptide into the above region. Examples of peptides known to have a binding activity for a desired antigen in advance include the peptides shown in Table 1.
  • the first antigen and a second antigen different from the first antigen can be bound, but the heavy antigen is not so bound to the first antigen and the second antigen at the same time.
  • An antigen-binding molecule is provided that comprises an antibody variable region in which the amino acids of the chain variable region have been modified. For example, by introducing the above-described amino acid alteration (substitution, deletion, addition, insertion, or modification, or a combination thereof) into the heavy chain variable region, the first antigen and the first antigen An antibody variable region can be created that can bind to different second antigens but does not bind to the first and second antigens simultaneously.
  • the position for introducing an amino acid modification is preferably a heavy chain variable region, and more preferable regions include a region exposed to a solvent in the variable region and a loop region.
  • CDR1, CDR2, CDR3, FR3 region and loop region are preferable.
  • Kabat numbering 31 to 35, 50 to 65, 71 to 74, 95 to 102 of the heavy chain variable region is preferred, and Kabat numbering 31, 52a to 61, 71 to 74, 97 to 101 of the heavy chain variable region is preferable. Is more preferable.
  • an amino acid that increases the binding activity with the antigen may be introduced together.
  • variable region of the antibody of the present invention may be combined with known modifications in addition to the above modifications.
  • modification of pyroglutamic acid by pyroglutamylation of N-terminal glutamine of the variable region is a modification well known to those skilled in the art. Therefore, the antibody of the present invention comprises a variable region in which the heavy chain is modified with pyroglutamic acid when the N-terminus of the heavy chain is glutamine.
  • variable region of the antibody of the present invention may be capable of repeatedly binding to the antigen by adding a modification having pH-dependent binding properties to the antigen (WO / 2009/125825).
  • an amino acid modification that changes the binding activity to the antigen according to the concentration of the target tissue-specific compound can be added to the variable region that binds to the third antigen of these antibodies (WO2013 / 180200). ).
  • modification of the variable region can increase binding activity, improve specificity, decrease pI, impart pH-dependent properties to antigen binding, improve binding thermal stability, improve solubility, modify chemical modification Stability, improved heterogeneity derived from sugar chains, avoidance of T cell epitopes identified using in silico prediction to reduce immunogenicity, or identified in assays using in vitro T cells, Alternatively, modifications aimed at introducing a T cell epitope that activates regulatory T cells can be performed (mAbs 3: 243-247, 2011).
  • variable region of the antibody of the present invention can bind to the first antigen and the second antigen can be measured using a known method. For example, it can be measured by an electrochemiluminescence method (ECL method) (BMC Research Notes 2011, 4: 281).
  • ECL method electrochemiluminescence method
  • a region capable of binding to the first antigen and the second antigen of a test antigen-binding molecule labeled with biotin for example, a low molecular weight antibody consisting of a Fab region, or monovalent 1st or 2nd antigen labeled with a sulfo-tag (Ru complex) is mixed with a natural antibody (an antibody that does not have one of the two Fab regions of a normal antibody), and a streptavidin solid phase Add onto the crystallization plate. At this time, the test antigen-binding molecule labeled with biotin is bound to streptavidin on the plate.
  • a natural antibody an antibody that does not have one of the two Fab regions of a normal antibody
  • the first antigen or the second antigen and the above-mentioned region of the test antigen binding molecule can be confirmed. It can also be measured by ELISA, FACS (fluorescence activated cell sorting), ALPHA screen (Amplified Luminescent Proximity Homogeneous Assay), BIACORE method using surface plasmon resonance (SPR) phenomenon, etc. (Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010).
  • Biacore® (GE® Healthcare), which is an interaction analysis device using the surface plasmon resonance (SPR) phenomenon.
  • Biacore includes all models such as Biacore T100, T200, X100, A100, 4000, 3000, 2000, 1000, and C.
  • Any sensor chip for Biacore such as CM7, CM5, CM4, CM3, C1, SA, NTA, L1, HPA, and Au chip can be used as the sensor chip.
  • Proteins for supplementation such as chain antibodies, anti-human Fc antibodies, antigen proteins, and antigen peptides are immobilized.
  • the first antigen or the second antigen is flowed there as an analyte, the interaction is measured, and a sensorgram is obtained.
  • the concentration of the first antigen or the second antigen at this time can be carried out in the range of several ⁇ M to several pM according to the strength of interaction such as KD of the sample to be measured.
  • the antigen-binding molecule not the antigen-binding molecule but the first antigen or the second antigen can be immobilized on the sensor chip, and the antibody sample to be evaluated can be allowed to interact therewith.
  • KD dissociation constant
  • ALPHA screen is implemented based on the following principle by ALPHA technology using two beads of donor and acceptor.
  • a luminescent signal is detected only when the molecule bound to the donor bead interacts biologically with the molecule bound to the acceptor bead and the two beads are in close proximity.
  • a photosensitizer in the donor bead excited by the laser converts ambient oxygen into excited singlet oxygen. Singlet oxygen diffuses around the donor bead, and when it reaches the adjacent acceptor bead, it causes a chemiluminescence reaction in the bead, and finally light is emitted.
  • the chemiluminescence reaction does not occur because the singlet oxygen produced by the donor bead does not reach the acceptor bead.
  • the Biacore system takes the shift amount, that is, the mass change at the sensor chip surface on the vertical axis, and displays the time change of mass as measurement data (sensorgram).
  • the amount of analyte binding to the ligand captured on the sensor chip surface from the sensorgram (the amount of change in the response on the sensorgram before and after the interaction of the analyte) is determined.
  • the amount of binding also depends on the amount of ligand, it is necessary to compare under the condition that the amount of ligand can be regarded as essentially the same amount.
  • the kinetics: association rate constant (ka) and dissociation rate constant (kd) are obtained from the curve of the sensorgram, and the affinity (KD) is obtained from the ratio of the constants.
  • an inhibition measurement method is also preferably used. Examples of inhibition assays are described in Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010.
  • the antigen-binding molecule of the present invention "does not bind to the first antigen and the second antigen at the same time" is confirmed after having confirmed the binding activity to the first antigen and the second antigen. Whether the antigen-binding molecule containing the variable region having the binding activity has binding activity for the remaining one after binding either the first antigen or the second antigen in advance. Can be confirmed by measuring using the method described above. In addition, measuring whether the binding of the antigen-binding molecule to either the first antigen or the second antigen immobilized on the ELISA plate or the sensor chip is inhibited by adding the other to the solution. Can also be confirmed.
  • a first antigen labeled with a sulfo-tag (Ru complex) and a second antigen unlabeled are prepared in a test antigen-binding molecule labeled with biotin.
  • the test antigen-binding molecule can bind to the first antigen and the second antigen, but does not bind simultaneously with the first antigen and the second antigen, in the absence of the unlabeled second antigen.
  • the luminescence signal is detected.
  • the luminescence signal decreases. Relative binding activity can be determined by quantifying this decrease in signal issued.
  • the test antigen-binding molecule interacts with the first antigen to generate a signal of 520-620 nm.
  • the untagged second antigen competes with the interaction between the test antigen binding molecule and the first antigen.
  • Relative binding activity can be determined by quantifying the decrease in fluorescence that results from competition. It is known that a polypeptide is biotinylated using Sulfo-NHS-biotin or the like.
  • the first antigen is expressed in a cell or the like holding a vector capable of expressing a fusion gene in which a polynucleotide encoding the first antigen and a polynucleotide encoding GST are fused in frame.
  • a purification method using a glutathione column can be appropriately employed.
  • the obtained signal is suitably analyzed by fitting to a one-site competition model using nonlinear regression analysis using software such as GRAPHPAD PRISM (GraphPad, San Diego). At this time, the same analysis can be performed by tagging the second antigen and not tagging the first antigen. Further, a method using fluorescence resonance energy transfer (FRET) can be used.
  • FRET fluorescence resonance energy transfer
  • FRET is a phenomenon in which excitation energy moves directly between two adjacent fluorescent molecules by electron resonance.
  • the excitation energy of the donor (excited fluorescent molecule) is transferred to the acceptor (another fluorescent molecule in the vicinity of the donor), and the fluorescence emitted from the donor disappears (exactly the fluorescence lifetime). Instead, fluorescence is emitted from the acceptor instead. It is possible to analyze whether this is a dual-Fab using this phenomenon. For example, when the first antigen introduced with a fluorescent donor and the second antigen introduced with a fluorescent acceptor are simultaneously bound to a test antigen-binding molecule, the donor's fluorescence disappears and the acceptor emits fluorescence. A change in fluorescence wavelength occurs.
  • Such an antibody is judged not to be dual-Fab.
  • the test antigen binding molecule when the first antigen, the second antigen, and the test antigen binding molecule are mixed, if the fluorescence wavelength of the fluorescent donor bound to the first antigen does not change, the test antigen binding molecule is It can be said that it is dual-Fab.
  • a test antigen-binding molecule labeled with biotin on the donor bead is bound to streptavidin on the donor bead, and a first antigen tagged with glutathione S-transferase (GST) is bound to the acceptor bead.
  • GST glutathione S-transferase
  • the untagged second antigen competes with the interaction between the test antigen binding molecule and the first antigen.
  • Relative binding activity can be determined by quantifying the decrease in fluorescence that results from competition.
  • a polypeptide is biotinylated using Sulfo-NHS-biotin or the like.
  • the first antigen is expressed in a cell or the like holding a vector capable of expressing a fusion gene in which a polynucleotide encoding the first antigen and a polynucleotide encoding GST are fused in frame.
  • a purification method using a glutathione column can be appropriately employed.
  • the obtained signal is suitably analyzed by fitting to a one-site competition model using nonlinear regression analysis using software such as GRAPHPAD PRISM (GraphPad, San Diego).
  • the tagging is not limited to GST, and any tag such as histidine tag, MBP, CBP, Flag tag, HA tag, V5 tag, c-myc tag, etc. may be used.
  • the binding of the test antigen binding molecule to the donor bead is not limited to the binding using the biotin-streptavidin reaction.
  • the test antigen-binding molecule contains Fc
  • a method of binding the test antigen-binding molecule via an Fc recognition protein such as Protein A or Protein G on the donor bead can be considered.
  • the first antigen and the second antigen when they are not expressed on the cell membrane like a soluble protein, or when both are present on the same cell, the first antigen and the second antigen Can be simultaneously bound to both antigens, but when they are expressed on different cells, the case where they cannot be bound simultaneously can also be measured by using a known method. Specifically, cells that express the first antigen and cells that express the second antigen, respectively, even when positive by ECL-ELISA that detects simultaneous binding to the first antigen and the second antigen. When the test antigen-binding molecules are mixed, if these three do not bind simultaneously, it can be shown that they cannot bind simultaneously when expressed on different cells. For example, it can be measured by an ECL-ELISA method using cells.
  • Cells that express the first antigen are immobilized on a plate in advance and bound to the test antigen-binding molecule, and then cells that express the second antigen are added.
  • a sulfo-tag-labeled antibody to detect another antigen that is expressed only in cells that express the second antigen, the signal is displayed when the two antigens expressed on the two cells are bound simultaneously. If observed and not bound simultaneously, no signal is observed. Alternatively, it can be measured by the alphascreen method.
  • test antigen-binding molecule When a test antigen-binding molecule is mixed with a cell expressing a first antigen bound to a donor bead, a cell expressing a second antigen bound to an acceptor bead, A signal is observed when bound simultaneously with two antigens, and no signal is observed when bound simultaneously. Alternatively, it can be measured by an interaction analysis method using Octet. First, cells expressing a first antigen to which a peptide tag has been added are bound to a biosensor that recognizes a peptide tag.
  • binding activity measurement based on biological activity is possible instead of binding activity.
  • a cell that expresses a first antigen, a cell that expresses a second antigen, and a test antigen-binding molecule are mixed and cultured, the two antigens expressed on two cells are bound simultaneously. Since they are mutually activated via the test antigen-binding molecule, changes in the activation signal such as an increase in phosphorylation downstream of each antigen can be detected.
  • cytokine production is induced as a result of activation, it is possible to determine whether or not to bind to two cells simultaneously by measuring the amount of cytokine production.
  • the “Fc region” refers to a region containing a fragment consisting of a hinge region or a part thereof, CH2 and CH3 domains in an antibody molecule.
  • the Fc region of the IgG class is EU numbering (also referred to herein as EU INDEX) and means, for example, from the 226th cysteine to the C terminus, or from the 230th proline to the C terminus, but is not limited thereto.
  • Fc region is suitably obtained by re-elution of the fraction adsorbed on the protein A column or protein G column after partial digestion of IgG1, IgG2, IgG3, IgG4 monoclonal antibody, etc. with a protease such as pepsin Can be done.
  • proteolytic enzymes are not particularly limited as long as full-length antibodies can be digested so that Fab and F (ab ') 2 can be produced in a limited manner by appropriately setting the reaction conditions of the enzyme such as pH.
  • pepsin, papain, etc. can be illustrated.
  • the “antigen-binding molecule” in the present invention is not particularly limited as long as it contains the “antibody variable region” of the present invention, and further includes peptides and proteins having a length of about 5 amino acids or more. Also good.
  • the polypeptide is not limited to biologically derived peptides or proteins, and may be, for example, a polypeptide having an artificially designed sequence. Moreover, any of natural polypeptide, synthetic polypeptide, recombinant polypeptide, etc. may be sufficient.
  • an antigen-binding molecule containing an antibody Fc region can be mentioned.
  • an Fc region derived from natural IgG can be used.
  • the natural IgG means a polypeptide belonging to the class of antibodies that includes the same amino acid sequence as IgG found in nature and is substantially encoded by an immunoglobulin gamma gene.
  • natural human IgG means natural human IgG1, natural human IgG2, natural human IgG3, natural human IgG4, and the like.
  • Naturally-occurring IgG includes naturally occurring mutants.
  • human IgG1 As constant regions of human IgG1, human IgG2, human IgG3, and human IgG4 antibodies, a plurality of allotype sequences due to gene polymorphisms are described in Sequences of proteins of immunological interest, NIH Publication No.91-3242. Any of them may be used.
  • sequence of human IgG1 may be DEL or EEM as the amino acid sequence of EU numbering 356-358.
  • Fc regions of antibodies include IgA1, IgA2, IgD, IgE, IgG1, IgG2, IgG3, IgG4, and IgM type Fc regions.
  • an Fc region derived from a natural human IgG antibody can be used.
  • a constant region of natural IgG specifically, a constant region originating from natural human IgG1 (SEQ ID NO: 1), a constant region originating from natural human IgG2 (sequence) No.
  • the Fc region of the present invention is particularly preferably an Fc region with reduced binding activity to the Fc ⁇ receptor.
  • the Fc ⁇ receptor (which may be described as Fc ⁇ receptor, Fc ⁇ R or Fc ⁇ receptor in the present specification) refers to a receptor that can bind to the Fc region of IgG1, IgG2, IgG3, or IgG4. By any member of the family of proteins encoded by the Fc ⁇ receptor gene.
  • this family includes Fc ⁇ RI (CD64), including isoforms Fc ⁇ RIa, Fc ⁇ RIb and Fc ⁇ RIc; isoforms Fc ⁇ RIIa (including allotypes H131 (H) and R131 (R)), Fc ⁇ RIIb (Fc ⁇ RIIb-1 and Fc ⁇ RIIb- Fc ⁇ RII (CD32) including Fc ⁇ RIIc (including 2) and Fc ⁇ RIII (CD16) including isoforms Fc ⁇ RIIIa (including allotypes V158 and F158) and Fc ⁇ RIIIb (including allotypes Fc ⁇ RIIIb-NA1 and Fc ⁇ RIIIb-NA2), and any undiscovered Human Fc ⁇ Rs or Fc ⁇ R isoforms or allotypes, but are not limited to these.
  • Fc ⁇ R includes, but is not limited to, those derived from human, mouse, rat, rabbit and monkey, and may be derived from any organism.
  • Mouse Fc ⁇ Rs include Fc ⁇ RI (CD64), Fc ⁇ RII (CD32), Fc ⁇ RIII (CD16) and Fc ⁇ RIII-2 (CD16-2), as well as any undiscovered mouse Fc ⁇ Rs or Fc ⁇ R isoforms or allotypes. It is not limited to. Suitable examples of such Fc ⁇ receptors include human Fc ⁇ RI (CD64), Fc ⁇ RIIa (CD32), Fc ⁇ RIIb (CD32), Fc ⁇ RIIIa (CD16) and / or Fc ⁇ RIIIb (CD16).
  • Fc ⁇ R has an active receptor having an ITAM (immunoreceptor tyrosine-based activation motif) and an inhibitory receptor having an ITIM (immunoreceptor tyrosine-based inhibitory motif).
  • Fc ⁇ R is classified into Fc ⁇ RI, Fc ⁇ RIIa R, Fc ⁇ RIIa H, Fc ⁇ RIIIa, and Fc ⁇ RIIIb active Fc ⁇ R, and Fc ⁇ RIIb inhibitory Fc ⁇ R.
  • the polynucleotide sequence and amino acid sequence of Fc ⁇ RI are NM_000566.3 and NP_000557.1, respectively.
  • the polynucleotide sequence and amino acid sequence of Fc ⁇ RIIa are BC020823.1 and AAH20823.1, respectively.
  • the polynucleotide sequence and amino acid sequence of Fc ⁇ RIIb are BC146678.1 and AAI46679.1, respectively,
  • Fc ⁇ RIIIa polynucleotide sequence and amino acid sequence are BC033678.1 and AAH33678.1, respectively
  • Fc ⁇ RIIIb polynucleotide sequence and amino acid sequence are BC128562.1 and AAI28563.1, respectively. It is listed (RefSeq registration number).
  • Fc ⁇ RIIa has two gene polymorphisms in which the 131st amino acid of Fc ⁇ RIIa is substituted with histidine (H type) or arginine (R type) (J. Exp. Med, 172, 19-25, 1990).
  • Fc ⁇ RIIb has two gene polymorphisms in which the 232nd amino acid of Fc ⁇ RIIb is replaced with isoleucine (type I) or threonine (type T) (Arthritis. Rheum. 46: 1242-1254 (2002) ).
  • Fc ⁇ RIIIa has two gene polymorphisms in which the 158th amino acid of Fc ⁇ RIIIa is substituted with valine (V type) or phenylalanine (F type) (J. Clin. Invest. 100 (5): 1059 -1070 (1997)).
  • Fc ⁇ RIIIb has two gene polymorphisms, NA1 type and NA2 type (J. Clin. Invest. 85: 1287-1295 (1990)).
  • Fc ⁇ receptor binding activity is reduced should be confirmed by well-known methods such as FACS, ELISA format, ALPHA screen (Amplified Luminescent Proximity Homogeneous Assay) and BIACORE method using surface plasmon resonance (SPR) phenomenon.
  • FACS Fluorescence Activated Cell Sorting
  • ELISA format ALPHA screen
  • SPR surface plasmon resonance
  • the ALPHA screen is implemented according to the following principle by ALPHA technology using two beads of donor and acceptor. A molecule bound to the donor bead interacts biologically with the molecule bound to the acceptor bead, and a luminescent signal is detected only when the two beads are in close proximity.
  • a photosensitizer in the donor bead excited by the laser converts ambient oxygen into excited singlet oxygen.
  • Singlet oxygen diffuses around the donor bead, and when it reaches the adjacent acceptor bead, it causes a chemiluminescence reaction in the bead, and finally light is emitted.
  • the chemiluminescence reaction does not occur because the singlet oxygen produced by the donor bead does not reach the acceptor bead.
  • an antigen-binding molecule labeled with biotin is bound to the donor bead, and an Fc ⁇ receptor tagged with glutathione S-transferase (GST) is bound to the acceptor bead.
  • GST glutathione S-transferase
  • antigen-binding molecules with wild-type Fc regions interact with Fc ⁇ receptors to produce signals of 520-620 nm.
  • An antigen-binding molecule having a mutated Fc region that is not tagged competes with the interaction between an antigen-binding molecule having a wild-type Fc region and the Fc ⁇ receptor. Relative binding affinity can be determined by quantifying the decrease in fluorescence that results from competition.
  • biotinylate antigen-binding molecules such as antibodies using Sulfo-NHS-biotin or the like.
  • a method of tagging Fc ⁇ receptor with GST it is expressed in a cell or the like holding a vector capable of expressing a fusion gene in which a polynucleotide encoding Fc ⁇ receptor and a polynucleotide encoding GST are fused in frame.
  • a method of purification using a glutathione column can be appropriately employed.
  • the obtained signal is suitably analyzed by fitting to a one-site competition model using nonlinear regression analysis using software such as GRAPHPAD PRISM (GraphPad, San Diego).
  • the Biacore system takes the shift amount, that is, the mass change at the sensor chip surface on the vertical axis, and displays the time change of mass as measurement data (sensorgram).
  • Kinetics association rate constant (ka) and dissociation rate constant (kd) are obtained from the sensorgram curve, and affinity (KD) is obtained from the ratio of the constants.
  • an inhibition measurement method is also preferably used. Examples of inhibition assays are described in Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010.
  • the fact that the binding activity to the Fc ⁇ receptor is reduced is, for example, based on the above analysis method, compared to the binding activity of the antigen-binding molecule containing the Fc region as a control, compared to the test antigen binding Binding activity of molecules is 50% or less, preferably 45% or less, 40% or less, 35% or less, 30% or less, 20% or less, 15% or less, particularly preferably 10% or less, 9% or less, 8% or less 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less, or 1% or less.
  • an antigen-binding molecule having an Fc region of IgG1, IgG2, IgG3 or IgG4 monoclonal antibody can be used as appropriate.
  • the structure of the Fc region is as follows. RefSeq registration number CAA27268.1 with an A added at the N terminus), SEQ ID NO: 4 (RefSeq registration number AAB59394.1 with an N added at the N ending).
  • an antigen-binding molecule having a variant of the Fc region of an antibody of a specific isotype is used as a test substance
  • the antigen-binding molecule having the Fc region of the antibody of the specific isotype is used as a control.
  • the effect of the mutation of the mutant on the binding activity to the Fc ⁇ receptor is verified.
  • an antigen-binding molecule having a variant of the Fc region that has been verified to have reduced binding activity to the Fc ⁇ receptor is appropriately prepared.
  • variants include deletion of amino acids 231A-238S identified according to EU numbering (WO 2009/011941), C226S, C229S, P238S, (C220S) (J. Rheumatol (2007) 34, 11), C226S, C229S (Hum.Antibod.Hybridomas (1990) 1 (1), 47-54), C226S, C229S, E233P, L234V, L235A (Blood (2007) 109, 1185-1192) It is known.
  • any one of the following amino acids specified according to EU numbering positions 220, 226, 229, 231, 232, 233, 234 , 235, 236, 237, 238, 239, 240, 264, 265, 266, 267, 269, 270, 295, 296, 297, 297, 298, 299
  • Preferred examples include antigen-binding molecules having Fc regions in which the position, position 300, position 325, position 327, position 328, position 329, position 330, position 331, and position 332 are substituted.
  • the isotype of the antibody that is the origin of the Fc region is not particularly limited, and an Fc region originating from an IgG1, IgG2, IgG3, or IgG4 monoclonal antibody can be used as appropriate, but an Fc region originating from a natural human IgG1 antibody It is preferably used.
  • amino acids constituting the Fc region of IgG1 antibody one of the following substitutions specified according to EU numbering (position of amino acid residue specified according to EU numbering, one-letter amino acid positioned before the number) The symbol is the amino acid residue before substitution, and the one-letter amino acid symbol located after the number represents the amino acid residue before substitution); (A) L234F, L235E, P331S, (B) C226S, C229S, P238S, (C) C226S, C229S, (D) C226S, C229S, E233P, L234V, L235A Or an antigen-binding molecule having an Fc region in which the amino acid sequence from positions 231 to 238 has been deleted can be used as appropriate.
  • amino acids constituting the Fc region of IgG2 antibody one of the following substitutions specified according to EU numbering (position of amino acid residue specified according to EU numbering, one-letter amino acid positioned before the number) The symbol is the amino acid residue before substitution, and the one-letter amino acid symbol located after the number represents the amino acid residue before substitution); (E) H268Q, V309L, A330S, P331S (F) V234A (G) G237A (H) V234A, G237A (I) A235E, G237A (J) V234A, A235E, G237A Antigen-binding molecules having an Fc region that has been subjected to can be used as appropriate.
  • amino acids constituting the Fc region of IgG3 antibody one of the following substitutions specified according to EU numbering (number of amino acid residue specified according to EU numbering, one-letter amino acid located before the number) The symbol is the amino acid residue before substitution, and the one-letter amino acid symbol located after the number represents the amino acid residue before substitution); (K) F241A (L) D265A (M) V264A Antigen-binding molecules having an Fc region that has been subjected to can be used as appropriate.
  • amino acids constituting the Fc region of IgG4 antibody one of the following substitutions specified according to EU numbering (position of amino acid residue specified according to EU numbering, one-letter amino acid located before the number) The symbol is the amino acid residue before substitution, and the one-letter amino acid symbol located after the number represents the amino acid residue before substitution); (N) L235A, G237A, E318A (O) L235E (P) F234A, L235A Antigen-binding molecules having an Fc region that has been subjected to can be used as appropriate.
  • any one of the following amino acids specified according to EU numbering 233, 234, 235, 236, 237, 327
  • examples include antigen-binding molecules having Fc regions in which the EU numbering is substituted with the corresponding amino acids in the corresponding IgG2 or IgG4 at positions 330, 331.
  • any one or more of the following amino acids specified according to EU numbering; positions 234, 235, and 297 are the other amino acids.
  • Preferred examples include antigen-binding molecules having an Fc region substituted with an amino acid.
  • the type of amino acid present after the substitution is not particularly limited, but an antigen-binding molecule having an Fc region in which any one or more amino acids at positions 234, 235, and 297 are substituted with alanine is particularly preferable.
  • any one of the following amino acids specified according to EU numbering; an antigen-binding molecule having an Fc region substituted at position 265 with another amino acid Preferably mentioned.
  • the type of amino acid present after the substitution is not particularly limited, but an antigen-binding molecule having an Fc region in which the amino acid at position 265 is substituted with alanine is particularly preferable.
  • a multispecific antibody containing the variable region of the antibody of the present invention can be mentioned.
  • undesired heavy chains are introduced by introducing a charge repulsion at the interface of the second constant region (CH2) of the antibody heavy chain or the third constant region (CH3) of the heavy chain.
  • a technique for suppressing the association between each other can be applied (WO2006 / 106905).
  • amino acid residues that contact at the interface of other constant regions of the H chain include, for example, EU in the CH3 region Numbering region 356, EU numbering 439th residue, EU numbering 357th residue, EU numbering 370th residue, EU numbering 399th residue, EU numbering 409th residue Can be mentioned.
  • a group to three sets of amino acid residues can be an antibody having the same kind of charge;) (1) amino acid residues contained in the H chain CH3 region, and amino acid residues at positions 356 and 439 of EU numbering; (2) Amino acid residues contained in the H chain CH3 region, amino acid residues at positions 357 and 370 of the EU numbering, and (3) Amino acid residues contained in the H chain CH3 region, comprising the EU numbering at position 399. And amino acid residue at position 409.
  • a set of amino acid residues selected from the set of amino acid residues shown in the above (1) to (3) in a second H chain CH3 region different from the first H chain CH3 region are the first H chain CH3 region.
  • the antibody may have an opposite charge to the corresponding amino acid residue in.
  • amino acid residues described in (1) to (3) above are close to each other when they are associated.
  • a person skilled in the art finds a site corresponding to the amino acid residue described in (1) to (3) above by using homology modeling using commercially available software for the desired H chain CH3 region or H chain constant region.
  • the amino acid residue at the site can be subjected to modification.
  • the “charged amino acid residue” is preferably selected from, for example, amino acid residues included in any of the following groups (a) or (b); (A) glutamic acid (E), aspartic acid (D), (B) Lysine (K), arginine (R), histidine (H).
  • “having the same kind of charge” means, for example, that two or more amino acid residues each have an amino acid residue included in any one group of (a) or (b). Means that. “Having an opposite charge” means, for example, an amino acid residue in which at least one amino acid residue of two or more amino acid residues is included in any one group of the above (a) or (b) Means that the remaining amino acid residues have amino acid residues contained in different groups.
  • the first H chain CH3 region and the second H chain CH3 region may be cross-linked by a disulfide bond.
  • the amino acid residues to be modified in the present invention are not limited to the above-described antibody variable region or antibody constant region amino acid residues. A person skilled in the art can find amino acid residues that form an interface for polypeptide variants or heterologous multimers by homology modeling using commercially available software, etc. Amino acid residues can be subjected to modification.
  • a technique for producing a bispecific antibody using two bacterial cell lines that respectively express one chain of an antibody consisting of one H chain and one L chain can also be used.
  • a light chain that forms a variable region that binds to the first epitope and a light chain that forms a variable region that binds to the second epitope are each bound to the first epitope.
  • CrossMab technology (Scaefer et al. (Proc. Natl. Acad. Sci. Sci.), Known as the association of heterogeneous light chains that associate with the heavy chain that forms the variable region and the heavy chain that forms the variable region that binds to the second epitope.
  • the heterogeneity of antibodies can be achieved by placing monoclonal antibodies substituted with specific amino acids in the heavy chain CH3 region under reducing conditions. And a method for obtaining a desired bispecific antibody.
  • Preferable amino acid substitution sites in the method include, for example, the EU numbering 392rd residue and EU numbering 397th residue in the CH3 region.
  • Dual-characteristic antibodies can also be made; (1) amino acid residues contained in the H chain CH3 region, EU numbering amino acids 356 and 439, (2) contained in the H chain CH3 region Amino acid residues, EU numbering amino acid residues at positions 357 and 370, (3) amino acid residues contained in the H chain CH3 region, EU numbering amino acid residues at positions 399 and 409.
  • a set of amino acid residues selected from the set of amino acid residues shown in the above (1) to (3) in a second H chain CH3 region different from the first H chain CH3 region One to three amino acid residues corresponding to the amino acid residue groups shown in (1) to (3) having the same kind of charge in the first H chain CH3 region are the first H chain CH3 region.
  • An antibody having a charge opposite to that of the corresponding amino acid residue in can be used to produce a dual-characteristic antibody.
  • the multispecific antibody of the present invention can also be obtained by separating and purifying the target multispecific antibody from the produced antibody. It is possible to obtain sex antibodies. For example, by introducing amino acid substitutions in the variable regions of two types of H chains and adding isoelectric point differences, a method has been reported that makes it possible to purify two types of homozygote and the desired heteroantibody by ion exchange chromatography. (WO2007114325).
  • a method for purifying heterozygotes a method for purifying a heterodimerized antibody consisting of a mouse IgG2a H chain that binds to protein A and a rat IgG2b H chain that does not bind to protein A by using protein A so far has been reported (WO98050431, WO95033844). Furthermore, by using H chains in which the amino acid residues at the 435th and 436th EU numbering, which are the binding sites of IgG and Protein A, are substituted with amino acids having different binding powers to Protein A such as Tyr and His, By changing the interaction with Protein A and using a Protein A column, it is possible to efficiently purify only the heterodimerized antibody.
  • the antigen-binding molecule of the present invention may be prepared by separately producing an antigen-binding molecule having the same amino acid sequence based on the above-described modification.
  • the amino acid sequence can be modified by various methods known in the art. These methods include, but are not limited to, site-directed mutagenesis (Hashimoto-Gotoh, T, Mizuno, T, Ogasahara, Y, and Nakagawa, M. (1995) An oligodeoxyribonucleotide- directed dual amber method for site-directed mutagenesis. Gene 152, 271-275, Zoller, MJ, and Smith, M.
  • the “antigen-binding molecule” of the present invention includes both the heavy and light chains that form the “antibody variable region” of the present invention within a single polypeptide chain, but lacks the constant region. It may be an antibody fragment. Such an antibody fragment may be, for example, a diabody (Db), a single chain antibody, or sc (Fab ′) 2.
  • Db diabody
  • Fab ′ sc
  • Db is a dimer composed of two polypeptide chains (Holliger P et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993), EP404, 097, W093 / 11161, etc.)
  • VL L chain variable region
  • VH H chain variable region
  • VL and VH encoded on the same polypeptide chain cannot form a single-chain variable region fragment due to the short linker between them, and form two antigen-binding sites by dimerization. .
  • sc (Fv) 2 is a single-chain antibody in which four variable regions of two VLs and two VHs are connected by a linker such as a peptide linker to form a single chain (J Immunol. Methods (1999) 231 (1- 2), 177-189).
  • the two VHs and VLs can be derived from different monoclonal antibodies.
  • the bispecific recognition (bispecific sc (Fv) 2) that recognizes two kinds of epitopes existing in the same antigen as disclosed in JournalJof Immunology (1994) 152 (11), 5368-5374 is also preferable.
  • sc (Fv) 2 can be produced by methods known to those skilled in the art. For example, it can be prepared by linking scFv with a linker such as a peptide linker.
  • the antigen-binding domain constituting sc (Fv) 2 is composed of two VHs and two VLs, VH, VL, VH, VL ([[ VH] Linker [VL] Linker [VH] Linker [VL]) are listed in this order, but the order of two VHs and two VLs is not particularly limited to the above configuration, They may be arranged in any order. For example, the following configuration can be given.
  • sc (Fv) 2 The molecular form of sc (Fv) 2 is also described in detail in WO2006 / 132352. Based on these descriptions, those skilled in the art will appropriately use the molecular form of the sc (Fv) 2 for the production of the antigen-binding molecule disclosed herein. It is possible to produce a desired sc (Fv) 2.
  • the antigen-binding molecule of the present invention may be conjugated with a carrier polymer such as PEG or an organic compound such as an anticancer agent. Moreover, a sugar chain addition sequence can be inserted, and a sugar chain can be suitably added for the purpose of obtaining a desired effect.
  • a peptide linker is preferable.
  • the length of the peptide linker is not particularly limited and can be appropriately selected by those skilled in the art according to the purpose. However, the preferred length is 5 amino acids or more (the upper limit is not particularly limited, but usually 30 amino acids or less, preferably Is 20 amino acids or less), particularly preferably 15 amino acids.
  • sc (Fv) 2 includes three peptide linkers, peptide linkers having the same length may be used, or peptide linkers having different lengths may be used.
  • Synthetic chemical linkers are commonly used to crosslink peptides such as N-hydroxysuccinimide (NHS), disuccinimidyl suberate (DSS), bis (sulfosuccinimidyl) Suberate (BS3), dithiobis (succinimidyl propionate) (DSP), dithiobis (sulfosuccinimidyl propionate) (DTSSP), ethylene glycol bis (succinimidyl succinate) (EGS), ethylene Glycol bis (sulfosuccinimidyl succinate) (sulfo-EGS), disuccinimidyl tartrate (DST), disulfosuccinimidyl tartrate (sulfo-DST), bis [2- (succinimideoxycarbonyloxy ) Ethyl] sulfone (BSOCOES), bis [2- (sulfosuccinimidooxycarbonyloxy) ethyl] s
  • F (ab ') 2 is two heavy chains containing two light chains and a constant region of the CH1 domain and a portion of the CH2 domain such that an interchain disulfide bond is formed between the two heavy chains including.
  • F (ab ′) 2 constituting the polypeptide aggregate disclosed in the present specification is obtained by partially digesting a full-length monoclonal antibody or the like having a desired antigen-binding domain with a proteolytic enzyme such as pepsin. It can be suitably obtained by adsorbing on a protein A column and removing it.
  • a proteolytic enzyme is not particularly limited as long as it can digest a full-length antibody so as to produce F (ab ′) 2 restrictively by appropriately setting the reaction conditions of the enzyme such as pH.
  • pepsin and ficin can be exemplified.
  • the antigen-binding molecule of the present invention can further contain additional modifications in addition to the amino acid modifications described above. Additional alterations can be selected from, for example, any of amino acid substitutions, deletions, modifications, or combinations thereof.
  • the antigen-binding molecule of the present invention can be arbitrarily modified as long as it does not substantially change the target function of the molecule. For example, such mutations can be made by conservative substitution of amino acid residues.
  • the modification gives a change to the target function of the antigen-binding molecule of the present invention, such a modification can be made as long as the change in the function is within the scope of the present invention. .
  • the modification of the amino acid sequence in the present invention includes post-translational modification.
  • post-translational modifications addition or deletion of sugar chains can be shown.
  • the antigen-binding molecule of the present invention has an IgG1-type constant region
  • the 297th amino acid residue of EU numbering can be modified with a sugar chain.
  • the sugar chain structure to be modified is not limited.
  • antibodies expressed in eukaryotic cells contain glycosylation in the constant region. Therefore, antibodies expressed in the following cells are usually modified with some sugar chain.
  • Mammalian antibody-producing cells -Eukaryotic cells transformed with an expression vector containing DNA encoding the antibody.
  • the eukaryotic cells shown here include yeast and animal cells.
  • CHO cells and HEK293H cells are representative animal cells for transformation with an expression vector containing DNA encoding an antibody.
  • those having no sugar chain modification at the position are also included in the antibody of the present invention.
  • An antibody whose constant region is not modified with a sugar chain can be obtained by expressing a gene encoding the antibody in a prokaryotic cell such as Escherichia coli.
  • a sialic acid may be added to the sugar chain of the Fc region (MAbs. 2010 2010 Sep-Oct; 2 (5): 519-27. .).
  • the antigen-binding molecule of the present invention has an Fc region portion
  • amino acid substitution J Immunol. 2006 Jan 1; 176 (1): 346-56, J Biol Chem. 2006 Aug 18 that improves the binding activity to FcRn
  • 281 (33): 23514-24. Int Immunol. 2006 Dec; 18 (12): 1759-69., Nat Biotechnol. 2010 Feb; 28 (2): 157-9.
  • WO / 2006/019447, WO / 2006/053301, WO / 2009/086320 amino acid substitution ((WO / 2009/041613)) for improving the heterogeneity and stability of the antibody may be added.
  • antibody in the present invention is used in the broadest sense, and as long as the desired biological activity is exhibited, monoclonal antibodies (including full-length monoclonal antibodies), polyclonal antibodies, antibody variants, antibody fragments, multiples Any antibody such as a specific antibody (eg, bispecific antibody), a chimeric antibody, a humanized antibody, etc. is included.
  • the antibody of the present invention is not limited to the type of antigen, the origin of the antibody, etc., and may be any antibody.
  • the origin of the antibody is not particularly limited, and examples thereof include a human antibody, a mouse antibody, a rat antibody, and a rabbit antibody.
  • Humanized antibodies are also referred to as reshaped human antibodies.
  • non-human animals for example, humanized antibodies obtained by grafting mouse antibody CDRs to human antibodies are known.
  • General genetic recombination techniques for obtaining humanized antibodies are also known.
  • Overlap-Extension-PCR is known as a method for transplanting mouse antibody CDRs into human FRs.
  • FR amino acid residues can be substituted so that the CDR of the reshaped human antibody forms an appropriate antigen-binding site.
  • amino acid sequence mutations can be introduced into FRs by applying the PCR method used for transplantation of mouse CDRs into human FRs.
  • Transgenic animals having all repertoires of human antibody genes are used as immunized animals, and desired by DNA immunization. Human antibodies can be obtained.
  • the V region of a human antibody is expressed as a single chain antibody (scFv) on the surface of the phage by the phage display method.
  • Phages expressing scFv that bind to the antigen can be selected.
  • the DNA sequence encoding the V region of the human antibody that binds to the antigen can be determined.
  • the V region sequence is fused in-frame with the sequence of the desired human antibody C region, and then inserted into an appropriate expression vector, whereby an expression vector can be prepared.
  • the human antibody is obtained by introducing the expression vector into a suitable expression cell as described above and expressing the gene encoding the human antibody.
  • These methods are already known (see International Publications WO1992 / 001047, WO1992 / 020791, WO1993 / 006213, WO1993 / 011236, WO1993 / 019172, WO1995 / 001438, WO1995 / 015388).
  • variable region constituting the antibody of the present invention can be a variable region that recognizes an arbitrary antigen.
  • the “antigen” is not particularly limited and may be any antigen.
  • antigens include 17-IA, 4-1 BB, 4Dc, 6-keto-PGF1a, 8-iso-PGF2a, 8-oxo-dG, A1 Adenosine Receptor, A33, ACE, ACE-2, Activin, Activin A, Activin AB, Activin B, Activin C, Activin RIA, Activin RIA ALK-2, Activin RIB ALK-4, Activin RIIA, Activin RIIB, ADAM, ADAM10, ADAM12, ADAM15, ADAM17 / TACE, ADAM8, ADAM9, ADAMTS, ADAMTS4, ADAMTS5, Addressins, adiponectin, ADP ribosyl cyclase-1, aFGF, AGE, ALCAM, ALK, ALK-1, ALK-7, allergen, alpha1
  • HGF Hemopoietic growth factor
  • Hep B gp120 Heparanase
  • heparin cofactor II hepatic growth factor
  • Bacillus anthracis protective antigen Hepatitis C virus E2 glycoprotein, Hepatitis E, Hepcidin, Her1, Her2 / neu ( ErbB-2), Her3 (ErbB-3), Her4 (ErbB-4), herpes simplex virus (HSV) gB glycoprotein, HGF, HGFA, High molecular weight melanoma-associated antigen (HMW-MA A), HIV envelope proteins such as GP120, HIV MIB gp 120 V3 loop, HLA, HLA-DR, HM1.24, HMFG PEM, HMGB-1, HRG, Hrk, HSP47, Hsp90
  • first antigen to which a variable region that can bind to two different antigens but cannot simultaneously bind to these antigens binds.
  • second antigen include, for example, immune cell surface molecules (eg, T cell surface molecules, NK cell surface molecules, dendritic cell surface molecules, B cell surface molecules, NKT cell surface molecules, MDSC cell surface molecules Antigens (integrin, tissue factor, VEGFR, PDGFR, EGFR, IGFR, MET chemokine receptor, heparan) expressed in normal cells, tumor cells, tumor blood vessels, stromal cells, etc.
  • immune cell surface molecules eg, T cell surface molecules, NK cell surface molecules, dendritic cell surface molecules, B cell surface molecules, NKT cell surface molecules, MDSC cell surface molecules
  • Antigens integrin, tissue factor, VEGFR, PDGFR, EGFR, IGFR, MET chemokine receptor, heparan expressed in normal cells, tumor cells, tumor blood vessels, stromal cells, etc.
  • Proteoglycan sulfate, CD44, fibronectin, DR5, TNFRSF, etc. are preferred, and the combination of “first antigen” and “second antigen” is any of the first antigen and the second antigen.
  • first antigen and second antigen is any of the first antigen and the second antigen.
  • the other antigen is preferably a molecule that is expressed on the surface of T cells or other immune cells.
  • the combination of the “first antigen” and the “second antigen” includes any one of the first antigen and the second antigen expressed specifically on T cells, for example.
  • the other antigen is a molecule that is expressed on immune cells and is different from the previously selected antigen.
  • CD3 and a T cell receptor can be mentioned as molecules specifically expressed on T cells.
  • CD3 is particularly preferable.
  • the CD3 site to which the antigen-binding molecule of the present invention binds for example, in the case of human CD3, it binds to any epitope as long as it exists in the ⁇ chain, ⁇ chain or ⁇ chain sequence constituting human CD3 It may be a thing.
  • an epitope present in the extracellular region of the ⁇ chain of the human CD3 complex is preferred.
  • the structure of the ⁇ chain, ⁇ chain, or ⁇ chain constituting CD3 is such that the polynucleotide sequence is SEQ ID NO: 83 (NM_000073.2), 85 (NM_000732.4) and 87 (NM_000733.3).
  • the sequences are described in SEQ ID NOs: 84 (NP_000064.1), 86 (NP_000723.1) and 88 (NP_000724.1) (in parentheses indicate RefSeq registration numbers).
  • Still other antigens include Fc ⁇ receptor, TLR, lectin, IgA, immune checkpoint molecule, TNF superfamily molecule, TNFR superfamily molecule, and NK receptor molecule.
  • first antigen and the “second antigen” to which the other variable region of the two variable regions of the antibody contained in the antigen-binding molecule of the present invention binds are different from the “third antigen”.
  • antigens specific to tumor cells are preferable.
  • antigens expressed as cells become malignant, abnormalities appearing on the cell surface or protein molecules when cells become cancerous.
  • Sugar chains are also included.
  • ALK receptor pleiotrophin receptor
  • pleiotrophin pleiotrophin
  • KS 1/4 pancreatic cancer antigen ovarian cancer antigen (CA125), prostatic acid phosphate, prostate specific antigen (PSA), Melanoma-associated antigen p97, melanoma antigen gp75, high molecular weight melanoma antigen (HMW-MAA), prostate specific membrane antigen, cancerous embryo antigen (CEA), polymorphic epithelial mucin antigen, human milk fat globule antigen, CEA, TAG-72 , CO17-1A, GICA 19-9, CTA-1 and LEA and other colorectal tumor associated antigens, Burkitt lymphoma antigen-38.13, CD19, human B lymphoma antigen-CD20, CD33, ganglioside GD2, ganglioside GD3, ganglioside GM2 and Tumor antigens induced by viruses such as melanoma-specific anti
  • Differentiation antigens such as I antigen found in fetal erythrocytes, early endoderm I antigen found in adult erythrocytes, pre-implantation embryo, I (Ma) found in gastric cancer, M18, M39, bone marrow cells found in mammary epithelium SSEA-1, VEP8, VEP9, Myl, VIM-D5, D156-22 found in colorectal cancer, TRA-1-85 (blood group H), SCP-1 found in testis and ovarian cancer, colon C14 found in cancer, F3 found in lung cancer, AH6 found in stomach cancer, Y hapten, Ley found in embryonic cancer cells, TL5 (blood group A), EGF receptor found in A431 cells, E1 series found in pancreatic cancer (blood group B), FC10 found in embryonic cancer cells.
  • Gastric cancer antigen CO-514 (blood group Lea) found in adenocarcinoma, NS-10, CO-43 (blood group Leb) found in adenocarcinoma, G49 found in EGF receptor of A431 cells, colon cancer MH2 (blood group ALeb / Ley), colon cancer 19.9, gastric cancer mucin, T5A7 found in bone marrow cells, R24 found in melanoma, 4.2 found in embryonic cancer cells, GD3, D1.1, OFA-1, GM2, OFA-2, GD2, and M1: 22: 25: 8 and SSEA-3 and SSEA-4, subcutaneous T-cell lymphoma antigen, MART-1 antigen found in 4-8 cell stage embryos, Sialyl Tn (STn) antigen, colon cancer antigen NY-CO-45, lung cancer antigen NY-LU-12 variant A, adenocarcinoma antigen ART1, tumor-associated brain-testis cancer antigen (cancer neuronal antigen MA2, tumor
  • the antigen-binding molecule of the present invention can be produced by methods known to those skilled in the art.
  • the antibody can be prepared by the following method, but is not limited thereto.
  • Many combinations of host cells and expression vectors for producing antibodies by introducing a gene encoding an isolated polypeptide into a suitable host are known. Any of these expression systems can be applied to isolate the antigen-binding molecule of the present invention.
  • animal cells, plant cells, or fungal cells can be used as appropriate. Specifically, the following cells can be exemplified as animal cells.
  • Mammalian cells CHO (Chinese hamster ovary cell line), COS (Monkey kidney cell line), myeloma (Sp2 / O, NS0, etc.), BHK (baby hamster kidney cell line), HEK293 (human embryonic kidney cell line) with sheared adenovirus (Ad) 5 DNA), PER.C6 cell (human embryonic retinal cell line transformed with the Adenovirus Type 5 (Ad5) E1A and E1B genes), Hela, Vero, etc. (Current Protocols in Protein Science (May, 2001 , Unit 5.9, Table 5.9.1))
  • Amphibian cells Xenopus oocytes, etc.
  • Insect cells sf9, sf21, Tn5, etc.
  • antibodies are used in Escherichia coli (mAbs 2012 Mar-Apr; 4 (2): 217-225.) And yeast (WO2000023579). ).
  • the antibody produced in E. coli has no sugar chain added.
  • sugar chains are added to antibodies produced in yeast.
  • DNA encoding the heavy chain of an antibody the DNA encoding the heavy chain in which one or more amino acid residues in the variable region are substituted with other amino acids of interest, and the DNA encoding the light chain of the antibody To express.
  • a DNA encoding a heavy chain or light chain in which one or more amino acid residues in the variable region are substituted with other amino acids of interest is, for example, an antibody prepared using a known method for an antigen. It can be obtained by obtaining a DNA encoding a variable region and appropriately introducing substitutions so that a codon encoding a specific amino acid in the region encodes another amino acid of interest.
  • a DNA encoding a protein in which one or a plurality of amino acid residues in the variable region of an antibody prepared using a known method for an antigen is substituted with another amino acid of interest.
  • the amino acid substitution site and the type of substitution are not particularly limited.
  • Preferred regions for amino acid modification include regions exposed to solvent in the variable region and loop regions. Of these, CDR1, CDR2, CDR3, FR3 region and loop region are preferable.
  • Kabat numbering 31 to 35, 50 to 65, 71 to 74, 95 to 102 of the heavy chain variable region, Kabat numbering 24 to 34, 50 to 56, 89 to 97 of the light chain variable region are preferable. More preferred are Kabat numbering 31, 52a-61, 71-74, 97-101 of the chain variable region, and Kabat numbering 24-34, 51-56, 89-96 of the L chain variable region.
  • the amino acid modification is not limited to substitution, and may be any one of deletion, addition, insertion, modification, or a combination thereof.
  • DNA encoding a heavy chain in which one or a plurality of amino acid residues in the variable region is substituted with another amino acid of interest can be produced by dividing it into partial DNAs.
  • Examples of combinations of partial DNAs include DNA encoding a variable region and DNA encoding a constant region, or DNA encoding a Fab region and DNA encoding an Fc region, but are not limited to these combinations. is not.
  • the DNA encoding the light chain can also be produced by dividing it into partial DNAs.
  • DNA encoding a heavy chain variable region is incorporated into an expression vector together with DNA encoding a heavy chain constant region to construct a heavy chain expression vector.
  • DNA encoding a light chain variable region is incorporated into an expression vector together with DNA encoding a light chain constant region to construct a light chain expression vector.
  • the DNA encoding the target antibody When the DNA encoding the target antibody is incorporated into an expression vector, it is incorporated into the expression vector so that it is expressed under the control of an expression control region such as an enhancer or promoter. Next, host cells are transformed with this expression vector to express the antibody. In that case, a combination of an appropriate host and an expression vector can be used.
  • vectors examples include M13 vectors, pUC vectors, pBR322, pBluescript, and pCR-Script.
  • pGEM-T pDIRECT, pT7 and the like can be used in addition to the above vector.
  • an expression vector is particularly useful.
  • an expression vector for example, when the host is E. coli such as JM109, DH5 ⁇ , HB101, XL1-Blue, a promoter that can be efficiently expressed in E. coli, such as the lacZ promoter (Ward et al., Nature (1989) 341). , 544-546; FASEB J. (1992) 6, 2422-2427, incorporated herein by reference in its entirety, araB promoter (Better et al., Science (1988) 240, 1041-1043, in its entirety by reference) Are incorporated herein), or have a T7 promoter or the like.
  • such vectors include pGEX-5X-1 (Pharmacia), “QIAexpress® system” (QIAGEN), pEGFP, or pET (in this case, the host expresses T7 RNA polymerase).
  • pGEX-5X-1 Pulacia
  • QIAexpress® system QIAGEN
  • pEGFP pEGFP
  • pET in this case, the host expresses T7 RNA polymerase.
  • BL21 is preferred).
  • the vector may also contain a signal sequence for polypeptide secretion.
  • the signal sequence for polypeptide secretion is the pelB signal sequence (Lei, S. P. et al J. Bacteriol. (1987) 169, 4397, which is incorporated herein by reference in its entirety when produced in the periplasm of E. coli. Built in).
  • Introduction of a vector into a host cell can be performed using, for example, the lipofectin method, the calcium phosphate method, or the DEAE-Dextran method.
  • vectors for producing the polypeptide of the present invention include mammalian-derived expression vectors (for example, pcDNA3 (manufactured by Invitrogen), pEGF-BOS® (Nucleic® Acids.® Res.
  • pEF Bacillus subtilis-derived expression vectors
  • pCDM8 Bacillus subtilis-derived expression vectors
  • insect cell-derived expression vectors eg “Bac-to-BAC baculovirus expression system” (GIBCO BRL), pBacPAK8)
  • plant-derived expression vectors eg, pMH1, pMH2
  • animal virus-derived expression vectors eg, pHSV, pMV, pAdexLcw
  • retrovirus-derived expression vectors eg, pZIPneo
  • yeast-derived expression vectors eg, “Pichia® Expression® Kit” (manufactured by Invitrogen), pNV11, SP-Q01
  • Bacillus subtilis-derived expression vectors for example, pPL608, pKTH50.
  • promoters required for expression in cells such as SV40 promoter (Mulligan et al., Nature (1979) 277, 108, incorporated herein by reference in its entirety), MMTV-LTR promoter, EF1 ⁇ promoter (Mizushima et al., Nucleic Acids Res. (1990) 18, 5322, incorporated herein in its entirety by reference), It is essential to have a CAG promoter (Gene.
  • a CMV promoter etc.
  • a gene for selecting transformed cells for example, More preferably, it has a drug resistance gene that can be discriminated by a drug (neomycin, G418, etc.).
  • examples of such a vector include pMAM, pDR2, pBK-RSV, pBK-CMV, pOPRSV, and pOP13.
  • the EBNA1 protein is co-expressed for the purpose of increasing the copy number of the gene.
  • a vector having the replication origin OriP is used. (Biotechnol Bioeng. 2001 Oct 20; 75 (2): 197-203., Biotechnol Bioeng. 2005 Sep 20; 91 (6): 670-7.)
  • a vector having a DHFR gene complementary to the CHO cell lacking the nucleic acid synthesis pathway for example, , PCHOI, etc.
  • amplifying with methotrexate (MTX) for example, COS with a gene expressing SV40 T antigen on the chromosome
  • COS with a gene expressing SV40 T antigen on the chromosome An example is a method of transforming with a vector (such as pcD) having an SV40 replication origin using cells.
  • a vector such as pcD
  • the replication origin those derived from polyoma virus, adenovirus, bovine papilloma virus (BPV) and the like can also be used.
  • the expression vectors are selectable markers: aminoglycoside transferase (APH) gene, thymidine kinase (TK) gene, E. coli xanthine guanine phosphoribosyltransferase (Ecogpt) gene, dihydrofolate reductase ( dhfr) gene and the like.
  • APH aminoglycoside transferase
  • TK thymidine kinase
  • Ecogpt E. coli xanthine guanine phosphoribosyltransferase
  • dhfr dihydrofolate reductase
  • Antibody recovery can be performed, for example, by culturing transformed cells and then separating them from the inside of the cell or the culture solution of molecularly transformed cells.
  • methods such as centrifugation, ammonium sulfate fractionation, salting out, ultrafiltration, C1q, FcRn, protein A, protein G column, affinity chromatography, ion exchange chromatography, gel filtration chromatography, etc. It can carry out in combination as appropriate.
  • Knobs-into-holes technology (WO1996 / 027011, Ridgway JB et al., Protein Engineering (1996) 9 617-621, Merchant AM et al. Nature Biotechnology (1998) 16, 677-681) and a technique (WO2006 / 106905) that suppresses undesired association of H chains by introducing charge repulsion can be applied.
  • the present invention provides a variable region of an antibody capable of binding to two different first antigens and second antigens, wherein the variable region does not bind to the first antigen and the second antigen simultaneously (first And a variable region that binds to a third antigen different from the first antigen and the second antigen (second variable region), comprising:
  • a method for producing an antigen-binding molecule of the present invention comprising the step of preparing an antigen-binding molecule library having various amino acid sequences of the first variable region.
  • a production method including the following steps can be mentioned: (i) an antigen-binding molecule in which at least one amino acid of a variable region of an antibody that binds to the first antigen or the second antigen is modified, wherein at least one of the amino acids of the modified variable region is different from each other Creating a library of antigen binding molecules comprising the region, (ii) an antigen comprising a variable region that has binding activity to the first antigen and the second antigen from the prepared library, but does not bind simultaneously with the first antigen and the second antigen; Selecting a binding molecule, (iii) culturing a host cell containing a nucleic acid encoding the variable region of the antigen-binding molecule selected in step (ii) and a nucleic acid encoding the variable region of the antigen-binding molecule that binds to the third antigen.
  • variable region of an antibody that can bind to the first antigen and the second antigen but does not bind to the first antigen and the second antigen at the same time, and a variable region that binds to the third antigen.
  • step of expressing an antigen binding molecule and (iv) recovering the antigen-binding molecule from the host cell culture.
  • step (ii) may be the following selection step: (v) Among the prepared libraries, the first antigen and the second antigen have binding activity to the first antigen and the second antigen, but are expressed on different cells, respectively. Selecting an antigen-binding molecule comprising a variable region that does not bind.
  • the antigen-binding molecule used in the step (i) is not particularly limited as long as it contains an antibody variable region, and may be an antibody fragment such as Fv, Fab, Fab ′, or an antibody containing an Fc region. There may be.
  • amino acid to be modified for example, an amino acid that does not lose the binding to the antigen by amino acid modification is selected from the variable region of the antibody that binds to the first antigen or the second antigen.
  • the amino acid modification of the present invention may be used alone or in combination.
  • the number of combinations is not particularly limited. For example, 2 or more and 30 or less, preferably 2 or more and 25 or less, 2 or more and 22 or less, 2 or more and 20 or less, 2 or more 15 or less, 2 or more and 10 or less, 2 or more and 5 or less, 2 or more and 3 or less.
  • the amino acid modification may be added only to the heavy chain variable region or the light chain variable region of the antibody, or may be appropriately distributed to both the heavy chain variable region and the light chain variable region.
  • regions for amino acid modification include a region exposed to the solvent in the variable region and a loop region.
  • CDR1, CDR2, CDR3, FR3 region and loop region are preferable.
  • Kabat numbering 31 to 35, 50 to 65, 71 to 74, 95 to 102 of the heavy chain variable region, Kabat numbering 24 to 34, 50 to 56, 89 to 97 of the light chain variable region are preferable.
  • More preferred are Kabat numbering 31, 52a-61, 71-74, 97-101 of the chain variable region, and Kabat numbering 24-34, 51-56, 89-96 of the L chain variable region.
  • the amino acids in the above-mentioned regions of the variable region of the antibody that binds to the first antigen or the second antigen are randomly modified, or a desired antigen is previously prepared. It also includes inserting a peptide known to have binding activity to the above region. In this way, variable regions that can bind to the first antigen and the second antigen but cannot bind to these antigens at the same time are selected from the modified antigen-binding molecules. Thus, the antigen-binding molecule of the present invention can be obtained.
  • Examples of peptides known to have a binding activity for a desired antigen in advance include the peptides shown in Table 1 above.
  • variable region that can bind to the first antigen and the second antigen, but cannot bind to these antigens at the same time, and either the first antigen or the second antigen is a cell If both are present alone, both are present alone, or both are present on the same cell, they can bind to both the first and second antigens simultaneously. However, according to the above-mentioned method, it can be similarly confirmed whether or not the variable region cannot be bound simultaneously when expressed on different cells.
  • the present invention provides a variable region of an antibody capable of binding to two different first antigens and second antigens, wherein the variable region does not bind to the first antigen and the second antigen simultaneously (first The antigen-binding molecule of the present invention, comprising the step of preparing an antigen-binding molecule library in which the amino acid sequence of the first variable region is diverse. Provide a way to do it.
  • Examples of the method for producing such an antigen-binding molecule include a production method including the following steps: (i) an antigen-binding molecule in which at least one amino acid of a variable region of an antibody that binds to the first antigen or the second antigen is modified, wherein at least one of the amino acids of the modified variable region is different from each other Creating a library of antigen binding molecules comprising the region, (ii) an antigen comprising a variable region that has binding activity to the first antigen and the second antigen from the prepared library, but does not bind simultaneously with the first antigen and the second antigen; Selecting a binding molecule, (iii) A host cell containing a nucleic acid encoding the variable region of the antigen-binding molecule selected in step (ii) can be cultured to bind to the first and second antigens.
  • a preferred region for the amino acid modification includes a heavy chain variable region. More preferably, a region exposed to the solvent in the variable region and a loop region are included. Of these, CDR1, CDR2, CDR3, FR3 region and loop region are preferable. Specifically, Kabat numbering 31 to 35, 50 to 65, 71 to 74, 95 to 102 of the heavy chain variable region, Kabat numbering 24 to 34, 50 to 56, 89 to 97 of the light chain variable region are preferable. More preferred are Kabat numbering 31, 52a-61, 71-74, 97-101 of the chain variable region, and Kabat numbering 24-34, 51-56, 89-96 of the L chain variable region.
  • the step (ii) may be the following selection step: (v) Among the prepared libraries, the first antigen and the second antigen have binding activity to the first antigen and the second antigen, but are expressed on different cells, respectively. Selecting an antigen-binding molecule comprising a variable region that does not bind.
  • the antigen-binding molecule used in the step (i) is not particularly limited as long as it contains an antibody variable region, and may be an antibody fragment such as Fv, Fab, Fab ′, or an antibody containing an Fc region. There may be.
  • amino acid to be modified for example, an amino acid that does not lose the binding to the antigen by amino acid modification is selected from the variable region of the antibody that binds to the first antigen or the second antigen.
  • the amino acid modification of the present invention may be used alone or in combination.
  • the number of combinations is not particularly limited. For example, 2 or more and 30 or less, preferably 2 or more and 25 or less, 2 or more and 22 or less, 2 or more and 20 or less, 2 or more 15 or less, 2 or more and 10 or less, 2 or more and 5 or less, 2 or more and 3 or less.
  • the amino acid modification may be added to either one of the heavy chain variable region or the light chain variable region of the antibody, or may be appropriately distributed and added to both the heavy chain variable region and the light chain variable region.
  • the amino acids in the above-mentioned regions of the variable region of the antibody that binds to the first antigen or the second antigen are randomly modified, or a desired antigen is previously prepared. It also includes inserting a peptide known to have binding activity to the above region. In this way, variable regions that can bind to the first antigen and the second antigen but cannot bind to these antigens at the same time are selected from the modified antigen-binding molecules. Thus, the antigen-binding molecule of the present invention can be obtained.
  • Examples of peptides known to have a binding activity for a desired antigen in advance include the peptides shown in Table 1 above.
  • variable region that can bind to the first antigen and the second antigen, but cannot bind to these antigens at the same time, and either the first antigen or the second antigen is a cell Can bind to both the first antigen and the second antigen simultaneously if the other is present alone, if both are present alone, or if both are present on the same cell.
  • antigen-binding molecules produced by the production method are also included in the present invention.
  • the type and range of amino acid modification introduced by this method is not particularly limited.
  • CD3 ( ⁇ chain, ⁇ chain or ⁇ chain constituting human CD3 in the case of human CD3) is selected as the first antigen, and CD3 and an optional second antigen And a library of antigen-binding molecules that bind to.
  • library refers to a plurality of antigen-binding molecules or a plurality of fusion polypeptides containing antigen-binding molecules, or nucleic acids and polynucleotides encoding these sequences.
  • sequences of a plurality of antigen-binding molecules or a plurality of fusion polypeptides comprising antigen-binding molecules contained in the library are not single sequences but are fusion polypeptides comprising antigen-binding molecules or antigen-binding molecules having different sequences from each other.
  • a fusion polypeptide of the antigen-binding molecule of the present invention and a heterologous polypeptide can be produced.
  • the fusion polypeptide is fused to at least a portion of a viral coat protein, such as a viral coat protein selected from the group consisting of pIII, pVIII, pVII, pIX, Soc, Hoc, gpD, pVI and variants thereof. obtain.
  • the antigen-binding molecules of the invention can be ScFv, Fab fragments, F (ab) 2 or F (ab ′) 2 , so in another embodiment, these antigen-binding molecules are heterologous.
  • a library mainly comprising a plurality of fusion polypeptides which are fusion polypeptides with polypeptides and have different sequences from each other.
  • these antigen-binding molecules and virus coat proteins such as pIII, pVIII, pVII, pIX, Soc, Hoc, gpD, pVI and at least a part of a virus coat protein selected from the group consisting of variants thereof
  • a library mainly composed of a plurality of fused polypeptides having different sequences from each other is provided.
  • the antigen binding molecule of the present invention may further comprise a dimerization domain.
  • the dimerization domain may be between the heavy or light chain variable region of an antibody and at least a portion of a viral coat protein.
  • the dimerization domain can include a sequence comprising at least one of the dimerization sequences and / or one or more cysteine residues.
  • This dimerization domain may preferably be linked to the C-terminus of the heavy chain variable region or constant region.
  • a dimerization domain depending on whether the antibody variable region is made as a fusion polypeptide component with the viral coat protein component (no amber stop codon behind the dimerization domain), or , Depending on whether the antibody variable region is made primarily without the viral coat protein component (eg, having an amber stop codon after the dimerization domain) .
  • bivalent display is provided by one or more disulfide bonds and / or a single dimerization sequence.
  • the term “differing in sequence from each other” in the description of a plurality of antigen-binding molecules having different sequences means that the sequences of individual antigen-binding molecules in the library are different from each other. That is, the number of different sequences in the library reflects the number of independent clones having different sequences in the library, and is sometimes referred to as “library size”. In a normal phage display library, the number is 10 6 to 10 12 , and the library size can be increased to 10 14 by applying a known technique such as a ribosome display method. However, the actual number of phage particles used during phage library panning selection is typically 10 to 10,000 times larger than the library size.
  • the term “different from each other” in the present invention means that the sequences of individual antigen-binding molecules in the library from which the number of library equivalents is excluded are different from each other, more specifically, antigen-binding molecules having different sequences from each other.
  • the term “consisting mainly of” in the description of the library mainly composed of a plurality of antigen-binding molecules of the present invention means that the first and / or second antigens out of the number of independent clones having different sequences in the library. This reflects the number of antigen-binding molecules that differ in the binding activity of the antigen-binding molecule. Specifically, it is preferable that at least 10 4 antigen-binding molecules exhibiting such binding activity exist in the library. More preferably, the present invention provides a library in which at least 10 5 antigen-binding molecules exhibiting such binding activity are present. More preferably, the present invention provides a library in which at least 10 6 antigen-binding molecules exhibiting such binding activity are present.
  • the present invention provides a library in which there are at least 10 7 antigen-binding molecules exhibiting such binding activity. Also preferably, the present invention provides a library in which at least 10 8 antigen-binding molecules exhibiting such binding activity are present.
  • the ratio of antigen-binding molecules having different binding activities of the antigen-binding molecule to the first and / or second antigen can be suitably expressed. .
  • the present invention provides that the antigen binding molecule exhibiting such binding activity is 0.1% to 80%, preferably 0.5% to 60%, more preferably 1% of the number of independent clones having different sequences in the library.
  • a fusion polypeptide a polynucleotide molecule or a vector
  • it can be expressed by the number of molecules or a ratio in the whole molecule as described above.
  • a virus it can be expressed by the number of virus individuals or the ratio of the whole individual as described above.
  • phage display is a technique for displaying a mutant polypeptide as a protein fused with at least a part of a coat protein on the surface of a phage, for example, a filamentous phage particle.
  • the usefulness of phage display is the ability to rapidly and efficiently select sequences that bind with high affinity to a target antigen from a large library of randomized protein variants. Display of peptide and protein libraries on phage has been utilized to screen millions of polypeptides for specific binding properties. Multivalent phage display methods have been used to display small random peptides and proteins through fusion with gene III or gene VIII of filamentous phage (Wells and Lowman (Curr. Opin. Struct. Biol.
  • phage display a library of proteins or peptides is fused to gene III or a portion thereof, and in the presence of wild type gene III protein so that the phage particles display 1 or 0 copies of the fusion protein. Expressed at low levels. Since the avidity effect is reduced compared to multivalent phage, selection is based on intrinsic ligand affinity and a phagemid vector is used, which simplifies DNA manipulation (Lowman and Wells , Methods: A Companion to Methods in Enzymology (1991) 3, 205-216).
  • “Phagemid” is a plasmid vector having a bacterial origin of replication, eg, ColE1 and a copy of the intergenic region of bacteriophage.
  • any known bacteriophage for example, filamentous bacteriophage and lambda type bacteriophage can be used as appropriate.
  • the plasmid usually also contains a selectable marker for antibiotic resistance. DNA fragments cloned into these vectors can be propagated as plasmids.
  • the plasmid replication mode changes to rolling circle replication, with one strand copy of plasmid DNA and packaged phage Generate particles.
  • Phagemids can form infectious or non-infectious phage particles.
  • the term includes a phagemid comprising a phage coat protein gene, or a fragment thereof, linked to a gene of this heterologous polypeptide as a gene fusion such that the heterologous polypeptide is displayed on the surface of the phage particle.
  • phage vector means a double-stranded replicative form of a bacteriophage containing a heterologous gene and capable of replication.
  • the phage vector has a phage origin of replication that allows phage replication and phage particle formation.
  • the phage is preferably a filamentous bacteriophage such as M13, f1, fd, Pf3 phage or a derivative thereof, or a lambda type phage such as lambda, 21, phi80, phi81, 82, 424, 434, or the like or a derivative thereof.
  • Oligonucleotides are known methods (eg, phosphotriester, phosphite, or phosphoramidite chemistry utilizing solid phase techniques such as those described in EP 266032, or Froeshler et al. (Nucl. Acids. Res. (1986) 14, 5399-5407), a short, single-stranded or double-stranded polydeoxynucleotide that is chemically synthesized by the method through a deoxynucleotide H-phosphonate intermediate). is there.
  • Other methods include the polymerase chain reaction and other autoprimer methods described below, and oligonucleotide synthesis on a solid support. All of these methods are described in Engels et al.
  • fusion protein and “fusion polypeptide” refer to a polypeptide having two parts covalently bonded to each other, each part being a polypeptide having different properties.
  • This property can be a biological property such as in vitro or in vivo activity.
  • This property can also be a single chemical or physical property, such as binding to the antigen of interest, catalysis of the reaction, and the like.
  • the two portions can be linked directly by a single peptide bond or via a peptide linker containing one or more amino acid residues.
  • the two parts and the linker are in the same reading frame.
  • the two parts of the polypeptide are derived from heterologous or different polypeptides.
  • coat protein refers to a protein in which at least part of the protein is present on the surface of the virus particle. From a functional point of view, a coat protein is any protein that binds to the viral particle during the process of virus construction in the host cell and remains associated with it until the virus infects other host cells.
  • the coat protein can be a major coat protein or a minor coat protein.
  • the minor coat protein is a coat protein normally present in the outer shell of the virus, preferably of at least about 5, more preferably at least about 7, more preferably at least about 10 or more proteins per virion. A copy exists.
  • the major coat protein can be in the tens, hundreds or thousands of copies per virion.
  • An example of a major coat protein is the p8 protein of filamentous phage.
  • the following six methods are exemplified for preparing a library.
  • 1. Inserting a peptide that binds to a second antigen (this term is used to include polypeptides and proteins) into an antigen-binding molecule that binds to the first antigen.
  • a library in which various amino acids appear at a position where a loop in the antigen-binding molecule can be modified (extended) long can be prepared, and an antigen-binding molecule having binding activity against any second antigen can be obtained.
  • an amino acid that maintains the binding activity with the first antigen is identified, 3.
  • an antibody library in which various amino acids appear at a position where a loop in the antigen-binding molecule can be modified (extended) long is created, and binding to an arbitrary second antigen is performed.
  • the glycosylation sequence (for example, NxS, NxT, where x is an amino acid other than P) is modified so that the sugar chain recognized by the sugar chain receptor is added (for example, a high-mannose sugar chain is added).
  • high mannose type sugar chains can be obtained by adding kifunensine during antibody expression (MAbs. 2012 Jul-Aug; 4 (4): 475-87)) 6). 1.2.3.
  • Cys, Lys, or a non-natural amino acid is inserted or substituted at a loop site or a site that could be modified to various amino acids, and a domain that binds to the second antigen is added by a covalent bond.
  • Fab or a variable region part of the antigen-binding molecule is preferably used as the position where the amino acid in the antigen-binding molecule is substituted or the position where the peptide is inserted into the antigen-binding molecule.
  • Preferred regions include regions exposed to solvent in the variable region and loop regions. Of these, CDR1, CDR2, CDR3, FR3 region and loop region are preferable.
  • Kabat numbering 31 to 35, 50 to 65, 71 to 74, 95 to 102 of the heavy chain variable region, Kabat numbering 24 to 34, 50 to 56, 89 to 97 of the light chain variable region are preferable. More preferred are Kabat numbering 31, 52a-61, 71-74, 97-101 of the chain variable region, and Kabat numbering 24-34, 51-56, 89-96 of the L chain variable region.
  • Method 1 As an embodiment of the method for inserting a peptide that binds to the second antigen into the antigen-binding molecule that binds to the first antigen described in Angew Chem Int Ed Engl. 2013 Aug 5; 52 (32): 8295- A method of inserting G-CSF as exemplified in 8 can also be mentioned.
  • the peptide to be inserted can be obtained from a library displaying the peptide, but it is also possible to use the whole or part of a naturally occurring protein.
  • CD3 in the case of human CD3, the ⁇ chain, ⁇ chain, or ⁇ chain that constitutes human CD3, it is considered to be involved in antigen binding. It is possible to make an amino acid modification at the site to produce a 1 amino acid modified antibody and judge. Methods known to those skilled in the art can be appropriately selected for evaluation of CD3 binding of 1 amino acid-modified antibody. For example, ELISA, FACS (fluorescence-activated cell-sorting), ALPHA screen (Amplified-Luminescent-Proximity-Homogeneous-Assay) and surface plasmon It can be measured by the BIACORE method using the resonance (SPR) phenomenon.
  • SPR resonance
  • Z (ratio of binding amount) is 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, 0.9 or more, preferably 0.8 or more, it can be considered that the binding to the antibody before modification is maintained. it can.
  • Antibody libraries can be generated such that amino acids that maintain these bonds appear.
  • ECM Extracellular matrix
  • WO2012093704A1 Extracellular matrix
  • ECM binding is evaluated according to the method of Reference Example 2, and the ECM binding value (ECL response; ECL reaction value) of each variant is determined as MRA (H chain sequence number). : 57, L chain SEQ ID NO: 58) divided by the antibody ECM binding value can be used.
  • this value can be adopted as effective up to 5 times, 6 times, 7 times, 8 times, 9 times, 10 times, 15 times, 20 times, 30 times.
  • Antibody libraries can be generated so that amino acids selected in this way appear.
  • a peptide in the library of the present invention, can be inserted into the variable region in order to enhance the diversity of the library.
  • Preferred regions for peptide insertion include regions exposed to solvent in the variable region and loop regions.
  • CDR1, CDR2, CDR3, FR3 region and loop region are preferable.
  • Kabat numbering 31 to 35, 50 to 65, 71 to 74, 95 to 102 of the heavy chain variable region, Kabat numbering 24 to 34, 50 to 56, 89 to 97 of the light chain variable region are preferable. More preferred are Kabat numbering 31, 52a-61, 71-74, 97-101 of the chain variable region, and Kabat numbering 24-34, 51-56, 89-96 of the L chain variable region. More preferred is the region of Kabat numbering 99-100 of the heavy chain variable region.
  • an amino acid that increases the binding activity with the antigen may be introduced together.
  • the length of the inserted peptide is 1 to 3 amino acids, 4 to 6 amino acids, 7 to 9 amino acids, 10 to 12 amino acids, 13 to 15 amino acids, 15 to 20 amino acids, 21
  • Examples include -25 amino acids, and preferably 1 to 3 amino acids, 4 to 6 amino acids, and 7 to 9 amino acids.
  • the examination of the insertion position and length of the peptide for enhancing the diversity of the library can be carried out by preparing a molecule into which the peptide is inserted and evaluating the CD3 binding of the molecule.
  • methods known to those skilled in the art can be selected as appropriate. For example, ELISA, FACS (fluorescence activated cell sorting), ALPHA screen (Amplified Luminescent Proximity Homogeneous Assay) or surface plasmon resonance (SPR) phenomenon is used. It can be measured by the BIACORE method.
  • an antibody library for obtaining an antibody that binds to CD3 and a second antigen can be designed as follows. Step 1: Select amino acids that retain CD3 binding ability (CD3 binding amount should be 80% or more of unmodified antibody) For example, a library for obtaining an antibody that binds to CD3 and the second antigen can be prepared so that the amino acid selected in Step 1 appears.
  • an antibody library for obtaining an antibody that binds to CD3 and a second antigen can be designed as follows.
  • Step 1 Select amino acids that retain CD3 binding ability (CD3 binding amount should be 80% or more of unmodified antibody)
  • Step 2 Insert amino acids between 99-100 (Kabat numbering) of heavy chain CDR3
  • CD3 was enhanced by inserting amino acids into the CDR3 region in Step 2 in addition to Step 1.
  • a library for obtaining antibodies that bind to the second antigen is provided as follows.
  • an antibody library for obtaining an antibody that binds to CD3 and a second antigen can be designed as follows.
  • Step 1 Select amino acids that retain CD3 binding ability (CD3 binding amount should be 80% or more of unmodified antibody)
  • Step 2 Select amino acids whose ECM binding is within 10 times compared to MRA than before modification
  • Step 3 Insert amino acids between 99-100 (Kabat numbering) of heavy chain CDR3
  • amino acids that do not enhance ECM binding can be selected for amino acids that appear in the library, but the method is not limited thereto. Even if the library design does not go through step 2, it is possible to measure and evaluate ECM binding to an antigen-binding molecule obtained from the library.
  • VH region CE115HA000 (SEQ ID NO: 52) is used as a template sequence of a CD3 (CD3 ⁇ ) -binding antibody
  • amino acids used for library design are included in the heavy chain variable region. Kabat numbering 11th, 31st, 52a, 52b, 52b, 52c, 53, 54, 56, 57, 61, 72, 78, 98, 99, 100, 100a , 100b-position, 100c-position, 100d-position, 100e-position, 100f-position, 100g-position, 101-position, any one or more amino acids, etc. can be exemplified.
  • VH region CE115HA000 (SEQ ID NO: 52) is modified with the amino acid modification of V11L / L78I is preferable, but is not limited thereto. Furthermore, the above-mentioned library in which the amino acid modification of V11L / D72A / L78I / D101Q is added to the VH region CE115HA000 (SEQ ID NO: 52) is preferable, but not limited thereto.
  • VL region GLS3000 (SEQ ID NO: 53) is used as a template sequence of a CD3 (CD3 ⁇ ) -binding antibody
  • amino acids used for library design are included in the light chain variable region. Kabat numbering 24th, 25th, 26th, 27th, 27a, 27b, 27b, 27c, 27e, 30th, 31st, 33rd, 34th, 51st, 52nd, 53rd, 54th , 55, 56, 74, 77, 89, 90, 92, 93, 94, 96, 107 may be exemplified.
  • Designing a library in the present invention means, for example, NNK, TRIM Library, etc. (Gonzalez-Munoz A et al. MAbs 2012, Lee CV et al. J Mol Biol. 2004, Knappik A. et al. J Mol Biol. 2000, Tiller T et al. ⁇ MAbs 2013) using a known library technology, an antigen-binding domain in which an amino acid at a specific site is modified to a desired amino acid or a plurality of antigen-binding molecules containing an antigen-binding domain Designing a library containing the variants is included, but is not particularly limited to this embodiment.
  • the “one or more amino acids” in the present invention are not particularly limited in the number of amino acids, and there are 2 or more amino acids, 5 or more amino acids, 10 or more amino acids, 15 or more amino acids, or 20 It may be a kind of amino acid.
  • the fusion polypeptide of the variable region of an antigen binding molecule can be presented in various ways on the surface of a cell, virus or phagemid particle. These embodiments include single chain Fv fragments (scFv), F (ab) fragments and multivalent forms of these fragments.
  • the multivalent form is preferably a dimer of ScFv, Fab or F (ab ′), which are designated herein as (ScFv) 2, F (ab) 2 and F (ab ′) 2, respectively. Is done.
  • One reason for the preference for multivalent forms is that multivalent forms can usually identify low-affinity clones or are more efficient for rare clones during the selection process. It is thought that this is a point having a plurality of antigen-binding sites that allow easy selection.
  • nucleic acid sequences encoding the light chain variable region and heavy chain variable region of the antigen binding molecule are included in this vector.
  • a nucleic acid sequence encoding the heavy chain variable region of an antigen binding molecule is fused to a viral coat protein component.
  • the nucleic acid sequence encoding the light chain variable region of the antigen binding molecule is linked to the heavy chain variable region of the antigen binding molecule by a nucleic acid sequence encoding a peptide linker.
  • Peptide linkers generally contain about 5 to 15 amino acids.
  • sequences encoding a label useful for purification or detection for example, of the nucleic acid sequence encoding either the light chain variable region of the antigen binding molecule or the heavy chain variable region of the antigen binding molecule or both. Can be fused to the 3 'end.
  • nucleic acid sequence encoding the variable region of the antigen-binding molecule and the constant region of the antigen-binding molecule is included in this vector.
  • a nucleic acid encoding a light chain variable region is fused to a nucleic acid sequence encoding a light chain constant region.
  • the nucleic acid sequence encoding the heavy chain variable region of the antigen binding molecule is fused to the nucleic acid sequence encoding the heavy chain constant CH1 region.
  • nucleic acid sequences encoding heavy chain variable regions and constant regions are fused to nucleic acid sequences encoding all or part of a viral coat protein.
  • the heavy chain variable region and constant region are preferably expressed as a fusion with at least a portion of the viral coat protein, and the light chain variable region and constant region are expressed separately from the heavy chain viral coat protein.
  • the heavy and light chains bind to each other, but the bond can be covalent or non-covalent.
  • the 3 ′ end of the nucleic acid sequence encoding the light chain constant region of the antigen binding molecule, or the heavy chain constant region of the antigen binding molecule, for example, where the other sequence encoding a polypeptide label useful for purification or detection is can be fused to either or both of the 3 ′ ends of the nucleic acid sequences encoding
  • the vector constructed as described above is introduced into the host cell for amplification and / or expression.
  • Vectors can be introduced into host cells by known transformation methods including electroporation, calcium phosphate precipitation, and the like. If the vector is an infectious particle such as a virus, the vector itself enters the host cell.
  • the fusion protein is displayed on the surface of the phage particle by transfection of the host cell with a replicable expression vector into which the polynucleotide encoding the fusion protein has been inserted and production of the phage particle by known techniques.
  • Replicable expression vectors can be introduced into host cells using a variety of methods.
  • the vector can be introduced into the cells using electroporation methods as described in WO2000106717.
  • Cells are optionally cultured in standard culture medium for approximately 6 to 48 hours (or until the OD at 600 nm is 0.6 to 0.8) at 37 ° C., and then the culture medium is centrifuged (eg, decantation). The culture supernatant is removed.
  • the cell pellet is preferably resuspended in a buffer (eg 1.0 mM HEPES (pH 7.4)). The supernatant is then removed from the suspension by another centrifugation.
  • a buffer eg 1.0 mM HEPES (pH 7.4)
  • the resulting cell pellet is resuspended, for example, in glycerin diluted to 5-20% V / V.
  • the cell pellet is obtained by removing the supernatant from the suspension again by centrifugation. Based on the measured cell concentration of the suspension obtained by resuspending the cell pellet in water or diluted glycerin, the final cell concentration is determined using water or diluted glycerin. To the desired concentration.
  • preferable recipient cells include E. coli strain SS320 (Sidhu et al. (Methods Enzymol. (2000) 328, 333-363)) having electroporation response ability.
  • E. coli strain SS320 was prepared by mating MC1061 cells with XL1-BLUE cells under conditions sufficient to transfer fertile episomes (F ′ plasmid) or XL1-BLUE to MC1061 cells. Deposit number 98795 is given to E. coli strain SS320 deposited at ATCC (10801 University Boulevard, Manassas, Virginia). Any F ′ episome that allows phage replication in this strain can be used in the present invention.
  • Suitable episomes are available from strains deposited with the ATCC, or are commercially available (TG1, TG CJ236, CSH18, DHF ', ER2738, JM101, JM103, JM105, JM107, JM109, JM110, KS1000, XL1-BLUE, 71-18 etc.).
  • the present invention provides a nucleic acid encoding the antigen-binding molecule of the present invention.
  • the nucleic acid of the present invention may be in any form such as DNA or RNA.
  • the present invention provides a vector containing the nucleic acid of the present invention.
  • the type of vector can be appropriately selected by those skilled in the art depending on the host cell into which the vector is introduced. For example, the above-described vectors can be used.
  • the present invention relates to a host cell transformed with the vector of the present invention.
  • the host cell can be appropriately selected by those skilled in the art.
  • the above-described host cell can be used.
  • the present invention also provides a pharmaceutical composition comprising the antigen-binding molecule of the present invention and a medically acceptable carrier.
  • the pharmaceutical composition of the present invention can be formulated by a known method by introducing a pharmaceutically acceptable carrier in addition to the antigen-binding molecule of the present invention. For example, it can be used parenterally in the form of a sterile solution with water or other pharmaceutically acceptable solution, or an injection of suspension.
  • a pharmacologically acceptable carrier or medium specifically, sterile water or physiological saline, vegetable oil, emulsifier, suspension, surfactant, stabilizer, flavoring agent, excipient, vehicle, preservative It is conceivable to prepare a pharmaceutical preparation by combining with a binder or the like as appropriate and mixing in a unit dosage form generally required for pharmaceutical practice.
  • silicic acid lactose, crystalline cellulose, mannitol, starch, carmellose calcium, carmellose sodium, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylacetal diethylaminoacetate, polyvinylpyrrolidone, gelatin, medium chain fatty acid triglyceride
  • the carrier include polyoxyethylene hydrogenated castor oil 60, sucrose, carboxymethylcellulose, corn starch, and inorganic salts. The amount of active ingredient in these preparations is such that an appropriate volume within the indicated range can be obtained.
  • a sterile composition for injection can be formulated in accordance with normal pharmaceutical practice using a vehicle such as distilled water for injection.
  • Aqueous solutions for injection include, for example, isotonic solutions containing physiological saline, glucose and other adjuvants such as D-sorbitol, D-mannose, D-mannitol and sodium chloride, and suitable solubilizers such as You may use together with alcohol, specifically ethanol, polyalcohol, for example, propylene glycol, polyethylene glycol, nonionic surfactant, for example, polysorbate 80 (TM), HCO-50.
  • alcohol specifically ethanol, polyalcohol, for example, propylene glycol, polyethylene glycol, nonionic surfactant, for example, polysorbate 80 (TM), HCO-50.
  • oily liquid examples include sesame oil and soybean oil, which may be used in combination with benzyl benzoate or benzyl alcohol as a solubilizing agent. Moreover, you may mix
  • the prepared injection solution is usually filled into a suitable ampoule.
  • ⁇ ⁇ Administration is preferably parenteral administration, and specific examples include injection, nasal administration, pulmonary administration, and transdermal administration. As an example of the injection form, it can be administered systemically or locally by, for example, intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, or the like.
  • the administration method can be appropriately selected depending on the age and symptoms of the patient.
  • the dose of the pharmaceutical composition containing the polypeptide or the polynucleotide encoding the polypeptide can be selected, for example, in the range of 0.0001 mg / kg to 1000 mg / kg body weight at a time. Alternatively, for example, the dose can be selected in the range of 0.001 to 100,000 mg / body per patient, but is not necessarily limited to these values.
  • the dose and administration method vary depending on the weight, age, symptoms, etc. of the patient, but can be appropriately selected by those skilled in the art.
  • the present invention also includes a method for treating cancer, the antigen-binding molecule of the present invention for use in the treatment of cancer, and a method for producing a therapeutic agent for cancer, comprising the step of administering the antigen-binding molecule of the present invention.
  • a process for producing a therapeutic agent for cancer comprising the use of an antigen binding molecule of the invention and a step of using the antigen binding molecule of the invention.
  • an IgG-type antibody when it binds to an antigen in the variable region (Fab), it can bind to one molecule of Fc ⁇ R at the same time in the Fc region, so that cells expressing the antigen and Fc ⁇ R-expressing cells Cross-linking occurs.
  • the antigen when the antigen is CD3, immune activation such as cytokine release occurs when T cells crosslink with Fc ⁇ R-expressing cells (J. Immunol. (1999) Aug 1, 163). (3), 1246-52).
  • conventional multispecific antibodies bind to a plurality of antigens at the same time.
  • the integrin ⁇ v ⁇ 3 known as an adhesion molecule
  • the integrin ⁇ v ⁇ 3 is expressed in many cancer cells and blood vessels around the tumor, making it useful as a target molecule for targeting tumors (R. Haubner, PLoS Med., 2 , e70 (2005)), but on the other hand, it is also known to be expressed in various normal cells (Thromb Haemost. 1998 Nov; 80 (5): 726-34.). Therefore, if a multispecific antibody binds to both CD3 and integrin ⁇ v ⁇ 3 simultaneously, there is a possibility that normal cells may be damaged by the strong cytotoxic activity of T cells.
  • variable (Fab) region a part of the variable (Fab) region binds to the first antigen and does not participate in the binding.
  • a variable binding region (Dual Binding Fab) binding to the second antigen was considered (FIG. 1).
  • FIG. 1 when two adjacent portions in one variable (Fab) region are essential for binding to each antigen, the binding of the second antigen occurs when the first antigen binds. Is inhibited, and similarly, when the binding of the second antigen is bound, the binding of the first antigen is inhibited.
  • the antigen (third antigen) that binds to the other variable (Fab) region undergoes a crosslinking reaction with the first antigen (FIG. 4) and also with the second antigen. (FIG. 5).
  • the constant region of the antibody an Fc region that binds to Fc ⁇ R can be used, or an Fc region with reduced binding activity to Fc ⁇ R can be used.
  • an antibody having the action shown in FIG. 1 can be created if the following properties can be imparted by improving the variable (Fab) region to form a dual binding Fab.
  • 1. It has binding activity for the first antigen. 2. It has binding activity for the second antigen. It does not bind to the first antigen and the second antigen at the same time.
  • Does not bind to the first antigen and the second antigen at the same time means that the cell expressing the first antigen and the second antigen Do not cross-link two of the cells in which are expressed, or do not simultaneously bind to the first and second antigens expressed in separate cells, respectively, and If the antigen is not expressed on the cell membrane like a soluble protein, or both are present on the same cell, they can bind to both the first and second antigens simultaneously. However, when they are expressed on different cells, they may not be able to bind at the same time.
  • variable (Fab) region by modifying the variable (Fab) region to form a dual binding Fab, if the following properties can be imparted, for example, an antibody having the action shown in FIG. 6 can be created. is there. 1. 1. has binding activity to the first antigen on T cells 2. It has binding activity for a second antigen on the antigen-presenting cell. Does not bind to the first and second antigens simultaneously
  • Example 2 Preparation of anti-human, cynomolgus monkey CD3 ⁇ antibody CE115 (2-1) Preparation of hybridoma using human CD3, cynomolgus monkey CD3-expressing cell-immunized rat SD rat (female, 6 weeks old at the start of immunization, Charles River, Japan) ) Were immunized with human CD3 ⁇ or cynomolgus monkey CD3 ⁇ -expressing Ba / F3 cells as follows. When the first immunization was taken as day 0, 5 ⁇ 10 7 human CD3 ⁇ -expressing Ba / F3 cells were intraperitoneally administered on day 0 together with Freund's complete adjuvant (Difco).
  • the fused cells were suspended in a semi-fluid medium (StemCells) to perform selective culture of the hybridoma and colonize the hybridoma.
  • StemCells semi-fluid medium
  • HAT selection medium (10% FBS / RPMI1640, 2 vol% HAT 50x concentrate (Dainippon Pharmaceutical), 5 vol% BM-Condimed H1 (Roche Diagnostics) ) was inoculated in a 96-well plate with 1 colony per well. After culturing for 3 to 4 days, the culture supernatant of each well was collected, and the rat IgG concentration in the culture supernatant was measured.
  • the chimeric antibody H chain in which the rat antibody H chain variable region and the human antibody IgG1 chain constant region are combined, and the chimeric antibody L chain gene in which the rat antibody L chain variable region and the human antibody Kappa chain constant region are combined It was integrated into a cell expression vector.
  • CE115 chimeric antibody was expressed and purified using the prepared expression vector (Reference Example 1).
  • G1d with Gly and Lys removed from the C-terminus of IgG1, A5 with D356K and H435R mutations introduced into G1d, and B3 with K439E mutation introduced into G1d as the antibody H chain constant region, and Cetuximab-VH Cetuximab-VH-G1d (SEQ ID NO: 17), Cetuximab-VH-A5 (SEQ ID NO: 18), and Cetuximab-VH-B3 (SEQ ID NO: 19) were prepared according to the method of Reference Example 1. .
  • the sequence corresponding to the H chain of the antibody having Cetuximab-VH in the variable region is shown as Cetuximab-VH-H1.
  • D356K when an amino acid modification is indicated, it is indicated as D356K.
  • the first alphabet (corresponding to D in D356K) means the alphabet when the amino acid residue before modification is shown in single letter notation, and the following number (corresponding to 356 in D356K) means the EU numbering of the modified part
  • the last alphabet (corresponding to K in D356K) means the alphabet in the case where the amino acid residue after modification is indicated by a single letter.
  • EGFR_ERY22_CE115 (FIG. 8) was prepared by replacing the VH domain and VL domain of Fab for EGFR. That is, by methods known to those skilled in the art such as PCR using a primer added with an appropriate sequence similar to the method described above, EGFR ERY22_Hk (SEQ ID NO: 20), EGFR ERY22_L (SEQ ID NO: 21), CE115_ERY22_Hh ( A series of expression vectors into which a polynucleotide encoding each of SEQ ID NO: 22) and CE115_ERY22_L (SEQ ID NO: 23) was inserted were prepared.
  • Target molecule EGFR_ERY22_CE115 -Polypeptides encoded by polynucleotides inserted into expression vectors: EGFR_ERY22_Hk, EGFR_ERY22_L, CE115_ERY22_Hh, CE115_ERY22_L
  • the mononuclear cell fraction layer was collected. After the cells of the mononuclear cell fraction were washed once with Dulbecco's Modified Eagle's Medium (SIGMA, 10% FBS / D-MEM) containing 10% FBS, the cell density was 4 ⁇ 10 6 / Prepared to 10 mL using 10% FBS / D-MEM. The cell solution thus prepared was used as a human PBMC solution in subsequent tests.
  • SIGMA Dulbecco's Modified Eagle's Medium
  • Cytotoxic activity was evaluated based on the cell growth inhibition rate using an xCELLigence real-time cell analyzer (Roche Diagnostics).
  • the target cell the SK-pca13a cell line established by forcibly expressing human EGFR in the SK-HEP-1 cell line was used.
  • SK-pca13a is detached from the dish, seeded at 100 ⁇ L / well on an E-Plate 96 plate (Roche Diagnostics) at 1 ⁇ 10 4 cells / well, and live cells using xCELLigence real-time cell analyzer Measurement was started.
  • the plate was taken out from the xCELLigence real-time cell analyzer, and 50 ⁇ L of each antibody prepared at each concentration (0.004, 0.04, 0.4, 4 nM) was added to the plate. After reacting at room temperature for 15 minutes, add 50 ⁇ L (2 ⁇ 10 5 cells / well) of the human PBMC solution prepared in (2-5-1) and reset the plate in the xCELLigence real-time cell analyzer. Cell measurement was started. The reaction was carried out under conditions of 5% carbon dioxide gas and 37 ° C., and the cell growth inhibition rate (%) was determined from the Cell Index value 72 hours after the addition of human PBMC by the following formula.
  • Cell growth inhibition rate (%) (AB) x 100 / (A-1)
  • A shows the average Cell Index value in the wells to which no antibody is added (only target cells and human PBMC), and B shows the average Cell Index value in each well. The test was performed in triplicate.
  • Dual binding Fab is a variable (Fab) region of CD3 (first antigen).
  • target antigen second antigen
  • second antigen but does not bind to CD3 (first antigen) and target antigen (second antigen) at the same time.
  • amino acid modification is usually introduced into both the two H chains or L chains.
  • the two Fabs of the antibody bind to the two antigens, respectively, so that the two Fabs and CD3 (first antigen) and the target antigen ( (Second antigen) may be simultaneously bound and cross-linked. Therefore, one Fab of the antibody is a Fab that binds to the third antigen or binds nothing, and the other Fab is a dual binding Fab, and CD3 (the first antigen) and the target antigen (the second antigen).
  • Integrin ⁇ v ⁇ 3 known as an adhesion molecule, is expressed in many cancer cells and blood vessels around the tumor From the above, it is known that it is useful as a target molecule for targeting tumors, but is also expressed in various normal cells (Thromb Haemost. 1998 Nov; 80 (5): 726-34.). Therefore, it was considered that if CD3 and integrin ⁇ v ⁇ 3 are bound simultaneously, normal cells may be damaged by the strong cytotoxic activity of T cells.
  • anti-EGFR antibody molecules could be targeted to tumor cells expressing integrin ⁇ v ⁇ 3 without damaging normal cells. That is, it binds to EGFR at one variable region (Fab), binds to CD3 as the first antigen, binds to integrin ⁇ v ⁇ 3 as the second antigen, and binds to CD3 and integrin ⁇ v ⁇ 3.
  • Fab variable region
  • Light chain variable region SEQ ID NO: 14 A heterodimerized antibody in which an RGD peptide was inserted into the heavy chain loop was prepared according to Reference Example 1. That is, a series of polynucleotides encoding any of the following together with polynucleotides encoding EGFR ERY22_Hk (SEQ ID NO: 20), EGFR ERY22_L (SEQ ID NO: 21) and CE115_ERY22_L (SEQ ID NO: 23), respectively.
  • CE115_2 ERY22_Hh (SEQ ID NO: 24, Kabat numbering 52b-53 replaced with K and N, respectively), CE115_4 ERY22_Hh (SEQ ID NO: 25, Kabat numbering 52b-54 replaced with S and N, respectively), CE115_9 ERY22_Hh (SEQ ID NO: 26, RGD inserted between Kabat numbering 52a-52b), CE115_10 ERY22_Hh (SEQ ID NO: 27, RGD inserted between Kabat numbering 52b-52c), CE115_12 ERY22_Hh (SEQ ID NO: 28, RGD inserted between Kabat numbering 72-73), CE115_17 ERY22_Hh (SEQ ID NO: 29, replacing Kabat numbering 52b-52c with K and S, respectively), CE115_47 ERY22_Hh (SEQ ID NO: 30, RGD inserted between Kabat numbering 98-99), CE115_48 ERY22_Hh (SEQ ID NO: 31, insert RGD between Kabat number
  • an antibody (EH240-Kn125 / EH240-Hl076 / L73) in which an RGD (Arg-Gly-Asp) peptide is inserted into the CH3 region of an antibody reported in J. Biotech, 155, 193-202, 2011 ; SEQ ID NO: 33/34/35) was prepared according to Reference Example 1.
  • This molecule that binds to integrin ⁇ v ⁇ 3 through the CH3 region is thought to be able to bind to CD3 and integrin ⁇ v ⁇ 3 simultaneously.
  • biotin-anti human IgG Ab (Southern biotech) diluted with a TBS solution containing 0.1% BSA and 0.1 g / L calcium chloride and 0.1 g / L magnesium chloride (denoted as a diluted (+) solution)
  • Antibody solution prepared to 5 ⁇ g / mL or 1 ⁇ g / mL and integrin ⁇ v ⁇ 3 (R & D Systems) with sulfo-tag added to Nunc-Immuno (tm) MicroWell (tm) 96 well round plates (Nunc) 25 ⁇ L each was added to each well, mixed, and then incubated overnight at 4 ° C. to form antibody-antigen complexes.
  • TBS solution referred to as blocking (+) solution
  • BSA 0.1 g / L calcium chloride
  • 0.1 g / L magnesium chloride 0.5% BSA
  • MSD streptavidin plate
  • the plate was washed 3 times with 250 ⁇ L of a TBS solution (denoted as TBS (+) solution) containing 0.1 g / L calcium chloride and 0.1 g / L magnesium chloride.
  • 75 ⁇ L of the antibody-antigen complex solution was added to each well and incubated at room temperature for 2 hours to bind biotin-anti human IgG Ab to the streptavidin plate.
  • the plate was washed 3 times with TBS (+) solution, 150 ⁇ L of READ buffer (MSD) was added to each well, and the sulfo-tag luminescence signal was detected with Sector Imager 2400 (MSD). .
  • human CD3 ⁇ homodimeric protein with biotin diluted with diluted (+) solution, antibody solution prepared at 10 ⁇ g / mL or 5 ⁇ g / mL, and integrin with sulfo-tag added Add ⁇ v ⁇ 3 (R & D Systems) to each well of Nunc-Immuno (tm) MicroWell (tm) 96 well round plates (Nunc), mix, and incubate overnight at 4 ° C for antibody-antigen complex Formed. 150 ⁇ L of blocking (+) sputum solution was added to each well of streptavidin plate (MSD) and incubated overnight at 4 ° C.
  • the plate was washed 3 times with 250 ⁇ L of a TBS (+) solution containing 0.1 g / L calcium chloride and 0.1 g / L magnesium chloride.
  • 75 ⁇ L of the antibody-antigen complex solution was added to each well and incubated at room temperature for 2 hours to bind biotin-anti human IgG Ab to streptavidin plate.
  • wash 3 times with TBS (+) solution add 150 ⁇ L of READ buffer (MSD) to each well, and detect the luminescence signal of sulfo-tag with Sector Imager 2400 (MSD). .
  • a dual binding Fab molecule that has binding activity to any second antigen by inserting a peptide having binding activity to a protein as exemplified in WO2006036834 into a loop in the Fab.
  • a peptide showing binding activity to a protein can be obtained by preparing a peptide library using a method known to those skilled in the art and selecting a peptide having a desired activity (Pasqualini R., Nature , 1996, 380 (6572): 364-6).
  • a dual binding Fab molecule having binding activity to any second antigen Is considered possible. Since the variable region for the first antigen can be obtained by various methods known to those skilled in the art, by using such a library, any first antigen and any second antigen can be obtained. It can be said that it is possible to create a dual binding Fab molecule that has binding activity to and that cannot simultaneously bind to the first antigen and the second antigen.
  • ERY22_Hk / EGFR ERY22_L / CE115_4 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_10 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_47 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_49 ERY22_Hh / CE115_ERY22_L is It was shown to bind to CD3 and integrin ⁇ v ⁇ 3 but not to CD3 and integrin ⁇ v ⁇ 3 simultaneously.
  • TLR2 human toll-like receptor 2
  • TLR2 which is known as a recognition receptor
  • TLR2 is known to be expressed in normal cells other than immune cells such as epithelial cells and endothelial cells.
  • the cancer antigen and TLR2 are simultaneously bound.
  • immune cells that express TLR2 in the tumor environment can also be recruited and activated.
  • Cancer cells injured by T cells can be activated by immune cells recruited by TLR2 and activated by processing antigens and presenting them to HLA, making T cells more active And may also induce acquired immunity.
  • CD3 and TLR2 were simultaneously bound, it was considered that immune cells and normal cells might be damaged by the strong cytotoxic activity of T cells. Therefore, if a molecule that does not bind CD3 and TLR2 at the same time can be produced, it was considered that these cells could be recruited without damaging immune cells and normal cells that express TLR2.
  • CE115 (heavy chain variable region SEQ ID NO: 13), which is a heterodimerized antibody in which one Fab is an EGFR binding domain and the other Fab is a CD3 binding domain and a TLR2 binding domain, is an antibody that binds to CD3 ⁇ .
  • Light chain variable region SEQ ID NO: 14 A heterodimerized antibody antibody in which a TRL2-binding peptide was inserted into the heavy chain loop was prepared according to Reference Example 1.
  • CE115_DU21 ERY22_Hh (SEQ ID NO: 37, TRL2-binding peptide inserted between Kabat numbering 52b-52c), CE115_DU22 ERY22_Hh (SEQ ID NO: 38, TRL2-binding peptide inserted between Kabat numbering 52b-52c), CE115_DU26 ERY22_Hh (SEQ ID NO: 39, TRL2-binding peptide inserted between Kabat numbering 72-73), CE115_DU27 ERY22_Hh (SEQ ID NO: 40, TRL2-binding peptide inserted between Kabat numbering 72-73).
  • an antibody (CE115_ERY22_DU42_Hh, SEQ ID NO: 41) having a TLR2-binding peptide added to the C-terminus of the CH3 region, and an antibody (CE115_ ERY22_DU43_Hh, SEQ ID NO: 42) was prepared according to Reference Example 1. This molecule that binds to TLR2 via the CH3 region is thought to be able to bind to CD3 and TLR2 simultaneously.
  • a dual binding Fab molecule that has binding activity to any second antigen by inserting a peptide having binding activity to a protein as exemplified in WO2006036834 into a loop in the Fab. Can be obtained.
  • a peptide showing binding activity to a protein can be obtained by preparing a peptide library using a method known to those skilled in the art and selecting a peptide having a desired activity (Pasqualini R., Nature , 1996, 380 (6572): 364-6)).
  • a dual binding Fab molecule having binding activity to any second antigen Is considered possible.
  • variable region for the first antigen can be obtained by various methods known to those skilled in the art, by using such a library, any first antigen and any second antigen can be obtained. It can be said that it is possible to create a dual binding Fab molecule that has a binding activity to the first antigen and cannot simultaneously bind to the first antigen and the second antigen.
  • Example 5 Modification of antibody for preparation of antibody that binds to CD3 and second antigen (5-1) Examination of insertion position and length of peptide capable of binding to second antigen Variable region on one side (Fab ) Binds to the cancer antigen, binds to the first antigen CD3 in the other variable region, binds to the second antigen, and does not bind to CD3 and the second antigen simultaneously.
  • Fab Fab
  • the antibody was produced according to Reference Example 1.
  • Example 6 Library design for obtaining antibodies that bind to CD3 and second antigen (6-1) Antibody library for obtaining antibodies that bind to CD3 and second antigen (also known as Dual Fab Library) Call) The following six methods are exemplified as methods for selecting CD3 (CD3 ⁇ ) as the first antigen and obtaining an antibody that binds to CD3 (CD3 ⁇ ) and any second antigen. 1. A method of inserting a peptide or polypeptide that binds to the second antigen into the Fab domain that binds to the first antigen (in addition to the peptide insertion shown in Examples 3 and 4, Angew Chem Int Ed Engl.
  • Peptides and polypeptides that bind can be obtained from libraries displaying peptides or polypeptides, but It is possible to use all or part of a naturally occurring protein. 2. As shown in Example 5, an antibody library in which various amino acids appear at a position where a loop in a Fab can be modified (extended) long and binding activity to an arbitrary second antigen is prepared. 2.
  • a method for obtaining a Fab having an antibody from an antibody library using an antigen binding activity as an index Using an antibody created by site-directed mutagenesis from a Fab domain that is known to bind to CD3 in advance, the amino acids that maintain the binding activity to CD3 are identified, and the identified amino acids appear.
  • the loop in the Fab is further modified to be longer
  • the glycosylation sequence (for example, NxS, NxT, where x is an amino acid other than P) is modified so that the sugar chain recognized by the sugar chain receptor is added (for example, a high-mannose sugar chain is added).
  • high mannose type sugar chains can be obtained by adding kifunensine during antibody expression (MAbs. 2012 Jul-Aug; 4 (4): 475-87))
  • Cys, Lys, or an unnatural amino acid is inserted or substituted at a loop site or a site that could be modified to various amino acids, and binds to a second antigen.
  • a method of covalently adding a domain (polypeptide, sugar chain, nucleic acid represented by a TLR agonist) (a method represented by an antibody drug conjugate, a method of covalently binding to Cys, Lys or an unnatural amino acid, mAbs 6: 1, 34-45; January / February 2014, WO2009 / 134891A2, Bioconjug Chem.
  • a dual binding Fab that binds to the first antigen and the second antigen and does not bind to each other at the same time is obtained, and a domain that binds to any third antigen (referred to as the other variable region, (Described in Example 1) can be combined by methods known to those skilled in the art, such as common L chain, Cross mab, Fab arm exchange method.
  • the constant region of the H chain is pE22Hh (L234A, L235A, N297A, D356C, T366S, L368A, Y407V is added to the sequence after CH1 of natural IgG1, and the GK sequence at the C terminus is deleted to obtain the DYKDDDDK sequence (sequence No .: 89) added sequence, SEQ ID NO: 54), and the K chain chain (SEQ ID NO: 55) was used as the L chain constant region.
  • the modified sites are shown in Table 3.
  • CD3 (CD3 ⁇ ) binding activity a 1 amino acid-modified antibody was obtained as a One arm antibody (an antibody lacking one Fab domain of natural IgG).
  • the modified H chain is linked to the constant region pE22Hh and Kn010G3 (the amino acid sequence after the 216th amino acid sequence of natural IgG1 is modified with C220S, Y349C, T366W, H435R , SEQ ID NO: 56) and GLS3000 in which the kappa chain is linked to the 3 ′ side, and in the case of modification of the L chain, a sequence in which the Kappa chain is linked to the 3 ′ side of the modified L chain It was expressed and purified in FreeStyle293 cells using CE115HA000 and Kn010G3 in which pE22Hh was linked to the 3 ′ side as the H chain (the method of Reference Example 1 was used).
  • Biacore T200 Evaluation Software (GE Healthcare) was used for calculation of each parameter.
  • ECM Extracellular matrix binding evaluation of 1-amino acid-modified antibody
  • ECM Extracellular matrix
  • Example 5 Examination of peptide insertion location and length to enhance library diversity
  • the peptide can be inserted without losing binding to CD3 (CD3 ⁇ ) using the GGS sequence at each location. It has been shown. If the loop can be extended in the Dual Fab Library, it will be a library that includes more types of molecules (also expressed as more diversity), and it will be possible to obtain Fab domains that bind to a variety of second antigens. It was thought to be. Therefore, since the binding activity was expected to decrease as the peptide was inserted, the V11L / D72A / L78I / D101Q modification was added to the CE115HA000 sequence so that the binding activity to CD3 ⁇ was increased.
  • Example 5 a molecule into which a GGS linker was inserted was prepared, and CD3 binding was evaluated.
  • the GGS sequence was inserted between 99-100 with Kabat numbering.
  • the antibody molecule was expressed as a One arm antibody. Specifically, the above-mentioned H chain containing a GGS linker, Kn010G3 (SEQ ID NO: 56), and a GLS3000 (SEQ ID NO: 53) and Kappa sequence (SEQ ID NO: 55) linked as the L chain are used as a reference. Expression purification was performed according to Example 1.
  • NNS base so that 6 amino acids are inserted between 99-100 (Kabat numbering) in CDR3 of the CE115HA340 sequence (SEQ ID NO: 59), which has higher CD3 ⁇ binding activity than CE115HA000, since a decrease in binding activity was expected.
  • Primers were designed using The antibody molecule was expressed as a One arm antibody. Specifically, the above-mentioned H chain including the above-mentioned modification, Kn010G3 (SEQ ID NO: 56), and a sequence in which GLS3000 (SEQ ID NO: 53) and Kappa sequence (SEQ ID NO: 55) are linked as the L chain are employed. Expression purification was performed according to Reference Example 1. The obtained modified antibody was evaluated for binding by the method described in (6-3).
  • Table 11 It has been clarified that the binding property to CD3 (CD3 ⁇ ) is maintained even when various amino acids appear in the extended amino acid site. Furthermore, Table 12 shows the results of evaluating whether or not non-specific binding is enhanced by the method shown in Reference Example 2. As a result, if a large number of amino acids having a positive charge in the side chain are contained in the extended loop of CDR3, the binding to ECM is enhanced, so there are amino acids having three or more positive charges in the side chain in the loop. It was hoped that it would not appear.
  • the antigen binding site of Fab is diversified only by steps 1 and 3, it can be a library for identifying an antigen binding molecule that binds to the second antigen. Even for library designs that do not go through step 2, ECM binding can be measured and evaluated for the obtained molecules.
  • the H chain of DualDFab Library is diversified as shown in Table 13 as the CDR of the sequence obtained by adding V11L / L78I mutation to FR (framework) of CE115HA000, and the CDR of GLS3000 is shown in Table 14 as L chain. Diversified.
  • These antibody library fragments can be synthesized by DNA synthesis methods known to those skilled in the art.
  • Dual Fab library (1) a library in which the H chain is diversified as shown in Table 13, and the L chain is fixed to the original sequence GLS3000 or the L chain with enhanced CD3 ⁇ binding described in Example 6; 2) A library in which the H chain is fixed to the original sequence (CE115HA000) or the H chain with enhanced CD3 ⁇ binding described in Example 6 and the L chain is diversified as shown in Table 14, (3) H A library can be created in which the chains are diversified as shown in Table 13 and the L chains are diversified as shown in Table 14.
  • the H chain was entrusted to a DNA 2.0 DNA synthesis company with a library sequence diversified as shown in Table 13 as a CDR to a sequence obtained by adding the V11L / L78I mutation to CE115HA000 FR (framework). DNA fragment) was obtained.
  • the obtained antibody library fragment was amplified by PCR and inserted into a phagemid for phage display. At this time, GLS3000 was selected as the L chain. Further, the constructed phagemid for phage display was introduced into E. coli by electroporation to produce E. coli having antibody library fragments.
  • Example 7 Acquisition of Fab domain binding to CD3 and second antigen (IL6R) from Dual Fab Library (7-1) Acquisition of Fab domain binding to human IL6R Dual designed and constructed in Example 6 A Fab domain (antibody fragment) that binds to human IL6R was identified from the Fab library. Using biotin-labeled human IL6R as an antigen, antibody fragments capable of binding to human IL6R were concentrated. Phage production was performed from E. coli holding the constructed phagemid for phage display. A phage library solution was obtained by diluting a population of phage precipitated by adding 2.5 M NaCl / 10% PEG to the culture solution of Escherichia coli where phage production was performed, with TBS.
  • IL6R dual antigen
  • BSA was added to the phage library solution to a final concentration of 4% BSA.
  • a panning method a panning method using an antigen immobilized on magnetic beads, which is a general method, was referred to (J. Immunol. Methods. (2008) 332 (1-2), 2-9, J. Immunol Methods. (2001) 247 (1-2), 191-203, Biotechnol. Prog. (2002) 18 (2) 212-20, Mol. Cell Proteomics (2003) 2 (2), 61-9).
  • NeutrAvidin coated beads Sera-Mag SpeedBeads NeutrAvidin-coated
  • Streptavidin coated beads Dynabeads M-280 Streptavidin
  • the phage library solution was brought into contact with the antigen at room temperature for 60 minutes. Magnetic beads blocked with BSA were added, and the antigen-phage complex was allowed to bind to the magnetic beads for 15 minutes at room temperature. The beads were washed three times with TBST (TBS containing 0.1% Tween 20, TBS manufactured by TaKaRa), and then further washed twice with 1 mL of TBS. Thereafter, the beads to which 0.5 mL of 1 mg / mL trypsin had been added were suspended at room temperature for 15 minutes, and then the beads were immediately separated using a magnetic stand, and the phage solution was recovered.
  • TST TBS containing 0.1% Tween 20, TBS manufactured by TaKaRa
  • the recovered phage solution was added to 10 mL of E. coli strain ER2738 in the logarithmic growth phase (OD600 0.4-0.5).
  • E. coli was infected with the phage by gently stirring the E. coli at 37 ° C. for 1 hour. Infected E. coli were seeded on 225 mm x 225 mm plates.
  • a phage library solution was prepared by recovering the phages from the seeded E. coli culture solution. This cycle was called panning and repeated several times. In the second and subsequent panning, 40 pmol of biotin-labeled antigen was used. In the fourth panning, phages were concentrated using CD3 binding as an index.
  • biotin-labeled CD3 ⁇ peptide antigen (amino acid sequence SEQ ID NO: 60)
  • the phage library was brought into contact with the antigen at room temperature for 60 minutes. Magnetic beads blocked with BSA were added, and the antigen-phage complex was allowed to bind to the magnetic beads for 15 minutes at room temperature. The beads were washed with 1 mL of TBS containing 0.1% Tween20 and TBS. The beads to which 0.5 mL of 1 mg / mL trypsin had been added were suspended at room temperature for 15 minutes, and then the beads were immediately separated using a magnetic stand, and the phage solution was recovered.
  • Phages recovered from the trypsinized phage solution were added to 10 mL of E. coli strain ER2738 in the logarithmic growth phase (OD600 0.4-0.7). E. coli was infected with the phage by gently stirring the E. coli at 37 ° C. for 1 hour. Infected E. coli were seeded on 225 mm x 225 mm plates. Next, the phage library solution was recovered by recovering the phage from the seeded E. coli culture solution. Furthermore, in order to prevent multiple phages from infecting a single E. coli, a phage library solution prepared from E. coli infected with the phages recovered by the fifth panning was again diluted with a 100,000-fold phage solution. To obtain a single colony.
  • StreptaWell 96 microtiter plates (Roche) were coated with 100 ⁇ L of PBS containing biotinylated antigen (biotinylated CD3 ⁇ peptide or biotinylated human IL6R) at 4 ° C. overnight or at room temperature for 1 hour. Each well of the plate was washed with PBST to remove the antigen, and then the well was blocked with 250 ⁇ L of 4% BSA-TBS for 1 hour or longer. The plate containing the culture supernatant prepared in each well from which 4% BSA-TBS has been removed is allowed to stand at room temperature for 1 hour to allow the antibody displaying the phage to bind to the antigen present in each well. It was.
  • biotinylated antigen biotinylated CD3 ⁇ peptide or biotinylated human IL6R
  • CD3 ⁇ and the second antigen (human IL6R) can be evaluated. Furthermore, whether or not CD3 ⁇ and the second antigen (human IL6R) bind at the same time can be examined by the methods described in Examples 3 and 4 and the competition method. Competitive methods, for example, show that binding to CD3 ⁇ does not bind at the same time by reducing in the presence of a second antigen than with antibody alone.
  • Example 8 Acquisition of Fab domain binding to CD3 and second antigen (human IgA) from Dual Fab Library (8-1) Acquisition of Fab domain binding to human IgA IgA is an abundant antibody in the body It is known as a molecule involved in biological defense in the intestine and mucosa, and is known to bind to Fc ⁇ R (Fc alpha Receptor) (J. Pathol. 208: 270 -282, 2006) .
  • the Fab domain (antibody fragment) that binds to human IgA was identified from the Dual Fab library designed and constructed in Example 6. The antibody fragment capable of binding to human IgA was concentrated using biotin-labeled human IgA (described in Reference Example 3) as an antigen.
  • Phage production was performed from E. coli holding the constructed phagemid for phage display.
  • a phage library solution was obtained by diluting a population of phage precipitated by adding 2.5 M NaCl / 10% PEG to the culture solution of Escherichia coli where phage production was performed, with TBS.
  • BSA was added to the phage library solution to a final concentration of 4% BSA.
  • a panning method a panning method using an antigen immobilized on magnetic beads, which is a general method, was referred to (J. Immunol. Methods. (2008) 332 (1-2), 2-9, J. Immunol Methods. (2001) 247 (1-2), 191-203, Biotechnol. Prog.
  • NeutrAvidin coated beads (Sera-Mag SpeedBeads NeutrAvidin-coated) or Streptavidin coated beads (Dynabeads M-280 Streptavidin) were used as magnetic beads. Specifically, by adding 250 pmol of biotin-labeled antigen to the prepared phage library solution, the phage library solution was brought into contact with the antigen at room temperature for 60 minutes. Magnetic beads blocked with BSA were added, and the antigen-phage complex was allowed to bind to the magnetic beads for 15 minutes at room temperature.
  • the beads were washed three times with TBST (TBS containing 0.1% Tween 20, TBS manufactured by TaKaRa), and then further washed twice with 1 mL of TBS. Thereafter, the beads to which 0.5 mL of 1 mg / mL trypsin had been added were suspended at room temperature for 15 minutes, and then the beads were immediately separated using a magnetic stand, and the phage solution was recovered. The recovered phage solution was added to 10 mL of E. coli strain ER2738 in the logarithmic growth phase (OD600 0.4-0.5). E. coli was infected with the phage by gently stirring the E. coli at 37 ° C. for 1 hour. Infected E.
  • coli were seeded on 225 mm x 225 mm plates.
  • a phage library solution was prepared by recovering the phages from the seeded E. coli culture solution. This cycle was called panning and was repeated four times.
  • human IgA was 40 pmol.
  • StreptaWell 96 microtiter plates (Roche) were coated with 100 ⁇ L PBS containing biotin-labeled antigen (biotin-labeled CD3 ⁇ peptide or biotin-labeled human IgA, Reference Example 3) at 4 ° C. overnight or at room temperature for 1 hour. Each well of the plate was washed with PBST to remove the antigen, and then the well was blocked with 250 ⁇ L of 0.1 ⁇ TBS / 150 mM NaCl / 0.02% Skim Milk for 1 hour or longer.
  • biotin-labeled antigen biotin-labeled CD3 ⁇ peptide or biotin-labeled human IgA, Reference Example 3
  • Whether or not the obtained antibody molecule having the Fab region binds to CD3 ⁇ and human IgA was determined by an electrochemiluminescence method (ECL method). Specifically, biotin-labeled CD3 ⁇ peptide (described in Example 7) or biotin-labeled human IgA (Reference Example 3) diluted with TBST solution (TaKaRa TBS plus 0.1% Tween20) and 2 ⁇ g An antibody solution prepared in 1 mL / mL and an anti-human IgG antibody (Invitrogen # 628400) with a sulfo-tag added to each well of Nunc-Immuno (tm) MicroWell (tm) 96 well round plates (Nunc) After each addition and mixing, the mixture was incubated at room temperature for 1 hour or more while protected from light to form an antibody-antigen complex.
  • ECL method electrochemiluminescence method
  • the Dual Fab Library is a library capable of obtaining a Fab domain having the ability to bind to the second antigen while retaining the ability to bind to CD3.
  • TBST solution containing 0.5% BSA referred to as blocking solution; TBST solution with 0.1% Tween20 to TKaRa TBS
  • MSD streptavidin plate
  • the plate was washed 3 times with 250 ⁇ L of TBST solution. 50 ⁇ L each of the antibody-antigen complex solution was added to each well and incubated for 1 hour at room temperature to allow the biotinylated antigen-antibody-sulfo-tag antibody complex solution to bind to the streptavidin-plate via the biotinylated antigen.
  • Dual Fab Library is a library that can acquire a Fab domain capable of binding to the second antigen while retaining the binding ability to CD3.
  • Dual Fab Library in which only the H chain was diversified was used, but usually the larger the library size (also called diversity, meaning that the library includes various sequences), Since more antigen-binding molecules can be obtained, Dual Fab Library with diversified L chains can also be used for obtaining Dual Fab molecules in the same manner as shown in this example.
  • Fab or antigen binding domain that binds to the third antigen can be obtained by a method known to those skilled in the art, for example, a binding antibody (or binding) from a hybridoma method or an antibody library.
  • the antibody having an antigen-binding domain (for example, Fab) that binds to the identified third antigen and the Fab domain of the Dual Fab molecule can be identified using a multiple domain known to those skilled in the art. Multiplexed by specific antibody production methods, for example, the method of making antibodies with two L chains shared by sharing L chains (technology to control the interface of each domain of Fc region), CrossCMab method, Fab Arm Exchange method Specific antibodies can be obtained.
  • a Dual Fab molecule can be identified, a desired multiplex can be obtained by combining the Fab that binds to the third antigen and the Dual Fab that binds to the first and second antigens shown in Example 8 by a method known to those skilled in the art. Specific antibodies can be obtained.
  • Example 8 (5) CD3 / Human IgA Dual Fab Molecule
  • a Dual Fab molecule that binds to CD3 ⁇ and human IgA and does not bind CD3 ⁇ and human IgA simultaneously is obtained.
  • an antigen-binding domain that binds to the third antigen by a method known to those skilled in the art.
  • IgA molecules modified to bind to EGFR one of the cancer antigens, were shown to induce cell death in EGFR-expressing cancer cells (J Immunol 2007; 179: 2936-2943 ).
  • Fc ⁇ R an IgA receptor
  • this dual Fab can be applied to cells expressing an arbitrary third antigen, to cells produced by cells expressing Fc ⁇ R via binding to CD3 ⁇ and T cells by binding to CD3 ⁇ and IgA. Both cytotoxic activities can be induced, and a strong cytotoxic activity can be expected.
  • Example 9 Acquisition of Fab domain binding to CD3 and second antigen (human CD154) from Dual Fab Library (9-1) Acquisition of Fab domain binding to human CD154 Designed and constructed in Example 6 A Fab domain (antibody fragment) that binds to human CD154 was identified from the Dual Fab library. Using biotin-labeled human CD154 as an antigen, antibody fragments capable of binding to human CD154 were concentrated. Phage production was performed from E. coli holding the constructed phagemid for phage display. A phage library solution was obtained by diluting a population of phage precipitated by adding 2.5 M NaCl / 10% PEG to the culture solution of Escherichia coli where phage production was performed, with TBS.
  • BSA was added to the phage library solution to a final concentration of 4% BSA.
  • a panning method a panning method using an antigen immobilized on magnetic beads, which is a general method, was referred to (J. Immunol. Methods. (2008) 332 (1-2), 2-9, J. Immunol Methods. (2001) 247 (1-2), 191-203, Biotechnol. Prog. (2002) 18 (2) 212-20, Mol. Cell Proteomics (2003) 2 (2), 61-9).
  • NeutrAvidin coated beads Sera-Mag SpeedBeads NeutrAvidin-coated
  • Streptavidin coated beads Dynabeads M-280 Streptavidin
  • the phage library solution was brought into contact with the antigen at room temperature for 60 minutes. Magnetic beads blocked with BSA were added, and the antigen-phage complex was allowed to bind to the magnetic beads for 15 minutes at room temperature. The beads were washed three times with TBST (TBS containing 0.1% Tween 20, TBS manufactured by TaKaRa), and then further washed twice with 1 mL of TBS. Thereafter, the beads to which 0.5 mL of 1 mg / mL trypsin had been added were suspended at room temperature for 15 minutes, and then the beads were immediately separated using a magnetic stand, and the phage solution was recovered.
  • TST TBS containing 0.1% Tween 20, TBS manufactured by TaKaRa
  • the recovered phage solution was added to 10 mL of E. coli strain ER2738 in the logarithmic growth phase (OD600 0.4-0.5).
  • E. coli was infected with the phage by gently stirring the E. coli at 37 ° C. for 1 hour. Infected E. coli were seeded on 225 mm x 225 mm plates.
  • a phage library solution was prepared by recovering the phages from the seeded E. coli culture solution. This cycle was called panning and was repeated 5 times. In the second and subsequent pannings, human CD154 was 40 pmol.
  • ECL method electrochemiluminescence method (ECL method) whether or not antibody molecules having Fab regions that were bound to CD3 and human CD154 in (9-2) bind to CD3 and human CD154. .
  • ECL method electrochemiluminescence method
  • 25 ⁇ L of biotinylated CD3 or biotinylated human CD154 diluted with TBST solution, 25 ⁇ L of antibody solution prepared to 2 ⁇ g / mL, and 25 ⁇ L of anti-human IgG antibody (Invitrogen® # 628400) added with sulfo-tag was added to each well of Nunc-Immuno (tm) MicroWell (tm) 96 well round plates (Nunc), mixed, and incubated at room temperature for 1 hour or more while being shielded from light to form an antibody-antigen complex.
  • TBST solution containing 0.5% BSA referred to as blocking solution; TBST solution with 0.1% Tween20 to TKaRa TBS
  • MSD streptavidin plate
  • the plate was washed 3 times with 250 ⁇ L of TBST solution. 50 ⁇ L each of the antibody-antigen complex solution was added to each well and incubated for 1 hour at room temperature to allow the biotinylated antigen-antibody-sulfo-tag antibody complex solution to bind to the streptavidin-plate via the biotinylated antigen.
  • the Dual Fab Library is a library capable of obtaining a Fab domain having the ability to bind to the second antigen while retaining the ability to bind to CD3.
  • biotinylated human CD154 25 ⁇ L diluted with TBST solution, antibody solution 12.5 ⁇ L prepared to 1 ⁇ g / mL, TBST or CD3 ⁇ homodimeric protein (9.4 pmol / ⁇ L) 12.5 for competition Add ⁇ L and 25 ⁇ L of anti-human IgG antibody added with sulfo-tag (Invitrogen) # 628400) to each well of Nunc-Immuno (tm) MicroWell (tm) 96 well round plates (Nunc). The mixture was incubated at room temperature for 1 hour or longer to form an antibody-antigen complex.
  • TBST solution containing 0.5% BSA referred to as blocking solution; TBST solution with 0.1% Tween20 to TKaRa TBS
  • MSD streptavidin plate
  • the plate was washed 3 times with 250 ⁇ L of TBST solution. 50 ⁇ L each of the antibody-antigen complex solution was added to each well and incubated for 1 hour at room temperature to allow the biotinylated antigen-antibody-sulfo-tag antibody complex solution to bind to the streptavidin-plate via the biotinylated antigen.
  • Dual Fab Library is a library that can obtain a Fab domain having the ability to bind to the second antigen while retaining the ability to bind CD3.
  • Dual Fab Library in which only the H chain was diversified was used, but usually the larger the library size (also called diversity, meaning that the library includes various sequences), Since more antigen-binding molecules can be obtained, Dual Fab Library with diversified L chains can also be used for obtaining Dual Fab molecules in the same manner as shown in this example.
  • Fab or antigen binding domain that binds to the third antigen can be obtained by methods known to those skilled in the art, for example, binding antibodies or antigen binding from hybridoma methods or antibody libraries.
  • the antibody having an antigen-binding domain (for example, Fab) that binds to the identified third antigen and the Fab domain of the Dual Fab molecule can be identified using a domain selection method. Multispecificity by the production method of sex antibody, for example, the method of making an antibody with two different H chains by sharing L chain (technology to control the interface of each domain of Fc region), Cross Mab method, Fab Arm Exchange method Sex antibodies can be obtained.
  • a Dual Fab molecule can be identified, a desired multiplex can be obtained by combining the Fab that binds to the third antigen and the Dual Fab that binds to the first and second antigens shown in Example 9 by a method known to those skilled in the art.
  • Specific antibodies can be obtained. From the above examples, it was shown that a molecule that binds to CD3 ⁇ and the second antigen can be obtained by adapting Dual Fab library to many types of antigens. Further, in Examples 8 and 9, the first antigen ( It was revealed that molecules that bind to CD3 ⁇ ) and the second antigen but do not bind to the first antigen and the second antigen simultaneously can be obtained. As described above, it is possible to identify a Fab that binds to the third antigen by a method known to those skilled in the art. Therefore, the desired antibody described in Example 1 can be obtained by using the Dual Fab library. it can.
  • Example 9 (9-5) CD3 / Human CD154 Dual Fab Molecule
  • a Dual Fab molecule that binds to CD3 ⁇ and human CD154 and does not bind CD3 ⁇ and human CD154 at the same time is obtained.
  • an antigen-binding domain that binds to the third antigen by a method known to those skilled in the art.
  • an agonist antibody of CD40 which is a receptor for CD154, enhances antitumor activity in a method of transferring cancer antigen-reactive T cells (J Immunother. 2012 Apr; 35 (3): 276-82 .).
  • a dual Fab molecule that binds to CD3 and CD154 can be constructed.
  • an antibody exhibiting agonist activity against CD40 is selected via CD154, antitumor effect via CD40 is expected. It can. That is, this dual Fab is capable of inhibiting the cytotoxic activity of T cells by binding to CD3 ⁇ and the antitumor effect of CD40 agonistic signals through binding to CD154 on cells expressing an arbitrary third antigen. An increase can be expected.
  • the antibody was purified from the obtained culture supernatant by a method known to those skilled in the art using rProtein A Sepharose TM Fast Flow (GE Healthcare).
  • the purified antibody concentration was determined by measuring the absorbance at 280 nm using a spectrophotometer, and calculating the antibody concentration using the extinction coefficient calculated by the PACE method from the obtained value (Protein Science 1995; 4: 2411- 2423).
  • ECM-immobilized plate add 150 ⁇ L of ECL Blocking Buffer (PBS with 0.5% BSA and 0.05% Tween 20) to each well, and allow to stand at room temperature for at least 2 hours or at 4 ° C. Let stand overnight.
  • the antibody sample was diluted to 9 ⁇ g / mL using PBS-T (0.05% Tween 20 added to PBS). Dilute the secondary antibody to 2 ⁇ g / mL with ECLDB (PBS plus 0.1% BSA and 0.01% Tween 20), and add 20 ⁇ L of antibody solution to the round-bottom plate in which 10 ⁇ L of ECLDB is dispensed into each well.
  • a gene fragment encoding a protein (SEQ ID NO: 80) in which human IgA-Fc and AviTag sequences are linked is incorporated into an animal cell expression vector, and the constructed plasmid vector is used in FreeStyle293 cells (Invitrogen) using 293Fectin (Invitrogen). Introduced. At this time, a gene expressing EBNA1 (SEQ ID NO: 81) and a gene expressing biotin ligase (BirA, SEQ ID NO: 82) were simultaneously introduced, and biotin was added for the purpose of biotin labeling human IgA-Fc. Cells into which the gene had been introduced were cultured for 6 days at 37 ° C.
  • the cell culture solution containing the target human IgA-Fc was filtered through a 0.22 ⁇ m bottle top filter to obtain a culture supernatant. Apply the culture supernatant diluted with the same solution to HiTrap Q HP (GE Healthcare) equilibrated with 20 mM Tris-HCl, pH 7.4, and elute the target human IgA-Fc with NaCl concentration gradient I let you.
  • HiTrap Q HP GE Healthcare
  • the HiTrap Q HP eluate diluted with the same solution was applied to a SoftLink Avidin column (Promega) equilibrated with 50 mM Tris-HCl, pH 8.0, and 5 mM biotin, 150 mM NaCl, 50
  • the target human IgA-Fc was eluted with mM Tris-HCl, pH 8.0.
  • purified humans were removed by gel filtration chromatography using Superdex200 (GE Healthcare) to remove aggregates, which were impurities of no interest, and the buffer was replaced with 20 mM Histidine-HCl, 150 mM NaCl, pH 6.0. IgA-Fc was obtained.
  • the present invention makes it possible to enhance the activity produced by antigen-binding molecules and avoid cross-linking between different cells caused by binding to antigens expressed on different cells, which are thought to cause side effects.
  • a polypeptide suitable as a pharmaceutical product is provided.

