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KIC -,(D-1 )1/2,

where: Kic is mode I fracture toughness,

D is the fractal dimension.

Assuming that fracture can be modelled as a scaling fractal, the

constant of proportionality of this relationship is found to be a product of

Young's modulus (E) and a characteristic length (a0);

Kc= A(D-1) 1/2 ,

where A E(a0 )11/2.

The constant A is a family parameter which identifies a line in the

toughness-fractal dimension plane. Materials within a given line experience an

increase in tougnne,,'s as the fractal dimension increases.

i Using experimentally determined values of Kic, E. and 0. a

cnaracteristic length, a0 , can be computea. This I-engti, is inicative of the

"Unit process" of fraCture, and represents an average step size in the

geometry of fracture. For example. the characteristic length of a polycrys;alline

alumina (AD90) is 3 A , suggesting the AI-O bond rupture as characleristic of

he fr-cture. Alternativeiy, a zinc stlicate glass ceramic ( MS49845 ) has a

ch-aracteristic length of 76 A. This utdicAtes a clusterdlike frac:ure, suggestivo of
a5, -c. - , cr",-zinris as the uni process. Thus. if this ,-110 ;'S "

cc.-rec:., we have a technique vwiereby we can srka:e .hc "g.c • kuty o! the I sG

,ac:.e surfacg of btiIe mater;na;s toI an acm•ic Scaie ceometry.
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ABSTRACT

Fractal geometry provides a tool for the description of irregular objects.

While Euclidean geometry allows for only integer dimensions, fractal geometry

admits to the existence of a dimensional continuum. Thus, geometric shapes

can be classified according to their dimensions.

In previous work, a relationship was shown to exist between a materials

fracture toughness and its fractal dimension. It was found that:

Kic ~(D-1)1/2,

where: Kic is mode I fracture toughness,

D is the fractal dimension.

Assuming that fracture can be modelled as a scaling fractal, the

constant of proportionality of this relationship is found to be a product of

Young's modulus (E) and a characteristic length (ao); _ &x1. For

NTK) CRiA.P.
OM : 7 AG

KIc z- A (D -!) /2'•= '" • ... .. . .

where A =(30)1t2.
Su t
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The constant A is a family parameter which identifies a line in the

toughness-fractal dimension plane. Materials within a given line experience an

increase in toughness as the fractal dimension increases.

Using experimentally determined values of Kic , E, and D, a

characteristic length, a0 , can be computed. This length is indicative of the

"$unit process" of fracture, and represents an average step size in the

geometry of fracture. For example, the characteristic length of a polycrystalline

alumina (AD90) is 3 A, suggesting the AI-O bond rupture as characteristic of

the fracture. Alternatively, a zinc silicate glass ceramic ( MS498#5 ) has a

characteristic length of 76 A. This indicates a cluster-like fracture, suggestive of

glass-crystal molecular groupings as the unit process. Thus, if this model is

correct, we have a technique whereby we can relate the geometry of the

fracture surface of brittle materials to an atomic scale geometry,
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CHAPTER 1

INTRODUCTION TO FRACTALS AND FRACTURE
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Eractals

Fractal geometry is a non-Euclidean geometry that was developed,

popularized and applied by B.B. Mandelbrot.1,2 The word fractal is derived

trom the latin "fractus" which means fragmented or broken. Mandelbrot realized

thai fragm•.nted goomernlois rather than Euclideanr geometries are, by far, the

most common geometries of nature. His research has created a framework for

the description of systems that, up to now, were too chaotic for geometric

description.

In his book, The Fractal Geometry of Nature, Mandelbrot describes the

extensive applications of fractal geometry. The concepts have been used to

describe the geometry of clouds, soot aggregates, dielectric breakdown,

mountainous terrain, coastlines, etc. This thesis uses the notions of fractal

geometry to describe the geometry of fracture surfaces.3

Nlz

To estabiish a "leel" for fractal geometry we can simply consider how we

measure th6 length of a line. 4 It is clear that the measurement of a set requires

a measuring tool, or ruler.
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Suppose we use a supply of discs of a given radius, R, and consider the

line of Figure 1.

e Diameter.- 2R

Figui A 1. Measuring the length of a line requires a ruler

The length of this line is measured by covering it completely with as few discs

as possible, a3 in Figure 2. The length, then, is given by:

length knumber of discs)Xk2R)

-'I
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D Diameter =R

Length = (# of balls)X( ball diameter)
=12X2R=24R

Figure 2. The line is completely covered to determine its length.