Abstract

The inventors have succeeded in creating an antigen-binding molecule containing an antibody variable region, the molecule having binding activity to a molecule expressed on the surface of T cells and to a molecule expressed on the surface of another immune cell, but not binding simultaneously to both. The present invention enables the creation of an antigen-binding molecule that can prevent side effects that can occur when T cells and other immune cells crosslink, and provides an antigen-binding molecule that is suitable as a drug.

Description

改変された抗体可変領域を含む抗原結合分子Antigen-binding molecules comprising modified antibody variable regions
 本発明は、異なる2つの抗原(第1の抗原及び第2の抗原)に結合することができるが、両抗原に同時には結合しない抗体の可変領域と、これらの抗原とは異なる第3の抗原に結合する抗体の可変領域とを含む抗原結合分子、該抗原結合分子を含む医薬組成物、ならびに、それらの製造方法を提供する。 The present invention relates to a variable region of an antibody that can bind to two different antigens (first antigen and second antigen) but does not bind to both antigens at the same time, and a third antigen different from these antigens. An antigen-binding molecule comprising an antibody variable region that binds to a pharmaceutical composition, a pharmaceutical composition comprising the antigen-binding molecule, and methods for producing them.
 抗体は血漿中での安定性が高く、副作用が少ないことから医薬品として注目されている(Nat. Biotechnol. (2005) 23, 1073-1078(非特許文献1)およびEur J Pharm Biopharm. (2005) 59 (3), 389-396(非特許文献2))。抗体は、抗原に結合する作用、アゴニスト作用やアンタゴニスト作用だけでなく、ADCC(Antibody Dependent Cytotoxicity:抗体依存性障害活性), ADCP(Antibody Dependent Cell phagocytosis:抗体依存性細胞鈍食作用), CDC(補体依存性細胞傷害活性)といったエフェクター細胞による細胞障害活性(エフェクター機能とも言う)を誘導する。特にIgG1サブクラスの抗体がエフェクター機能をがん細胞に対して示すため、がん領域において多数の抗体医薬品が開発されている。 Antibodies are attracting attention as pharmaceuticals because of their high stability in plasma and fewer side effects (Nat. Biotechnol. (2005) 23, 1073-1078 (Non-Patent Document 1) and Eur J Pharm Biopharm. (2005) 59 (3), 389-396 (Non-Patent Document 2)). Antibodies are not only antigen-binding, agonistic and antagonistic, but also ADCC (Antibody Dependent Cytotoxicity), ADCP (Antibody Dependent Cell phagocytosis), CDC (complementary) It induces cytotoxic activity (also referred to as effector function) by effector cells such as body-dependent cytotoxic activity). In particular, since IgG1 subclass antibodies exhibit effector functions on cancer cells, many antibody drugs have been developed in the oncology region.
 抗体がADCC, ADCP, CDCを発現するためには、抗体のFc領域と、NK細胞やマクロファージ等のエフェクター細胞に存在する抗体レセプター(FcγR)および各種補体成分が結合することが必須である。ヒトでは、FcγRのタンパク質ファミリーとして、FcγRIa、FcγRIIa、FcγRIIb、FcγRIIIa、FcγRIIIbのアイソフォームが報告されており、それぞれのアロタイプも報告されている(Immunol. Lett. (2002) 82, 57-65(非特許文献3))。これらのアイソフォームのうち、FcγRIa、FcγRIIa、FcγRIIIaは細胞内ドメインにITAM(Immunoreceptor Tyrosine-based Activation Motif)と呼ばれるドメインを持ち、活性化シグナルを伝達する。一方で、FcγRIIbのみが細胞内ドメインにITIM (Immunoreceptor Tyrosine-based Inhibitory Motif)と呼ばれるドメインを持ち、抑制シグナルを伝達する。いずれのFcγRも、免疫複合体などによってクロスリンクされることで、シグナルを伝達することが知られている(Nat. Rev. Immunol. (2008) 8, 34-47(非特許文献4))。実際に、抗体ががん細胞にエフェクター機能を発揮するときは、がん細胞膜上に複数個結合している抗体のFc領域でエフェクター細胞膜上のFcγRがクラスターとなり、エフェクター細胞で活性化シグナルが伝達される。その結果、殺細胞効果が発揮されるが、このときFcγRのクロスリンクはがん細胞近傍に存在するエフェクター細胞に限られることから、免疫の活性化はがん細胞局所でのみ起こることを示している。(Ann. Rev. Immunol. (1988). 6. 251-81(非特許文献5)) In order for an antibody to express ADCC, ADCP, and CDC, it is essential that the Fc region of the antibody binds to an antibody receptor (FcγR) and various complement components present in effector cells such as NK cells and macrophages. In humans, isoforms of FcγRIa, FcγRIIa, FcγRIIIb, FcγRIIIa, and FcγRIIIb have been reported as protein families of FcγR, and allotypes of each have been reported (Immunol. Lett. (2002) 82, 57-65) Patent Document 3)). Among these isoforms, FcγRIa, FcγRIIa, and FcγRIIIa have a domain called ITAM (Immunoreceptor Tyrosine-based Activation Motif) in the intracellular domain and transmit an activation signal. On the other hand, only FcγRIIb has a domain called ITIM (Immunoreceptor Tyrosine-based Inhibitory Motif) in the intracellular domain and transmits an inhibitory signal. It is known that any FcγR transmits a signal by being cross-linked by an immune complex or the like (Nat. Rev. Immunol. (2008) 8, 34-47 (Non-patent Document 4)). In fact, when an antibody exerts an effector function on a cancer cell, FcγR on the effector cell membrane forms a cluster in the Fc region of the antibody that binds to the cancer cell membrane, and an activation signal is transmitted by the effector cell. Is done. As a result, the cell killing effect is exerted, but at this time, FcγR cross-linkage is limited to effector cells existing in the vicinity of cancer cells, indicating that immune activation occurs only in the local area of cancer cells. Yes. (Ann. Rev. Immunol. (1988). 6. 251-81 (non-patent document 5))
 天然型の免疫グロブリンは、可変領域で抗原と結合し、定常領域でFcγR、FcRn、FcαR、FcεRといったレセプターや補体と結合する。IgGのFc領域で相互作用する結合分子のひとつであるFcRnは、抗体の重鎖それぞれに1分子ずつ結合するため、IgG型の抗体1分子に対して2分子のFcRnが結合することが報告されている。しかし、FcRn等とは異なり、FcγRは抗体のヒンジ領域およびCH2ドメインで相互作用し、IgG型の抗体1分子に対して1分子のみ結合する(J. Bio. Chem., (20001) 276, 16469-16477)。また、FcγRと抗体のFc領域の結合には、抗体のヒンジ領域及びCH2ドメイン内のいくつかのアミノ酸残基およびCH2ドメインに結合しているEUナンバリング297番目のAsnに付加される糖鎖が重要であることが示されている(Chem. Immunol. (1997), 65, 88-110(非特許文献6)、Eur. J. Immunol. (1993) 23, 1098-1104(非特許文献7)、Immunol. (1995) 86, 319-324(非特許文献8))。この結合箇所を中心に、これまでに様々なFcγR結合特性を持つFc領域の変異体が研究され、活性化FcγRに対するより高い結合活性を有するFc領域変異体が得られている(WO2000/042072(特許文献1)、WO2006/019447(特許文献2))。例えば、Lazarらは、ヒトIgG1のEUナンバリング239番目のSer、330のAla、332のIleをそれぞれAsn、Leu、Gluに置換することによって、ヒトFcγRIIIa(V158)に対するヒトIgG1の結合活性を約370倍まで増加させることに成功している(Proc. Natl. Acad. Sci. U. S. A. (2006) 103, 4005-4010(非特許文献9)、WO2006/019447(特許文献2))。この改変体は野生型と比べて、FcγRIIIaとFcγIIbに対する結合活性の比(A/I比)が約9倍になっている。また、ShinkawaらはEUナンバリング297番目のAsnに付加される糖鎖のフコースを欠損させることによって、FcγRIIIaに対する結合活性を約100倍まで増加させることに成功している(J. Biol. Chem. (2003) 278, 3466-3473(非特許文献10))。これらの方法によって、天然型ヒトIgG1と比較してヒトIgG1のADCC活性を大幅に向上させることが可能である。 Natural immunoglobulins bind to antigens in the variable region, and to receptors and complements such as FcγR, FcRn, FcαR, and FcεR in the constant region. FcRn, one of the binding molecules that interact in the Fc region of IgG, binds one molecule to each antibody heavy chain, and it has been reported that two molecules of FcRn bind to one IgG antibody molecule. ing. However, unlike FcRn and the like, FcγR interacts with the hinge region and CH2 domain of an antibody, and binds only to one molecule of an IgG type antibody (J. Bio. Chem., (20001) 276, 16469). -16477). In addition, for the binding of FcγR to the Fc region of an antibody, several amino acid residues in the antibody hinge region and the CH2 domain and the sugar chain added to the 297th Asn at the EU numbering binding to the CH2 domain are important. (Chem. Immunol. (1997), 65, 88-110 (non-patent document 6), Eur. J. Immunol. (1993) 23, 1098-1104 (non-patent document 7), Immunol. (1995) 86, 319-324 (Non-patent Document 8)). Centering on this binding site, various Fc region mutants having various FcγR binding properties have been studied so far, and Fc region variants having higher binding activity to activated FcγR have been obtained (WO2000 / 042072 ( Patent Document 1), WO2006 / 019447 (Patent Document 2)). For example, Lazar et al. Reduced the binding activity of human IgG1 to human FcγRIIIa (V158) by substituting the 239th Ser of EU numbering of human IgG1, the Ala of 330, and the Ile of 332 with Asn, Leu, and Glu, respectively. (Proc. こ と に Natl. Acad. Sci. U. S. A. (2006) 103, 4005-4010 (non-patent document 9), WO2006 / 019447 (patent document 2)). This variant has a binding activity ratio (A / I ratio) to FcγRIIIa and FcγIIb of about 9 times that of the wild type. In addition, Shinkawa et al. Succeeded in increasing the binding activity to FcγRIIIa to about 100 times by deleting the sugar chain fucose added to 297th Asn of EU numbering (J. Biol. Chem. ( 2003) 278, 3466-3473 (Non-Patent Document 10)). By these methods, ADCC activity of human IgG1 can be greatly improved compared to natural human IgG1.
 通常の天然型のIgG型の抗体は、その可変領域(Fab)により1つエピトープを認識して結合することから、1つの抗原にしか結合することが出来ない。一方で、がんや炎症においては多種類のタンパク質が関与することが知られており、タンパク質同士がクロストークしていることがある。たとえば免疫疾患では、いくつかの炎症性サイトカイン(TNF, IL1やIL6)が関与していることが知られている(Nat. Biotech., (2011) 28, 502-10(非特許文献11))。またがんにおいて薬剤耐性を獲得するメカニズムのひとつとして、他のレセプターが活性化することが知られている(Endocr Relat Cancer (2006) 13, 45-51(非特許文献12))。このような場合、1つのエピトープを認識する通常の抗体では、複数のタンパク質を阻害することが出来ない。 A normal natural IgG type antibody recognizes and binds to one epitope by its variable region (Fab), and therefore can bind to only one antigen. On the other hand, it is known that many types of proteins are involved in cancer and inflammation, and the proteins may have crosstalk. For example, it is known that some inflammatory cytokines (TNF, IL1 and IL6) are involved in immune diseases (Nat. Biotech., (2011) 28, 502-10 (Non-patent Document 11)). . In addition, it is known that other receptors are activated as one mechanism for acquiring drug resistance in cancer (EndocrocRelat Cancer (2006) 200613, 45-51 (Non-patent Document 12)). In such a case, a normal antibody that recognizes one epitope cannot inhibit a plurality of proteins.
 複数のターゲットを阻害する分子として、1分子で2種類以上の抗原と結合する抗体(Bispecific抗体という)が研究されている。天然型のIgG型の抗体を改良することにより、異なる2つの抗原(第1の抗原と第2の抗原)への結合活性を付与することが可能である(MAbs. (2012) Mar 1, 4(2))。そのため、2種類以上の抗原を1つの分子で中和する作用だけでなく、細胞障害活性をもつ細胞とがん細胞をクロスリンクすることで抗腫瘍活性を高める作用がある。これまでにBispecific抗体の分子形として、抗体のN末端やC末端に抗原結合部位を付加した分子(DVD-IgやscFv-IgG)や抗体の2つのFab領域が異なる配列を有する分子(共通L鎖Bispecific抗体およびハイブリッドハイブリドーマ)、ひとつのFab領域が2つの抗原を認識する分子(Two-in-one IgG)、CH3領域のループ部位を新たな抗原結合部位とした分子(Fcab)が報告されている(Nat. Rev. (2010), 10, 301-316(非特許文献13)、Peds(2010), 23(4), 289-297(非特許文献14))。いずれのBispecific抗体もFc領域でFcγRと相互作用することから、抗体のエフェクター機能は保存されている。したがって、Bispecific抗体が認識するいずれの抗原に対しても、FcγRと同時に結合し、抗原を発現している細胞に対してADCC活性を示す。 As a molecule that inhibits multiple targets, an antibody that binds to two or more types of antigens per molecule (referred to as a bispecific antibody) has been studied. It is possible to confer binding activity to two different antigens (first antigen and second antigen) by improving the natural IgG antibody (MAbs. (2012) Mar 1, 4 (2)). Therefore, it not only has the effect of neutralizing two or more antigens with a single molecule, but also has the effect of enhancing antitumor activity by cross-linking cells with cytotoxic activity with cancer cells. So far, the molecular form of Bispecific antibodies includes molecules that have added an antigen binding site to the N-terminus or C-terminus of the antibody (DVD-Ig or scFv-IgG), and molecules that have two different Fab regions (common L Chain bispecific antibodies and hybrid hybridomas), molecules that recognize two antigens in one Fab region (Two-in-one IgG), and molecules that use the CH3 region loop site as a new antigen binding site (Fcab) have been reported. (Nat. Rev. (2010), 10, 301-316 (Non-Patent Document 13), Peds (2010), 23 (4), 289-297 (Non-Patent Document 14)). Since any bispecific antibody interacts with FcγR in the Fc region, the effector function of the antibody is conserved. Therefore, any antigen recognized by the Bispecific antibody binds simultaneously with FcγR and exhibits ADCC activity against cells expressing the antigen.
 Bispecific抗体が認識する抗原がいずれもがんに特異的に発現している抗原であれば、いずれの抗原に結合してもがん細胞に対して細胞障害活性を示すため、一つの抗原を認識する通常の抗体医薬品よりも効率的な抗がん効果が期待できる。しかし、Bispecific抗体が認識する抗原のうちいずれか一つの抗原でも正常組織に発現している場合や免疫細胞に発現する細胞である場合、FcγRとのクロスリンクによって正常組織の障害やサイトカインの放出が起こる(J. Immunol. (1999) Aug 1, 163(3), 1246-52(非特許文献15))。その結果、強い副作用を誘導してしまう。 If any antigen recognized by the bispecific antibody is an antigen that is specifically expressed in cancer, it recognizes one antigen because it binds to any antigen and shows cytotoxic activity against cancer cells. Efficient anticancer effect can be expected compared to conventional antibody drugs. However, when any one of the antigens recognized by the Bispecific antibody is expressed in normal tissues or cells that are expressed in immune cells, normal tissue damage and cytokine release are caused by cross-linking with FcγR. (J.JImmunol. (1999) Aug 1, 163 (3), 1246-52 (Non-patent Document 15)). As a result, strong side effects are induced.
 例えば、T細胞に発現しているタンパク質とがん細胞に発現しているタンパク質(がん抗原)を認識するBispecific抗体として、Catumaxomabが知られている。Catumaxomabは、2つのFabでそれぞれ癌抗原(EpCAM)とT細胞に発現しているCD3ε鎖に結合する。Catumaxomabは癌抗原とCD3εが同時に結合することによって、T細胞による細胞障害活性を誘導し、がん抗原とFcγRが同時に結合することによってNK細胞やマクロファージ等の抗原提示細胞による細胞障害活性を誘導する。2つの細胞障害活性を利用することによりCatumaxomabは腹腔内投与によって悪性腹水症で高い治療効果が示されており、欧州で承認されている。(Cancer Treat Rev. (2010) Oct 36(6), 458-67(非特許文献16))さらにCatumaxomab投与によって癌細胞に対して反応する抗体が出現した例が報告され、獲得免疫が誘導されることが明らかになった(Future Oncol. (2012) Jan 8(1), 73-85(非特許文献17))。この結果からT細胞による細胞障害活性と共に、FcγRを介したNK細胞やマクロファージなどの細胞による作用の両者を持つ抗体(特にtrifunctional抗体と呼ぶ)は強い抗腫瘍効果と獲得免疫誘導が期待できるため注目されている。 For example, Catumaxomab is known as a Bispecific antibody that recognizes a protein expressed in T cells and a protein (cancer antigen) expressed in cancer cells. Catumaxomab binds to the CD3ε chain expressed in cancer antigen (EpCAM) and T cells by two Fabs, respectively. Catumaxomab induces cytotoxic activity by T cells by simultaneously binding cancer antigen and CD3ε, and induces cytotoxic activity by antigen-presenting cells such as NK cells and macrophages by simultaneously binding cancer antigen and FcγR. . By utilizing two cytotoxic activities, Catumaxomab has been shown to be highly therapeutic in malignant ascites by intraperitoneal administration and has been approved in Europe. (Cancer Reat Rev. (2010) Oct 36 (6), 67 458-67 (Non-patent Document 16)) Furthermore, an example of an antibody that reacts against cancer cells by the administration of Catumaxomab has been reported, and acquired immunity is induced (Future Oncol. (2012) Jan 8 (1), 73-85 (Non-patent Document 17)). From these results, antibodies that have both cytotoxic activity by T cells and actions by cells such as NK cells and macrophages via FcγR (especially called trifunctional antibodies) are expected to have strong antitumor effects and induction of acquired immunity. Has been.
 しかし、trifunctional抗体はがん抗原が存在しない場合でも、CD3εとFcγRが同時に結合するため、がん細胞が存在しない環境でもCD3εを発現しているT細胞とFcγRを発現している細胞がクロスリンクされ、各種サイトカインが大量に産生される。このようながん抗原非依存的な各種サイトカインの産生誘導により、trifunctional抗体の投与は現状、腹腔内に限定されており(Cancer Treat Rev. 2010 Oct 36(6), 458-67(非特許文献16))、重篤なサイトカインストーム様の副作用により全身投与は極めて困難である(Cancer Immunol Immunother. 2007 Sep;56(9):1397-406(非特許文献18))。
 また、従来技術のBispecific抗体では、一つ目の抗原であるがん抗原(EpCAM)と二つ目の抗原であるCD3εの両方の抗原がFcγRと同時に結合し得るため、FcγRと2つ目の抗原のCD3εの同時結合によるこのような副作用を回避することは分子構造的に不可能である。
However, since trifunctional antibody binds CD3ε and FcγR simultaneously even in the absence of cancer antigen, CD3ε-expressing T cells and FcγR-expressing cells are cross-linked even in the absence of cancer cells. And various cytokines are produced in large quantities. Due to the induction of production of various cytokines independent of cancer antigens, the administration of trifunctional antibodies is currently limited to the abdominal cavity (Cancer Treat Rev. 2010 Oct 36 (6), 458-67 (non-patent literature) 16)), systemic administration is extremely difficult due to serious cytokine storm-like side effects (Cancer Immunol Immunother. 2007 Sep; 56 (9): 1397-406 (Non-patent Document 18)).
In addition, in the bispecific antibody of the prior art, both the antigen of cancer antigen (EpCAM) as the first antigen and the antigen of CD3ε as the second antigen can bind simultaneously with FcγR. It is molecularly impossible to avoid such side effects due to simultaneous binding of antigen CD3ε.
 近年、FcγRに対する結合活性を低減させたFc領域を用いることで、副作用を回避しつつ、T細胞による細胞傷害活性を起こすような改良型抗体が提供されている(WO2012/073985)。
 しかしながら、このような抗体でも、分子構造的に、がん抗原に結合しつつCD3εとFcγRの2つの免疫レセプターに作用することはできない。
 これまで、副作用を回避しつつ、癌抗原特異的に、T細胞による細胞障害活性とT細胞以外の細胞による細胞傷害活性の両方を作用させることのできる抗体は知られていない。
In recent years, there has been provided an improved antibody that causes cytotoxic activity by T cells while avoiding side effects by using an Fc region with reduced binding activity to FcγR (WO2012 / 073985).
However, even such an antibody cannot act on two immune receptors, CD3ε and FcγR, while binding to a cancer antigen in terms of molecular structure.
Until now, no antibody has been known that can cause both cytotoxic activity by T cells and cytotoxic activity by cells other than T cells in a cancer antigen-specific manner while avoiding side effects.
WO2000/042072WO2000 / 042072 WO2006/019447WO2006 / 019447
 本発明はこのような状況に鑑みて為されたものであり、その課題は、1つの可変領域が、異なる2つの抗原(第1の抗原と第2の抗原)に対して結合活性を有するが、これらの抗原に同時には結合しない抗体の可変領域と、これらの抗原とは異なる抗原(第3の抗原)に結合する可変領域とを含む抗原結合分子、該抗原結合分子を含む医薬組成物、並びに該抗原結合分子の製造方法を提供することにある。 The present invention has been made in view of such circumstances, and the problem is that one variable region has binding activity to two different antigens (first antigen and second antigen). An antigen-binding molecule comprising a variable region of an antibody that does not bind to these antigens simultaneously and a variable region that binds to an antigen different from these antigens (third antigen), a pharmaceutical composition comprising the antigen-binding molecule, The present invention also provides a method for producing the antigen-binding molecule.
 本発明者らは上記課題を解決するために鋭意研究を行った。その結果、本発明者らは、1つの可変領域が、異なる2つの抗原(第1の抗原と第2の抗原)に対して結合活性を有するが、これらの抗原に同時には結合しない抗体の可変領域と、これらの抗原とは異なる抗原(第3の抗原)に結合する可変領域とを含む抗原結合分子を作製し、当該抗原結合分子の3つの異なる抗原に対する結合活性を利用することで、抗原結合分子により生じる活性を増強させることに成功した。さらに、これまでの多重特異性抗原結合分子を医薬品として利用した場合に、副作用の原因となると考えられる、異なる細胞上で発現している抗原と結合することによって生じる当該異なる細胞間の架橋を回避することが可能な抗原結合分子を作製することに成功した。 The present inventors have conducted intensive research to solve the above problems. As a result, the present inventors have shown that variable regions of an antibody in which one variable region has binding activity to two different antigens (first antigen and second antigen) but does not bind to these antigens simultaneously. An antigen-binding molecule comprising a region and a variable region that binds to an antigen different from these antigens (third antigen), and utilizing the binding activity of the antigen-binding molecule to three different antigens, We have succeeded in enhancing the activity generated by the binding molecules. Furthermore, when using multispecific antigen-binding molecules so far as pharmaceuticals, it avoids cross-linking between the different cells caused by binding to antigens expressed on different cells, which may cause side effects. Succeeded in producing an antigen-binding molecule capable of
 より具体的には、本発明は、以下に関する。
〔1〕第1の抗原および該第1の抗原とは異なる第2の抗原に結合することができるが、第1の抗原と第2の抗原に同時には結合しない、抗体の可変領域、並びに
 該第1の抗原および第2の抗原とは異なる第3の抗原に結合する可変領域
を含む、抗原結合分子。
〔2〕第1の抗原および該第1の抗原とは異なる第2の抗原に結合することができるが、第1の抗原と第2の抗原に同時には結合しないように、重鎖可変領域のアミノ酸が改変された抗体の可変領域を含む、抗原結合分子。
〔3〕第1の抗原と第2の抗原に同時には結合しない可変領域が、それぞれ異なる細胞上で発現している第1の抗原と第2の抗原に同時には結合しない可変領域である、〔1〕又は〔2〕に記載の抗原結合分子。
〔4〕さらに、抗体のFc領域を含む、〔1〕から〔3〕のいずれかに記載の抗原結合分子。
〔5〕Fc領域のFcγRに対する結合活性が、天然型ヒトIgG1抗体のFc領域と比較して低下しているFc領域である、〔4〕に記載の抗原結合分子。
〔6〕多重特異性抗体である、〔1〕から〔5〕のいずれかに記載の抗原結合分子。
〔7〕第1の抗原と第2の抗原に結合することができる抗体の可変領域が、少なくとも1つのアミノ酸の改変が導入されている可変領域である、〔1〕から〔6〕のいずれかに記載の抗原結合分子。
〔8〕前記改変が、少なくとも1つのアミノ酸の置換又は挿入である、〔7〕に記載の抗原結合分子。
〔9〕前記改変が、第1の抗原に結合する可変領域のアミノ酸配列の一部の、第2の抗原に結合するアミノ酸配列への置換、又は、第1の抗原に結合する可変領域のアミノ酸配列への、第2の抗原に結合するアミノ酸配列の挿入である、〔7〕又は〔8〕に記載の抗原結合分子。
〔10〕挿入されるアミノ酸の数が1~25個である、〔8〕又は〔9〕に記載の抗原結合分子。
〔11〕改変されるアミノ酸が、抗体の可変領域のCDR1、CDR2、CDR3又はFR3領域のアミノ酸である、〔7〕から〔10〕のいずれかに記載の抗原結合分子。
〔12〕改変されるアミノ酸が、ループ領域のアミノ酸である、〔7〕から〔11〕のいずかに記載の抗原結合分子。
〔13〕改変されるアミノ酸が、抗体のH鎖可変領域のKabatナンバリング31~35、50~65、71~74及び95~102、L鎖可変領域のKabatナンバリング24~34、50~56及び89~97から選ばれる少なくとも1つのアミノ酸である、〔7〕から〔11〕のいずれかに記載の抗原結合分子。
〔14〕第1の抗原又は第2の抗原のいずれか1つが、T細胞表面に特異的に発現している分子であり、他方の抗原が、T細胞又は他の免疫細胞表面に発現している分子である、〔1〕から〔13〕のいずれかに記載の抗原結合分子。
〔15〕第1の抗原又は第2の抗原のいずれか1つがCD3であり、他方の抗原がFcγR、TLR、レクチン、IgA、免疫チェックポイント分子、TNFスーパーファミリー分子、TNFRスーパーファミリー分子又はNKレセプター分子である、〔14〕に記載の抗原結合分子。
〔16〕第3の抗原が、がん組織特異的に発現している分子である、〔14〕又は〔15〕に記載の抗原結合分子。
〔17〕〔1〕から〔16〕のいずれかに記載の抗原結合分子及び医学的に許容し得る担体を含む、医薬組成物。
〔18〕〔1〕から〔16〕のいずれかに記載の抗原結合分子を製造する方法であって、工程(i)~(iv)を含む方法:
(i)第1の抗原又は第2の抗原に結合する抗体の可変領域の少なくとも1つのアミノ酸が改変された抗原結合分子であって、該改変された可変領域のアミノ酸の少なくとも1つが互いに異なる可変領域を含む抗原結合分子のライブラリーを作製する工程、
(ii)作製されたライブラリーの中から、第1の抗原及び第2の抗原に対して結合活性を有するが、該第1の抗原及び第2の抗原と同時には結合しない可変領域を含む抗原結合分子を選択する工程、
(iii)工程(ii)で選択された抗原結合分子の該可変領域をコードする核酸、及び/または、第3の抗原に結合する抗原結合分子の可変領域をコードする核酸とを含む宿主細胞を培養して、第1の抗原と第2の抗原に結合することができるが該第1の抗原と第2の抗原とが同時には結合しない抗体の可変領域、及び/または、第3の抗原に結合する可変領域を含む、抗原結合分子を発現させる工程、並びに
(iv)前記宿主細胞培養物から抗原結合分子を回収する工程。
〔19〕工程(ii)において選択する抗原結合分子に含まれる、第1の抗原と第2の抗原に同時には結合しない可変領域が、それぞれ異なる細胞上で発現している第1の抗原と第2の抗原に同時には結合しない可変領域である、〔18〕に記載の製造方法。
〔20〕工程(iii)において培養する宿主細胞が、抗体のFc領域をコードする核酸をさらに含む、〔18〕又は〔19〕に記載の製造方法。
〔21〕Fc領域のFcγRに対する結合活性が、天然型ヒトIgG1抗体のFc領域と比較して低下しているFc領域である、〔20〕に記載の製造方法。
〔22〕製造する抗原結合分子が多重特異性抗体である、〔18〕から〔21〕のいずれかに記載の製造方法。
〔23〕工程(i)における、可変領域の少なくとも1つの改変されたアミノ酸が、置換又は挿入されたアミノ酸である、〔18〕から〔22〕のいずれかに記載の製造方法。
〔24〕挿入されたアミノ酸の数が1~25個である、〔23〕に記載の製造方法。
〔25〕改変が、抗体の可変領域のCDR1、CDR2、CDR3又はFR3領域のアミノ酸の改変である、〔18〕から〔24〕のいずれかに記載の製造方法。
〔26〕改変が、ループ領域のアミノ酸の改変である、〔18〕から〔25〕のいずれかに記載の製造方法。
〔27〕改変が、抗体のH鎖可変領域のKabatナンバリング31~35、50~65、71~74及び95~102、L鎖可変領域のKabatナンバリング24~34、50~56及び89~97から選ばれる少なくとも1つのアミノ酸の改変である、〔18〕から〔25〕のいずれかに記載の製造方法。
〔28〕第1の抗原又は第2の抗原のいずれか1つが、T細胞表面に特異的に発現している分子であり、他方の抗原が、T細胞又は他の免疫細胞表面に発現している分子である、〔18〕から〔27〕のいずれかに記載の製造方法。
〔29〕第1の抗原又は第2の抗原のいずれか1つがCD3であり、他方の抗原がFcγR、TLR、IgA、レクチン、免疫チェックポイント分子、TNFスーパーファミリー分子、TNFRスーパーファミリー分子又はNKレセプター分子である、〔28〕に記載の製造方法。
〔30〕第3の抗原が、がん組織特異的に発現している分子である、〔28〕又は〔29〕に記載の製造方法。
〔31〕〔1〕から〔16〕のいずれかに記載の抗原結合分子を投与する工程を含む、がんの治療方法。
〔32〕がんの治療において使用するための、〔1〕から〔16〕のいずれかに記載の抗原結合分子。
〔33〕がんの治療剤の製造における、〔1〕から〔16〕のいずれかに記載の抗原結合分子の使用。
〔34〕〔1〕から〔16〕のいずれかに記載の抗原結合分子を使用する工程を含む、がんの治療剤を製造するためのプロセス。
〔35〕上記に記載の1又は複数の態様を任意に組み合わせたものも、当業者の技術常識に基づいて技術的に矛盾しない限り、本発明に含まれることが当業者には当然に理解される。
More specifically, the present invention relates to the following.
[1] a variable region of an antibody that can bind to a first antigen and a second antigen different from the first antigen, but does not bind to the first antigen and the second antigen simultaneously, and An antigen binding molecule comprising a variable region that binds to a third antigen different from the first antigen and the second antigen.
[2] The heavy chain variable region can be bound to the first antigen and a second antigen different from the first antigen, but not simultaneously bound to the first antigen and the second antigen. An antigen-binding molecule comprising a variable region of an antibody in which amino acids have been modified.
[3] A variable region that does not bind to the first antigen and the second antigen simultaneously is a variable region that does not bind to the first antigen and the second antigen that are expressed on different cells, respectively. The antigen-binding molecule according to [1] or [2].
[4] The antigen-binding molecule according to any one of [1] to [3], further comprising an Fc region of the antibody.
[5] The antigen-binding molecule according to [4], wherein the Fc region has a reduced Fc region binding activity to FcγR compared to the Fc region of a natural human IgG1 antibody.
[6] The antigen-binding molecule according to any one of [1] to [5], which is a multispecific antibody.
[7] Any of [1] to [6], wherein the variable region of the antibody capable of binding to the first antigen and the second antigen is a variable region into which at least one amino acid modification has been introduced. The antigen-binding molecule described in 1.
[8] The antigen-binding molecule according to [7], wherein the modification is substitution or insertion of at least one amino acid.
[9] Substitution of the amino acid sequence of the variable region that binds to the first antigen to the amino acid sequence that binds to the second antigen, or the amino acid of the variable region that binds to the first antigen The antigen-binding molecule according to [7] or [8], which is an insertion of an amino acid sequence that binds to the second antigen into the sequence.
[10] The antigen-binding molecule according to [8] or [9], wherein the number of inserted amino acids is 1 to 25.
[11] The antigen-binding molecule according to any one of [7] to [10], wherein the amino acid to be modified is an amino acid of a CDR1, CDR2, CDR3, or FR3 region of an antibody variable region.
[12] The antigen-binding molecule according to any one of [7] to [11], wherein the amino acid to be modified is a loop region amino acid.
[13] The amino acids to be modified include Kabat numbering 31 to 35, 50 to 65, 71 to 74 and 95 to 102 of the heavy chain variable region of the antibody, and Kabat numbering 24 to 34, 50 to 56 and 89 of the light chain variable region. The antigen-binding molecule according to any one of [7] to [11], which is at least one amino acid selected from -97.
[14] Either one of the first antigen and the second antigen is a molecule that is specifically expressed on the surface of T cells, and the other antigen is expressed on the surface of T cells or other immune cells. The antigen-binding molecule according to any one of [1] to [13], which is a molecule.
[15] Either one of the first antigen or the second antigen is CD3, and the other antigen is FcγR, TLR, lectin, IgA, immune checkpoint molecule, TNF superfamily molecule, TNFR superfamily molecule or NK receptor The antigen-binding molecule according to [14], which is a molecule.
[16] The antigen-binding molecule according to [14] or [15], wherein the third antigen is a molecule expressed specifically in cancer tissue.
[17] A pharmaceutical composition comprising the antigen-binding molecule according to any one of [1] to [16] and a medically acceptable carrier.
[18] A method for producing the antigen-binding molecule according to any one of [1] to [16], comprising steps (i) to (iv):
(i) an antigen-binding molecule in which at least one amino acid of a variable region of an antibody that binds to the first antigen or the second antigen is modified, wherein at least one of the amino acids of the modified variable region is different from each other Creating a library of antigen binding molecules comprising the region,
(ii) an antigen comprising a variable region that has binding activity to the first antigen and the second antigen, but does not bind simultaneously with the first antigen and the second antigen, from the prepared library Selecting a binding molecule,
(iii) a host cell comprising a nucleic acid encoding the variable region of the antigen-binding molecule selected in step (ii) and / or a nucleic acid encoding the variable region of the antigen-binding molecule that binds to the third antigen. A variable region of an antibody that can bind to the first antigen and the second antigen, but does not bind to the first antigen and the second antigen at the same time, and / or the third antigen. Expressing an antigen binding molecule comprising a variable region that binds; and
(iv) recovering the antigen-binding molecule from the host cell culture.
[19] The first antigen and the second antigen that are contained in the antigen-binding molecule selected in step (ii) and that do not bind simultaneously to the first antigen and the second antigen are expressed on different cells. The production method according to [18], which is a variable region that does not bind to two antigens simultaneously.
[20] The production method according to [18] or [19], wherein the host cell cultured in step (iii) further comprises a nucleic acid encoding the Fc region of the antibody.
[21] The production method of [20], wherein the Fc region has a reduced Fc region binding activity to FcγR compared to the Fc region of a natural human IgG1 antibody.
[22] The production method according to any one of [18] to [21], wherein the antigen-binding molecule to be produced is a multispecific antibody.
[23] The production method according to any one of [18] to [22], wherein at least one modified amino acid in the variable region in step (i) is a substituted or inserted amino acid.
[24] The production method according to [23], wherein the number of inserted amino acids is 1 to 25.
[25] The production method according to any one of [18] to [24], wherein the modification is an amino acid modification of a CDR1, CDR2, CDR3, or FR3 region of an antibody variable region.
[26] The production method according to any one of [18] to [25], wherein the modification is modification of an amino acid in a loop region.
[27] Modifications from Kabat numbering 31-35, 50-65, 71-74 and 95-102 of the heavy chain variable region of the antibody, and Kabat numbering 24-34, 50-56 and 89-97 of the light chain variable region The production method according to any one of [18] to [25], which is a modification of at least one selected amino acid.
[28] Either one of the first antigen and the second antigen is a molecule that is specifically expressed on the surface of T cells, and the other antigen is expressed on the surface of T cells or other immune cells. [18] The production method according to any one of [18] to [27], which is a molecule.
[29] Either one of the first antigen and the second antigen is CD3, and the other antigen is FcγR, TLR, IgA, lectin, immune checkpoint molecule, TNF superfamily molecule, TNFR superfamily molecule or NK receptor [28] The production method according to [28], which is a molecule.
[30] The production method according to [28] or [29], wherein the third antigen is a molecule expressed specifically in cancer tissue.
[31] A method for treating cancer, comprising a step of administering the antigen-binding molecule according to any one of [1] to [16].
[32] The antigen-binding molecule according to any one of [1] to [16] for use in the treatment of cancer.
[33] Use of the antigen-binding molecule according to any one of [1] to [16] in the manufacture of a therapeutic agent for cancer.
[34] A process for producing a therapeutic agent for cancer, comprising a step of using the antigen-binding molecule according to any one of [1] to [16].
[35] Those skilled in the art will naturally understand that any combination of one or more of the above-described embodiments is also included in the present invention unless there is a technical contradiction based on the common general knowledge of those skilled in the art. The
第一の抗原と第二の抗原に結合するが、同時には結合しない抗体の概念図である。It is a conceptual diagram of an antibody that binds to the first antigen and the second antigen but does not bind at the same time. 二つの抗原に同時結合しないため、クロスリンクを起こさない抗体の概念図である。It is a conceptual diagram of an antibody that does not cause cross-linking because it does not bind to two antigens simultaneously. 二つの抗原に同時結合しても、二つの細胞を同時に結合しない抗体の概念図である。It is a conceptual diagram of the antibody which does not bind | bond | couple two cells simultaneously, even if it couple | bonds simultaneously with two antigens. 癌細胞と、第一のレセプターを発現しているT細胞とをクロスリンクする抗体の概念図である。It is a conceptual diagram of the antibody which crosslinks a cancer cell and the T cell which is expressing the 1st receptor. 癌細胞と、第二のレセプターを発現している細胞とをクロスリンクする抗体の概念図である。It is a conceptual diagram of the antibody which crosslinks a cancer cell and the cell which is expressing the 2nd receptor. 癌細胞と免疫細胞をクロスリンクするが、免疫細胞同士をクロスリンクしない抗体の概念図である。It is a conceptual diagram of an antibody that crosslinks cancer cells and immune cells but does not crosslink immune cells. CE115のCD3εに対する細胞ELISAの結果を示すグラフである。It is a graph which shows the result of the cell ELISA with respect to CD3 (epsilon) of CE115. EGFR_ERY22_CE115の分子形を示す図である。It is a figure which shows the molecular form of EGFR_ERY22_CE115. EGFR_ERY22_CE115のTDCC結果(SK-pca13a)を示すグラフである。It is a graph which shows the TDCC result (SK-pca13a) of EGFR_ERY22_CE115. ヒト化CE115のCD3εに対する結合性を示すグラフである。2 is a graph showing the binding of humanized CE115 to CD3ε. RGD挿入CE115のインテグリンへの結合を検出するECL-ELISAの結果を示すグラフである。It is a graph which shows the result of ECL-ELISA which detects the coupling | bonding to the integrin of RGD insertion CE115. RGD挿入CE115のCD3εへの結合を検出するECL-ELISAの結果を示すグラフである。It is a graph which shows the result of ECL-ELISA which detects the coupling | bonding to CD3 (epsilon) of RGD insertion CE115. RGD挿入CE115のインテグリンおよびCD3εへの同時結合を検出するECL-ELSIAの結果を示すグラフである。同時結合する改変体についての結果を示す。It is a graph which shows the result of ECL-ELSIA which detects the simultaneous binding of RGD insertion CE115 to integrin and CD3ε. Results for variants that bind simultaneously are shown. RGD挿入CE115の同時結合 ECL-ELISAの結果を示すグラフである。同時結合しない改変体についての結果を示す。It is a graph which shows the result of simultaneous coupling | bonding ECL-ELISA of RGD insertion CE115. Results for variants that do not bind simultaneously are shown. TLR2結合ペプチド挿入CE115のTLR2への結合を検出するECL-ELISAの結果を示すグラフである。It is a graph which shows the result of ECL-ELISA which detects the coupling | bonding to TLR2 of TLR2 binding peptide insertion CE115. TLR2結合ペプチド挿入CE115のCD3εへの結合を検出するECL-ELISAの結果を示すグラフである。It is a graph which shows the result of ECL-ELISA which detects the coupling | bonding to T32-binding peptide insertion CE115 to CD3 (epsilon). TLR2結合ペプチド挿入CE115のTLR2およびCD3への同時結合を検出するECL-ELISAの結果を示すグラフである。It is a graph which shows the result of ECL-ELISA which detects simultaneous binding to TLR2 and CD3 of TLR2 binding peptide insertion CE115. 結合量の比が0.8未満の抗体のセンサーグラムの例である。縦軸はRU値(レスポンス)、横軸は時間である。It is an example of a sensorgram of an antibody having a binding amount ratio of less than 0.8. The vertical axis is the RU value (response), and the horizontal axis is the time. ファージが提示したFabドメインとCD3ε、IL6Rとの結合を示す図である。It is a figure which shows the coupling | bonding of Fab domain which phage displayed, and CD3 (epsilon) and IL6R. ファージが提示したFabドメインとCD3ε、ヒトIgA(hIgA)との結合を示す図である。NCは抗原を固相化していないプレートへの結合をあらわしている。It is a figure which shows the coupling | bonding of Fab domain which phage displayed, CD3 (epsilon), and human IgA (hIgA). NC indicates binding to a plate on which no antigen is immobilized. IgG化したクローンのCD3ε、ヒトIgA(hIgA)との結合を示す図である。It is a figure which shows the coupling | bonding with CD3 (epsilon) of a clone made into IgG, and human IgA (hIgA). IgG化したクローンとヒトIgAの結合がCD3εによって阻害され、当該クローンがヒトIgA(hIgA)及びCD3εと同時には結合できないことを示す図である。It is a figure which shows that the binding of IgG-ized clone and human IgA is inhibited by CD3ε, and that the clone cannot bind simultaneously with human IgA (hIgA) and CD3ε. ファージが提示したFabドメインとCD3ε、ヒトCD154との結合を示す図である。NCは抗原を固相化していないプレートへの結合をあらわしている。It is a figure which shows the coupling | bonding with Fab domain which phage displayed, CD3 (epsilon), and human CD154. NC indicates binding to a plate on which no antigen is immobilized. IgG化したクローンのCD3ε、ヒトCD154との結合を示す図である。It is a figure which shows the coupling | bonding with CD3 (epsilon) of humanized clone, and human CD154. IgG化したクローンとヒトCD154の結合がCD3εによって阻害され、当該クローンがヒトCD154及びCD3εと同時には結合できないことを示す図である。It is a figure which shows that the coupling | bonding of IgG clone and human CD154 was inhibited by CD3 (epsilon), and the said clone cannot bind simultaneously with human CD154 and CD3 (epsilon).
 本発明において「抗体の可変領域」は、通常、4つのフレームワーク領域(FR)とそれに挟まれた3つの相補性決定領域(complementarity-determining region;CDR)で構成される領域を意味し、抗原の一部又は全部に結合する活性を有する限り、その部分配列も含まれる。特に、抗体軽鎖可変領域(VL)と抗体重鎖可変領域(VH)とを含む領域が好ましい。本発明の抗体の可変領域は、任意の配列であってよく、マウス抗体、ラット抗体、ウサギ抗体、ヤギ抗体、ラクダ抗体、および、これらの非ヒト抗体をヒト化したヒト化抗体、および、ヒト抗体など、どのような由来の抗体の可変領域でもよい。「ヒト化抗体」とは、再構成(reshaped)ヒト抗体とも称される、ヒト以外の哺乳動物由来の抗体、例えばマウス抗体の相補性決定領域(CDR;complementarity determining region)をヒト抗体のCDRへ移植したものである。CDRを同定するための方法は公知である(Kabat et al., Sequence of Proteins of Immunological Interest (1987), National Institute of Health, Bethesda, Md.; Chothia et al., Nature (1989) 342: 877)。また、その一般的な遺伝子組換え手法も公知である(欧州特許出願公開番号EP 125023号公報、WO 96/02576 号公報参照)。 In the present invention, the “variable region of an antibody” usually means a region composed of four framework regions (FR) and three complementarity-determining regions (CDRs) sandwiched between them. As long as it has an activity of binding to a part or all of the partial sequence, the partial sequence is also included. Particularly preferred is a region comprising an antibody light chain variable region (VL) and an antibody heavy chain variable region (VH). The variable region of the antibody of the present invention may be of any sequence, mouse antibody, rat antibody, rabbit antibody, goat antibody, camel antibody, humanized antibody obtained by humanizing these non-human antibodies, and human It may be a variable region of an antibody of any origin, such as an antibody. “Humanized antibody” refers to an antibody derived from a mammal other than a human, also referred to as a reshaped human antibody, such as a complementarity determination region (CDR) of a mouse antibody to the CDR of a human antibody. It is transplanted. Methods for identifying CDRs are known (Kabat et al., Sequence of Proteins of Immunological Interest (1987), National Institute of Health, Bethesda, Md .; Chothia et al., Nature (1989) 342: 877) . In addition, general gene recombination techniques are also known (see European Patent Application Publication No. EP-125023 and WO96 / 02576).
 本発明の「抗体の可変領域」が「第1の抗原と第2の抗原に同時には結合しない」とは、本発明の抗体の可変領域が第1の抗原に結合している状態では、第2の抗原とは結合することができず、逆に当該可変領域が、第2の抗原に結合している状態では、第1の抗原とは結合することができないことを意味する。ここで、「第1の抗原と第2の抗原に同時には結合しない」ことには、第1の抗原が発現している細胞と第2の抗原が発現している細胞の2つの細胞を架橋しない、あるいは、それぞれ別々の細胞に発現している第1の抗原と第2の抗原に同時に結合しないことも含まれる。さらに、第1の抗原と第2の抗原が、可溶型タンパクのように細胞膜上に発現していない、或いは、両方が同一細胞上に存在する場合には、第1の抗原と第2の抗原の両方に同時に結合することができるが、それぞれ異なる細胞上で発現している場合には同時には結合することができない場合も含まれる。そのような抗体の可変領域としては、当該機能を有している限り特に限定されないが、例えば、IgG型の抗体の可変領域の一部のアミノ酸を、所望の抗原に結合するように改変した可変領域を挙げることができる。改変されるアミノ酸としては、例えば、第1の抗原又は第2の抗原に結合する抗体の可変領域のうち、アミノ酸改変によって当該抗原への結合を喪失させないアミノ酸が選択される。
 ここで「異なる細胞上で発現」とは、別々の細胞上で発現していればよく、そのような細胞の組合せとしては、例えば、T細胞と別のT細胞のように同一種類の細胞であってもよいし、T細胞とNK細胞のように異なる種類の細胞であってもよい。
The “variable region of the antibody” of the present invention does not bind to the first antigen and the second antigen at the same time in the state where the variable region of the antibody of the present invention is bound to the first antigen. This means that it cannot bind to the second antigen, and conversely, when the variable region is bound to the second antigen, it cannot bind to the first antigen. Here, “does not bind to the first antigen and the second antigen at the same time” means that the two cells of the cell expressing the first antigen and the cell expressing the second antigen are cross-linked. Or not simultaneously binding to the first and second antigens expressed in separate cells. Furthermore, when the first antigen and the second antigen are not expressed on the cell membrane as in the soluble protein, or both are present on the same cell, the first antigen and the second antigen Although it is possible to bind to both antigens at the same time, cases where they cannot be simultaneously bound are also included when they are expressed on different cells. The variable region of such an antibody is not particularly limited as long as it has the function. For example, the variable region of a variable region of an IgG-type antibody may be modified so that it binds to a desired antigen. An area can be mentioned. As the amino acid to be modified, for example, an amino acid that does not lose binding to the antigen by amino acid modification is selected from the variable region of the antibody that binds to the first antigen or the second antigen.
Here, “expressed on different cells” is only required to be expressed on different cells. As a combination of such cells, for example, a T cell and another T cell can be the same type of cell. There may be different types of cells such as T cells and NK cells.
 本発明のアミノ酸改変は、単独で用いてもよく複数組み合わせて使用してもよい。
 複数組み合わせて使用する場合、組み合わせる数は特に限定されず、発明の目的を達成できる範囲内で適宜設定することができ、例えば、2個以上30個以下、好ましくは2個以上25個以下、2個以上22個以下、2個以上20個以下、2個以上15個以下、2個以上10個以下、2個以上5個以下、2個以上3個以下である。
 複数組み合わせる場合、抗体の重鎖可変領域又は軽鎖可変領域のみに当該アミノ酸改変を加えてもよく、重鎖可変領域と軽鎖可変領域の双方に適宜振り分けて加えてもよい。
The amino acid modification of the present invention may be used alone or in combination.
When used in combination, the number of combinations is not particularly limited, and can be set as appropriate within the range in which the object of the invention can be achieved. For example, 2 to 30 or less, preferably 2 to 25 or less, 2 2 or more and 20 or less, 2 or more and 15 or less, 2 or more and 10 or less, 2 or more and 5 or less, 2 or more and 3 or less.
In the case of combining a plurality, the amino acid modification may be added only to the heavy chain variable region or the light chain variable region of the antibody, or may be appropriately distributed to both the heavy chain variable region and the light chain variable region.
 改変されるアミノ酸残基は、その抗原結合活性が維持される限り、可変領域中の1または複数のアミノ酸残基の改変が許容される。可変領域のアミノ酸を改変する場合、特に限定されないが、改変前の抗体の結合活性が維持されていることが好ましく、例えば、改変前と比較して50%以上、好ましくは80%以上、さらに好ましくは100%以上の結合活性を有していることが好ましい。又、アミノ酸改変により結合活性が上昇していてもよく、例えば結合活性が改変前と比較して2倍、5倍、10倍等になっていてもよい。 As long as the antigen-binding activity of the amino acid residue to be modified is maintained, modification of one or more amino acid residues in the variable region is allowed. When the amino acid of the variable region is modified, although not particularly limited, it is preferable that the binding activity of the antibody before modification is maintained, for example, 50% or more, preferably 80% or more, more preferably compared to before modification. Preferably has a binding activity of 100% or more. Further, the binding activity may be increased by amino acid modification. For example, the binding activity may be 2 times, 5 times, 10 times, etc., compared to before the modification.
 アミノ酸改変のための好ましい領域としては、可変領域中の溶媒に露出している領域およびループ領域が挙げられる。中でも、CDR1、CDR2、CDR3、FR3領域、ループ領域が好ましい。具体的には、H鎖可変領域のKabatナンバリング31~35、50~65、71~74、95~102、L鎖可変領域のKabatナンバリング24~34、50~56、89~97が好ましく、H鎖可変領域のKabatナンバリング31、52a~61、71~74、97~101、L鎖可変領域のKabatナンバリング24~34、51~56、89~96がより好ましい。また、アミノ酸改変時に、抗原との結合活性を上昇させるアミノ酸をあわせて導入しても良い。 Favorable regions for amino acid modification include a region exposed to the solvent in the variable region and a loop region. Of these, CDR1, CDR2, CDR3, FR3 region and loop region are preferable. Specifically, Kabat numbering 31 to 35, 50 to 65, 71 to 74, 95 to 102 of the heavy chain variable region, Kabat numbering 24 to 34, 50 to 56, 89 to 97 of the light chain variable region are preferable. More preferred are Kabat numbering 31, 52a-61, 71-74, 97-101 of the chain variable region, and Kabat numbering 24-34, 51-56, 89-96 of the L chain variable region. Further, at the time of amino acid modification, an amino acid that increases the binding activity with the antigen may be introduced together.
 なお、本発明において「ループ領域」とは、イムノグロブリンのβバレル構造の維持に関与しない残基が存在する領域を意味する。
 本発明においてアミノ酸の改変とは、置換、欠失、付加、挿入、あるいは修飾のいずれか、又はそれらの組み合わせを意味する。本発明においては、アミノ酸の改変はアミノ酸の変異と言い換えることが可能であり、同じ意味で使用される。
In the present invention, the “loop region” means a region where there are residues that are not involved in maintaining the β-barrel structure of immunoglobulin.
In the present invention, the amino acid modification means any one of substitution, deletion, addition, insertion, modification, or a combination thereof. In the present invention, amino acid modification can be rephrased as amino acid mutation and is used interchangeably.
 アミノ酸残基を置換する場合には、別のアミノ酸残基に置換することで、例えば次の(a)~(c)のような点について改変する事を目的とする。 (a) シート構造、若しくは、らせん構造の領域におけるポリペプチドの背骨構造;(b) 標的部位における電荷若しくは疎水性、または(c)側鎖の大きさ。
 アミノ酸残基は一般の側鎖の特性に基づいて以下のグループに分類される: (1) 疎水性: ノルロイシン、met、ala、val、leu、ile; (2) 中性親水性: cys、ser、thr、asn、gln; (3) 酸性: asp、glu; (4) 塩基性: his、lys、arg; (5) 鎖の配向に影響する残基: gly、pro;及び (6) 芳香族性: trp、tyr、phe。
When substituting an amino acid residue, the purpose is to modify, for example, the following points (a) to (c) by substituting with another amino acid residue. (a) the backbone structure of the polypeptide in the region of the sheet structure or helical structure; (b) the charge or hydrophobicity at the target site, or (c) the size of the side chain.
Amino acid residues are classified into the following groups based on general side chain properties: (1) Hydrophobicity: norleucine, met, ala, val, leu, ile; (2) Neutral hydrophilicity: cys, ser , Thr, asn, gln; (3) Acidity: asp, glu; (4) Basicity: his, lys, arg; (5) Residues that affect chain orientation: gly, pro; and (6) Aromatic Sex: trp, tyr, phe.
 これらの各グループ内でのアミノ酸残基の置換は保存的置換と呼ばれ、一方、他グループ間同士でのアミノ酸残基の置換は非保存的置換と呼ばれる。
 本発明における置換は、保存的置換であってもよく、非保存的置換であってもよく、また保存的置換と非保存的置換の組合せであってもよい。
Substitution of amino acid residues within each of these groups is called conservative substitution, while substitution of amino acid residues between other groups is called non-conservative substitution.
The substitution in the present invention may be a conservative substitution, a non-conservative substitution, or a combination of a conservative substitution and a non-conservative substitution.
 また、アミノ酸残基に改変を加えることには、第1の抗原又は第2の抗原に結合する抗体の可変領域のうち、アミノ酸改変によって当該抗原への結合を喪失させないアミノ酸をランダムに改変したものの中から、第1の抗原と第2の抗原に結合することができるが、同時には結合することができない可変領域を選択する、或いは、予め所望の抗原に対して結合活性を有していることが知られているぺプチドを上述の領域に挿入する改変も含まれる。予め所望の抗原に対して結合活性を有していることが知られているぺプチドとしては、例えば、表1に示したペプチドが挙げられる。 In addition, in order to modify amino acid residues, among the variable regions of antibodies that bind to the first antigen or the second antigen, amino acids that do not lose binding to the antigen by amino acid modification are randomly modified. Select a variable region that can bind to the first antigen and the second antigen, but cannot bind at the same time, or have a binding activity to the desired antigen in advance Also included are modifications that insert a known peptide into the above region. Examples of peptides known to have a binding activity for a desired antigen in advance include the peptides shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の一態様として、第1の抗原および該第1の抗原とは異なる第2の抗原に結合することができるが、第1の抗原と第2の抗原に同時には結合しないように、重鎖可変領域のアミノ酸が改変された抗体の可変領域を含む、抗原結合分子が提供される。例えば,上述したアミノ酸改変(置換、欠失、付加、挿入、あるいは修飾のいずれか、又はそれらの組み合わせ)を重鎖可変領域に導入することにより、第1の抗原および該第1の抗原とは異なる第2の抗原に結合することができるが、第1の抗原と第2の抗原に同時には結合しないような抗体の可変領域を作製することができる。アミノ酸改変を導入する位置は、重鎖可変領域が好ましく、より好ましい領域としては、可変領域中の溶媒に露出している領域およびループ領域が挙げられる。中でも、CDR1、CDR2、CDR3、FR3領域、ループ領域が好ましい。具体的には、H鎖可変領域のKabatナンバリング31~35、50~65、71~74、95~102が好ましく、H鎖可変領域のKabatナンバリング31、52a~61、71~74、97~101がより好ましい。また、アミノ酸改変時に、抗原との結合活性を上昇させるアミノ酸をあわせて導入しても良い。 In one embodiment of the present invention, the first antigen and a second antigen different from the first antigen can be bound, but the heavy antigen is not so bound to the first antigen and the second antigen at the same time. An antigen-binding molecule is provided that comprises an antibody variable region in which the amino acids of the chain variable region have been modified. For example, by introducing the above-described amino acid alteration (substitution, deletion, addition, insertion, or modification, or a combination thereof) into the heavy chain variable region, the first antigen and the first antigen An antibody variable region can be created that can bind to different second antigens but does not bind to the first and second antigens simultaneously. The position for introducing an amino acid modification is preferably a heavy chain variable region, and more preferable regions include a region exposed to a solvent in the variable region and a loop region. Of these, CDR1, CDR2, CDR3, FR3 region and loop region are preferable. Specifically, Kabat numbering 31 to 35, 50 to 65, 71 to 74, 95 to 102 of the heavy chain variable region is preferred, and Kabat numbering 31, 52a to 61, 71 to 74, 97 to 101 of the heavy chain variable region is preferable. Is more preferable. Further, at the time of amino acid modification, an amino acid that increases the binding activity with the antigen may be introduced together.
 本発明の抗体の可変領域には、上述の改変に加えて、公知の改変が組み合わされていてもよい。例えば、可変領域のN末端のグルタミンのピログルタミル化によるピログルタミン酸への修飾は当業者によく知られた修飾である。したがって、本発明の抗体は、その重鎖のN末端がグルタミンの場合には、それがピログルタミン酸に修飾された可変領域を含む。 The variable region of the antibody of the present invention may be combined with known modifications in addition to the above modifications. For example, modification of pyroglutamic acid by pyroglutamylation of N-terminal glutamine of the variable region is a modification well known to those skilled in the art. Therefore, the antibody of the present invention comprises a variable region in which the heavy chain is modified with pyroglutamic acid when the N-terminus of the heavy chain is glutamine.
 また、例えば、これらの抗体の可変領域に対して、抗原への結合、薬物動態、安定性、抗原性を改善するために、さらにアミノ酸改変が導入されたものであってもよい。本発明の抗体の可変領域を、抗原に対してpH依存的な結合性を有する改変を加えることで、抗原に対して繰り返し結合することができてもよい(WO/2009/125825)。 In addition, for example, amino acid modifications may be further introduced into the variable regions of these antibodies in order to improve antigen binding, pharmacokinetics, stability, and antigenicity. The variable region of the antibody of the present invention may be capable of repeatedly binding to the antigen by adding a modification having pH-dependent binding properties to the antigen (WO / 2009/125825).
 また、例えば、これらの抗体の第3の抗原に結合する可変領域に対して、標的組織特異的な化合物の濃度に応じて抗原に対する結合活性が変化するアミノ酸改変を加えることもできる(WO2013/180200)。 Further, for example, an amino acid modification that changes the binding activity to the antigen according to the concentration of the target tissue-specific compound can be added to the variable region that binds to the third antigen of these antibodies (WO2013 / 180200). ).
 さらに、例えば、可変領域の改変は結合活性の上昇、特異性の改善、pIの低下、抗原に対する結合にpH依存的な性質の付与、結合熱安定性の改善、溶解性の改善、化学修飾に対する安定性、糖鎖に由来するヘテロジェナイエティの改善、免疫原性を低下させることをin silico予測を使って同定した、あるいはin vitroのT細胞を使ったアッセイによって同定したT細胞エピトープの回避、あるいはレギュラトリーT細胞を活性化するT細胞エピトープの導入等を目的とした改変も実施され得る(mAbs 3:243-247, 2011)。 Furthermore, for example, modification of the variable region can increase binding activity, improve specificity, decrease pI, impart pH-dependent properties to antigen binding, improve binding thermal stability, improve solubility, modify chemical modification Stability, improved heterogeneity derived from sugar chains, avoidance of T cell epitopes identified using in silico prediction to reduce immunogenicity, or identified in assays using in vitro T cells, Alternatively, modifications aimed at introducing a T cell epitope that activates regulatory T cells can be performed (mAbs 3: 243-247, 2011).
 本発明の抗体の可変領域が「第1の抗原と第2の抗原に結合することができる」かどうかは、公知の方法を用いて測定することができる。
 例えば、電気化学発光法(ECL法)によって測定することができる(BMC Research Notes 2011, 4:281 )。
 具体的には、例えば、ビオチン標識された被験抗原結合分子の第1の抗原と第2の抗原に結合することができる領域、例えば、Fab領域からなる低分子化された抗体、或いは、一価性の抗体(通常の抗体が有する2つのFab領域のうち1つがない抗体)に、sulfo-tag(Ru錯体)で標識された第1の抗原又は第2の抗原を混合し、ストレプトアビジン固相化プレート上に添加する。このとき、ビオチン標識された被検抗原結合分子はプレート上のストレプトアビジンに結合される。Sulfo-tagを発光させ、Sector Imager 600、2400(MSD)等を利用して、その発光シグナルを検出することで、第1の抗原又は第2の抗原と、被験抗原結合分子の上述の領域との結合を確認することができる。
 また、ELISAやFACS(fluorescence activated cell sorting)、ALPHAスクリーン(Amplified Luminescent Proximity Homogeneous Assay)や表面プラズモン共鳴(SPR)現象を利用したBIACORE法等によって測定することもできる(Proc.Natl.Acad.Sci.USA (2006) 103 (11), 4005-4010)。
Whether or not the variable region of the antibody of the present invention can bind to the first antigen and the second antigen can be measured using a known method.
For example, it can be measured by an electrochemiluminescence method (ECL method) (BMC Research Notes 2011, 4: 281).
Specifically, for example, a region capable of binding to the first antigen and the second antigen of a test antigen-binding molecule labeled with biotin, for example, a low molecular weight antibody consisting of a Fab region, or monovalent 1st or 2nd antigen labeled with a sulfo-tag (Ru complex) is mixed with a natural antibody (an antibody that does not have one of the two Fab regions of a normal antibody), and a streptavidin solid phase Add onto the crystallization plate. At this time, the test antigen-binding molecule labeled with biotin is bound to streptavidin on the plate. By emitting Sulfo-tag and detecting the luminescence signal using Sector Imager 600, 2400 (MSD), etc., the first antigen or the second antigen and the above-mentioned region of the test antigen binding molecule Can be confirmed.
It can also be measured by ELISA, FACS (fluorescence activated cell sorting), ALPHA screen (Amplified Luminescent Proximity Homogeneous Assay), BIACORE method using surface plasmon resonance (SPR) phenomenon, etc. (Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010).
 具体的には、例えば、表面プラズモン共鳴(SPR)現象を利用した相互作用解析機器であるBiacore (GE Healthcare) を用いて測定することができる。BiacoreはBiacore T100、T200、X100、A100、4000、3000、2000、1000、Cなどいずれの機種も含まれる。センサーチップにはCM7、CM5、CM4、CM3、C1、SA、NTA、L1、HPA,Auチップ等のBiacore用のセンサーチップのいずれも用いることができる。センサーチップ上にアミンカップリング、ジスルフィドカップリング、アルデヒドカップリング等のカップリング方法で本発明の抗原結合分子を補足するProteinA、ProteinG、ProteinL、抗ヒトIgG抗体、抗ヒトIgG-Fab、抗ヒトL鎖抗体、抗ヒトFc抗体、抗原タンパク質、抗原ペプチド等の補足用のタンパク質を固定化する。そこへ第1の抗原又は第2の抗原をアナライトとして流し、相互作用を測定し、センサーグラムを取得する。このときの第1の抗原又は第2の抗原の濃度は測定するサンプルのKD等の相互作用の強さに合わせて、数μMから数pMの範囲で実施することができる。 Specifically, it can be measured using, for example, Biacore® (GE® Healthcare), which is an interaction analysis device using the surface plasmon resonance (SPR) phenomenon. Biacore includes all models such as Biacore T100, T200, X100, A100, 4000, 3000, 2000, 1000, and C. Any sensor chip for Biacore such as CM7, CM5, CM4, CM3, C1, SA, NTA, L1, HPA, and Au chip can be used as the sensor chip. Protein A, Protein G, Protein L, anti-human IgG antibody, anti-human IgG-Fab, anti-human L supplementing the antigen-binding molecule of the present invention with a coupling method such as amine coupling, disulfide coupling, and aldehyde coupling on the sensor chip Proteins for supplementation such as chain antibodies, anti-human Fc antibodies, antigen proteins, and antigen peptides are immobilized. The first antigen or the second antigen is flowed there as an analyte, the interaction is measured, and a sensorgram is obtained. The concentration of the first antigen or the second antigen at this time can be carried out in the range of several μM to several pM according to the strength of interaction such as KD of the sample to be measured.
 また、抗原結合分子ではなく、第1の抗原又は第2の抗原をセンサーチップ上に固定化し、そこへ評価したい抗体サンプルを相互作用させることも可能である。相互作用のセンサーグラムから算出した解離定数(KD)値、あるいは抗原結合分子サンプルを作用させる前後のセンサーグラムの増加の程度から本発明の抗原結合分子の抗体可変領域が、第1の抗原又は第2の抗原に対する結合活性を有しているかどうかを判断することができる。 Also, not the antigen-binding molecule but the first antigen or the second antigen can be immobilized on the sensor chip, and the antibody sample to be evaluated can be allowed to interact therewith. From the dissociation constant (KD) value calculated from the sensorgram of the interaction or the degree of increase in sensorgram before and after the antigen-binding molecule sample is allowed to act, the antibody variable region of the antigen-binding molecule of the present invention has the first antigen or the first antigen. It can be determined whether or not it has binding activity to two antigens.
 ALPHAスクリーンは、ドナーとアクセプターの2つのビーズを使用するALPHAテクノロジーによって下記の原理に基づいて実施される。ドナービーズに結合した分子が、アクセプタービーズに結合した分子と生物学的に相互作用し、2つのビーズが近接した状態の時にのみ、発光シグナルが検出される。レーザーによって励起されたドナービーズ内のフォトセンシタイザーは、周辺の酸素を励起状態の一重項酸素に変換する。一重項酸素はドナービーズ周辺に拡散し、近接しているアクセプタービーズに到達するとビーズ内の化学発光反応を引き起こし、最終的に光が放出される。ドナービーズに結合した分子とアクセプタービーズに結合した分子が相互作用しないときは、ドナービーズの産生する一重項酸素がアクセプタービーズに到達しないため、化学発光反応は起きない。 ALPHA screen is implemented based on the following principle by ALPHA technology using two beads of donor and acceptor. A luminescent signal is detected only when the molecule bound to the donor bead interacts biologically with the molecule bound to the acceptor bead and the two beads are in close proximity. A photosensitizer in the donor bead excited by the laser converts ambient oxygen into excited singlet oxygen. Singlet oxygen diffuses around the donor bead, and when it reaches the adjacent acceptor bead, it causes a chemiluminescence reaction in the bead, and finally light is emitted. When the molecule bound to the donor bead and the molecule bound to the acceptor bead do not interact, the chemiluminescence reaction does not occur because the singlet oxygen produced by the donor bead does not reach the acceptor bead.
 相互作用を観察する物質の一方(リガンド)をセンサーチップの金薄膜上に固定し、センサーチップの裏側から金薄膜とガラスの境界面で全反射するように光を当てると、反射光の一部に反射強度が低下した部分(SPRシグナル)が形成される。相互作用を観察する物質の他方(アナライト)をセンサーチップの表面に流しリガンドとアナライトが結合すると、固定化されているリガンド分子の質量が増加し、センサーチップ表面の溶媒の屈折率が変化する。この屈折率の変化により、SPRシグナルの位置がシフトする(逆に結合が解離するとシグナルの位置は戻る)。Biacoreシステムは上記のシフトする量、すなわちセンサーチップ表面での質量変化を縦軸にとり、質量の時間変化を測定データとして表示する(センサーグラム)。センサーグラムからセンサーチップ表面に補足したリガンドに対するアナライトの結合量(アナライトを相互作用させた前後でのセンサーグラム上でのレスポンスの変化量)が求められる。ただし、結合量はリガンドの量にも依存するため、比較する際にはリガンドの量を本質的に同じ量にしたとみなせる条件下で比較する必要がある。また、センサーグラムのカーブからカイネティクス:結合速度定数(ka)と解離速度定数(kd)が、当該定数の比からアフィニティー(KD)が求められる。BIACORE法では阻害測定法も好適に用いられる。阻害測定法の例はProc.Natl.Acad.Sci.USA (2006) 103 (11), 4005-4010において記載されている。 When one of the substances (ligands) for observing the interaction is fixed on the gold thin film of the sensor chip and light is applied from the back side of the sensor chip so that it is totally reflected at the interface between the gold thin film and the glass, part of the reflected light A portion (SPR signal) where the reflection intensity is reduced is formed. When the other substance (analyte) that observes the interaction is flowed to the surface of the sensor chip and the ligand and the analyte bind, the mass of the immobilized ligand molecule increases and the refractive index of the solvent on the sensor chip surface changes. To do. This change in refractive index shifts the position of the SPR signal (conversely, when the bond dissociates, the signal position returns). The Biacore system takes the shift amount, that is, the mass change at the sensor chip surface on the vertical axis, and displays the time change of mass as measurement data (sensorgram). The amount of analyte binding to the ligand captured on the sensor chip surface from the sensorgram (the amount of change in the response on the sensorgram before and after the interaction of the analyte) is determined. However, since the amount of binding also depends on the amount of ligand, it is necessary to compare under the condition that the amount of ligand can be regarded as essentially the same amount. Further, the kinetics: association rate constant (ka) and dissociation rate constant (kd) are obtained from the curve of the sensorgram, and the affinity (KD) is obtained from the ratio of the constants. In the BIACORE method, an inhibition measurement method is also preferably used. Examples of inhibition assays are described in Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010.
 本発明の抗原結合分子が「第1の抗原と第2抗原に同時には結合しない」かどうかは、第1の抗原及び第2の抗原に対して結合活性を有していることを確認した後、当該結合活性を有する可変領域を含む抗原結合分子に対して、予め第1の抗原又は第2の抗原のいずれか一方を結合させた後で、残りの一方に対して結合活性を有するかどうかを上述の方法を用いて測定することで確認することができる。
 また、ELISAプレートあるいはセンサーチップに固定した第1の抗原又は第2の抗原のいずれか一方への抗原結合分子の結合が、他方を溶液中に添加することで阻害されるかどうかを測定することによって確認することもできる。
Whether or not the antigen-binding molecule of the present invention "does not bind to the first antigen and the second antigen at the same time" is confirmed after having confirmed the binding activity to the first antigen and the second antigen. Whether the antigen-binding molecule containing the variable region having the binding activity has binding activity for the remaining one after binding either the first antigen or the second antigen in advance. Can be confirmed by measuring using the method described above.
In addition, measuring whether the binding of the antigen-binding molecule to either the first antigen or the second antigen immobilized on the ELISA plate or the sensor chip is inhibited by adding the other to the solution. Can also be confirmed.
 具体的には、例えば、ECL法を用いる場合、ビオチン標識された被験抗原結合分子に、sulfo-tag(Ru錯体)で標識された第1の抗原と標識されていない第2の抗原を準備する。被験抗原結合分子が、第1の抗原と第2の抗原に結合することができるが、第1の抗原と第2の抗原と同時には結合しない場合、標識されていない第2の抗原非存在下では、被験抗原結合分子と第1の抗原の混合物をストレプトアビジン固相化プレート上に添加し、Sulfo-tagを発光させると、その発光シグナルが検出されるが、第2の抗原の存在下では、発光シグナルが減少する。この発行シグナルの減少を定量することによって相対的な結合活性が決定され得る。 Specifically, for example, when using the ECL method, a first antigen labeled with a sulfo-tag (Ru complex) and a second antigen unlabeled are prepared in a test antigen-binding molecule labeled with biotin. . When the test antigen-binding molecule can bind to the first antigen and the second antigen, but does not bind simultaneously with the first antigen and the second antigen, in the absence of the unlabeled second antigen Then, when a mixture of the test antigen-binding molecule and the first antigen is added to the streptavidin-immobilized plate and the Sulfo-tag is caused to emit light, the luminescence signal is detected. In the presence of the second antigen, , The luminescence signal decreases. Relative binding activity can be determined by quantifying this decrease in signal issued.
 また、ALPHAスクリーンの場合、競合する第2の抗原の非存在下では、被検抗原結合分子と第1の抗原とは相互作用し520-620 nmのシグナルを生ずる。タグ化されていない第2の抗原は、被検抗原結合分子と第1の抗原間の相互作用と競合する。競合の結果表れる蛍光の減少を定量することによって相対的な結合活性が決定され得る。ポリペプチドをSulfo-NHS-ビオチン等を用いてビオチン化することは公知である。第1の抗原をGSTでタグ化する方法としては、第1の抗原をコードするポリヌクレオチドとGSTをコードするポリヌクレオチドをインフレームで融合した融合遺伝子を発現可能なベクターを保持した細胞等において発現し、グルタチオンカラムを用いて精製する方法等が適宜採用され得る。得られたシグナルは例えばGRAPHPAD PRISM(GraphPad社、San Diego)等のソフトウエアを用いて非線形回帰解析を利用する一部位競合(one-site competition)モデルに適合させることにより好適に解析される。このとき、第2の抗原をタグ化し、第1の抗原をタグ化しないことでも同様に解析が可能である。
 また、蛍光共鳴エネルギー移動(FRET; Fluorescence Resonance Energy Transfer)を利用した方法を用いることもできる。FRETとは、近接した2個の蛍光分子の間で励起エネルギーが、電子の共鳴により直接移動する現象である。FRETが起こると、ドナー (励起状態にある蛍光分子) の励起エネルギーがアクセプター (ドナーの近傍にあるもう1つの蛍光分子) に移動するため、ドナーから放射される蛍光が消失 (正確には蛍光寿命の短縮) し、代わりにアクセプターから蛍光が放射される。この現象を用いてdual-Fabであるかどうかを解析することができる。例えば、蛍光ドナーを導入した第1の抗原と、蛍光アクセプターを導入した第2の抗原が、被検抗原結合分子に同時に結合すると、ドナーの蛍光は消失し、アクセプターから蛍光が放射されるため、蛍光波長の変化が起こる。このような抗体はdual-Fabではないと判断される。一方、第1の抗原、第2の抗原、被検抗原結合分子を混合した際に、第1の抗原に結合させた蛍光ドナーの蛍光波長の変化が起こらなければ、この被検抗原結合分子はdual-Fabであるということができる。
In the case of the ALPHA screen, in the absence of a competing second antigen, the test antigen-binding molecule interacts with the first antigen to generate a signal of 520-620 nm. The untagged second antigen competes with the interaction between the test antigen binding molecule and the first antigen. Relative binding activity can be determined by quantifying the decrease in fluorescence that results from competition. It is known that a polypeptide is biotinylated using Sulfo-NHS-biotin or the like. As a method of tagging the first antigen with GST, the first antigen is expressed in a cell or the like holding a vector capable of expressing a fusion gene in which a polynucleotide encoding the first antigen and a polynucleotide encoding GST are fused in frame. In addition, a purification method using a glutathione column can be appropriately employed. The obtained signal is suitably analyzed by fitting to a one-site competition model using nonlinear regression analysis using software such as GRAPHPAD PRISM (GraphPad, San Diego). At this time, the same analysis can be performed by tagging the second antigen and not tagging the first antigen.
Further, a method using fluorescence resonance energy transfer (FRET) can be used. FRET is a phenomenon in which excitation energy moves directly between two adjacent fluorescent molecules by electron resonance. When FRET occurs, the excitation energy of the donor (excited fluorescent molecule) is transferred to the acceptor (another fluorescent molecule in the vicinity of the donor), and the fluorescence emitted from the donor disappears (exactly the fluorescence lifetime). Instead, fluorescence is emitted from the acceptor instead. It is possible to analyze whether this is a dual-Fab using this phenomenon. For example, when the first antigen introduced with a fluorescent donor and the second antigen introduced with a fluorescent acceptor are simultaneously bound to a test antigen-binding molecule, the donor's fluorescence disappears and the acceptor emits fluorescence. A change in fluorescence wavelength occurs. Such an antibody is judged not to be dual-Fab. On the other hand, when the first antigen, the second antigen, and the test antigen binding molecule are mixed, if the fluorescence wavelength of the fluorescent donor bound to the first antigen does not change, the test antigen binding molecule is It can be said that it is dual-Fab.
 また、例えば、ドナービーズにビオチン標識された被検抗原結合分子がドナービーズ上のストレプトアビジンに結合され、アクセプタービーズにはグルタチオンSトランスフェラーゼ(GST)でタグ化された第1の抗原が結合される。競合する第2の抗原の非存在下では、被検抗原結合分子と第1の抗原とは相互作用し520-620 nmのシグナルを生ずる。タグ化されていない第2の抗原は、被検抗原結合分子と第1の抗原間の相互作用と競合する。競合の結果表れる蛍光の減少を定量することによって相対的な結合活性が決定され得る。ポリペプチドをSulfo-NHS-ビオチン等を用いてビオチン化することは公知である。第1の抗原をGSTでタグ化する方法としては、第1の抗原をコードするポリヌクレオチドとGSTをコードするポリヌクレオチドをインフレームで融合した融合遺伝子を発現可能なベクターを保持した細胞等において発現し、グルタチオンカラムを用いて精製する方法等が適宜採用され得る。得られたシグナルは例えばGRAPHPAD PRISM(GraphPad社、San Diego)等のソフトウエアを用いて非線形回帰解析を利用する一部位競合(one-site competition)モデルに適合させることにより好適に解析される。 In addition, for example, a test antigen-binding molecule labeled with biotin on the donor bead is bound to streptavidin on the donor bead, and a first antigen tagged with glutathione S-transferase (GST) is bound to the acceptor bead. The In the absence of competing second antigen, the test antigen binding molecule and the first antigen interact to produce a signal of 520-620 nm. The untagged second antigen competes with the interaction between the test antigen binding molecule and the first antigen. Relative binding activity can be determined by quantifying the decrease in fluorescence that results from competition. It is known that a polypeptide is biotinylated using Sulfo-NHS-biotin or the like. As a method of tagging the first antigen with GST, the first antigen is expressed in a cell or the like holding a vector capable of expressing a fusion gene in which a polynucleotide encoding the first antigen and a polynucleotide encoding GST are fused in frame. In addition, a purification method using a glutathione column can be appropriately employed. The obtained signal is suitably analyzed by fitting to a one-site competition model using nonlinear regression analysis using software such as GRAPHPAD PRISM (GraphPad, San Diego).
 なお、タグ化はGSTに限らず、ヒスチジンタグ、MBP、CBP、Flagタグ、HAタグ、V5タグ、c-mycタグなどのどのようなタグででよく、限定されない。また、被検抗原結合分子のドナービーズへの結合については、ビオチンーストレプトアビジン反応を利用した結合に限らればい。特に、被検抗原結合分子がFcを含む場合は、ドナービーズ上のProtein A、Protein GなどのFc認識タンパク質を介して被検抗原結合分子を結合させる方法が考えられる。 The tagging is not limited to GST, and any tag such as histidine tag, MBP, CBP, Flag tag, HA tag, V5 tag, c-myc tag, etc. may be used. Further, the binding of the test antigen binding molecule to the donor bead is not limited to the binding using the biotin-streptavidin reaction. In particular, when the test antigen-binding molecule contains Fc, a method of binding the test antigen-binding molecule via an Fc recognition protein such as Protein A or Protein G on the donor bead can be considered.
 また、第1の抗原と第2の抗原が、可溶型タンパクのように細胞膜上に発現していない場合、或いは、両方が同一細胞上に存在する場合には、第1の抗原と第2の抗原の両方に同時に結合することができるが、それぞれ異なる細胞上で発現している場合には同時には結合することができない場合についても公知の方法を用いることで測定することができる。
 具体的には、第一の抗原と第二の抗原に対する同時結合を検出するECL-ELISAで陽性になった場合においても、それぞれ第一の抗原を発現する細胞と第二の抗原を発現する細胞及び被検抗原結合分子を混合した場合に、これら3者が同時に結合することがなければ、異なる細胞上に発現している場合には同時には結合することができないことを示すことができる。例えば、細胞を用いたECL-ELISA法で測定することが可能である。あらかじめ第一の抗原を発現する細胞をプレートに固相化し、被検抗原結合分子を結合させた後に、第二の抗原を発現する細胞を加える。第二の抗原を発現する細胞にのみ発現する別の抗原に対する、sulfo-tag標識抗体を用いて検出することにより、二つの細胞上に発現する二つの抗原と同時に結合している場合はシグナルが観測され、同時に結合しない場合は、シグナルが観測されない。
 もしくは、alphascreen法で測定することが可能である。ドナービーズを結合した第1の抗原を発現する細胞と、アクセプタービーズを結合した第2の抗原を発現する細胞と、被検抗原結合分子を混合した際に、二つの細胞上に発現する二つの抗原と同時に結合している場合はシグナルが観測され、同時に結合しない場合は、シグナルが観測されない。
 もしくはOctetを用いた相互作用解析法で測定することが可能である。まず初めに、ぺプチドタグを付加した第1の抗原を発現する細胞を、ペプチドタグを認識するバイオセンサーに結合させる。第二の抗原を発現する細胞と被検抗原結合分子を入れたウェルで相互作用解析を行った際に、二つの細胞上に発現する二つの抗原と同時に結合している場合は被検抗原結合分子と第2の抗原を発現する細胞がバイオセンサーに結合することにより大きな波長シフトが観測され、同時に結合しない場合は、被検抗原結合分子だけがバイオセンサーに結合するため、小さな波長シフトが観測される。
In addition, when the first antigen and the second antigen are not expressed on the cell membrane like a soluble protein, or when both are present on the same cell, the first antigen and the second antigen Can be simultaneously bound to both antigens, but when they are expressed on different cells, the case where they cannot be bound simultaneously can also be measured by using a known method.
Specifically, cells that express the first antigen and cells that express the second antigen, respectively, even when positive by ECL-ELISA that detects simultaneous binding to the first antigen and the second antigen. When the test antigen-binding molecules are mixed, if these three do not bind simultaneously, it can be shown that they cannot bind simultaneously when expressed on different cells. For example, it can be measured by an ECL-ELISA method using cells. Cells that express the first antigen are immobilized on a plate in advance and bound to the test antigen-binding molecule, and then cells that express the second antigen are added. By using a sulfo-tag-labeled antibody to detect another antigen that is expressed only in cells that express the second antigen, the signal is displayed when the two antigens expressed on the two cells are bound simultaneously. If observed and not bound simultaneously, no signal is observed.
Alternatively, it can be measured by the alphascreen method. When a test antigen-binding molecule is mixed with a cell expressing a first antigen bound to a donor bead, a cell expressing a second antigen bound to an acceptor bead, A signal is observed when bound simultaneously with two antigens, and no signal is observed when bound simultaneously.
Alternatively, it can be measured by an interaction analysis method using Octet. First, cells expressing a first antigen to which a peptide tag has been added are bound to a biosensor that recognizes a peptide tag. When an interaction analysis is performed in a well containing a second antigen-expressing cell and a test antigen-binding molecule, if the two antigens expressed on two cells are bound simultaneously, the test antigen binding A large wavelength shift is observed when the cell expressing the molecule and the second antigen binds to the biosensor. If the cells do not bind simultaneously, only the test antigen-binding molecule binds to the biosensor, so a small wavelength shift is observed. Is done.
 あるいは結合活性ではなく、生物活性による測定も可能である。例えば、第1の抗原を発現する細胞と第2の抗原を発現する細胞と被検抗原結合分子を混合培養した場合に、二つの細胞上に発現する二つの抗原と同時に結合している場合は、被検抗原結合分子を介して相互に活性化されるため、それぞれの抗原の下流のリン酸化が増加するなどの活性化シグナルの変化を検出することができる。もしくは、活性化の結果として、サイトカインの産生が誘導されるため、サイトカインの産生量を測定することにより、二つの細胞に同時に結合するか否かを判断することができる。 Alternatively, measurement based on biological activity is possible instead of binding activity. For example, when a cell that expresses a first antigen, a cell that expresses a second antigen, and a test antigen-binding molecule are mixed and cultured, the two antigens expressed on two cells are bound simultaneously. Since they are mutually activated via the test antigen-binding molecule, changes in the activation signal such as an increase in phosphorylation downstream of each antigen can be detected. Alternatively, since cytokine production is induced as a result of activation, it is possible to determine whether or not to bind to two cells simultaneously by measuring the amount of cytokine production.
 本発明において、「Fc領域」は、抗体分子中の、ヒンジ部若しくはその一部、CH2、CH3ドメインからなるフラグメントを含む領域のことをいう。IgGクラスのFc領域は、EU ナンバリング(本明細書ではEU INDEXとも呼ばれる)で、例えば226番目のシステインからC末端、あるいは230番目のプロリンからC末端までを意味するが、これに限定されない。Fc領域は、IgG1、IgG2、IgG3、IgG4モノクローナル抗体等をペプシン等の蛋白質分解酵素にて部分消化した後に、プロテインAカラムまたはプロテインGカラムに吸着された画分を再溶出することによって好適に取得され得る。かかる蛋白分解酵素としてはpH等の酵素の反応条件を適切に設定することにより制限的にFabやF(ab')2を生じるように全長抗体を消化し得るものであれば特段の限定はされず、例えば、ペプシンやパパイン等が例示できる。 In the present invention, the “Fc region” refers to a region containing a fragment consisting of a hinge region or a part thereof, CH2 and CH3 domains in an antibody molecule. The Fc region of the IgG class is EU numbering (also referred to herein as EU INDEX) and means, for example, from the 226th cysteine to the C terminus, or from the 230th proline to the C terminus, but is not limited thereto. Fc region is suitably obtained by re-elution of the fraction adsorbed on the protein A column or protein G column after partial digestion of IgG1, IgG2, IgG3, IgG4 monoclonal antibody, etc. with a protease such as pepsin Can be done. Such proteolytic enzymes are not particularly limited as long as full-length antibodies can be digested so that Fab and F (ab ') 2 can be produced in a limited manner by appropriately setting the reaction conditions of the enzyme such as pH. For example, pepsin, papain, etc. can be illustrated.
 本発明における「抗原結合分子」とは、本発明の「抗体の可変領域」を含む分子であれば特に限定されず、さらに、5アミノ酸程度以上の長さを有するペプチドやタンパク質が含まれていてもよい。生物由来のペプチドやタンパク質に限定されず、例えば、人工的に設計された配列からなるポリペプチドであってもよい。また、天然ポリペプチド、あるいは合成ポリペプチド、組換えポリペプチド等のいずれであってもよい。 The “antigen-binding molecule” in the present invention is not particularly limited as long as it contains the “antibody variable region” of the present invention, and further includes peptides and proteins having a length of about 5 amino acids or more. Also good. The polypeptide is not limited to biologically derived peptides or proteins, and may be, for example, a polypeptide having an artificially designed sequence. Moreover, any of natural polypeptide, synthetic polypeptide, recombinant polypeptide, etc. may be sufficient.
 本発明の抗原結合分子の好ましい例として、抗体のFc領域を含む抗原結合分子を挙げることができる。 As a preferred example of the antigen-binding molecule of the present invention, an antigen-binding molecule containing an antibody Fc region can be mentioned.
 本発明の「Fc領域」として、例えば、天然型IgG由来のFc領域を用いることができる。ここで、天然型IgGとは、天然に見出されるIgGと同一のアミノ酸配列を包含し、免疫グロブリンガンマ遺伝子により実質的にコードされる抗体のクラスに属するポリペプチドを意味する。例えば天然型ヒトIgGとは天然型ヒトIgG1、天然型ヒトIgG2、天然型ヒトIgG3、天然型ヒトIgG4などを意味する。天然型IgGにはそれから自然に生じる変異体等も含まれる。ヒトIgG1、ヒトIgG2、ヒトIgG3、ヒトIgG4抗体の定常領域としては、遺伝子多型による複数のアロタイプ配列がSequences of proteins of immunological interest, NIH Publication No.91-3242 に記載されているが、本発明においてはそのいずれであっても良い。特にヒトIgG1の配列としては、EUナンバリング356-358番目のアミノ酸配列がDELであってもEEMであってもよい。 As the “Fc region” of the present invention, for example, an Fc region derived from natural IgG can be used. Here, the natural IgG means a polypeptide belonging to the class of antibodies that includes the same amino acid sequence as IgG found in nature and is substantially encoded by an immunoglobulin gamma gene. For example, natural human IgG means natural human IgG1, natural human IgG2, natural human IgG3, natural human IgG4, and the like. Naturally-occurring IgG includes naturally occurring mutants. As constant regions of human IgG1, human IgG2, human IgG3, and human IgG4 antibodies, a plurality of allotype sequences due to gene polymorphisms are described in Sequences of proteins of immunological interest, NIH Publication No.91-3242. Any of them may be used. In particular, the sequence of human IgG1 may be DEL or EEM as the amino acid sequence of EU numbering 356-358.
 抗体のFc領域としては、例えばIgA1、IgA2、IgD、IgE、IgG1、IgG2、IgG3、IgG4、IgMタイプのFc領域が存在している。本発明の抗体のFc領域は、例えば天然型ヒトIgG抗体由来のFc領域を用いることができる。本発明のFc領域として、例えば、天然型IgGの定常領域、具体的には、天然型ヒトIgG1を起源とする定常領域(配列番号:1)、天然型ヒトIgG2を起源とする定常領域(配列番号:2)、天然型ヒトIgG3を起源とする定常領域(配列番号:3)、天然型ヒトIgG4を起源とする定常領域(配列番号:4)由来のFc領域を用いることができる。天然型IgGの定常領域にはそれから自然に生じる変異体等も含まれる。 Examples of Fc regions of antibodies include IgA1, IgA2, IgD, IgE, IgG1, IgG2, IgG3, IgG4, and IgM type Fc regions. As the Fc region of the antibody of the present invention, for example, an Fc region derived from a natural human IgG antibody can be used. As the Fc region of the present invention, for example, a constant region of natural IgG, specifically, a constant region originating from natural human IgG1 (SEQ ID NO: 1), a constant region originating from natural human IgG2 (sequence) No. 2), a constant region derived from natural human IgG3 (SEQ ID NO: 3), and an Fc region derived from a constant region derived from natural human IgG4 (SEQ ID NO: 4). The constant region of natural IgG includes mutants naturally occurring therefrom.
 本発明のFc領域としては、特にFcγ受容体に対する結合活性が低下しているFc領域が好ましい。ここで、Fcγ受容体(本明細書ではFcγレセプター、FcγRまたはFcγレセプターと記載することがある)とは、IgG1、IgG2、IgG3、IgG4のFc領域に結合し得る受容体をいい、実質的にFcγレセプター遺伝子にコードされるタンパク質のファミリーのいかなるメンバーをも意味する。ヒトでは、このファミリーには、アイソフォームFcγRIa、FcγRIbおよびFcγRIcを含むFcγRI(CD64);アイソフォームFcγRIIa(アロタイプH131(H型)およびR131(R型)を含む)、FcγRIIb(FcγRIIb-1およびFcγRIIb-2を含む)およびFcγRIIcを含むFcγRII(CD32);およびアイソフォームFcγRIIIa(アロタイプV158およびF158を含む)およびFcγRIIIb(アロタイプFcγRIIIb-NA1およびFcγRIIIb-NA2を含む)を含むFcγRIII(CD16)、並びにいかなる未発見のヒトFcγR類またはFcγRアイソフォームまたはアロタイプも含まれるが、これらに限定されるものではない。FcγRは、ヒト、マウス、ラット、ウサギおよびサル由来のものが含まれるが、これらに限定されず、いかなる生物由来でもよい。マウスFcγR類には、FcγRI(CD64)、FcγRII(CD32)、FcγRIII(CD16)およびFcγRIII-2(CD16-2)、並びにいかなる未発見のマウスFcγR類またはFcγRアイソフォームまたはアロタイプも含まれるが、これらに限定されない。こうしたFcγ受容体の好適な例としてはヒトFcγRI(CD64)、FcγRIIa(CD32)、FcγRIIb(CD32)、FcγRIIIa(CD16)及び/又はFcγRIIIb(CD16)が挙げられる。 The Fc region of the present invention is particularly preferably an Fc region with reduced binding activity to the Fcγ receptor. Here, the Fcγ receptor (which may be described as Fcγ receptor, FcγR or Fcγ receptor in the present specification) refers to a receptor that can bind to the Fc region of IgG1, IgG2, IgG3, or IgG4. By any member of the family of proteins encoded by the Fcγ receptor gene. In humans, this family includes FcγRI (CD64), including isoforms FcγRIa, FcγRIb and FcγRIc; isoforms FcγRIIa (including allotypes H131 (H) and R131 (R)), FcγRIIb (FcγRIIb-1 and FcγRIIb- FcγRII (CD32) including FcγRIIc (including 2) and FcγRIII (CD16) including isoforms FcγRIIIa (including allotypes V158 and F158) and FcγRIIIb (including allotypes FcγRIIIb-NA1 and FcγRIIIb-NA2), and any undiscovered Human FcγRs or FcγR isoforms or allotypes, but are not limited to these. FcγR includes, but is not limited to, those derived from human, mouse, rat, rabbit and monkey, and may be derived from any organism. Mouse FcγRs include FcγRI (CD64), FcγRII (CD32), FcγRIII (CD16) and FcγRIII-2 (CD16-2), as well as any undiscovered mouse FcγRs or FcγR isoforms or allotypes. It is not limited to. Suitable examples of such Fcγ receptors include human FcγRI (CD64), FcγRIIa (CD32), FcγRIIb (CD32), FcγRIIIa (CD16) and / or FcγRIIIb (CD16).
 FcγRには、ITAM(Immunoreceptor tyrosine-based activation motif)をもつ活性型レセプターとITIM(immunoreceptor tyrosine-based inhibitory motif)をもつ抑制型レセプターが存在する。FcγRはFcγRI、FcγRIIa R、FcγRIIa H、FcγRIIIa、FcγRIIIbの活性型FcγRと、FcγRIIbの抑制型FcγRに分類される。
 FcγRIのポリヌクレオチド配列及びアミノ酸配列は、それぞれNM_000566.3及びNP_000557.1に、FcγRIIaのポリヌクレオチド配列及びアミノ酸配列は、それぞれBC020823.1及びAAH20823.1に、FcγRIIbのポリヌクレオチド配列及びアミノ酸配列は、それぞれBC146678.1及びAAI46679.1に、FcγRIIIaのポリヌクレオチド配列及びアミノ酸配列は、それぞれBC033678.1及びAAH33678.1に、並びにFcγRIIIbのポリヌクレオチド配列及びアミノ酸配列は、それぞれBC128562.1及びAAI28563.1に記載されている(RefSeq登録番号)。尚、FcγRIIaには、FcγRIIaの131番目のアミノ酸がヒスチジン(H型)あるいはアルギニン(R型)に置換された2種類の遺伝子多型が存在する(J. Exp. Med, 172, 19-25, 1990)。また、FcγRIIbには、FcγRIIbの232番目のアミノ酸がイソロイシン(I型)あるいはスレオニン (T型)に置換された2種類の遺伝子多型が存在する(Arthritis. Rheum. 46: 1242-1254 (2002))。また、FcγRIIIaには、FcγRIIIaの158番目のアミノ酸がバリン(V型)あるいはフェニルアラニン(F型)に置換された2種類の遺伝子多型が存在する(J. Clin. Invest. 100(5): 1059-1070 (1997))。また、FcγRIIIbには、NA1型、NA2型の2種類の遺伝子多型が存在する(J. Clin. Invest. 85: 1287-1295 (1990))。
FcγR has an active receptor having an ITAM (immunoreceptor tyrosine-based activation motif) and an inhibitory receptor having an ITIM (immunoreceptor tyrosine-based inhibitory motif). FcγR is classified into FcγRI, FcγRIIa R, FcγRIIa H, FcγRIIIa, and FcγRIIIb active FcγR, and FcγRIIb inhibitory FcγR.
The polynucleotide sequence and amino acid sequence of FcγRI are NM_000566.3 and NP_000557.1, respectively.The polynucleotide sequence and amino acid sequence of FcγRIIa are BC020823.1 and AAH20823.1, respectively.The polynucleotide sequence and amino acid sequence of FcγRIIb are BC146678.1 and AAI46679.1, respectively, FcγRIIIa polynucleotide sequence and amino acid sequence are BC033678.1 and AAH33678.1, respectively, and FcγRIIIb polynucleotide sequence and amino acid sequence are BC128562.1 and AAI28563.1, respectively. It is listed (RefSeq registration number). FcγRIIa has two gene polymorphisms in which the 131st amino acid of FcγRIIa is substituted with histidine (H type) or arginine (R type) (J. Exp. Med, 172, 19-25, 1990). In addition, FcγRIIb has two gene polymorphisms in which the 232nd amino acid of FcγRIIb is replaced with isoleucine (type I) or threonine (type T) (Arthritis. Rheum. 46: 1242-1254 (2002) ). In addition, FcγRIIIa has two gene polymorphisms in which the 158th amino acid of FcγRIIIa is substituted with valine (V type) or phenylalanine (F type) (J. Clin. Invest. 100 (5): 1059 -1070 (1997)). FcγRIIIb has two gene polymorphisms, NA1 type and NA2 type (J. Clin. Invest. 85: 1287-1295 (1990)).
 Fcγ受容体に対する結合活性が低下しているかどうかは、FACS、ELISAフォーマット、ALPHAスクリーン(Amplified Luminescent Proximity Homogeneous Assay)や表面プラズモン共鳴(SPR)現象を利用したBIACORE法等、周知の方法によって確認することができる(Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010)。
 ALPHAスクリーンは、ドナーとアクセプターの2つのビーズを使用するALPHAテクノロジーによって下記の原理に基づいて実施される。ドナービーズに結合した分子が、アクセプタービーズに結合した分子と生物学的に相互作用し、2つのビーズが近接した状態の時にのみ、発光シグナルを検出される。レーザーによって励起されたドナービーズ内のフォトセンシタイザーは、周辺の酸素を励起状態の一重項酸素に変換する。一重項酸素はドナービーズ周辺に拡散し、近接しているアクセプタービーズに到達するとビーズ内の化学発光反応を引き起こし、最終的に光が放出される。ドナービーズに結合した分子とアクセプタービーズに結合した分子が相互作用しないときは、ドナービーズの産生する一重項酸素がアクセプタービーズに到達しないため、化学発光反応は起きない。
Whether Fcγ receptor binding activity is reduced should be confirmed by well-known methods such as FACS, ELISA format, ALPHA screen (Amplified Luminescent Proximity Homogeneous Assay) and BIACORE method using surface plasmon resonance (SPR) phenomenon. (Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010).
The ALPHA screen is implemented according to the following principle by ALPHA technology using two beads of donor and acceptor. A molecule bound to the donor bead interacts biologically with the molecule bound to the acceptor bead, and a luminescent signal is detected only when the two beads are in close proximity. A photosensitizer in the donor bead excited by the laser converts ambient oxygen into excited singlet oxygen. Singlet oxygen diffuses around the donor bead, and when it reaches the adjacent acceptor bead, it causes a chemiluminescence reaction in the bead, and finally light is emitted. When the molecule bound to the donor bead and the molecule bound to the acceptor bead do not interact, the chemiluminescence reaction does not occur because the singlet oxygen produced by the donor bead does not reach the acceptor bead.
 例えば、ドナービーズにビオチン標識された抗原結合分子が結合され、アクセプタービーズにはグルタチオンSトランスフェラーゼ(GST)でタグ化されたFcγ受容体が結合される。競合する変異Fc領域を有する抗原結合分子の非存在下では、野生型Fc領域を有する抗原結合分子とFcγ受容体とは相互作用し520-620 nmのシグナルを生ずる。タグ化されていない変異Fc領域を有する抗原結合分子は、野生型Fc領域を有する抗原結合分子とFcγ受容体間の相互作用と競合する。競合の結果表れる蛍光の減少を定量することによって相対的な結合親和性が決定され得る。抗体等の抗原結合分子をSulfo-NHS-ビオチン等を用いてビオチン化することは公知である。Fcγ受容体をGSTでタグ化する方法としては、Fcγ受容体をコードするポリヌクレオチドとGSTをコードするポリヌクレオチドをインフレームで融合した融合遺伝子を発現可能なベクターを保持した細胞等において発現し、グルタチオンカラムを用いて精製する方法等が適宜採用され得る。得られたシグナルは例えばGRAPHPAD PRISM(GraphPad社、San Diego)等のソフトウェアを用いて非線形回帰解析を利用する一部位競合(one-site competition)モデルに適合させることにより好適に解析される。 For example, an antigen-binding molecule labeled with biotin is bound to the donor bead, and an Fcγ receptor tagged with glutathione S-transferase (GST) is bound to the acceptor bead. In the absence of competing mutant Fc regions, antigen-binding molecules with wild-type Fc regions interact with Fcγ receptors to produce signals of 520-620 nm. An antigen-binding molecule having a mutated Fc region that is not tagged competes with the interaction between an antigen-binding molecule having a wild-type Fc region and the Fcγ receptor. Relative binding affinity can be determined by quantifying the decrease in fluorescence that results from competition. It is known to biotinylate antigen-binding molecules such as antibodies using Sulfo-NHS-biotin or the like. As a method of tagging Fcγ receptor with GST, it is expressed in a cell or the like holding a vector capable of expressing a fusion gene in which a polynucleotide encoding Fcγ receptor and a polynucleotide encoding GST are fused in frame, A method of purification using a glutathione column can be appropriately employed. The obtained signal is suitably analyzed by fitting to a one-site competition model using nonlinear regression analysis using software such as GRAPHPAD PRISM (GraphPad, San Diego).
 相互作用を観察する物質の一方(リガンド)をセンサーチップの金薄膜上に固定し、センサーチップの裏側から金薄膜とガラスの境界面で全反射するように光を当てると、反射光の一部に反射強度が低下した部分(SPRシグナル)が形成される。相互作用を観察する物質の他方(アナライト)をセンサーチップの表面に流しリガンドとアナライトが結合すると、固定化されているリガンド分子の質量が増加し、センサーチップ表面の溶媒の屈折率が変化する。この屈折率の変化により、SPRシグナルの位置がシフトする(逆に結合が解離するとシグナルの位置は戻る)。Biacoreシステムは上記のシフトする量、すなわちセンサーチップ表面での質量変化を縦軸にとり、質量の時間変化を測定データとして表示する(センサーグラム)。センサーグラムのカーブからカイネティクス:結合速度定数(ka)と解離速度定数(kd)が、当該定数の比からアフィニティー(KD)が求められる。BIACORE法では阻害測定法も好適に用いられる。阻害測定法の例はProc.Natl.Acad.Sci.USA (2006) 103 (11), 4005-4010において記載されている。 When one of the substances (ligands) for observing the interaction is fixed on the gold thin film of the sensor chip and light is applied from the back side of the sensor chip so that it is totally reflected at the interface between the gold thin film and the glass, part of the reflected light A portion (SPR signal) where the reflection intensity is reduced is formed. When the other substance (analyte) that observes the interaction is flowed to the surface of the sensor chip and the ligand and the analyte bind, the mass of the immobilized ligand molecule increases and the refractive index of the solvent on the sensor chip surface changes. To do. This change in refractive index shifts the position of the SPR signal (conversely, when the bond dissociates, the signal position returns). The Biacore system takes the shift amount, that is, the mass change at the sensor chip surface on the vertical axis, and displays the time change of mass as measurement data (sensorgram). Kinetics: association rate constant (ka) and dissociation rate constant (kd) are obtained from the sensorgram curve, and affinity (KD) is obtained from the ratio of the constants. In the BIACORE method, an inhibition measurement method is also preferably used. Examples of inhibition assays are described in Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010.
 本明細書において、Fcγ受容体に対する結合活性が低下しているとは、例えば、上記の解析方法に基づいて、対照とするFc領域を含む抗原結合分子の結合活性に比較して、被験抗原結合分子の結合活性が、50%以下、好ましくは45%以下、40%以下、35%以下、30%以下、20%以下、15%以下、特に好ましくは10%以下、9%以下、8%以下、7%以下、6%以下、5%以下、4%以下、3%以下、2%以下、1%以下の結合活性を示すことをいう。
 対照とする抗原結合分子としては、IgG1、IgG2、IgG3又はIgG4モノクローナル抗体のFc領域を有する抗原結合分子が適宜使用され得る。当該Fc領域の構造は、配列番号:1(RefSeq登録番号AAC82527.1のN末にA付加)、配列番号:2(RefSeq登録番号AAB59393.1のN末にA付加)、配列番号:3(RefSeq登録番号CAA27268.1のN末にA付加)、配列番号:4(RefSeq登録番号AAB59394.1のN末にA付加)に記載されている。また、ある特定のアイソタイプの抗体のFc領域の変異体を有する抗原結合分子を被検物質として使用する場合には、当該特定のアイソタイプの抗体のFc領域を有する抗原結合分子を対照として用いることによって、当該変異体が有する変異によるFcγ受容体への結合活性に対する効果が検証される。上記のようにして、Fcγ受容体に対する結合活性が低下していることが検証されたFc領域の変異体を有する抗原結合分子が適宜作製される。
In the present specification, the fact that the binding activity to the Fcγ receptor is reduced is, for example, based on the above analysis method, compared to the binding activity of the antigen-binding molecule containing the Fc region as a control, compared to the test antigen binding Binding activity of molecules is 50% or less, preferably 45% or less, 40% or less, 35% or less, 30% or less, 20% or less, 15% or less, particularly preferably 10% or less, 9% or less, 8% or less 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less, or 1% or less.
As a control antigen-binding molecule, an antigen-binding molecule having an Fc region of IgG1, IgG2, IgG3 or IgG4 monoclonal antibody can be used as appropriate. The structure of the Fc region is as follows. RefSeq registration number CAA27268.1 with an A added at the N terminus), SEQ ID NO: 4 (RefSeq registration number AAB59394.1 with an N added at the N ending). In addition, when an antigen-binding molecule having a variant of the Fc region of an antibody of a specific isotype is used as a test substance, the antigen-binding molecule having the Fc region of the antibody of the specific isotype is used as a control. The effect of the mutation of the mutant on the binding activity to the Fcγ receptor is verified. As described above, an antigen-binding molecule having a variant of the Fc region that has been verified to have reduced binding activity to the Fcγ receptor is appropriately prepared.
 このような変異体の例としては、EUナンバリングに従って特定されるアミノ酸である231A-238Sの欠失(WO 2009/011941)、C226S, C229S, P238S, (C220S)(J.Rheumatol (2007) 34, 11)、C226S, C229S(Hum.Antibod.Hybridomas (1990) 1(1), 47-54)、C226S, C229S, E233P, L234V, L235A(Blood (2007) 109, 1185-1192)等の変異体が公知である。
 すなわち、特定のアイソタイプの抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される下記のいずれかのアミノ酸;220位、226位、229位、231位、232位、233位、234位、235位、236位、237位、238位、239位、240位、264位、265位、266位、267位、269位、270位、295位、296位、297位、298位、299位、300位、325位、327位、328位、329位、330位、331位、332位が置換されているFc領域を有する抗原結合分子が好適に挙げられる。Fc領域の起源である抗体のアイソタイプとしては特に限定されず、IgG1、IgG2、IgG3又はIgG4モノクローナル抗体を起源とするFc領域が適宜利用され得るが、天然型ヒトIgG1抗体を起源とするFc領域が好適に利用される。
 例えば、IgG1抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される下記のいずれかの置換(数字がEUナンバリングに従って特定されるアミノ酸残基の位置、数字の前に位置する一文字のアミノ酸記号が置換前のアミノ酸残基、数字の後に位置する一文字のアミノ酸記号が置換前のアミノ酸残基をそれぞれ表す);
(a)L234F、L235E、P331S、
(b)C226S、C229S、P238S、
(c)C226S、C229S、
(d)C226S、C229S、E233P、L234V、L235A
が施されているFc領域、又は、231位から238位のアミノ酸配列が欠失したFc領域を有する抗原結合分子も適宜使用され得る。
Examples of such variants include deletion of amino acids 231A-238S identified according to EU numbering (WO 2009/011941), C226S, C229S, P238S, (C220S) (J. Rheumatol (2007) 34, 11), C226S, C229S (Hum.Antibod.Hybridomas (1990) 1 (1), 47-54), C226S, C229S, E233P, L234V, L235A (Blood (2007) 109, 1185-1192) It is known.
That is, among the amino acids constituting the Fc region of an antibody of a specific isotype, any one of the following amino acids specified according to EU numbering: positions 220, 226, 229, 231, 232, 233, 234 , 235, 236, 237, 238, 239, 240, 264, 265, 266, 267, 269, 270, 295, 296, 297, 297, 298, 299 Preferred examples include antigen-binding molecules having Fc regions in which the position, position 300, position 325, position 327, position 328, position 329, position 330, position 331, and position 332 are substituted. The isotype of the antibody that is the origin of the Fc region is not particularly limited, and an Fc region originating from an IgG1, IgG2, IgG3, or IgG4 monoclonal antibody can be used as appropriate, but an Fc region originating from a natural human IgG1 antibody It is preferably used.
For example, among the amino acids constituting the Fc region of IgG1 antibody, one of the following substitutions specified according to EU numbering (position of amino acid residue specified according to EU numbering, one-letter amino acid positioned before the number) The symbol is the amino acid residue before substitution, and the one-letter amino acid symbol located after the number represents the amino acid residue before substitution);
(A) L234F, L235E, P331S,
(B) C226S, C229S, P238S,
(C) C226S, C229S,
(D) C226S, C229S, E233P, L234V, L235A
Or an antigen-binding molecule having an Fc region in which the amino acid sequence from positions 231 to 238 has been deleted can be used as appropriate.
 また、IgG2抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される下記のいずれかの置換(数字がEUナンバリングに従って特定されるアミノ酸残基の位置、数字の前に位置する一文字のアミノ酸記号が置換前のアミノ酸残基、数字の後に位置する一文字のアミノ酸記号が置換前のアミノ酸残基をそれぞれ表す);
(e)H268Q、V309L、A330S、P331S
(f)V234A
(g)G237A
(h)V234A、G237A
(i)A235E、G237A
(j)V234A、A235E、G237A
が施されているFc領域を有する抗原結合分子も適宜使用され得る。
In addition, among the amino acids constituting the Fc region of IgG2 antibody, one of the following substitutions specified according to EU numbering (position of amino acid residue specified according to EU numbering, one-letter amino acid positioned before the number) The symbol is the amino acid residue before substitution, and the one-letter amino acid symbol located after the number represents the amino acid residue before substitution);
(E) H268Q, V309L, A330S, P331S
(F) V234A
(G) G237A
(H) V234A, G237A
(I) A235E, G237A
(J) V234A, A235E, G237A
Antigen-binding molecules having an Fc region that has been subjected to can be used as appropriate.
 また、IgG3抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される下記のいずれかの置換(数字がEUナンバリングに従って特定されるアミノ酸残基の位置、数字の前に位置する一文字のアミノ酸記号が置換前のアミノ酸残基、数字の後に位置する一文字のアミノ酸記号が置換前のアミノ酸残基をそれぞれ表す);
(k)F241A
(l)D265A
(m)V264A
が施されているFc領域を有する抗原結合分子も適宜使用され得る。
In addition, among the amino acids constituting the Fc region of IgG3 antibody, one of the following substitutions specified according to EU numbering (number of amino acid residue specified according to EU numbering, one-letter amino acid located before the number) The symbol is the amino acid residue before substitution, and the one-letter amino acid symbol located after the number represents the amino acid residue before substitution);
(K) F241A
(L) D265A
(M) V264A
Antigen-binding molecules having an Fc region that has been subjected to can be used as appropriate.
 また、IgG4抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される下記のいずれかの置換(数字がEUナンバリングに従って特定されるアミノ酸残基の位置、数字の前に位置する一文字のアミノ酸記号が置換前のアミノ酸残基、数字の後に位置する一文字のアミノ酸記号が置換前のアミノ酸残基をそれぞれ表す);
(n)L235A、G237A、E318A
(o)L235E
(p)F234A、L235A
が施されているFc領域を有する抗原結合分子も適宜使用され得る。
In addition, among the amino acids constituting the Fc region of IgG4 antibody, one of the following substitutions specified according to EU numbering (position of amino acid residue specified according to EU numbering, one-letter amino acid located before the number) The symbol is the amino acid residue before substitution, and the one-letter amino acid symbol located after the number represents the amino acid residue before substitution);
(N) L235A, G237A, E318A
(O) L235E
(P) F234A, L235A
Antigen-binding molecules having an Fc region that has been subjected to can be used as appropriate.
 その他の好ましい例として、天然型ヒトIgG1抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される下記のいずれかのアミノ酸;233位、234位、235位、236位、237位、327位、330位、331位が、対応するIgG2またはIgG4においてそのEUナンバリングが対応するアミノ酸に置換されているFc領域を有する抗原結合分子が挙げられる。 As another preferred example, among the amino acids constituting the Fc region of the natural human IgG1 antibody, any one of the following amino acids specified according to EU numbering: 233, 234, 235, 236, 237, 327 Examples include antigen-binding molecules having Fc regions in which the EU numbering is substituted with the corresponding amino acids in the corresponding IgG2 or IgG4 at positions 330, 331.
 その他の好ましい例として、天然型ヒトIgG1抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される下記のいずれか一つ又はそれ以上のアミノ酸;234位、235位、297位が他のアミノ酸によって置換されているFc領域を有する抗原結合分子が好適に挙げられる。置換後に存在するアミノ酸の種類は特に限定されないが、234位、235位、297位のいずれか一つ又はそれ以上のアミノ酸がアラニンに置換されているFc領域を有する抗原結合分子が特に好ましい。 As other preferred examples, among the amino acids constituting the Fc region of the natural human IgG1 antibody, any one or more of the following amino acids specified according to EU numbering; positions 234, 235, and 297 are the other amino acids. Preferred examples include antigen-binding molecules having an Fc region substituted with an amino acid. The type of amino acid present after the substitution is not particularly limited, but an antigen-binding molecule having an Fc region in which any one or more amino acids at positions 234, 235, and 297 are substituted with alanine is particularly preferable.
 その他の好ましい例として、IgG1抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される下記のいずれかのアミノ酸;265位が他のアミノ酸によって置換されているFc領域を有する抗原結合分子が好適に挙げられる。置換後に存在するアミノ酸の種類は特に限定されないが、265位のアミノ酸がアラニンに置換されているFc領域を有する抗原結合分子が特に好ましい。 As another preferred example, among the amino acids constituting the Fc region of IgG1 antibody, any one of the following amino acids specified according to EU numbering; an antigen-binding molecule having an Fc region substituted at position 265 with another amino acid Preferably mentioned. The type of amino acid present after the substitution is not particularly limited, but an antigen-binding molecule having an Fc region in which the amino acid at position 265 is substituted with alanine is particularly preferable.
 また、本発明の「抗原結合分子」の好ましい態様の1つとして、本発明の抗体の可変領域を含む、多重特異性抗体を挙げることができる。 In addition, as a preferred embodiment of the “antigen-binding molecule” of the present invention, a multispecific antibody containing the variable region of the antibody of the present invention can be mentioned.
 多重特異性抗体の会合化には、抗体H鎖の第二の定常領域(CH2)又はH鎖の第三の定常領域(CH3)の界面に電荷的な反発を導入して目的としないH鎖同士の会合を抑制する技術を適用することができる(WO2006/106905)。
 CH2又はCH3の界面に電荷的な反発を導入して意図しないH鎖同士の会合を抑制させる技術において、H鎖の他の定常領域の界面で接触するアミノ酸残基としては、例えばCH3領域におけるEUナンバリング356番目の残基、EUナンバリング439番目の残基、EUナンバリング357番目の残基、EUナンバリング370番目の残基、EUナンバリング399番目の残基、EUナンバリング409番目の残基に相対する領域を挙げることができる。
For the purpose of associating multispecific antibodies, undesired heavy chains are introduced by introducing a charge repulsion at the interface of the second constant region (CH2) of the antibody heavy chain or the third constant region (CH3) of the heavy chain. A technique for suppressing the association between each other can be applied (WO2006 / 106905).
In the technique of suppressing unintentional association of H chains by introducing charge repulsion to the CH2 or CH3 interface, amino acid residues that contact at the interface of other constant regions of the H chain include, for example, EU in the CH3 region Numbering region 356, EU numbering 439th residue, EU numbering 357th residue, EU numbering 370th residue, EU numbering 399th residue, EU numbering 409th residue Can be mentioned.
 より具体的には、例えば、2種のH鎖CH3領域を含む抗体においては、第1のH鎖CH3領域における以下の(1)~(3)に示すアミノ酸残基の組から選択される1組ないし3組のアミノ酸残基が同種の電荷を有する抗体とすることができる; (1)H鎖CH3領域に含まれるアミノ酸残基であって、EUナンバリング356位および439位のアミノ酸残基、 (2)H鎖CH3領域に含まれるアミノ酸残基であって、EUナンバリング357位および370位のアミノ酸残基、 (3)H鎖CH3領域に含まれるアミノ酸残基であって、EUナンバリング399位および409位のアミノ酸残基。 More specifically, for example, in an antibody comprising two types of H chain CH3 regions, 1 selected from the set of amino acid residues shown in the following (1) to (3) in the first H chain CH3 region: A group to three sets of amino acid residues can be an antibody having the same kind of charge;) (1) amino acid residues contained in the H chain CH3 region, and amino acid residues at positions 356 and 439 of EU numbering; (2) Amino acid residues contained in the H chain CH3 region, amino acid residues at positions 357 and 370 of the EU numbering, and (3) Amino acid residues contained in the H chain CH3 region, comprising the EU numbering at position 399. And amino acid residue at position 409.
 更に、上記第1のH鎖CH3領域とは異なる第2のH鎖CH3領域における前記(1)~(3)に示すアミノ酸残基の組から選択されるアミノ酸残基の組であって、前記第1のH鎖CH3領域において同種の電荷を有する前記(1)~(3)に示すアミノ酸残基の組に対応する1組ないし3組のアミノ酸残基が、前記第1のH鎖CH3領域における対応するアミノ酸残基とは反対の電荷を有する抗体とすることができる。 Further, a set of amino acid residues selected from the set of amino acid residues shown in the above (1) to (3) in a second H chain CH3 region different from the first H chain CH3 region, One to three amino acid residues corresponding to the amino acid residue groups shown in (1) to (3) having the same kind of charge in the first H chain CH3 region are the first H chain CH3 region. The antibody may have an opposite charge to the corresponding amino acid residue in.
 上記(1)~(3)に記載のそれぞれのアミノ酸残基は、会合した際に互いに接近している。当業者であれば、所望のH鎖CH3領域またはH鎖定常領域について、市販のソフトウェアを用いたホモロジーモデリング等により、上記(1)~(3)に記載のアミノ酸残基に対応する部位を見出すことができ、適宜、該部位のアミノ酸残基を改変に供することが可能である。 The amino acid residues described in (1) to (3) above are close to each other when they are associated. A person skilled in the art finds a site corresponding to the amino acid residue described in (1) to (3) above by using homology modeling using commercially available software for the desired H chain CH3 region or H chain constant region. As appropriate, the amino acid residue at the site can be subjected to modification.
 上記抗体において、「電荷を有するアミノ酸残基」は、例えば、以下の(a)または(b)のいずれかの群に含まれるアミノ酸残基から選択されることが好ましい;
(a)グルタミン酸(E)、アスパラギン酸(D)、
(b)リジン(K)、アルギニン(R)、ヒスチジン(H)。
In the above antibody, the “charged amino acid residue” is preferably selected from, for example, amino acid residues included in any of the following groups (a) or (b);
(A) glutamic acid (E), aspartic acid (D),
(B) Lysine (K), arginine (R), histidine (H).
 上記抗体において、「同種の電荷を有する」とは、例えば、2つ以上のアミノ酸残基のいずれもが、上記(a)または(b)のいずれか1の群に含まれるアミノ酸残基を有することを意味する。「反対の電荷を有する」とは、例えば、2つ以上のアミノ酸残基のなかの少なくとも1つのアミノ酸残基が、上記(a)または(b)のいずれか1の群に含まれるアミノ酸残基を有する場合に、残りのアミノ酸残基が異なる群に含まれるアミノ酸残基を有することを意味する。 In the above antibody, “having the same kind of charge” means, for example, that two or more amino acid residues each have an amino acid residue included in any one group of (a) or (b). Means that. “Having an opposite charge” means, for example, an amino acid residue in which at least one amino acid residue of two or more amino acid residues is included in any one group of the above (a) or (b) Means that the remaining amino acid residues have amino acid residues contained in different groups.
 好ましい態様において上記抗体は、第1のH鎖CH3領域と第2のH鎖CH3領域がジスルフィド結合により架橋されていてもよい。 
 本発明において改変に供するアミノ酸残基としては、上述した抗体の可変領域または抗体の定常領域のアミノ酸残基に限られない。当業者であれば、ポリペプチド変異体または異種多量体について、市販のソフトウェアを用いたホモロジーモデリング等により、界面を形成するアミノ酸残基を見出すことができ、会合を制御するように、該部位のアミノ酸残基を改変に供することが可能である。
In a preferred embodiment, in the antibody, the first H chain CH3 region and the second H chain CH3 region may be cross-linked by a disulfide bond.
The amino acid residues to be modified in the present invention are not limited to the above-described antibody variable region or antibody constant region amino acid residues. A person skilled in the art can find amino acid residues that form an interface for polypeptide variants or heterologous multimers by homology modeling using commercially available software, etc. Amino acid residues can be subjected to modification.
 また、本発明の多重特異性抗体の会合化には更に他の公知技術を用いることもできる。抗体の一方のH鎖の可変領域に存在するアミノ酸側鎖をより大きい側鎖(knob; 突起)に置換し、もう一方のH鎖の相対する可変領域に存在するアミノ酸側鎖をより小さい側鎖(hole; 空隙)に置換することによって、突起が空隙に配置され得るようにすることで効率的にFc領域を有する異なるアミノ酸を有するポリペプチド同士の会合化を起こすことができる(WO1996/027011、Ridgway JB et al., Protein Engineering (1996) 9, 617-621、Merchant AM et al. Nature Biotechnology (1998) 16, 677-681)。 Furthermore, other known techniques can be used for associating the multispecific antibody of the present invention. Replace the amino acid side chain present in the variable region of one H chain of an antibody with a larger side chain (knob), and replace the amino acid side chain present in the opposite variable region of the other H chain with a smaller side chain By substituting (hole; void), it is possible to efficiently cause association between polypeptides having different amino acids having Fc regions by allowing protrusions to be arranged in the void (WO1996 / 027011, Ridgway JB et al., Protein Engineering (1996) 9, 617-621, Merchant AM et al. Nature Biotechnology (1998) 16, 677-681).
 これに加えて、本発明の多重特異性抗体の形成には更に他の公知技術を用いることもできる。抗体の一方のH鎖のCH3の一部をその部分に対応するIgA由来の配列にし、もう一方のH鎖のCH3の相補的な部分にその部分に対応するIgA由来の配列を導入したstrand-exchange engineered domain CH3を用いることで、異なる配列を有するポリペプチドの会合化をCH3の相補的な会合化によって効率的に引き起こすことができる (Protein Engineering Design & Selection, 23; 195-202, 2010)。この公知技術を使っても効率的に目的の多重特異性抗体の形成させることができる。 In addition to this, other known techniques can also be used to form the multispecific antibody of the present invention. A strand-in which the part of CH3 of one H chain of an antibody is converted to an IgA-derived sequence corresponding to that part, and the sequence derived from IgA corresponding to that part is introduced into the complementary part of CH3 of the other H chain By using exchange engineered domain CH3, association of polypeptides with different sequences can be efficiently caused by complementary association of CH3 (Protein Engineering Design & Selection, 23; 195-202, 2010). Even using this known technique, the target multispecific antibody can be efficiently formed.
 他にも多重特異性抗体の形成には、WO2011/028952に記載の抗体のCH1とCLの会合化、VH、VLの会合化を利用した抗体作製技術、WO2008/119353やWO2011/131746に記載の別々に調製したモノクローナル抗体同士を使用して二重特異性抗体を作製する技術(Fab Arm Exchange)、WO2012/058768やWO2013/063702に記載の抗体重鎖のCH3間の会合を制御する技術、WO2012/023053に記載の二種類の軽鎖と一種類の重鎖とから構成される二重特異性抗体を作製する技術、Christophら(Nature Biotechnology Vol. 31, p 753-758 (2013))に記載の1本のH鎖と1本のL鎖からなる抗体の片鎖をそれぞれ発現する2つのバクテリア細胞株を利用した二重特異性抗体を作製する技術等を用いることもできる。また、上記の会合技術のほか、第一のエピトープに結合する可変領域を形成する軽鎖、および第二のエピトープに結合する可変領域を形成する軽鎖を、各々、第一のエピトープに結合する可変領域を形成する重鎖、および第二のエピトープに結合する可変領域を形成する重鎖に会合させる異種の軽鎖の会合技術として知られるCrossMab技術(Scaeferら(Proc.Natl.Acad.Sci.U.S.A. (2011) 108, 11187-11192))も、本発明が提供する多重特異性または多重パラトピック抗原結合分子を作製するために使用され得る。別々に調製したモノクローナル抗体同士を使用して二重特異性抗体を作製する技術として、重鎖CH3領域に存在する特定のアミノ酸を置換したモノクローナル抗体を還元状況下におくことにより、抗体のヘテロ化を促進し所望の二重特異性抗体を得る方法を挙げることが出来る。当該方法における好ましいアミノ酸置換部位としては、例えばCH3領域におけるEUナンバリング392番目の残基、EUナンバリング397番目の残基を挙げることができる。さらに、第1のH鎖CH3領域における以下の(1)~(3)に示すアミノ酸残基の組から選択される1組ないし3組のアミノ酸残基が同種の電荷を有する抗体を利用して二重特性抗体を作製することもできる; (1)H鎖CH3領域に含まれるアミノ酸残基であって、EUナンバリング356位および439位のアミノ酸残基、 (2)H鎖CH3領域に含まれるアミノ酸残基であって、EUナンバリング357位および370位のアミノ酸残基、 (3)H鎖CH3領域に含まれるアミノ酸残基であって、EUナンバリング399位および409位のアミノ酸残基。更に、上記第1のH鎖CH3領域とは異なる第2のH鎖CH3領域における前記(1)~(3)に示すアミノ酸残基の組から選択されるアミノ酸残基の組であって、前記第1のH鎖CH3領域において同種の電荷を有する前記(1)~(3)に示すアミノ酸残基の組に対応する1組ないし3組のアミノ酸残基が、前記第1のH鎖CH3領域における対応するアミノ酸残基とは反対の電荷を有する抗体を利用して二重特性抗体を作製することもできる。 In addition, for the formation of multispecific antibodies, antibody production techniques using association of CH1 and CL of the antibody described in WO2011 / 028952, association of VH and VL, as described in WO2008 / 119353 and WO2011 / 131746 A technique for producing bispecific antibodies using separately prepared monoclonal antibodies (Fab Arm Exchange), a technique for controlling the association between CH3 of antibody heavy chains described in WO2012 / 058768 and WO2013 / 063702, WO2012 Technology for producing bispecific antibodies composed of two types of light chains and one type of heavy chain described in / 023053, described in Christoph et al. (Nature Biotechnology Vol. 31, p 753-758 (2013)) A technique for producing a bispecific antibody using two bacterial cell lines that respectively express one chain of an antibody consisting of one H chain and one L chain can also be used. In addition to the above-described association technique, a light chain that forms a variable region that binds to the first epitope and a light chain that forms a variable region that binds to the second epitope are each bound to the first epitope. CrossMab technology (Scaefer et al. (Proc. Natl. Acad. Sci. Sci.), Known as the association of heterogeneous light chains that associate with the heavy chain that forms the variable region and the heavy chain that forms the variable region that binds to the second epitope. USA (2011) 108, 11187-11192)) can also be used to make multispecific or multiparatopic antigen binding molecules provided by the present invention. As a technology for producing bispecific antibodies using separately prepared monoclonal antibodies, the heterogeneity of antibodies can be achieved by placing monoclonal antibodies substituted with specific amino acids in the heavy chain CH3 region under reducing conditions. And a method for obtaining a desired bispecific antibody. Preferable amino acid substitution sites in the method include, for example, the EU numbering 392rd residue and EU numbering 397th residue in the CH3 region. Furthermore, by using an antibody in which 1 to 3 amino acid residues selected from the amino acid residue groups shown in the following (1) to (3) in the first H chain CH3 region have the same kind of charge: Dual-characteristic antibodies can also be made; (1) amino acid residues contained in the H chain CH3 region, EU numbering amino acids 356 and 439, (2) contained in the H chain CH3 region Amino acid residues, EU numbering amino acid residues at positions 357 and 370, (3) amino acid residues contained in the H chain CH3 region, EU numbering amino acid residues at positions 399 and 409. Further, a set of amino acid residues selected from the set of amino acid residues shown in the above (1) to (3) in a second H chain CH3 region different from the first H chain CH3 region, One to three amino acid residues corresponding to the amino acid residue groups shown in (1) to (3) having the same kind of charge in the first H chain CH3 region are the first H chain CH3 region. An antibody having a charge opposite to that of the corresponding amino acid residue in can be used to produce a dual-characteristic antibody.
 また、効率的に目的の多重特異性抗体を形成させることができない場合であっても、産生された抗体の中から目的の多重特異性抗体を分離、精製することによっても、本発明の多重特異性抗体を得ることが可能である。例えば、2種類のH鎖の可変領域にアミノ酸置換を導入し等電点の差を付与することで、2種類のホモ体と目的のヘテロ抗体をイオン交換クロマトグラフィーで精製可能にする方法が報告されている(WO2007114325)。また、ヘテロ体を精製する方法として、これまでに、プロテインAに結合するマウスIgG2aのH鎖とプロテインAに結合しないラットIgG2bのH鎖からなるヘテロ二量化抗体をプロテインAを用いて精製する方法が報告されている(WO98050431, WO95033844)。更に、IgGとProteinAの結合部位であるEUナンバリング435番目および436番目のアミノ酸残基を、Tyr、HisなどのProteinAへの結合力の異なるアミノ酸に置換したH鎖を用いることで、各H鎖とProtein Aとの相互作用を変化させ、Protein Aカラムを用いることで、ヘテロ二量化抗体のみを効率的に精製することもできる。 Even when the target multispecific antibody cannot be efficiently formed, the multispecific antibody of the present invention can also be obtained by separating and purifying the target multispecific antibody from the produced antibody. It is possible to obtain sex antibodies. For example, by introducing amino acid substitutions in the variable regions of two types of H chains and adding isoelectric point differences, a method has been reported that makes it possible to purify two types of homozygote and the desired heteroantibody by ion exchange chromatography. (WO2007114325). In addition, as a method for purifying heterozygotes, a method for purifying a heterodimerized antibody consisting of a mouse IgG2a H chain that binds to protein A and a rat IgG2b H chain that does not bind to protein A by using protein A so far Has been reported (WO98050431, WO95033844). Furthermore, by using H chains in which the amino acid residues at the 435th and 436th EU numbering, which are the binding sites of IgG and Protein A, are substituted with amino acids having different binding powers to Protein A such as Tyr and His, By changing the interaction with Protein A and using a Protein A column, it is possible to efficiently purify only the heterodimerized antibody.
 これらの技術を複数、例えば2個以上組合せて用いることもできる。またこれらの技術は、会合させたい2つのH鎖に適宜別々に適用させることもできる。なお、本発明の抗原結合分子は、上記改変が加えられたものをベースにして、同一のアミノ酸配列を有する抗原結合分子を別途作製したものであってもよい。 These technologies can be used in combination, for example, two or more. These techniques can also be applied separately to the two H chains to be associated as appropriate. The antigen-binding molecule of the present invention may be prepared by separately producing an antigen-binding molecule having the same amino acid sequence based on the above-described modification.
 アミノ酸配列の改変は、当分野において公知の種々の方法により行うことができる。これらの方法には、次のものに限定されるわけではないが、部位特異的変異誘導法(Hashimoto-Gotoh, T, Mizuno, T, Ogasahara, Y, and Nakagawa, M. (1995) An oligodeoxyribonucleotide-directed dual amber method for site-directed mutagenesis. Gene 152, 271-275、Zoller, MJ, and Smith, M.(1983) Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors.Methods Enzymol. 100, 468-500、Kramer,W, Drutsa,V, Jansen,HW, Kramer,B, Pflugfelder,M, and Fritz,HJ(1984) The gapped duplex DNA approach to oligonucleotide-directed mutation construction. Nucleic Acids Res. 12, 9441-9456、Kramer W, and Fritz HJ(1987) Oligonucleotide-directed construction of mutations via gapped duplex DNA Methods. Enzymol. 154, 350-367、Kunkel,TA(1985) Rapid and efficient site-specific mutagenesis without phenotypic selection.Proc Natl Acad Sci U S A. 82, 488-492)、PCR変異法、カセット変異法等の方法により行うことができる。 The amino acid sequence can be modified by various methods known in the art. These methods include, but are not limited to, site-directed mutagenesis (Hashimoto-Gotoh, T, Mizuno, T, Ogasahara, Y, and Nakagawa, M. (1995) An oligodeoxyribonucleotide- directed dual amber method for site-directed mutagenesis. Gene 152, 271-275, Zoller, MJ, and Smith, M. (1983) Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors.Methods Enzymol- 100, Kramer, W, Drutsa, V, Jansen, HW, Kramer, B, Pflugfelder, M, and Fritz, HJ (1984) The gapped duplex DNA approach to oligonucleotide-directed mutation construction. Nucleic Acids Res. 456,9441 W, and Fritz HJ (1987) Oligonucleotide-directed construction of mutations via gapped duplex DNA Methods. Enzymol. 154, 350-367, Kunkel, TA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection.Proc Natl U S A. 82, 488-492), PCR mutation, It can be carried out by the method of Tsu door variant method, or the like.
 また、本発明の「抗原結合分子」は、単一のポリペプチド鎖内に、本発明の「抗体の可変領域」を形成する重鎖および軽鎖の両方を含むが、定常領域を欠いている抗体断片であってもよい。そのような抗体断片としては、例えば、ダイアボディ(diabody;Db)、単鎖抗体、sc(Fab')2であってもよい。 In addition, the “antigen-binding molecule” of the present invention includes both the heavy and light chains that form the “antibody variable region” of the present invention within a single polypeptide chain, but lacks the constant region. It may be an antibody fragment. Such an antibody fragment may be, for example, a diabody (Db), a single chain antibody, or sc (Fab ′) 2.
 Dbは、2本のポリペプチド鎖から構成されるダイマー(Holliger P et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993)、EP404,097号、W093/11161号等)であり、各々のポリペプチド鎖は、同じ鎖中でL鎖可変領域(VL)及びH鎖可変領域(VH)が、互いに結合できない位に短い、例えば、5残基程度のリンカーにより結合されている。
同一ポリペプチド鎖上にコードされるVLとVHとは、その間のリンカーが短いため単鎖可変領域フラグメントを形成することが出来ず、二量体化することにより、2つの抗原結合部位を形成する。
Db is a dimer composed of two polypeptide chains (Holliger P et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993), EP404, 097, W093 / 11161, etc.) In each polypeptide chain, the L chain variable region (VL) and the H chain variable region (VH) in the same chain are connected to each other by a short linker, for example, about 5 residues. Yes.
VL and VH encoded on the same polypeptide chain cannot form a single-chain variable region fragment due to the short linker between them, and form two antigen-binding sites by dimerization. .
 単鎖抗体としては、例えばsc(Fv)2が挙げられる。sc(Fv)2は二つのVLと二つのVHの4つの可変領域がペプチドリンカー等のリンカーによって連結され一本鎖を構成する単鎖抗体である(J Immunol. Methods (1999) 231 (1-2), 177-189)。この二つのVHとVLは異なるモノクローナル抗体から由来することもあり得る。例えば、Journal of Immunology (1994) 152 (11), 5368-5374に開示されるような同一抗原中に存在する二種類のエピトープを認識する二重特異性(bispecific sc(Fv)2)も好適に挙げられる。sc(Fv)2は、当業者に公知の方法によって作製され得る。例えば、scFvをペプチドリンカー等のリンカーで結ぶことによって作製され得る。 Examples of single chain antibodies include sc (Fv) 2. sc (Fv) 2 is a single-chain antibody in which four variable regions of two VLs and two VHs are connected by a linker such as a peptide linker to form a single chain (J Immunol. Methods (1999) 231 (1- 2), 177-189). The two VHs and VLs can be derived from different monoclonal antibodies. For example, the bispecific recognition (bispecific sc (Fv) 2) that recognizes two kinds of epitopes existing in the same antigen as disclosed in JournalJof Immunology (1994) 152 (11), 5368-5374 is also preferable. Can be mentioned. sc (Fv) 2 can be produced by methods known to those skilled in the art. For example, it can be prepared by linking scFv with a linker such as a peptide linker.
 本明細書におけるsc(Fv)2を構成する抗原結合ドメインの構成としては、二つのVH及び二つのVLが、一本鎖ポリペプチドのN末端側を基点としてVH、VL、VH、VL([VH]リンカー[VL]リンカー[VH]リンカー[VL])の順に並んでいることを特徴とする抗体が挙げられるが、二つのVHと2つのVLの順序は特に上記の構成に限定されず、どのような順序で並べられていてもよい。例えば以下のような、順序の構成も挙げることができる。
[VL]リンカー[VH]リンカー[VH]リンカー[VL]
[VH]リンカー[VL]リンカー[VL]リンカー[VH]
[VH]リンカー[VH]リンカー[VL]リンカー[VL]
[VL]リンカー[VL]リンカー[VH]リンカー[VH]
[VL]リンカー[VH]リンカー[VL]リンカー[VH]
In the present specification, the antigen-binding domain constituting sc (Fv) 2 is composed of two VHs and two VLs, VH, VL, VH, VL ([[ VH] Linker [VL] Linker [VH] Linker [VL]) are listed in this order, but the order of two VHs and two VLs is not particularly limited to the above configuration, They may be arranged in any order. For example, the following configuration can be given.
[VL] Linker [VH] Linker [VH] Linker [VL]
[VH] Linker [VL] Linker [VL] Linker [VH]
[VH] Linker [VH] Linker [VL] Linker [VL]
[VL] Linker [VL] Linker [VH] Linker [VH]
[VL] Linker [VH] Linker [VL] Linker [VH]
 sc(Fv)2の分子形態についてはWO2006/132352においても詳細に記載されており、当業者であればこれらの記載に基づいて、本明細書で開示される抗原結合分子の作製のために適宜所望のsc(Fv)2を作製することが可能である。 The molecular form of sc (Fv) 2 is also described in detail in WO2006 / 132352. Based on these descriptions, those skilled in the art will appropriately use the molecular form of the sc (Fv) 2 for the production of the antigen-binding molecule disclosed herein. It is possible to produce a desired sc (Fv) 2.
 また本発明の抗原結合分子は、PEG等のキャリアー高分子や抗がん剤等の有機化合物をコンジュゲートしてもよい。また糖鎖付加配列を挿入し、糖鎖が所望の効果を得ることを目的として好適に付加され得る。 The antigen-binding molecule of the present invention may be conjugated with a carrier polymer such as PEG or an organic compound such as an anticancer agent. Moreover, a sugar chain addition sequence can be inserted, and a sugar chain can be suitably added for the purpose of obtaining a desired effect.
 抗体の可変領域を結合するリンカーとしては、遺伝子工学により導入し得る任意のペプチドリンカー、又は合成化合物リンカー(例えば、Protein Engineering, 9 (3), 299-305, 1996参照)に開示されるリンカー等を用いることができるが、本発明においてはペプチドリンカーが好ましい。ペプチドリンカーの長さは特に限定されず、目的に応じて当業者が適宜選択することが可能であるが、好ましい長さは5アミノ酸以上(上限は特に限定されないが、通常、30アミノ酸以下、好ましくは20アミノ酸以下)であり、特に好ましくは15アミノ酸である。sc(Fv)2に3つのペプチドリンカーが含まれる場合には、全て同じ長さのペプチドリンカーを用いてもよいし、異なる長さのペプチドリンカーを用いてもよい。 As a linker for linking a variable region of an antibody, any peptide linker that can be introduced by genetic engineering, or a synthetic compound linker (for example, see Protein 例 え ば Engineering, 9 (3), 299-305, 1996), etc. In the present invention, a peptide linker is preferable. The length of the peptide linker is not particularly limited and can be appropriately selected by those skilled in the art according to the purpose. However, the preferred length is 5 amino acids or more (the upper limit is not particularly limited, but usually 30 amino acids or less, preferably Is 20 amino acids or less), particularly preferably 15 amino acids. When sc (Fv) 2 includes three peptide linkers, peptide linkers having the same length may be used, or peptide linkers having different lengths may be used.
 例えば、ペプチドリンカーの場合:
Ser
Gly・Ser
Gly・Gly・Ser
Ser・Gly・Gly
Gly・Gly・Gly・Ser(配列番号:5)
Ser・Gly・Gly・Gly(配列番号:6)
Gly・Gly・Gly・Gly・Ser(配列番号:7)
Ser・Gly・Gly・Gly・Gly(配列番号:8)
Gly・Gly・Gly・Gly・Gly・Ser(配列番号:9)
Ser・Gly・Gly・Gly・Gly・Gly(配列番号:10)
Gly・Gly・Gly・Gly・Gly・Gly・Ser(配列番号:11)
Ser・Gly・Gly・Gly・Gly・Gly・Gly(配列番号:12)
(Gly・Gly・Gly・Gly・Ser(配列番号:7))n
(Ser・Gly・Gly・Gly・Gly(配列番号:8))n
[nは1以上の整数である]等を挙げることができる。但し、ペプチドリンカーの長さや配列は目的に応じて当業者が適宜選択することができる。
For example, for a peptide linker:
Ser
Gly ・ Ser
Gly ・ Gly ・ Ser
Ser ・ Gly ・ Gly
Gly, Gly, Gly, Ser (SEQ ID NO: 5)
Ser, Gly, Gly, Gly (SEQ ID NO: 6)
Gly, Gly, Gly, Gly, Ser (SEQ ID NO: 7)
Ser, Gly, Gly, Gly, Gly (SEQ ID NO: 8)
Gly, Gly, Gly, Gly, Gly, Ser (SEQ ID NO: 9)
Ser, Gly, Gly, Gly, Gly, Gly (SEQ ID NO: 10)
Gly, Gly, Gly, Gly, Gly, Gly, Ser (SEQ ID NO: 11)
Ser, Gly, Gly, Gly, Gly, Gly, Gly (SEQ ID NO: 12)
(Gly, Gly, Gly, Gly, Ser (SEQ ID NO: 7)) n
(Ser, Gly, Gly, Gly, Gly (SEQ ID NO: 8)) n
[N is an integer of 1 or more]. However, the length and sequence of the peptide linker can be appropriately selected by those skilled in the art according to the purpose.
 合成化学物リンカー(化学架橋剤)は、ペプチドの架橋に通常用いられている架橋剤、例えばN-ヒドロキシスクシンイミド(NHS)、ジスクシンイミジルスベレート(DSS)、ビス(スルホスクシンイミジル)スベレート(BS3)、ジチオビス(スクシンイミジルプロピオネート)(DSP)、ジチオビス(スルホスクシンイミジルプロピオネート)(DTSSP)、エチレングリコールビス(スクシンイミジルスクシネート)(EGS)、エチレングリコールビス(スルホスクシンイミジルスクシネート)(スルホ-EGS)、ジスクシンイミジル酒石酸塩(DST)、ジスルホスクシンイミジル酒石酸塩(スルホ-DST)、ビス[2-(スクシンイミドオキシカルボニルオキシ)エチル]スルホン(BSOCOES)、ビス[2-(スルホスクシンイミドオキシカルボニルオキシ)エチル]スルホン(スルホ-BSOCOES)などであり、これらの架橋剤は市販されている。
 4つの抗体可変領域を結合する場合には、通常、3つのリンカーが必要となるが、全て同じリンカーを用いてもよいし、異なるリンカーを用いてもよい。
Synthetic chemical linkers (chemical crosslinkers) are commonly used to crosslink peptides such as N-hydroxysuccinimide (NHS), disuccinimidyl suberate (DSS), bis (sulfosuccinimidyl) Suberate (BS3), dithiobis (succinimidyl propionate) (DSP), dithiobis (sulfosuccinimidyl propionate) (DTSSP), ethylene glycol bis (succinimidyl succinate) (EGS), ethylene Glycol bis (sulfosuccinimidyl succinate) (sulfo-EGS), disuccinimidyl tartrate (DST), disulfosuccinimidyl tartrate (sulfo-DST), bis [2- (succinimideoxycarbonyloxy ) Ethyl] sulfone (BSOCOES), bis [2- (sulfosuccinimidooxycarbonyloxy) ethyl And the like sulfone (sulfo-BSOCOES), These crosslinking agents are commercially available.
When four antibody variable regions are linked, usually three linkers are required, but all may use the same linker or different linkers.
 F(ab')2は、二本の軽鎖、ならびに、鎖間のジスルフィド結合が2つの重鎖間で形成されるようにCH1ドメインおよびCH2ドメインの一部分の定常領域を含む二本の重鎖を含む。本明細書において開示されるポリペプチド会合体を構成するF(ab')2は、所望の抗原結合ドメインを有する全長モノクローナル抗体等をペプシン等の蛋白質分解酵素にて部分消化した後に、Fc断片をプロテインAカラムに吸着させて除去することにより、好適に取得され得る。かかる蛋白質分解酵素としてはpH等の酵素の反応条件を適切に設定することにより制限的にF(ab')2を生じるように全長抗体を消化し得るものであれば特段の限定はされず、例えば、ペプシンやフィシン等が例示できる。 F (ab ') 2 is two heavy chains containing two light chains and a constant region of the CH1 domain and a portion of the CH2 domain such that an interchain disulfide bond is formed between the two heavy chains including. F (ab ′) 2 constituting the polypeptide aggregate disclosed in the present specification is obtained by partially digesting a full-length monoclonal antibody or the like having a desired antigen-binding domain with a proteolytic enzyme such as pepsin. It can be suitably obtained by adsorbing on a protein A column and removing it. Such a proteolytic enzyme is not particularly limited as long as it can digest a full-length antibody so as to produce F (ab ′) 2 restrictively by appropriately setting the reaction conditions of the enzyme such as pH. For example, pepsin and ficin can be exemplified.
 また本発明の抗原結合分子には、上述のアミノ酸の改変に加え、更に付加的な改変を含むことができる。付加的な改変は、たとえば、アミノ酸の置換、欠失、あるいは修飾のいずれか、あるいはそれらの組み合わせから選択することができる。
 例えば、本発明の抗原結合分子には、さらに当該分子の目的とする機能に実質的な変化を与えない範囲で、任意に改変を加えることができる。例えばこのような変異はアミノ酸残基の保存的置換によって行うことができる。また、本発明の抗原結合分子の目的とする機能に変化を与えるような改変であっても、当該機能の変化が本発明の目的の範囲内であれば、そのような改変も行うことができる。
Further, the antigen-binding molecule of the present invention can further contain additional modifications in addition to the amino acid modifications described above. Additional alterations can be selected from, for example, any of amino acid substitutions, deletions, modifications, or combinations thereof.
For example, the antigen-binding molecule of the present invention can be arbitrarily modified as long as it does not substantially change the target function of the molecule. For example, such mutations can be made by conservative substitution of amino acid residues. Moreover, even if the modification gives a change to the target function of the antigen-binding molecule of the present invention, such a modification can be made as long as the change in the function is within the scope of the present invention. .
 本発明におけるアミノ酸配列の改変には、翻訳後修飾も含まれる。具体的な翻訳後修飾として、糖鎖の付加あるいは欠損を示すことができる。たとえば、本発明の抗原結合分子がIgG1型の定常領域を有する場合において、EUナンバリングの297番目のアミノ酸残基は、糖鎖で修飾されたものであることができる。修飾される糖鎖構造は限定されない。一般的に、真核細胞で発現される抗体は、定常領域に糖鎖修飾を含む。したがって、以下のような細胞で発現される抗体は、通常、何らかの糖鎖で修飾される。 
 ・哺乳動物の抗体産生細胞 
 ・抗体をコードするDNAを含む発現ベクターで形質転換された真核細胞
 ここに示した真核細胞には、酵母や動物細胞が含まれる。たとえばCHO細胞やHEK293H細胞は、抗体をコードするDNAを含む発現ベクターで形質転換するための代表的な動物細胞である。他方、当該位置に糖鎖修飾が無いものも本発明の抗体に含まれる。定常領域が糖鎖で修飾されていない抗体は、抗体をコードする遺伝子を大腸菌などの原核細胞で発現させて得ることができる。
The modification of the amino acid sequence in the present invention includes post-translational modification. As specific post-translational modifications, addition or deletion of sugar chains can be shown. For example, when the antigen-binding molecule of the present invention has an IgG1-type constant region, the 297th amino acid residue of EU numbering can be modified with a sugar chain. The sugar chain structure to be modified is not limited. In general, antibodies expressed in eukaryotic cells contain glycosylation in the constant region. Therefore, antibodies expressed in the following cells are usually modified with some sugar chain.
・ Mammalian antibody-producing cells
-Eukaryotic cells transformed with an expression vector containing DNA encoding the antibody. The eukaryotic cells shown here include yeast and animal cells. For example, CHO cells and HEK293H cells are representative animal cells for transformation with an expression vector containing DNA encoding an antibody. On the other hand, those having no sugar chain modification at the position are also included in the antibody of the present invention. An antibody whose constant region is not modified with a sugar chain can be obtained by expressing a gene encoding the antibody in a prokaryotic cell such as Escherichia coli.
 本発明において付加的な改変としては、より具体的には、例えばFc領域の糖鎖にシアル酸を付加したものであってもよい(MAbs. 2010 Sep-Oct;2(5):519-27.)。 As an additional modification in the present invention, more specifically, for example, a sialic acid may be added to the sugar chain of the Fc region (MAbs. 2010 2010 Sep-Oct; 2 (5): 519-27. .).
 また、本発明の抗原結合分子がFc領域部分を有する場合、例えばFcRnに対する結合活性を向上させるアミノ酸置換(J Immunol. 2006 Jan 1;176(1):346-56、J Biol Chem. 2006 Aug 18;281(33):23514-24.、Int Immunol. 2006 Dec;18(12):1759-69.、Nat Biotechnol. 2010 Feb;28(2):157-9.、WO/2006/019447、WO/2006/053301、WO/2009/086320)、抗体のヘテロジェニティーや安定性を向上させるためのアミノ酸置換((WO/2009/041613))を加えてもよい。 In addition, when the antigen-binding molecule of the present invention has an Fc region portion, for example, amino acid substitution (J Immunol. 2006 Jan 1; 176 (1): 346-56, J Biol Chem. 2006 Aug 18 that improves the binding activity to FcRn) ; 281 (33): 23514-24., Int Immunol. 2006 Dec; 18 (12): 1759-69., Nat Biotechnol. 2010 Feb; 28 (2): 157-9., WO / 2006/019447, WO / 2006/053301, WO / 2009/086320), amino acid substitution ((WO / 2009/041613)) for improving the heterogeneity and stability of the antibody may be added.
 さらに、本発明における「抗体」という用語は、最も広い意味で使用され、所望の生物学的活性を示す限り、モノクローナル抗体(全長モノクローナル抗体を含む)、ポリクローナル抗体、抗体変異体、抗体断片、多重特異性抗体(例えば、二重特異性抗体)、キメラ抗体、ヒト化抗体等、如何なる抗体も含まれる。 Furthermore, the term “antibody” in the present invention is used in the broadest sense, and as long as the desired biological activity is exhibited, monoclonal antibodies (including full-length monoclonal antibodies), polyclonal antibodies, antibody variants, antibody fragments, multiples Any antibody such as a specific antibody (eg, bispecific antibody), a chimeric antibody, a humanized antibody, etc. is included.
 本発明の抗体は、抗原の種類、抗体の由来などは限定されず、いかなる抗体でもよい。抗体の由来としては、特に限定されないが、ヒト抗体、マウス抗体、ラット抗体、ウサギ抗体などを挙げることができる。 The antibody of the present invention is not limited to the type of antigen, the origin of the antibody, etc., and may be any antibody. The origin of the antibody is not particularly limited, and examples thereof include a human antibody, a mouse antibody, a rat antibody, and a rabbit antibody.
 抗体を作製する方法は当業者によく知られているが、例えばモノクローナル抗体の場合、ハイブリドーマ法(Kohler and Milstein, Nature 256:495 (1975))、組換え方法(米国特許第4,816,567号)により製造してもよい。また、ファージ抗体ライブラリーから単離してもよい(Clackson et al., Nature 352:624-628 (1991) ; Marks et al., J.Mol.Biol. 222:581-597 (1991))。また、単一のB細胞クローンから単離してもよい (N. Biotechnol. 28(5): 253-457 (2011))。 Methods for producing antibodies are well known to those skilled in the art. For example, in the case of monoclonal antibodies, they are produced by the hybridoma method (Kohler and Milstein, Nature 256: 495 (1975)) or recombinant methods (US Pat. No. 4,816,567). May be. Alternatively, it may be isolated from a phage antibody library (Clackson et al., Nature 352: 624-628 (1991); Marks et al., J. Mol. Biol. 222: 581-597 (1991)). Alternatively, it may be isolated from a single B cell clone (N. Biotechnol. 28 (5): 253-457 (2011)).
 ヒト化抗体は、再構成(reshaped)ヒト抗体とも称される。具体的には、ヒト以外の動物、たとえばマウス抗体のCDRをヒト抗体に移植したヒト化抗体などが公知である。ヒト化抗体を得るための一般的な遺伝子組換え手法も知られている。具体的には、マウスの抗体のCDRをヒトのFRに移植するための方法として、たとえばOverlap Extension PCRが公知である。 Humanized antibodies are also referred to as reshaped human antibodies. Specifically, non-human animals, for example, humanized antibodies obtained by grafting mouse antibody CDRs to human antibodies are known. General genetic recombination techniques for obtaining humanized antibodies are also known. Specifically, for example, Overlap-Extension-PCR is known as a method for transplanting mouse antibody CDRs into human FRs.
 3つのCDRと4つのFRが連結された抗体可変領域をコードするDNAとヒト抗体定常領域をコードするDNAとをインフレームで融合するように発現ベクター中に挿入することによって、ヒト化抗体発現用ベクターが作成できる。該組込みベクターを宿主に導入して組換え細胞を樹立した後に、該組換え細胞を培養し、該ヒト化抗体をコードするDNAを発現させることによって、該ヒト化抗体が該培養細胞の培養物中に産生される(欧州特許公開EP 239400、国際公開WO1996/002576参照)。 For humanized antibody expression by inserting DNA encoding an antibody variable region in which three CDRs and four FRs are linked and DNA encoding a human antibody constant region into an expression vector so as to fuse in frame. A vector can be created. After introducing the integration vector into a host to establish a recombinant cell, the recombinant cell is cultured, and a DNA encoding the humanized antibody is expressed, whereby the humanized antibody is cultured in the cultured cell. (See European Patent Publication EP 239400, International Publication WO1996 / 002576).
 必要に応じ、再構成ヒト抗体のCDRが適切な抗原結合部位を形成するようにFRのアミノ酸残基を置換することもできる。たとえば、マウスCDRのヒトFRへの移植に用いたPCR法を応用して、FRにアミノ酸配列の変異を導入することができる。 If necessary, FR amino acid residues can be substituted so that the CDR of the reshaped human antibody forms an appropriate antigen-binding site. For example, amino acid sequence mutations can be introduced into FRs by applying the PCR method used for transplantation of mouse CDRs into human FRs.
 ヒト抗体遺伝子の全てのレパートリーを有するトランスジェニック動物(国際公開WO1993/012227、WO1992/003918、WO1994/002602、WO1994/025585、WO1996/034096、WO1996/033735参照)を免疫動物とし、DNA免疫により所望のヒト抗体が取得され得る。 Transgenic animals having all repertoires of human antibody genes (see International Publications WO1993 / 012227, WO1992 / 003918, WO1994 / 002602, WO1994 / 025585, WO1996 / 034096, WO1996 / 033735) are used as immunized animals, and desired by DNA immunization. Human antibodies can be obtained.
 さらに、ヒト抗体ライブラリーを用いて、パンニングによりヒト抗体を取得する技術も知られている。例えば、ヒト抗体のV領域が一本鎖抗体(scFv)としてファージディスプレイ法によりファージの表面に発現される。抗原に結合するscFvを発現するファージが選択され得る。選択されたファージの遺伝子を解析することにより、抗原に結合するヒト抗体のV領域をコードするDNA配列が決定できる。抗原に結合するscFvのDNA配列を決定した後、当該V領域配列を所望のヒト抗体C領域の配列とインフレームで融合させた後に適当な発現ベクターに挿入することによって発現ベクターが作製され得る。当該発現ベクターを上記に挙げたような好適な発現細胞中に導入し、該ヒト抗体をコードする遺伝子を発現させることにより当該ヒト抗体が取得される。これらの方法は既に公知である(国際公開WO1992/001047、WO1992/020791、WO1993/006213、WO1993/011236、WO1993/019172、WO1995/001438、WO1995/015388参照)。   Furthermore, a technique for obtaining a human antibody by panning using a human antibody library is also known. For example, the V region of a human antibody is expressed as a single chain antibody (scFv) on the surface of the phage by the phage display method. Phages expressing scFv that bind to the antigen can be selected. By analyzing the gene of the selected phage, the DNA sequence encoding the V region of the human antibody that binds to the antigen can be determined. After determining the DNA sequence of scFv that binds to the antigen, the V region sequence is fused in-frame with the sequence of the desired human antibody C region, and then inserted into an appropriate expression vector, whereby an expression vector can be prepared. The human antibody is obtained by introducing the expression vector into a suitable expression cell as described above and expressing the gene encoding the human antibody. These methods are already known (see International Publications WO1992 / 001047, WO1992 / 020791, WO1993 / 006213, WO1993 / 011236, WO1993 / 019172, WO1995 / 001438, WO1995 / 015388).
 本発明の抗体を構成する可変領域は、任意の抗原を認識する可変領域であることが出来る。 The variable region constituting the antibody of the present invention can be a variable region that recognizes an arbitrary antigen.
 本明細書において「抗原」は特に限定されず、どのような抗原でもよい。抗原の例としては、17-IA, 4-1 BB, 4Dc, 6-keto-PGF1a, 8-iso-PGF2a, 8-oxo-dG, A1 Adenosine Receptor, A33, ACE, ACE-2, Activin, Activin A, Activin AB, Activin B, Activin C, Activin RIA, Activin RIA ALK-2, Activin RIB ALK-4, Activin RIIA, Activin RIIB, ADAM, ADAM10, ADAM12, ADAM15, ADAM17/TACE, ADAM8, ADAM9, ADAMTS, ADAMTS4, ADAMTS5, Addressins, adiponectin, ADP ribosyl cyclase-1, aFGF, AGE, ALCAM, ALK, ALK-1, ALK-7, allergen, alpha1-antichemotrypsin, alpha1-antitrypsin, alpha-synuclein, alpha-V/beta-1 antagonist, aminin, amylin, amyloid beta, amyloid immunoglobulin heavy chain variable region. amyloid immunoglobulin light chain variable region, Androgen, ANG, angiotensinogen, Angiopoietin ligand-2, anti-Id, antithrombinIII, Anthrax, APAF-1, APE, APJ, apo A1, apo serum amyloid A, Apo-SAA, APP, APRIL, AR, ARC, ART, Artemin, ASPARTIC, Atrial natriuretic factor, Atrial natriuretic peptide, atrial natriuretic peptides A, atrial natriuretic peptides B, atrial natriuretic peptides C, av/b3 integrin, Axl, B7-1, B7-2, B7-H, BACE, BACE-1, Bacillus anthracis protective antigen, Bad, BAFF, BAFF-R, Bag-1, BAK, Bax, BCA-1, BCAM, BcI, BCMA, BDNF, b-ECGF, beta-2-microglobulin, betalactamase, bFGF, BID, Bik, BIM, BLC, BL-CAM, BLK, B-lymphocyte Stimulator (BIyS), BMP, BMP-2 (BMP-2a), BMP-3 (Osteogenin), BMP-4 (BMP-2b), BMP-5, BMP-6 (Vgr-1), BMP-7 (OP-1), BMP-8 (BMP-8a), BMPR, BMPR-IA (ALK-3), BMPR-IB (ALK-6), BMPR-II (BRK-3), BMPs, BOK, Bombesin, Bone-derived neurotrophic factor, bovine growth hormone, BPDE, BPDE-DNA, BRK-2, BTC, B-lymphocyte cell adhesion molecule, C10, C1-inhibitor, C1q, C3, C3a, C4, C5, C5a(complement 5a), CA125, CAD-8, Cadherin-3, Calcitonin, cAMP, Carbonic anhydrase-IX, carcinoembryonic antigen (CEA), carcinoma-associated antigen, Cardiotrophin-1, Cathepsin A, Cathepsin B, Cathepsin C/DPPI, Cathepsin D, Cathepsin E, Cathepsin H, Cathepsin L, Cathepsin O, Cathepsin S, Cathepsin V, Cathepsin X/Z/P, CBL, CCI, CCK2, CCL, CCL1/I-309, CCL11/Eotaxin, CCL12/MCP-5, CCL13/MCP-4, CCL14/HCC-1, CCL15/HCC-2, CCL16/HCC-4, CCL17/TARC, CCL18/PARC, CCL19/ELC, CCL2/MCP-1, CCL20/MIP-3-alpha, CCL21/SLC, CCL22/MDC, CCL23/MPIF-1, CCL24/Eotaxin-2, CCL25/TECK, CCL26/Eotaxin-3, CCL27/CTACK, CCL28/MEC, CCL3/M1P-1-alpha, CCL3Ll/LD-78-beta, CCL4/MIP-l-beta, CCL5/RANTES, CCL6/C10, CCL7/MCP-3, CCL8/MCP-2, CCL9/10/MTP-1-gamma, CCR, CCR1, CCR10, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, CD1, CD10, CD105, CD11a, CD11b, CD11c, CD123, CD13, CD137, CD138, CD14, CD140a, CD146, CD147, CD148, CD15, CD152, CD16, CD164, CD18, CD19, CD2, CD20, CD21, CD22, CD23, CD25, CD26, CD27L, CD28, CD29, CD3, CD30, CD30L, CD32, CD33 (p67 proteins), CD34, CD37, CD38, CD3E, CD4, CD40, CD40L, CD44, CD45, CD46, CD49a, CD49b, CD5, CD51, CD52, CD54, CD55, CD56, CD6, CD61, CD64, CD66e, CD7, CD70, CD74, CD8, CD80 (B7-1), CD89, CD95, CD105, CD158a, CEA, CEACAM5, CFTR, cGMP, CGRP receptor, CINC, CKb8-1, Claudin18, CLC, Clostridium botulinum toxin, Clostridium difficile toxin, Clostridium perfringens toxin, c-Met, CMV, CMV UL, CNTF, CNTN-1, complement factor 3 (C3), complement factor D, corticosteroid-binding globulin, Colony stimulating factor-1 receptor, COX, C-Ret, CRG-2, CRTH2, CT-1, CTACK, CTGF, CTLA-4, CX3CL1/Fractalkine, CX3CR1, CXCL, CXCL1/Gro-alpha, CXCL10, CXCL11/I-TAC, CXCL12/SDF-l-alpha/beta, CXCL13/BCA-1, CXCL14/BRAK, CXCL15/Lungkine. CXCL16, CXCL16, CXCL2/Gro-beta CXCL3/Gro-gamma, CXCL3, CXCL4/PF4, CXCL5/ENA-78, CXCL6/GCP-2, CXCL7/NAP-2, CXCL8/IL-8, CXCL9/Mig, CXCLlO/IP-10, CXCR, CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, cystatin C, cytokeratin tumor-associated antigen, DAN, DCC, DcR3, DC-SIGN, Decay accelerating factor, Delta-like protein ligand 4, des(1-3)-IGF-1 (brain IGF-1), Dhh, DHICA oxidase, Dickkopf-1, digoxin, Dipeptidyl peptidase IV, DKl, DNAM-1, Dnase, Dpp, DPPIV/CD26, Dtk, ECAD, EDA, EDA-A1, EDA-A2, EDAR, EGF, EGFR (ErbB-1), EGF like domain containing protein 7, Elastase, elastin, EMA, EMMPRIN, ENA, ENA-78, Endosialin, endothelin receptor, endotoxin, Enkephalinase, eNOS, Eot, Eotaxin, Eotaxin-2, eotaxini, EpCAM, Ephrin B2/EphB4, Epha2 tyrosine kinase receptor, epidermal growth factor receptor (EGFR), ErbB2 receptor, ErbB3 tyrosine kinase receptor, ERCC, EREG, erythropoietin (EPO), Erythropoietin receptor, E-selectin, ET-1, Exodus-2, F protein of RSV, F10, F11, F12, F13, F5, F9, Factor Ia, Factor IX, Factor Xa, Factor VII, factor VIII, Factor VIIIc, Fas, FcalphaR, FcepsilonRI, FcgammaIIb, FcgammaRI, FcgammaRIIa, FcgammaRIIIa, FcgammaRIIIb, FcRn, FEN-1, Ferritin, FGF, FGF-19, FGF-2, FGF-2 receptor, FGF-3, FGF-8, FGF-acidic, FGF-basic, FGFR, FGFR-3, Fibrin, fibroblast activation protein (FAP), fibroblast growth factor, fibroblast growth factor-10, fibronectin, FL, FLIP, Flt-3, FLT3 ligand, Folate receptor, follicle stimulating hormone (FSH), Fractalkine (CX3C), free heavy chain, free light chain, FZD1, FZD10, FZD2, FZD3, FZD4, FZD5, FZD6, FZD7, FZD8, FZD9, G250, Gas 6, GCP-2, GCSF, G-CSF, G-CSF receptor, GD2, GD3, GDF, GDF-1, GDF-15 (MIC-1), GDF-3 (Vgr-2), GDF-5 (BMP-14/CDMP-1), GDF-6 (BMP-13/CDMP-2), GDF-7 (BMP-12/CDMP-3), GDF-8 (Myostatin), GDF-9, GDNF, Gelsolin, GFAP, GF-CSF, GFR-alpha1, GFR-alpha2, GFR-alpha3, GF-β1, gH envelope glycoprotein, GITR, Glucagon, Glucagon receptor, Glucagon-like peptide 1 receptor, Glut 4, Glutamate carboxypeptidase II, glycoprotein hormone receptors, glycoprotein IIb/IIIa (GP IIb/IIIa), Glypican-3, GM-CSF, GM-CSF receptor, gp130, gp140, gp72, granulocyte-CSF (G-CSF), GRO/MGSA, Growth hormone releasing factor, GRO-β, GRO-γ, H. pylori, Hapten (NP-cap or NIP-cap), HB-EGF, HCC, HCC 1, HCMV gB envelope glycoprotein, HCMV UL, Hemopoietic growth factor (HGF), Hep B gp120, heparanase, heparin cofactor II, hepatic growth factor, Bacillus anthracis protective antigen, Hepatitis C virus E2 glycoprotein, Hepatitis E, Hepcidin, Her1, Her2/neu (ErbB-2), Her3 (ErbB-3), Her4 (ErbB-4), herpes simplex virus (HSV) gB glycoprotein, HGF, HGFA, High molecular weight melanoma-associated antigen (HMW-MAA), HIV envelope proteins such as GP120, HIV MIB gp 120 V3 loop, HLA, HLA-DR, HM1.24, HMFG PEM, HMGB-1, HRG, Hrk, HSP47, Hsp90, HSV gD glycoprotein, human cardiac myosin, human cytomegalovirus (HCMV), human growth hormone (hGH), human serum albumin, human tissue-type plasminogen activator (t-PA), Huntingtin, HVEM, IAP, ICAM, ICAM-1, ICAM-3, ICE, ICOS, IFN-alpha, IFN-beta, IFN-gamma, IgA, IgA receptor, IgE, IGF, IGF binding proteins, IGF-1, IGF-1 R, IGF-2, IGFBP, IGFR, IL, IL-1, IL-10, IL-10 receptors, IL-11, IL-11 receptors, IL-12, IL-12 receptors, IL-13, IL-13 receptors, IL-15, IL-15 receptors, IL-16, IL-16 receptors, IL-17, IL-17 receptors, IL-18 (IGIF), IL-18 receptors, IL-1alpha, IL-1beta, IL-1 receptors, IL-2, IL-2 receptors, IL-20, IL-20 receptors, IL-21, IL-21 receptors, IL-23, IL-23 receptors, IL-2 receptors, IL-3, IL-3 receptors, IL-31, IL-31 receptors, IL-3 receptors, IL-4, IL-4 receptors IL-5, IL-5 receptors, IL-6, IL-6 receptors, IL-7, IL-7 receptors, IL-8, IL-8 receptors, IL-9, IL-9 receptors, immunoglobulin immune complex, immunoglobulins, INF-alpha, INF-alpha receptors, INF-beta, INF-beta receptors, INF-gamma, INF-gamma receptors, IFN type-I , IFN type-I receptor, influenza, inhibin, Inhibin α, Inhibin β, iNOS, insulin, Insulin A-chain, Insulin B-chain, Insulin-like growth factor 1, insulin-like growth factor 2, insulin-like growth factor binding proteins, integrin, integrin alpha2, integrin alpha3, integrin alpha4, integrin alpha4/beta1, integrin alpha-V/beta-3, integrin alpha-V/beta-6, integrin alpha4/beta7, integrin alpha5/beta1, integrin alpha5/beta3, integrin alpha5/beta6, integrin alphaσ (alphaV), integrin alphaθ, integrin beta1, integrin beta2, integrin beta3(GPIIb-IIIa), IP-10, I-TAC, JE, kalliklein, Kallikrein 11, Kallikrein 12, Kallikrein 14, Kallikrein 15, Kallikrein 2, Kallikrein 5, Kallikrein 6, Kallikrein L1, Kallikrein L2, Kallikrein L3, Kallikrein L4, kallistatin, KC, KDR, Keratinocyte Growth Factor (KGF), Keratinocyte Growth Factor-2 (KGF-2), KGF, killer immunoglobulin-like receptor, kit ligand (KL), Kit tyrosine kinase, laminin 5, LAMP, LAPP (Amylin, islet-amyloid polypeptide), LAP (TGF- 1), latency associated peptide, Latent TGF-1, Latent TGF-1 bp1, LBP, LDGF, LDL, LDL receptor, LECT2, Lefty, Leptin, leutinizing hormone (LH), Lewis-Y antigen, Lewis-Y related antigen, LFA-1, LFA-3, LFA-3 receptors, Lfo, LIF, LIGHT, lipoproteins, LIX, LKN, Lptn, L-Selectin, LT-a, LT-b, LTB4, LTBP-1, Lung surfactant, Luteinizing hormone, Lymphotactin, Lymphotoxin Beta Receptor, Lysosphingolipid receptor, Mac-1, macrophage-CSF (M-CSF), MAdCAM, MAG, MAP2, MARC, maspin, MCAM, MCK-2, MCP, MCP-1, MCP-2, MCP-3, MCP-4, MCP-I (MCAF), M-CSF, MDC, MDC (67 a.a.), MDC (69 a.a.), megsin, Mer, MET tyrosine kinase receptor family, METALLOPROTEASES, Membrane glycoprotein OX2, Mesothelin, MGDF receptor, MGMT, MHC (HLA-DR), microbial protein, MIF, MIG, MIP, MIP-1α, MIP-1β, MIP-3α, MIP-3β, MIP-4, MK, MMAC1, MMP, MMP-1, MMP-10, MMP-11, MMP-12, MMP-13, MMP-14, MMP-15, MMP-2, MMP-24, MMP-3, MMP-7, MMP-8, MMP-9, monocyte attractant protein, monocyte colony inhibitory factor, mouse gonadotropin-associated peptide, MPIF, Mpo, MSK, MSP, MUC-16, MUC18, mucin (Mud), Muellerian-inhibiting substance, Mug, MuSK, Myelin associated glycoprotein, myeloid progenitor inhibitor factor-1 (MPIF-I), NAIP, Nanobody, NAP, NAP-2, NCA 90, NCAD, N-Cadherin, NCAM, Neprilysin, Neural cell adhesion molecule, neroserpin, Neuronal growth factor (NGF), Neurotrophin-3, Neurotrophin-4, Neurotrophin-6, Neuropilin 1, Neurturin, NGF-beta, NGFR, NKG20, N-methionyl human growth hormone, nNOS, NO, Nogo-A, Nogo receptor, non-structural protein type 3 (NS3) from the hepatitis C virus, NOS, Npn, NRG-3, NT, NT-3, NT-4, NTN, OB, OGG1, Oncostatin M, OP-2, OPG, OPN, OSM, OSM receptors, osteoinductive factors, osteopontin, OX40L, OX40R, oxidized LDL, p150, p95, PADPr, parathyroid hormone, PARC, PARP, PBR, PBSF, PCAD, P-Cadherin, PCNA, PCSK9, PDGF, PDGF receptor, PDGF-AA, PDGF-AB, PDGF-BB, PDGF-D, PDK-1, PECAM, PEDF, PEM, PF-4, PGE, PGF, PGI2, PGJ2, PIGF, PIN, PLA2, Placenta growth factor, placental alkaline phosphatase (PLAP), placental lactogen, pl
asminogen activator inhibitor-1, platelet-growth factor, plgR, PLP, poly glycol chains of different size(e.g. PEG-20, PEG-30, PEG40), PP14, prekallikrein, prion protein, procalcitonin, Programmed cell death protein 1, proinsulin, prolactin, Proprotein convertase PC9, prorelaxin, prostate specific membrane antigen (PSMA), Protein A, Protein C, Protein D, Protein S, Protein Z, PS, PSA, PSCA, PsmAr, PTEN, PTHrp, Ptk, PTN, P-selectin glycoprotein ligand-1, R51, RAGE, RANK, RANKL, RANTES, relaxin, Relaxin A-chain, Relaxin B-chain, renin, respiratory syncytial virus (RSV) F, Ret, reticulon 4, Rheumatoid factors, RLI P76, RPA2, RPK-1, RSK, RSV Fgp, S100, RON-8, SCF/KL, SCGF, Sclerostin, SDF-1, SDF1α, SDF1β, SERINE, Serum Amyloid P, Serum albumin, sFRP-3, Shh, Shiga like toxin II, SIGIRR, SK-1, SLAM, SLPI, SMAC, SMDF, SMOH, SOD, SPARC, sphingosine 1-phosphate receptor 1, Staphylococcal lipoteichoic acid, Stat, STEAP, STEAP-II, stem cell factor (SCF), streptokinase, superoxide dismutase, syndecan-1, TACE, TACI, TAG-72 (tumor-associated glycoprotein-72), TARC, TB, TCA-3, T-cell receptor alpha/beta, TdT, TECK, TEM1, TEM5, TEM7, TEM8, Tenascin, TERT, testicular PLAP-like alkaline phosphatase, TfR, TGF, TGF-alpha, TGF-beta, TGF-beta Pan Specific, TGF-beta RII, TGF-beta RIIb, TGF-beta RIII, TGF-beta Rl (ALK-5), TGF-beta1, TGF-beta2, TGF-beta3, TGF-beta4, TGF-beta5, TGF-I, Thrombin, thrombopoietin (TPO), Thymic stromal lymphoprotein receptor, Thymus Ck-1, thyroid stimulating hormone (TSH), thyroxine, thyroxine-binding globulin, Tie, TIMP, TIQ, Tissue Factor, tissue factor protease inhibitor, tissue factor protein, TMEFF2, Tmpo, TMPRSS2, TNF receptor I, TNF receptor II, TNF-alpha, TNF-beta, TNF-beta2, TNFc, TNF-RI, TNF-RII, TNFRSF10A (TRAIL R1 Apo-2/DR4), TNFRSF10B (TRAIL R2 DR5/KILLER/TRICK-2A/TRICK-B), TNFRSF10C (TRAIL R3 DcR1/LIT/TRID), TNFRSF10D (TRAIL R4 DcR2/TRUNDD), TNFRSF11A (RANK ODF R/TRANCE R), TNFRSF11B (OPG OCIF/TR1), TNFRSF12 (TWEAK R FN14), TNFRSF12A, TNFRSF13B (TACI), TNFRSF13C (BAFF R), TNFRSF14 (HVEM ATAR/HveA/LIGHT R/TR2), TNFRSF16 (NGFR p75NTR), TNFRSF17 (BCMA), TNFRSF18 (GITR AITR), TNFRSF19 (TROY TAJ/TRADE), TNFRSF19L (RELT), TNFRSF1A (TNF Rl CD120a/p55-60), TNFRSF1B (TNF RII CD120b/p75-80), TNFRSF21 (DR6), TNFRSF22 (DcTRAIL R2 TNFRH2), TNFRSF25 (DR3 Apo-3/LARD/TR-3/TRAMP/WSL-1), TNFRSF26 (TNFRH3), TNFRSF3 (LTbR TNF RIII/TNFC R), TNFRSF4 (OX40 ACT35/TXGP1 R), TNFRSF5 (CD40 p50), TNFRSF6 (Fas Apo-1/APT1/CD95), TNFRSF6B (DcR3 M68/TR6), TNFRSF7 (CD27), TNFRSF8 (CD30), TNFRSF9 (4-1 BB CD137/ILA), TNFRST23 (DcTRAIL R1 TNFRH1), TNFSF10 (TRAIL Apo-2 Ligand/TL2), TNFSF11 (TRANCE/RANK Ligand ODF/OPG Ligand), TNFSF12 (TWEAK Apo-3 Ligand/DR3 Ligand), TNFSF13 (APRIL TALL2), TNFSF13B (BAFF BLYS/TALL1/THANK/TNFSF20), TNFSF14 (LIGHT HVEM Ligand/LTg), TNFSF15 (TL1A/VEGI), TNFSF18 (GITR Ligand AITR Ligand/TL6), TNFSF1A (TNF-a Conectin/DIF/TNFSF2), TNFSF1B (TNF-b LTa/TNFSF1), TNFSF3 (LTb TNFC/p33), TNFSF4 (OX40 Ligand gp34/TXGP1), TNFSF5 (CD40 Ligand CD154/gp39/HIGM1/IMD3/TRAP), TNFSF6 (Fas Ligand Apo-1 Ligand/APT1 Ligand), TNFSF7 (CD27 Ligand CD70), TNFSF8 (CD30 Ligand CD153), TNFSF9 (4-1 BB Ligand CD137 Ligand), TNF-α, TNF-β, TNIL-I, toxic metabolite, TP-1, t-PA, Tpo, TRAIL, TRAIL R, TRAIL-R1, TRAIL-R2, TRANCE, transferrin receptor, transforming growth factors (TGF) such as TGF-alpha and TGF-beta, Transmembrane glycoprotein NMB, Transthyretin, TRF, Trk, TROP-2, Trophoblast glycoprotein, TSG, TSLP, Tumor Necrosis Factor (TNF), tumor-associated antigen CA 125, tumor-associated antigen expressing Lewis Y related carbohydrate, TWEAK, TXB2, Ung, uPAR, uPAR-1, Urokinase, VAP-1, vascular endothelial growth factor (VEGF), vaspin, VCAM, VCAM-1, VECAD, VE-Cadherin, VE-Cadherin-2, VEFGR-1 (flt-1), VEFGR-2, VEGF receptor (VEGFR), VEGFR-3 (flt-4), VEGI, VIM, Viral antigens, VitB12 receptor, Vitronectin receptor, VLA, VLA-1, VLA-4, VNR integrin, von Willebrand Factor (vWF), WIF-1, WNT1, WNT10A, WNT10B, WNT11, WNT16, WNT2, WNT2B/13, WNT3, WNT3A, WNT4, WNT5A, WNT5B, WNT6, WNT7A, WNT7B, WNT8A, WNT8B, WNT9A, WNT9B, XCL1, XCL2/SCM-l-beta, XCLl/Lymphotactin, XCR1, XEDAR, XIAP, XPDなどがあげられる。
In the present specification, the “antigen” is not particularly limited and may be any antigen. Examples of antigens include 17-IA, 4-1 BB, 4Dc, 6-keto-PGF1a, 8-iso-PGF2a, 8-oxo-dG, A1 Adenosine Receptor, A33, ACE, ACE-2, Activin, Activin A, Activin AB, Activin B, Activin C, Activin RIA, Activin RIA ALK-2, Activin RIB ALK-4, Activin RIIA, Activin RIIB, ADAM, ADAM10, ADAM12, ADAM15, ADAM17 / TACE, ADAM8, ADAM9, ADAMTS, ADAMTS4, ADAMTS5, Addressins, adiponectin, ADP ribosyl cyclase-1, aFGF, AGE, ALCAM, ALK, ALK-1, ALK-7, allergen, alpha1-antichemotrypsin, alpha1-antitrypsin, alpha-synuclein, alpha-V / beta- 1 antagonist, aminin, amylin, amyloid beta, amyloid immunoglobulin heavy chain variable region.amyloid immunoglobulin light chain variable region, Androgen, ANG, angiotensinogen, Angiopoietin ligand-2, anti-Id, antithrombinIII, Anthrax, APAF-1, APE, APJ , apo A1, apo serum amyloid A, Apo-SAA, APP, APRIL, AR, ARC, ART, Artemin, ASPARTIC, Atrial natriuretic factor, Atrial natriuretic peptide, atrial natriuretic peptides A, atrial natriuretic peptides B, atrial natriuretic peptides C, av / b3 integrin, Axl, B7-1, B7-2, B7-H, BACE, BACE-1, Bacillus anthracis protective antigen, Bad, BAFF, BAFF-R, Bag-1, BAK, Bax, BCA-1, BCAM, BcI, BCMA, BDNF, b-ECGF, beta-2-microglobulin, betalactamase, bFGF, BID, Bik, BIM, BLC, BL-CAM, BLK, B-lymphocyte Stimulator (BIyS), BMP, BMP-2 (BMP- 2a), BMP-3 (Osteogenin), BMP-4 (BMP-2b), BMP-5, BMP-6 (Vgr-1), BMP-7 (OP-1), BMP-8 (BMP-8a), BMPR, BMPR-IA (ALK-3), BMPR-IB (ALK-6), BMPR-II (BRK-3), BMPs, BOK, Bombesin, Bone-derived neurotrophic factor, bovine growth hormone, BPDE, BPDE-DNA , BRK-2, BTC, B-lymphocyte cell adhesion molecule, C10, C1-inhibitor, C1q, C3, C3a, C4, C5, C5a (complement 5a), CA125, CAD-8, Cadherin-3, Calcitonin, cAMP, Carbonic anhydrase-IX, carcinoembryonic antigen (CEA), carcinoma-associated antigen, Cardiotrophin-1, Cathepsin A, Cathepsin B, Cathepsin C / DPPI, Cathepsin D, Cathepsin E, Cathepsin H, Cathepsin L, Cathepsin O, Cathepsin S, Cathepsin V, Cathepsin X / Z / P, CBL, CCI, CCK2, CCL, CCL1 / I-309, CCL11 / Eotaxin, CCL12 / MCP-5, CCL13 / MCP-4, CCL14 / HCC-1, CCL15 / HCC-2, CCL16 / HCC-4, CCL17 / TARC, CCL18 / PARC, CCL19 / ELC, CCL2 / MCP-1, CCL20 / MIP-3-alpha, CCL21 / SLC, CCL22 / MDC, CCL23 / MPIF-1, CCL24 / Eotaxin-2, CCL25 / TECK, CCL26 / Eotaxin-3, CCL27 / CTACK, CCL28 / MEC, CCL3 / M1P-1-alpha, CCL3Ll / LD- 78-beta, CCL4 / MIP-l-beta, CCL5 / RANTES, CCL6 / C10, CCL7 / MCP-3, CCL8 / MCP-2, CCL9 / 10 / MTP-1-gamma, CCR, CCR1, CCR10, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, CD1, CD10, CD105, CD11a, CD11b, CD11c, CD123, CD13, CD137, CD138, CD14, CD140a, CD146, CD147, CD148, CD15, CD152, CD16, CD164, CD18, CD19, CD2, CD20, CD21, CD22, CD23, CD25, CD26, CD27L, CD28, CD29, CD3, CD30, CD30L, CD32, CD33 (p67 proteins), CD34, CD37, CD38, CD3E, CD4, CD40, CD40L, CD44, CD45, CD46, CD49a, CD49b, CD5, CD51, CD52, CD54, CD55, CD56, CD6, CD61, CD64, CD66e, CD7, CD70, CD74, CD8, CD80 (B7-1), CD89 , CD95, CD105, CD158a, CEA, CEACAM5, CFTR, cGMP, CGRP receptor, CINC, CKb8-1, Claudin18, CLC, Clostridium botulinum toxin, Clostridium difficile toxin, Clostridium perfring ens toxin, c-Met, CMV, CMV UL, CNTF, CNTN-1, complement factor 3 (C3), complement factor D, corticosteroid-binding globulin, Colony stimulating factor-1 receptor, COX, C-Ret, CRG-2 , CRTH2, CT-1, CTACK, CTGF, CTLA-4, CX3CL1 / Fractalkine, CX3CR1, CXCL, CXCL1 / Gro-alpha, CXCL10, CXCL11 / I-TAC, CXCL12 / SDF-l-alpha / beta, CXCL13 / BCA -1, CXCL14 / BRAK, CXCL15 / Lungkine. CXCL16, CXCL16, CXCL2 / Gro-beta CXCL3 / Gro-gamma, CXCL3, CXCL4 / PF4, CXCL5 / ENA-78, CXCL6 / GCP-2, CXCL7 / NAP-2, CXCL8 / IL-8, CXCL9 / Mig, CXCLlO / IP-10, CXCR, CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, cystatin C, cytokeratin tumor-associated antigen, DAN, DCC, DcR3, DC-SIGN, Decay accelerating factor, Delta-like protein ligand 4, des (1-3) -IGF-1 (brain IGF-1), Dhh, DHICA oxidase, Dickkopf-1, digoxin, Dipeptidyl peptidase IV, DKl, DNAM-1, Dnase, Dpp, DPPIV / CD26, Dtk, ECAD, EDA, EDA-A1, EDA-A2, EDAR, EGF, EGFR (ErbB-1), EGF like domain containing protein 7, Elastase, elastin, EMA, EMMPRIN, ENA, ENA- 78, Endosialin, endothelin receptor, endotoxin, E nkephalinase, eNOS, Eot, Eotaxin, Eotaxin-2, eotaxini, EpCAM, Ephrin B2 / EphB4, Epha2 tyrosine kinase receptor, epidermal growth factor receptor (EGFR), ErbB2 receptor, ErbB3 tyrosine kinase receptor, ERCC, EREG, erythropoietin (EPO) , Erythropoietin receptor, E-selectin, ET-1, Exodus-2, F protein of RSV, F10, F11, F12, F13, F5, F9, Factor Ia, Factor IX, Factor Xa, Factor VII, factor VIII, Factor VIIIc , Fas, FcalphaR, FcepsilonRI, FcgammaIIb, FcgammaRI, FcgammaRIIa, FcgammaRIIIa, FcgammaRIIIb, FcRn, FEN-1, Ferritin, FGF, FGF-19, FGF-2, FGF-2 receptor, FGF-3, FGF-8, FGF- acidic, FGF-basic, FGFR, FGFR-3, Fibrin, fibroblast activation protein (FAP), fibroblast growth factor, fibroblast growth factor-10, fibronectin, FL, FLIP, Flt-3, FLT3 ligand, Folate receptor, follicle stimulating hormone (FSH), Fractalkine (CX3C), free heavy chain, free light chain, FZD1, FZD10, FZD2, FZD3, FZD4, FZD5, FZD6, FZD7, FZD8, FZD9, G250, Gas 6, GCP-2, GCSF, G- CSF, G-CSF receptor, GD2, GD3, GDF, GDF-1, GDF-15 (M IC-1), GDF-3 (Vgr-2), GDF-5 (BMP-14 / CDMP-1), GDF-6 (BMP-13 / CDMP-2), GDF-7 (BMP-12 / CDMP- 3), GDF-8 (Myostatin), GDF-9, GDNF, Gelsolin, GFAP, GF-CSF, GFR-alpha1, GFR-alpha2, GFR-alpha3, GF-β1, gH envelope glycoprotein, GITR, Glucagon, Glucagon receptor , Glucagon-like peptide 1 receptor, Glut 4, Glutamate carboxypeptidase II, glycoprotein hormone receptors, glycoprotein IIb / IIIa (GP IIb / IIIa), Glypican-3, GM-CSF, GM-CSF receptor, gp130, gp140, gp72, granulocyte -CSF (G-CSF), GRO / MGSA, Growth hormone releasing factor, GRO-β, GRO-γ, H. pylori, Hapten (NP-cap or NIP-cap), HB-EGF, HCC, HCC 1, HCMV gB envelope glycoprotein, HCMV UL, Hemopoietic growth factor (HGF), Hep B gp120, heparanase, heparin cofactor II, hepatic growth factor, Bacillus anthracis protective antigen, Hepatitis C virus E2 glycoprotein, Hepatitis E, Hepcidin, Her1, Her2 / neu ( ErbB-2), Her3 (ErbB-3), Her4 (ErbB-4), herpes simplex virus (HSV) gB glycoprotein, HGF, HGFA, High molecular weight melanoma-associated antigen (HMW-MA A), HIV envelope proteins such as GP120, HIV MIB gp 120 V3 loop, HLA, HLA-DR, HM1.24, HMFG PEM, HMGB-1, HRG, Hrk, HSP47, Hsp90, HSV gD glycoprotein, human cardiac myosin, human cytomegalovirus (HCMV), human growth hormone (hGH), human serum albumin, human tissue-type plasminogen activator (t-PA), Huntingtin, HVEM, IAP, ICAM, ICAM-1, ICAM-3, ICE, ICOS, IFN -alpha, IFN-beta, IFN-gamma, IgA, IgA receptor, IgE, IGF, IGF binding proteins, IGF-1, IGF-1 R, IGF-2, IGFBP, IGFR, IL, IL-1, IL-10 , IL-10 receptors, IL-11, IL-11 receptors, IL-12, IL-12 receptors, IL-13, IL-13 receptors, IL-15, IL-15 receptors, IL-16, IL-16 receptors , IL-17, IL-17 receptors, IL-18 (IGIF), IL-18 receptors, IL-1alpha, IL-1beta, IL-1 receptors, IL-2, IL-2 receptors, IL-20, IL- 20 receptors, IL-21, IL-21 receptors, IL-23, IL-23 receptors, IL-2 receptors, IL-3, IL-3 receptors, IL-31, IL-31 receptors, IL-3 receptors, IL -4, IL-4 receptors IL-5, IL-5 receptors, IL-6, IL-6 receptors, IL-7, IL-7 receptors, IL-8, IL-8 receptors, IL-9, IL-9 receptors, immunoglobulin immune complex, immunoglobulins, INF-alpha, INF-alpha receptors, INF-beta, INF-beta receptors, INF-gamma, INF-gamma receptors, IFN type-I, IFN type- I receptor, influenza, inhibin, Inhibin α, Inhibin β, iNOS, insulin, Insulin A-chain, Insulin B-chain, Insulin-like growth factor 1, insulin-like growth factor 2, insulin-like growth factor binding proteins, integrin , integrin alpha2, integrin alpha3, integrin alpha4, integrin alpha4 / beta1, integrin alpha-V / beta-3, integrin alpha-V / beta-6, integrin alpha4 / beta7, integrin alpha5 / beta1, integrin alpha5 / beta3, integrin alpha5 / beta6, integrin alphaσ (alphaV), integrin alphaθ, integrin beta1, integrin beta2, integrin beta3 (GPIIb-IIIa), IP-10, I-TAC, JE, kalliklein, Kallikrein 11, Kallikrein 12, Kallikrein 14, Kallikrein 15, Kallikrein 2, Kallikrein 5, Kallikrein 6, Kallikrein L1, Kallikrein L2, Kallikrein L3, Kallikrein L4, kallistatin, KC, KDR, Keratinocyte Growth Factor (KGF), Keratinocyte Growth Facto r-2 (KGF-2), KGF, killer immunoglobulin-like receptor, kit ligand (KL), Kit tyrosine kinase, laminin 5, LAMP, LAPP (Amylin, islet-amyloid polypeptide), LAP (TGF-1), latency associated peptide, Latent TGF-1, Latent TGF-1 bp1, LBP, LDGF, LDL, LDL receptor, LECT2, Lefty, Leptin, leutinizing hormone (LH), Lewis-Y antigen, Lewis-Y related antigen, LFA-1, LFA-3, LFA-3 receptors, Lfo, LIF, LIGHT, lipoproteins, LIX, LKN, Lptn, L-Selectin, LT-a, LT-b, LTB4, LTBP-1, Lung surfactant, Luteinizing hormone, Lymphotactin, Lymphotoxin Beta Receptor, Lysosphingolipid receptor, Mac-1, macrophage-CSF (M-CSF), MAdCAM, MAG, MAP2, MARC, maspin, MCAM, MCK-2, MCP, MCP-1, MCP-2, MCP-3, MCP -4, MCP-I (MCAF), M-CSF, MDC, MDC (67 aa), MDC (69 aa), megsin, Mer, MET tyrosine kinase receptor family, METALLOPROTEASES, Membrane glycoprotein OX2, Mesothelin, MGDF receptor, MGMT , MHC (HLA-DR), microbial protein, MIF, MIG, MIP, MIP-1α, MIP-1β, MIP-3α, MIP-3β, MIP-4, MK, MMAC1, MMP, MMP-1, MMP-10 , MMP-11, MMP-12, MMP- 13, MMP-14, MMP-15, MMP-2, MMP-24, MMP-3, MMP-7, MMP-8, MMP-9, monocyte attractant protein, monocyte colony inhibitory factor, mouse gonadotropin-associated peptide, MPIF , Mpo, MSK, MSP, MUC-16, MUC18, mucin (Mud), Muellerian-inhibiting substance, Mug, MuSK, Myelin associated glycoprotein, myeloid progenitor inhibitor factor-1 (MPIF-I), NAIP, Nanobody, NAP, NAP -2, NCA 90, NCAD, N-Cadherin, NCAM, Neprilysin, Neural cell adhesion molecule, neroserpin, Neuronal growth factor (NGF), Neurotrophin-3, Neurotrophin-4, Neurotrophin-6, Neuropilin 1, Neurturin, NGF-beta , NGFR, NKG20, N-methionyl human growth hormone, nNOS, NO, Nogo-A, Nogo receptor, non-structural protein type 3 (NS3) from the hepatitis C virus, NOS, Npn, NRG-3, NT, NT- 3, NT-4, NTN, OB, OGG1, Oncostatin M, OP-2, OPG, OPN, OSM, OSM receptors, osteoinductive factors, osteopontin, OX40L, OX40R, oxidized LDL, p150, p95, PADPr, parathyroid hormone, PARC , PARP, PBR, PBSF, PCAD, P-Cadherin, PCNA, PCSK9, PDGF, PDGF receptor, PDGF-AA, PDG F-AB, PDGF-BB, PDGF-D, PDK-1, PECAM, PEDF, PEM, PF-4, PGE, PGF, PGI2, PGJ2, PIGF, PIN, PLA2, Placenta growth factor, placental alkaline phosphatase (PLAP) , placental lactogen, pl
asminogen activator inhibitor-1, platelet-growth factor, plgR, PLP, poly glycol chains of different size (eg PEG-20, PEG-30, PEG40), PP14, prekallikrein, prion protein, procalcitonin, Programmed cell death protein 1, proinsulin , prolactin, Proprotein convertase PC9, prorelaxin, prostate specific membrane antigen (PSMA), Protein A, Protein C, Protein D, Protein S, Protein Z, PS, PSA, PSCA, PsmAr, PTEN, PTHrp, Ptk, PTN, P- selectin glycoprotein ligand-1, R51, RAGE, RANK, RANKL, RANTES, relaxin, Relaxin A-chain, Relaxin B-chain, renin, respiratory syncytial virus (RSV) F, Ret, reticulon 4, Rheumatoid factors, RLI P76, RPA2 , RPK-1, RSK, RSV Fgp, S100, RON-8, SCF / KL, SCGF, Sclerostin, SDF-1, SDF1α, SDF1β, SERINE, Serum Amyloid P, Serum albumin, sFRP-3, Shh, Shiga like toxin II, SIGIRR, SK-1, SLAM, SLPI, SMAC, SMDF, SMOH, SOD, SPARC, sphingosine 1-phosphate receptor 1, Staphylococcal lipoteichoic acid, Stat, STEAP, STEAP-II, stem cell factor (SCF), streptokinase, superoxide dismutase, syndec an-1, TACE, TACI, TAG-72 (tumor-associated glycoprotein-72), TARC, TB, TCA-3, T-cell receptor alpha / beta, TdT, TECK, TEM1, TEM5, TEM7, TEM8, Tenascin, TERT, testicular PLAP-like alkaline phosphatase, TfR, TGF, TGF-alpha, TGF-beta, TGF-beta Pan Specific, TGF-beta RII, TGF-beta RIIb, TGF-beta RIII, TGF-beta Rl (ALK-5 ), TGF-beta1, TGF-beta2, TGF-beta3, TGF-beta4, TGF-beta5, TGF-I, Thrombin, thrombopoietin (TPO), Thymic stromal lymphoprotein receptor, Thymus Ck-1, thyroid stimulating hormone (TSH), thyroxine, thyroxine-binding globulin, Tie, TIMP, TIQ, Tissue Factor, tissue factor protease inhibitor, tissue factor protein, TMEFF2, Tmpo, TMPRSS2, TNF receptor I, TNF receptor II, TNF-alpha, TNF-beta, TNF-beta2 , TNFc, TNF-RI, TNF-RII, TNFRSF10A (TRAIL R1 Apo-2 / DR4), TNFRSF10B (TRAIL R2 DR5 / KILLER / TRICK-2A / TRICK-B), TNFRSF10C (TRAIL R3 DcR1 / LIT / TRID), TNFRSF10D (TRAIL R4 DcR2 / TRUNDD), TNFRSF11A (RANK ODF R / TRANCE R), TNFRSF11B (OPG OCIF / TR1), TNFRSF12 (TWEAK R FN14), TNFRSF12A, TNFRSF13B (TACI ), TNFRSF13C (BAFF R), TNFRSF14 (HVEM ATAR / HveA / LIGHT R / TR2), TNFRSF16 (NGFR p75NTR), TNFRSF17 (BCMA), TNFRSF18 (GITR AITR), TNFRSF19 (TROY TAJ / TRADE), TNFRSF19L (RELT) , TNFRSF1A (TNF Rl CD120a / p55-60), TNFRSF1B (TNF RII CD120b / p75-80), TNFRSF21 (DR6), TNFRSF22 (DcTRAIL R2 TNFRH2), TNFRSF25 (DR3 Apo-3 / LARD / TR-3 / TRAMP / WSL-1), TNFRSF26 (TNFRH3), TNFRSF3 (LTbR TNF RIII / TNFC R), TNFRSF4 (OX40 ACT35 / TXGP1 R), TNFRSF5 (CD40 p50), TNFRSF6 (Fas Apo-1 / APT1 / CD95), TNFRSF6B (DcR3 M68 / TR6), TNFRSF7 (CD27), TNFRSF8 (CD30), TNFRSF9 (4-1 BB CD137 / ILA), TNFRST23 (DcTRAIL R1 TNFRH1), TNFSF10 (TRAIL Apo-2 Ligand / TL2), TNFSF11 (TRANCE / RANK Ligand ODF / OPG Ligand), TNFSF12 (TWEAK Apo-3 Ligand / DR3 Ligand), TNFSF13 (APRIL TALL2), TNFSF13B (BAFF BLYS / TALL1 / THANK / TNFSF20), TNFSF14 (LIGHT HVEM Ligand / LTg), TNFSF15 (TL1A / VEGI ), TNFSF18 (GITR Ligand AITR Ligand / TL6), TNFSF1A (TNF-a Conectin / DIF / TNFSF2), TNFSF1B (TNF-b LTa / TNFSF1), TNFSF3 (LTb TNFC / p33), TNFSF4 (OX40 Ligand gp34 / TXGP1) , TNFSF5 (CD40 Ligand CD154 / g p39 / HIGM1 / IMD3 / TRAP), TNFSF6 (Fas Ligand Apo-1 Ligand / APT1 Ligand), TNFSF7 (CD27 Ligand CD70), TNFSF8 (CD30 Ligand CD153), TNFSF9 (4-1 BB Ligand CD137 Ligand), TNF-α , TNF-β, TNIL-I, toxic metabolite, TP-1, t-PA, Tpo, TRAIL, TRAIL R, TRAIL-R1, TRAIL-R2, TRANCE, transferrin receptor, transforming growth factors (TGF) such as TGF- alpha and TGF-beta, Transmembrane glycoprotein NMB, Transthyretin, TRF, Trk, TROP-2, Trophoblast glycoprotein, TSG, TSLP, Tumor Necrosis Factor (TNF), tumor-associated antigen CA 125, tumor-associated antigen expressing Lewis Y related carbohydrate , TWEAK, TXB2, Ung, uPAR, uPAR-1, Urokinase, VAP-1, vascular endothelial growth factor (VEGF), vaspin, VCAM, VCAM-1, VECAD, VE-Cadherin, VE-Cadherin-2, VEFGR-1 (flt-1), VEFGR-2, VEGF receptor (VEGFR), VEGFR-3 (flt-4), VEGI, VIM, Viral antigens, VitB12 receptor, Vitronectin receptor, VLA, VLA-1, VLA-4, VNR integrin , von Willebrand Factor (vWF), WIF-1, WNT1, WNT10A, WNT10B, WNT11, WNT16, WNT2, WNT2B / 13, WNT3, WNT3A, WNT 4, WNT5A, WNT5B, WNT6, WNT7A, WNT7B, WNT8A, WNT8B, WNT9A, WNT9B, XCL1, XCL2 / SCM-l-beta, XCLl / Lymphotactin, XCR1, XEDAR, XIAP, XPD.
 本発明の抗原結合分子に含まれる抗体の2つの可変領域のうち、異なる2つの抗原に結合することができるがこれらの抗原に同時には結合することのできない可変領域が結合する「第1の抗原」と「第2の抗原」としては、例えば、免疫細胞表面分子(例えば、T細胞表面分子、NK細胞表面分子、樹状細胞表面分子、B細胞表面分子、NKT細胞表面分子、MDSC細胞表面分子、マクロファージ類表面分子)、腫瘍細胞、腫瘍の血管、ストローマ細胞等に発現するが、正常組織においても発現している抗原(インテグリン、Tissue factor、VEGFR、PDGFR、EGFR、IGFR、METケモカインレセプター、ヘパラン硫酸プロテオグリカン、CD44、フィブロネクチン、DR5、TNFRSF等)が好ましく、「第1の抗原」と「第2の抗原」の組合せとしては、第1の抗原と第2の抗原のいずれか一方が、例えば、T細胞上に特異的に発現している分子であり、もう一方の抗原が、T細胞又は他の免疫細胞表面に発現している分子であることがが好ましい。別の態様として、「第1の抗原」と「第2の抗原」の組合せとしては、第1の抗原と第2の抗原のいずれか一方が、例えば、T細胞上に特異的に発現している分子であり、もう一方の抗原が、免疫細胞上で発現している、先で選択した抗原とは異なる分子であることが好ましい。具体的には、例えば、T細胞上に特異的に発現している分子としては、CD3、T細胞レセプターが挙げられる。特にCD3であることが好ましい。本発明の抗原結合分子が結合する、CD3の部位としては、例えば、ヒトCD3の場合、ヒトCD3を構成するγ鎖、δ鎖又はε鎖配列に存在するエピトープであればいずれのエピトープに結合するものであってもよい。特にヒトCD3複合体のε鎖の細胞外領域に存在するエピトープが好ましい。CD3を構成するγ鎖、δ鎖又はε鎖の構造は、そのポリヌクレオチド配列が、配列番号:83(NM_000073.2)、85(NM_000732.4)及び87(NM_000733.3)に、そのポリペプチド配列が、配列番号:84(NP_000064.1)、86(NP_000723.1)及び88(NP_000724.1)に記載されている(カッコ内はRefSeq登録番号を示す)。更にもう一方の抗原としては、Fcγ受容体、TLR、レクチン、IgA、免疫チェックポイント分子、TNFスーパーファミリー分子、TNFRスーパーファミリー分子、NK受容体分子が挙げられる。