O - Diameter= R

Length (# of balls)X(diameter of a ball)
27R

Figure 3. Changing the size of the measuring disc mayproduce a different measure of the length.

'I
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Now, suppose we have a new supply of discs with a different radius, say

(1/2)R. The line length is determined in the same manner, and a new line

length is computed, Figure 3. Note the difference in the measured line length in

Figures 2 and 3. Although the measuring disc was decreased to half of the

original measure, the number required to cover the line more than doubled.

The "tortuous" nature of this curve gives a length that is scale dependent. As

the scale decreases, the measured length increases.

The measured length of a line can be succinctly described by the

following equation, called Richardson's equation 1 :

L=kElD. (1)

Where; L is the measured length,

"E is the measuring scale,

D is the dimension of the curve,

k is a proportionality constant.

.Y7

4

I

4
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If D is equal to one, the line is Euclidean and its measured length is not a

function of scale. If 1<D<2, the curve is said to be fractal with a dimension

given by D. This dimension can be thought of as an indicator of the

"wiggliness" or space filling nature of the curve.

If we are given a line, we can compute its fractal dimension from

equation (1). The line's length is computed over a range of scales. A log-log

plot of length vs. scale gives a straight line with slope equal to I -D, Figure 4.

LSlope 1-D

Log E

Figure 4. A log-log plot of Richardson's equation
provides a slope equal to 1 -D.
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It should be mentioned that mathematical fractals will obey equation (1)

fo.r all scales. Thus, as the scale goes to zero, the measured length becomes

infinite. Physical fractals, however, may have a finite cutoff at both the large

and small scales. In the physical world, the fluctuation of a line will find its limit

in the smallest measureable featu-:- The sensitivity of our measuring stick will

determine the smallest feature we can measure. If fluctuations occur below the

sensitivity of our instrument, the line will appear to be Euclidean. In this

instance, the upper bound of the measured length of a line is simply that length

that corresponds to the finest possible scale of measurement. We could not

conclude, however, that the line has exhausted its fluctuation, we have simply

exhausted our ability to measure any fluctuations.

On the contrary, a line may be composed of indivisible components.

After our measuring stick has become smaller than the smallest of these

components, the line would cease to exhibit scale-dependent length. This

length, then, would represent a true upper bound. Such a line could be called

"tfractai" over the range it exhibited scale-dependent length. It is not, however, a

fractal in the strict mathematical sense.

4-
Ij
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Both of the aforementioned possibilities would have a Richardson plot as

in Figure 5. The object would be described as a fractal over a bounded range

of scales. These cut-off scales are of special significance to the particular

geometry of a specific physical phenomenon.

-"- -" --- Fractal
on
bounded
range

Log L

Log E

Figure 5. Physical fractals have scale dependence over
a bounded range of scales.

FractaIs and Fractur e

Fracture markings on glasses and polycrystalline brittle materials

(known as mirror, mist and hackle) are precursors to crack branching 5 and can

be used to describe the stress state 6 and characteristics of crack propagation.7

These markings have been observed for over 50 years and were related
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quantitatively to the stress in the 1950's.8 More recently, the repetition of these

features (multiple mirrors) was observed and quantitatively related to stress

intensity.9 Ravi-Chandar and Knauss 5 also recently noted that rn*st and hackle

are self-similar; i.e., they appear to be physically siniiar and produced in the

same fashion. This observation follows previous detailed descriptiorns of the

structure of mist and hackle. 10  These descriptions did not, however,

emphasize the self-similar nature of the features. These recent observations of

multiple mirror, mist, hackle, crack-branching and self-similarity led to this

research.

A Basic Model of "Fracture

In order to understand the essentials of material fracture, fracture

mechanists employ a basic model of fracture. In this model, atoms interact with

their nearest neighbors via a simple two-body potential. The derivation

assumes that atoms lie in a plane, that they interact only with their nearest

neighbor and that bonds break sequentially. That is, fracture is localized to

only two atoms at a time.
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The potential energy between atoms in a crystal structure can be

approximated by a function of the form1 1;

U = -Q1/ rx + Q2/ .rY, (2)

where -Q1/ rx is an attractive term,

Q2/ rY is a repulsive term.