また、本発明の抗原結合分子に含まれる抗体の2つの可変領域のうち、もう一方の可変領域が結合する、先の「第1の抗原」と「第2の抗原」とは異なる「第3の抗原」としては、例えば、腫瘍細胞に特異的な抗原が好ましく、細胞の悪性化に伴って発現する抗原の他、細胞が、がん化した際に細胞表面やタンパク質分子上に現れる異常な糖鎖も含まれる。具体的には、例えば、ALK受容体(プレイオトロフィン受容体)、プレイオトロフィン、KS 1/4膵臓癌抗原、卵巣癌抗原(CA125)、前立腺酸リン酸、前立腺特異的抗原(PSA)、メラノーマ関連抗原p97、メラノーマ抗原gp75、高分子量メラノーマ抗原(HMW-MAA)、前立腺特異的膜抗原、癌性胚抗原(CEA)、多型上皮ムチン抗原、ヒト乳脂肪球抗原、CEA、TAG-72、CO17-1A、GICA 19-9、CTA-1およびLEAなどの結腸直腸腫瘍関連抗原、バーキットリンパ腫抗原-38.13、CD19、ヒトBリンパ腫抗原-CD20、CD33、ガングリオシドGD2、ガングリオシドGD3、ガングリオシドGM2およびガングリオシドGM3などのメラノーマ特異的抗原、腫瘍特異的移植型細胞表面抗原(TSTA)、T抗原、DNA腫瘍ウイルスおよびRNA腫瘍ウイルスのエンベロープ抗原などのウイルスにより誘導される腫瘍抗原、結腸のCEA、5T4癌胎児トロホブラスト糖タンパク質および膀胱腫瘍癌胎児抗原などの癌胎児抗原α-フェトプロテイン、ヒト肺癌抗原L6およびL20などの分化抗原、線維肉腫の抗原、ヒト白血病T細胞抗原-Gp37、新生糖タンパク質、スフィンゴ脂質、EGFR(上皮増殖因子受容体)などの乳癌抗原、NY-BR-16、NY-BR-16およびHER2抗原(p185HER2)、多型上皮ムチン(PEM)、悪性ヒトリンパ球抗原-APO-1、胎児赤血球に認められるI抗原などの分化抗原、成人赤血球に認められる初期内胚葉I抗原、移植前の胚、胃癌に認められるI(Ma)、乳腺上皮に認められるM18、M39、骨髄細胞に認められるSSEA-1、VEP8、VEP9、Myl、VIM-D5、結腸直腸癌に認められるD156-22、TRA-1-85(血液群H)、精巣および卵巣癌に認められるSCP-1、結腸癌に認められるC14、肺癌に認められるF3、胃癌に認められるAH6、Yハプテン、胚性癌細胞に認められるLey、TL5(血液群A)、A431細胞に認められるEGF受容体、膵臓癌に認められるE1シリーズ(血液群B)、胚性癌細胞に認められるFC10.2、胃癌抗原、腺癌に認められるCO-514(血液群Lea)、腺癌に認められるNS-10、CO-43(血液群Leb)、A431細胞のEGF受容体に認められるG49、結腸癌に認められるMH2(血液群ALeb/Ley)、結腸癌に認められる19.9、胃癌ムチン、骨髄細胞に認められるT5A7、メラノーマに認められるR24、胚性癌細胞に認められる4.2、GD3、D1.1、OFA-1、GM2、OFA-2、GD2、およびM1:22:25:8ならびに4~8細胞段階の胚に認められるSSEA-3およびSSEA-4、皮下T細胞リンパ腫抗原、MART-1抗原、シアリルTn(STn)抗原、結腸癌抗原NY-CO-45、肺癌抗原NY-LU-12変異体A、腺癌抗原ART1、腫瘍随伴性関連脳-精巣癌抗原(癌神経抗原MA2、腫瘍随伴性神経抗原)、神経癌腹部抗原2(NOVA2)、血液細胞癌抗原遺伝子520、腫瘍関連抗原CO-029、腫瘍関連抗原MAGE-C1(癌/精巣抗原CT7)、MAGE-B1(MAGE-XP抗原)、MAGE-B2(DAM6)、MAGE-2、MAGE-4a、MAGE-4bおよびMAGE-X2、癌-精巣抗原(NY-EOS-1)、YKL-40および上記ポリペプチドのいずれかの断片またはこれらに対して修飾された構造等(前記の修飾リン酸基や糖鎖等)、EpCAM、EREG、CA19-9、CA15-3、シリアルSSEA-1(SLX)、HER2、PSMA、CEA、CLEC12A等が挙げられる。
Among the two variable regions of an antibody contained in the antigen-binding molecule of the present invention, a “first antigen to which a variable region that can bind to two different antigens but cannot simultaneously bind to these antigens binds. "And" second antigen "include, for example, immune cell surface molecules (eg, T cell surface molecules, NK cell surface molecules, dendritic cell surface molecules, B cell surface molecules, NKT cell surface molecules, MDSC cell surface molecules Antigens (integrin, tissue factor, VEGFR, PDGFR, EGFR, IGFR, MET chemokine receptor, heparan) expressed in normal cells, tumor cells, tumor blood vessels, stromal cells, etc. Proteoglycan sulfate, CD44, fibronectin, DR5, TNFRSF, etc.) are preferred, and the combination of “first antigen” and “second antigen” is any of the first antigen and the second antigen. One of them is, for example, a molecule that is specifically expressed on T cells, and the other antigen is preferably a molecule that is expressed on the surface of T cells or other immune cells. In another embodiment, the combination of the “first antigen” and the “second antigen” includes any one of the first antigen and the second antigen expressed specifically on T cells, for example. Preferably, the other antigen is a molecule that is expressed on immune cells and is different from the previously selected antigen. Specifically, for example, CD3 and a T cell receptor can be mentioned as molecules specifically expressed on T cells. CD3 is particularly preferable. As the CD3 site to which the antigen-binding molecule of the present invention binds, for example, in the case of human CD3, it binds to any epitope as long as it exists in the γ chain, δ chain or ε chain sequence constituting human CD3 It may be a thing. In particular, an epitope present in the extracellular region of the ε chain of the human CD3 complex is preferred. The structure of the γ chain, δ chain, or ε chain constituting CD3 is such that the polynucleotide sequence is SEQ ID NO: 83 (NM_000073.2), 85 (NM_000732.4) and 87 (NM_000733.3). The sequences are described in SEQ ID NOs: 84 (NP_000064.1), 86 (NP_000723.1) and 88 (NP_000724.1) (in parentheses indicate RefSeq registration numbers). Still other antigens include Fcγ receptor, TLR, lectin, IgA, immune checkpoint molecule, TNF superfamily molecule, TNFR superfamily molecule, and NK receptor molecule.
In addition, the “first antigen” and the “second antigen” to which the other variable region of the two variable regions of the antibody contained in the antigen-binding molecule of the present invention binds are different from the “third antigen”. For example, antigens specific to tumor cells are preferable. In addition to antigens expressed as cells become malignant, abnormalities appearing on the cell surface or protein molecules when cells become cancerous. Sugar chains are also included. Specifically, for example, ALK receptor (pleiotrophin receptor), pleiotrophin, KS 1/4 pancreatic cancer antigen, ovarian cancer antigen (CA125), prostatic acid phosphate, prostate specific antigen (PSA), Melanoma-associated antigen p97, melanoma antigen gp75, high molecular weight melanoma antigen (HMW-MAA), prostate specific membrane antigen, cancerous embryo antigen (CEA), polymorphic epithelial mucin antigen, human milk fat globule antigen, CEA, TAG-72 , CO17-1A, GICA 19-9, CTA-1 and LEA and other colorectal tumor associated antigens, Burkitt lymphoma antigen-38.13, CD19, human B lymphoma antigen-CD20, CD33, ganglioside GD2, ganglioside GD3, ganglioside GM2 and Tumor antigens induced by viruses such as melanoma-specific antigens such as ganglioside GM3, tumor-specific transplanted cell surface antigen (TSTA), T antigen, DNA tumor virus and RNA tumor virus envelope antigen, colon CEA, carcinoembryonic antigen α-fetoprotein such as 5T4 carcinoembryonic trophoblast glycoprotein and bladder tumor carcinoembryonic antigen, differentiation antigens such as human lung cancer antigens L6 and L20, fibrosarcoma antigen, human leukemia T cell antigen-Gp37, nascent glycoprotein , Sphingolipids, breast cancer antigens such as EGFR (epidermal growth factor receptor), NY-BR-16, NY-BR-16 and HER2 antigen (p185HER2), polymorphic epithelial mucin (PEM), malignant human lymphocyte antigen-APO- 1. Differentiation antigens such as I antigen found in fetal erythrocytes, early endoderm I antigen found in adult erythrocytes, pre-implantation embryo, I (Ma) found in gastric cancer, M18, M39, bone marrow cells found in mammary epithelium SSEA-1, VEP8, VEP9, Myl, VIM-D5, D156-22 found in colorectal cancer, TRA-1-85 (blood group H), SCP-1 found in testis and ovarian cancer, colon C14 found in cancer, F3 found in lung cancer, AH6 found in stomach cancer, Y hapten, Ley found in embryonic cancer cells, TL5 (blood group A), EGF receptor found in A431 cells, E1 series found in pancreatic cancer (blood group B), FC10 found in embryonic cancer cells. 2. Gastric cancer antigen, CO-514 (blood group Lea) found in adenocarcinoma, NS-10, CO-43 (blood group Leb) found in adenocarcinoma, G49 found in EGF receptor of A431 cells, colon cancer MH2 (blood group ALeb / Ley), colon cancer 19.9, gastric cancer mucin, T5A7 found in bone marrow cells, R24 found in melanoma, 4.2 found in embryonic cancer cells, GD3, D1.1, OFA-1, GM2, OFA-2, GD2, and M1: 22: 25: 8 and SSEA-3 and SSEA-4, subcutaneous T-cell lymphoma antigen, MART-1 antigen found in 4-8 cell stage embryos, Sialyl Tn (STn) antigen, colon cancer antigen NY-CO-45, lung cancer antigen NY-LU-12 variant A, adenocarcinoma antigen ART1, tumor-associated brain-testis cancer antigen (cancer neuronal antigen MA2, tumor-associated Nerve antigen) , Neuronal cancer abdominal antigen 2 (NOVA2), blood cell cancer antigen gene 520, tumor-associated antigen CO-029, tumor-associated antigen MAGE-C1 (cancer / testis antigen CT7), MAGE-B1 (MAGE-XP antigen), MAGE- B2 (DAM6), MAGE-2, MAGE-4a, MAGE-4b and MAGE-X2, cancer-testis antigen (NY-EOS-1), YKL-40 and any fragment of the above polypeptides or against these Examples include modified structures (such as the above-mentioned modified phosphate groups and sugar chains), EpCAM, EREG, CA19-9, CA15-3, serial SSEA-1 (SLX), HER2, PSMA, CEA, CLEC12A, and the like.
 本発明の抗原結合分子は当業者に公知の方法により製造することができる。例えば、抗体は以下の方法で作製することができるが、これに限定されるものではない。単離されたポリペプチドをコードする遺伝子を適当な宿主に導入することによって抗体を作製するための宿主細胞と発現ベクターの多くの組み合わせが公知である。これらの発現系は、いずれも本発明の抗原結合分子を単離するのに応用され得る。真核細胞が宿主細胞として使用される場合、動物細胞、植物細胞、あるいは真菌細胞が適宜使用され得る。具体的には、動物細胞としては、次のような細胞が例示され得る。
(1)哺乳類細胞、:CHO(Chinese hamster ovary cell line)、COS(Monkey kidney cell line)、ミエローマ(Sp2/O、NS0等)、BHK (baby hamster kidney cell line)、HEK293(human embryonic kidney cell line with sheared adenovirus (Ad)5 DNA)、PER.C6 cell (human embryonic retinal cell line transformed with the Adenovirus Type 5 (Ad5) E1A and E1B genes)、Hela、Vero、など(Current Protocols in Protein Science (May, 2001, Unit 5.9, Table 5.9.1))
(2)両生類細胞:アフリカツメガエル卵母細胞など
(3)昆虫細胞:sf9、sf21、Tn5など
 また、抗体は大腸菌(mAbs 2012 Mar-Apr; 4(2): 217-225.)や酵母(WO2000023579)でも作製することができる。大腸菌で作製した抗体は糖鎖が付加されていない。一方、酵母で作製した抗体は糖鎖が付加される。
The antigen-binding molecule of the present invention can be produced by methods known to those skilled in the art. For example, the antibody can be prepared by the following method, but is not limited thereto. Many combinations of host cells and expression vectors for producing antibodies by introducing a gene encoding an isolated polypeptide into a suitable host are known. Any of these expression systems can be applied to isolate the antigen-binding molecule of the present invention. When eukaryotic cells are used as host cells, animal cells, plant cells, or fungal cells can be used as appropriate. Specifically, the following cells can be exemplified as animal cells.
(1) Mammalian cells: CHO (Chinese hamster ovary cell line), COS (Monkey kidney cell line), myeloma (Sp2 / O, NS0, etc.), BHK (baby hamster kidney cell line), HEK293 (human embryonic kidney cell line) with sheared adenovirus (Ad) 5 DNA), PER.C6 cell (human embryonic retinal cell line transformed with the Adenovirus Type 5 (Ad5) E1A and E1B genes), Hela, Vero, etc. (Current Protocols in Protein Science (May, 2001 , Unit 5.9, Table 5.9.1))
(2) Amphibian cells: Xenopus oocytes, etc. (3) Insect cells: sf9, sf21, Tn5, etc. In addition, antibodies are used in Escherichia coli (mAbs 2012 Mar-Apr; 4 (2): 217-225.) And yeast (WO2000023579). ). The antibody produced in E. coli has no sugar chain added. On the other hand, sugar chains are added to antibodies produced in yeast.
 抗体の重鎖をコードするDNAであって、可変領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換された重鎖をコードするDNA、および抗体の軽鎖をコードするDNAを発現させる。可変領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換された重鎖又は軽鎖をコードするDNAは、例えば、ある抗原に対して公知の方法を用いて作製された抗体の可変領域をコードするDNAを取得し、該領域中の特定のアミノ酸をコードするコドンが目的の他のアミノ酸をコードするよう、適宜置換を導入することによって得ることが出来る。 DNA encoding the heavy chain of an antibody, the DNA encoding the heavy chain in which one or more amino acid residues in the variable region are substituted with other amino acids of interest, and the DNA encoding the light chain of the antibody To express. A DNA encoding a heavy chain or light chain in which one or more amino acid residues in the variable region are substituted with other amino acids of interest is, for example, an antibody prepared using a known method for an antigen. It can be obtained by obtaining a DNA encoding a variable region and appropriately introducing substitutions so that a codon encoding a specific amino acid in the region encodes another amino acid of interest.
 また、あらかじめ、ある抗原に対して公知の方法を用いて作製された抗体の可変領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換されたタンパク質をコードするDNAを設計し、該DNAを化学的に合成することによって、可変領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換された重鎖をコードするDNAを得ることも可能である。アミノ酸の置換部位、置換の種類としては、特に限定されるものではない。アミノ酸改変のための好ましい領域としては、可変領域中の溶媒に露出している領域およびループ領域が挙げられる。中でも、CDR1、CDR2、CDR3、FR3領域、ループ領域が好ましい。具体的には、H鎖可変領域のKabatナンバリング31~35、50~65、71~74、95~102、L鎖可変領域のKabatナンバリング24~34、50~56、89~97が好ましく、H鎖可変領域のKabatナンバリング31、52a~61、71~74、97~101、L鎖可変領域のKabatナンバリング24~34、51~56、89~96がより好ましい。
 またアミノ酸改変は置換に限られず、欠失、付加、挿入、又は修飾のいずれか、又はそれらの組み合わせであってもよい。
In addition, a DNA encoding a protein in which one or a plurality of amino acid residues in the variable region of an antibody prepared using a known method for an antigen is substituted with another amino acid of interest, By chemically synthesizing the DNA, it is possible to obtain DNA encoding a heavy chain in which one or more amino acid residues in the variable region are substituted with other amino acids of interest. The amino acid substitution site and the type of substitution are not particularly limited. Preferred regions for amino acid modification include regions exposed to solvent in the variable region and loop regions. Of these, CDR1, CDR2, CDR3, FR3 region and loop region are preferable. Specifically, Kabat numbering 31 to 35, 50 to 65, 71 to 74, 95 to 102 of the heavy chain variable region, Kabat numbering 24 to 34, 50 to 56, 89 to 97 of the light chain variable region are preferable. More preferred are Kabat numbering 31, 52a-61, 71-74, 97-101 of the chain variable region, and Kabat numbering 24-34, 51-56, 89-96 of the L chain variable region.
The amino acid modification is not limited to substitution, and may be any one of deletion, addition, insertion, modification, or a combination thereof.
 また、可変領域中において1又は複数のアミノ酸残基が目的の他のアミノ酸に置換された重鎖をコードするDNAは、部分DNAに分けて製造することができる。部分DNAの組み合わせとしては、例えば、可変領域をコードするDNAと定常領域をコードするDNA、あるいはFab領域をコードするDNAとFc領域をコードするDNAなどが挙げられるが、これら組み合わせに限定されるものではない。軽鎖をコードするDNAもまた、同様に部分DNAに分けて製造することができる。 In addition, DNA encoding a heavy chain in which one or a plurality of amino acid residues in the variable region is substituted with another amino acid of interest can be produced by dividing it into partial DNAs. Examples of combinations of partial DNAs include DNA encoding a variable region and DNA encoding a constant region, or DNA encoding a Fab region and DNA encoding an Fc region, but are not limited to these combinations. is not. Similarly, the DNA encoding the light chain can also be produced by dividing it into partial DNAs.
 上記DNAを発現させる方法としては、以下の方法が挙げられる。例えば、重鎖可変領域をコードするDNAを、重鎖定常領域をコードするDNAとともに発現ベクターに組み込み重鎖発現ベクターを構築する。同様に、軽鎖可変領域をコードするDNAを、軽鎖定常領域をコードするDNAとともに発現ベクターに組み込み軽鎖発現ベクターを構築する。これらの重鎖、軽鎖の遺伝子を単一のベクターに組み込むことも出来る。 The following methods may be mentioned as methods for expressing the DNA. For example, DNA encoding a heavy chain variable region is incorporated into an expression vector together with DNA encoding a heavy chain constant region to construct a heavy chain expression vector. Similarly, a DNA encoding a light chain variable region is incorporated into an expression vector together with DNA encoding a light chain constant region to construct a light chain expression vector. These heavy and light chain genes can also be incorporated into a single vector.
 目的とする抗体をコードするDNAを発現ベクターへ組み込む際、発現制御領域、例えば、エンハンサー、プロモーターの制御のもとで発現するよう発現ベクターに組み込む。次に、この発現ベクターにより宿主細胞を形質転換し、抗体を発現させる。その際には、適当な宿主と発現ベクターの組み合わせを使用することができる。 When the DNA encoding the target antibody is incorporated into an expression vector, it is incorporated into the expression vector so that it is expressed under the control of an expression control region such as an enhancer or promoter. Next, host cells are transformed with this expression vector to express the antibody. In that case, a combination of an appropriate host and an expression vector can be used.
 ベクターの例としては、M13系ベクター、pUC系ベクター、pBR322、pBluescript、pCR-Scriptなどが挙げられる。また、cDNAのサブクローニング、切り出しを目的とした場合、上記ベクターの他に、例えば、pGEM-T、pDIRECT、pT7などを用いることができる。 Examples of vectors include M13 vectors, pUC vectors, pBR322, pBluescript, and pCR-Script. For the purpose of subcloning and excision of cDNA, for example, pGEM-T, pDIRECT, pT7 and the like can be used in addition to the above vector.
 本発明の抗体を生産する目的においてベクターを使用する場合には、特に、発現ベクターが有用である。発現ベクターとしては、例えば、宿主をJM109、DH5α、HB101、XL1-Blueなどの大腸菌とした場合においては、大腸菌で効率よく発現できるようなプロモーター、例えば、lacZプロモーター(Wardら, Nature (1989) 341, 544-546;FASEB J. (1992) 6, 2422-2427、参照によりその全体が本明細書に組み込まれる)、araBプロモーター(Betterら, Science (1988) 240, 1041-1043、参照によりその全体が本明細書に組み込まれる)、またはT7プロモーターなどを持っていることが不可欠である。このようなベクターとしては、上記ベクターの他にpGEX-5X-1(Pharmacia社製)、「QIAexpress system」(QIAGEN社製)、pEGFP、またはpET(この場合、宿主はT7 RNAポリメラーゼを発現しているBL21が好ましい)などが挙げられる。 In the case of using a vector for the purpose of producing the antibody of the present invention, an expression vector is particularly useful. As an expression vector, for example, when the host is E. coli such as JM109, DH5α, HB101, XL1-Blue, a promoter that can be efficiently expressed in E. coli, such as the lacZ promoter (Ward et al., Nature (1989) 341). , 544-546; FASEB J. (1992) 6, 2422-2427, incorporated herein by reference in its entirety, araB promoter (Better et al., Science (1988) 240, 1041-1043, in its entirety by reference) Are incorporated herein), or have a T7 promoter or the like. In addition to the above vectors, such vectors include pGEX-5X-1 (Pharmacia), “QIAexpress® system” (QIAGEN), pEGFP, or pET (in this case, the host expresses T7 RNA polymerase). BL21 is preferred).
 また、ベクターには、ポリペプチド分泌のためのシグナル配列が含まれていてもよい。ポリペプチド分泌のためのシグナル配列としては、大腸菌のペリプラズムに産生させる場合、pelBシグナル配列(Lei, S. P. et al J. Bacteriol. (1987) 169, 4397、参照によりその全体が本明細書に組み込まれる)を使用すればよい。宿主細胞へのベクターの導入は、例えばリポフェクチン法、リン酸カルシウム法、DEAE-Dextran法を用いて行うことができる。 The vector may also contain a signal sequence for polypeptide secretion. The signal sequence for polypeptide secretion is the pelB signal sequence (Lei, S. P. et al J. Bacteriol. (1987) 169, 4397, which is incorporated herein by reference in its entirety when produced in the periplasm of E. coli. Built in). Introduction of a vector into a host cell can be performed using, for example, the lipofectin method, the calcium phosphate method, or the DEAE-Dextran method.
 大腸菌発現ベクターの他、例えば、本発明のポリペプチドを製造するためのベクターとしては、哺乳動物由来の発現ベクター(例えば、pcDNA3(Invitrogen社製)や、pEGF-BOS (Nucleic Acids. Res.1990, 18(17),p5322、参照によりその全体が本明細書に組み込まれる)、pEF、pCDM8)、昆虫細胞由来の発現ベクター(例えば「Bac-to-BAC baculovirus expression system」(GIBCO BRL社製)、pBacPAK8)、植物由来の発現ベクター(例えばpMH1、pMH2)、動物ウィルス由来の発現ベクター(例えば、pHSV、pMV、pAdexLcw)、レトロウィルス由来の発現ベクター(例えば、pZIPneo)、酵母由来の発現ベクター(例えば、「Pichia Expression Kit」(Invitrogen社製)、pNV11、SP-Q01)、枯草菌由来の発現ベクター(例えば、pPL608、pKTH50)が挙げられる。 In addition to E. coli expression vectors, for example, vectors for producing the polypeptide of the present invention include mammalian-derived expression vectors (for example, pcDNA3 (manufactured by Invitrogen), pEGF-BOS® (Nucleic® Acids.® Res. 1990, 18 (17), p5322, which is incorporated herein by reference in its entirety), pEF, pCDM8), insect cell-derived expression vectors (eg “Bac-to-BAC baculovirus expression system” (GIBCO BRL), pBacPAK8), plant-derived expression vectors (eg, pMH1, pMH2), animal virus-derived expression vectors (eg, pHSV, pMV, pAdexLcw), retrovirus-derived expression vectors (eg, pZIPneo), yeast-derived expression vectors (eg, , “Pichia® Expression® Kit” (manufactured by Invitrogen), pNV11, SP-Q01), and Bacillus subtilis-derived expression vectors (for example, pPL608, pKTH50).
 CHO細胞、COS細胞、NIH3T3細胞、HEK293細胞等の動物細胞での発現を目的とした場合には、細胞内で発現させるために必要なプロモーター、例えばSV40プロモーター(Mulliganら, Nature (1979) 277, 108、参照によりその全体が本明細書に組み込まれる)、MMTV-LTRプロモーター、EF1αプロモーター(Mizushimaら, Nucleic Acids Res. (1990) 18, 5322、参照によりその全体が本明細書に組み込まれる)、CAGプロモーター(Gene. (1991) 108, 193、参照によりその全体が本明細書に組み込まれる)、CMVプロモーターなどを持っていることが不可欠であり、形質転換細胞を選抜するための遺伝子(例えば、薬剤(ネオマイシン、G418など)により判別できるような薬剤耐性遺伝子)を有すればさらに好ましい。このような特性を有するベクターとしては、例えば、pMAM、pDR2、pBK-RSV、pBK-CMV、pOPRSV、pOP13などが挙げられる。さらに遺伝子のコピー数を増やす目的でEBNA1タンパク質を共発現させる場合もあるが、この場合、複製開始点OriPを有するベクターを用いる。(Biotechnol Bioeng. 2001 Oct 20;75(2):197-203.、Biotechnol Bioeng. 2005 Sep 20;91(6):670-7.) For the purpose of expression in animal cells such as CHO cells, COS cells, NIH3T3 cells, HEK293 cells, etc., promoters required for expression in cells such as SV40 promoter (Mulligan et al., Nature (1979) 277, 108, incorporated herein by reference in its entirety), MMTV-LTR promoter, EF1α promoter (Mizushima et al., Nucleic Acids Res. (1990) 18, 5322, incorporated herein in its entirety by reference), It is essential to have a CAG promoter (Gene. (1991) 108, 193, which is incorporated herein by reference in its entirety), a CMV promoter, etc., and a gene for selecting transformed cells (for example, More preferably, it has a drug resistance gene that can be discriminated by a drug (neomycin, G418, etc.). Examples of such a vector include pMAM, pDR2, pBK-RSV, pBK-CMV, pOPRSV, and pOP13. In some cases, the EBNA1 protein is co-expressed for the purpose of increasing the copy number of the gene. In this case, a vector having the replication origin OriP is used. (Biotechnol Bioeng. 2001 Oct 20; 75 (2): 197-203., Biotechnol Bioeng. 2005 Sep 20; 91 (6): 670-7.)
 さらに、遺伝子を安定的に発現させ、かつ、細胞内での遺伝子のコピー数の増幅を目的とする場合には、核酸合成経路を欠損したCHO細胞にそれを相補するDHFR遺伝子を有するベクター(例えば、pCHOIなど)を導入し、メトトレキセート(MTX)により増幅させる方法が挙げられ、また、遺伝子の一過性の発現を目的とする場合には、SV40 T抗原を発現する遺伝子を染色体上に持つCOS細胞を用いてSV40の複製起点を持つベクター(pcDなど)で形質転換する方法が挙げられる。複製開始点としては、また、ポリオーマウィルス、アデノウィルス、ウシパピローマウィルス(BPV)等の由来のものを用いることもできる。さらに、宿主細胞系で遺伝子コピー数増幅のため、発現ベクターは選択マーカーとして、アミノグリコシドトランスフェラーゼ(APH)遺伝子、チミジンキナーゼ(TK)遺伝子、大腸菌キサンチングアニンホスホリボシルトランスフェラーゼ(Ecogpt)遺伝子、ジヒドロ葉酸還元酵素(dhfr)遺伝子等を含むことができる。 Furthermore, when the gene is stably expressed and the purpose is to amplify the copy number of the gene in the cell, a vector having a DHFR gene complementary to the CHO cell lacking the nucleic acid synthesis pathway (for example, , PCHOI, etc.), and amplifying with methotrexate (MTX). For the purpose of transient expression of the gene, COS with a gene expressing SV40 T antigen on the chromosome An example is a method of transforming with a vector (such as pcD) having an SV40 replication origin using cells. As the replication origin, those derived from polyoma virus, adenovirus, bovine papilloma virus (BPV) and the like can also be used. Furthermore, for gene copy number amplification in host cell systems, the expression vectors are selectable markers: aminoglycoside transferase (APH) gene, thymidine kinase (TK) gene, E. coli xanthine guanine phosphoribosyltransferase (Ecogpt) gene, dihydrofolate reductase ( dhfr) gene and the like.
 抗体の回収は、例えば、形質転換した細胞を培養した後、分子形質転換した細胞の細胞内又は培養液より分離することによって行うことが出来る。抗体の分離、精製には、遠心分離、硫安分画、塩析、限外濾過、C1q、FcRn、プロテインA、プロテインGカラム、アフィニティークロマトグラフィー、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィーなどの方法を適宜組み合わせて行うことができる。 Antibody recovery can be performed, for example, by culturing transformed cells and then separating them from the inside of the cell or the culture solution of molecularly transformed cells. For antibody separation and purification, methods such as centrifugation, ammonium sulfate fractionation, salting out, ultrafiltration, C1q, FcRn, protein A, protein G column, affinity chromatography, ion exchange chromatography, gel filtration chromatography, etc. It can carry out in combination as appropriate.
 多重特異性抗体の効率的な作製方法として、Knobs-into-holes技術(WO1996/027011、Ridgway JB et al., Protein Engineering (1996) 9, 617-621、Merchant AM et al. Nature Biotechnology (1998) 16, 677-681)や電荷的な反発を導入して目的としないH鎖同士の会合を抑制する技術(WO2006/106905)等の、前述の技術を適用することができる。 Knobs-into-holes technology (WO1996 / 027011, Ridgway JB et al., Protein Engineering (1996) 9 617-621, Merchant AM et al. Nature Biotechnology (1998) 16, 677-681) and a technique (WO2006 / 106905) that suppresses undesired association of H chains by introducing charge repulsion can be applied.
 さらに本発明は、異なる2つの第1の抗原と第2の抗原に結合することができる抗体の可変領域であって、第1の抗原と第2の抗原に同時には結合しない可変領域(第1の可変領域)、及び、該第1の抗原および第2の抗原とは異なる第3の抗原に結合する可変領域(第2の可変領域)を含む、抗原結合分子を製造する方法であって、該第1の可変領域のアミノ酸配列が多様な抗原結合分子ライブラリーを作製する工程を含む、本発明の抗原結合分子を製造する方法を提供する。 Furthermore, the present invention provides a variable region of an antibody capable of binding to two different first antigens and second antigens, wherein the variable region does not bind to the first antigen and the second antigen simultaneously (first And a variable region that binds to a third antigen different from the first antigen and the second antigen (second variable region), comprising: Provided is a method for producing an antigen-binding molecule of the present invention, comprising the step of preparing an antigen-binding molecule library having various amino acid sequences of the first variable region.
 例えば以下の工程を含む製造方法を挙げることができる:
(i)第1の抗原又は第2の抗原に結合する抗体の可変領域の少なくとも1つのアミノ酸が改変された抗原結合分子であって、該改変された可変領域のアミノ酸の少なくとも1つが互いに異なる可変領域を含む抗原結合分子のライブラリーを作製する工程、
(ii)作製されたライブラリーの中から、第1の抗原及び第2の抗原に対して結合活性を有するが、当該第1の抗原及び第2の抗原と同時には結合しない可変領域を含む抗原結合分子を選択する工程、
(iii)工程(ii)で選択された抗原結合分子の該可変領域をコードする核酸と、第3の抗原に結合する抗原結合分子の可変領域をコードする核酸とを含む宿主細胞を培養して、第1の抗原と第2の抗原に結合することができるが該第1の抗原と第2の抗原とが同時には結合しない抗体の可変領域、及び、第3の抗原に結合する可変領域を含む、抗原結合分子を発現させる工程、並びに
(iv)前記宿主細胞培養物から抗原結合分子を回収する工程。
For example, a production method including the following steps can be mentioned:
(i) an antigen-binding molecule in which at least one amino acid of a variable region of an antibody that binds to the first antigen or the second antigen is modified, wherein at least one of the amino acids of the modified variable region is different from each other Creating a library of antigen binding molecules comprising the region,
(ii) an antigen comprising a variable region that has binding activity to the first antigen and the second antigen from the prepared library, but does not bind simultaneously with the first antigen and the second antigen; Selecting a binding molecule,
(iii) culturing a host cell containing a nucleic acid encoding the variable region of the antigen-binding molecule selected in step (ii) and a nucleic acid encoding the variable region of the antigen-binding molecule that binds to the third antigen. A variable region of an antibody that can bind to the first antigen and the second antigen but does not bind to the first antigen and the second antigen at the same time, and a variable region that binds to the third antigen. Comprising the step of expressing an antigen binding molecule, and
(iv) recovering the antigen-binding molecule from the host cell culture.
 なお、本製造方法では、工程(ii)が、以下の選択工程であってもよい:
(v) 作製されたライブラリーの中から、第1の抗原及び第2の抗原に対して結合活性を有するが、それぞれ異なる細胞上で発現している第1の抗原と第2の抗原に同時には結合しない可変領域を含む抗原結合分子を選択する工程。
In this production method, step (ii) may be the following selection step:
(v) Among the prepared libraries, the first antigen and the second antigen have binding activity to the first antigen and the second antigen, but are expressed on different cells, respectively. Selecting an antigen-binding molecule comprising a variable region that does not bind.
 上記工程(i)で用いられる抗原結合分子は、抗体の可変領域を含んでいれば特に限定されず、Fv、Fab、Fab'等の抗体断片であっても良いし、Fc領域を含む抗体であってもよい。 The antigen-binding molecule used in the step (i) is not particularly limited as long as it contains an antibody variable region, and may be an antibody fragment such as Fv, Fab, Fab ′, or an antibody containing an Fc region. There may be.
 改変されるアミノ酸としては、例えば、第1の抗原又は第2の抗原に結合する抗体の可変領域のうち、アミノ酸改変によって当該抗原への結合を喪失させないアミノ酸が選択される。 As the amino acid to be modified, for example, an amino acid that does not lose the binding to the antigen by amino acid modification is selected from the variable region of the antibody that binds to the first antigen or the second antigen.
 本発明のアミノ酸改変は、単独で用いてもよく複数組み合わせて使用してもよい。
 複数組み合わせて使用する場合、組み合わせる数は特に限定されず、例えば、2個以上30個以下、好ましくは2個以上25個以下、2個以上22個以下、2個以上20個以下、2個以上15個以下、2個以上10個以下、2個以上5個以下、2個以上3個以下である。
 複数組み合わせる場合、抗体の重鎖可変領域又は軽鎖可変領域のみに当該アミノ酸改変を加えてもよく、重鎖可変領域と軽鎖可変領域の双方に適宜振り分けて加えてもよい。
The amino acid modification of the present invention may be used alone or in combination.
When used in combination, the number of combinations is not particularly limited. For example, 2 or more and 30 or less, preferably 2 or more and 25 or less, 2 or more and 22 or less, 2 or more and 20 or less, 2 or more 15 or less, 2 or more and 10 or less, 2 or more and 5 or less, 2 or more and 3 or less.
In the case of combining a plurality, the amino acid modification may be added only to the heavy chain variable region or the light chain variable region of the antibody, or may be appropriately distributed to both the heavy chain variable region and the light chain variable region.
 アミノ酸改変のための好ましい領域としては、可変領域中の溶媒に露出している領域およびループ領域が挙げられる。中でも、CDR1、CDR2、CDR3、FR3領域、ループ領域が好ましい。具体的には、H鎖可変領域のKabatナンバリング31~35、50~65、71~74、95~102、L鎖可変領域のKabatナンバリング24~34、50~56、89~97が好ましく、H鎖可変領域のKabatナンバリング31、52a~61、71~74、97~101、L鎖可変領域のKabatナンバリング24~34、51~56、89~96がより好ましい。 Favorable regions for amino acid modification include a region exposed to the solvent in the variable region and a loop region. Of these, CDR1, CDR2, CDR3, FR3 region and loop region are preferable. Specifically, Kabat numbering 31 to 35, 50 to 65, 71 to 74, 95 to 102 of the heavy chain variable region, Kabat numbering 24 to 34, 50 to 56, 89 to 97 of the light chain variable region are preferable. More preferred are Kabat numbering 31, 52a-61, 71-74, 97-101 of the chain variable region, and Kabat numbering 24-34, 51-56, 89-96 of the L chain variable region.
 また、アミノ酸残基に改変を加えることには、第1の抗原又は第2の抗原に結合する抗体の可変領域のうち、上述の領域のアミノ酸をランダムに改変する、或いは、予め所望の抗原に対して結合活性を有していることが知られているぺプチドを上述の領域に挿入することも含まれる。このようにして、改変が加えられた抗原結合分子の中から、第1の抗原と第2の抗原に結合することができるが、これらの抗原に同時には結合することができない可変領域を選択することで、本発明の抗原結合分子を得ることが可能である。予め所望の抗原に対して結合活性を有していることが知られているぺプチドの例としては、上述の表1に示したペプチドが挙げられる。 In addition, in order to modify amino acid residues, the amino acids in the above-mentioned regions of the variable region of the antibody that binds to the first antigen or the second antigen are randomly modified, or a desired antigen is previously prepared. It also includes inserting a peptide known to have binding activity to the above region. In this way, variable regions that can bind to the first antigen and the second antigen but cannot bind to these antigens at the same time are selected from the modified antigen-binding molecules. Thus, the antigen-binding molecule of the present invention can be obtained. Examples of peptides known to have a binding activity for a desired antigen in advance include the peptides shown in Table 1 above.
 第1の抗原と第2の抗原に結合することができるが、これらの抗原に同時には結合することができない可変領域かどうか、更に、第1の抗原と第2の抗原のどちらか一方が細胞上に存在し他方が単独で存在する、両方が単独で存在する、或いは、両方が同一細胞上に存在する場合には、第1の抗原と第2の抗原の両方に同時に結合することができるが、それぞれ異なる細胞上で発現している場合には同時には結合することができない可変領域かどうかは、上述の方法に従って、同様に確認することができる。 Whether it is a variable region that can bind to the first antigen and the second antigen, but cannot bind to these antigens at the same time, and either the first antigen or the second antigen is a cell If both are present alone, both are present alone, or both are present on the same cell, they can bind to both the first and second antigens simultaneously. However, according to the above-mentioned method, it can be similarly confirmed whether or not the variable region cannot be bound simultaneously when expressed on different cells.
 さらに本発明は、異なる2つの第1の抗原と第2の抗原に結合することができる抗体の可変領域であって、第1の抗原と第2の抗原に同時には結合しない可変領域(第1の可変領域)を含む、抗原結合分子を製造する方法であって、該第1の可変領域のアミノ酸配列が多様な抗原結合分子ライブラリーを作製する工程を含む、本発明の抗原結合分子を製造する方法を提供する。 Furthermore, the present invention provides a variable region of an antibody capable of binding to two different first antigens and second antigens, wherein the variable region does not bind to the first antigen and the second antigen simultaneously (first The antigen-binding molecule of the present invention, comprising the step of preparing an antigen-binding molecule library in which the amino acid sequence of the first variable region is diverse. Provide a way to do it.
 そのような抗原結合分子の製造方法として、例えば、以下の工程を含む製造方法を挙げることができる:
(i)第1の抗原又は第2の抗原に結合する抗体の可変領域の少なくとも1つのアミノ酸が改変された抗原結合分子であって、該改変された可変領域のアミノ酸の少なくとも1つが互いに異なる可変領域を含む抗原結合分子のライブラリーを作製する工程、
(ii)作製されたライブラリーの中から、第1の抗原及び第2の抗原に対して結合活性を有するが、当該第1の抗原及び第2の抗原と同時には結合しない可変領域を含む抗原結合分子を選択する工程、
(iii)工程(ii)で選択された抗原結合分子の該可変領域をコードする核酸を含む宿主細胞を培養して、第1の抗原と第2の抗原に結合することができるが該第1の抗原と第2の抗原とが同時には結合しない抗体の可変領域を含む、抗原結合分子を発現させる工程、並びに
(iv)前記宿主細胞培養物から抗原結合分子を回収する工程。
 なお、上記アミノ酸改変のための好ましい領域としては、重鎖可変領域が挙げられる。さらに好ましくは可変領域中の溶媒に露出している領域およびループ領域が挙げられる。中でも、CDR1、CDR2、CDR3、FR3領域、ループ領域が好ましい。具体的には、H鎖可変領域のKabatナンバリング31~35、50~65、71~74、95~102、L鎖可変領域のKabatナンバリング24~34、50~56、89~97が好ましく、H鎖可変領域のKabatナンバリング31、52a~61、71~74、97~101、L鎖可変領域のKabatナンバリング24~34、51~56、89~96がより好ましい。
Examples of the method for producing such an antigen-binding molecule include a production method including the following steps:
(i) an antigen-binding molecule in which at least one amino acid of a variable region of an antibody that binds to the first antigen or the second antigen is modified, wherein at least one of the amino acids of the modified variable region is different from each other Creating a library of antigen binding molecules comprising the region,
(ii) an antigen comprising a variable region that has binding activity to the first antigen and the second antigen from the prepared library, but does not bind simultaneously with the first antigen and the second antigen; Selecting a binding molecule,
(iii) A host cell containing a nucleic acid encoding the variable region of the antigen-binding molecule selected in step (ii) can be cultured to bind to the first and second antigens. Expressing an antigen-binding molecule comprising a variable region of an antibody that does not bind to the antigen and the second antigen simultaneously, and
(iv) recovering the antigen-binding molecule from the host cell culture.
A preferred region for the amino acid modification includes a heavy chain variable region. More preferably, a region exposed to the solvent in the variable region and a loop region are included. Of these, CDR1, CDR2, CDR3, FR3 region and loop region are preferable. Specifically, Kabat numbering 31 to 35, 50 to 65, 71 to 74, 95 to 102 of the heavy chain variable region, Kabat numbering 24 to 34, 50 to 56, 89 to 97 of the light chain variable region are preferable. More preferred are Kabat numbering 31, 52a-61, 71-74, 97-101 of the chain variable region, and Kabat numbering 24-34, 51-56, 89-96 of the L chain variable region.
 なお、本製造方法では、上記工程(ii)が、以下の選択工程であってもよい:
(v) 作製されたライブラリーの中から、第1の抗原及び第2の抗原に対して結合活性を有するが、それぞれ異なる細胞上で発現している第1の抗原と第2の抗原に同時には結合しない可変領域を含む抗原結合分子を選択する工程。
In the present production method, the step (ii) may be the following selection step:
(v) Among the prepared libraries, the first antigen and the second antigen have binding activity to the first antigen and the second antigen, but are expressed on different cells, respectively. Selecting an antigen-binding molecule comprising a variable region that does not bind.
 上記工程(i)で用いられる抗原結合分子は、抗体の可変領域を含んでいれば特に限定されず、Fv、Fab、Fab'等の抗体断片であっても良いし、Fc領域を含む抗体であってもよい。 The antigen-binding molecule used in the step (i) is not particularly limited as long as it contains an antibody variable region, and may be an antibody fragment such as Fv, Fab, Fab ′, or an antibody containing an Fc region. There may be.
 改変されるアミノ酸としては、例えば、第1の抗原又は第2の抗原に結合する抗体の可変領域のうち、アミノ酸改変によって当該抗原への結合を喪失させないアミノ酸が選択される。 As the amino acid to be modified, for example, an amino acid that does not lose the binding to the antigen by amino acid modification is selected from the variable region of the antibody that binds to the first antigen or the second antigen.
 本発明のアミノ酸改変は、単独で用いてもよく複数組み合わせて使用してもよい。
 複数組み合わせて使用する場合、組み合わせる数は特に限定されず、例えば、2個以上30個以下、好ましくは2個以上25個以下、2個以上22個以下、2個以上20個以下、2個以上15個以下、2個以上10個以下、2個以上5個以下、2個以上3個以下である。
 複数組み合わせる場合、抗体の重鎖可変領域又は軽鎖可変領域のいずれか一方のみに当該アミノ酸改変を加えてもよく、重鎖可変領域と軽鎖可変領域の双方に適宜振り分けて加えてもよい。
The amino acid modification of the present invention may be used alone or in combination.
When used in combination, the number of combinations is not particularly limited. For example, 2 or more and 30 or less, preferably 2 or more and 25 or less, 2 or more and 22 or less, 2 or more and 20 or less, 2 or more 15 or less, 2 or more and 10 or less, 2 or more and 5 or less, 2 or more and 3 or less.
When combining two or more, the amino acid modification may be added to either one of the heavy chain variable region or the light chain variable region of the antibody, or may be appropriately distributed and added to both the heavy chain variable region and the light chain variable region.
 また、アミノ酸残基に改変を加えることには、第1の抗原又は第2の抗原に結合する抗体の可変領域のうち、上述の領域のアミノ酸をランダムに改変する、或いは、予め所望の抗原に対して結合活性を有していることが知られているぺプチドを上述の領域に挿入することも含まれる。このようにして、改変が加えられた抗原結合分子の中から、第1の抗原と第2の抗原に結合することができるが、これらの抗原に同時には結合することができない可変領域を選択することで、本発明の抗原結合分子を得ることが可能である。予め所望の抗原に対して結合活性を有していることが知られているぺプチドの例としては、上述の表1に示したペプチドが挙げられる。 In addition, in order to modify amino acid residues, the amino acids in the above-mentioned regions of the variable region of the antibody that binds to the first antigen or the second antigen are randomly modified, or a desired antigen is previously prepared. It also includes inserting a peptide known to have binding activity to the above region. In this way, variable regions that can bind to the first antigen and the second antigen but cannot bind to these antigens at the same time are selected from the modified antigen-binding molecules. Thus, the antigen-binding molecule of the present invention can be obtained. Examples of peptides known to have a binding activity for a desired antigen in advance include the peptides shown in Table 1 above.
 第1の抗原と第2の抗原に結合することができるが、これらの抗原に同時には結合することができない可変領域かどうか、更に、第1の抗原と第2の抗原のどちらか一方が細胞上に存在し他方が単独で存在する場合、両方が単独で存在する場合、或いは、両方が同一細胞上に存在する場合には第1の抗原と第2の抗原の両方に同時に結合することができるが、それぞれ異なる細胞上で発現している場合には同時には結合することができない可変領域かどうかは、上述の方法に従って、同様に確認することができる。 Whether it is a variable region that can bind to the first antigen and the second antigen, but cannot bind to these antigens at the same time, and either the first antigen or the second antigen is a cell Can bind to both the first antigen and the second antigen simultaneously if the other is present alone, if both are present alone, or if both are present on the same cell. Although it is possible to determine whether or not a variable region can be bound simultaneously when expressed on different cells, it can be similarly confirmed according to the method described above.
 さらに当該製造方法によって製造される抗原結合分子も本発明に含まれる。
 本方法によって導入されるアミノ酸改変の種類や範囲は特に限定されるものではない。
Furthermore, antigen-binding molecules produced by the production method are also included in the present invention.
The type and range of amino acid modification introduced by this method is not particularly limited.
 本発明のライブラリの非限定の一態様として、第1の抗原としてCD3(ヒトCD3の場合、ヒトCD3を構成するγ鎖、δ鎖又はε鎖)を選択し、CD3と任意の第2の抗原に結合する抗原結合分子からなるライブラリが挙げられる。 As a non-limiting embodiment of the library of the present invention, CD3 (γ chain, δ chain or ε chain constituting human CD3 in the case of human CD3) is selected as the first antigen, and CD3 and an optional second antigen And a library of antigen-binding molecules that bind to.
 本明細書において「ライブラリ」もしくは「ライブラリー」とは複数の抗原結合分子または抗原結合分子を含む複数の融合ポリペプチド、もしくはこれらの配列をコードする核酸、ポリヌクレオチドをいう。ライブラリ中に含まれる複数の抗原結合分子または抗原結合分子を含む複数の融合ポリペプチドの配列は単一の配列ではなく、互いに配列の異なる抗原結合分子または抗原結合分子を含む融合ポリペプチドである。 In this specification, “library” or “library” refers to a plurality of antigen-binding molecules or a plurality of fusion polypeptides containing antigen-binding molecules, or nucleic acids and polynucleotides encoding these sequences. The sequences of a plurality of antigen-binding molecules or a plurality of fusion polypeptides comprising antigen-binding molecules contained in the library are not single sequences but are fusion polypeptides comprising antigen-binding molecules or antigen-binding molecules having different sequences from each other.
 本発明における一つの実施形態では、本発明の抗原結合分子と異種ポリペプチドとの融合ポリペプチドが作製され得る。ある実施形態では、融合ポリペプチドはウイルスコートタンパク質、例えばpIII、pVIII、pVII、pIX、Soc、Hoc、gpD、pVIおよびその変異体からなる群から選択されるウイルスコートタンパク質の少なくとも一部と融合され得る。 In one embodiment of the present invention, a fusion polypeptide of the antigen-binding molecule of the present invention and a heterologous polypeptide can be produced. In certain embodiments, the fusion polypeptide is fused to at least a portion of a viral coat protein, such as a viral coat protein selected from the group consisting of pIII, pVIII, pVII, pIX, Soc, Hoc, gpD, pVI and variants thereof. obtain.
 ある実施形態では、本発明の抗原結合分子は、ScFv、Fab断片、F(ab)2またはF(ab')2であり得るため、別の一つの実施形態では、これらの抗原結合分子と異種ポリペプチドとの融合ポリペプチドであって互いに配列の異なる複数の融合ポリペプチドから主としてなるライブラリが提供される。具体的には、これらの抗原結合分子とウイルスコートタンパク質、例えばpIII、pVIII、pVII、pIX、Soc、Hoc、gpD、pVIおよびその変異体からなる群から選択されるウイルスコートタンパク質の少なくとも一部と融合された融合ポリペプチドであって互いに配列の異なる複数の融合ポリペプチドから主としてなるライブラリが提供される。本発明の抗原結合分子はさらに二量体化ドメインを含み得る。ある実施形態では、前記二量体化ドメインは抗体の重鎖または軽鎖の可変領域とウイルスコートタンパク質の少なくとも一部との間に存在し得る。この二量体化ドメインには、二量体化配列の少なくとも1つ、および/または1つまたは複数のシステイン残基を含む配列が含まれ得る。この二量体化ドメインは、好ましくは重鎖可変領域または定常領域のC末端と連結され得る。二量体化ドメインは、前記抗体可変領域がウイルスのコートタンパク質成分との融合ポリペプチド成分として作製されている(二量体化ドメインの後ろにアンバー終止コドンを有さない)かどうかによって、または、前記抗体可変領域が主にウイルスコートタンパク質成分を含まずに作製されている(例えば、二量体化ドメインの後にアンバー終止コドンを有する)かどうかによって、様々な構造をとることが可能である。前記抗体可変領域が主にウイルスのコートタンパク質成分との融合ポリペプチドとして作製されるときは、1つまたは複数のジスルフィド結合および/または単一の二量体化配列によって二価提示がもたらされる。 In one embodiment, the antigen-binding molecules of the invention can be ScFv, Fab fragments, F (ab) 2 or F (ab ′) 2 , so in another embodiment, these antigen-binding molecules are heterologous. There is provided a library mainly comprising a plurality of fusion polypeptides which are fusion polypeptides with polypeptides and have different sequences from each other. Specifically, these antigen-binding molecules and virus coat proteins such as pIII, pVIII, pVII, pIX, Soc, Hoc, gpD, pVI and at least a part of a virus coat protein selected from the group consisting of variants thereof A library mainly composed of a plurality of fused polypeptides having different sequences from each other is provided. The antigen binding molecule of the present invention may further comprise a dimerization domain. In one embodiment, the dimerization domain may be between the heavy or light chain variable region of an antibody and at least a portion of a viral coat protein. The dimerization domain can include a sequence comprising at least one of the dimerization sequences and / or one or more cysteine residues. This dimerization domain may preferably be linked to the C-terminus of the heavy chain variable region or constant region. A dimerization domain, depending on whether the antibody variable region is made as a fusion polypeptide component with the viral coat protein component (no amber stop codon behind the dimerization domain), or , Depending on whether the antibody variable region is made primarily without the viral coat protein component (eg, having an amber stop codon after the dimerization domain) . When the antibody variable region is made primarily as a fusion polypeptide with a viral coat protein component, bivalent display is provided by one or more disulfide bonds and / or a single dimerization sequence.
 本明細書においては、互いに配列の異なる複数の抗原結合分子という記載における「互いに配列の異なる」との用語は、ライブラリ中の個々の抗原結合分子の配列が相互に異なることを意味する。すなわち、ライブラリ中における互いに異なる配列の数は、ライブラリ中の配列の異なる独立クローンの数が反映され、「ライブラリサイズ」と指称される場合もある。通常のファージディスプレイライブラリでは106から1012であり、リボゾームディスプレイ法等の公知の技術を適用することによってライブラリサイズを1014まで拡大することが可能である。しかしながら、ファージライブラリのパンニング選択時に使用されるファージ粒子の実際の数は、通常、ライブラリサイズよりも10ないし10,000倍大きい。この過剰倍数は、「ライブラリ当量数」とも呼ばれるが、同じアミノ酸配列を有する個々のクローンが10ないし10,000存在し得ることを表す。よって本発明における「互いに配列の異なる」との用語はライブラリ当量数が除外されたライブラリ中の個々の抗原結合分子の配列が相互に異なること、より具体的には互いに配列の異なる抗原結合分子が106から1014分子、好ましくは107から1012分子、さらに好ましくは108から1011、特に好ましくは108から1010存在することを意味する。 In this specification, the term “differing in sequence from each other” in the description of a plurality of antigen-binding molecules having different sequences means that the sequences of individual antigen-binding molecules in the library are different from each other. That is, the number of different sequences in the library reflects the number of independent clones having different sequences in the library, and is sometimes referred to as “library size”. In a normal phage display library, the number is 10 6 to 10 12 , and the library size can be increased to 10 14 by applying a known technique such as a ribosome display method. However, the actual number of phage particles used during phage library panning selection is typically 10 to 10,000 times larger than the library size. This excess fold, also called “library equivalent number”, indicates that there can be 10 to 10,000 individual clones having the same amino acid sequence. Therefore, the term “different from each other” in the present invention means that the sequences of individual antigen-binding molecules in the library from which the number of library equivalents is excluded are different from each other, more specifically, antigen-binding molecules having different sequences from each other. This means that there are 10 6 to 10 14 molecules, preferably 10 7 to 10 12 molecules, more preferably 10 8 to 10 11 , particularly preferably 10 8 to 10 10 molecules.
 さらに、本発明の、複数の抗原結合分子から主としてなるライブラリという記載における「から主としてなる」との用語は、ライブラリ中の配列の異なる独立クローンの数のうち、第1及び/又は第2の抗原に対する抗原結合分子の結合活性が異なっている抗原結合分子の数が反映される。具体的には、そのような結合活性を示す抗原結合分子がライブラリ中に少なくとも104分子存在することが好ましい。また、より好ましくは、本発明はそのような結合活性を示す抗原結合分子が少なくとも105分子存在するライブラリを提供する。さらに好ましくは、本発明はそのような結合活性を示す抗原結合分子が少なくとも106分子存在するライブラリを提供する。特に好ましくは、本発明はそのような結合活性を示す抗原結合分子が少なくとも107分子存在するライブラリを提供する。また、好ましくは、本発明はそのような結合活性を示す抗原結合分子が少なくとも108分子存在するライブラリを提供する。別の表現では、ライブラリ中の配列の異なる独立クローンの数のうち、第1及び/又は第2の抗原に対する抗原結合分子の結合活性が異なっている抗原結合分子の割合としても好適に表現され得る。具体的には、本発明は、そのような結合活性を示す抗原結合分子がライブラリ中の配列の異なる独立クローンの数の0.1%から80%、好ましくは0.5%から60%、より好ましくは1%から40%、さらに好ましくは2%から20%、特に好ましくは4%から10%含まれるライブラリを提供する。融合ポリペプチド、ポリヌクレオチド分子またはベクターの場合も、上記と同様、分子の数や分子全体における割合で表現され得る。また、ウイルスの場合も、上記と同様、ウイルス個体の数や個体全体における割合で表現され得る。 Furthermore, the term “consisting mainly of” in the description of the library mainly composed of a plurality of antigen-binding molecules of the present invention means that the first and / or second antigens out of the number of independent clones having different sequences in the library. This reflects the number of antigen-binding molecules that differ in the binding activity of the antigen-binding molecule. Specifically, it is preferable that at least 10 4 antigen-binding molecules exhibiting such binding activity exist in the library. More preferably, the present invention provides a library in which at least 10 5 antigen-binding molecules exhibiting such binding activity are present. More preferably, the present invention provides a library in which at least 10 6 antigen-binding molecules exhibiting such binding activity are present. Particularly preferably, the present invention provides a library in which there are at least 10 7 antigen-binding molecules exhibiting such binding activity. Also preferably, the present invention provides a library in which at least 10 8 antigen-binding molecules exhibiting such binding activity are present. In another expression, among the number of independent clones having different sequences in the library, the ratio of antigen-binding molecules having different binding activities of the antigen-binding molecule to the first and / or second antigen can be suitably expressed. . Specifically, the present invention provides that the antigen binding molecule exhibiting such binding activity is 0.1% to 80%, preferably 0.5% to 60%, more preferably 1% of the number of independent clones having different sequences in the library. From 40%, more preferably from 2% to 20%, particularly preferably from 4% to 10%. In the case of a fusion polypeptide, a polynucleotide molecule or a vector, it can be expressed by the number of molecules or a ratio in the whole molecule as described above. Moreover, in the case of a virus, it can be expressed by the number of virus individuals or the ratio of the whole individual as described above.
 本明細書において「ファージディスプレイ」は、変異体ポリペプチドをファージ、例えば繊維状ファージの粒子表面でコートタンパク質の少なくとも一部と融合したタンパク質として提示する手法である。ファージディスプレイの有用さは、ランダム化タンパク質変異体の大きなライブラリから対象抗原と高親和性で結合する配列を迅速に、効率的に選別できることにある。ファージ上のペプチドおよびタンパク質ライブラリの提示は、何百万ものポリペプチドを特異的結合特性に関してスクリーニングするために利用されてきた。多価ファージディスプレイ方法は、繊維状ファージの遺伝子IIIまたは遺伝子VIIIとの融合を通して小さなランダムペプチドおよび小タンパク質を提示するために利用されてきた(WellsおよびLowman(Curr.Opin.Struct.Biol. (1992) 3, 355-362)とその中の引用文献)。一価のファージディスプレイでは、タンパク質またはペプチドのライブラリが遺伝子IIIまたはその一部に融合され、ファージ粒子が融合タンパク質の1個または0個のコピーを提示するように野生型遺伝子IIIタンパク質の存在下で、低レベルで発現される。アビディティー効果は多価のファージと比較して低下しているので、選別は内在性のリガンド親和性に基づいておりファージミドベクターが使われるが、このベクターはDNA操作を単純化する(LowmanおよびWells、Methods:A Companion to Methods in Enzymology (1991) 3, 205-216)。 In the present specification, “phage display” is a technique for displaying a mutant polypeptide as a protein fused with at least a part of a coat protein on the surface of a phage, for example, a filamentous phage particle. The usefulness of phage display is the ability to rapidly and efficiently select sequences that bind with high affinity to a target antigen from a large library of randomized protein variants. Display of peptide and protein libraries on phage has been utilized to screen millions of polypeptides for specific binding properties. Multivalent phage display methods have been used to display small random peptides and proteins through fusion with gene III or gene VIII of filamentous phage (Wells and Lowman (Curr. Opin. Struct. Biol. (1992 ) 3, 355-362) and references cited in it). In monovalent phage display, a library of proteins or peptides is fused to gene III or a portion thereof, and in the presence of wild type gene III protein so that the phage particles display 1 or 0 copies of the fusion protein. Expressed at low levels. Since the avidity effect is reduced compared to multivalent phage, selection is based on intrinsic ligand affinity and a phagemid vector is used, which simplifies DNA manipulation (Lowman and Wells , Methods: A Companion to Methods in Enzymology (1991) 3, 205-216).
 「ファージミド」は、細菌の複製起点、例えばColE1およびバクテリオファージの遺伝子間領域のコピーを有するプラスミドベクターである。ファージミドには、いかなる公知のバクテリオファージ、例えば繊維状バクテリオファージおよびラムダ型バクテリオファージのものも適宜使用され得る。プラスミドは、通常、抗生物質耐性の選択マーカーも含む。これらのベクターにクローニングされたDNA断片は、プラスミドとして増殖することができる。これらのベクターが導入された細胞がファージ粒子の生産のために必要なすべての遺伝子を備えているとき、プラスミドの複製様式はローリングサークル複製に変化し、プラスミドDNAの1つの鎖のコピーとパッケージファージ粒子を生成する。ファージミドは感染性または非感染性ファージ粒子を形成することができる。この用語は、異種ポリペプチドがファージ粒子の表面で提示されるように遺伝子融合としてこの異種ポリペプチドの遺伝子と結合したファージコートタンパク質遺伝子、またはその断片を含むファージミドを含む。 “Phagemid” is a plasmid vector having a bacterial origin of replication, eg, ColE1 and a copy of the intergenic region of bacteriophage. As the phagemid, any known bacteriophage, for example, filamentous bacteriophage and lambda type bacteriophage can be used as appropriate. The plasmid usually also contains a selectable marker for antibiotic resistance. DNA fragments cloned into these vectors can be propagated as plasmids. When the cells into which these vectors have been introduced have all the genes necessary for the production of phage particles, the plasmid replication mode changes to rolling circle replication, with one strand copy of plasmid DNA and packaged phage Generate particles. Phagemids can form infectious or non-infectious phage particles. The term includes a phagemid comprising a phage coat protein gene, or a fragment thereof, linked to a gene of this heterologous polypeptide as a gene fusion such that the heterologous polypeptide is displayed on the surface of the phage particle.
 用語「ファージベクター」は、異種遺伝子を含んでいて複製ができるバクテリオファージの二本鎖複製型を意味する。ファージベクターは、ファージ複製およびファージ粒子形成を可能にするファージ複製起点を有する。ファージは好ましくは繊維状バクテリオファージ、例えばM13、f1、fd、Pf3ファージもしくはその誘導体、またはラムダ型ファージ、例えばラムダ、21、phi80、phi81、82、424、434、その他もしくはその誘導体である。 The term “phage vector” means a double-stranded replicative form of a bacteriophage containing a heterologous gene and capable of replication. The phage vector has a phage origin of replication that allows phage replication and phage particle formation. The phage is preferably a filamentous bacteriophage such as M13, f1, fd, Pf3 phage or a derivative thereof, or a lambda type phage such as lambda, 21, phi80, phi81, 82, 424, 434, or the like or a derivative thereof.
 「オリゴヌクレオチド」は、公知の方法(例えば、固相手法、例えばEP266032に記載されている手法を利用したリン酸トリエステル、亜リン酸塩、またはホスホラミダイト化学、またはFroeshlerら(Nucl.Acids.Res. (1986) 14, 5399-5407)に記載されているデオキシヌクレオチドH-ホスホン酸塩中間体を通した方法)によって化学的に合成される短い、一本鎖または二本鎖のポリデオキシヌクレオチドである。他の方法には、以下に記載のポリメラーゼ連鎖反応および他のオートプライマー法、および固体担体上のオリゴヌクレオチド合成が含まれる。これらの方法のすべては、Engelsら(Agnew.Chem.Int.Ed.Engl. (1989) 28, 716-734)に記載されている。遺伝子のすべての核酸配列が公知ならば、またはコード鎖と相補的な核酸の配列が利用できるならばこれらの方法が使われる。あるいは、対象アミノ酸配列が公知ならば、各アミノ酸残基の公知で好ましいコード残基を使って可能な核酸配列が適宜推測され得る。オリゴヌクレオチドは、ポリアクリルアミドゲルもしくは分子サイジングカラムで、または沈殿法によって精製することができる。 “Oligonucleotides” are known methods (eg, phosphotriester, phosphite, or phosphoramidite chemistry utilizing solid phase techniques such as those described in EP 266032, or Froeshler et al. (Nucl. Acids. Res. (1986) 14, 5399-5407), a short, single-stranded or double-stranded polydeoxynucleotide that is chemically synthesized by the method through a deoxynucleotide H-phosphonate intermediate). is there. Other methods include the polymerase chain reaction and other autoprimer methods described below, and oligonucleotide synthesis on a solid support. All of these methods are described in Engels et al. (Agnew. Chem. Int. Ed. Engl. (1989) 28, 716-734). These methods are used if the entire nucleic acid sequence of the gene is known or if the sequence of the nucleic acid complementary to the coding strand is available. Alternatively, if the target amino acid sequence is known, a possible nucleic acid sequence can be inferred appropriately using known and preferred coding residues for each amino acid residue. Oligonucleotides can be purified on polyacrylamide gels or molecular sizing columns or by precipitation methods.
 用語「融合タンパク質」および「融合ポリペプチド」とは、共有結合で互いに結合された2つの部分を持つポリペプチドをいい、各部分は異なる特性を有するポリペプチドである。この特性は、例えばin vitroまたはin vivo活性などの生物学的性質であり得る。また、この特性は、単一の化学的または物理的性質、例えば対象抗原との結合、反応の触媒などでもあり得る。この2つの部分は、単一のペプチド結合によって直接、または1つまたは複数のアミノ酸残基を含んでいるペプチドリンカーを介して結合され得る。通常、この2つの部分とリンカーは同じ読取り枠中に存在する。好ましくは、ポリペプチドの2つの部分は異種または異なるポリペプチドから得られる。 The terms “fusion protein” and “fusion polypeptide” refer to a polypeptide having two parts covalently bonded to each other, each part being a polypeptide having different properties. This property can be a biological property such as in vitro or in vivo activity. This property can also be a single chemical or physical property, such as binding to the antigen of interest, catalysis of the reaction, and the like. The two portions can be linked directly by a single peptide bond or via a peptide linker containing one or more amino acid residues. Usually, the two parts and the linker are in the same reading frame. Preferably, the two parts of the polypeptide are derived from heterologous or different polypeptides.
 用語「コートタンパク質」はタンパク質のうち、少なくともその一部がウイルス粒子の表面に存在するものをいう。機能上の観点からは、コートタンパク質は宿主細胞でのウイルスの構築過程でウイルス粒子と結合する任意のタンパク質であり、ウイルスが他の宿主細胞に感染するまでそれと結合したままである。コートタンパク質は、主要なコートタンパク質であり得るし、マイナーなコートタンパク質でもあり得る。マイナーなコートタンパク質は、通常ウイルスの外殻に存在するコートタンパク質であり、好ましくは1ビリオンにつき少なくとも約5個、より好ましくは少なくとも約7個、より好ましくは少なくとも約10個かそれ以上のタンパク質のコピーが存在する。主要なコートタンパク質は、1ビリオンにつき数十、数百または数千のコピーが存在し得る。主要なコートタンパク質の例としては、繊維状ファージのp8タンパク質が挙げられる。 The term “coat protein” refers to a protein in which at least part of the protein is present on the surface of the virus particle. From a functional point of view, a coat protein is any protein that binds to the viral particle during the process of virus construction in the host cell and remains associated with it until the virus infects other host cells. The coat protein can be a major coat protein or a minor coat protein. The minor coat protein is a coat protein normally present in the outer shell of the virus, preferably of at least about 5, more preferably at least about 7, more preferably at least about 10 or more proteins per virion. A copy exists. The major coat protein can be in the tens, hundreds or thousands of copies per virion. An example of a major coat protein is the p8 protein of filamentous phage.
 本発明の非限定の一態様として、ライブラリを作製する方法は以下の6つが例示される。
1. 第1の抗原に結合する抗原結合分子に第2の抗原に結合するペプチド(この用語はポリペプチドおよびタンパク質を含むようにして用いられる)を挿入する方法
2. 抗原結合分子中のループを長く改変(延長)することができる位置に、様々なアミノ酸が出現するようなライブラリを作製して、任意の第2の抗原に対して結合活性を有する抗原結合分子を、ライブラリから抗原への結合活性を指標に取得する方法
3. あらかじめ第一の抗原に対して結合することが知られている抗原結合分子から、部位特異的変異法によって作製した抗体を用いて、第一の抗原との結合活性を維持するアミノ酸を同定し、同定されたアミノ酸が出現するようなライブラリから、任意の第2の抗原に対して結合活性を有する抗原結合分子を、抗原への結合活性を指標に取得する方法
4. 3の方法において、さらに、抗原結合分子中のループを長く改変(延長)することができる位置に様々なアミノ酸が出現するような抗体ライブラリを作製して、任意の第2の抗原に対して結合活性を有する抗原結合分子を、ライブラリから抗原への結合活性を指標に取得する方法
5. 1.2.3.又は4.の方法において、糖鎖付加配列(例えばNxS, NxT、xはP以外のアミノ酸)が出現するように改変し、糖鎖レセプターが認識する糖鎖を付加させる方法(例えばハイマンノース型糖鎖を付加し、ハイマンノースレセプターが認識する。ハイマンノース型糖鎖は抗体発現時にキフネンシンを添加することで得られることが知られている(MAbs. 2012 Jul-Aug;4(4):475-87))
6. 1.2.3.又は4.の方法において、ループ部位や各種アミノ酸へ改変することが可能であった部位にCys、Lysもしくは非天然アミノ酸を挿入または置換して、第2の抗原に結合するドメインを共有結合で付加する方法(Antibody drug conjugateに代表される方法であり、Cys、Lysもしくは非天然アミノ酸へ共有結合で結合させる方法(mAbs 6:1, 34-45; January/February 2014、WO2009/134891A2、Bioconjug Chem. 2014 Feb 19;25(2):351-61))
なお、上記に例示された6つのライブラリ作製方法において、抗原結合分子中のアミノ酸を置換する箇所又は抗原結合分子中にペプチドを挿入する箇所は、抗原結合分子のFab又は可変領域部分が好ましい。好ましい領域としては、可変領域中の溶媒に露出している領域およびループ領域が挙げられる。中でも、CDR1、CDR2、CDR3、FR3領域、ループ領域が好ましい。具体的には、H鎖可変領域のKabatナンバリング31~35、50~65、71~74、95~102、L鎖可変領域のKabatナンバリング24~34、50~56、89~97が好ましく、H鎖可変領域のKabatナンバリング31、52a~61、71~74、97~101、L鎖可変領域のKabatナンバリング24~34、51~56、89~96がより好ましい。
As one non-limiting aspect of the present invention, the following six methods are exemplified for preparing a library.
1. 1. Inserting a peptide that binds to a second antigen (this term is used to include polypeptides and proteins) into an antigen-binding molecule that binds to the first antigen. A library in which various amino acids appear at a position where a loop in the antigen-binding molecule can be modified (extended) long can be prepared, and an antigen-binding molecule having binding activity against any second antigen can be obtained. 2. A method for obtaining a binding activity to an antigen from a library as an index 3. Using an antibody prepared by site-directed mutagenesis from an antigen-binding molecule known to bind to the first antigen in advance, an amino acid that maintains the binding activity with the first antigen is identified, 3. A method for obtaining an antigen-binding molecule having a binding activity against an arbitrary second antigen from a library in which the identified amino acid appears using the binding activity to the antigen as an index. In the third method, an antibody library in which various amino acids appear at a position where a loop in the antigen-binding molecule can be modified (extended) long is created, and binding to an arbitrary second antigen is performed. 4. A method for obtaining an antigen-binding molecule having activity using the binding activity to an antigen from a library as an index 1.2.3. Or 4. In this method, the glycosylation sequence (for example, NxS, NxT, where x is an amino acid other than P) is modified so that the sugar chain recognized by the sugar chain receptor is added (for example, a high-mannose sugar chain is added). It is known that high mannose type sugar chains can be obtained by adding kifunensine during antibody expression (MAbs. 2012 Jul-Aug; 4 (4): 475-87))
6). 1.2.3. Alternatively, in the method of 4., Cys, Lys, or a non-natural amino acid is inserted or substituted at a loop site or a site that could be modified to various amino acids, and a domain that binds to the second antigen is added by a covalent bond. (Methods represented by antibody drug conjugates, such as covalent coupling to Cys, Lys or unnatural amino acids (mAbs 6: 1, 34-45; January / February 2014, WO2009 / 134891A2, Bioconjug Chem. 2014 Feb 19; 25 (2): 351-61))
In the six library preparation methods exemplified above, Fab or a variable region part of the antigen-binding molecule is preferably used as the position where the amino acid in the antigen-binding molecule is substituted or the position where the peptide is inserted into the antigen-binding molecule. Preferred regions include regions exposed to solvent in the variable region and loop regions. Of these, CDR1, CDR2, CDR3, FR3 region and loop region are preferable. Specifically, Kabat numbering 31 to 35, 50 to 65, 71 to 74, 95 to 102 of the heavy chain variable region, Kabat numbering 24 to 34, 50 to 56, 89 to 97 of the light chain variable region are preferable. More preferred are Kabat numbering 31, 52a-61, 71-74, 97-101 of the chain variable region, and Kabat numbering 24-34, 51-56, 89-96 of the L chain variable region.
 上記方法1.に記載された、第1の抗原に結合する抗原結合分子に第2の抗原に結合するペプチドを挿入する方法の一態様として、Angew Chem Int Ed Engl. 2013 Aug 5;52(32):8295-8に例示されるようにG-CSFを挿入する方法も挙げることができる。他の一態様として、挿入されるペプチドは、ペプチドを提示したライブラリから取得可能であるが、さらに天然に存在するタンパク質の全体もしくはその一部を利用することも可能である。 Method 1 above. As an embodiment of the method for inserting a peptide that binds to the second antigen into the antigen-binding molecule that binds to the first antigen described in Angew Chem Int Ed Engl. 2013 Aug 5; 52 (32): 8295- A method of inserting G-CSF as exemplified in 8 can also be mentioned. In another embodiment, the peptide to be inserted can be obtained from a library displaying the peptide, but it is also possible to use the whole or part of a naturally occurring protein.
 第一の抗原であるCD3(ヒトCD3の場合、ヒトCD3を構成するγ鎖、δ鎖又はε鎖)との結合活性を維持するアミノ酸を同定するためには,例えば,抗原結合に関与すると考えられる部位のアミノ酸改変を行い、1アミノ酸改変抗体を作製して判断することができる。1アミノ酸改変抗体のCD3結合評価には,当業者に公知の方法を適宜選択することが出来るが,例えば、ELISAやFACS(fluorescence activated cell sorting)、ALPHAスクリーン(Amplified Luminescent Proximity Homogeneous Assay)や表面プラズモン共鳴(SPR)現象を利用したBIACORE法等によって測定することができる。 To identify amino acids that maintain the binding activity with the first antigen, CD3 (in the case of human CD3, the γ chain, δ chain, or ε chain that constitutes human CD3), for example, it is considered to be involved in antigen binding. It is possible to make an amino acid modification at the site to produce a 1 amino acid modified antibody and judge. Methods known to those skilled in the art can be appropriately selected for evaluation of CD3 binding of 1 amino acid-modified antibody. For example, ELISA, FACS (fluorescence-activated cell-sorting), ALPHA screen (Amplified-Luminescent-Proximity-Homogeneous-Assay) and surface plasmon It can be measured by the BIACORE method using the resonance (SPR) phenomenon.
 CD3との結合活性を維持するアミノ酸を同定するには、改変前の抗体に対して、例えば各種改変体の結合量の比の結果を用いることができる。すなわち、改変前の抗体の結合量をX、1アミノ酸改変体の結合量をYとしたときの、Z(結合量の比)=Y/Xの値を用いることが出来る。Z(結合量の比)が,0.5以上、0.6以上、0.7以上、0.8以上、0.9以上、好ましくは、0.8以上のときに、改変前の抗体に対して結合を維持していると考えることができる。これらの結合を維持しているアミノ酸が出現するように、抗体ライブラリを作製することができる。 In order to identify an amino acid that maintains the binding activity with CD3, for example, the result of the ratio of the binding amount of various modified forms to the antibody before modification can be used. That is, the value of Z (ratio of binding amount) = Y / X, where X is the binding amount of the antibody before modification and Y is the binding amount of the 1 amino acid variant, can be used. When Z (ratio of binding amount) is 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, 0.9 or more, preferably 0.8 or more, it can be considered that the binding to the antibody before modification is maintained. it can. Antibody libraries can be generated such that amino acids that maintain these bonds appear.
 ECM(Extracellular matrix;細胞外マトリックス)は、細胞外の構成成分の一つであり、生体内の様々な部位に存在している。そのため、ECMに強く結合する抗体は血中動態が悪くなる(半減期が短くなる)ことが知られている(WO2012093704A1)。そこで、抗体ライブラリで出現するアミノ酸についても、ECM結合が増強されないアミノ酸を選択することが好ましい。 ECM (Extracellular matrix) is one of extracellular components and exists in various parts of the living body. Therefore, it is known that an antibody that binds strongly to ECM has poor blood kinetics (shorter half-life) (WO2012093704A1). Therefore, it is preferable to select amino acids that do not enhance ECM binding for amino acids that appear in the antibody library.
 ECM結合が増強されないアミノ酸を選択するには、例えば、参考実施例2の方法に従ってECM結合を評価し、各改変体のECM結合値(ECL response;ECL反応の値)をMRA(H鎖配列番号:57、L鎖配列番号:58)の抗体ECM結合値で割った値を用いることができる。当該値は、複数改変によるECM結合増強の効果を考慮し、5倍、6倍、7倍、8倍、9倍、10倍、15倍、20倍、30倍までを有効として採用することができるが、好ましくは10倍までを有効としてライブラリに採用することができる。このように選択されたアミノ酸が出現するように、抗体ライブラリを作製することができる。 In order to select an amino acid whose ECM binding is not enhanced, for example, ECM binding is evaluated according to the method of Reference Example 2, and the ECM binding value (ECL response; ECL reaction value) of each variant is determined as MRA (H chain sequence number). : 57, L chain SEQ ID NO: 58) divided by the antibody ECM binding value can be used. In consideration of the effect of ECM binding enhancement by multiple modifications, this value can be adopted as effective up to 5 times, 6 times, 7 times, 8 times, 9 times, 10 times, 15 times, 20 times, 30 times. However, it is possible to adopt up to 10 times as effective in the library. Antibody libraries can be generated so that amino acids selected in this way appear.
 なお、これに限定されることはないが、CDR3へのペプチド挿入が6アミノ酸である場合に、CDR3の伸長したループ内に正電荷を側鎖に持つアミノ酸が多く含まれるとECMへの結合が増強されることから、ループ内に3個以上の正電荷を側鎖に持つアミノ酸が出現しないことが好ましい。 Although not limited to this, when the peptide insertion into CDR3 is 6 amino acids, binding to ECM will occur if there are many amino acids having a positive charge in the side chain in the extended loop of CDR3. Since it is enhanced, it is preferable that amino acids having 3 or more positive charges in the side chain do not appear in the loop.
 本発明のライブラリは、ライブラリの多様性を増強させるために、可変領域に、ペプチドを挿入することができる。ペプチド挿入のための好ましい領域としては、可変領域中の溶媒に露出している領域およびループ領域が挙げられる。中でも、CDR1、CDR2、CDR3、FR3領域、ループ領域が好ましい。具体的には、H鎖可変領域のKabatナンバリング31~35、50~65、71~74、95~102、L鎖可変領域のKabatナンバリング24~34、50~56、89~97が好ましく、H鎖可変領域のKabatナンバリング31、52a~61、71~74、97~101、L鎖可変領域のKabatナンバリング24~34、51~56、89~96がより好ましい。さらに好ましくは、H鎖可変領域のKabatナンバリング99-100の領域である。また、アミノ酸改変時に、抗原との結合活性を上昇させるアミノ酸をあわせて導入しても良い。 In the library of the present invention, a peptide can be inserted into the variable region in order to enhance the diversity of the library. Preferred regions for peptide insertion include regions exposed to solvent in the variable region and loop regions. Of these, CDR1, CDR2, CDR3, FR3 region and loop region are preferable. Specifically, Kabat numbering 31 to 35, 50 to 65, 71 to 74, 95 to 102 of the heavy chain variable region, Kabat numbering 24 to 34, 50 to 56, 89 to 97 of the light chain variable region are preferable. More preferred are Kabat numbering 31, 52a-61, 71-74, 97-101 of the chain variable region, and Kabat numbering 24-34, 51-56, 89-96 of the L chain variable region. More preferred is the region of Kabat numbering 99-100 of the heavy chain variable region. Further, at the time of amino acid modification, an amino acid that increases the binding activity with the antigen may be introduced together.
 本発明の非限定の一態様として、挿入されるペプチドの長さは、1~3アミノ酸、4~6アミノ酸、7~9アミノ酸、10~12アミノ酸、13~15アミノ酸、15~20アミノ酸、21-25アミノ酸が挙げられるが、好ましくは1~3アミノ酸、4~6アミノ酸、7~9アミノ酸である。 As one non-limiting aspect of the present invention, the length of the inserted peptide is 1 to 3 amino acids, 4 to 6 amino acids, 7 to 9 amino acids, 10 to 12 amino acids, 13 to 15 amino acids, 15 to 20 amino acids, 21 Examples include -25 amino acids, and preferably 1 to 3 amino acids, 4 to 6 amino acids, and 7 to 9 amino acids.
 ライブラリの多様性を増強させるためのペプチドの挿入箇所と長さの検討は、ペプチドを挿入した分子を作製し、当該分子のCD3結合を評価することによって実施することができる。評価には当業者に公知の方法を適宜選択することが出来るが,例えば、ELISAやFACS(fluorescence activated cell sorting)、ALPHAスクリーン(Amplified Luminescent Proximity Homogeneous Assay)や表面プラズモン共鳴(SPR)現象を利用したBIACORE法等によって測定することができる。 The examination of the insertion position and length of the peptide for enhancing the diversity of the library can be carried out by preparing a molecule into which the peptide is inserted and evaluating the CD3 binding of the molecule. For evaluation, methods known to those skilled in the art can be selected as appropriate. For example, ELISA, FACS (fluorescence activated cell sorting), ALPHA screen (Amplified Luminescent Proximity Homogeneous Assay) or surface plasmon resonance (SPR) phenomenon is used. It can be measured by the BIACORE method.
 本発明の非限定の一態様として、CD3と第2の抗原に結合する抗体取得のための抗体ライブラリは以下の様にデザインすることができる。
ステップ1:CD3結合能が保持されているアミノ酸を選択(CD3結合量が未改変抗体の80%以上であること)
 例えば、ステップ1で選択されたアミノ酸が出現するように、CD3と第2の抗原に結合する抗体取得のためのライブラリを作製することができる。
As one non-limiting embodiment of the present invention, an antibody library for obtaining an antibody that binds to CD3 and a second antigen can be designed as follows.
Step 1: Select amino acids that retain CD3 binding ability (CD3 binding amount should be 80% or more of unmodified antibody)
For example, a library for obtaining an antibody that binds to CD3 and the second antigen can be prepared so that the amino acid selected in Step 1 appears.
 本発明の非限定の一態様として、CD3と第2の抗原に結合する抗体取得のための抗体ライブラリは以下の様にデザインすることができる。
ステップ1:CD3結合能が保持されているアミノ酸を選択(CD3結合量が未改変抗体の80%以上であること)
ステップ2:H鎖CDR3の99-100(Kabat numbering)の間にアミノ酸を挿入
 例えば、ステップ1に加えてステップ2でCDR3領域にアミノ酸を挿入することにより、ライブラリの多様性を増強させた、CD3と第2の抗原に結合する抗体取得のためのライブラリを作製することができる。
As one non-limiting embodiment of the present invention, an antibody library for obtaining an antibody that binds to CD3 and a second antigen can be designed as follows.
Step 1: Select amino acids that retain CD3 binding ability (CD3 binding amount should be 80% or more of unmodified antibody)
Step 2: Insert amino acids between 99-100 (Kabat numbering) of heavy chain CDR3 For example, CD3 was enhanced by inserting amino acids into the CDR3 region in Step 2 in addition to Step 1. And a library for obtaining antibodies that bind to the second antigen.
 本発明の非限定の一態様として、CD3と第2の抗原に結合する抗体取得のための抗体ライブラリは以下の様にデザインすることができる。
ステップ1:CD3結合能が保持されているアミノ酸を選択(CD3結合量が未改変抗体の80%以上であること)
ステップ2:ECM結合が改変前よりもMRAと比較して10倍以内であるアミノ酸を選択
ステップ3:H鎖CDR3の99-100(Kabat numbering)の間にアミノ酸挿入
 例えば、ステップ1及び3に加えて、ステップ2を加えることで、ライブラリで出現するアミノ酸についても、ECM結合が増強されないアミノ酸を選択することができるが、この手法に限定されることはない。また、ステップ2を経ないライブラリ設計であっても、ライブラリから取得された抗原結合分子に対してECM結合を測定し、評価することが可能である。
As one non-limiting embodiment of the present invention, an antibody library for obtaining an antibody that binds to CD3 and a second antigen can be designed as follows.
Step 1: Select amino acids that retain CD3 binding ability (CD3 binding amount should be 80% or more of unmodified antibody)
Step 2: Select amino acids whose ECM binding is within 10 times compared to MRA than before modification Step 3: Insert amino acids between 99-100 (Kabat numbering) of heavy chain CDR3 For example, in addition to steps 1 and 3 By adding step 2, amino acids that do not enhance ECM binding can be selected for amino acids that appear in the library, but the method is not limited thereto. Even if the library design does not go through step 2, it is possible to measure and evaluate ECM binding to an antigen-binding molecule obtained from the library.
 本発明の非限定の一態様として、CD3(CD3ε)結合抗体のテンプレート配列としてVH領域CE115HA000(配列番号:52)を用いた場合、ライブラリデザインに利用されるアミノ酸としては、重鎖可変領域に含まれるKabatナンバリング11位、31位、52a位、52b位、52c位、53位、54位、56位、57位、61位、72位、78位、98位、99位、100位、100a位、100b位、100c位、100d位、100e位、100f位、100g位、101位のうちいずれか一つ以上のアミノ酸等が例示され得る。
VH領域CE115HA000(配列番号:52)に、V11L/L78Iのアミノ酸改変を加えた上記ライブラリが好ましいがこれに限定されることはない。さらに、VH領域CE115HA000(配列番号:52)に、V11L/D72A/L78I/D101Qのアミノ酸改変を加えた上記ライブラリが好ましいがこれに限定されることはない。
As a non-limiting embodiment of the present invention, when the VH region CE115HA000 (SEQ ID NO: 52) is used as a template sequence of a CD3 (CD3ε) -binding antibody, amino acids used for library design are included in the heavy chain variable region. Kabat numbering 11th, 31st, 52a, 52b, 52b, 52c, 53, 54, 56, 57, 61, 72, 78, 98, 99, 100, 100a , 100b-position, 100c-position, 100d-position, 100e-position, 100f-position, 100g-position, 101-position, any one or more amino acids, etc. can be exemplified.
The above library in which the VH region CE115HA000 (SEQ ID NO: 52) is modified with the amino acid modification of V11L / L78I is preferable, but is not limited thereto. Furthermore, the above-mentioned library in which the amino acid modification of V11L / D72A / L78I / D101Q is added to the VH region CE115HA000 (SEQ ID NO: 52) is preferable, but not limited thereto.
 本発明の非限定の一態様として、CD3(CD3ε)結合抗体のテンプレート配列としてVL領域GLS3000(配列番号:53)を用いた場合、ライブラリデザインに利用されるアミノ酸としては、軽鎖可変領域に含まれるKabatナンバリング24位、25位、26位、27位、27a位、27b位、27c位、27e位、30位、31位、33位、34位、51位、52位、53位、54位、55位、56位、74位、77位、89位、90位、92位、93位、94位、96位、107位のうちいずれか一つ以上のアミノ酸等が例示され得る。 As a non-limiting embodiment of the present invention, when the VL region GLS3000 (SEQ ID NO: 53) is used as a template sequence of a CD3 (CD3ε) -binding antibody, amino acids used for library design are included in the light chain variable region. Kabat numbering 24th, 25th, 26th, 27th, 27a, 27b, 27b, 27c, 27e, 30th, 31st, 33rd, 34th, 51st, 52nd, 53rd, 54th , 55, 56, 74, 77, 89, 90, 92, 93, 94, 96, 107 may be exemplified.
 本発明におけるライブラリを設計する(デザインする)とは、例えばNNKやTRIM Library等(Gonzalez-Munoz A et al. MAbs 2012, Lee CV et al. J Mol Biol. 2004, Knappik A. et al. J Mol Biol. 2000, Tiller T et al. MAbs 2013)の公知のライブラリ技術を利用して、特定部位のアミノ酸が所望のアミノ酸に改変されている抗原結合ドメインまたは抗原結合ドメインを含む抗原結合分子の複数の改変体を含むライブラリを設計することが包含されるが、特にこの態様に限定されるものではない。 Designing a library in the present invention means, for example, NNK, TRIM Library, etc. (Gonzalez-Munoz A et al. MAbs 2012, Lee CV et al. J Mol Biol. 2004, Knappik A. et al. J Mol Biol. 2000, Tiller T et al. 、 MAbs 2013) using a known library technology, an antigen-binding domain in which an amino acid at a specific site is modified to a desired amino acid or a plurality of antigen-binding molecules containing an antigen-binding domain Designing a library containing the variants is included, but is not particularly limited to this embodiment.
 本発明における「1または複数のアミノ酸」とは、特にアミノ酸の数を限定されることはなく、2種類以上のアミノ酸、5種類以上のアミノ酸、10種類以上のアミノ酸、15種類以上のアミノ酸又は20種類のアミノ酸であってもよい。 The “one or more amino acids” in the present invention are not particularly limited in the number of amino acids, and there are 2 or more amino acids, 5 or more amino acids, 10 or more amino acids, 15 or more amino acids, or 20 It may be a kind of amino acid.
 融合ポリペプチドの提示に関して、抗原結合分子の可変領域の融合ポリペプチドは、細胞、ウイルスまたはファージミド粒子の表面で様々な態様で提示され得る。これらの態様には、単鎖Fv断片(scFv)、F(ab)断片およびこれらの断片の多価の形態が含まれる。多価の形態は、好ましくはScFv、FabまたはF(ab')の二量体であり、これらは本明細書では(ScFv)2、F(ab)2およびF(ab')2とそれぞれ指称される。多価の形態の提示が好まれる理由の一つは、多価の形態の提示によって、通常は低親和性のクローンの同定が可能となる点、または、選択過程で稀なクローンのより効率的な選択を可能にする複数の抗原結合部位を有する点であると考えられる。 Regarding the presentation of fusion polypeptides, the fusion polypeptide of the variable region of an antigen binding molecule can be presented in various ways on the surface of a cell, virus or phagemid particle. These embodiments include single chain Fv fragments (scFv), F (ab) fragments and multivalent forms of these fragments. The multivalent form is preferably a dimer of ScFv, Fab or F (ab ′), which are designated herein as (ScFv) 2, F (ab) 2 and F (ab ′) 2, respectively. Is done. One reason for the preference for multivalent forms is that multivalent forms can usually identify low-affinity clones or are more efficient for rare clones during the selection process. It is thought that this is a point having a plurality of antigen-binding sites that allow easy selection.
 バクテリオファージの表面で抗体断片を含んでいる融合ポリペプチドを提示させる方法は当技術分野で公知であり、例えばWO1992001047および本明細書で記載されている。他にもWO1992020791、WO1993006213、WO1993011236および1993019172では関連した方法が記載されており、当業者はこれらの方法を適宜使用することが可能である。他の公知文献(H.R.Hoogenboom & G.Winter (1992) J. Mol. Biol. 227, 381-388、WO1993006213およびWO1993011236)では、ファージ表面で提示された様々な抗原に対する、人工的に再配置された可変領域遺伝子レパートリーによる抗体の同定が示されている。 Methods for displaying fusion polypeptides containing antibody fragments on the surface of bacteriophage are known in the art and are described, for example, in WO1992001047 and this specification. In addition, related methods are described in WO1992020791, WO1993006213, WO1993011236, and 1993019172, and those skilled in the art can appropriately use these methods. Other known references (HRHoogenboom & G.Winter (1992) J. Mol. Biol. 227, 381-388, WO1993006213 and WO1993011236) have artificially rearranged various antigens displayed on the phage surface. The identification of antibodies by the variable region gene repertoire is shown.
 scFvの態様での提示のためにベクターが構築される場合、抗原結合分子の軽鎖可変領域および重鎖可変領域をコードしている核酸配列がこのベクターに含まれる。一般的には、抗原結合分子の重鎖可変領域をコードする核酸配列は、ウイルスコートタンパク質構成成分に融合される。抗原結合分子の軽鎖可変領域をコードしている核酸配列は、ペプチドリンカーをコードしている核酸配列によって抗原結合分子の重鎖可変領域に連結される。ペプチドリンカーは、一般的に約5から15個のアミノ酸を含む。任意に、例えば精製または検出に役立つ標識をコードしている他の配列が、抗原結合分子の軽鎖可変領域もしくは抗原結合分子の重鎖可変領域のいずれかまたは両方をコードしている核酸配列の3'末端に融合され得る。 When a vector is constructed for presentation in the form of scFv, nucleic acid sequences encoding the light chain variable region and heavy chain variable region of the antigen binding molecule are included in this vector. In general, a nucleic acid sequence encoding the heavy chain variable region of an antigen binding molecule is fused to a viral coat protein component. The nucleic acid sequence encoding the light chain variable region of the antigen binding molecule is linked to the heavy chain variable region of the antigen binding molecule by a nucleic acid sequence encoding a peptide linker. Peptide linkers generally contain about 5 to 15 amino acids. Optionally, other sequences encoding a label useful for purification or detection, for example, of the nucleic acid sequence encoding either the light chain variable region of the antigen binding molecule or the heavy chain variable region of the antigen binding molecule or both. Can be fused to the 3 'end.
 F(ab)の態様での提示のためにベクターが構築される場合、抗原結合分子の可変領域および抗原結合分子の定常領域をコードする核酸配列がこのベクターに含まれる。軽鎖可変領域をコードする核酸は、軽鎖定常領域をコードする核酸配列に融合される。抗原結合分子の重鎖可変領域をコードする核酸配列は、重鎖定常CH1領域をコードする核酸配列に融合される。一般的には、重鎖可変領域および定常領域をコードしている核酸配列は、ウイルスコートタンパク質のすべてまたは一部をコードしている核酸配列に融合される。重鎖可変領域および定常領域は好ましくはウイルスコートタンパク質の少なくとも一部との融合体として発現され、軽鎖可変領域および定常領域は、重鎖ウイルスコート融合タンパク質とは別々に発現される。重鎖および軽鎖は互いと結合するが、その結合は共有結合でも非共有結合でもあり得る。任意に、例えば精製または検出に役立つポリペプチド標識をコードしている他の配列が、抗原結合分子の軽鎖定常領域をコードしている核酸配列の3'末端または抗原結合分子の重鎖定常領域をコードしている核酸配列の3'末端のいずれかまたは両方に融合され得る。 When a vector is constructed for presentation in the form of F (ab), a nucleic acid sequence encoding the variable region of the antigen-binding molecule and the constant region of the antigen-binding molecule is included in this vector. A nucleic acid encoding a light chain variable region is fused to a nucleic acid sequence encoding a light chain constant region. The nucleic acid sequence encoding the heavy chain variable region of the antigen binding molecule is fused to the nucleic acid sequence encoding the heavy chain constant CH1 region. In general, nucleic acid sequences encoding heavy chain variable regions and constant regions are fused to nucleic acid sequences encoding all or part of a viral coat protein. The heavy chain variable region and constant region are preferably expressed as a fusion with at least a portion of the viral coat protein, and the light chain variable region and constant region are expressed separately from the heavy chain viral coat protein. The heavy and light chains bind to each other, but the bond can be covalent or non-covalent. Optionally, the 3 ′ end of the nucleic acid sequence encoding the light chain constant region of the antigen binding molecule, or the heavy chain constant region of the antigen binding molecule, for example, where the other sequence encoding a polypeptide label useful for purification or detection is Can be fused to either or both of the 3 ′ ends of the nucleic acid sequences encoding
 宿主細胞へのベクターの導入に関して、前記のように構築されたベクターは、増幅および/または発現のために宿主細胞に導入される。ベクターは、エレクトロポレーション、リン酸カルシウム沈殿などを含む公知の形質転換法によって、宿主細胞に導入され得る。ベクターがウイルスのような感染性の粒子である場合、ベクター自体が宿主細胞に侵入する。融合タンパク質をコードするポリヌクレオチドが挿入されている複製可能な発現ベクターによる宿主細胞のトランスフェクションおよび公知の手法によるファージ粒子の生産によって、融合タンパク質がファージ粒子の表面に提示される。 Regarding the introduction of the vector into the host cell, the vector constructed as described above is introduced into the host cell for amplification and / or expression. Vectors can be introduced into host cells by known transformation methods including electroporation, calcium phosphate precipitation, and the like. If the vector is an infectious particle such as a virus, the vector itself enters the host cell. The fusion protein is displayed on the surface of the phage particle by transfection of the host cell with a replicable expression vector into which the polynucleotide encoding the fusion protein has been inserted and production of the phage particle by known techniques.
 複製可能な発現ベクターは、様々な方法を使用して宿主細胞に導入され得る。非限定な一実施態様では、ベクターはWO2000106717に記載されているようにエレクトロポレーション法を使って細胞に導入され得る。細胞は標準の培養液中で任意に約6ないし48時間(または600 nmにおけるODが0.6ないし0.8になるまで)、37℃で培養し、次に培養液を遠心分離することによって(例えばデカンテーションにより)培養上清が取り出される。精製の初期段階では、好ましくは緩衝液(例えば1.0 mMのHEPES(pH7.4))中に細胞ペレットが再懸濁される。次に再度の遠心分離によって懸濁液から上清が取り出される。得られた細胞ペレットは例えば5-20%V/Vに希釈されたグリセリンに再懸濁される。再度遠心分離によって懸濁液から上清を取り除くことによって細胞ペレットが得られる。当該細胞ペレットを水または希釈されたグリセリンの中に再懸濁することによって得られる懸濁液の菌体濃度の測定値にもとづいて、最終的な菌体濃度が水または希釈されたグリセリンを用いて所望の濃度に調製される。 Replicable expression vectors can be introduced into host cells using a variety of methods. In one non-limiting embodiment, the vector can be introduced into the cells using electroporation methods as described in WO2000106717. Cells are optionally cultured in standard culture medium for approximately 6 to 48 hours (or until the OD at 600 nm is 0.6 to 0.8) at 37 ° C., and then the culture medium is centrifuged (eg, decantation). The culture supernatant is removed. In the initial stage of purification, the cell pellet is preferably resuspended in a buffer (eg 1.0 mM HEPES (pH 7.4)). The supernatant is then removed from the suspension by another centrifugation. The resulting cell pellet is resuspended, for example, in glycerin diluted to 5-20% V / V. The cell pellet is obtained by removing the supernatant from the suspension again by centrifugation. Based on the measured cell concentration of the suspension obtained by resuspending the cell pellet in water or diluted glycerin, the final cell concentration is determined using water or diluted glycerin. To the desired concentration.
 例えば、好ましい受容細胞として、エレクトロポレーション応答能のある大腸菌株SS320(Sidhuら(Methods Enzymol. (2000) 328, 333-363))が挙げられる。大腸菌株SS320は、稔性エピソーム(F'プラスミド)またはXL1-BLUEをMC1061細胞に移転するのに十分な条件の下で、MC1061細胞をXL1-BLUE細胞と交接させて調製された。ATCC(10801 University Boulevard, Manassas, Virginia)に寄託された大腸菌株SS320に対して寄託番号98795が与えられている。この菌株でのファージ複製を可能にするいかなるF'エピソームでも、本発明で用いられ得る。適切なエピソームはATCCに寄託されている株から入手可能であるし、または市販品も入手可能である(TG1, CJ236、CSH18、DHF'、ER2738、JM101、JM103、JM105、JM107、JM109、JM110、KS1000、XL1-BLUE、71-18等)。 For example, preferable recipient cells include E. coli strain SS320 (Sidhu et al. (Methods Enzymol. (2000) 328, 333-363)) having electroporation response ability. E. coli strain SS320 was prepared by mating MC1061 cells with XL1-BLUE cells under conditions sufficient to transfer fertile episomes (F ′ plasmid) or XL1-BLUE to MC1061 cells. Deposit number 98795 is given to E. coli strain SS320 deposited at ATCC (10801 University Boulevard, Manassas, Virginia). Any F ′ episome that allows phage replication in this strain can be used in the present invention. Suitable episomes are available from strains deposited with the ATCC, or are commercially available (TG1, TG CJ236, CSH18, DHF ', ER2738, JM101, JM103, JM105, JM107, JM109, JM110, KS1000, XL1-BLUE, 71-18 etc.).
 エレクトロポレーションでより高いDNA濃度(約10倍)を使用すると、形質転換率が向上し、宿主細胞に形質転換されるDNAの量が増加する。高い菌体濃度の使用も効率を高める(約10倍)。移転されたDNA量の増加により、より大きな多様性を有し、配列の異なる独立クローンの数が大きなライブラリが作製され得る。形質転換細胞は、通常、抗生物質を含む培地上の増殖の可否によって選択される。 When a higher DNA concentration (about 10 times) is used in electroporation, the transformation rate is improved and the amount of DNA transformed into host cells is increased. The use of high cell concentration also increases efficiency (approximately 10 times). By increasing the amount of transferred DNA, a library with greater diversity and a greater number of independent clones with different sequences can be created. Transformed cells are usually selected based on whether or not they can grow on a medium containing antibiotics.
 さらに本発明は、本発明の抗原結合分子をコードする核酸を提供する。本発明の該核酸はDNA、RNAなど、如何なる形態でもよい。 Furthermore, the present invention provides a nucleic acid encoding the antigen-binding molecule of the present invention. The nucleic acid of the present invention may be in any form such as DNA or RNA.
 さらに本発明は、上記本発明の核酸を含むベクターを提供する。ベクターの種類はベクターが導入される宿主細胞に応じて当業者が適宜選択することができ、例えば上述のベクターを用いることができる。 Furthermore, the present invention provides a vector containing the nucleic acid of the present invention. The type of vector can be appropriately selected by those skilled in the art depending on the host cell into which the vector is introduced. For example, the above-described vectors can be used.
 さらに本発明は、上記本発明のベクターにより形質転換された宿主細胞に関する。宿主細胞は当業者が適宜選択することができ、例えば上述の宿主細胞を用いることができる。 Furthermore, the present invention relates to a host cell transformed with the vector of the present invention. The host cell can be appropriately selected by those skilled in the art. For example, the above-described host cell can be used.
 また、本発明は、本発明の抗原結合分子及び医学的に許容し得る担体を含む、医薬組成物を提供する。本発明の医薬組成物は、本発明の抗原結合分子に加えて医薬的に許容し得る担体を導入し、公知の方法で製剤化することが可能である。例えば、水もしくはそれ以外の薬学的に許容し得る溶液との無菌性溶液、又は懸濁液剤の注射剤の形で非経口的に使用できる。例えば、薬理学上許容される担体もしくは媒体、具体的には、滅菌水や生理食塩水、植物油、乳化剤、懸濁剤、界面活性剤、安定剤、香味剤、賦形剤、ベヒクル、防腐剤、結合剤などと適宜組み合わせて、一般に認められた製薬実施に要求される単位用量形態で混和することによって製剤化することが考えられる。具体的には、軽質無水ケイ酸、乳糖、結晶セルロース、マンニトール、デンプン、カルメロースカルシウム、カルメロースナトリウム、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルアセタールジエチルアミノアセテート、ポリビニルピロリドン、ゼラチン、中鎖脂肪酸トリグリセライド、ポリオキシエチレン硬化ヒマシ油60、白糖、カルボキシメチルセルロース、コーンスターチ、無機塩類等を担体として挙げることができる。これら製剤における有効成分量は指示された範囲の適当な容量が得られるようにするものである。 The present invention also provides a pharmaceutical composition comprising the antigen-binding molecule of the present invention and a medically acceptable carrier. The pharmaceutical composition of the present invention can be formulated by a known method by introducing a pharmaceutically acceptable carrier in addition to the antigen-binding molecule of the present invention. For example, it can be used parenterally in the form of a sterile solution with water or other pharmaceutically acceptable solution, or an injection of suspension. For example, a pharmacologically acceptable carrier or medium, specifically, sterile water or physiological saline, vegetable oil, emulsifier, suspension, surfactant, stabilizer, flavoring agent, excipient, vehicle, preservative It is conceivable to prepare a pharmaceutical preparation by combining with a binder or the like as appropriate and mixing in a unit dosage form generally required for pharmaceutical practice. Specifically, light anhydrous silicic acid, lactose, crystalline cellulose, mannitol, starch, carmellose calcium, carmellose sodium, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylacetal diethylaminoacetate, polyvinylpyrrolidone, gelatin, medium chain fatty acid triglyceride, Examples of the carrier include polyoxyethylene hydrogenated castor oil 60, sucrose, carboxymethylcellulose, corn starch, and inorganic salts. The amount of active ingredient in these preparations is such that an appropriate volume within the indicated range can be obtained.
 注射のための無菌組成物は注射用蒸留水のようなベヒクルを用いて通常の製剤実施に従って処方することができる。注射用の水溶液としては、例えば生理食塩水、ブドウ糖やその他の補助薬を含む等張液、例えばD-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウムが挙げられ、適当な溶解補助剤、例えばアルコール、具体的にはエタノール、ポリアルコール、例えばプロピレングリコール、ポリエチレングリコール、非イオン性界面活性剤、例えばポリソルベート80(TM)、HCO-50と併用してもよい。 A sterile composition for injection can be formulated in accordance with normal pharmaceutical practice using a vehicle such as distilled water for injection. Aqueous solutions for injection include, for example, isotonic solutions containing physiological saline, glucose and other adjuvants such as D-sorbitol, D-mannose, D-mannitol and sodium chloride, and suitable solubilizers such as You may use together with alcohol, specifically ethanol, polyalcohol, for example, propylene glycol, polyethylene glycol, nonionic surfactant, for example, polysorbate 80 (TM), HCO-50.
 油性液としてはゴマ油、大豆油があげられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコールと併用してもよい。また、緩衝剤、例えばリン酸塩緩衝液、酢酸ナトリウム緩衝液、無痛化剤、例えば、塩酸プロカイン、安定剤、例えばベンジルアルコール、フェノール、酸化防止剤と配合してもよい。調製された注射液は通常、適当なアンプルに充填させる。  投与は好ましくは非経口投与であり、具体的には、注射剤型、経鼻投与剤型、経肺投与剤型、経皮投与型などが挙げられる。注射剤型の例としては、例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などにより全身または局部的に投与することができる。 Examples of the oily liquid include sesame oil and soybean oil, which may be used in combination with benzyl benzoate or benzyl alcohol as a solubilizing agent. Moreover, you may mix | blend with buffer, for example, phosphate buffer, sodium acetate buffer, a soothing agent, for example, procaine hydrochloride, stabilizer, for example, benzyl alcohol, phenol, antioxidant. The prepared injection solution is usually filled into a suitable ampoule.投 与 Administration is preferably parenteral administration, and specific examples include injection, nasal administration, pulmonary administration, and transdermal administration. As an example of the injection form, it can be administered systemically or locally by, for example, intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, or the like.
 また、患者の年齢、症状により適宜投与方法を選択することができる。ポリペプチドまたはポリペプチドをコードするポリヌクレオチドを含有する医薬組成物の投与量としては、例えば、一回につき体重1kgあたり0.0001 mgから1000 mgの範囲で選ぶことが可能である。あるいは、例えば、患者あたり0.001から100000 mg/bodyの範囲で投与量を選ぶことができるが、これらの数値に必ずしも制限されるものではない。投与量、投与方法は、患者の体重や年齢、症状などにより変動するが、当業者であれば適宜選択することが可能である。 Moreover, the administration method can be appropriately selected depending on the age and symptoms of the patient. The dose of the pharmaceutical composition containing the polypeptide or the polynucleotide encoding the polypeptide can be selected, for example, in the range of 0.0001 mg / kg to 1000 mg / kg body weight at a time. Alternatively, for example, the dose can be selected in the range of 0.001 to 100,000 mg / body per patient, but is not necessarily limited to these values. The dose and administration method vary depending on the weight, age, symptoms, etc. of the patient, but can be appropriately selected by those skilled in the art.
 また、本発明は、本発明の抗原結合分子を投与する工程を含む、がんの治療方法、がんの治療において使用するための本発明の抗原結合分子、がんの治療剤の製造における本発明の抗原結合分子の使用、及び本発明の抗原結合分子を使用する工程を含む、がんの治療剤を製造するためのプロセスを提供する。 The present invention also includes a method for treating cancer, the antigen-binding molecule of the present invention for use in the treatment of cancer, and a method for producing a therapeutic agent for cancer, comprising the step of administering the antigen-binding molecule of the present invention. There is provided a process for producing a therapeutic agent for cancer comprising the use of an antigen binding molecule of the invention and a step of using the antigen binding molecule of the invention.
 なお本明細書で用いられているアミノ酸の3文字表記と1文字表記の対応は以下の通りである。 アラニン:Ala:A アルギニン:Arg:R アスパラギン:Asn:N アスパラギン酸:Asp:D システイン:Cys:C グルタミン:Gln:Q グルタミン酸:Glu:E グリシン:Gly:G ヒスチジン:His:H イソロイシン:Ile:I ロイシン:Leu:L リジン:Lys:K メチオニン:Met:M フェニルアラニン:Phe:F プロリン:Pro:P セリン:Ser:S スレオニン:Thr:T トリプトファン:Trp:W チロシン:Tyr:Y バリン:Val:V The correspondence between the three-letter code of amino acids and the one-letter code used in this specification is as follows. Alanine: Ala: A Arginine: Arg: R Asparagine: Asn: N Aspartate: Asp: D cysteine: Cys: C Glutamine: Gln: Q Glutamate: Glu: E glycine: Gly: G histidine: His: H isoleucine: Ile: I leucine: Leu: L lysine: Lys: K methionine: Met: M phenylalanine: Phe: F proline: Pro: P serine: Ser: S threonine: Thr: T tryptophan: Trp: W tyrosine: Tyr: Y valine: Val: V
 本明細書に記載の1又は複数の態様を任意に組み合わせたものも、当業者の技術常識に基づいて技術的に矛盾しない限り、本発明に含まれることが当業者には当然に理解される。 It will be understood by those skilled in the art that any combination of one or more aspects described in this specification is included in the present invention as long as there is no technical contradiction based on the common general knowledge of those skilled in the art. .
 なお本明細書において引用された全ての先行技術文献は、参照として本明細書に組み入れられる。 Note that all prior art documents cited in the present specification are incorporated herein by reference.
 本発明は、以下の実施例によってさらに例示されるが、下記の実施例に限定されるものではない。 The present invention is further illustrated by the following examples, but is not limited to the following examples.
〔実施例1〕CD3(第1の抗原)および別の抗原(第2の抗原)に結合し、異なる細胞上のCD3(第1の抗原)および当該別の抗原(第2の抗原)に同時には結合しない改変免疫グロブリン可変(Fab)領域のコンセプト
 免疫グロブリンが、2分子以上の活性型FcγRへ同時に結合する、あるいは、別の抗原と活性型FcγRへ同時に結合することによって、活性化FcγRの架橋反応が起こると、FcγRのITAMシグナルが伝達され、免疫細胞の活性化が起こる可能性が考えられる。IgG型の抗体1分子は、上記の通り、1分子のFcγRにしか結合できないため、抗原存在下でのみ、2分子以上の活性型FcγRが架橋され、免疫細胞の活性化が起こる。
[Example 1] Binding to CD3 (first antigen) and another antigen (second antigen), and simultaneously to CD3 (first antigen) and another antigen (second antigen) on different cells Concept of modified immunoglobulin variable (Fab) region that does not bind to immunoglobulins Crosslinks of activated FcγR by simultaneously binding to two or more molecules of active FcγR, or simultaneously binding to another antigen and active FcγR When the reaction takes place, it is considered that the FcγR ITAM signal is transmitted and immune cells may be activated. As described above, one molecule of IgG-type antibody can bind only to one molecule of FcγR, and therefore, only in the presence of an antigen, two or more molecules of active FcγR are cross-linked to activate immune cells.
 また、IgG型の抗体が可変領域(Fab)で抗原と結合した場合、同時にFc領域で1分子のFcγRに結合することが可能であることから、当該抗原が発現している細胞とFcγR発現細胞間の架橋が起こる。抗原が発現している細胞によっては、抗原とFcγRの架橋が好ましくない場合も存在する。具体的には、例えば抗原がCD3である場合、T細胞がFcγR発現細胞と架橋することによってサイトカインリリース等の免疫活性化が起こるような場合である(J. Immunol. (1999) Aug 1, 163(3), 1246-52)。そのような場合は、Fc領域に改変を導入することによって、FcγRに対する結合活性を無くし、抗原とFcγRの架橋反応を防ぐことが可能である(Advanced Drug Delivery Reviews (2006) 58, 640- 656)。同様に、IgG型の抗体の抗原が、CD40、OX40、CD27などのTNFRスーパーファミリー分子、CD3とTLR2、4、8、9などのTLRなどである場合も、FcγRを介して架橋が起こると、全身で免疫の活性化が生じるため、別の細胞に発現するこれらの分子に同時に結合することは好ましくない。 In addition, when an IgG-type antibody binds to an antigen in the variable region (Fab), it can bind to one molecule of FcγR at the same time in the Fc region, so that cells expressing the antigen and FcγR-expressing cells Cross-linking occurs. Depending on the cell in which the antigen is expressed, there may be cases where cross-linking of the antigen and FcγR is not preferred. Specifically, for example, when the antigen is CD3, immune activation such as cytokine release occurs when T cells crosslink with FcγR-expressing cells (J. Immunol. (1999) Aug 1, 163). (3), 1246-52). In such a case, by introducing a modification into the Fc region, it is possible to eliminate the FcγR binding activity and prevent the cross-linking reaction between the antigen and FcγR (Advanced Drug Delivery Reviews (2006) 58, 640- 656) . Similarly, when the antigen of an IgG type antibody is a TNFR superfamily molecule such as CD40, OX40, or CD27, or a TLR such as CD3 and TLR2, 4, 8, 9 or the like, when cross-linking occurs via FcγR, Since immune activation occurs throughout the body, it is not preferred to bind to these molecules expressed in different cells simultaneously.
 一方、これまでの多重特異性抗体は、複数の抗原に同時に結合するが、抗原の組み合わせによっては、複数の抗原に同時に結合することが好ましくない場合も存在する。例えば、接着分子として知られているインテグリンαvβ3は、多くのがん細胞および腫瘍の周りの血管に発現していることから、腫瘍をターゲッティングする標的分子として有用( R. Haubner, PLoS Med., 2,e70(2005))であるが、一方でさまざまな正常細胞にも発現していることが知られている(Thromb Haemost. 1998 Nov;80(5):726-34.)。したがって、多重特異性抗体が、CD3とインテグリンαvβ3の両方に同時に結合してしまうと、正常細胞がT細胞による強力な細胞傷害活性によって傷害されてしまう可能性が考えられる。 On the other hand, conventional multispecific antibodies bind to a plurality of antigens at the same time. However, depending on the combination of antigens, it may not be preferable to bind to a plurality of antigens at the same time. For example, the integrin αvβ3, known as an adhesion molecule, is expressed in many cancer cells and blood vessels around the tumor, making it useful as a target molecule for targeting tumors (R. Haubner, PLoS Med., 2 , e70 (2005)), but on the other hand, it is also known to be expressed in various normal cells (Thromb Haemost. 1998 Nov; 80 (5): 726-34.). Therefore, if a multispecific antibody binds to both CD3 and integrin αvβ3 simultaneously, there is a possibility that normal cells may be damaged by the strong cytotoxic activity of T cells.
 そこで、このような好ましくない架橋反応を制御する方法として、1つの可変(Fab)領域において、その一部分で第1の抗原に結合し、この結合に関与しない当該可変(Fab)領域の別の部分で第2の抗原に結合する可変領域(Dual Binding Fab)が考えられた(図1)。このとき、図1に示す通り、一つの可変(Fab)領域の中の近接した二つの部分がそれぞれの抗原への結合に必須である場合、第1の抗原が結合すると第2の抗原の結合が阻害され、同様に第2の抗原の結合が結合すると第1の抗原の結合が阻害される。したがって、このようなDual Binding Fabの性質を有する改良抗体は、第1の抗原及び第2の抗原に同時には結合することが出来ないため、第1の抗原と第2の抗原の架橋反応は起こらないと考えられた(図2)。また、第1の抗原と第2の抗原が、可溶型タンパクのように細胞膜上に発現していない、或いは、両方が同一細胞上に存在する場合には、第1の抗原と第2の抗原の両方に同時に結合することができるが、それぞれ異なる細胞上で発現している場合には同時には結合せず、二つの細胞を架橋しない場合もDual Binding Fabと考えられる(図3)。一方、もう一方の可変(Fab)領域と結合する抗原(第3の抗原)は、第1の抗原と架橋反応が起こり(図4)、また、第2の抗原とも架橋反応が起こると考えられる(図5)。当該抗体の定常領域としては、FcγRに結合するFc領域を用いることもできるし、FcγRに対する結合活性を低減させたFc領域を用いることもできる。
 このようなDual Binding Fabの性質を利用すれば、例えば抗体を介してT細胞をリダイレクトすることにより癌抗原を発現している癌細胞を傷害させる技術に、さらに癌組織中インテグリンへのターゲット機能を持たせることにより、より癌特異性を高めることが可能となる。
Therefore, as a method for controlling such an unfavorable cross-linking reaction, in one variable (Fab) region, a part of the variable (Fab) region binds to the first antigen and does not participate in the binding. Thus, a variable binding region (Dual Binding Fab) binding to the second antigen was considered (FIG. 1). At this time, as shown in FIG. 1, when two adjacent portions in one variable (Fab) region are essential for binding to each antigen, the binding of the second antigen occurs when the first antigen binds. Is inhibited, and similarly, when the binding of the second antigen is bound, the binding of the first antigen is inhibited. Therefore, since such an improved antibody having the properties of Dual Binding Fab cannot simultaneously bind to the first antigen and the second antigen, the cross-linking reaction between the first antigen and the second antigen does not occur. It was thought that it was not (Fig. 2). In addition, when the first antigen and the second antigen are not expressed on the cell membrane as in the soluble protein, or both are present on the same cell, the first antigen and the second antigen Although it can bind to both antigens at the same time, when it is expressed on different cells, it does not bind at the same time, and the case where two cells are not cross-linked is also considered as a Dual Binding Fab (FIG. 3). On the other hand, it is considered that the antigen (third antigen) that binds to the other variable (Fab) region undergoes a crosslinking reaction with the first antigen (FIG. 4) and also with the second antigen. (FIG. 5). As the constant region of the antibody, an Fc region that binds to FcγR can be used, or an Fc region with reduced binding activity to FcγR can be used.
By utilizing such a property of Dual Binding Fab, for example, a technique for damaging cancer cells expressing cancer antigens by redirecting T cells via antibodies, and further a target function for integrin in cancer tissue. By having it, it becomes possible to further increase the cancer specificity.
 すなわち、可変(Fab)領域を改良して、Dual Binding Fabとすることによって、以下の性質を付与することができれば、図1に示すような作用を有する抗体を創製することが可能である。
 1.第1の抗原に対する結合活性を有する
 2.第2の抗原に対する結合活性を有する
 3.第1の抗原及び第2の抗原に同時には結合しない
 なお、「第1の抗原及び第2の抗原に同時には結合しない」には、第1の抗原が発現している細胞と第2の抗原が発現している細胞の2つの細胞を架橋しない、あるいは、それぞれ別々の細胞に発現している第1の抗原と第2の抗原に同時に結合しないこと、さらに、第1の抗原と第2の抗原が、可溶型タンパクのように細胞膜上に発現していない、或いは、両方が同一細胞上に存在する場合には、第1の抗原と第2の抗原の両方に同時に結合することができるが、それぞれ異なる細胞上で発現している場合には同時には結合することができない場合も含まれる。
That is, an antibody having the action shown in FIG. 1 can be created if the following properties can be imparted by improving the variable (Fab) region to form a dual binding Fab.
1. 1. It has binding activity for the first antigen. 2. It has binding activity for the second antigen. It does not bind to the first antigen and the second antigen at the same time. “Does not bind to the first antigen and the second antigen at the same time” means that the cell expressing the first antigen and the second antigen Do not cross-link two of the cells in which are expressed, or do not simultaneously bind to the first and second antigens expressed in separate cells, respectively, and If the antigen is not expressed on the cell membrane like a soluble protein, or both are present on the same cell, they can bind to both the first and second antigens simultaneously. However, when they are expressed on different cells, they may not be able to bind at the same time.
 同様に、可変(Fab)領域を改良して、Dual Binding Fabとすることによって、以下の性質を付与することができれば、例えば、図6に示すような作用を有する抗体を創製することが可能である。
 1.T細胞上の第1の抗原に対する結合活性を有する
 2.抗原提示細胞上の第2の抗原に対する結合活性を有する
 3.第1の抗原及び第2の抗原に同時には結合しない
Similarly, by modifying the variable (Fab) region to form a dual binding Fab, if the following properties can be imparted, for example, an antibody having the action shown in FIG. 6 can be created. is there.
1. 1. has binding activity to the first antigen on T cells 2. It has binding activity for a second antigen on the antigen-presenting cell. Does not bind to the first and second antigens simultaneously
〔実施例2〕抗ヒト、カニクイザルCD3ε抗体CE115の作製
(2-1)ヒトCD3、カニクイザルCD3発現細胞免疫ラットを用いたハイブリドーマの作製
 SDラット(雌、免疫開始時6週齢、日本チャールス・リバー)に、ヒトCD3εγまたはカニクイザルCD3εγ発現Ba/F3細胞を以下の通り免疫した。初回免疫時を0日目とすると、0日目にフロイント完全アジュバント(Difco)とともに、5 x 107個のヒトCD3εγ発現Ba/F3細胞を腹腔内投与した。14日目にフロイント不完全アジュバント(Difco)とともに5 x 107個のカニクイザルCD3εγ発現Ba/F3細胞を腹腔内投与し、その後、1週間おきに4回5 x 107個のヒトまたはカニクイザルCD3εγ発現Ba/F3細胞を交互に腹腔内投与した。CD3εγの最終投与1週間後に(49日目)、ブーストとしてヒトCD3εγ発現Ba/F3細胞を静脈内投与し、その3日後に、ラットの脾臓細胞とマウスミエローマ細胞SP2/0とを、PEG1500(Roche Diagnostics)を用いた常法に従い細胞融合した。融合細胞、すなわちハイブリドーマは、10% FBSを含むRPMI1640培地 (以下、10%FBS/RPMI1640と称す)にて培養した。
[Example 2] Preparation of anti-human, cynomolgus monkey CD3ε antibody CE115 (2-1) Preparation of hybridoma using human CD3, cynomolgus monkey CD3-expressing cell-immunized rat SD rat (female, 6 weeks old at the start of immunization, Charles River, Japan) ) Were immunized with human CD3εγ or cynomolgus monkey CD3εγ-expressing Ba / F3 cells as follows. When the first immunization was taken as day 0, 5 × 10 7 human CD3εγ-expressing Ba / F3 cells were intraperitoneally administered on day 0 together with Freund's complete adjuvant (Difco). On day 14, 5 x 10 7 cynomolgus monkey CD3εγ-expressing Ba / F3 cells were administered intraperitoneally with Freund's incomplete adjuvant (Difco), then 5 x 10 7 human or cynomolgus CD3εγ expression 4 times every other week Ba / F3 cells were alternately administered intraperitoneally. One week after the final administration of CD3εγ (day 49), human CD3εγ-expressing Ba / F3 cells were intravenously administered as a boost, and 3 days later, rat spleen cells and mouse myeloma cells SP2 / 0 were treated with PEG1500 (Roche The cells were fused according to a conventional method using Diagnostics. The fused cells, that is, hybridomas, were cultured in RPMI1640 medium containing 10% FBS (hereinafter referred to as 10% FBS / RPMI1640).
 融合の翌日に、(1)融合細胞を半流動培地(StemCells)に懸濁し、ハイブリドーマの選択培養を行うと共に、ハイブリドーマのコロニー化を実施した。 On the next day after the fusion, (1) the fused cells were suspended in a semi-fluid medium (StemCells) to perform selective culture of the hybridoma and colonize the hybridoma.
 融合後9日目または10日目にハイブリドーマのコロニーをピックアップし、HAT選択培地(10% FBS/RPMI1640、2 vol% HAT 50x concentrate(大日本製薬)、5 vol% BM-Condimed H1(Roche Diagnostics))の入った96-ウェルプレートに、1ウェル当り1コロニーを播種した。3~4日培養後、各ウェルの培養上清を回収し、培養上清中のラットIgG濃度を測定した。ラットIgGが確認できた培養上清について、ヒトCD3εγ発現Ba/F3細胞、もしくはヒトCD3εγを発現しないBa/F3を付着させたcell-ELISAによってヒトCD3εγに特異的に結合する抗体を産生するクローンを選抜した(図7)。さらに、カニクイザルCD3εγ発現Ba/F3細胞を付着させたcell-ELISAを行うことにより、サルCD3εγに対する交差性も評価した(図7)。 On the 9th or 10th day after fusion, colonies of hybridomas are picked up, and HAT selection medium (10% FBS / RPMI1640, 2 vol% HAT 50x concentrate (Dainippon Pharmaceutical), 5 vol% BM-Condimed H1 (Roche Diagnostics) ) Was inoculated in a 96-well plate with 1 colony per well. After culturing for 3 to 4 days, the culture supernatant of each well was collected, and the rat IgG concentration in the culture supernatant was measured. For the culture supernatant in which rat IgG was confirmed, clones that produce antibodies that specifically bind to human CD3εγ by cell-ELISA with human CD3εγ-expressing Ba / F3 cells or Ba / F3 that does not express human CD3εγ. Selected (Figure 7). Furthermore, by performing cell-ELISA to which cynomolgus monkey CD3εγ-expressing Ba / F3 cells were attached, cross-reactivity to monkey CD3εγ was also evaluated (FIG. 7).
(2-2)抗ヒト、サルCD3εキメラ抗体の作製
 ハイブリドーマ細胞から、RNeasy Mini Kits(QIAGEN)を用いてトータルRNAを抽出し、SMART RACE cDNA Amplification Kit(BD Biosciences)によりcDNAを合成した。作製したcDNAを用いて、PCRにより、抗体の可変領域遺伝子をクローニングベクターに挿入した。各DNA断片の塩基配列は、BigDye Terminator Cycle Sequencing Kit(Applied Biosystems)を用い、DNAシークエンサーABI PRISM 3700 DNA Sequencer(Applied Biosystems)にて、添付説明書記載の方法に従い決定した。CE115 H鎖可変領域(配列番号:13)及びCE115 L鎖可変領域(配列番号:14)のCDR、FRの決定はKabat numberingに従って行った。
(2-2) Preparation of anti-human, monkey CD3ε chimeric antibody Total RNA was extracted from hybridoma cells using RNeasy Mini Kits (QIAGEN), and cDNA was synthesized using SMART RACE cDNA Amplification Kit (BD Biosciences). Using the prepared cDNA, the antibody variable region gene was inserted into a cloning vector by PCR. The base sequence of each DNA fragment was determined using the BigDye Terminator Cycle Sequencing Kit (Applied Biosystems) with the DNA sequencer ABI PRISM 3700 DNA Sequencer (Applied Biosystems) according to the method described in the attached instructions. The determination of CDR and FR of CE115 heavy chain variable region (SEQ ID NO: 13) and CE115 light chain variable region (SEQ ID NO: 14) was performed according to Kabat numbering.
 上記ラット抗体H鎖可変領域とヒト抗体IgG1鎖定常領域とを結合したキメラ抗体H鎖、および上記ラット抗体L鎖可変領域とヒト抗体Kappa鎖定常領域とを結合したキメラ抗体L鎖遺伝子を、動物細胞発現ベクターに組み込んだ。作製した発現ベクターを用いてCE115キメラ抗体の発現および精製を行った(参考実施例1)。 The chimeric antibody H chain in which the rat antibody H chain variable region and the human antibody IgG1 chain constant region are combined, and the chimeric antibody L chain gene in which the rat antibody L chain variable region and the human antibody Kappa chain constant region are combined It was integrated into a cell expression vector. CE115 chimeric antibody was expressed and purified using the prepared expression vector (Reference Example 1).
(2-3)EGFR_ERY22_CE115の作製
 次に、癌抗原(EGFR)に対するIgGを基本骨格とし、片方のFabをCD3εに対する結合ドメインに置き換えた形の分子を作製した。この際、基本骨格とするIgGのFcとしては、上述した場合と同様に、FcgR(Fcγ受容体)への結合性が減弱されたサイレント型Fcを用いた。EGFRに対する結合ドメインとして、Cetuximabの可変領域であるCetuximab-VH(配列番号:15)、Cetuximab-VL(配列番号:16)を使用した。抗体H鎖定常領域として、IgG1のC末端のGly及びLysを除去したG1d、G1dにD356K及びH435Rの変異を導入したA5、並びにG1dにK439Eの変異を導入したB3を使用し、それぞれCetuximab-VHと組み合わせたCetuximab-VH-G1d(配列番号:17)、Cetuximab-VH-A5(配列番号:18)、Cetuximab-VH-B3(配列番号:19)を、参考実施例1の方法にしたがって調製した。なお、抗体H鎖定常領域の名称をH1とした場合、可変領域にCetuximab-VHを持つ抗体のH鎖に対応する配列はCetuximab-VH-H1のように示した。
 ここで、アミノ酸の改変を示す場合には、D356Kのように示した。最初のアルファベット(D356KのDに該当)は、改変前のアミノ酸残基を一文字表記で示した場合のアルファベットを意味し、それに続く数字(D356Kの356に該当)はその改変箇所のEUナンバリングを意味し、最後のアルファベット(D356KのKに該当)は改変後のアミノ酸残基を一文字表記で示した場合のアルファベットを意味する。
(2-3) Preparation of EGFR_ERY22_CE115 Next, a molecule was prepared in which IgG for cancer antigen (EGFR) was used as a basic skeleton and one Fab was replaced with a binding domain for CD3ε. At this time, as the Fc of IgG as a basic skeleton, silent Fc with reduced binding to FcgR (Fcγ receptor) was used as in the case described above. Cetuximab-VH (SEQ ID NO: 15) and Cetuximab-VL (SEQ ID NO: 16), which are variable regions of Cetuximab, were used as binding domains for EGFR. G1d with Gly and Lys removed from the C-terminus of IgG1, A5 with D356K and H435R mutations introduced into G1d, and B3 with K439E mutation introduced into G1d as the antibody H chain constant region, and Cetuximab-VH Cetuximab-VH-G1d (SEQ ID NO: 17), Cetuximab-VH-A5 (SEQ ID NO: 18), and Cetuximab-VH-B3 (SEQ ID NO: 19) were prepared according to the method of Reference Example 1. . When the name of the antibody H chain constant region is H1, the sequence corresponding to the H chain of the antibody having Cetuximab-VH in the variable region is shown as Cetuximab-VH-H1.
Here, when an amino acid modification is indicated, it is indicated as D356K. The first alphabet (corresponding to D in D356K) means the alphabet when the amino acid residue before modification is shown in single letter notation, and the following number (corresponding to 356 in D356K) means the EU numbering of the modified part The last alphabet (corresponding to K in D356K) means the alphabet in the case where the amino acid residue after modification is indicated by a single letter.
 EGFRに対するFabのVHドメインとVLドメインを置き換えたEGFR_ERY22_CE115(図8)を作製した。すなわち、上記した方法と同様の適切な配列を付加したプライマーを用いたPCR法等の当業者において公知の方法により、EGFR ERY22_Hk(配列番号:20)、EGFR ERY22_L(配列番号:21)、CE115_ERY22_Hh(配列番号:22)、CE115_ERY22_L(配列番号:23)をそれぞれコードするポリヌクレオチドが挿入された一連の発現ベクターが作製された。 EGFR_ERY22_CE115 (FIG. 8) was prepared by replacing the VH domain and VL domain of Fab for EGFR. That is, by methods known to those skilled in the art such as PCR using a primer added with an appropriate sequence similar to the method described above, EGFR ERY22_Hk (SEQ ID NO: 20), EGFR ERY22_L (SEQ ID NO: 21), CE115_ERY22_Hh ( A series of expression vectors into which a polynucleotide encoding each of SEQ ID NO: 22) and CE115_ERY22_L (SEQ ID NO: 23) was inserted were prepared.
 以下に示す組み合わせの発現ベクターがFreeStyle293-F細胞に導入され、各目的分子を一過性に発現させた。
 ・目的分子:EGFR_ERY22_CE115
 ・発現ベクターに挿入されたポリヌクレオチドによりコードされるポリペプチド:EGFR _ERY22_Hk、EGFR _ERY22_L、CE115_ERY22_Hh、CE115_ERY22_L
The following combinations of expression vectors were introduced into FreeStyle293-F cells to transiently express each target molecule.
・ Target molecule: EGFR_ERY22_CE115
-Polypeptides encoded by polynucleotides inserted into expression vectors: EGFR_ERY22_Hk, EGFR_ERY22_L, CE115_ERY22_Hh, CE115_ERY22_L
(2-4)EGFR_ERY22_CE115の精製
 得られた培養上清がAnti FLAG M2カラム(Sigma社)に添加され、当該カラムの洗浄の後、0.1 mg/mL FLAGペプチド(Sigma社)による溶出が実施された。目的分子を含む画分がHisTrap HPカラム(GE Healthcare社)に添加され、当該カラムの洗浄の後、イミダゾールの濃度勾配による溶出が実施された。目的分子を含む画分が限外ろ過によって濃縮された後、当該画分がSuperdex 200カラム(GE Healthcare社)に添加され、溶出液の単量体画分のみを回収することにより精製された各目的分子が得られた。
(2-4) Purification of EGFR_ERY22_CE115 The obtained culture supernatant was added to an Anti FLAG M2 column (Sigma), and the column was washed and then eluted with 0.1 mg / mL FLAG peptide (Sigma). . The fraction containing the target molecule was added to a HisTrap HP column (GE Healthcare), and the column was washed and then eluted with an imidazole concentration gradient. After the fraction containing the target molecule was concentrated by ultrafiltration, the fraction was added to a Superdex 200 column (GE Healthcare) and purified by collecting only the monomer fraction of the eluate. The target molecule was obtained.
(2-5)ヒト末梢血単核球を用いた細胞傷害活性の測定
(2-5-1)ヒト末梢血単核球(PBMC:Peripheral Blood Mononuclear Cell)溶液の調製
 1,000単位/mLのヘパリン溶液(ノボ・ヘパリン注5千単位,ノボ・ノルディスク社)をあらかじめ100μL注入した注射器を用い、健常人ボランティア(成人)より末梢血50 mLが採取された。PBS(-)で2倍希釈した後に4等分された末梢血が、15 mLのFicoll-Paque PLUSをあらかじめ注入して遠心操作が行なわれたLeucosepリンパ球分離管(Cat. No. 227290、Greiner bio-one社)に加えられた。当該分離管の遠心分離(2,150 rpm、10分間、室温)の後、単核球画分層が分取された。10%FBSを含むDulbecco's Modified Eagle's Medium(SIGMA社、以下10%FBS/D-MEM)で単核球画分の細胞を1回洗浄した後、当該細胞を、その細胞密度が4×106 /mLになるよう、10%FBS/D-MEMを用いて調製した。このように調製した細胞溶液を、ヒトPBMC溶液として以後の試験に用いた。
(2-5) Measurement of cytotoxic activity using human peripheral blood mononuclear cells (2-5-1) Preparation of human peripheral blood mononuclear cell (PBMC) solution 1,000 units / mL heparin solution 50 mL of peripheral blood was collected from healthy volunteers (adults) using a syringe in which 100 μL of Novo heparin injection (5,000 units, Novo Nordisk) was injected in advance. Leucosep lymphocyte separation tube (Cat. No. 227290, Greiner) in which peripheral blood, which had been divided into 4 equal parts after dilution with PBS (-), was centrifuged in advance by injecting 15 mL of Ficoll-Paque PLUS. bio-one). After centrifugation of the separation tube (2,150 rpm, 10 minutes, room temperature), the mononuclear cell fraction layer was collected. After the cells of the mononuclear cell fraction were washed once with Dulbecco's Modified Eagle's Medium (SIGMA, 10% FBS / D-MEM) containing 10% FBS, the cell density was 4 × 10 6 / Prepared to 10 mL using 10% FBS / D-MEM. The cell solution thus prepared was used as a human PBMC solution in subsequent tests.
(2-5-2)細胞傷害活性の測定
 細胞傷害活性は、xCELLigenceリアルタイムセルアナライザー(ロシュ・ダイアグノスティックス社)を用いた細胞増殖抑制率で評価した。標的細胞には、SK-HEP-1細胞株にヒトEGFRを強制発現させて樹立したSK-pca13a細胞株を用いた。SK-pca13aをディッシュから剥離し、1×10cells/wellとなるようにE-Plate 96プレート(ロシュ・ダイアグノスティックス社)に100μL/wellで播き、xCELLigenceリアルタイムセルアナライザーを用いて生細胞の測定を開始した。翌日xCELLigenceリアルタイムセルアナライザーからプレートを取り出し、当該プレートに各濃度(0.004、0.04、0.4、4 nM)に調製した各抗体50μLを添加した。室温にて15分間反応させた後に(2-5-1)で調製したヒトPBMC溶液50μL(2×105 cells/well)を加え、xCELLigenceリアルタイムセルアナライザーに当該プレートを再セットすることによって、生細胞の測定を開始した。反応は、5%炭酸ガス、37℃条件下にて行い、ヒトPBMC添加72時間後のCell Index値から、下式により細胞増殖抑制率(%)を求めた。なお、計算に用いたCell Index値には、抗体添加直前のCell Index値が1となるようにノーマライズした後の数値を用いた。
          細胞増殖抑制率(%)=(A-B)×100/(A-1)
 Aは抗体を添加していないウェルにおけるCell Index値の平均値(標的細胞とヒトPBMCのみ)、Bは各ウェルにおけるCell Index値の平均値を示す。試験はtriplicateにて行なった。
(2-5-2) Measurement of cytotoxic activity Cytotoxic activity was evaluated based on the cell growth inhibition rate using an xCELLigence real-time cell analyzer (Roche Diagnostics). As the target cell, the SK-pca13a cell line established by forcibly expressing human EGFR in the SK-HEP-1 cell line was used. SK-pca13a is detached from the dish, seeded at 100 μL / well on an E-Plate 96 plate (Roche Diagnostics) at 1 × 10 4 cells / well, and live cells using xCELLigence real-time cell analyzer Measurement was started. On the next day, the plate was taken out from the xCELLigence real-time cell analyzer, and 50 μL of each antibody prepared at each concentration (0.004, 0.04, 0.4, 4 nM) was added to the plate. After reacting at room temperature for 15 minutes, add 50 μL (2 × 10 5 cells / well) of the human PBMC solution prepared in (2-5-1) and reset the plate in the xCELLigence real-time cell analyzer. Cell measurement was started. The reaction was carried out under conditions of 5% carbon dioxide gas and 37 ° C., and the cell growth inhibition rate (%) was determined from the Cell Index value 72 hours after the addition of human PBMC by the following formula. As the Cell Index value used for the calculation, a numerical value after normalization was used so that the Cell Index value immediately before the antibody addition was 1.
Cell growth inhibition rate (%) = (AB) x 100 / (A-1)
A shows the average Cell Index value in the wells to which no antibody is added (only target cells and human PBMC), and B shows the average Cell Index value in each well. The test was performed in triplicate.
 ヒト血液より調製したPBMCをエフェクター細胞として、CE115を用いたEGFR_ERY22_CE115の細胞傷害活性を測定したところ、極めて強い活性が認められた(図9)。 When the cytotoxic activity of EGFR_ERY22_CE115 using CE115 was measured using PBMC prepared from human blood as effector cells, an extremely strong activity was observed (FIG. 9).
〔実施例3〕CD3及びヒトインテグリンαvβ3に結合するが、同時には結合しない抗体の作製
 図1~6に示したように、Dual binding Fabとは、可変(Fab)領域でCD3(第1の抗原)と目的の抗原(第2の抗原)に結合するが、CD3(第1の抗原)及び目的の抗原(第2の抗原)に同時には結合しない分子である。第2の抗原と結合するためにCD3(第1の抗原)に結合する抗体のFab領域にアミノ酸改変を導入する場合、通常二つのH鎖もしくはL鎖の両方にアミノ酸改変が導入される。しかし、両方のH鎖もしくはL鎖に改変が導入されると、抗体の二つのFabがそれぞれ、二つの抗原に結合することにより、二つのFabとCD3(第1の抗原)及び目的の抗原(第2の抗原)に同時に結合し、架橋する可能性がある。したがって、抗体の一つのFabは、第3の抗原に結合する、あるいは何にも結合しないFabとし、もう一つのFabをdual binding Fabとし、CD3(第1の抗原)及び目的の抗原(第2の抗原)の架橋反応は起こらないようにする。
[Example 3] Preparation of antibody that binds to CD3 and human integrin αvβ3 but does not bind simultaneously As shown in FIGS. 1 to 6, Dual binding Fab is a variable (Fab) region of CD3 (first antigen). ) And the target antigen (second antigen), but does not bind to CD3 (first antigen) and target antigen (second antigen) at the same time. When an amino acid modification is introduced into the Fab region of an antibody that binds to CD3 (first antigen) in order to bind to the second antigen, the amino acid modification is usually introduced into both the two H chains or L chains. However, when a modification is introduced into both H chains or L chains, the two Fabs of the antibody bind to the two antigens, respectively, so that the two Fabs and CD3 (first antigen) and the target antigen ( (Second antigen) may be simultaneously bound and cross-linked. Therefore, one Fab of the antibody is a Fab that binds to the third antigen or binds nothing, and the other Fab is a dual binding Fab, and CD3 (the first antigen) and the target antigen (the second antigen). The cross-linking reaction of the antigens of
(3-1)CD3及びヒトインテグリンαvβ3に結合するが、同時には結合しない抗体の作製
 接着分子として知られているインテグリンαvβ3は、多くのがん細胞および腫瘍の周りの血管に発現していることから、腫瘍をターゲッティングする標的分子として有用であるが、一方でさまざまな正常細胞にも発現していることが知られている(Thromb Haemost. 1998 Nov;80(5):726-34.)。したがって、CD3とインテグリンαvβ3が同時に結合してしまうと正常細胞がT細胞による強力な細胞傷害活性によって傷害されてしまう可能性が考えられた。そこでCD3とインテグリンαvβ3が同時には結合しない分子が作製できれば、正常細胞に傷害を与えることなく、インテグリンαvβ3を発現する腫瘍細胞に抗EGFR抗体分子をターゲットすることができると考えられた。すなわち、片側の可変領域(Fab)でEGFRに結合し、別の可変領域で、第1の抗原であるCD3に結合、さらに第2の抗原であるインテグリンαvβ3に結合し、且つ、CD3及びインテグリンαvβ3に同時には結合しないdual binding Fab分子の取得を検討した。
(3-1) Production of an antibody that binds to CD3 and human integrin αvβ3 but does not bind at the same time Integrin αvβ3, known as an adhesion molecule, is expressed in many cancer cells and blood vessels around the tumor From the above, it is known that it is useful as a target molecule for targeting tumors, but is also expressed in various normal cells (Thromb Haemost. 1998 Nov; 80 (5): 726-34.). Therefore, it was considered that if CD3 and integrin αvβ3 are bound simultaneously, normal cells may be damaged by the strong cytotoxic activity of T cells. Therefore, if a molecule that does not bind CD3 and integrin αvβ3 at the same time could be prepared, it was thought that anti-EGFR antibody molecules could be targeted to tumor cells expressing integrin αvβ3 without damaging normal cells. That is, it binds to EGFR at one variable region (Fab), binds to CD3 as the first antigen, binds to integrin αvβ3 as the second antigen, and binds to CD3 and integrin αvβ3. We studied the acquisition of dual binding Fab molecules that do not bind simultaneously.
 「インテグリンαvβ3が存在しない条件でCD3とFab領域が結合し、CD3が存在しない条件でインテグリンαvβ3とFab領域が結合する分子であって、CD3に結合した分子はインテグリンαvβ3に結合しない分子、もしくは、インテグリンαvβ3と結合した分子はCD3に結合しない分子」であることを示すことができれば、目的とするdual binding Fabの特性(すなわち、CD3及び第2の抗原に結合でき、且つ、CD3及び第2の抗原に同時には結合しない)を有するdual binding Fab分子を創製することが出来たと言える。 `` A molecule that binds CD3 and Fab region in the absence of integrin αvβ3, and integrin αvβ3 and Fab region in the absence of CD3, and a molecule that binds to CD3 does not bind to integrin αvβ3, or If it can be shown that the molecule bound to the integrin αvβ3 is a molecule that does not bind to CD3, it can bind to the target dual binding binding Fab (ie, bind to CD3 and the second antigen, and to the CD3 and the second antigen). It can be said that it was possible to create a dual binding し な い Fab molecule that does not bind to the antigen at the same time.
(3-2)インテグリンαvβ3と結合するFab領域をもつ抗体の取得
 Dual binding Fab分子を取得する方法として、ライブラリーを利用する方法と、タンパク質に対して結合活性を有することが知られているペプチドを挿入する方法が考えられた。インテグリンαvβ3に対して結合活性を有するペプチドとして、RGD(Arg-Gly-Asp)ペプチドが知られている。そこで、片側のFabをEGFR結合ドメインとし、もう片側のFabをCD3結合ドメイン及びインテグリンαvβ3結合ドメインとするヘテロ二量化抗体であって、CD3εに結合する抗体であるCE115(重鎖可変領域 配列番号:13、軽鎖可変領域 配列番号:14)の重鎖のループ部分にRGDペプチドを挿入したヘテロ二量化抗体を参考実施例1に従って作製した。すなわち、EGFR ERY22_Hk(配列番号:20)、EGFR ERY22_L(配列番号:21)及びCE115_ERY22_L(配列番号:23)をそれぞれコードするポリヌクレオチドと共に、以下のいずれかをコードするポリヌクレオチドが挿入された一連の発現ベクターを作製した:
 ・CE115_2 ERY22_Hh(配列番号:24、Kabatナンバリング52b-53をそれぞれK及びNに置換)、
 ・CE115_4 ERY22_Hh(配列番号:25、Kabatナンバリング52b-54をそれぞれS及びNに置換)、
 ・CE115_9 ERY22_Hh(配列番号:26、Kabatナンバリング52a-52bの間にRGDを挿入)、
 ・CE115_10 ERY22_Hh(配列番号:27、Kabatナンバリング52b-52cの間にRGDを挿入)、
 ・CE115_12 ERY22_Hh(配列番号:28、Kabatナンバリング72-73の間にRGDを挿入)、
 ・CE115_17 ERY22_Hh(配列番号:29、Kabatナンバリング52b-52cをそれぞれK及びSに置換)、
 ・CE115_47 ERY22_Hh(配列番号:30、Kabatナンバリング98-99の間にRGDを挿入)、
 ・CE115_48 ERY22_Hh(配列番号:31、Kabatナンバリング99-100の間にRGDを挿入)、
 ・CE115_49 ERY22_Hh(配列番号:32、Kabatナンバリング100-100aの間にRGDに挿入)。
 また、対照として、J. Biotech, 155, 193-202, 2011に報告されている抗体のCH3領域にRGD(Arg-Gly-Asp)ペプチドが挿入された抗体(EH240-Kn125 /EH240-Hl076/L73;配列番号33/34/35)を参考実施例1に従って作製した。CH3領域を介してインテグリンαvβ3と結合するこの分子は、CD3とインテグリンαvβ3に同時に結合することが出来ると考えられる。
(3-2) Acquisition of an antibody having a Fab region that binds to integrin αvβ3 As a method of acquiring a dual binding Fab molecule, a method using a library and a peptide known to have a binding activity to a protein The method of inserting was considered. An RGD (Arg-Gly-Asp) peptide is known as a peptide having binding activity for integrin αvβ3. Therefore, CE115 (heavy chain variable region SEQ ID NO :), which is a heterodimerized antibody in which one side of the Fab is an EGFR binding domain and the other side of the Fab is a CD3 binding domain and an integrin αvβ3 binding domain and binds to CD3ε. 13. Light chain variable region SEQ ID NO: 14) A heterodimerized antibody in which an RGD peptide was inserted into the heavy chain loop was prepared according to Reference Example 1. That is, a series of polynucleotides encoding any of the following together with polynucleotides encoding EGFR ERY22_Hk (SEQ ID NO: 20), EGFR ERY22_L (SEQ ID NO: 21) and CE115_ERY22_L (SEQ ID NO: 23), respectively. An expression vector was created:
CE115_2 ERY22_Hh (SEQ ID NO: 24, Kabat numbering 52b-53 replaced with K and N, respectively),
CE115_4 ERY22_Hh (SEQ ID NO: 25, Kabat numbering 52b-54 replaced with S and N, respectively),
CE115_9 ERY22_Hh (SEQ ID NO: 26, RGD inserted between Kabat numbering 52a-52b),
CE115_10 ERY22_Hh (SEQ ID NO: 27, RGD inserted between Kabat numbering 52b-52c),
CE115_12 ERY22_Hh (SEQ ID NO: 28, RGD inserted between Kabat numbering 72-73),
CE115_17 ERY22_Hh (SEQ ID NO: 29, replacing Kabat numbering 52b-52c with K and S, respectively),
CE115_47 ERY22_Hh (SEQ ID NO: 30, RGD inserted between Kabat numbering 98-99),
CE115_48 ERY22_Hh (SEQ ID NO: 31, insert RGD between Kabat numbering 99-100),
CE115_49 ERY22_Hh (SEQ ID NO: 32, inserted into RGD between Kabat numbering 100-100a).
As a control, an antibody (EH240-Kn125 / EH240-Hl076 / L73) in which an RGD (Arg-Gly-Asp) peptide is inserted into the CH3 region of an antibody reported in J. Biotech, 155, 193-202, 2011 ; SEQ ID NO: 33/34/35) was prepared according to Reference Example 1. This molecule that binds to integrin αvβ3 through the CH3 region is thought to be able to bind to CD3 and integrin αvβ3 simultaneously.
(3-3)インテグリンαvβ3と抗体の結合確認
 Fab領域にRGD(Arg-Gly-Asp)ペプチドが挿入された分子がインテグリンαvβ3と結合するかどうか、電気化学発光法(ECL法)で判定した。具体的には、0.1%BSAおよび0.1g/L塩化カルシウムおよび0.1g/L塩化マグネシウムを含むTBS溶液(希釈(+) 溶液と表記する)で希釈したbiotin-anti human IgG Ab (Southern biotech)と、5 μg/mLもしくは1 μg/mLに調製された抗体溶液と、sulfo-tagを付加したインテグリンαvβ3(R&D Systems)を、Nunc-Immuno(tm) MicroWell(tm) 96 well round plates(Nunc)の各ウェルに25 μLずつ添加し、混合した後、4℃で一晩インキュベートし、抗体抗原複合体を形成させた。0.5%BSAおよび0.1g/L塩化カルシウムおよび0.1g/L塩化マグネシウムを含むTBS溶液(ブロッキング(+) 溶液と表記する)をstreptavidin plate(MSD)各ウェルに150μLずつ加えて4℃で一晩インキュベートした。ブロッキング溶液を除いた後、0.1g/L塩化カルシウムおよび0.1g/L塩化マグネシウムを含むTBS溶液(TBS(+)溶液と表記する)250μLで3回洗浄した。抗体抗原複合体溶液を75μLずつ各ウェルに添加し、室温2時間インキュベートして、biotin-anti human IgG Abをstreptavidin plateに結合させた。抗体抗原複合体溶液を除いた後、TBS(+)溶液で3回洗浄し、READ buffer(MSD)を各ウェルに150μLずつ加え、Sector Imager 2400(MSD)でsulfo-tagの発光シグナルを検出した。
(3-3) Confirmation of binding of integrin αvβ3 and antibody Whether or not a molecule having an RGD (Arg-Gly-Asp) peptide inserted in the Fab region binds to integrin αvβ3 was determined by electrochemiluminescence method (ECL method). Specifically, biotin-anti human IgG Ab (Southern biotech) diluted with a TBS solution containing 0.1% BSA and 0.1 g / L calcium chloride and 0.1 g / L magnesium chloride (denoted as a diluted (+) solution) , Antibody solution prepared to 5 μg / mL or 1 μg / mL and integrin αvβ3 (R & D Systems) with sulfo-tag added to Nunc-Immuno (tm) MicroWell (tm) 96 well round plates (Nunc) 25 μL each was added to each well, mixed, and then incubated overnight at 4 ° C. to form antibody-antigen complexes. Add 150 μL of TBS solution (referred to as blocking (+) solution) containing 0.5% BSA, 0.1 g / L calcium chloride and 0.1 g / L magnesium chloride to each well of streptavidin plate (MSD) and incubate overnight at 4 ° C. did. After removing the blocking solution, the plate was washed 3 times with 250 μL of a TBS solution (denoted as TBS (+) solution) containing 0.1 g / L calcium chloride and 0.1 g / L magnesium chloride. 75 μL of the antibody-antigen complex solution was added to each well and incubated at room temperature for 2 hours to bind biotin-anti human IgG Ab to the streptavidin plate. After removing the antibody-antigen complex solution, the plate was washed 3 times with TBS (+) solution, 150 μL of READ buffer (MSD) was added to each well, and the sulfo-tag luminescence signal was detected with Sector Imager 2400 (MSD). .
 その結果を図11に示す。親抗体であるEGFR ERY22_Hk/EGFR ERY22_L /CE115 ERY22_Hh/ CE115_ERY22_Lは、インテグリンαvβ3に対して全く結合活性を示さなかったのに対して、EGFR ERY22_Hk/EGFR ERY22_L /CE115_2 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_4 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_9 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_10 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_12 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_17 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_47 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_48 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_49 ERY22_Hh/ CE115_ERY22_L、はいずれもインテグリンαvβ3との結合が観察された。 The result is shown in FIG. The parent antibodies EGFR ERY22_Hk / EGFR ERY22_L / CE115 ERY22_Hh / CE115_ERY22_L did not show any binding activity against integrin αvβ3, whereas EGFR ERY22_Hk / EGFR ERY22_L / CE115_2 ERY22_Hh / CE115_EGFRYR_22 CE115_4 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_9 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_10 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_12 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_17 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_47 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_48 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY115_LER / 115
(3-4)CD3(CD3ε)と抗体の結合確認
 次に、前項で作製したインテグリンαvβ3とFab領域で結合する抗体が、CD3に対する結合活性を保持しているかECL法で判定した。具体的には、0.1%BSAを含むTBS溶液(希釈(-) 溶液と表記する)で希釈したbiotin-anti human IgG Ab (Southern biotech)と、5 μg/mLもしくは1 μg/mLに調製された抗体溶液と、sulfo-tagを付加したCD3εホモ二量体タンパク質を、Nunc-Immuno(tm) MicroWell(tm) 96 well round plates(Nunc)の各ウェルに25 μLずつ添加し、混合した後、4℃で一晩インキュベートし、抗体抗原複合体を形成させた。0.5%BSAを含むTBS溶液(ブロッキング(-) 溶液と表記する)をstreptavidin plate(MSD)各ウェルに150μLずつ加えて4℃で一晩インキュベートした。ブロッキング溶液を除いた後、TBS溶液 (-)溶液250μLで3回洗浄した。抗体抗原複合体溶液を75μLずつ各ウェルに添加し、室温2時間インキュベートして、biotin-anti human IgG Abをstreptavidin plateに結合させた。抗体抗原複合体溶液を除いた後、TBS(-)溶液で3回洗浄し、READ buffer(MSD)を各ウェルに150μLずつ加え、Sector Imager 2400(MSD)でsulfo-tagの発光シグナルを検出した。
(3-4) Confirmation of binding between CD3 (CD3ε) and antibody Next, it was determined by the ECL method whether the antibody that binds to the integrin αvβ3 prepared in the previous section and the Fab region has binding activity to CD3. Specifically, biotin-anti human IgG Ab (Southern biotech) diluted with TBS solution containing 0.1% BSA (referred to as “diluted (−) solution”) was prepared to 5 μg / mL or 1 μg / mL. Add 25 μL of the antibody solution and CD3ε homodimeric protein with sulfo-tag to each well of Nunc-Immuno (tm) MicroWell (tm) 96 well round plates (Nunc), mix, Incubated overnight at 0 ° C. to form antibody-antigen complexes. 150 μL of a TBS solution containing 0.5% BSA (referred to as blocking (−) solution) was added to each well of the streptavidin plate (MSD) and incubated overnight at 4 ° C. After removing the blocking solution, it was washed 3 times with 250 μL of TBS solution (−) solution. 75 μL of the antibody-antigen complex solution was added to each well and incubated at room temperature for 2 hours to bind biotin-anti human IgG Ab to the streptavidin plate. After removing the antibody-antigen complex solution, it was washed 3 times with TBS (-) solution, 150 μL of READ buffer (MSD) was added to each well, and the luminescence signal of sulfo-tag was detected with Sector Imager 2400 (MSD). .
 その結果を図12に示す。親抗体であるEGFR ERY22_Hk/EGFR ERY22_L /CE115 ERY22_Hh/ CE115_ERY22_Lに加え、EGFR ERY22_Hk/EGFR ERY22_L /CE115_2 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_4 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_9 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_10 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_12 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_17 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_47 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_48 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_49 ERY22_Hh/ CE115_ERY22_L、はいずれもCD3との結合が観察された。 The result is shown in FIG. In addition to the parent antibody EGFR ERY22_Hk / EGFR ERY22_L / CE115 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_2 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_4 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_9 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_10 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_12 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_17 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_47 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / Binding of CD3 to CE115_48 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_49 ERY22_Hh / CE115_ERY22_L was observed.
(3-5)ECL法によるインテグリンαvβ3とCD3が同時にFab領域に結合しないことの確認
 前項までの結果から、インテグリンαvβ3に対して結合活性を有し、かつ、CD3に対して結合活性を有する分子が得られた。次に、前項までに作製されたFab領域がCD3(CD3ε)及びインテグリンαvβ3と同時に結合するか判定した。
(3-5) Confirming that integrin αvβ3 and CD3 do not bind to the Fab region at the same time by the ECL method From the results up to the previous section, molecules having binding activity to integrin αvβ3 and binding activity to CD3 was gotten. Next, it was determined whether or not the Fab region prepared up to the previous section binds simultaneously with CD3 (CD3ε) and integrin αvβ3.
 Fab領域にRGD(Arg-Gly-Asp)ペプチドを挿入した分子がインテグリンαvβ3とCD3に同時に結合する場合、抗体溶液にインテグリンαvβ3とbiotin付加したCD3を加えると、両方の抗原に結合することから、ECL法で検出することができる。具体的には、希釈(+) 溶液で希釈したbiotinを付加したヒトCD3εホモ二量体タンパク質と、10 μg/mLもしくは5 μg/mLに調製された抗体溶液と、sulfo-tagを付加したインテグリンαvβ3(R&D Systems)を、Nunc-Immuno(tm) MicroWell(tm) 96 well round plates(Nunc)の各ウェルに25 μLずつ添加し、混合した後、4℃で一晩インキュベートし、抗体抗原複合体を形成させた。ブロッキング(+) 溶液をstreptavidin plate(MSD)各ウェルに150μLずつ加えて4℃で一晩インキュベートした。ブロッキング溶液を除いた後、0.1g/L塩化カルシウムおよび0.1g/L塩化マグネシウムを含むTBS(+)溶液250μLで3回洗浄した。抗体抗原複合体溶液を75μLずつ各ウェルに添加し、室温2時間インキュベートして、biotin-anti human IgG Abをstreptavidin plateに結合させた。抗体抗原複合体溶液を除いた後、TBS(+)溶液で3回洗浄し、READ buffer(MSD)を各ウェルに150μLずつ加え、Sector Imager 2400(MSD)でsulfo-tagの発光シグナルを検出した。 When a molecule with RGD (Arg-Gly-Asp) peptide inserted in the Fab region binds to integrin αvβ3 and CD3 simultaneously, adding integrin αvβ3 and biotin-added CD3 to the antibody solution binds to both antigens. It can be detected by the ECL method. Specifically, human CD3ε homodimeric protein with biotin diluted with diluted (+) solution, antibody solution prepared at 10 μg / mL or 5 μg / mL, and integrin with sulfo-tag added Add αvβ3 (R & D Systems) to each well of Nunc-Immuno (tm) MicroWell (tm) 96 well round plates (Nunc), mix, and incubate overnight at 4 ° C for antibody-antigen complex Formed. 150 μL of blocking (+) sputum solution was added to each well of streptavidin plate (MSD) and incubated overnight at 4 ° C. After removing the blocking solution, the plate was washed 3 times with 250 μL of a TBS (+) solution containing 0.1 g / L calcium chloride and 0.1 g / L magnesium chloride. 75 μL of the antibody-antigen complex solution was added to each well and incubated at room temperature for 2 hours to bind biotin-anti human IgG Ab to streptavidin plate. After removing the antibody-antigen complex solution, wash 3 times with TBS (+) solution, add 150 µL of READ buffer (MSD) to each well, and detect the luminescence signal of sulfo-tag with Sector Imager 2400 (MSD). .
 その結果を図13、図14に示す。Fab領域にRGD(Arg-Gly-Asp)ペプチドが挿入さたEGFR ERY22_Hk/EGFR ERY22_L /CE115_2 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_12 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_17 ERY22_Hh/ CE115_ERY22_Lはインテグリンαvβ3とCD3に同時に結合することにより、ECL測定において強いシグナルが検出された。一方で、EGFR ERY22_Hk/EGFR ERY22_L /CE115_9 ERY22_Hh/ CE115_ERY22_LとEGFR ERY22_Hk/EGFR ERY22_L /CE115_48 ERY22_Hh/ CE115_ERY22_Lでは、そのシグナルは弱いものであった(図13)。また、EGFR ERY22_Hk/EGFR ERY22_L /CE115_4 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_10 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_47 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_49 ERY22_Hh/ CE115_ERY22_LはいずれもECL測定においてほとんどシグナルが検出されなかった(図14)。すなわち、これらの抗体はCD3と結合すると、インテグリンαvβ3と結合しないことが示唆された。 The results are shown in FIGS. EGFR ERY22_Hk / EGFR ERY22_L / CE115_2 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_12_ERY22_HY_ Y115_22_ERY22 By binding to αvβ3 and CD3 simultaneously, a strong signal was detected in ECL measurement. On the other hand, in EGFR 弱 い ERY22_Hk / EGFR ERY22_L / CE115_9 ERY22_Hh / CE115_ERY22_L and EGFR ERY22_Hk / EGFR ERY22_L / CE115_48 ERY22_Hh / CE115_ERY22_L, the signal was weak (Fig. 13). Further, EGFR ERY22_Hk / EGFR ERY22_L / CE115_4 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_10 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_47 ERY22_Hh / CE115_ERY22_L, none of the EGFR ERY22_Hk / EGFR ERY22_L / CE115_49 ERY22_Hh / CE115_ERY22_L ECL Measurements Almost no signal was detected in (FIG. 14). That is, it was suggested that these antibodies do not bind to integrin αvβ3 when bound to CD3.
(3-6)ECL法によるインテグリンαvβ3とCD3が同時にFab領域に結合しないことの考察
 以上の結果から、一つのFabでCD3(CD3ε)、インテグリンαvβ3にそれぞれ結合し、かつ、CD3(CD3ε)及びインテグリンαvβ3に同時には結合しないdual binding Fab分子の特性を有する抗体を創製することができた。本実施例では、第1の抗原であるCD3に結合する可変領域を有する抗体に対して、当該可変領域に第2の抗原であるインテグリンαvβ3に結合するRGDペプチドをFabに挿入することで、第2の抗原に対する結合活性を付与し、且つ、CD3と第2の抗原に同時には結合しない分子を取得することが出来た。同様の方法で、WO2006036834に例示されているようなタンパク質に対して結合活性を有するペプチドをFab中のループに挿入することで、任意の第2の抗原に対して結合活性を有するdual binding Fab分子を取得することができる。その他、タンパク質に対して結合活性を示すペプチドは、当業者に公知の方法を用いてペプチドライブラリを作製し、所望の活性を有するペプチドを選択することで取得することができる(Pasqualini R., Nature, 1996, 380 (6572) :364-6)。さらに、実施例5で記載したようなFab中のループを長く改変した(延長した)抗原結合分子のライブラリーを用いることで、任意の第2の抗原に対して結合活性を有するdual binding Fab分子を創製することが可能であると考えられる。第1の抗原に対する可変領域は、当業者公知の様々な方法で取得することが可能であることから、このようなライブラリーを用いることで、任意の第1の抗原と任意の第2の抗原に対して結合活性を有し、かつ該第1の抗原及び該第2の抗原に同時には結合することができないdual binding Fab分子を創製することが可能であると言える。
(3-6) Consideration that integrin αvβ3 and CD3 do not bind to Fab region simultaneously by ECL method From the above results, one Fab binds to CD3 (CD3ε) and integrin αvβ3 respectively, and CD3 (CD3ε) and An antibody having the characteristics of a dual binding Fab molecule that does not bind to integrin αvβ3 simultaneously can be created. In this example, for an antibody having a variable region that binds to CD3, which is the first antigen, an RGD peptide that binds to integrin αvβ3, which is the second antigen, is inserted into the Fab. It was possible to obtain a molecule that imparts binding activity to the two antigens and does not bind to CD3 and the second antigen at the same time. In the same manner, a dual binding Fab molecule that has binding activity to any second antigen by inserting a peptide having binding activity to a protein as exemplified in WO2006036834 into a loop in the Fab. Can be obtained. In addition, a peptide showing binding activity to a protein can be obtained by preparing a peptide library using a method known to those skilled in the art and selecting a peptide having a desired activity (Pasqualini R., Nature , 1996, 380 (6572): 364-6). Furthermore, by using a library of antigen-binding molecules in which the loop in the Fab has been modified (extended) as described in Example 5, a dual binding Fab molecule having binding activity to any second antigen Is considered possible. Since the variable region for the first antigen can be obtained by various methods known to those skilled in the art, by using such a library, any first antigen and any second antigen can be obtained. It can be said that it is possible to create a dual binding Fab molecule that has binding activity to and that cannot simultaneously bind to the first antigen and the second antigen.
 以上の結果から、EGFR ERY22_Hk/EGFR ERY22_L /CE115_4 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_10 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_47 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_49 ERY22_Hh/ CE115_ERY22_Lは、CD3及びインテグリンαvβ3に結合し、CD3とインテグリンαvβ3に同時には結合しないことが示された。すなわちEGFR ERY22_Hk/EGFR ERY22_L /CE115_4 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_10 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_47 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_49 ERY22_Hh/ CE115_ERY22_Lはdual binding Fabを有する分子であり、このような分子を創製することが可能であることが明らかになった。 These results, EGFR ERY22_Hk / EGFR ERY22_L / CE115_4 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_10 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_47 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_49 ERY22_Hh / CE115_ERY22_L is It was shown to bind to CD3 and integrin αvβ3 but not to CD3 and integrin αvβ3 simultaneously. That EGFR ERY22_Hk / EGFR ERY22_L / CE115_4 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_10 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_47 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_49 ERY22_Hh / CE115_ERY22_L have dual binding Fab It has become clear that it is possible to create such molecules.
〔実施例4〕CD3及びヒトtoll-like receptor 2 (TLR2)に結合するが、同時には結合しない抗体の作製
(4-1)CD3及びヒトTLR2に結合するが、同時には結合しない抗体の作製
 パターン認識受容体として知られているTLR2は、主にマクロファージ、樹状細胞やB細胞などの免疫細胞に発現しており、免疫細胞を活性化する標的分子として有用である。また、TLR2は、上皮細胞や内皮細胞など免疫細胞以外の正常細胞にも発現していることが知られている。がん抗原とCD3を同時に結合することにより、腫瘍環境中にCD3を発現するT細胞がリクルートされ、T細胞によってがん細胞が傷害されるが、同時にがん抗原とTLR2とが同時に結合することにより、腫瘍環境中にTLR2を発現する免疫細胞もリクルートし、活性化できることが考えられた。T細胞によって傷害されたがん細胞を、TLR2によってリクルートされた免疫細胞が取り込み、抗原をプロセシングし、HLAに提示することによりT細胞を活性化することができるため、T細胞をより強力に活性化できるとともに、獲得免疫も誘導できる可能性がある。しかし、CD3とTLR2が同時に結合してしまうと免疫細胞及び正常細胞がT細胞による強力な細胞傷害活性によって傷害されてしまう可能性が考えられた。そこでCD3とTLR2が同時には結合しない分子を作製できれば、TLR2を発現する免疫細胞及び正常細胞に傷害を与えることなく、これらの細胞をリクルートできると考えられた。すなわち、片側の可変領域(Fab)でEGFRに結合し、別の可変領域で、第1の抗原であるCD3に結合し、さらに第2の抗原であるTLR2に結合し、且つ、CD3及びTLR2に同時には結合しないdual binding Fab分子の取得を検討した。
[Example 4] Preparation of antibody that binds to CD3 and human toll-like receptor 2 (TLR2) but does not bind simultaneously (4-1) Preparation pattern of antibody that binds to CD3 and human TLR2 but does not bind simultaneously TLR2, which is known as a recognition receptor, is mainly expressed in immune cells such as macrophages, dendritic cells and B cells and is useful as a target molecule for activating immune cells. In addition, TLR2 is known to be expressed in normal cells other than immune cells such as epithelial cells and endothelial cells. By simultaneously binding the cancer antigen and CD3, the T cells that express CD3 are recruited into the tumor environment, and the cancer cells are damaged by the T cell. At the same time, the cancer antigen and TLR2 are simultaneously bound. This suggested that immune cells that express TLR2 in the tumor environment can also be recruited and activated. Cancer cells injured by T cells can be activated by immune cells recruited by TLR2 and activated by processing antigens and presenting them to HLA, making T cells more active And may also induce acquired immunity. However, when CD3 and TLR2 were simultaneously bound, it was considered that immune cells and normal cells might be damaged by the strong cytotoxic activity of T cells. Therefore, if a molecule that does not bind CD3 and TLR2 at the same time can be produced, it was considered that these cells could be recruited without damaging immune cells and normal cells that express TLR2. That is, it binds to EGFR in one variable region (Fab), binds to CD3 as the first antigen in another variable region, further binds to TLR2 as the second antigen, and binds to CD3 and TLR2. The acquisition of dual binding Fab molecules that do not bind simultaneously was investigated.
 「TLR2が存在しない条件でCD3とFab領域が結合し、CD3が存在しない条件でTLR2とFab領域が結合する分子であって、CD3に結合した分子はTLR2に結合しない分子、もしくは、TLR2と結合した分子はCD3に結合しない分子」であることを示すことができれば、目的とするdual binding Fabの特性(すなわち、CD3及び第2の抗原に結合でき、且つ、CD3及び第2の抗原に同時には結合しない)を有するdual binding Fab分子を創製することが出来たと言える。 `` Molecules that bind CD3 and Fab region in the absence of TLR2 and TLR2 and Fab region in the absence of CD3, and molecules that bind to CD3 do not bind to TLR2, or bind to TLR2 If it can be shown that the molecule is a molecule that does not bind to CD3, the characteristics of the target dual binding Fab (that is, it can bind to CD3 and the second antigen and simultaneously to CD3 and the second antigen) It can be said that a dual 出来 binding を Fab molecule having no binding) has been created.
(4-2)TLR2と結合するFab領域をもつ抗体の取得
 ヒトTLR2に対して結合活性を有するペプチドとして、RWGYHLRDRKYKGVRSHKGVPRペプチド(配列番号:36)が知られている。そこで、片側のFabをEGFR結合ドメインとし、もう片側のFabをCD3結合ドメイン及びTLR2結合ドメインとするヘテロ二量化抗体であって、CD3εに結合する抗体であるCE115(重鎖可変領域 配列番号:13、軽鎖可変領域 配列番号:14)の重鎖のループ部分にTRL2結合ペプチドを挿入したヘテロ二量化抗体抗体を参考実施例1に従って作製した。すなわち、EGFR ERY22_Hk(配列番号:20)、EGFR ERY22_L(配列番号:21)、及びCE115_ERY22_L(配列番号:23)をそれぞれコードするポリヌクレオチドと共に、以下のいずれかをコードするポリヌクレオチドが挿入された一連の発現ベクターを作製した:
 ・CE115_DU21 ERY22_Hh(配列番号:37、Kabatナンバリング52b-52cの間にTRL2結合ペプチドを挿入)、
 ・CE115_DU22 ERY22_Hh(配列番号:38、Kabatナンバリング52b-52cの間にTRL2結合ペプチドを挿入)、
 ・CE115_DU26 ERY22_Hh(配列番号:39、Kabatナンバリング72-73の間にTRL2結合ペプチドを挿入)、
 ・CE115_DU27 ERY22_Hh(配列番号:40、Kabatナンバリング72-73の間にTRL2結合ペプチド挿入)。
 また、対照として、TLR2結合ペプチドをCH3領域C末端に付加した抗体(CE115_ ERY22_DU42_Hh, 配列番号:41)、及びTLR2結合ペプチド両端にCys残基を持つペプチドをCH3領域C末端に付加した抗体(CE115_ ERY22_DU43_Hh, 配列番号:42)を参考実施例1に従って作製した。CH3領域を介してTLR2と結合するこの分子は、CD3とTLR2に同時に結合することが出来ると考えられる。
(4-2) Acquisition of antibody having Fab region that binds to TLR2 As a peptide having binding activity to human TLR2, RWGYHLRDRKYKGVRSHKGVPR peptide (SEQ ID NO: 36) is known. Therefore, CE115 (heavy chain variable region SEQ ID NO: 13), which is a heterodimerized antibody in which one Fab is an EGFR binding domain and the other Fab is a CD3 binding domain and a TLR2 binding domain, is an antibody that binds to CD3ε. , Light chain variable region SEQ ID NO: 14) A heterodimerized antibody antibody in which a TRL2-binding peptide was inserted into the heavy chain loop was prepared according to Reference Example 1. That is, a series of polynucleotides encoding any of the following together with polynucleotides encoding EGFR ERY22_Hk (SEQ ID NO: 20), EGFR ERY22_L (SEQ ID NO: 21), and CE115_ERY22_L (SEQ ID NO: 23), respectively. The following expression vectors were made:
CE115_DU21 ERY22_Hh (SEQ ID NO: 37, TRL2-binding peptide inserted between Kabat numbering 52b-52c),
CE115_DU22 ERY22_Hh (SEQ ID NO: 38, TRL2-binding peptide inserted between Kabat numbering 52b-52c),
CE115_DU26 ERY22_Hh (SEQ ID NO: 39, TRL2-binding peptide inserted between Kabat numbering 72-73),
CE115_DU27 ERY22_Hh (SEQ ID NO: 40, TRL2-binding peptide inserted between Kabat numbering 72-73).
In addition, as a control, an antibody (CE115_ERY22_DU42_Hh, SEQ ID NO: 41) having a TLR2-binding peptide added to the C-terminus of the CH3 region, and an antibody (CE115_ ERY22_DU43_Hh, SEQ ID NO: 42) was prepared according to Reference Example 1. This molecule that binds to TLR2 via the CH3 region is thought to be able to bind to CD3 and TLR2 simultaneously.
(4-3)TLR2と抗体の結合確認
 Fab領域にTLR2結合ペプチドが挿入された分子がTLR2と結合するかどうか、電気化学発光法(ECL法)で判定した。具体的には、0.1%BSAを含むTBS溶液(希釈(-) 溶液と表記する)で希釈したbiotin-anti human IgG Ab (Southern biotech)と、5 μg/mLもしくは1 μg/mLに調製された抗体溶液と、sulfo-tagを付加したTLR2(abnova)を、Nunc-Immuno(tm) MicroWell(tm) 96 well round plates(Nunc)の各ウェルに25 μLずつ添加し、混合した後、4℃で一晩インキュベートし、抗体抗原複合体を形成させた。0.5%BSAを含むTBS溶液(ブロッキング(-) 溶液と表記する)をstreptavidin plate(MSD)各ウェルに150μLずつ加えて4℃で一晩インキュベートした。ブロッキング溶液を除いた後、TBS(-)溶液250μLで3回洗浄した。抗体抗原複合体溶液を75μLずつ各ウェルに添加し、室温2時間インキュベートして、biotin-anti human IgG Abをstreptavidin plateに結合させた。抗体抗原複合体溶液を除いた後、TBS(-)溶液で3回洗浄し、READ buffer(MSD)を各ウェルに150μLずつ加え、Sector Imager 2400(MSD)でsulfo-tagの発光シグナルを検出した。
(4-3) Confirmation of binding between TLR2 and antibody It was determined by electrochemiluminescence method (ECL method) whether or not a molecule having a TLR2 binding peptide inserted into the Fab region binds to TLR2. Specifically, biotin-anti human IgG Ab (Southern biotech) diluted with TBS solution containing 0.1% BSA (referred to as “diluted (−) solution”) was prepared to 5 μg / mL or 1 μg / mL. Add 25 μL of antibody solution and sulfo-tag added TLR2 (abnova) to each well of Nunc-Immuno (tm) MicroWell (tm) 96 well round plates (Nunc) and mix at 4 ° C. Incubate overnight to allow antibody-antigen complexes to form. 150 μL of a TBS solution containing 0.5% BSA (referred to as blocking (−) solution) was added to each well of the streptavidin plate (MSD) and incubated overnight at 4 ° C. After removing the blocking solution, the plate was washed 3 times with 250 μL of TBS (−) solution. 75 μL of the antibody-antigen complex solution was added to each well and incubated at room temperature for 2 hours to bind biotin-anti human IgG Ab to the streptavidin plate. After removing the antibody-antigen complex solution, it was washed 3 times with TBS (-) solution, 150 μL of READ buffer (MSD) was added to each well, and the luminescence signal of sulfo-tag was detected with Sector Imager 2400 (MSD). .
 その結果を図15に示す。親抗体であるEGFR ERY22_Hk/EGFR ERY22_L /CE115 ERY22_Hh/ CE115_ERY22_Lは、TLR2に対して全く結合活性を示さなかったのに対して、EGFR ERY22_Hk/EGFR ERY22_L /CE115_DU21 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_DU22 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_DU26 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_DU27 ERY22_Hh/ CE115_ERY22_L、はいずれもTLR2との結合が観察された。 The result is shown in FIG. The parent antibody EGFR ERY22_Hk / EGFR ERY22_L / CE115 ERY22_Hh / CE115_ERY22_L did not show any binding activity against TLR2, whereas EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU21 ERY22_Hh / CE115_ERY22Y22_L ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU26 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU27 ERY22_Hh / CE115_ERY22_L
(4-4)CD3(CD3ε)と抗体の結合確認
 次に、前項で作製したTLR2とFab領域で結合する抗体が、CD3(CD3ε)に対する結合活性を保持しているかECL法で判定した。具体的には、0.1%BSAを含むTBS溶液(希釈(-) 溶液と表記する)で希釈したbiotin-anti human IgG Ab (Southern biotech)と、5 μg/mLもしくは1 μg/mLに調製された抗体溶液と、sulfo-tagを付加したCD3εホモ二量体タンパク質を、Nunc-Immuno(tm) MicroWell(tm) 96 well round plates(Nunc)の各ウェルに25 μLずつ添加し、混合した後、4℃で一晩インキュベートし、抗体抗原複合体を形成させた。0.5%BSAを含むTBS溶液(ブロッキング(-) 溶液と表記する)をstreptavidin plate(MSD)各ウェルに150μLずつ加えて4℃で一晩インキュベートした。ブロッキング溶液を除いた後、TBS溶液 (-)溶液250μLで3回洗浄した。抗体抗原複合体溶液を75μLずつ各ウェルに添加し、室温2時間インキュベートして、biotin-anti human IgG Abをstreptavidin plateに結合させた。抗体抗原複合体溶液を除いた後、TBS(-)溶液で3回洗浄し、READ buffer(MSD)を各ウェルに150μLずつ加え、Sector Imager 2400(MSD)でsulfo-tagの発光シグナルを検出した。
(4-4) Confirmation of binding between CD3 ( CD3ε ) and antibody Next, it was determined by the ECL method whether the antibody that binds to TLR2 and the Fab region prepared in the previous section has binding activity to CD3 (CD3ε). Specifically, biotin-anti human IgG Ab (Southern biotech) diluted with TBS solution containing 0.1% BSA (referred to as “diluted (−) solution”) was prepared to 5 μg / mL or 1 μg / mL. Add 25 μL of the antibody solution and CD3ε homodimeric protein with sulfo-tag to each well of Nunc-Immuno (tm) MicroWell (tm) 96 well round plates (Nunc), mix, Incubated overnight at 0 ° C. to form antibody-antigen complexes. 150 μL of a TBS solution containing 0.5% BSA (referred to as blocking (−) solution) was added to each well of the streptavidin plate (MSD) and incubated overnight at 4 ° C. After removing the blocking solution, it was washed 3 times with 250 μL of TBS solution (−) solution. 75 μL of the antibody-antigen complex solution was added to each well and incubated at room temperature for 2 hours to bind biotin-anti human IgG Ab to the streptavidin plate. After removing the antibody-antigen complex solution, it was washed 3 times with TBS (-) solution, 150 μL of READ buffer (MSD) was added to each well, and the luminescence signal of sulfo-tag was detected with Sector Imager 2400 (MSD). .
 その結果を図16に示す。親抗体であるEGFR ERY22_Hk/EGFR ERY22_L /CE115 ERY22_Hh/ CE115_ERY22_Lに加え、EGFR ERY22_Hk/EGFR ERY22_L /CE115_DU21 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_DU22 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_DU26 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_DU27 ERY22_Hh/ CE115_ERY22_L、はいずれもCD3との結合が観察された。 The result is shown in FIG. In addition to the parent antibody EGFR ERY22_Hk / EGFR ERY22_L / CE115 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU21 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU22 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU26 ERY22_Hh / CE115_ERY22_L, Binding to CD3 was observed in each of EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU27 ERY22_Hh / CE115_ERY22_L.
(4-5)ECL法によるTLR2とCD3が同時にFab領域に結合しないことの確認
 前項までの結果から、TLR2に対して結合活性を有し、かつ、CD3に対して結合活性を有する分子が得られた。次に、前項までに作製されたFab領域がCD3及びTLR2と同時に結合するか判定した。
(4-5) Confirmation that TLR2 and CD3 do not bind to the Fab region at the same time by the ECL method From the results up to the previous section, a molecule having binding activity to TLR2 and binding activity to CD3 was obtained. It was. Next, it was determined whether or not the Fab region prepared up to the previous section binds simultaneously with CD3 and TLR2.
 Fab領域にTLR2結合ペプチドを挿入した分子がTLR2とCD3に同時に結合する場合、抗体溶液にTLR2とbiotin付加したCD3を加えると、両方の抗原に結合することから、ECL法で検出することができる。具体的には、希釈(-) 溶液で希釈したbiotinを付加したhuman CD3εホモ二量体タンパク質と、10 μg/mLもしくは5 μg/mLに調製された抗体溶液と、sulfo-tagを付加したTLR2(R&D Systems)を、Nunc-Immuno(tm) MicroWell(tm) 96 well round plates(Nunc)の各ウェルに25 μLずつ添加し、混合した後、4℃で一晩インキュベートし、抗体抗原複合体を形成させた。ブロッキング(-) 溶液をstreptavidin plate(MSD)各ウェルに150μLずつ加えて4℃で一晩インキュベートした。ブロッキング溶液を除いた後、0.1g/L塩化カルシウムおよび0.1g/L塩化マグネシウムを含むTBS(-)溶液250μLで3回洗浄した。抗体抗原複合体溶液を75μLずつ各ウェルに添加し、室温2時間インキュベートして、biotin-anti human IgG Abをstreptavidin plateに結合させた。抗体抗原複合体溶液を除いた後、TBS(-)溶液で3回洗浄し、READ buffer(MSD)を各ウェルに150μLずつ加え、Sector Imager 2400(MSD)でsulfo-tagの発光シグナルを検出した。 When a molecule with a TLR2-binding peptide inserted into the Fab region binds to TLR2 and CD3 simultaneously, adding TLR2 and biotin-added CD3 to the antibody solution binds to both antigens and can be detected by the ECL method. . Specifically, human CD3ε homodimeric protein with biotin diluted with diluted (-) solution, antibody solution prepared at 10 μg / mL or 5 μg / mL, and TLR2 with sulfo-tag added (R & D®Systems) was added to each well of Nunc-Immuno (tm) MicroWell (tm) 96 well round plates (Nunc), mixed, and incubated overnight at 4 ° C. Formed. 150 μL of blocking (−) 150 solution was added to each well of streptavidin plate (MSD) and incubated at 4 ° C. overnight. After removing the blocking solution, the plate was washed 3 times with 250 μL of a TBS (−) solution containing 0.1 g / L calcium chloride and 0.1 g / L magnesium chloride. 75 μL of the antibody-antigen complex solution was added to each well and incubated at room temperature for 2 hours to bind biotin-anti human IgG Ab to streptavidin plate. After removing the antibody-antigen complex solution, wash 3 times with TBS (-) solution, add 150 μL of READ buffer (MSD) to each well, and detect the sulfo-tag luminescence signal with Sector Imager 2400 (MSD). .
 その結果を図17に示す。CH3領域にTLR2結合ペプチドを付加したEGFR ERY22_Hk/EGFR ERY22_L /CE115_DU42 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_DU43 ERY22_Hh/ CE115_ERY22_Lは、TLR2とCD3に同時に結合することにより、ECL測定において強いシグナルが検出された。一方で、EGFR ERY22_Hk/EGFR ERY22_L /CE115_DU21 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_DU22 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_DU26 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_DU27 ERY22_Hh/ CE115_ERY22_LはいずれもECL測定においてほとんどシグナルが検出されなかった。すなわち、これらの抗体はCD3と結合すると、TLR2と結合しないことが示唆された。 The result is shown in FIG. EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU42 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU43 ERY22_Hh / CE115_ERY22_L is detected by CL at the same time. It was. On the other hand, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU21 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU22 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU26 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU27 ERY22_Hh / CE115_ERY22_L Both ECL Little signal was detected in the measurement. That is, it was suggested that when these antibodies bind to CD3, they do not bind to TLR2.
(4-6)ECL法によるTLR2とCD3が同時にFab領域に結合しないことの考察
 以上の結果から、一つのFabでCD3、TLR2にそれぞれ結合し、かつ、CD3及びTLR2に同時には結合しないdual binding Fab分子の特性を有する抗体を創製することができた。本実施例では、第1の抗原であるCD3に結合する可変領域を有する抗体に対して、当該可変領域に第2の抗原であるTLR2に結合するRWGYHLRDRKYKGVRSHKGVPRペプチドをFabに挿入することで、第2の抗原に対する結合活性を付与し、且つ、CD3と第2の抗原に同時には結合しない分子を取得することが出来た。同様の方法で、WO2006036834に例示されているようなタンパク質に対して結合活性を有するペプチドをFab中のループに挿入することで、任意の第2の抗原に対して結合活性を有するdual binding Fab分子を取得することができる。その他、タンパク質に対して結合活性を示すペプチドは、当業者に公知の方法を用いてペプチドライブラリを作製し、所望の活性を有するペプチドを選択することで取得することができる(Pasqualini R., Nature, 1996, 380 (6572) :364-6))。さらに、実施例5で記載したようなFab中のループを長く改変した(延長した)抗原結合分子のライブラリーを用いることで、任意の第2の抗原に対して結合活性を有するdual binding Fab分子を創製することが可能であると考えられる。第1の抗原に対する可変領域は、当業者公知の様々な方法で取得することが可能であることから、このようなライブラリーを用いることで、任意の第1の抗原と任意の第2の抗原に対して結合活性を有し、該第1の抗原及び該第2の抗原に同時には結合することができない、dual binding Fab分子を創製することが可能であると言える。
(4-6) Consideration that TLR2 and CD3 do not bind to Fab region at the same time by ECL method Based on the above results, dual binding does not bind to CD3 and TLR2 at the same time. We were able to create antibodies with the characteristics of Fab molecules. In this example, by inserting an RWGYHLRDRKYKGVRSHKGVPR peptide that binds to the second antigen TLR2 into the Fab by inserting into the Fab an antibody having a variable region that binds to the first antigen CD3. It was possible to obtain a molecule that imparts the binding activity to the other antigen and does not bind to CD3 and the second antigen at the same time. In the same manner, a dual binding Fab molecule that has binding activity to any second antigen by inserting a peptide having binding activity to a protein as exemplified in WO2006036834 into a loop in the Fab. Can be obtained. In addition, a peptide showing binding activity to a protein can be obtained by preparing a peptide library using a method known to those skilled in the art and selecting a peptide having a desired activity (Pasqualini R., Nature , 1996, 380 (6572): 364-6)). Furthermore, by using a library of antigen-binding molecules in which the loop in the Fab has been modified (extended) as described in Example 5, a dual binding Fab molecule having binding activity to any second antigen Is considered possible. Since the variable region for the first antigen can be obtained by various methods known to those skilled in the art, by using such a library, any first antigen and any second antigen can be obtained. It can be said that it is possible to create a dual binding Fab molecule that has a binding activity to the first antigen and cannot simultaneously bind to the first antigen and the second antigen.
 以上の結果から、EGFR ERY22_Hk/EGFR ERY22_L /CE115_DU21 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_DU22 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_DU26 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_DU27 ERY22_Hh/ CE115_ERY22_Lは、CD3及びTLR2に結合し、CD3とTLR2に同時には結合しないことが示された。すなわちEGFR ERY22_Hk/EGFR ERY22_L /CE115_DU21 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_DU22 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_DU26 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L /CE115_DU27 ERY22_Hh/ CE115_ERY22_Lはdual binding Fabを有する分子であり、このような分子を創製することが可能であることが明らかになった。 These results, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU21 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU22 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU26 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU27 ERY22_Hh / CE115_ERY22_L is It was shown to bind to CD3 and TLR2, but not to CD3 and TLR2 simultaneously. That EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU21 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU22 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU26 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU27 ERY22_Hh / CE115_ERY22_L have dual binding Fab It has become clear that it is possible to create such molecules.
〔実施例5〕CD3及び第2の抗原に結合する抗体の作製のための抗体改変
(5-1)第2の抗原に結合しうるペプチドの挿入個所と長さの検討
 片側の可変領域(Fab)でがん抗原に結合し、もう一方の可変領域で、第1の抗原であるCD3に結合、さらに第2の抗原に結合し、且つ、CD3及び第2の抗原に同時には結合しないdual binding Fab分子の取得を検討した。片側のFabをEGFR結合ドメインとし、もう片側のFabをCD3結合ドメインとするヘテロ二量化抗体であって、CD3εに結合する抗体であるCE115の重鎖のループ部分にGGSペプチドを挿入したヘテロ二量化抗体を参考実施例1に従って作製した。
[Example 5] Modification of antibody for preparation of antibody that binds to CD3 and second antigen (5-1) Examination of insertion position and length of peptide capable of binding to second antigen Variable region on one side (Fab ) Binds to the cancer antigen, binds to the first antigen CD3 in the other variable region, binds to the second antigen, and does not bind to CD3 and the second antigen simultaneously. We studied the acquisition of Fab molecules. Heterodimerized antibody with one side of Fab as EGFR binding domain and the other side of Fab as CD3 binding domain, with GGS peptide inserted into the loop part of CE115 heavy chain antibody that binds to CD3ε The antibody was produced according to Reference Example 1.
 すなわち、CDR2中のK52BとS52cの間に、GGSを挿入したEGFR ERY22_Hk/EGFR ERY22_L /CE115_CE31 ERY22_Hh/ CE115_ERY22_L:((配列番号:20/21/43/23)、GGSGGSペプチド(配列番号:90)を挿入したEGFR ERY22_Hk/EGFR ERY22_L /CE115_CE32 ERY22_Hh/ CE115_ERY22_L((配列番号:20/21/44/23)、GGSGGSGGSペプチド(配列番号:91)を挿入したEGFR ERY22_Hk/EGFR ERY22_L /CE115_CE33 ERY22_Hh/ CE115_ERY22_L:((配列番号:20/21/45/23)を作製した。同様に、フレームワーク3中のループ状の個所であるD72とD73の間に、GGSを挿入したEGFR ERY22_Hk/EGFR ERY22_L /CE115_CE34 ERY22_Hh/ CE115_ERY22_L:((配列番号:20/21/46/23)、GGSGGSペプチド(配列番号:90)を挿入したEGFR ERY22_Hk/EGFR ERY22_L /CE115_CE35 ERY22_Hh/ CE115_ERY22_L((配列番号:20/21/47/23)、GGSGGSGGSペプチド(配列番号:91)を挿入したEGFR ERY22_Hk/EGFR ERY22_L /CE115_CE36 ERY22_Hh/ CE115_ERY22_L:((配列番号:20/21/48/23)を作製した。またCDR3中のA99とY100の間に、GGSを挿入したEGFR ERY22_Hk/EGFR ERY22_L /CE115_CE37 ERY22_Hh/ CE115_ERY22_L:((配列番号:20/21/49/23)、GGSGGSペプチドを挿入したEGFR ERY22_Hk/EGFR ERY22_L /CE115_CE38 ERY22_Hh/ CE115_ERY22_L((配列番号:20/21/50/23)、GGSGGSGGSペプチドを挿入したEGFR ERY22_Hk/EGFR ERY22_L /CE115_CE39 ERY22_Hh/ CE115_ERY22_L:((配列番号:20/21/51/23)を作製した。 That is, between K52B and S52c in CDR2, EGFR ERY22_Hk / EGFR ERY22_L / CE115_CE31 ERY22_Hh / CE115_ERY22_L: ((SEQ ID NO: 20/21/43/23), GGSGGS peptide (SEQ ID NO: 90) inserted with GGS Inserted EGFRYERY22_Hk / EGFR ERY22_L / CE115_CE32 ERY22_Hh / CE115_ERY22_L ((SEQ ID NO: 20/21/44/23), EGFR ERY22_Hk / EGFR ERY22_L / CE115_CEH Similarly, EGFR20ERY22_Hk / EGFR ERY22_L / CE115_CE34 ERY22_Hh / CE115_ERY22_L in which GGS is inserted between D72 and D73, which are loop-shaped portions in the framework 3, was prepared. : ((SEQ ID NO: 20/21/46/23), EGFR ERY22_Hk / EGFR ERY22_L / CE115_CE35 ERY22_Hh / CE115_ERY22_L into which the GGSGGS peptide (SEQ ID NO: 90) has been inserted ((SEQ ID NO: 20/21/47/23), GGSGGSGGS peptide (sequence No .: 91) inserted EGFR ERY22_Hk / EGFR ERY22_L / CE115_CE36 ERY22_Hh / CE115_ERY22_L: ((SEQ ID NO: 20/21/48/23) and GGS was inserted between A99 and Y100 in CDR3. EGFR ERY22_Hk / EGFR ERY22_L / CE115_CE37 ERY22_Hh / CE115_ERY22_L: ((SEQ ID NO: 20/21/49/23), GGSGGS peptide inserted EGFRkERY22_Hk / EGFR ERY22_L / CE115_CE38 ERY22_HY / 22 / 23), EGFR ERY22_Hk / EGFR ERY22_L / CE115_CE39 ERY22_Hh / CE115_ERY22_L: ((SEQ ID NO: 20/21/51/23) into which the GGSGGSGGS peptide was inserted was prepared.
(5-2)GGSペプチドを挿入したCE115抗体のCD3εへの結合確認
 作製した各種の抗体がCD3εへの結合性を維持しているかどうかをBiacoreT100によって確認した。CM5チップにストレプトアビジンを介してビオチン化CD3εエピトープペプチドを結合させ、作製した抗体をアナライトとして流し、結合アフィニティーを解析した。
(5-2) Confirmation of binding of CE115 antibody inserted with GGS peptide to CD3ε It was confirmed by BiacoreT100 whether the various antibodies produced maintained the binding property to CD3ε. A biotinylated CD3ε epitope peptide was bound to a CM5 chip via streptavidin, the prepared antibody was run as an analyte, and the binding affinity was analyzed.
 その結果を表2に示す。CE35、CE36、CE37、CE38、CE39のCD3εへの結合アフィニティーは、親抗体であるCE115と同等であった。このことから、これらのループ中には、第2の抗原に結合するペプチドの挿入が可能であることが示された。またGGSGGSGGSを挿入したCE36やCE39でも結合アフィニティーが低下しなかったことから、これらの個所では、少なくても9アミノ酸までのペプチド挿入は、CD3εへの結合性に影響を与えないことが示された。 The results are shown in Table 2. The binding affinity of CE35, CE36, CE37, CE38, and CE39 to CD3ε was equivalent to that of the parent antibody CE115. From this, it was shown that a peptide that binds to the second antigen can be inserted into these loops. In addition, CE36 and CE39 inserted with GGSGGSGGS did not decrease the binding affinity, so it was shown that peptide insertion up to at least 9 amino acids in these places did not affect the binding to CD3ε. .
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 すなわち、このようなペプチド挿入CE115を用いて、第2の抗原に対して結合する抗体を取得することにより、CD3と第2の抗原に結合できるが同時には結合しない抗体を作製できることが示された。
 ここで挿入もしくは置換されるペプチドのアミノ酸配列を、部位特異的変異誘発法(Kunkelら(Proc. Natl. Acad. Sci. U.S.A. (1985) 82, 488-492))やOverlap extension PCR等の公知の方法に従ってランダムに改変し、上述の方法に従って各改変体の結合活性等を比較し、アミノ酸配列を改変しても目的の活性を示すことのできる挿入、置換個所やそのアミノ酸の種類、長さを決定することでライブラリーを作製することができる。
That is, it was shown that by using such peptide-inserted CE115 to obtain an antibody that binds to the second antigen, an antibody that can bind to CD3 and the second antigen but does not bind simultaneously can be produced. .
The amino acid sequence of the peptide to be inserted or substituted here is known by site-directed mutagenesis (Kunkel et al. (Proc. Natl. Acad. Sci. USA (1985) 82, 488-492)) or overlap extension PCR. Randomly modified according to the method, comparing the binding activity etc. of each variant according to the method described above, the insertion, substitution position and the type and length of the amino acid that can show the desired activity even if the amino acid sequence is modified By determining, a library can be prepared.
〔実施例6〕CD3及び第2の抗原に結合する抗体の取得のためのライブラリデザイン
(6-1)CD3及び第2の抗原に結合する抗体の取得のための抗体ライブラリについて(Dual Fab Libraryとも呼ぶ)
 第1の抗原としてCD3(CD3ε)を選択し、CD3(CD3ε)と任意の第2の抗原に結合する抗体を取得する方法として、以下の6つが例示される。
1.第1の抗原に結合するFabドメインに第2の抗原に結合するペプチドもしくはポリペプチドを挿入する方法(実施例3と4で示されたペプチド挿入以外にも、Angew Chem Int Ed Engl. 2013 Aug 5;52(32):8295-8に例示されるようにG-CSFを挿入する方法がある。)結合するペプチドやポリペプチドは、ペプチドもしくはポリペプチドを提示したライブラリから取得可能であるが、さらに天然に存在するタンパク質の全体もしくはその一部を利用することが可能である。
2.実施例5で示されたようにFab中のループを長く改変(延長)することができる位置に様々なアミノ酸が出現するような抗体ライブラリを作製して任意の第2の抗原に対して結合活性を有するFabを、抗体ライブラリから抗原への結合活性を指標に取得する方法
3.あらかじめCD3に対して結合することが知られているFabドメインから部位特異的変異法によって作製した抗体を用いて、CD3との結合活性を維持するアミノ酸を同定し、同定されたアミノ酸が出現するような抗体ライブラリから任意の第2の抗原に対して結合活性を有するFabを、抗体ライブラリから抗原への結合活性を指標に取得する方法
4.3の方法において、さらに、Fab中のループを長く改変(延長)することができる位置に様々なアミノ酸が出現するような抗体ライブラリを作製して任意の第2の抗原に対して結合活性を有するFabを、抗体ライブラリから抗原への結合活性を指標に取得する方法
5.1.2.3.4.の方法において、糖鎖付加配列(例えばNxS, NxT、xはP以外のアミノ酸)が出現するように改変し、糖鎖レセプターが認識する糖鎖を付加させる方法(例えばハイマンノース型糖鎖を付加し、ハイマンノースレセプターが認識する。ハイマンノース型糖鎖は抗体発現時にキフネンシンを添加することで得られることが知られている(MAbs. 2012 Jul-Aug;4(4):475-87))
6.1.2.3.4の方法において、ループ部位や各種アミノ酸へ改変することが可能であった部位にCys、Lysもしくは非天然アミノ酸を挿入または置換して、第2の抗原に結合するドメイン(ポリペプチドや糖鎖、TLRアゴニストに代表される核酸)を共有結合で付加する方法(Antibody drug conjugateに代表される方法であり、Cys、Lysもしくは非天然アミノ酸へ共有結合で結合させる方法、mAbs 6:1, 34-45; January/February 2014、WO2009/134891A2、Bioconjug Chem. 2014 Feb 19;25(2):351-61に記載されている)
 上記の方法を用いて、第1の抗原と第2の抗原と結合し、互いに同時に結合しないDual binding Fabが得られ、任意の第3の抗原と結合するドメイン(もう一方の可変領域と呼び、実施例1に記載されている)とは、当業者公知の方法、例えば共通L鎖、Cross mab、Fab arm exchange法、によって組み合わせることができる。
[Example 6] Library design for obtaining antibodies that bind to CD3 and second antigen (6-1) Antibody library for obtaining antibodies that bind to CD3 and second antigen (also known as Dual Fab Library) Call)
The following six methods are exemplified as methods for selecting CD3 (CD3ε) as the first antigen and obtaining an antibody that binds to CD3 (CD3ε) and any second antigen.
1. A method of inserting a peptide or polypeptide that binds to the second antigen into the Fab domain that binds to the first antigen (in addition to the peptide insertion shown in Examples 3 and 4, Angew Chem Int Ed Engl. 2013 Aug 5 There is a method of inserting G-CSF as exemplified in .52 (32): 8295-8.) Peptides and polypeptides that bind can be obtained from libraries displaying peptides or polypeptides, but It is possible to use all or part of a naturally occurring protein.
2. As shown in Example 5, an antibody library in which various amino acids appear at a position where a loop in a Fab can be modified (extended) long and binding activity to an arbitrary second antigen is prepared. 2. A method for obtaining a Fab having an antibody from an antibody library using an antigen binding activity as an index Using an antibody created by site-directed mutagenesis from a Fab domain that is known to bind to CD3 in advance, the amino acids that maintain the binding activity to CD3 are identified, and the identified amino acids appear. In the method 4.3 of obtaining a Fab having binding activity to an arbitrary second antigen from an antibody library using the binding activity to the antigen from the antibody library as an index, the loop in the Fab is further modified to be longer An antibody library in which various amino acids appear at a position where (extension) can be made, and Fab having binding activity to any second antigen is used as an index from the binding activity to the antigen from the antibody library. How to obtain 5.1.2.3.4. In this method, the glycosylation sequence (for example, NxS, NxT, where x is an amino acid other than P) is modified so that the sugar chain recognized by the sugar chain receptor is added (for example, a high-mannose sugar chain is added). It is known that high mannose type sugar chains can be obtained by adding kifunensine during antibody expression (MAbs. 2012 Jul-Aug; 4 (4): 475-87))
In the method of 6.1.2.3.4, Cys, Lys, or an unnatural amino acid is inserted or substituted at a loop site or a site that could be modified to various amino acids, and binds to a second antigen. A method of covalently adding a domain (polypeptide, sugar chain, nucleic acid represented by a TLR agonist) (a method represented by an antibody drug conjugate, a method of covalently binding to Cys, Lys or an unnatural amino acid, mAbs 6: 1, 34-45; January / February 2014, WO2009 / 134891A2, Bioconjug Chem. 2014 Feb 19; 25 (2): 351-61)
Using the above method, a dual binding Fab that binds to the first antigen and the second antigen and does not bind to each other at the same time is obtained, and a domain that binds to any third antigen (referred to as the other variable region, (Described in Example 1) can be combined by methods known to those skilled in the art, such as common L chain, Cross mab, Fab arm exchange method.
(6-2)部位特異的変異法を用いたCD3(CD3ε)結合抗体の1アミノ酸改変抗体の作製
 CD3(CD3ε)結合抗体のテンプレート配列としてVH領域はCE115HA000(配列番号:52)、VL領域はGLS3000(配列番号:53)が選定された。それぞれ、抗原結合に関与すると考えられる部位に参考実施例1に従ってアミノ酸改変を行った。また、H鎖の定常領域はpE22Hh(天然IgG1のCH1以降の配列にL234A, L235A, N297A, D356C, T366S, L368A, Y407Vの改変を加え、C末端のGK配列を欠失させてDYKDDDDK配列(配列番号:89)を付加した配列、配列番号:54)とし、L鎖定常領域はKappa鎖(配列番号:55)を用いた。改変を行った部位は表3に示されている。CD3(CD3ε)結合活性評価のために、1アミノ酸改変抗体はOne arm抗体(天然型のIgGのうち片方のFabドメインを欠損している抗体)として取得した。具体的には、H鎖の改変の場合は、改変されたH鎖が定常領域pE22Hhと連結されたものとKn010G3(天然型IgG1の216番目以降のアミノ酸配列にC220S, Y349C, T366W、H435Rの改変を加えたもの、配列番号:56)とkappa鎖が3'側に連結されたGLS3000を用い、L鎖の改変の場合は改変されたL鎖の3'側にKappa鎖が連結された配列と、H鎖として3'側にpE22Hhが連結されたCE115HA000とKn010G3を用いて、FreeStyle293細胞で発現・精製した(参考実施例1の方法を用いた)。
(6-2) Production of 1 amino acid modified antibody of CD3 (CD3ε) binding antibody using site-directed mutagenesis The template sequence of CD3 (CD3ε) binding antibody is V115 as CE115HA000 (SEQ ID NO: 52), VL as GLS3000 (SEQ ID NO: 53) was selected. In each case, amino acid modification was carried out according to Reference Example 1 at a site considered to be involved in antigen binding. The constant region of the H chain is pE22Hh (L234A, L235A, N297A, D356C, T366S, L368A, Y407V is added to the sequence after CH1 of natural IgG1, and the GK sequence at the C terminus is deleted to obtain the DYKDDDDK sequence (sequence No .: 89) added sequence, SEQ ID NO: 54), and the K chain chain (SEQ ID NO: 55) was used as the L chain constant region. The modified sites are shown in Table 3. For evaluation of CD3 (CD3ε) binding activity, a 1 amino acid-modified antibody was obtained as a One arm antibody (an antibody lacking one Fab domain of natural IgG). Specifically, in the case of modification of the H chain, the modified H chain is linked to the constant region pE22Hh and Kn010G3 (the amino acid sequence after the 216th amino acid sequence of natural IgG1 is modified with C220S, Y349C, T366W, H435R , SEQ ID NO: 56) and GLS3000 in which the kappa chain is linked to the 3 ′ side, and in the case of modification of the L chain, a sequence in which the Kappa chain is linked to the 3 ′ side of the modified L chain It was expressed and purified in FreeStyle293 cells using CE115HA000 and Kn010G3 in which pE22Hh was linked to the 3 ′ side as the H chain (the method of Reference Example 1 was used).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(6-3)1アミノ酸改変抗体のCD3結合評価
 (6-2)で構築および発現精製された1アミノ酸改変体はBiacoreT200(GE Healthcare)を用いて評価された。Sensor chip CM4(GE Healthcare)上にアミノカップリング法でCD3εホモ二量体タンパク質を適当量固定化した後、アナライトとして適切な濃度の抗体をインジェクトし、センサーチップ上のCD3εホモ二量体タンパク質と相互作用させた。その後、10 mmol/L Glycine-HCl (pH1.5) をインジェクトし、センサーチップを再生した。測定は25 ℃で行い、ランニングバッファーにはHBS-EP+(GE Healthcare)を用いた。測定した結果を、結合量と測定で得られたセンサーグラムに対してsingle-cycle kinetics model (1:1binding RI=0)を使って解離定数KD (M) を算出した。各パラメーターの算出には Biacore T200 Evaluation Software (GE Healthcare)を用いた。
(6-3) Evaluation of CD3 binding of 1-amino acid-modified antibody The 1-amino acid-modified product constructed and expressed and purified in (6-2) was evaluated using Biacore T200 (GE Healthcare). After fixing an appropriate amount of CD3ε homodimer protein on Sensor chip CM4 (GE Healthcare) by amino coupling method, an appropriate concentration of antibody is injected as an analyte, and CD3ε homodimer on the sensor chip is injected. Interacted with protein. Thereafter, 10 mmol / L Glycine-HCl (pH 1.5) was injected to regenerate the sensor chip. The measurement was performed at 25 ° C., and HBS-EP + (GE Healthcare) was used as a running buffer. Based on the measurement results, the dissociation constant K D (M) was calculated using a single-cycle kinetics model (1: 1 binding RI = 0) with respect to the binding amount and the sensorgram obtained by the measurement. Biacore T200 Evaluation Software (GE Healthcare) was used for calculation of each parameter.
 (6-3-1)H鎖の改変
 改変前の抗体であるCE115HA000に対して各種H鎖改変体の結合量の比の結果を表4に示す。すなわち、CE115HA000を含む抗体の結合量をX、H鎖1アミノ酸改変体の結合量をYとしたときの、Z(結合量の比)=Y/Xの値である。このとき、図18に示すようにZが0.8未満の場合には、センサーグラムから結合量が非常に少ないことが認められ、正しく解離定数KD (M)が算出できない可能性が示唆された。次に、CE115HA000に対して各種H鎖改変体の解離定数KD (M)の比(=CE115HA000のKD値/改変体のKD値)を表5に示す。
 表4に示されたZが0.8以上の場合には、改変前の抗体であるCE115HA000に対して結合を維持していると考えられることから、これらのアミノ酸が出現するようにデザインされた抗体ライブラリがDual Fab Libraryとなりうる。
(6-3-1) Modification of H chain Table 4 shows the results of the ratios of the binding amounts of various H chain variants to CE115HA000, which is an antibody before modification. That is, Z (binding amount ratio) = Y / X, where X is the binding amount of the antibody containing CE115HA000 and Y is the binding amount of the H chain 1 amino acid variant. At this time, as shown in FIG. 18, when Z was less than 0.8, the amount of binding was found to be very small from the sensorgram, suggesting the possibility that the dissociation constant K D (M) cannot be calculated correctly. Next, Table 5 shows the ratio of dissociation constants K D (M) of various H chain variants to CE115HA000 (= KD value of CE115HA000 / KD value of variant).
When Z shown in Table 4 is 0.8 or more, it is considered that the binding to the pre-modified antibody CE115HA000 is considered, so the antibody library designed so that these amino acids appear. Can be a Dual Fab Library.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (6-3-2)L鎖の改変
 改変前の抗体であるGLS3000に対して各種L鎖改変体の結合量の比の結果を表6に示す。すなわち、GLS3000を含む抗体の結合量をX、L鎖1アミノ酸改変体の結合量をYとしたときの、Z(結合量の比)=Y/Xの値である。このとき、図18に示すようにZが0.8未満の場合には、センサーグラムから結合量が非常に少ないことが認められ、正しく解離定数KD (M)が算出できない可能性が示唆された。次に、GLS3000に対して各種L鎖改変体の解離定数KD (M)の比を表7に示す。
 表6に示されたZが0.8以上の場合には、改変前の抗体であるGLS3000に対して結合を維持していると考えられることから、これらのアミノ酸が出現するようにデザインされた抗体ライブラリがDual Fab Libraryとなりうる。
(6-3-2) Modification of L chain Table 6 shows the results of the ratios of the binding amounts of various L chain variants to the antibody GLS3000 before modification. That is, Z (binding amount ratio) = Y / X, where X is the binding amount of the antibody containing GLS3000 and Y is the binding amount of the L chain 1 amino acid variant. At this time, as shown in FIG. 18, when Z was less than 0.8, the amount of binding was found to be very small from the sensorgram, suggesting the possibility that the dissociation constant K D (M) cannot be calculated correctly. Next, Table 7 shows the ratios of dissociation constants K D (M) of various L chain variants to GLS3000.
When Z shown in Table 6 is 0.8 or more, it is considered that the binding to GLS3000, which is an antibody before modification, is maintained, so an antibody library designed so that these amino acids appear Can be a Dual Fab Library.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(6-4)1アミノ酸改変抗体のECM(Extracellular matrix;細胞外マトリックス)結合評価
 ECM(Extracellular matrix;細胞外マトリックス)は、細胞外の構成成分の一つであり、生体内の様々な部位に存在している。そのため、ECMに強く結合する抗体は血中動態が悪くなる(半減期が短くなる)ことが知られている(WO2012093704A1)。そこで、抗体ライブラリで出現するアミノ酸についても、ECM結合が増強されないアミノ酸を選択することが好ましい。
(6-4) ECM (Extracellular matrix) binding evaluation of 1-amino acid-modified antibody ECM (Extracellular matrix) is one of the components of the extracellular area, and it can be found at various sites in the body. Existing. Therefore, it is known that an antibody that binds strongly to ECM has poor blood kinetics (shorter half-life) (WO2012093704A1). Therefore, it is preferable to select amino acids that do not enhance ECM binding for amino acids that appear in the antibody library.
 各H鎖もしくはL鎖改変体は(6-2)に示された方法で抗体が取得された。次に参考実施例2の方法に従ってECM結合が評価された。各改変体のECM結合値(ECL response;ECL反応の値)を同一プレート内もしくは同一実施日のMRA(H鎖配列番号:57、L鎖配列番号:58)の抗体ECM結合値で割った値を表8(H鎖)、表9(L鎖)に示す。表8および9に示されたように幾つかの改変においてはECM結合を増強する傾向が認められた。
 表8(H鎖)、表9(L鎖)に示された値のうち、複数改変によるECM結合増強の効果を考慮し、10倍までを有効としてDual Fab Libraryに採用した。
For each H chain or L chain variant, an antibody was obtained by the method shown in (6-2). Next, ECM binding was evaluated according to the method of Reference Example 2. The value obtained by dividing the ECM binding value (ECL response) of each variant by the antibody ECM binding value of MRA (H chain SEQ ID NO: 57, L chain SEQ ID NO: 58) on the same plate or on the same day of execution. Are shown in Table 8 (H chain) and Table 9 (L chain). As shown in Tables 8 and 9, some modifications tended to enhance ECM binding.
Of the values shown in Table 8 (H chain) and Table 9 (L chain), the effect of enhancing ECM binding by multiple modifications was taken into consideration, and up to 10 times was effective and adopted in the Dual Fab Library.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(6-5)ライブラリの多様性増強のためのペプチドの挿入個所と長さの検討
 実施例5において、各箇所においてGGS配列を用いてCD3(CD3ε)への結合を失うことなくペプチドを挿入できることが示された。Dual Fab Libraryにおいても、ループ延長が可能となれば、より多種類の分子が含まれる(多様性が大きいとも表現する)ライブラリとなり、多様な第2の抗原に結合するFabドメインの取得が可能になると考えられた。そこで、ペプチド挿入に伴って結合活性が低下することが予想されたため、CE115HA000配列にCD3εへの結合活性が高くなるようにV11L/D72A/L78I/D101Q改変を加えてpE22Hhを連結した配列に、実施例5と同様にGGSリンカーを挿入した分子を作製し、CD3結合を評価した。GGS配列は、Kabat numberingで99-100の間に挿入された。抗体分子は、One arm抗体として発現された。具体的には、GGSリンカーを含む前述のH鎖とKn010G3(配列番号:56)とL鎖としてGLS3000(配列番号:53)とKappa配列(配列番号:55)を連結した配列を採用し、参考実施例1に従って発現精製が行われた。
(6-5) Examination of peptide insertion location and length to enhance library diversity In Example 5, the peptide can be inserted without losing binding to CD3 (CD3ε) using the GGS sequence at each location. It has been shown. If the loop can be extended in the Dual Fab Library, it will be a library that includes more types of molecules (also expressed as more diversity), and it will be possible to obtain Fab domains that bind to a variety of second antigens. It was thought to be. Therefore, since the binding activity was expected to decrease as the peptide was inserted, the V11L / D72A / L78I / D101Q modification was added to the CE115HA000 sequence so that the binding activity to CD3ε was increased. In the same manner as in Example 5, a molecule into which a GGS linker was inserted was prepared, and CD3 binding was evaluated. The GGS sequence was inserted between 99-100 with Kabat numbering. The antibody molecule was expressed as a One arm antibody. Specifically, the above-mentioned H chain containing a GGS linker, Kn010G3 (SEQ ID NO: 56), and a GLS3000 (SEQ ID NO: 53) and Kappa sequence (SEQ ID NO: 55) linked as the L chain are used as a reference. Expression purification was performed according to Example 1.
(6-6)GGSペプチドを挿入したCE115抗体のCD3への結合確認
 GGSペプチドを挿入した改変抗体のCD3εへの結合は実施例6に記載の方法でBiacoreを用いて実施された。その結果、表10に示すようにループ部位へのGGSリンカーの挿入が可能であることが明らかになった。特に抗原結合に重要であるH鎖CDR3領域にGGSリンカーを挿入することが可能であり、3,6,9アミノ酸のいずれの挿入でもCD3εへの結合が維持された。本検討ではGGSリンカーを用いて検討したが、GGSではなく各種アミノ酸が出現する抗体ライブラリであっても良いと考えられる。
(6-6) Confirmation of binding of CE115 antibody inserted with GGS peptide to CD3 Binding of the modified antibody inserted with GGS peptide to CD3ε was performed using Biacore according to the method described in Example 6. As a result, it was revealed that the GGS linker can be inserted into the loop site as shown in Table 10. In particular, it was possible to insert a GGS linker in the H chain CDR3 region, which is important for antigen binding, and binding to CD3ε was maintained by any insertion of 3, 6, 9 amino acids. In this study, the GGS linker was used for the study, but it may be an antibody library in which various amino acids appear instead of GGS.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
(6-7)NNS塩基を用いたH鎖CDR3へのライブラリ挿入の検討
 (6-6)ではGGSリンカーを用いて3,6,9アミノ酸の挿入が可能であり、3,6,9アミノ酸を挿入したライブラリを作成して、通常のPhage display法に代表されるような抗体取得法を用いれば第2の抗原に結合する抗体を取得することが出来ると考えられた。そこで、CDR3への挿入が6アミノ酸である場合に、NNS塩基(各種アミノ酸が出現する)を用いて、6アミノ酸を挿入する部位に様々なアミノ酸が出現してもCD3との結合を保持するか検討した。結合活性の低下が予想されたことからCE115HA000よりもCD3ε結合活性が高いCE115HA340配列(配列番号:59)のCDR3中の99-100(Kabat numbering)の間に6アミノ酸が挿入されるようにNNS塩基を用いてプライマーが設計された。抗体分子は、One arm抗体として発現された。具体的には、前述の改変を含む含む前述のH鎖とKn010G3(配列番号:56)とL鎖としてGLS3000(配列番号:53)とKappa配列(配列番号:55)を連結した配列を採用し、参考実施例1に従って発現精製が行われた。取得された改変抗体は(6-3)に記載された方法で結合が評価された。その結果を表11に示す。アミノ酸を延長した部位に各種アミノ酸が出現した場合でも、CD3(CD3ε)への結合性が保持されることが明らかになった。さらに、非特異的結合が増強されるか否かを参考実施例2に示された方法で評価した結果を表12に示す。その結果、CDR3の伸長したループ内に正電荷を側鎖に持つアミノ酸が多く含まれるとECMへの結合が増強されることから、ループ内に3個以上の正電荷を側鎖に持つアミノ酸が出現しないことが望まれた。
(6-7) Examination of library insertion into H chain CDR3 using NNS base In (6-6), 3, 6, 9 amino acids can be inserted using a GGS linker. It was considered that an antibody that binds to the second antigen can be obtained by creating an inserted library and using an antibody obtaining method represented by the ordinary Phage display method. Therefore, when the insertion into CDR3 is 6 amino acids, using NNS base (various amino acids appear), can the binding to CD3 be maintained even if various amino acids appear at the site where 6 amino acids are inserted? investigated. NNS base so that 6 amino acids are inserted between 99-100 (Kabat numbering) in CDR3 of the CE115HA340 sequence (SEQ ID NO: 59), which has higher CD3ε binding activity than CE115HA000, since a decrease in binding activity was expected. Primers were designed using The antibody molecule was expressed as a One arm antibody. Specifically, the above-mentioned H chain including the above-mentioned modification, Kn010G3 (SEQ ID NO: 56), and a sequence in which GLS3000 (SEQ ID NO: 53) and Kappa sequence (SEQ ID NO: 55) are linked as the L chain are employed. Expression purification was performed according to Reference Example 1. The obtained modified antibody was evaluated for binding by the method described in (6-3). The results are shown in Table 11. It has been clarified that the binding property to CD3 (CD3ε) is maintained even when various amino acids appear in the extended amino acid site. Furthermore, Table 12 shows the results of evaluating whether or not non-specific binding is enhanced by the method shown in Reference Example 2. As a result, if a large number of amino acids having a positive charge in the side chain are contained in the extended loop of CDR3, the binding to ECM is enhanced, so there are amino acids having three or more positive charges in the side chain in the loop. It was hoped that it would not appear.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
(6-7)Dual Fab Libraryのデザインおよび構築
 実施例6に記載の検討から、CD3と第2の抗原に結合する抗体取得のための抗体ライブラリ(Dual Fab Library)は以下の様にデザインされた。
 ステップ1:CD3(CD3ε)結合能が保持されているアミノ酸(CD3結合量がCE115HA000の80%以上であること)を選択
 ステップ2:ECM結合が改変前よりもMRAと比較して10倍以内であるアミノ酸を選択
 ステップ3:H鎖CDR3の99-100(Kabat numbering)の間に6アミノ酸を挿入する
 なお、ステップ1のみでもFabの抗原結合部位が多様化されるため、第2の抗原に結合する抗原結合分子を同定するライブラリになりうる。また、ステップ1と3のみでもFabの抗原結合部位が多様化されるため、第2の抗原に結合する抗原結合分子を同定するライブラリになりうる。ステップ2を経ないライブラリ設計であっても、取得された分子に対してECM結合を測定し、評価することができる。
(6-7) Design and Construction of Dual Fab Library From the study described in Example 6, an antibody library (Dual Fab Library) for obtaining an antibody that binds to CD3 and the second antigen was designed as follows. .
Step 1: Select amino acids that retain CD3 (CD3ε) binding ability (CD3 binding amount is 80% or more of CE115HA000) Step 2: ECM binding within 10 times compared to MRA than before modification Select a certain amino acid Step 3: Insert 6 amino acids between 99-100 (Kabat numbering) of heavy chain CDR3 Since the antigen binding site of Fab is diversified even in Step 1 alone, it binds to the second antigen It can be a library for identifying antigen-binding molecules. Moreover, since the antigen binding site of Fab is diversified only by steps 1 and 3, it can be a library for identifying an antigen binding molecule that binds to the second antigen. Even for library designs that do not go through step 2, ECM binding can be measured and evaluated for the obtained molecules.
 以上から、Dual Fab LibraryのH鎖はCE115HA000のFR(フレームワーク)にV11L/ L78I変異を加えた配列にCDRとして表13に示されるように多様化し、L鎖はGLS3000のCDRを表14に示されるよう多様化した。これらの抗体ライブラリ断片は当業者公知のDNA合成方法で当該ライブラリ断片を合成できる。Dual Fab libraryとして、(1)H鎖を表13に示したように多様化し、L鎖は元の配列GLS3000もしくは実施例6に記載されているCD3ε結合を増強したL鎖に固定したライブラリ、(2)H鎖を元の配列(CE115HA000)もしくは実施例6に記載されているCD3ε結合を増強したH鎖に固定し、L鎖を表14に示したように多様化したライブラリ、(3)H鎖を表13に示したように多様化し、L鎖を表14に示したように多様化したライブラリを作りうる。H鎖はCE115HA000のFR(フレームワーク)にV11L/ L78I変異を加えた配列にCDRとして表13に示されるように多様化したライブラリ配列をDNA2.0のDNA合成会社へ委託し、抗体ライブラリ断片(DNA断片)を取得した。取得した抗体ライブラリ断片は、PCR法で増幅されファージディスプレイ用ファージミドへ挿入された。この際、L鎖としてはGLS3000を選択した。さらに構築されたファージディスプレイ用ファージミドは大腸菌へエレクトロポレーション法で導入され、抗体ライブラリ断片を保有する大腸菌が作製された。 From the above, the H chain of DualDFab Library is diversified as shown in Table 13 as the CDR of the sequence obtained by adding V11L / L78I mutation to FR (framework) of CE115HA000, and the CDR of GLS3000 is shown in Table 14 as L chain. Diversified. These antibody library fragments can be synthesized by DNA synthesis methods known to those skilled in the art. As a Dual Fab library, (1) a library in which the H chain is diversified as shown in Table 13, and the L chain is fixed to the original sequence GLS3000 or the L chain with enhanced CD3ε binding described in Example 6; 2) A library in which the H chain is fixed to the original sequence (CE115HA000) or the H chain with enhanced CD3ε binding described in Example 6 and the L chain is diversified as shown in Table 14, (3) H A library can be created in which the chains are diversified as shown in Table 13 and the L chains are diversified as shown in Table 14. The H chain was entrusted to a DNA 2.0 DNA synthesis company with a library sequence diversified as shown in Table 13 as a CDR to a sequence obtained by adding the V11L / L78I mutation to CE115HA000 FR (framework). DNA fragment) was obtained. The obtained antibody library fragment was amplified by PCR and inserted into a phagemid for phage display. At this time, GLS3000 was selected as the L chain. Further, the constructed phagemid for phage display was introduced into E. coli by electroporation to produce E. coli having antibody library fragments.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
〔実施例7〕Dual Fab LibraryからのCD3及び第2の抗原(IL6R)に結合するFabドメインの取得
(7-1)ヒトIL6Rに結合するFabドメインの取得
 実施例6で設計および構築されたDual Fab libraryからヒトIL6Rに対して結合するFabドメイン(抗体断片)を同定した。抗原として、ビオチン標識されたヒトIL6Rを用いて、ヒトIL6Rに対して結合能をもつ抗体断片の濃縮を行った。
 構築されたファージディスプレイ用ファージミドを保持した大腸菌からファージ産生が行われた。ファージ産生が行われた大腸菌の培養液に2.5 M NaCl/10%PEGを添加することによって沈殿させたファージの集団をTBSにて希釈することによってファージライブラリ液が得られた。次に、ファージライブラリ液に終濃度4%BSAとなるようにBSAが添加された。パンニング方法として、一般的な方法である磁気ビーズに固定化した抗原を用いたパンニング方法が参照された(J. Immunol. Methods. (2008) 332 (1-2), 2-9、J. Immunol. Methods. (2001) 247 (1-2), 191-203、Biotechnol. Prog. (2002) 18 (2) 212-20、Mol. Cell Proteomics (2003) 2 (2), 61-9)。磁気ビーズとして、NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)もしくはStreptavidin coated beads(Dynabeads M-280 Streptavidin)が用いられた。
[Example 7] Acquisition of Fab domain binding to CD3 and second antigen (IL6R) from Dual Fab Library (7-1) Acquisition of Fab domain binding to human IL6R Dual designed and constructed in Example 6 A Fab domain (antibody fragment) that binds to human IL6R was identified from the Fab library. Using biotin-labeled human IL6R as an antigen, antibody fragments capable of binding to human IL6R were concentrated.
Phage production was performed from E. coli holding the constructed phagemid for phage display. A phage library solution was obtained by diluting a population of phage precipitated by adding 2.5 M NaCl / 10% PEG to the culture solution of Escherichia coli where phage production was performed, with TBS. Next, BSA was added to the phage library solution to a final concentration of 4% BSA. As a panning method, a panning method using an antigen immobilized on magnetic beads, which is a general method, was referred to (J. Immunol. Methods. (2008) 332 (1-2), 2-9, J. Immunol Methods. (2001) 247 (1-2), 191-203, Biotechnol. Prog. (2002) 18 (2) 212-20, Mol. Cell Proteomics (2003) 2 (2), 61-9). NeutrAvidin coated beads (Sera-Mag SpeedBeads NeutrAvidin-coated) or Streptavidin coated beads (Dynabeads M-280 Streptavidin) were used as magnetic beads.
 具体的には、調製されたファージライブラリ液に250 pmolのビオチン標識抗原を加えることによって、当該ファージライブラリ液を室温にて60分間抗原と接触させた。BSAでブロッキングされた磁気ビーズが加えられ、抗原とファージとの複合体を磁気ビーズと室温にて15分間結合させた。ビーズはTBST(0.1%Tween20を含有するTBS, TBSはTaKaRa社製)にて3回洗浄された後、1 mLのTBSにてさらに2回洗浄された。その後、0.5 mLの1 mg/mLのトリプシンが加えられたビーズは室温で15分懸濁された後、即座に磁気スタンドを用いてビーズが分離され、ファージ溶液が回収された。回収されたファージ溶液が、対数増殖期(OD600が0.4-0.5)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製された。このサイクルをパンニングと呼び、複数回繰り返した。なお、2回目以降のパンニングでは40pmolのビオチン標識抗原が使用された。また、4回目のパンニングでは、CD3への結合性を指標にファージの濃縮が行われた。具体的には、調製したファージライブラリ液に250pmolのビオチン標識CD3εペプチド抗原(アミノ酸配列配列番号:60)を加えることによって、ファージライブラリを室温で60分間抗原と接触させた。BSAでブロッキングされた磁気ビーズが加えられ、抗原とファージとの複合体を磁気ビーズと室温で15分間結合させた。ビーズは1 mLの0.1% Tween20含有TBSとTBSにて洗浄された。0.5 mLの1 mg/mLのトリプシンが加えられたビーズは室温で15分懸濁された後、即座に磁気スタンドを用いてビーズが分離され、ファージ溶液が回収された。トリプシン処理されたファージ溶液から回収されたファージが、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによってファージライブラリ液が回収された。
 さらに、一つの大腸菌に対して複数のファージが感染することを防ぐため、5回目のパンニングにより回収されたファージを感染させた大腸菌より調製したファージライブラリ液について、再度100,000倍希釈したファージ液を大腸菌に感染させてシングルコロニーを得た。
Specifically, by adding 250 pmol of biotin-labeled antigen to the prepared phage library solution, the phage library solution was brought into contact with the antigen at room temperature for 60 minutes. Magnetic beads blocked with BSA were added, and the antigen-phage complex was allowed to bind to the magnetic beads for 15 minutes at room temperature. The beads were washed three times with TBST (TBS containing 0.1% Tween 20, TBS manufactured by TaKaRa), and then further washed twice with 1 mL of TBS. Thereafter, the beads to which 0.5 mL of 1 mg / mL trypsin had been added were suspended at room temperature for 15 minutes, and then the beads were immediately separated using a magnetic stand, and the phage solution was recovered. The recovered phage solution was added to 10 mL of E. coli strain ER2738 in the logarithmic growth phase (OD600 0.4-0.5). E. coli was infected with the phage by gently stirring the E. coli at 37 ° C. for 1 hour. Infected E. coli were seeded on 225 mm x 225 mm plates. Next, a phage library solution was prepared by recovering the phages from the seeded E. coli culture solution. This cycle was called panning and repeated several times. In the second and subsequent panning, 40 pmol of biotin-labeled antigen was used. In the fourth panning, phages were concentrated using CD3 binding as an index. Specifically, by adding 250 pmol of biotin-labeled CD3ε peptide antigen (amino acid sequence SEQ ID NO: 60) to the prepared phage library solution, the phage library was brought into contact with the antigen at room temperature for 60 minutes. Magnetic beads blocked with BSA were added, and the antigen-phage complex was allowed to bind to the magnetic beads for 15 minutes at room temperature. The beads were washed with 1 mL of TBS containing 0.1% Tween20 and TBS. The beads to which 0.5 mL of 1 mg / mL trypsin had been added were suspended at room temperature for 15 minutes, and then the beads were immediately separated using a magnetic stand, and the phage solution was recovered. Phages recovered from the trypsinized phage solution were added to 10 mL of E. coli strain ER2738 in the logarithmic growth phase (OD600 0.4-0.7). E. coli was infected with the phage by gently stirring the E. coli at 37 ° C. for 1 hour. Infected E. coli were seeded on 225 mm x 225 mm plates. Next, the phage library solution was recovered by recovering the phage from the seeded E. coli culture solution.
Furthermore, in order to prevent multiple phages from infecting a single E. coli, a phage library solution prepared from E. coli infected with the phages recovered by the fifth panning was again diluted with a 100,000-fold phage solution. To obtain a single colony.
(7-2)ファージが提示したFabドメインとCD3またはIL6Rの結合(ファージ ELISA法)
 上記の方法によって得られた大腸菌のシングルコロニーから、常法(Methods Mol. Biol. (2002) 178, 133-145)に習い、ファージ含有培養上清が回収された。終濃度4%BSAとなるようにBSAが加えられたファージを含有する培養上清が以下の手順でELISAに供された。StreptaWell 96マイクロタイタープレート(Roche)がビオチン標識抗原(ビオチン化CD3εペプチドもしくはビオチン化ヒトIL6R)を含む100μLのPBSにて4℃で一晩もしくは室温で1時間コートされた。当該プレートの各ウェルをPBSTにて洗浄することによって抗原が除かれた後、当該ウェルが1時間以上250μLの4%BSA-TBSにてブロッキングされた。4%BSA-TBSが除かれた各ウェルに調製された培養上清が加えられた当該プレートを室温で1時間静置することによって、ファージを提示する抗体を各ウェルに存在する抗原に結合させた。各ウェルをTBSTにて洗浄後、終濃度4%のBSAとしたTBSによって希釈されたHRP結合抗M13抗体(Amersham Pharmacia Biotech)を添加して1時間インキュベートした。TBSTにて洗浄後、TMB single溶液(ZYMED)が添加された各ウェル中の溶液の発色反応が、硫酸の添加により停止された後、450 nmの吸光度によって当該発色が測定された。その結果を図19に示す。#50および#62クローンはCD3εおよびヒトIL6Rに対して結合性を有することが示された。すなわち、Dual Fab Libraryを用いることで、第2の抗原(実施例7ではヒトIL6R)に対して結合性を示すクローンを選択することが出来た。さらに評価数を増やし、結合性を示すクローンを選定して、IgG化(クローンが持つVHおよびVL配列をヒトH鎖またはL鎖定常領域とそれぞれ連結すること)し、CD3εと第2の抗原(ヒトIL6R)への結合性を評価することができる。さらに、CD3εと第2の抗原(ヒトIL6R)が同時に結合するか否かが実施例3や4に記載の方法や競合法によって調べることができる。競合法は、例えばCD3εへの結合が、抗体単独のときよりも第2の抗原が存在する場合に低減することで、同時に結合しないことが示される。
(7-2) Binding of Fab domain displayed by phage and CD3 or IL6R (phage ELISA method)
According to a conventional method (Methods Mol. Biol. (2002) 178, 133-145), a phage-containing culture supernatant was recovered from a single colony of E. coli obtained by the above method. The culture supernatant containing the phages to which BSA was added to a final concentration of 4% BSA was subjected to ELISA according to the following procedure. StreptaWell 96 microtiter plates (Roche) were coated with 100 μL of PBS containing biotinylated antigen (biotinylated CD3ε peptide or biotinylated human IL6R) at 4 ° C. overnight or at room temperature for 1 hour. Each well of the plate was washed with PBST to remove the antigen, and then the well was blocked with 250 μL of 4% BSA-TBS for 1 hour or longer. The plate containing the culture supernatant prepared in each well from which 4% BSA-TBS has been removed is allowed to stand at room temperature for 1 hour to allow the antibody displaying the phage to bind to the antigen present in each well. It was. After washing each well with TBST, an HRP-conjugated anti-M13 antibody (Amersham Pharmacia Biotech) diluted with TBS having a final concentration of 4% BSA was added and incubated for 1 hour. After washing with TBST, the color development reaction of the solution in each well to which the TMB single solution (ZYMED) was added was stopped by the addition of sulfuric acid, and then the color development was measured by absorbance at 450 nm. The result is shown in FIG. # 50 and # 62 clones were shown to have binding to CD3ε and human IL6R. That is, by using Dual Fab Library, it was possible to select a clone exhibiting binding ability to the second antigen (human IL6R in Example 7). Further increase the number of evaluations, select clones showing binding properties, convert to IgG (by linking the VH and VL sequences of the clones with human H chain or L chain constant regions, respectively), CD3ε and the second antigen ( The binding to human IL6R) can be evaluated. Furthermore, whether or not CD3ε and the second antigen (human IL6R) bind at the same time can be examined by the methods described in Examples 3 and 4 and the competition method. Competitive methods, for example, show that binding to CD3ε does not bind at the same time by reducing in the presence of a second antigen than with antibody alone.
〔実施例8〕Dual Fab LibraryからのCD3及び第2の抗原(ヒトIgA)に結合するFabドメインの取得
(8-1)ヒトIgAに結合するFabドメインの取得
 IgAは体内に豊富に存在する抗体のアイソタイプであり、腸や粘膜面での生体防御に関わる分子として知られており、FcαR(Fc alpha Receptor)に結合することが知られている(J. Pathol. 208: 270 -282, 2006)。
 実施例6で設計および構築されたDual Fab libraryからヒトIgAに対して結合するFabドメイン(抗体断片)を同定した。抗原として、ビオチン標識されたヒトIgA(参考実施例3に記載されている。)を用いて、ヒトIgAに対して結合能をもつ抗体断片の濃縮を行った。
 構築されたファージディスプレイ用ファージミドを保持した大腸菌からファージ産生が行われた。ファージ産生が行われた大腸菌の培養液に2.5 M NaCl/10%PEGを添加することによって沈殿させたファージの集団をTBSにて希釈することによってファージライブラリ液が得られた。次に、ファージライブラリ液に終濃度4%BSAとなるようにBSAが添加された。パンニング方法として、一般的な方法である磁気ビーズに固定化した抗原を用いたパンニング方法が参照された(J. Immunol. Methods. (2008) 332 (1-2), 2-9、J. Immunol. Methods. (2001) 247 (1-2), 191-203、Biotechnol. Prog. (2002) 18 (2) 212-20、Mol. Cell Proteomics (2003) 2 (2), 61-9)。磁気ビーズとして、NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)もしくはStreptavidin coated beads(Dynabeads M-280 Streptavidin)が用いられた。
具体的には、調製されたファージライブラリ液に250 pmolのビオチン標識抗原を加えることによって、当該ファージライブラリ液を室温にて60分間抗原と接触させた。BSAでブロッキングされた磁気ビーズが加えられ、抗原とファージとの複合体を磁気ビーズと室温にて15分間結合させた。ビーズはTBST(0.1%Tween20を含有するTBS, TBSはTaKaRa社製)にて3回洗浄された後、1 mLのTBSにてさらに2回洗浄された。その後、0.5 mLの1 mg/mLのトリプシンが加えられたビーズは室温で15分懸濁された後、即座に磁気スタンドを用いてビーズが分離され、ファージ溶液が回収された。回収されたファージ溶液が、対数増殖期(OD600が0.4-0.5)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製された。このサイクルをパンニングと呼び、4回繰り返した。なお2回目以降のパンニングでは、ヒトIgAは40pmolとした。
[Example 8] Acquisition of Fab domain binding to CD3 and second antigen (human IgA) from Dual Fab Library (8-1) Acquisition of Fab domain binding to human IgA IgA is an abundant antibody in the body It is known as a molecule involved in biological defense in the intestine and mucosa, and is known to bind to FcαR (Fc alpha Receptor) (J. Pathol. 208: 270 -282, 2006) .
The Fab domain (antibody fragment) that binds to human IgA was identified from the Dual Fab library designed and constructed in Example 6. The antibody fragment capable of binding to human IgA was concentrated using biotin-labeled human IgA (described in Reference Example 3) as an antigen.
Phage production was performed from E. coli holding the constructed phagemid for phage display. A phage library solution was obtained by diluting a population of phage precipitated by adding 2.5 M NaCl / 10% PEG to the culture solution of Escherichia coli where phage production was performed, with TBS. Next, BSA was added to the phage library solution to a final concentration of 4% BSA. As a panning method, a panning method using an antigen immobilized on magnetic beads, which is a general method, was referred to (J. Immunol. Methods. (2008) 332 (1-2), 2-9, J. Immunol Methods. (2001) 247 (1-2), 191-203, Biotechnol. Prog. (2002) 18 (2) 212-20, Mol. Cell Proteomics (2003) 2 (2), 61-9). NeutrAvidin coated beads (Sera-Mag SpeedBeads NeutrAvidin-coated) or Streptavidin coated beads (Dynabeads M-280 Streptavidin) were used as magnetic beads.
Specifically, by adding 250 pmol of biotin-labeled antigen to the prepared phage library solution, the phage library solution was brought into contact with the antigen at room temperature for 60 minutes. Magnetic beads blocked with BSA were added, and the antigen-phage complex was allowed to bind to the magnetic beads for 15 minutes at room temperature. The beads were washed three times with TBST (TBS containing 0.1% Tween 20, TBS manufactured by TaKaRa), and then further washed twice with 1 mL of TBS. Thereafter, the beads to which 0.5 mL of 1 mg / mL trypsin had been added were suspended at room temperature for 15 minutes, and then the beads were immediately separated using a magnetic stand, and the phage solution was recovered. The recovered phage solution was added to 10 mL of E. coli strain ER2738 in the logarithmic growth phase (OD600 0.4-0.5). E. coli was infected with the phage by gently stirring the E. coli at 37 ° C. for 1 hour. Infected E. coli were seeded on 225 mm x 225 mm plates. Next, a phage library solution was prepared by recovering the phages from the seeded E. coli culture solution. This cycle was called panning and was repeated four times. In the second and subsequent pannings, human IgA was 40 pmol.
(8-2)ファージが提示したFabドメインとCD3またはヒトIgAの結合
 上記の方法によって得られた大腸菌のシングルコロニーから、常法(Methods Mol. Biol. (2002) 178, 133-145)に習い、ファージ含有培養上清が回収された。終濃度4%BSAとなるようにBSAが加えられたファージを含有する培養上清が以下の手順でELISAに供された。StreptaWell 96マイクロタイタープレート(Roche)がビオチン標識抗原(ビオチン標識CD3εペプチドもしくはビオチン標識ヒトIgA,参考実施例3)を含む100μLのPBSにて4℃で一晩もしくは室温で1時間コートされた。当該プレートの各ウェルをPBSTにて洗浄することによって抗原が除かれた後、当該ウェルが1時間以上250μLの0.1xTBS/150mM NaCl/0.02% Skim Milkにてブロッキングされた。0.1xTBS/150mM NaCl/0.02% Skim Milkが除かれた各ウェルに調製された培養上清が加えられた当該プレートを室温で1時間静置することによって、ファージが提示する抗体を各ウェルに存在する抗原に結合させた。各ウェルを0.1xTBS/150mM NaCl/0.01% Tween20にて洗浄後、0.1xTBS/150mM NaCl/0.01% Tween20によって希釈されたHRP結合抗M13抗体(Amersham Pharmacia Biotech)を添加して1時間インキュベートした。TBSTにて洗浄後、TMB single溶液(ZYMED)が添加された各ウェル中の溶液の発色反応が、硫酸の添加により停止された後、450 nmの吸光度によって当該発色が測定された。その結果を図20に示す。図20に示すように、CD3およびヒトIgAに結合するクローンが存在することが示され、Dual Fab Libraryを用いることで、第2の抗原(実施例8ではヒトIgA)に対して結合性を示すクローンを選択することが出来た。
(8-2) Binding of Fab-displayed Fab domain to CD3 or human IgA From a single colony of Escherichia coli obtained by the above-mentioned method, it was learned from conventional methods (Methods Mol. Biol. (2002) 178, 133-145). The phage-containing culture supernatant was collected. The culture supernatant containing the phages to which BSA was added to a final concentration of 4% BSA was subjected to ELISA according to the following procedure. StreptaWell 96 microtiter plates (Roche) were coated with 100 μL PBS containing biotin-labeled antigen (biotin-labeled CD3ε peptide or biotin-labeled human IgA, Reference Example 3) at 4 ° C. overnight or at room temperature for 1 hour. Each well of the plate was washed with PBST to remove the antigen, and then the well was blocked with 250 μL of 0.1 × TBS / 150 mM NaCl / 0.02% Skim Milk for 1 hour or longer. The wells with 0.1xTBS / 150mM NaCl / 0.02% Skim Milk removed and the culture supernatant added to each well are allowed to stand at room temperature for 1 hour to allow the phage-displayed antibodies to exist in each well. Bound to the antigen. After washing each well with 0.1 × TBS / 150 mM NaCl / 0.01% Tween 20, HRP-conjugated anti-M13 antibody (Amersham Pharmacia Biotech) diluted with 0.1 × TBS / 150 mM NaCl / 0.01% Tween 20 was added and incubated for 1 hour. After washing with TBST, the color development reaction of the solution in each well to which the TMB single solution (ZYMED) was added was stopped by the addition of sulfuric acid, and then the color development was measured by absorbance at 450 nm. The result is shown in FIG. As shown in FIG. 20, it is shown that clones that bind to CD3 and human IgA exist, and binding to the second antigen (human IgA in Example 8) is shown by using Dual Fab Library. A clone could be selected.
(8-3)取得したFabドメインを有するIgGのCD3またはヒトIgAとの結合
 (8-2)でCD3とヒトIgAに結合することが示されたクローンに対して、その配列を有する大腸菌からDual Fab LibraryのH鎖に特異的に結合するプライマーを用いて、PCR法によってVH断片を増幅した。増幅したVH断片は参考実施例1の方法でpE22Hhが組み込まれた動物細胞発現用のプラスミドに組み込まれ、実施例6(6-2)と同様にOne arm抗体として発現・精製された。クローン名とH鎖配列の配列番号は表15に示されている。すなわち、表15に示されたH鎖とKn010G3(配列番号:56)とL鎖としてGLS3000(配列番号:53)とKappa配列(配列番号:55)を連結した配列を採用し、参考実施例1に従って発現精製が行われた。
(8-3) Binding of IgG having the obtained Fab domain to CD3 or human IgA (8-2) From a clone that was shown to bind to CD3 and human IgA, E. coli having the sequence was dually tested. A VH fragment was amplified by PCR using a primer that specifically binds to the Fab Library H chain. The amplified VH fragment was incorporated into an animal cell expression plasmid into which pE22Hh had been incorporated by the method of Reference Example 1, and expressed and purified as a One arm antibody in the same manner as in Example 6 (6-2). The clone name and the SEQ ID NO of the H chain sequence are shown in Table 15. That is, the sequence shown in Table 15 in which GLS3000 (SEQ ID NO: 53) and Kappa sequence (SEQ ID NO: 55) are linked as the H chain, Kn010G3 (SEQ ID NO: 56), and L chain is employed. Expression purification was performed according to
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 取得されたFab領域を持つ抗体分子がCD3ε、ヒトIgAと結合するかどうか、電気化学発光法(ECL法)で判定した。具体的には、TBST溶液(TaKaRa社製 TBSに0.1% Tween20を加えたもの)で希釈したビオチン標識CD3εペプチド(実施例7に記載)またはビオチン標識ヒトIgA(参考実施例3)と、2 μg/mLに調製された抗体溶液と、sulfo-tagを付加した抗ヒトIgG抗体(Invitrogen #628400)を、Nunc-Immuno(tm) MicroWell(tm) 96 well round plates(Nunc)の各ウェルに25 μLずつ添加し、混合した後、遮光しながら室温で1時間以上インキュベートし、抗体抗原複合体を形成させた。0.5%BSAを含むTBST溶液(ブロッキング溶液と表記する)をstreptavidin plate(MSD)各ウェルに150μLずつ加えて室温で1時間以上インキュベートした。ブロッキング溶液を除いた後、TBS(-)溶液250μLで3回洗浄した。抗体抗原複合体溶液を50μLずつ各ウェルに添加し、室温1時間インキュベートして、ビオチン化抗原―抗体―検出用sulfo-tag抗体の複合体溶液をビオチン化抗原を介してstreptavidin plateに結合させた。抗体抗原複合体溶液を除いた後、TBST溶液で3回洗浄し、4xREAD buffer(MSD)を水で2倍希釈した溶液を各ウェルに150μLずつ加え、Sector Imager 2400(MSD)でsulfo-tagの発光シグナルを検出した。 Whether or not the obtained antibody molecule having the Fab region binds to CD3ε and human IgA was determined by an electrochemiluminescence method (ECL method). Specifically, biotin-labeled CD3ε peptide (described in Example 7) or biotin-labeled human IgA (Reference Example 3) diluted with TBST solution (TaKaRa TBS plus 0.1% Tween20) and 2 μg An antibody solution prepared in 1 mL / mL and an anti-human IgG antibody (Invitrogen # 628400) with a sulfo-tag added to each well of Nunc-Immuno (tm) MicroWell (tm) 96 well round plates (Nunc) After each addition and mixing, the mixture was incubated at room temperature for 1 hour or more while protected from light to form an antibody-antigen complex. 150 μL of TBST solution containing 0.5% BSA (referred to as blocking solution) was added to each well of streptavidin plate (MSD) and incubated at room temperature for 1 hour or more. After removing the blocking solution, the plate was washed 3 times with 250 μL of TBS (−) solution. 50 μL each of the antibody-antigen complex solution was added to each well and incubated for 1 hour at room temperature to allow the biotinylated antigen-antibody-sulfo-tag antibody complex solution to bind to the streptavidin-plate via the biotinylated antigen. . After removing the antibody-antigen complex solution, wash 3 times with TBST solution, add 150 μL of 4xREAD buffer (MSD) diluted twice with water to each well, and sulpho-tag with Sector Imager 2400 (MSD). A luminescent signal was detected.
 その結果を図21に示す。ファージELISAで結合が認められたクローンから、一部のアミノ酸変異を含むものを含めてIgG化したところ、ファージELISAで結合が認められた配列はIgGとなってもCD3εおよびヒトIgAと結合することが示された。
 この結果から、Dual Fab libraryから、第2の抗原と結合する抗体が取得可能であり、通常ファージライブラリを用いたパンニングではFabドメインのみであるが、Fc領域を含むIgGとなっても結合が認められるクローンの濃縮が可能であることが示された。したがって、Dual Fab Libraryは、CD3との結合能を保持しながら第2の抗原との結合能を有するFabドメインを取得することができるLibraryだといえた。
The result is shown in FIG. When clones that were found to be bound by phage ELISA were converted to IgG, including those containing some amino acid mutations, the sequences that were found to be bound by phage ELISA should bind to CD3ε and human IgA even if they were IgG. It has been shown.
From this result, it is possible to obtain an antibody that binds to the second antigen from the Dual Fab library. Normally, panning using a phage library has only a Fab domain, but binding to an IgG containing an Fc region is recognized. It was shown that enrichment of the resulting clones is possible. Therefore, it can be said that the Dual Fab Library is a library capable of obtaining a Fab domain having the ability to bind to the second antigen while retaining the ability to bind to CD3.
(8-4)取得したFabドメインを有するIgGのCD3(CD3ε)及びヒトIgAとの同時結合の評価
 (8-3)において、Dual Fab Libraryから得られたクローンがIgGとなっても結合を有することが示された。次に、得られたIgGがCD3(CD3ε)及びヒトIgAと同時に結合するかを競合法(電気化学発光法(ECL法))で判定した。CD3(CD3ε)及びヒトIgAと同時に結合する場合は、IgAと結合している抗体にCD3(CD3ε)を加えてもECLシグナルは変化しないが、同時結合できない場合には、CD3(CD3ε)を加えると一部の抗体がCD3(CD3ε)と結合してECLシグナルが低下するはずである。
(8-4) Evaluation of simultaneous binding of the obtained Fab domain IgG with CD3 (CD3ε) and human IgA In (8-3), the clone obtained from Dual Fab Library has binding even if it becomes IgG It was shown that. Next, it was determined by competitive method (electrochemiluminescence method (ECL method)) whether or not the obtained IgG binds simultaneously with CD3 (CD3ε) and human IgA. When binding simultaneously with CD3 (CD3ε) and human IgA, adding CD3 (CD3ε) to the antibody binding to IgA does not change the ECL signal, but if simultaneous binding is not possible, add CD3 (CD3ε) And some antibodies should bind to CD3 (CD3ε) and decrease ECL signal.
 具体的には、TBST溶液で希釈したビオチン化ヒトIgA 25μLと、1 μg/mLに調製された抗体溶液12.5μLと、TBSTもしくは競合させるためのCD3εホモ二量体タンパク質(9.4pmol/μL)12.5μLと、sulfo-tagを付加した抗ヒトIgG抗体(Invitrogen #628400)25μLをNunc-Immuno(tm) MicroWell(tm) 96 well round plates(Nunc)の各ウェルに添加し、混合した後、遮光しながら室温で1時間以上インキュベートし、抗体抗原複合体を形成させた。0.5%BSAを含むTBST溶液(ブロッキング溶液と表記する。TBST溶液はTaKaRa社製のTBSに0.1%Tween20を加えたもの)をstreptavidin plate(MSD)各ウェルに150μLずつ加えて室温で1時間以上インキュベートした。ブロッキング溶液を除いた後、TBST溶液250μLで3回洗浄した。抗体抗原複合体溶液を50μLずつ各ウェルに添加し、室温1時間インキュベートして、ビオチン化抗原―抗体―検出用sulfo-tag抗体の複合体溶液をビオチン化抗原を介してstreptavidin plateに結合させた。抗体抗原複合体溶液を除いた後、TBST溶液で3回洗浄し、4xREAD buffer(MSD)を水で2倍に希釈した溶液を各ウェルに150μLずつ加え、Sector Imager 2400(MSD)でsulfo-tagの発光シグナルを検出した。 Specifically, 25 μL of biotinylated human IgA diluted with TBST solution, 12.5 μL of antibody solution prepared at 1 μg / mL, and 12.5 μL of CD3ε homodimeric protein (9.4 pmol / μL) for competition with TBST Add μL and 25 μL of anti-human IgG antibody added with sulfo-tag (Invitrogen) # 628400) to each well of Nunc-Immuno (tm) MicroWell (tm) 96 well round plates (Nunc). The mixture was incubated at room temperature for 1 hour or longer to form an antibody-antigen complex. Add TBST solution containing 0.5% BSA (referred to as blocking solution; TBST solution with 0.1% Tween20 to TKaRa TBS) to each well of streptavidin plate (MSD) and incubate for 1 hour at room temperature did. After removing the blocking solution, the plate was washed 3 times with 250 μL of TBST solution. 50 μL each of the antibody-antigen complex solution was added to each well and incubated for 1 hour at room temperature to allow the biotinylated antigen-antibody-sulfo-tag antibody complex solution to bind to the streptavidin-plate via the biotinylated antigen. . After removing the antibody-antigen complex solution, wash 3 times with TBST solution, add 150 μL of 4xREAD buffer (MSD) diluted twice with water to each well, and use sulfo-tag with Sector Imager 2400 (MSD). The luminescence signal was detected.
 その結果を図22に示す。競合させるためのCD3εホモ二量体タンパク質を加えた場合、TBSTを加えた場合と比較してECLシグナルの低下が認められた。この結果から、本検討で見出されたCD3とヒトIgAに結合する分子は、CD3に結合するとヒトIgAに結合できないDual Fab分子であることが示された。この結果から、Dual Fab libraryから、第2の抗原との結合能を有する抗体が取得可能であり、その中に、CD3と結合すると第2の抗原と結合できない(もしくは第2の抗原と結合するとCD3と結合できない)という、複数種の抗原と同時には結合できないDual Fab分子の取得が可能であることが示された。 The result is shown in FIG. When CD3ε homodimeric protein for competition was added, a decrease in ECL signal was observed compared to the case where TBST was added. From this result, it was shown that the molecule that binds to CD3 and human IgA found in this study is a Dual Fab molecule that cannot bind to human IgA when bound to CD3. From this result, it is possible to obtain an antibody having the ability to bind to the second antigen from Dual Fab library, and when it binds to CD3, it cannot bind to the second antigen (or binds to the second antigen). It was shown that it is possible to obtain Dual Fab molecules that cannot bind simultaneously with multiple types of antigens.
 当業者であれば(8-2)でファージを用いた結合活性評価から結合分子が見出されれば、評価数を多くすることによって結合分子の配列のバラエティーを増やすことができることが自明であるので、以上からDual Fab Libraryは、CD3に対する結合能を保持しながら第2の抗原との結合能を有するFabドメインを取得することができるLibraryだといえる。また、本実施例ではH鎖のみを多様化させたDual Fab Libraryを用いたが、通常ライブラリサイズ(多様性とも呼び、ライブラリ中に多様な配列が含まれることを意味する)が大きい方が、より抗原結合分子を取得することができるため、L鎖も多様化させたDual Fab Libraryも本実施例で示されたことと同様に、Dual Fab分子取得に用いることができる。 Since it is obvious that a person skilled in the art can increase the variety of the binding molecule sequence by increasing the number of evaluations if the binding molecule is found from the binding activity evaluation using phage in (8-2), From the above, it can be said that Dual Fab Library is a library that can acquire a Fab domain capable of binding to the second antigen while retaining the binding ability to CD3. Moreover, in this example, Dual Fab Library in which only the H chain was diversified was used, but usually the larger the library size (also called diversity, meaning that the library includes various sequences), Since more antigen-binding molecules can be obtained, Dual Fab Library with diversified L chains can also be used for obtaining Dual Fab molecules in the same manner as shown in this example.
 実施例8に示された様にDual Fab分子を作ることができれば、第3の抗原に結合するFabや抗原結合ドメインを当業者公知の方法、例えばハイブリドーマ法や抗体ライブラリからの結合抗体(もしくは結合ドメイン)の選抜方法、を用いて同定することが可能であり、同定された第3の抗原に結合する抗原結合ドメイン(例えばFab)とDual Fab分子のFabドメインを持つ抗体は当業者公知の多重特異性抗体の作製方法、例えばL鎖を共通化して2本のH鎖が異なる抗体を作る方法(Fc領域の各ドメインの界面を制御する技術)、Cross Mab法、Fab Arm Exchange法、によって多重特異性抗体を取得することができる。すなわち、Dual Fab分子が同定できれば、当業者公知の方法によって第3の抗原に結合するFabと実施例8で示された第1と第2の抗原に結合するDual Fabを組み合わせて、所望の多重特異性抗体を取得することができる。 If a Dual-Fab molecule can be produced as shown in Example 8, Fab or antigen binding domain that binds to the third antigen can be obtained by a method known to those skilled in the art, for example, a binding antibody (or binding) from a hybridoma method or an antibody library. The antibody having an antigen-binding domain (for example, Fab) that binds to the identified third antigen and the Fab domain of the Dual Fab molecule can be identified using a multiple domain known to those skilled in the art. Multiplexed by specific antibody production methods, for example, the method of making antibodies with two L chains shared by sharing L chains (technology to control the interface of each domain of Fc region), CrossCMab method, Fab Arm Exchange method Specific antibodies can be obtained. That is, if a Dual Fab molecule can be identified, a desired multiplex can be obtained by combining the Fab that binds to the third antigen and the Dual Fab that binds to the first and second antigens shown in Example 8 by a method known to those skilled in the art. Specific antibodies can be obtained.
(8-5)CD3/ヒトIgA Dual Fab分子について
 実施例8において、CD3εおよびヒトIgAに結合し、CD3εとヒトIgAが同時に結合しないDual Fab分子が得られることが示された。さらに第3の抗原と結合する抗原結合ドメインを付加することも当業者公知の方法で実施可能である。
 近年、癌抗原の一つであるEGFRに結合するように改変されたIgA分子がEGFRを発現している癌細胞に細胞死を誘導することが示された(J Immunol 2007; 179:2936-2943)。このメカニズムとしてIgAのレセプターであるFcαRがPolymorphonuclear cellに発現しており、癌細胞にオートファジーを誘導することが報告された(J Immunol 2011; 187:726-732)。本実施例でCD3とIgAに結合するDual Fab分子が構築できることが明らかになったが、IgAを介してFcαRと結合する分子を当業者公知の方法(例えばELISAやECL法)で探索すれば、FcαRを介した抗腫瘍効果が期待できる。すなわち、本Dual Fabは、任意の第3の抗原が発現している細胞に、CD3εとの結合でT細胞による細胞傷害活性と、IgAとの結合を介してFcαRが発現している細胞による細胞傷害活性の両方を誘導することが可能であり、強い細胞傷害活性が期待できる。
(8-5) CD3 / Human IgA Dual Fab Molecule In Example 8, it was shown that a Dual Fab molecule that binds to CD3ε and human IgA and does not bind CD3ε and human IgA simultaneously is obtained. Furthermore, it is possible to add an antigen-binding domain that binds to the third antigen by a method known to those skilled in the art.
Recently, IgA molecules modified to bind to EGFR, one of the cancer antigens, were shown to induce cell death in EGFR-expressing cancer cells (J Immunol 2007; 179: 2936-2943 ). It has been reported that FcαR, an IgA receptor, is expressed in polymorphonuclear cells and induces autophagy in cancer cells (J Immunol 2011; 187: 726-732). In this example, it was clarified that a dual Fab molecule that binds to CD3 and IgA can be constructed. However, if a molecule that binds to FcαR via IgA is searched by a method known to those skilled in the art (for example, ELISA or ECL method), Antitumor effects can be expected through FcαR. In other words, this dual Fab can be applied to cells expressing an arbitrary third antigen, to cells produced by cells expressing FcαR via binding to CD3ε and T cells by binding to CD3ε and IgA. Both cytotoxic activities can be induced, and a strong cytotoxic activity can be expected.
〔実施例9〕Dual Fab LibraryからのCD3及び第2の抗原(ヒトCD154)に結合するFabドメインの取得
(9-1)ヒトCD154に結合するFabドメインの取得
 実施例6で設計および構築されたDual Fab libraryからヒトCD154に対して結合するFabドメイン(抗体断片)を同定した。抗原として、ビオチン標識されたヒトCD154を用いて、ヒトCD154に対して結合能をもつ抗体断片の濃縮を行った。
 構築されたファージディスプレイ用ファージミドを保持した大腸菌からファージ産生が行われた。ファージ産生が行われた大腸菌の培養液に2.5 M NaCl/10%PEGを添加することによって沈殿させたファージの集団をTBSにて希釈することによってファージライブラリ液が得られた。次に、ファージライブラリ液に終濃度4%BSAとなるようにBSAが添加された。パンニング方法として、一般的な方法である磁気ビーズに固定化した抗原を用いたパンニング方法が参照された(J. Immunol. Methods. (2008) 332 (1-2), 2-9、J. Immunol. Methods. (2001) 247 (1-2), 191-203、Biotechnol. Prog. (2002) 18 (2) 212-20、Mol. Cell Proteomics (2003) 2 (2), 61-9)。磁気ビーズとして、NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)もしくはStreptavidin coated beads(Dynabeads M-280 Streptavidin)が用いられた。
具体的には、調製されたファージライブラリ液に250 pmolのビオチン標識抗原を加えることによって、当該ファージライブラリ液を室温にて60分間抗原と接触させた。BSAでブロッキングされた磁気ビーズが加えられ、抗原とファージとの複合体を磁気ビーズと室温にて15分間結合させた。ビーズはTBST(0.1%Tween20を含有するTBS, TBSはTaKaRa社製)にて3回洗浄された後、1 mLのTBSにてさらに2回洗浄された。その後、0.5 mLの1 mg/mLのトリプシンが加えられたビーズは室温で15分懸濁された後、即座に磁気スタンドを用いてビーズが分離され、ファージ溶液が回収された。回収されたファージ溶液が、対数増殖期(OD600が0.4-0.5)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製された。このサイクルをパンニングと呼び、5回繰り返した。なお2回目以降のパンニングでは、ヒトCD154は40pmolとした。
[Example 9] Acquisition of Fab domain binding to CD3 and second antigen (human CD154) from Dual Fab Library (9-1) Acquisition of Fab domain binding to human CD154 Designed and constructed in Example 6 A Fab domain (antibody fragment) that binds to human CD154 was identified from the Dual Fab library. Using biotin-labeled human CD154 as an antigen, antibody fragments capable of binding to human CD154 were concentrated.
Phage production was performed from E. coli holding the constructed phagemid for phage display. A phage library solution was obtained by diluting a population of phage precipitated by adding 2.5 M NaCl / 10% PEG to the culture solution of Escherichia coli where phage production was performed, with TBS. Next, BSA was added to the phage library solution to a final concentration of 4% BSA. As a panning method, a panning method using an antigen immobilized on magnetic beads, which is a general method, was referred to (J. Immunol. Methods. (2008) 332 (1-2), 2-9, J. Immunol Methods. (2001) 247 (1-2), 191-203, Biotechnol. Prog. (2002) 18 (2) 212-20, Mol. Cell Proteomics (2003) 2 (2), 61-9). NeutrAvidin coated beads (Sera-Mag SpeedBeads NeutrAvidin-coated) or Streptavidin coated beads (Dynabeads M-280 Streptavidin) were used as magnetic beads.
Specifically, by adding 250 pmol of biotin-labeled antigen to the prepared phage library solution, the phage library solution was brought into contact with the antigen at room temperature for 60 minutes. Magnetic beads blocked with BSA were added, and the antigen-phage complex was allowed to bind to the magnetic beads for 15 minutes at room temperature. The beads were washed three times with TBST (TBS containing 0.1% Tween 20, TBS manufactured by TaKaRa), and then further washed twice with 1 mL of TBS. Thereafter, the beads to which 0.5 mL of 1 mg / mL trypsin had been added were suspended at room temperature for 15 minutes, and then the beads were immediately separated using a magnetic stand, and the phage solution was recovered. The recovered phage solution was added to 10 mL of E. coli strain ER2738 in the logarithmic growth phase (OD600 0.4-0.5). E. coli was infected with the phage by gently stirring the E. coli at 37 ° C. for 1 hour. Infected E. coli were seeded on 225 mm x 225 mm plates. Next, a phage library solution was prepared by recovering the phages from the seeded E. coli culture solution. This cycle was called panning and was repeated 5 times. In the second and subsequent pannings, human CD154 was 40 pmol.
(9-2)ファージが提示したFabドメインとCD3またはヒトCD154の結合
 上記の方法によって得られた大腸菌のシングルコロニーから、常法(Methods Mol. Biol. (2002) 178, 133-145)に習い、ファージ含有培養上清が回収された。終濃度4%BSAとなるようにBSAが加えられたファージを含有する培養上清が以下の手順でELISAに供された。StreptaWell 96マイクロタイタープレート(Roche)がビオチン標識抗原(ビオチン標識CD3εペプチド、ビオチン標識CD154)を含む100μLのPBSにて4℃で一晩もしくは室温で1時間コートされた。当該プレートの各ウェルをPBSTにて洗浄することによって抗原が除かれた後、当該ウェルが1時間以上250μLの0.1xTBS/150mM NaCl/0.02% Skim Milkにてブロッキングされた。0.1xTBS/150mM NaCl /0.02% Skim Milkが除かれた各ウェルに調製された培養上清が加えられた当該プレートを室温で1時間静置することによって、ファージを提示する抗体を各ウェルに存在する抗原に結合させた。各ウェルを0.1xTBS/150mM NaCl/0.01% Tween20にて洗浄後、0.1xTBS/150mM NaCl/0.01% Tween20によって希釈されたHRP結合抗M13抗体(Amersham Pharmacia Biotech)を添加して1時間インキュベートした。TBSTにて洗浄後、TMB single溶液(ZYMED)が添加された各ウェル中の溶液の発色反応が、硫酸の添加により停止された後、450 nmの吸光度によって当該発色が測定された。その結果を図23に示す。図23に示すように、CD3およびCD154に結合するクローンが存在することが示され、Dual Fab Libraryを用いることで、第2の抗原(実施例9ではヒトCD154)に対して結合性を示すクローンを選択することが出来た。また、実施例7,8,9で示したように異なる3つの抗原に対して、結合Fabドメインが取得できることから、Dual Fab Libraryが第2の抗原と結合する分子を取得するためのライブラリとして機能することが示された。
(9-2) Binding of Fab-displayed Fab domain to CD3 or human CD154 From a single colony of Escherichia coli obtained by the above method, learn from conventional methods (Methods Mol. Biol. (2002) 178, 133-145) The phage-containing culture supernatant was collected. The culture supernatant containing the phages to which BSA was added to a final concentration of 4% BSA was subjected to ELISA according to the following procedure. StreptaWell 96 microtiter plates (Roche) were coated with 100 μL PBS containing biotin-labeled antigen (biotin-labeled CD3ε peptide, biotin-labeled CD154) at 4 ° C. overnight or at room temperature for 1 hour. Each well of the plate was washed with PBST to remove the antigen, and then the well was blocked with 250 μL of 0.1 × TBS / 150 mM NaCl / 0.02% Skim Milk for 1 hour or longer. The wells with 0.1xTBS / 150mM NaCl / 0.02% Skim Milk removed and the culture supernatant prepared in each well added are allowed to stand at room temperature for 1 hour, so that antibodies displaying phage are present in each well. Bound to the antigen. After washing each well with 0.1 × TBS / 150 mM NaCl / 0.01% Tween 20, HRP-conjugated anti-M13 antibody (Amersham Pharmacia Biotech) diluted with 0.1 × TBS / 150 mM NaCl / 0.01% Tween 20 was added and incubated for 1 hour. After washing with TBST, the color development reaction of the solution in each well to which the TMB single solution (ZYMED) was added was stopped by the addition of sulfuric acid, and then the color development was measured by absorbance at 450 nm. The result is shown in FIG. As shown in FIG. 23, it is shown that clones that bind to CD3 and CD154 exist, and a clone that exhibits binding to the second antigen (human CD154 in Example 9) by using the Dual Fab Library. Was able to be selected. In addition, since the binding Fab domains can be obtained for three different antigens as shown in Examples 7, 8, and 9, Dual Fab Library functions as a library for obtaining molecules that bind to the second antigen. Was shown to do.
(9-3)取得したFabドメインを有するIgGのCD3またはヒトCD154との結合
  (9-2)でCD3とヒトCD154に結合することが示されたクローンに対して、その配列を有する大腸菌からDual Fab LibraryのH鎖に特異的に結合するプライマーを用いて、PCRによってVH断片を増幅した。増幅したVH断片は参考実施例1の方法でpE22Hhが組み込まれた動物細胞発現用のプラスミドに組み込まれ、実施例6(6-2)と同様にOne arm抗体として発現・精製された。取得された配列名とH鎖配列の配列番号は表16に記載されている。具体的には、表16に記載されているH鎖とKn010G3(配列番号:56)とL鎖としてGLS3000(配列番号:53)とKappa配列(配列番号:55)を連結した配列を採用し、参考実施例1に従って発現精製が行われた。
(9-3) Binding of IgG having Fab domain obtained to CD3 or human CD154 (9-2) From a clone shown to bind to CD3 and human CD154 in (9-2), from E. coli having the sequence to Dual A VH fragment was amplified by PCR using a primer that specifically binds to the Fab Library H chain. The amplified VH fragment was incorporated into an animal cell expression plasmid into which pE22Hh had been incorporated by the method of Reference Example 1, and expressed and purified as a One arm antibody in the same manner as in Example 6 (6-2). The obtained sequence names and the sequence numbers of the H chain sequences are shown in Table 16. Specifically, a sequence in which GLS3000 (SEQ ID NO: 53) and Kappa sequence (SEQ ID NO: 55) are linked as H chain, Kn010G3 (SEQ ID NO: 56) and L chain described in Table 16 is adopted, Expression purification was performed according to Reference Example 1.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 (9-2)でCD3とヒトCD154に結合することがファージELISA法で示されたFab領域を持つ抗体分子がCD3、ヒトCD154と結合するかどうか、電気化学発光法(ECL法)で判定した。具体的には、TBST溶液で希釈したビオチン化CD3またはビオチン化ヒトCD154 25μLと、2 μg/mLに調製された抗体溶液25μLと、sulfo-tagを付加した抗ヒトIgG抗体(Invitrogen #628400)25μLを、Nunc-Immuno(tm) MicroWell(tm) 96 well round plates(Nunc)の各ウェルに添加し、混合した後、遮光しながら室温で1時間以上インキュベートし、抗体抗原複合体を形成させた。0.5%BSAを含むTBST溶液(ブロッキング溶液と表記する。TBST溶液はTaKaRa社製のTBSに0.1%Tween20を加えたもの)をstreptavidin plate(MSD)各ウェルに150μLずつ加えて室温で1時間以上インキュベートした。ブロッキング溶液を除いた後、TBST溶液250μLで3回洗浄した。抗体抗原複合体溶液を50μLずつ各ウェルに添加し、室温1時間インキュベートして、ビオチン化抗原―抗体―検出用sulfo-tag抗体の複合体溶液をビオチン化抗原を介してstreptavidin plateに結合させた。抗体抗原複合体溶液を除いた後、TBST溶液で3回洗浄し、4xREAD buffer(MSD)を水で2倍に希釈した溶液を各ウェルに150μLずつ加え、Sector Imager 2400(MSD)でsulfo-tagの発光シグナルを検出した。 It was determined by electrochemiluminescence method (ECL method) whether or not antibody molecules having Fab regions that were bound to CD3 and human CD154 in (9-2) bind to CD3 and human CD154. . Specifically, 25 μL of biotinylated CD3 or biotinylated human CD154 diluted with TBST solution, 25 μL of antibody solution prepared to 2 μg / mL, and 25 μL of anti-human IgG antibody (Invitrogen® # 628400) added with sulfo-tag Was added to each well of Nunc-Immuno (tm) MicroWell (tm) 96 well round plates (Nunc), mixed, and incubated at room temperature for 1 hour or more while being shielded from light to form an antibody-antigen complex. Add TBST solution containing 0.5% BSA (referred to as blocking solution; TBST solution with 0.1% Tween20 to TKaRa TBS) to each well of streptavidin plate (MSD) and incubate for 1 hour at room temperature did. After removing the blocking solution, the plate was washed 3 times with 250 μL of TBST solution. 50 μL each of the antibody-antigen complex solution was added to each well and incubated for 1 hour at room temperature to allow the biotinylated antigen-antibody-sulfo-tag antibody complex solution to bind to the streptavidin-plate via the biotinylated antigen. . After removing the antibody-antigen complex solution, wash 3 times with TBST solution, add 150 μL each of 4xREAD buffer (MSD) diluted twice with water, and add sulfo-tag with Sector Imager 2400 (MSD). The luminescence signal was detected.
 その結果を図24に示す。ファージELISAで結合が認められたクローンから、一部のアミノ酸変異を含むものを含めてIgG化したところ、ファージELISAで結合が認められた配列はIgGとなってもCD3εおよびヒトCD154と結合することが示された。
 この結果から、Dual Fab libraryから、第2の抗原と結合する抗体が取得可能であり、通常ファージライブラリを用いたパンニングではFabドメインのみであるが、Fc領域を含むIgGとなっても結合が認められるクローンの濃縮がヒトIgAだけでなくヒトCD154でも可能であることが示された。したがって、Dual Fab Libraryは、CD3との結合能を保持しながら第2の抗原との結合能を有するFabドメインを取得することができるLibraryだといえる。
The result is shown in FIG. When clones that were found to be bound by phage ELISA were converted to IgG, including those containing some amino acid mutations, the sequences that were found to be bound by phage ELISA would bind to CD3ε and human CD154 even if they became IgG. It has been shown.
From this result, it is possible to obtain an antibody that binds to the second antigen from the Dual Fab library. Normally, panning using a phage library has only a Fab domain, but binding to an IgG containing an Fc region is recognized. It was shown that enrichment of the resulting clones is possible not only with human IgA but also with human CD154. Therefore, it can be said that the Dual Fab Library is a library capable of obtaining a Fab domain having the ability to bind to the second antigen while retaining the ability to bind to CD3.
(9-4)取得したFabドメインを有するIgGのCD3ε及びヒトCD154との同時結合の評価
 (9-3)において、Dual Fab Libraryから得られたクローンがIgGとなっても結合を有することが示された。次に、得られたIgGがCD3及びヒトCD154と同時に結合するかを競合法(電気化学発光法(ECL法))で判定した。CD3及びヒトCD154と同時に結合する場合は、CD154と結合している抗体にCD3を加えてもECLシグナルは変化しないが、同時結合できない場合には、CD3を加えると一部の抗体がCD3と結合してECLシグナルが低下するはずである。
(9-4) Evaluation of simultaneous binding of the obtained Fab domain IgG with CD3ε and human CD154 (9-3) shows that the clone obtained from the Dual Fab Library has binding even if it becomes IgG It was done. Next, it was determined by a competition method (electrochemiluminescence method (ECL method)) whether the obtained IgG binds simultaneously with CD3 and human CD154. When binding to CD3 and human CD154 simultaneously, adding CD3 to the antibody that binds to CD154 does not change the ECL signal, but if simultaneous binding is not possible, adding CD3 causes some antibodies to bind to CD3. Then the ECL signal should drop.
 具体的には、TBST溶液で希釈したビオチン化ヒトCD154 25μLと、1 μg/mLに調製された抗体溶液12.5μLと、TBSTもしくは競合させるためのCD3εホモ二量体タンパク質(9.4pmol/μL)12.5μLと、sulfo-tagを付加した抗ヒトIgG抗体(Invitrogen #628400)25μLをNunc-Immuno(tm) MicroWell(tm) 96 well round plates(Nunc)の各ウェルに添加し、混合した後、遮光しながら室温で1時間以上インキュベートし、抗体抗原複合体を形成させた。0.5%BSAを含むTBST溶液(ブロッキング溶液と表記する。TBST溶液はTaKaRa社製のTBSに0.1%Tween20を加えたもの)をstreptavidin plate(MSD)各ウェルに150μLずつ加えて室温で1時間以上インキュベートした。ブロッキング溶液を除いた後、TBST溶液250μLで3回洗浄した。抗体抗原複合体溶液を50μLずつ各ウェルに添加し、室温1時間インキュベートして、ビオチン化抗原―抗体―検出用sulfo-tag抗体の複合体溶液をビオチン化抗原を介してstreptavidin plateに結合させた。抗体抗原複合体溶液を除いた後、TBST溶液で3回洗浄し、4xREAD buffer(MSD)を水で2倍に希釈した溶液を各ウェルに150μLずつ加え、Sector Imager 2400(MSD)でsulfo-tagの発光シグナルを検出した。 Specifically, biotinylated human CD154 25 μL diluted with TBST solution, antibody solution 12.5 μL prepared to 1 μg / mL, TBST or CD3ε homodimeric protein (9.4 pmol / μL) 12.5 for competition Add μL and 25 μL of anti-human IgG antibody added with sulfo-tag (Invitrogen) # 628400) to each well of Nunc-Immuno (tm) MicroWell (tm) 96 well round plates (Nunc). The mixture was incubated at room temperature for 1 hour or longer to form an antibody-antigen complex. Add TBST solution containing 0.5% BSA (referred to as blocking solution; TBST solution with 0.1% Tween20 to TKaRa TBS) to each well of streptavidin plate (MSD) and incubate for 1 hour at room temperature did. After removing the blocking solution, the plate was washed 3 times with 250 μL of TBST solution. 50 μL each of the antibody-antigen complex solution was added to each well and incubated for 1 hour at room temperature to allow the biotinylated antigen-antibody-sulfo-tag antibody complex solution to bind to the streptavidin-plate via the biotinylated antigen. . After removing the antibody-antigen complex solution, wash 3 times with TBST solution, add 150 μL of 4xREAD buffer (MSD) diluted twice with water to each well, and use sulfo-tag with Sector Imager 2400 (MSD). The luminescence signal was detected.
 その結果を図25に示す。競合させるためのCD3εホモ二量体タンパク質を加えた場合、TBSTを加えた場合と比較してECLシグナルの低下が認められた。この結果から、本検討で見出されたCD3εとヒトCD154に結合する分子は、CD3に結合するとヒトCD154に結合できないDual Fab分子であることが示された。この結果から、Dual Fab libraryから、第2の抗原と結合する抗体が取得可能であり、その中に、CD3と結合すると第2の抗原と結合できない(もしくは第2の抗原と結合するとCD3と結合できない)という、複数種の抗原と同時には結合できないDual Fab分子の取得が可能であることが示された。 The result is shown in FIG. When CD3ε homodimeric protein for competition was added, a decrease in ECL signal was observed compared to the case where TBST was added. From this result, it was shown that the molecule that binds to CD3ε and human CD154 found in this study is a Dual Fab molecule that cannot bind to human CD154 when bound to CD3. From this result, an antibody that binds to the second antigen can be obtained from the DualDFab library, and when it binds to CD3, it cannot bind to the second antigen (or binds to the second antigen and binds to CD3). It was shown that it is possible to obtain Dual Fab molecules that cannot bind simultaneously with multiple types of antigens.
 当業者であれば(9-2)でファージを用いた結合活性評価から結合分子が見出されれば、評価数を多くすることによって結合分子の配列のバラエティーを増やすことができることが自明であるので、以上からDual Fab Libraryは、CD3との結合能を保持しながら第2の抗原との結合能を有するFabドメインを取得することができるLibraryだといえる。また、本実施例ではH鎖のみを多様化させたDual Fab Libraryを用いたが、通常ライブラリサイズ(多様性とも呼び、ライブラリ中に多様な配列が含まれることを意味する)が大きい方が、より抗原結合分子を取得することができるため、L鎖も多様化させたDual Fab Libraryも本実施例で示されたことと同様に、Dual Fab分子取得に用いることができる。 Since it is obvious that a person skilled in the art can increase the variety of the binding molecule sequence by increasing the number of evaluations if the binding molecule is found from the binding activity evaluation using phage in (9-2), Based on the above, it can be said that Dual Fab Library is a library that can obtain a Fab domain having the ability to bind to the second antigen while retaining the ability to bind CD3. Moreover, in this example, Dual Fab Library in which only the H chain was diversified was used, but usually the larger the library size (also called diversity, meaning that the library includes various sequences), Since more antigen-binding molecules can be obtained, Dual Fab Library with diversified L chains can also be used for obtaining Dual Fab molecules in the same manner as shown in this example.
 実施例9に示された様にDual Fab分子を作ることができれば、第3の抗原に結合するFabや抗原結合ドメインを当業者公知の方法、例えばハイブリドーマ法や抗体ライブラリからの結合抗体や抗原結合ドメインの選抜方法、を用いて同定することが可能であり、同定された第3の抗原に結合する抗原結合ドメイン(例えばFab)とDual Fab分子のFabドメインを持つ抗体は当業者公知の多重特異性抗体の作製方法、例えばL鎖を共通化して2本のH鎖が異なる抗体を作る方法(Fc領域の各ドメインの界面を制御する技術)、Cross Mab法、Fab Arm Exchange法、によって多重特異性抗体を取得することができる。すなわち、Dual Fab分子が同定できれば、当業者公知の方法によって第3の抗原に結合するFabと実施例9で示された第1と第2の抗原に結合するDual Fabを組み合わせて、所望の多重特異性抗体を取得することができる。以上の実施例から、多種類の抗原に対してDual Fab libraryを適応することでCD3εと第2の抗原に結合する分子が取得できることが示され、さらに実施例8と9で第1の抗原(CD3ε)および第2の抗原に結合するが、第1の抗原と第2の抗原が同時に結合しない分子が取得できることが明らかとなった。前述の様に第3の抗原に結合するFabを同定することは当業者公知の方法で可能であることから、Dual Fabライブラリを用いることで、実施例1に記載した所望の抗体を得ることができる。 If a Dual-Fab molecule can be produced as shown in Example 9, Fab or antigen binding domain that binds to the third antigen can be obtained by methods known to those skilled in the art, for example, binding antibodies or antigen binding from hybridoma methods or antibody libraries. The antibody having an antigen-binding domain (for example, Fab) that binds to the identified third antigen and the Fab domain of the Dual Fab molecule can be identified using a domain selection method. Multispecificity by the production method of sex antibody, for example, the method of making an antibody with two different H chains by sharing L chain (technology to control the interface of each domain of Fc region), Cross Mab method, Fab Arm Exchange method Sex antibodies can be obtained. That is, if a Dual Fab molecule can be identified, a desired multiplex can be obtained by combining the Fab that binds to the third antigen and the Dual Fab that binds to the first and second antigens shown in Example 9 by a method known to those skilled in the art. Specific antibodies can be obtained. From the above examples, it was shown that a molecule that binds to CD3ε and the second antigen can be obtained by adapting Dual Fab library to many types of antigens. Further, in Examples 8 and 9, the first antigen ( It was revealed that molecules that bind to CD3ε) and the second antigen but do not bind to the first antigen and the second antigen simultaneously can be obtained. As described above, it is possible to identify a Fab that binds to the third antigen by a method known to those skilled in the art. Therefore, the desired antibody described in Example 1 can be obtained by using the Dual Fab library. it can.
(9-5)CD3/ヒトCD154 Dual Fab分子について
 実施例9において、CD3εおよびヒトCD154に結合し、CD3εとヒトCD154が同時に結合しないDual Fab分子が得られることが示された。さらに第3の抗原と結合する抗原結合ドメインを付加することも当業者公知の方法で実施可能である。
 近年、CD154のレセプターであるCD40のアゴニスト抗体が癌抗原反応性のT細胞を移入する方法において抗腫瘍活性を増強することが示された(J Immunother. 2012 Apr;35(3):276-82.)。本実施例でCD3とCD154に結合するDual Fab分子が構築できることが明らかになったが、CD154を介してCD40に対してアゴニスト活性を示す抗体を選定すれば、CD40を介した抗腫瘍効果が期待できる。すなわち、本Dual Fabは、任意の第3の抗原が発現している細胞に、CD3εとの結合でT細胞による細胞傷害活性と、CD154との結合を介してCD40のアゴニストシグナルによる抗腫瘍効果の増強が期待できる。
(9-5) CD3 / Human CD154 Dual Fab Molecule In Example 9, it was shown that a Dual Fab molecule that binds to CD3ε and human CD154 and does not bind CD3ε and human CD154 at the same time is obtained. Furthermore, it is possible to add an antigen-binding domain that binds to the third antigen by a method known to those skilled in the art.
Recently, it has been shown that an agonist antibody of CD40, which is a receptor for CD154, enhances antitumor activity in a method of transferring cancer antigen-reactive T cells (J Immunother. 2012 Apr; 35 (3): 276-82 .). In this example, it was clarified that a dual Fab molecule that binds to CD3 and CD154 can be constructed. However, if an antibody exhibiting agonist activity against CD40 is selected via CD154, antitumor effect via CD40 is expected. it can. That is, this dual Fab is capable of inhibiting the cytotoxic activity of T cells by binding to CD3ε and the antitumor effect of CD40 agonistic signals through binding to CD154 on cells expressing an arbitrary third antigen. An increase can be expected.
〔参考実施例〕
〔参考実施例1〕抗体の発現ベクターの作製および抗体の発現と精製
 アミノ酸置換の導入はQuikChange Site-Directed Mutagenesis Kit(Stratagene)、PCRまたはIn fusion Advantage PCR cloning kit (TAKARA)等を用いて当業者公知の方法で行い、発現ベクターを構築した。得られた発現ベクターの塩基配列は当業者公知の方法で決定した。作製したプラスミドをヒト胎児腎癌細胞由来HEK293H株(Invitrogen)、またはFreeStyle293細胞(Invitrogen社)に、一過性に導入し、抗体の発現を行った。得られた培養上清から、rProtein A SepharoseTM Fast Flow(GEヘルスケア)を用いて当業者公知の方法で、抗体を精製した。精製抗体濃度は、分光光度計を用いて280 nmでの吸光度を測定し、得られた値からPACE法により算出された吸光係数を用いて抗体濃度を算出した(Protein Science 1995 ; 4 : 2411-2423)。
[Reference Example]
[Reference Example 1] Preparation of antibody expression vector and expression and purification of antibody Introduction of amino acid substitution is performed by those skilled in the art using QuikChange Site-Directed Mutagenesis Kit (Stratagene), PCR or In fusion Advantage PCR cloning kit (TAKARA), etc. An expression vector was constructed by a known method. The base sequence of the obtained expression vector was determined by a method known to those skilled in the art. The prepared plasmid was transiently introduced into a human fetal kidney cancer cell-derived HEK293H strain (Invitrogen) or FreeStyle293 cells (Invitrogen) to express the antibody. The antibody was purified from the obtained culture supernatant by a method known to those skilled in the art using rProtein A Sepharose Fast Flow (GE Healthcare). The purified antibody concentration was determined by measuring the absorbance at 280 nm using a spectrophotometer, and calculating the antibody concentration using the extinction coefficient calculated by the PACE method from the obtained value (Protein Science 1995; 4: 2411- 2423).
〔参考実施例2〕抗体のECM(Extracellular matrix、細胞外マトリックス)結合評価
 抗体のECM(Extracellular matrix)への結合評価はWO2012093704A1を参考に以下の手順で実施された。ECM Phenol red free(BD Matrigel #356237)をTBSで2mg/mLに希釈し、氷上で冷やしたECL測定用プレート(L15XB-3、MSD high bind)の各ウエルの真ん中に5μL滴下した。その後、プレートシールで蓋をして4℃で一晩静置した。ECMを固相化したプレートを室温に戻し、ECL Blocking Buffer(PBSに0.5%BSAおよび0.05%Tween 20を加えたもの)150μLを各ウエルに加えて、室温で静置2時間以上もしくは4℃で一晩静置した。次に、PBS-T(PBSに0.05%Tween 20を加えたもの)を用いて抗体サンプルを9μg/mLに希釈した。2次抗体をECLDB(PBSに0.1%BSAおよび0.01%Tween 20を加えたもの)で2μg/mLに希釈し、ECLDBが10μLずつ各ウエルに分注されている丸底プレートへ、抗体溶液20μL、2次抗体溶液30μLを加えて、遮光下室温で1時間攪拌した。ECL Bloking Bufferが入ったECMプレートから、ECL Blocking Bufferを転倒除去し、このプレートへ、前述の抗体・二次抗体の混合溶液を50μLずつ加えた。その後遮光下室温で1時間静置した。サンプルを転倒除去後、READ buffer(MSD)を各ウェルに150μLずつ加え、Sector Imager 2400(MSD)でsulfo-tagの発光シグナルを検出した。
[Reference Example 2] Evaluation of antibody binding to ECM (Extracellular matrix) The evaluation of antibody binding to ECM (Extracellular matrix) was performed by the following procedure with reference to WO2012093704A1. ECM Phenol red free (BD Matrigel # 356237) was diluted with TBS to 2 mg / mL, and 5 μL was dropped in the middle of each well of an ECL measurement plate (L15XB-3, MSD high bind) cooled on ice. Then, it was covered with a plate seal and allowed to stand at 4 ° C. overnight. Return the ECM-immobilized plate to room temperature, add 150 μL of ECL Blocking Buffer (PBS with 0.5% BSA and 0.05% Tween 20) to each well, and allow to stand at room temperature for at least 2 hours or at 4 ° C. Let stand overnight. Next, the antibody sample was diluted to 9 μg / mL using PBS-T (0.05% Tween 20 added to PBS). Dilute the secondary antibody to 2 μg / mL with ECLDB (PBS plus 0.1% BSA and 0.01% Tween 20), and add 20 μL of antibody solution to the round-bottom plate in which 10 μL of ECLDB is dispensed into each well. 30 μL of the secondary antibody solution was added and stirred at room temperature for 1 hour in the dark. From the ECM plate containing the ECL Bloking Buffer, the ECL Blocking Buffer was removed by inverting, and 50 μL each of the above-mentioned mixed antibody / second antibody solution was added to the plate. Thereafter, the mixture was allowed to stand at room temperature for 1 hour in the dark. After removing the sample by overturning, 150 μL of READ buffer (MSD) was added to each well, and a sulfo-tag luminescence signal was detected with Sector Imager 2400 (MSD).
〔参考実施例3〕ヒトIgAの調製
 ヒトIgAとして天然に存在するヒトIgA配列のうちFc部分を用いた(ヒトIgA-Fc)。ヒトIgA-FcのC末端にbiotinを付加するためビオチンリガーゼによってビオチンが付加される特異的な配列(AviTag配列、配列番号:79)をコードする遺伝子断片をリンカーを介して連結させた。ヒトIgA-FcとAviTag配列が連結されたタンパク質(配列番号:80)をコードする遺伝子断片を動物細胞発現用ベクターに組み込み、構築されたプラスミドベクターを293Fectin (Invitrogen)を用いてFreeStyle293細胞 (Invitrogen)に導入した。このときEBNA1(配列番号:81)を発現する遺伝子およびビオチンリガーゼ(BirA、配列番号:82)を発現する遺伝子を同時に導入し、さらにヒトIgA-Fcをビオチン標識する目的でビオチンを添加した。前述の手順に従って遺伝子が導入された細胞を37℃、8% CO2で6日間培養し、目的のタンパク質を培養上清中に分泌させた。
 目的のヒトIgA-Fcを含む細胞培養液を0.22μmボトルトップフィルターでろ過し、培養上清を得た。20 mM Tris-HCl, pH7.4で平衡化されたHiTrap Q HP (GEヘルスケア)に、同溶液で希釈された培養上清をアプライし、NaClの濃度勾配により目的のヒトIgA-Fcを溶出させた。次に、50 mM Tris-HCl, pH8.0で平衡化されたSoftLink Avidin カラム(Promega)に、同溶液で希釈された前記HiTrap Q HP溶出液をアプライし、5 mM ビオチン, 150 mM NaCl, 50 mM Tris-HCl, pH8.0で目的のヒトIgA-Fcを溶出させた。その後、Superdex200(GEヘルスケア)を用いたゲルろ過クロマトグラフィーによって、目的外の不純物である会合体を除去し、バッファーが20 mM Histidine-HCl, 150 mM NaCl, pH6.0に置換された精製ヒトIgA-Fcを得た。
[Reference Example 3] Preparation of human IgA The Fc portion of the human IgA sequence naturally present as human IgA was used (human IgA-Fc). In order to add biotin to the C-terminus of human IgA-Fc, a gene fragment encoding a specific sequence (AviTag sequence, SEQ ID NO: 79) to which biotin is added by biotin ligase was ligated via a linker. A gene fragment encoding a protein (SEQ ID NO: 80) in which human IgA-Fc and AviTag sequences are linked is incorporated into an animal cell expression vector, and the constructed plasmid vector is used in FreeStyle293 cells (Invitrogen) using 293Fectin (Invitrogen). Introduced. At this time, a gene expressing EBNA1 (SEQ ID NO: 81) and a gene expressing biotin ligase (BirA, SEQ ID NO: 82) were simultaneously introduced, and biotin was added for the purpose of biotin labeling human IgA-Fc. Cells into which the gene had been introduced were cultured for 6 days at 37 ° C. and 8% CO 2 according to the procedure described above, and the target protein was secreted into the culture supernatant.
The cell culture solution containing the target human IgA-Fc was filtered through a 0.22 μm bottle top filter to obtain a culture supernatant. Apply the culture supernatant diluted with the same solution to HiTrap Q HP (GE Healthcare) equilibrated with 20 mM Tris-HCl, pH 7.4, and elute the target human IgA-Fc with NaCl concentration gradient I let you. Next, the HiTrap Q HP eluate diluted with the same solution was applied to a SoftLink Avidin column (Promega) equilibrated with 50 mM Tris-HCl, pH 8.0, and 5 mM biotin, 150 mM NaCl, 50 The target human IgA-Fc was eluted with mM Tris-HCl, pH 8.0. Subsequently, purified humans were removed by gel filtration chromatography using Superdex200 (GE Healthcare) to remove aggregates, which were impurities of no interest, and the buffer was replaced with 20 mM Histidine-HCl, 150 mM NaCl, pH 6.0. IgA-Fc was obtained.
 本発明により、抗原結合分子により生じる活性を増強させることが可能となるとともに、副作用の原因となると考えられる、異なる細胞上で発現している抗原への結合によって生じる当該異なる細胞間の架橋を回避することが可能となり、医薬品として適したポリペプチドが提供される。 The present invention makes it possible to enhance the activity produced by antigen-binding molecules and avoid cross-linking between different cells caused by binding to antigens expressed on different cells, which are thought to cause side effects. And a polypeptide suitable as a pharmaceutical product is provided.

Claims (30)

  1.  第1の抗原および該第1の抗原とは異なる第2の抗原に結合することができるが、第1の抗原と第2の抗原に同時には結合しない、抗体の可変領域、並びに
     該第1の抗原および第2の抗原とは異なる第3の抗原に結合する可変領域
    を含む、抗原結合分子。
    A variable region of an antibody capable of binding to a first antigen and a second antigen different from the first antigen, but not simultaneously binding to the first antigen and the second antigen, and the first antigen An antigen-binding molecule comprising a variable region that binds to a third antigen different from the antigen and the second antigen.
  2.  第1の抗原および該第1の抗原とは異なる第2の抗原に結合することができるが、第1の抗原と第2の抗原に同時には結合しないように、重鎖可変領域のアミノ酸が改変された抗体の可変領域を含む、抗原結合分子。 The amino acid of the heavy chain variable region is modified so that it can bind to the first antigen and a second antigen different from the first antigen, but does not bind to the first antigen and the second antigen simultaneously. An antigen-binding molecule comprising a variable region of a prepared antibody.
  3.  第1の抗原と第2の抗原に同時には結合しない可変領域が、それぞれ異なる細胞上で発現している第1の抗原と第2の抗原に同時には結合しない可変領域である、請求項1又は2に記載の抗原結合分子。 The variable region that does not bind to the first antigen and the second antigen at the same time is a variable region that does not bind to the first antigen and the second antigen that are expressed on different cells, respectively. 3. The antigen-binding molecule according to 2.
  4.  さらに、抗体のFc領域を含む、請求項1から3のいずれかに記載の抗原結合分子。 The antigen-binding molecule according to any one of claims 1 to 3, further comprising an Fc region of the antibody.
  5.  Fc領域のFcγRに対する結合活性が、天然型ヒトIgG1抗体のFc領域と比較して低下しているFc領域である、請求項4に記載の抗原結合分子。 The antigen-binding molecule according to claim 4, wherein the Fc region has a reduced Fc region binding activity to FcγR compared to the Fc region of a natural human IgG1 antibody.
  6.  多重特異性抗体である、請求項1から5のいずれかに記載の抗原結合分子。 The antigen-binding molecule according to any one of claims 1 to 5, which is a multispecific antibody.
  7.  第1の抗原と第2の抗原に結合することができる抗体の可変領域が、少なくとも1つのアミノ酸の改変が導入されている可変領域である、請求項1から6のいずれかに記載の抗原結合分子。 The antigen binding according to any one of claims 1 to 6, wherein the variable region of an antibody capable of binding to the first antigen and the second antigen is a variable region into which at least one amino acid modification has been introduced. molecule.
  8.  前記改変が、少なくとも1つのアミノ酸の置換又は挿入である、請求項7に記載の抗原結合分子。 The antigen-binding molecule according to claim 7, wherein the modification is substitution or insertion of at least one amino acid.
  9.  前記改変が、第1の抗原に結合する可変領域のアミノ酸配列の一部の、第2の抗原に結合するアミノ酸配列への置換、又は、第1の抗原に結合する可変領域のアミノ酸配列への、第2の抗原に結合するアミノ酸配列の挿入である、請求項7又は8に記載の抗原結合分子。 The modification is the replacement of a part of the amino acid sequence of the variable region that binds to the first antigen with the amino acid sequence that binds to the second antigen, or the amino acid sequence of the variable region that binds to the first antigen. The antigen-binding molecule according to claim 7 or 8, which is an insertion of an amino acid sequence that binds to a second antigen.
  10.  挿入されるアミノ酸の数が1~25個である、請求項8又は9に記載の抗原結合分子。 The antigen-binding molecule according to claim 8 or 9, wherein the number of inserted amino acids is 1 to 25.
  11.  改変されるアミノ酸が、抗体の可変領域のCDR1、CDR2、CDR3又はFR3領域のアミノ酸である、請求項7から10のいずれかに記載の抗原結合分子。 The antigen-binding molecule according to any one of claims 7 to 10, wherein the amino acid to be modified is an amino acid in the CDR1, CDR2, CDR3, or FR3 region of the variable region of the antibody.
  12.  改変されるアミノ酸が、ループ領域のアミノ酸である、請求項7から11のいずかに記載の抗原結合分子。 The antigen-binding molecule according to any one of claims 7 to 11, wherein the amino acid to be modified is a loop region amino acid.
  13.  改変されるアミノ酸が、抗体のH鎖可変領域のKabatナンバリング31~35、50~65、71~74及び95~102、L鎖可変領域のKabatナンバリング24~34、50~56及び89~97から選ばれる少なくとも1つのアミノ酸である、請求項7から11のいずれかに記載の抗原結合分子。 The amino acids to be modified are from Kabat numbering 31-35, 50-65, 71-74 and 95-102 of the heavy chain variable region of the antibody, and Kabat numbering 24-34, 50-56 and 89-97 of the light chain variable region. The antigen-binding molecule according to any one of claims 7 to 11, which is at least one amino acid selected.
  14.  第1の抗原又は第2の抗原のいずれか1つが、T細胞表面に特異的に発現している分子であり、他方の抗原が、T細胞又は他の免疫細胞表面に発現している分子である、請求項1から13のいずれかに記載の抗原結合分子。 Either one of the first antigen and the second antigen is a molecule that is specifically expressed on the surface of T cells, and the other antigen is a molecule that is expressed on the surface of T cells or other immune cells. The antigen-binding molecule according to any one of claims 1 to 13.
  15.  第1の抗原又は第2の抗原のいずれか1つがCD3であり、他方の抗原がFcγR、TLR、レクチン、IgA、免疫チェックポイント分子、TNFスーパーファミリー分子、TNFRスーパーファミリー分子又はNKレセプター分子である、請求項14に記載の抗原結合分子。 Either one of the first antigen or the second antigen is CD3, and the other antigen is FcγR, TLR, lectin, IgA, immune checkpoint molecule, TNF superfamily molecule, TNFR superfamily molecule or NK receptor molecule The antigen-binding molecule according to claim 14.
  16.  第3の抗原が、がん組織特異的に発現している分子である、請求項14又は15に記載の抗原結合分子。 The antigen-binding molecule according to claim 14 or 15, wherein the third antigen is a molecule expressed specifically in cancer tissue.
  17.  請求項1から16のいずれかに記載の抗原結合分子及び医学的に許容し得る担体を含む、医薬組成物。 A pharmaceutical composition comprising the antigen-binding molecule according to any one of claims 1 to 16 and a medically acceptable carrier.
  18.  請求項1から16のいずれかに記載の抗原結合分子を製造する方法であって、工程(i)~(iv)を含む方法:
    (i)第1の抗原又は第2の抗原に結合する抗体の可変領域の少なくとも1つのアミノ酸が改変された抗原結合分子であって、該改変された可変領域のアミノ酸の少なくとも1つが互いに異なる可変領域を含む抗原結合分子のライブラリーを作製する工程、
    (ii)作製されたライブラリーの中から、第1の抗原及び第2の抗原に対して結合活性を有するが、該第1の抗原及び第2の抗原と同時には結合しない可変領域を含む抗原結合分子を選択する工程、
    (iii)工程(ii)で選択された抗原結合分子の該可変領域をコードする核酸、及び/または、第3の抗原に結合する抗原結合分子の可変領域をコードする核酸を含む宿主細胞を培養して、第1の抗原と第2の抗原に結合することができるが該第1の抗原と第2の抗原とが同時には結合しない抗体の可変領域、及び/または、第3の抗原に結合する可変領域を含む、抗原結合分子を発現させる工程、並びに
    (iv)前記宿主細胞培養物から抗原結合分子を回収する工程。
    A method for producing an antigen-binding molecule according to any one of claims 1 to 16, comprising steps (i) to (iv):
    (i) an antigen-binding molecule in which at least one amino acid of a variable region of an antibody that binds to the first antigen or the second antigen is modified, wherein at least one of the amino acids of the modified variable region is different from each other Creating a library of antigen binding molecules comprising the region,
    (ii) an antigen comprising a variable region that has binding activity to the first antigen and the second antigen, but does not bind simultaneously with the first antigen and the second antigen, from the prepared library Selecting a binding molecule,
    (iii) culturing a host cell containing a nucleic acid encoding the variable region of the antigen-binding molecule selected in step (ii) and / or a nucleic acid encoding the variable region of the antigen-binding molecule that binds to the third antigen Thus, the antibody can bind to the first antigen and the second antigen, but the first antigen and the second antigen do not bind simultaneously, and / or bind to the third antigen. Expressing an antigen-binding molecule comprising a variable region that:
    (iv) recovering the antigen-binding molecule from the host cell culture.
  19.  工程(ii)において選択する抗原結合分子に含まれる、第1の抗原と第2の抗原に同時には結合しない可変領域が、それぞれ異なる細胞上で発現している第1の抗原と第2の抗原に同時には結合しない可変領域である、請求項18に記載の製造方法。 The first and second antigens, which are included in the antigen-binding molecule selected in step (ii) and which are variable regions that do not bind to the first antigen and the second antigen at the same time, are expressed on different cells. The manufacturing method according to claim 18, which is a variable region that does not bind to each other simultaneously.
  20.  工程(iii)において培養する宿主細胞が、抗体のFc領域をコードする核酸をさらに含む、請求項18又は19に記載の製造方法。 The production method according to claim 18 or 19, wherein the host cell cultured in step (iii) further comprises a nucleic acid encoding the Fc region of the antibody.
  21.  Fc領域のFcγRに対する結合活性が、天然型ヒトIgG1抗体のFc領域と比較して低下しているFc領域である、請求項20に記載の製造方法。 21. The production method according to claim 20, wherein the Fc region has a reduced Fc region binding activity to FcγR compared to the Fc region of a natural human IgG1 antibody.
  22.  製造する抗原結合分子が多重特異性抗体である、請求項18から21のいずれかに記載の製造方法。 The production method according to any one of claims 18 to 21, wherein the antigen-binding molecule to be produced is a multispecific antibody.
  23.  工程(i)における、可変領域の少なくとも1つの改変されたアミノ酸が、置換又は挿入されたアミノ酸である、請求項18から22のいずれかに記載の製造方法。 The production method according to any one of claims 18 to 22, wherein in step (i), at least one modified amino acid of the variable region is a substituted or inserted amino acid.
  24.  挿入されたアミノ酸の数が1~25個である、請求項23に記載の製造方法。 The production method according to claim 23, wherein the number of inserted amino acids is 1 to 25.
  25.  改変が、抗体の可変領域のCDR1、CDR2、CDR3又はFR3領域のアミノ酸の改変である、請求項18から24のいずれかに記載の製造方法。 25. The production method according to any one of claims 18 to 24, wherein the modification is modification of an amino acid of CDR1, CDR2, CDR3, or FR3 region of an antibody variable region.
  26.  改変が、ループ領域のアミノ酸の改変である、請求項18から25のいずれかに記載の製造方法。 The production method according to any one of claims 18 to 25, wherein the modification is modification of an amino acid in a loop region.
  27.  改変が、抗体のH鎖可変領域のKabatナンバリング31~35、50~65、71~74及び95~102、L鎖可変領域のKabatナンバリング24~34、50~56及び89~97から選ばれる少なくとも1つのアミノ酸の改変である、請求項18から25のいずれかに記載の製造方法。 The modification is at least selected from Kabat numbering 31-35, 50-65, 71-74 and 95-102 of the heavy chain variable region of the antibody, Kabat numbering 24-34, 50-56 and 89-97 of the light chain variable region The production method according to any one of claims 18 to 25, wherein the production method is modification of one amino acid.
  28.  第1の抗原又は第2の抗原のいずれか1つが、T細胞表面に特異的に発現している分子であり、他方の抗原が、T細胞又は他の免疫細胞表面に発現している分子である、請求項18から27のいずれかに記載の製造方法。 Either one of the first antigen and the second antigen is a molecule that is specifically expressed on the surface of T cells, and the other antigen is a molecule that is expressed on the surface of T cells or other immune cells. The manufacturing method according to any one of claims 18 to 27.
  29.  第1の抗原又は第2の抗原のいずれか1つがCD3であり、他方の抗原がFcγR、TLR、IgA、レクチン、免疫チェックポイント分子、TNFスーパーファミリー分子、TNFRスーパーファミリー分子又はNKレセプター分子である、請求項28に記載の製造方法。 Either one of the first antigen or the second antigen is CD3, and the other antigen is FcγR, TLR, IgA, lectin, immune checkpoint molecule, TNF superfamily molecule, TNFR superfamily molecule or NK receptor molecule The manufacturing method according to claim 28.
  30.  第3の抗原が、がん組織特異的に発現している分子である、請求項28又は29に記載の製造方法。 30. The production method according to claim 28 or 29, wherein the third antigen is a molecule expressed specifically in cancer tissue.
PCT/JP2014/079785 2013-11-11 2014-11-11 Antigen-binding molecule containing modified antibody variable region WO2015068847A1 (en)

Priority Applications (23)

Application Number Priority Date Filing Date Title
JP2015546719A JPWO2015068847A1 (en) 2013-11-11 2014-11-11 Antigen-binding molecules comprising modified antibody variable regions
KR1020167015015A KR102551410B1 (en) 2013-11-11 2014-11-11 Antigen-binding molecule containing modified antibody variable region
AU2014347565A AU2014347565B2 (en) 2013-11-11 2014-11-11 Antigen-binding molecule containing modified antibody variable region
CA2929044A CA2929044A1 (en) 2013-11-11 2014-11-11 Antigen-binding molecule containing modified antibody variable region
CN201480072799.3A CN105940107B (en) 2013-11-11 2014-11-11 Antigen binding molecules comprising altered antibody variable regions
EA201600354A EA201600354A1 (en) 2013-11-11 2014-11-11 ANTIGENSOUND MOLECULE CONTAINING A VARIABLE AREA OF ANTIBODY
US15/035,098 US20160280787A1 (en) 2013-11-11 2014-11-11 Antigen-binding molecule containing modified antibody variable region
BR112016010025A BR112016010025A2 (en) 2013-11-11 2014-11-11 antigen binding molecule containing modified antibody variable region
EP14859814.7A EP3070168A4 (en) 2013-11-11 2014-11-11 Antigen-binding molecule containing modified antibody variable region
MX2016005762A MX2016005762A (en) 2013-11-11 2014-11-11 Antigen-binding molecule containing modified antibody variable region.
KR1020237022012A KR20230104764A (en) 2013-11-11 2014-11-11 Antigen-binding molecule containing modified antibody variable region
TW104137120A TWI740809B (en) 2014-11-11 2015-11-11 Database of antigen-binding molecules containing altered antibody variable regions
JP2016559082A JP7125248B2 (en) 2014-11-11 2015-11-11 Libraries of antigen-binding molecules containing altered antibody variable regions
TW110132433A TWI831044B (en) 2014-11-11 2015-11-11 Antigen-binding molecules, pharmaceutical compositions containing antigen-binding molecules, and methods of manufacturing and selecting antigen-binding molecules
US15/525,603 US11154615B2 (en) 2014-11-11 2015-11-11 Library of antigen-binding molecules including modified antibody variable region
EP15859972.0A EP3219724A4 (en) 2014-11-11 2015-11-11 Library of antigen-binding molecules including modified antibody variable region
PCT/JP2015/081693 WO2016076345A1 (en) 2014-11-11 2015-11-11 Library of antigen-binding molecules including modified antibody variable region
TW111148920A TW202313697A (en) 2014-11-11 2015-11-11 Library of antigen-binding molecules including modified antibody variable region
US16/704,464 US11739149B2 (en) 2013-11-11 2019-12-05 Antigen-binding molecule containing modified antibody variable region
JP2021069644A JP2021120375A (en) 2014-11-11 2021-04-16 Library of antigen-binding molecule including modified antibody variable region
US17/506,733 US20220040297A1 (en) 2014-11-11 2021-10-21 Library of antigen-binding molecules including modified antibody variable region
JP2023070625A JP2023083522A (en) 2014-11-11 2023-04-24 Library of antigen-binding molecule including modified antibody variable region
US18/345,750 US20240026000A1 (en) 2013-11-11 2023-06-30 Antigen-binding molecule containing modified antibody variable region

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013232803 2013-11-11
JP2013-232803 2013-11-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/035,098 A-371-Of-International US20160280787A1 (en) 2013-11-11 2014-11-11 Antigen-binding molecule containing modified antibody variable region
US16/704,464 Division US11739149B2 (en) 2013-11-11 2019-12-05 Antigen-binding molecule containing modified antibody variable region

Publications (1)

Publication Number Publication Date
WO2015068847A1 true WO2015068847A1 (en) 2015-05-14

Family

ID=53041619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079785 WO2015068847A1 (en) 2013-11-11 2014-11-11 Antigen-binding molecule containing modified antibody variable region

Country Status (12)

Country Link
US (3) US20160280787A1 (en)
EP (1) EP3070168A4 (en)
JP (3) JPWO2015068847A1 (en)
KR (2) KR102551410B1 (en)
CN (3) CN113307873A (en)
AU (1) AU2014347565B2 (en)
BR (1) BR112016010025A2 (en)
CA (1) CA2929044A1 (en)
EA (1) EA201600354A1 (en)
MX (1) MX2016005762A (en)
TW (2) TWI712421B (en)
WO (1) WO2015068847A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076345A1 (en) * 2014-11-11 2016-05-19 中外製薬株式会社 Library of antigen-binding molecules including modified antibody variable region
WO2018183894A1 (en) * 2017-03-31 2018-10-04 The Regents Of The University Of California Compositions and methods for targeting and killing alpha-v beta-3-positive cancer stem cells (cscs) and treating drug resistant cancers
US20200399373A1 (en) * 2018-02-14 2020-12-24 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule and combination
WO2020262576A1 (en) * 2019-06-28 2020-12-30 Chugai Seiyaku Kabushiki Kaisha Antigen binding molecules that bind pdgf-b and pdgf-d and uses thereof
JP2021508441A (en) * 2017-12-05 2021-03-11 中外製薬株式会社 Antigen-binding molecule containing a modified antibody variable region that binds to CD3 and CD137
US11142563B2 (en) 2012-06-14 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing modified Fc region
US11274151B2 (en) 2020-03-31 2022-03-15 Chugai Seiyaku Kabushiki Kaisha CD3-targeting and DLL3-targeting multispecific antigen-binding molecules and uses thereof
US11739149B2 (en) 2013-11-11 2023-08-29 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing modified antibody variable region
US11952422B2 (en) 2017-12-05 2024-04-09 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule comprising altered antibody variable region binding CD3 and CD137

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016182064A1 (en) 2015-05-13 2016-11-17 中外製薬株式会社 Multiple antigen binding molecular fusion, pharmaceutical composition, method for identifying linear epitope, and method for preparing multiple antigen binding molecular fusion
AU2017379382A1 (en) 2016-12-22 2019-07-11 Daiichi Sankyo Company, Limited Anti-CD3 Antibody and Molecules Comprising the Antibody
WO2018156106A1 (en) * 2017-02-22 2018-08-30 Ding Enyu An mrna cancer vaccine encoding human gm-csf fused to multiple tandem epitopes
WO2019161386A1 (en) * 2018-02-19 2019-08-22 New York University Alpha-synuclein single domain antibodies
SG11202102882YA (en) * 2018-09-28 2021-04-29 Chugai Pharmaceutical Co Ltd Antigen-binding molecule comprising altered antibody variable region
MA53742A (en) * 2018-09-28 2022-01-05 Chugai Pharmaceutical Co Ltd ANTIGEN-BINDING MOLECULES ABLE TO BIND TO CD3 AND CD137 BUT NOT SIMULTANEOUSLY
CN112794914B (en) * 2019-11-14 2022-09-16 深圳华大生命科学研究院 ALK nano antibody developed based on phage display technology and application thereof
US20230121511A1 (en) * 2020-03-31 2023-04-20 Chugai Seiyaku Kabushiki Kaisha Method for producing multispecific antigen-binding molecules
IL297566B1 (en) * 2020-06-01 2024-03-01 Mustbio Co Ltd Bispecific antibody or antigen-binding fragment thereof, and preparation method therefor
WO2023081266A2 (en) * 2021-11-03 2023-05-11 University Of Pittsburgh – Of The Commonwealth System Of Higher Education Molecules that bind to protogenin (prtg) polypeptides

Citations (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0125023A1 (en) 1983-04-08 1984-11-14 Genentech, Inc. Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
EP0266032A1 (en) 1986-08-29 1988-05-04 Beecham Group Plc Modified fibrinolytic enzyme
EP0404097A2 (en) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispecific and oligospecific, mono- and oligovalent receptors, production and applications thereof
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1992020791A1 (en) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994018221A1 (en) * 1993-02-02 1994-08-18 The Scripps Research Institute Methods for producing polypeptide binding sites
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1995001438A1 (en) 1993-06-30 1995-01-12 Medical Research Council Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof
WO1995015388A1 (en) 1993-12-03 1995-06-08 Medical Research Council Recombinant binding proteins and peptides
WO1995033844A1 (en) 1994-06-03 1995-12-14 GSF - Forschungszentrum für Umwelt und Gesundheit GmbH Method for producing heterologous bispecific antibodies
WO1996002576A1 (en) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Reconstituted human antibody against human interleukin-8
WO1996027011A1 (en) 1995-03-01 1996-09-06 Genentech, Inc. A method for making heteromultimeric polypeptides
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1998050431A2 (en) 1997-05-02 1998-11-12 Genentech, Inc. A method for making multispecific antibodies having heteromultimeric and common components
WO2000006717A2 (en) 1998-07-27 2000-02-10 Genentech, Inc. Improved transformation efficiency in phage display through modification of a coat protein
WO2000023579A1 (en) 1998-10-22 2000-04-27 The Regents Of The University Of California Functionally assembled antigen-specific intact recombinant antibody and a method for production thereof
WO2000042072A2 (en) 1999-01-15 2000-07-20 Genentech, Inc. Polypeptide variants with altered effector function
WO2006019447A1 (en) 2004-07-15 2006-02-23 Xencor, Inc. Optimized fc variants
WO2006036834A2 (en) 2004-09-24 2006-04-06 Amgen Inc. MODIFIED Fc MOLECULES
WO2006053301A2 (en) 2004-11-12 2006-05-18 Xencor, Inc. Fc variants with altered binding to fcrn
WO2006106905A1 (en) 2005-03-31 2006-10-12 Chugai Seiyaku Kabushiki Kaisha Process for production of polypeptide by regulation of assembly
WO2006132352A1 (en) 2005-06-10 2006-12-14 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical composition containing sc(fv)2
WO2007114325A1 (en) 2006-03-31 2007-10-11 Chugai Seiyaku Kabushiki Kaisha Antibody modification method for purifying bispecific antibody
JP2007536912A (en) * 2004-01-16 2007-12-20 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Fusion polypeptide capable of activating receptor
JP2008518023A (en) * 2004-10-27 2008-05-29 メディミューン,インコーポレーテッド Regulation of antibody specificity by altering affinity for cognate antigens
JP2008526809A (en) * 2005-01-05 2008-07-24 エフ−シュタール・ビオテヒノロギシェ・フォルシュングス−ウント・エントヴィックルングスゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Synthetic immunoglobulin domains with binding properties designed in a region of the molecule that is different from the complementarity-determining region
WO2008119353A1 (en) 2007-03-29 2008-10-09 Genmab A/S Bispecific antibodies and methods for production thereof
WO2009011941A2 (en) 2007-04-04 2009-01-22 The Government Of U.S.A., As Represented By The Secretary, Departmetnt Of Health & Human Services Monoclonal antibodies against dengue and other viruses with deletion in fc region
WO2009041613A1 (en) 2007-09-26 2009-04-02 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant region
WO2009086320A1 (en) 2007-12-26 2009-07-09 Xencor, Inc Fc variants with altered binding to fcrn
WO2009125825A1 (en) 2008-04-11 2009-10-15 中外製薬株式会社 Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
WO2009134891A2 (en) 2008-04-29 2009-11-05 Immunexcite, Inc. Immunomodulating compositions and methods of use thereof
WO2011028952A1 (en) 2009-09-02 2011-03-10 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
WO2011131746A2 (en) 2010-04-20 2011-10-27 Genmab A/S Heterodimeric antibody fc-containing proteins and methods for production thereof
JP2012501648A (en) * 2008-09-03 2012-01-26 ジェネンテック, インコーポレイテッド Multispecific antibody
WO2012023053A2 (en) 2010-08-16 2012-02-23 Novimmune S.A. Methods for the generation of multispecific and multivalent antibodies
WO2012058768A1 (en) 2010-11-05 2012-05-10 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the fc domain
WO2012073985A1 (en) 2010-11-30 2012-06-07 中外製薬株式会社 Cytotoxicity-inducing therapeutic agent
WO2012093704A1 (en) 2011-01-07 2012-07-12 中外製薬株式会社 Method for improving physical properties of antibody
WO2013063702A1 (en) 2011-11-04 2013-05-10 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the fc domain
WO2013180200A1 (en) 2012-05-30 2013-12-05 中外製薬株式会社 Target-tissue-specific antigen-binding molecule
WO2013187495A1 (en) * 2012-06-14 2013-12-19 中外製薬株式会社 ANTIGEN-BINDING MOLECULE CONTAINING MODIFIED Fc REGION

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0511011B1 (en) * 1991-04-26 1996-10-23 Surface Active Limited Novel antibodies and methods for their use
US5981478A (en) 1993-11-24 1999-11-09 La Jolla Cancer Research Foundation Integrin-binding peptides
US6344443B1 (en) 1998-07-08 2002-02-05 University Of South Florida Peptide antagonists of tumor necrosis factor alpha
US20100081792A1 (en) * 2001-06-28 2010-04-01 Smithkline Beecham Corporation Ligand
ATE346866T1 (en) 2001-09-14 2006-12-15 Affimed Therapeutics Ag MULTIMERIC, SINGLE CHAIN, TANDEM FV ANTIBODIES
US8388955B2 (en) * 2003-03-03 2013-03-05 Xencor, Inc. Fc variants
WO2005047327A2 (en) 2003-11-12 2005-05-26 Biogen Idec Ma Inc. NEONATAL Fc RECEPTOR (FcRn)-BINDING POLYPEPTIDE VARIANTS, DIMERIC Fc BINDING PROTEINS AND METHODS RELATED THERETO
AU2005206473B2 (en) 2004-01-12 2011-11-10 Mentrik Biotech, Llc Fc region variants
US7659374B2 (en) * 2004-08-16 2010-02-09 Medimmune, Llc Eph receptor Fc variants with enhanced antibody dependent cell-mediated cytotoxicity activity
CN101123983A (en) * 2004-10-27 2008-02-13 米迪缪尼股份有限公司 Modulation of antibody specificity by tailoring the affinity to cognate antigens
WO2006083706A2 (en) 2005-01-31 2006-08-10 Vaxinnate Corporation Method to identify polypeptide toll-like receptor (tlr) ligands
EP1870458B1 (en) 2005-03-31 2018-05-09 Chugai Seiyaku Kabushiki Kaisha sc(Fv)2 STRUCTURAL ISOMERS
US9241994B2 (en) * 2005-06-10 2016-01-26 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical compositions containing sc(Fv)2
US20070087005A1 (en) 2005-10-14 2007-04-19 Lazar Gregory A Anti-glypican-3 antibody
JP2009538273A (en) 2006-04-14 2009-11-05 トルビオン ファーマシューティカルズ, インコーポレイテッド Binding protein with immunoglobulin hinge region and Fc region with modified FC effector function
US20080014205A1 (en) 2006-05-15 2008-01-17 Lawrence Horowitz Neutralizing Antibodies to Influenza Viruses
AT503889B1 (en) 2006-07-05 2011-12-15 Star Biotechnologische Forschungs Und Entwicklungsges M B H F MULTIVALENT IMMUNE LOBULINE
RS53008B2 (en) 2007-04-03 2022-12-30 Amgen Res Munich Gmbh Cross-species-specific cd3-epsilon binding domain
EP4059964A1 (en) 2007-04-03 2022-09-21 Amgen Research (Munich) GmbH Cross-species-specific binding domain
SG187457A1 (en) 2008-01-11 2013-02-28 Univ Tokyo Anti-cldn6 antibody
CA3052615A1 (en) 2008-01-31 2009-08-13 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Engineered antibody constant domain molecules
LT2334705T (en) 2008-09-26 2017-03-27 Ucb Biopharma Sprl Biological products
PL2786762T3 (en) 2008-12-19 2019-09-30 Macrogenics, Inc. Covalent diabodies and uses thereof
US8568726B2 (en) 2009-10-06 2013-10-29 Medimmune Limited RSV specific binding molecule
HUE049404T2 (en) 2009-11-11 2020-09-28 Astellas Pharma Inc Antibodies specific for claudin 6 (cldn6)
SI3342786T1 (en) 2010-01-29 2022-01-31 Chugai Seiyaku Kabushiki Kaisha Anti-dll3 antibody
US10435458B2 (en) 2010-03-04 2019-10-08 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variants with reduced Fcgammar binding
TWI667346B (en) 2010-03-30 2019-08-01 中外製藥股份有限公司 Antibodies with modified affinity to fcrn that promote antigen clearance
MX346731B (en) 2010-04-23 2017-03-30 Genentech Inc * Production of heteromultimeric proteins.
EP2404936A1 (en) 2010-07-06 2012-01-11 Ganymed Pharmaceuticals AG Cancer therapy using CLDN6 target-directed antibodies in vivo
EP2638073A4 (en) 2010-11-09 2014-05-07 Altimab Therapeutics Inc Protein complexes for antigen binding and methods of use
WO2012096994A2 (en) 2011-01-10 2012-07-19 Emory University Antibodies directed against influenza
JP5972915B2 (en) 2011-03-16 2016-08-17 アムジエン・インコーポレーテツド Fc variant
US20140170149A1 (en) * 2011-04-20 2014-06-19 Genmab A/S Bispecific antibodies against her2 and cd3
NZ724296A (en) 2011-05-13 2020-05-29 Ganymed Pharmaceuticals Ag Antibodies for treatment of cancer expressing claudin 6
PT2714733T (en) * 2011-05-21 2019-05-23 Macrogenics Inc Cd3-binding molecules capable of binding to human and non-human cd3
CA2839539C (en) 2011-06-30 2021-06-08 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
EP2731970B1 (en) 2011-07-15 2018-11-28 MorphoSys AG Antibodies that are cross-reactive for macrophage migration inhibitory factor (mif) and d-dopachrome tautomerase (d-dt)
MY169358A (en) 2011-08-23 2019-03-26 Roche Glycart Ag Bispecific t cell activating antigen binding molecules
ES2654060T3 (en) * 2011-10-20 2018-02-12 The U.S.A. As Represented By The Secretary, Department Of Health And Human Services Anti-CD22 chimeric antigen receptors
CN104520324A (en) 2012-02-24 2015-04-15 施特姆森特Rx股份有限公司 DLL3 modulators and methods of use
CN105073776B (en) 2012-11-13 2019-04-12 拜恩科技股份公司 For treating the preparation of the Cancerous disease of expression tight junction protein
WO2014075697A1 (en) 2012-11-13 2014-05-22 Biontech Ag Agents for treatment of claudin expressing cancer diseases
WO2014104165A1 (en) 2012-12-27 2014-07-03 中外製薬株式会社 Heterodimerized polypeptide
US20140242077A1 (en) 2013-01-23 2014-08-28 Abbvie, Inc. Methods and compositions for modulating an immune response
PL2968520T3 (en) 2013-03-14 2022-01-03 Macrogenics, Inc. Bispecific molecules that are immunoreactive with immune effector cells that express an activating receptor
RU2016122041A (en) 2013-11-06 2017-12-11 ЭББВИ СТЕМСЕНТРКС ЭлЭлСи NEW ANTI-CLAUDIN ANTIBODIES AND WAYS OF THEIR APPLICATION
TWI712421B (en) 2013-11-11 2020-12-11 日商中外製藥股份有限公司 Antigen binding molecules containing altered antibody variable regions
JPWO2015146438A1 (en) 2014-03-26 2017-04-13 国立大学法人東北大学 Bispecific antibodies targeting human epidermal growth factor receptor
AU2015244814B2 (en) 2014-04-07 2020-12-24 Chugai Seiyaku Kabushiki Kaisha Immunoactivating antigen-binding molecule
EP2982692A1 (en) 2014-08-04 2016-02-10 EngMab AG Bispecific antibodies against CD3epsilon and BCMA
US11154615B2 (en) 2014-11-11 2021-10-26 Chugai Seiyaku Kabushiki Kaisha Library of antigen-binding molecules including modified antibody variable region
TW202346349A (en) 2015-07-31 2023-12-01 德商安美基研究(慕尼黑)公司 Antibody constructs for dll3 and cd3
TW201938194A (en) 2017-12-05 2019-10-01 日商中外製藥股份有限公司 Antigen-binding molecule comprising altered antibody variable region binding CD3 and CD137
US11667713B2 (en) 2017-12-28 2023-06-06 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
US20210054076A1 (en) 2018-01-05 2021-02-25 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
MA53742A (en) 2018-09-28 2022-01-05 Chugai Pharmaceutical Co Ltd ANTIGEN-BINDING MOLECULES ABLE TO BIND TO CD3 AND CD137 BUT NOT SIMULTANEOUSLY
SG11202102882YA (en) 2018-09-28 2021-04-29 Chugai Pharmaceutical Co Ltd Antigen-binding molecule comprising altered antibody variable region
BR112022019498A2 (en) 2020-03-31 2022-11-16 Chugai Pharmaceutical Co Ltd DLL3 TARGETING MULTISPECIFIC ANTIGEN-BINDING MOLECULES AND THEIR USE
CN115397855A (en) 2020-03-31 2022-11-25 中外制药株式会社 Claudin-6 targeted multispecific antigen binding molecules and uses thereof
KR20220161156A (en) 2020-03-31 2022-12-06 추가이 세이야쿠 가부시키가이샤 Immune Activating Multispecific Antigen Binding Molecules and Uses Thereof
US20230121511A1 (en) 2020-03-31 2023-04-20 Chugai Seiyaku Kabushiki Kaisha Method for producing multispecific antigen-binding molecules

Patent Citations (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0125023A1 (en) 1983-04-08 1984-11-14 Genentech, Inc. Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
EP0266032A1 (en) 1986-08-29 1988-05-04 Beecham Group Plc Modified fibrinolytic enzyme
EP0404097A2 (en) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispecific and oligospecific, mono- and oligovalent receptors, production and applications thereof
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992020791A1 (en) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994018221A1 (en) * 1993-02-02 1994-08-18 The Scripps Research Institute Methods for producing polypeptide binding sites
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1995001438A1 (en) 1993-06-30 1995-01-12 Medical Research Council Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof
WO1995015388A1 (en) 1993-12-03 1995-06-08 Medical Research Council Recombinant binding proteins and peptides
WO1995033844A1 (en) 1994-06-03 1995-12-14 GSF - Forschungszentrum für Umwelt und Gesundheit GmbH Method for producing heterologous bispecific antibodies
WO1996002576A1 (en) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Reconstituted human antibody against human interleukin-8
WO1996027011A1 (en) 1995-03-01 1996-09-06 Genentech, Inc. A method for making heteromultimeric polypeptides
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1998050431A2 (en) 1997-05-02 1998-11-12 Genentech, Inc. A method for making multispecific antibodies having heteromultimeric and common components
WO2000006717A2 (en) 1998-07-27 2000-02-10 Genentech, Inc. Improved transformation efficiency in phage display through modification of a coat protein
WO2000023579A1 (en) 1998-10-22 2000-04-27 The Regents Of The University Of California Functionally assembled antigen-specific intact recombinant antibody and a method for production thereof
WO2000042072A2 (en) 1999-01-15 2000-07-20 Genentech, Inc. Polypeptide variants with altered effector function
JP2007536912A (en) * 2004-01-16 2007-12-20 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Fusion polypeptide capable of activating receptor
WO2006019447A1 (en) 2004-07-15 2006-02-23 Xencor, Inc. Optimized fc variants
WO2006036834A2 (en) 2004-09-24 2006-04-06 Amgen Inc. MODIFIED Fc MOLECULES
JP2008518023A (en) * 2004-10-27 2008-05-29 メディミューン,インコーポレーテッド Regulation of antibody specificity by altering affinity for cognate antigens
WO2006053301A2 (en) 2004-11-12 2006-05-18 Xencor, Inc. Fc variants with altered binding to fcrn
JP2008526809A (en) * 2005-01-05 2008-07-24 エフ−シュタール・ビオテヒノロギシェ・フォルシュングス−ウント・エントヴィックルングスゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Synthetic immunoglobulin domains with binding properties designed in a region of the molecule that is different from the complementarity-determining region
WO2006106905A1 (en) 2005-03-31 2006-10-12 Chugai Seiyaku Kabushiki Kaisha Process for production of polypeptide by regulation of assembly
WO2006132352A1 (en) 2005-06-10 2006-12-14 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical composition containing sc(fv)2
WO2007114325A1 (en) 2006-03-31 2007-10-11 Chugai Seiyaku Kabushiki Kaisha Antibody modification method for purifying bispecific antibody
WO2008119353A1 (en) 2007-03-29 2008-10-09 Genmab A/S Bispecific antibodies and methods for production thereof
WO2009011941A2 (en) 2007-04-04 2009-01-22 The Government Of U.S.A., As Represented By The Secretary, Departmetnt Of Health & Human Services Monoclonal antibodies against dengue and other viruses with deletion in fc region
WO2009041613A1 (en) 2007-09-26 2009-04-02 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant region
WO2009086320A1 (en) 2007-12-26 2009-07-09 Xencor, Inc Fc variants with altered binding to fcrn
WO2009125825A1 (en) 2008-04-11 2009-10-15 中外製薬株式会社 Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
WO2009134891A2 (en) 2008-04-29 2009-11-05 Immunexcite, Inc. Immunomodulating compositions and methods of use thereof
JP2012501648A (en) * 2008-09-03 2012-01-26 ジェネンテック, インコーポレイテッド Multispecific antibody
WO2011028952A1 (en) 2009-09-02 2011-03-10 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
WO2011131746A2 (en) 2010-04-20 2011-10-27 Genmab A/S Heterodimeric antibody fc-containing proteins and methods for production thereof
WO2012023053A2 (en) 2010-08-16 2012-02-23 Novimmune S.A. Methods for the generation of multispecific and multivalent antibodies
WO2012058768A1 (en) 2010-11-05 2012-05-10 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the fc domain
WO2012073985A1 (en) 2010-11-30 2012-06-07 中外製薬株式会社 Cytotoxicity-inducing therapeutic agent
WO2012093704A1 (en) 2011-01-07 2012-07-12 中外製薬株式会社 Method for improving physical properties of antibody
WO2013063702A1 (en) 2011-11-04 2013-05-10 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the fc domain
WO2013180200A1 (en) 2012-05-30 2013-12-05 中外製薬株式会社 Target-tissue-specific antigen-binding molecule
WO2013187495A1 (en) * 2012-06-14 2013-12-19 中外製薬株式会社 ANTIGEN-BINDING MOLECULE CONTAINING MODIFIED Fc REGION

Non-Patent Citations (101)

* Cited by examiner, † Cited by third party
Title
A. KABAT: "Sequences of proteins of immunological interest, fifth edition", 1991, NIH PUBLICATION NO. 91-3242
ADVANCED DRUG DELIVERY REVIEWS, vol. 58, 2006, pages 640 - 656
ANGEW CHEM INT ED ENGL., vol. 52, no. 32, 5 August 2013 (2013-08-05), pages 8295 - 8
ANN. REV. IMMUNOL., vol. 6, 1988, pages 251 - 81
ARTHRITIS. RHEUM., vol. 46, 2002, pages 1242 - 1254
BETTER ET AL., SCIENCE, vol. 240, 1988, pages 1041 - 1043
BIOCONJUG CHEM, vol. 25, no. 2, 19 February 2014 (2014-02-19), pages 351 - 61
BIOCONJUG CHEM., vol. 25, no. 2, 19 February 2014 (2014-02-19), pages 351 - 61
BIOTECHNOL BIOENG, vol. 91, no. 6, 20 September 2005 (2005-09-20), pages 670 - 7
BIOTECHNOL BIOENG., vol. 75, no. 2, 20 October 2001 (2001-10-20), pages 197 - 203
BIOTECHNOL. PROG., vol. 18, no. 2, 2002, pages 212 - 20
BLOOD, vol. 109, 2007, pages 1185 - 1192
BMC RESEARCH NOTES, vol. 4, 2011, pages 281
CANCER IMMUNOL IMMUNOTHER., vol. 56, no. 9, September 2007 (2007-09-01), pages 1397 - 406
CANCER TREAT REV., vol. 36, no. 6, October 2010 (2010-10-01), pages 458 - 67
CHEM. IMMUNOL., vol. 65, 1997, pages 88 - 110
CHOTHIA ET AL., NATURE, vol. 342, 1989, pages 877
CHRISTOPH ET AL., NATURE BIOTECHNOLOGY, vol. 31, 2013, pages 753 - 758
CLACKSON ET AL., NATURE, vol. 352, 1991, pages 624 - 628
ENDOCR RELAT CANCER, vol. 13, 2006, pages 45 - 51
ENGELS ET AL., AGNEW. CHEM. INT. ED. ENGL., vol. 28, 1989, pages 716 - 734
EUR J PHARM BIOPHARM., vol. 59, no. 3, 2005, pages 389 - 396
EUR. J. IMMUNOL., vol. 23, 1993, pages 1098 - 1104
FASEB J, vol. 6, 1992, pages 2422 - 2427
FROESHLER ET AL., NUCL. ACIDS. RES., vol. 14, 1986, pages 5399 - 5407
FUTURE ONCOL., vol. 8, no. 1, January 2012 (2012-01-01), pages 73 - 85
GENE, vol. 108, 1991, pages 193
GONZALEZ-MUNOZ A ET AL., MABS, 2012
H.R. HOOGENBOOM; G. WINTER, J. MOL. BIOL, vol. 227, 1992, pages 381 - 388
HASHIMOTO-GOTOH, T; MIZUNO, T; OGASAHARA, Y; NAKAGAWA, M.: "An oligodeoxyribonucleotide-directed dual amber method for site-directed mutagenesis", GENE, vol. 152, 1995, pages 271 - 275, XP004042690, DOI: doi:10.1016/0378-1119(94)00750-M
HELA; VERO: "Current Protocols in Protein Science", May 2001, article "Unit 5.9,"
HOLLIGER P ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 6448
HUM. ANTIBOD. HYBRIDOMAS, vol. 1, no. 1, 1990, pages 47 - 54
IMMUNOL. LETT., vol. 82, 2002, pages 57 - 65
IMMUNOL., vol. 86, 1995, pages 319 - 324
INT IMMUNOL., vol. 18, no. 12, December 2006 (2006-12-01), pages 1759 - 69
J BIOL CHEM., vol. 281, no. 33, 18 August 2006 (2006-08-18), pages 23514 - 24
J IMMUNOL, vol. 179, 2007, pages 2936 - 2943
J IMMUNOL, vol. 187, 2011, pages 726 - 732
J IMMUNOL. METHODS, vol. 231, no. 1-2, 1999, pages 177 - 189
J IMMUNOL., vol. 176, no. 1, 1 January 2006 (2006-01-01), pages 346 - 56
J IMMUNOTHER., vol. 35, no. 3, April 2012 (2012-04-01), pages 276 - 82
J. BIO. CHEM., vol. 276, pages 16469 - 16477
J. BIOL. CHEM., vol. 278, 2003, pages 3466 - 3473
J. BIOTECH, vol. 155, 2011, pages 193 - 202
J. CLIN. INVEST, vol. 100, no. 5, 1997, pages 1059 - 1070
J. CLIN. INVEST., vol. 85, 1990, pages 1287 - 1295
J. EXP. MED, vol. 172, 1990, pages 19 - 25
J. IMMUNOL. METHODS, vol. 332, no. 1-2, 2008, pages 2 - 9
J. IMMUNOL. METHODS., vol. 247, no. 1-2, 2001, pages 191 - 203
J. IMMUNOL. METHODS., vol. 332, no. 1-2, 2008, pages 2 - 9
J. IMMUNOL., vol. 163, no. 3, 1 August 1999 (1999-08-01), pages 1246 - 52
J. PATHOL., vol. 208, 2006, pages 270 - 282
J. RHEUMATOL, vol. 34, 2007, pages 11
JOURNAL OF IMMUNOLOGY, vol. 152, no. 11, 1994, pages 5368 - 5374
KABAT ET AL.: "Sequence of Proteins of Immunological Interest", 1987, NATIONAL INSTITUTE OF HEALTH
KNAPPIK A. ET AL., J MOL BIOL., 2000
KOHLER; MILSTEIN, NATURE, vol. 256, 1975, pages 495
KRAMER W; FRITZ HJ: "Oligonucleotide-directed construction of mutations via gapped duplex DNA Methods", ENZYMOL, vol. 154, 1987, pages 350 - 367
KRAMER, W; DRUTSA, V; JANSEN, HW; KRAMER, B; PFLUGFELDER, M; FRITZ, HJ: "The gapped duplex DNA approach to oligonucleotide-directed mutation construction.", NUCLEIC ACIDS RES., vol. 12, 1984, pages 9441 - 9456, XP002026371
KUNKEL ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 82, 1985, pages 488 - 492
KUNKEL, TA: "Rapid and efficient site-specific mutagenesis without phenotypic selection", PROC NATL ACAD SCI USA., vol. 82, 1985, pages 488 - 492, XP002052322, DOI: doi:10.1073/pnas.82.2.488
LEE CV ET AL., J MOL BIOL., 2004
LEI, S. P. ET AL., J. BACTERIOL., vol. 169, 1987, pages 4397
LOWMAN; WELLS, METHODS: A COMPANION TO METHODS IN ENZYMOLOGY, vol. 3, 1991, pages 205 - 216
LUTTERBUESE, R. ET AL.: "T cell -engaging BiTE antibodies specific for EGFR potently eliminate KRAS- and BRAF-mutated colorectal cancer cells", PROC. NATL. ACAD. SCI. U.S.A., vol. 107, no. 28, 2010, pages 12605 - 12610, XP055067703 *
MABS, vol. 2, no. 5, September 2010 (2010-09-01), pages 519 - 27
MABS, vol. 4, no. 2, March 2012 (2012-03-01), pages 217 - 225
MABS, vol. 6, no. 1, January 2014 (2014-01-01), pages 34 - 45
MABS., vol. 4, no. 2, 1 March 2012 (2012-03-01)
MABS., vol. 4, no. 4, July 2012 (2012-07-01), pages 475 - 87
MARKS ET AL., J. MOL. BIOL., vol. 222, 1991, pages 581 - 597
MERCHANT AM ET AL., NATURE BIOTECHNOLOGY, vol. 16, 1998, pages 677 - 681
METHODS MOL. BIOL., vol. 178, 2002, pages 133 - 145
MIZUSHIMA ET AL., NUCLEIC ACIDS RES., vol. 18, 1990, pages 5322
MOL. CELL PROTEOMICS, vol. 2, no. 2, 2003, pages 61 - 9
MULLIGAN ET AL., NATURE, vol. 277, 1979, pages 108
N. BIOTECHNOL, vol. 28, no. 5, 2011, pages 253 - 457
NAT BIOTECHNOL., vol. 28, no. 2, February 2010 (2010-02-01), pages 157 - 9
NAT. BIOTECH., vol. 28, 2011, pages 502 - 10
NAT. BIOTECHNOL., vol. 23, 2005, pages 1073 - 1078
NAT. REV. IMMUNOL., vol. 8, 2008, pages 34 - 47
NAT. REV., vol. 10, 2010, pages 301 - 316
NUCLEIC ACIDS. RES., vol. 18, no. 17, 1990, pages 5322
PASQUALINI R., NATURE, vol. 380, no. 6572, 1996, pages 364 - 6
PEDS, vol. 23, no. 4, 2010, pages 289 - 297
PROC. NATL. ACAD. SCI. U.S.A., vol. 103, 2006, pages 4005 - 4010
PROC. NATL. ACAD. SCI. USA, vol. 103, no. 11, 2006, pages 4005 - 4010
PROTEIN ENGINEERING DESIGN & SELECTION, vol. 23, 2010, pages 195 - 202
PROTEIN ENGINEERING, vol. 9, no. 3, 1996, pages 299 - 305
PROTEIN SCIENCE, vol. 4, 1995, pages 2411 - 2423
R. HAUBNER, PLOS MED., vol. 2, 2005, pages E70
RIDGWAY JB ET AL., PROTEIN ENGINEERING, vol. 9, 1996, pages 617 - 621
SCAEFER ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 108, 2011, pages 11187 - 11192
SCHAEFER, G. ET AL.: "A two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies", CANCER CELL, vol. 20, no. 4, 2011, pages 472 - 486, XP028328205 *
SIDHU ET AL., METHODS ENZYMOL., vol. 328, 2000, pages 333 - 363
THROMB HAEMOST., vol. 80, no. 5, November 1998 (1998-11-01), pages 726 - 34
TILLER T ET AL., MABS, 2013
WARD ET AL., NATURE, vol. 341, 1989, pages 544 - 546
WELLS; LOWMAN, CURR. OPIN. STRUCT. BIOL., vol. 3, 1992, pages 355 - 362
ZOLLER, MJ; SMITH, M.: "Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors", METHODS ENZYMOL., vol. 100, 1983, pages 468 - 500, XP001088749, DOI: doi:10.1016/0076-6879(83)00074-9

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11142563B2 (en) 2012-06-14 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing modified Fc region
US11739149B2 (en) 2013-11-11 2023-08-29 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing modified antibody variable region
EP3219724A4 (en) * 2014-11-11 2018-09-26 Chugai Seiyaku Kabushiki Kaisha Library of antigen-binding molecules including modified antibody variable region
US11154615B2 (en) 2014-11-11 2021-10-26 Chugai Seiyaku Kabushiki Kaisha Library of antigen-binding molecules including modified antibody variable region
TWI740809B (en) * 2014-11-11 2021-10-01 日商中外製藥股份有限公司 Database of antigen-binding molecules containing altered antibody variable regions
WO2016076345A1 (en) * 2014-11-11 2016-05-19 中外製薬株式会社 Library of antigen-binding molecules including modified antibody variable region
KR20190133205A (en) * 2017-03-31 2019-12-02 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 Compositions and methods for targeting and killing alpha-V beta-3-positive cancer stem cells (CSCs) and treating drug resistant cancer
WO2018183894A1 (en) * 2017-03-31 2018-10-04 The Regents Of The University Of California Compositions and methods for targeting and killing alpha-v beta-3-positive cancer stem cells (cscs) and treating drug resistant cancers
KR102630070B1 (en) 2017-03-31 2024-01-26 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 Compositions and methods for targeting and killing alpha-V beta-3-positive cancer stem cells (CSCs) and treating drug resistant cancer
JP7357616B2 (en) 2017-12-05 2023-10-06 中外製薬株式会社 Antigen-binding molecules comprising engineered antibody variable regions that bind to CD3 and CD137
JP2021508441A (en) * 2017-12-05 2021-03-11 中外製薬株式会社 Antigen-binding molecule containing a modified antibody variable region that binds to CD3 and CD137
US11952422B2 (en) 2017-12-05 2024-04-09 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule comprising altered antibody variable region binding CD3 and CD137
US20200399373A1 (en) * 2018-02-14 2020-12-24 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule and combination
WO2020262576A1 (en) * 2019-06-28 2020-12-30 Chugai Seiyaku Kabushiki Kaisha Antigen binding molecules that bind pdgf-b and pdgf-d and uses thereof
US11718672B2 (en) 2020-03-31 2023-08-08 Chugai Seiyaki Kabushiki Kaisha CD137- and DLL3-targeting multispecific antigen-binding molecules
US11274151B2 (en) 2020-03-31 2022-03-15 Chugai Seiyaku Kabushiki Kaisha CD3-targeting and DLL3-targeting multispecific antigen-binding molecules and uses thereof

Also Published As

Publication number Publication date
TW201605900A (en) 2016-02-16
JPWO2015068847A1 (en) 2017-03-09
CN113307873A (en) 2021-08-27
EP3070168A4 (en) 2017-06-28
TWI652279B (en) 2019-03-01
EA201600354A1 (en) 2016-12-30
US11739149B2 (en) 2023-08-29
CA2929044A1 (en) 2015-05-14
TW201919701A (en) 2019-06-01
JP2020196741A (en) 2020-12-10
CN105940107B (en) 2021-06-15
AU2014347565B2 (en) 2020-08-13
KR102551410B1 (en) 2023-07-04
US20160280787A1 (en) 2016-09-29
TWI712421B (en) 2020-12-11
MX2016005762A (en) 2016-08-19
BR112016010025A2 (en) 2017-12-05
JP2022191448A (en) 2022-12-27
KR20230104764A (en) 2023-07-10
EP3070168A1 (en) 2016-09-21
US20240026000A1 (en) 2024-01-25
KR20160083094A (en) 2016-07-11
CN105940107A (en) 2016-09-14
US20200332001A1 (en) 2020-10-22
CN113278076A (en) 2021-08-20

Similar Documents

Publication Publication Date Title
US11739149B2 (en) Antigen-binding molecule containing modified antibody variable region
JP7357616B2 (en) Antigen-binding molecules comprising engineered antibody variable regions that bind to CD3 and CD137
US20220040297A1 (en) Library of antigen-binding molecules including modified antibody variable region
WO2020067399A1 (en) Antigen-binding molecule comprising altered antibody variable region
KR20210068079A (en) antigen binding molecule capable of binding to CD3 and CD137 but not simultaneously
US11952422B2 (en) Antigen-binding molecule comprising altered antibody variable region binding CD3 and CD137
TWI831044B (en) Antigen-binding molecules, pharmaceutical compositions containing antigen-binding molecules, and methods of manufacturing and selecting antigen-binding molecules
EA042507B1 (en) ANTIGEN-BINDING MOLECULE CONTAINING ANTIBODY VARIABLE REGION

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015546719

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2929044

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/005762

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15035098

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014347565

Country of ref document: AU

Date of ref document: 20141111

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016010025

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 201600354

Country of ref document: EA

REEP Request for entry into the european phase

Ref document number: 2014859814

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014859814

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167015015

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016010025

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160504