For ionic crystals, the exponent in the attractive term (x) is close to unity whiie

the repulsive exponent (y) is between 6 and 12. Such a function would have

the form shown in Figure 6, where do is the equilibrium spacing between

neighboring atoms. The depth of the potential minimum is related to fractur.

energy, while the curvature of the potential minimum is an indication of the

modulus. The derivative of this potential function gives the force function

between neighboring atoms, as shown in Figure 7.

4.
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Energy do Separation distanceEY
Figure 6. Potential energy between neighboring atoms

Theoretical cohesive strength

do
Separation distance

Figure 7. Force function between neighboring atoms,

When a mate-ial is stressed beyond a certain limit, irreversible changes

will occur. If loading is continued, the material can be fractured. As a crack

pro)pagates through a specimen. the potential energy of the specimen is

reduced. 12

S!



Energy is released via the creation of new surface, the emission of light,

acoustic energy, etc. The energy required to propagate a crack is called the

fracture energy, yf.

Crack propagation through a microstructure is a geometrically

complicated statistical process that contains atomic scale as well as

macroscopic scale geometries.13 Interaction of the crack front with the

microstructure will affect the geometry and, hence, the surface area generated.

A material's resistance to crack p~apagation is called fracture toughness.

Fracture toughness may be characterized by the fracture energy, 7 f, the strain

energy release rate, G. ( Gc = 2), or the critical stress intensity facto: Kc

(VKc = q 2Eyf). A toughening mechanism, then, is a microstructural property

that affects a material's fracture toughness. One particular class of toughening

mechanisms relies on influencing the direction of crack propagation

(e.g., crack deflection 14). An increase in toughness can be achieved by

making the cra.k path irreguiar.14 Thus, the geometry of the fracture surlace

plays a role in the materiai's toughness.

t4
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The importance of fracture energy is made obvious in the following

simplified derivation assuming plane fracture in a perfect crystal. 1 1,15,16

A crack is assumed to reside between two planes of atoms with interplanar

spacing do, Figure 8.

4I

I 0

Figure 8. Idealized crack separating planes of atoms in a crystal structure.

Rather than using the derivalive of equation (2), the svre-s resulting from the

strain of the interplanar bonding is approximated by a sinusoidai function.

Figure 9.
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stress Separation distance
d 0 d0 +a

Figure 9. Sinusoidal approximation of the force between
neighboring atoms.

At the equilibrium spacing, d0 , the stress is zero, rising to a maximum

and dropping to zero at a distance J0 +a, the distance of bond rupture.

Therefore, a= (0 sin (ic(x-do)/a), (3)

where; x is the separation beyond equilibrium,

a is the failure separation.

For small displacements, x, the sin is equal to its argument.

Therefore, a = Go0 n (x-d0)/a , (4)

and do/dx = c0m/a. (5)
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By definition, the strain is;

. x/d0 , (6)

and, for small displacements,

-a = Ee = Ex/d 0 , (7)

so that da/dx = E/d 0 . (8)

Comparing equations (5) and (8) provides;

, 0 = Ea/id 0 . (9)

Thus, an estimate of the theoretical cohesive strength is obtained from known

values of E, a, and do. Now, in fracture, the work of separation must at least

be equal to the energy required to create two now surfaces. 2ys. 115.16

S4

"$"• • • i N N
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The work per unit of area generated by fracture is;

work/unit area = J osinn(x-do)/a dx 2ys (10)

so 'that, 2aoa/n = 2y(

but, from equation (7);

2Ea 2ht2d0 = 2%s, (12)

so y, = Ea 2 / n2do" (13)

Equation (13) shows that the surface energy for plane fracture, is , is a

function of modulus, E, interplanar spacing, d0 . and the displacement to bond

rupture, a. For single crystals, the surface energy, % , is assumed to be nearly

equal to the fracture enrgy, -y . Gilman t 6 assumed that the constant, a, was

equal to the radius of atoms within a given plane.
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For single crystals, his results were uniformly high, yet of the same order of

magnitude as experimentally obtained values. Polycrystalline fracture

energies, however, are approximately an order of magnitude higher than their

single crystal counterparts.1 1 Part of this difference is due to an increase in

the roughness of the fracture surface.

The model of fracture presented here takes no account of fracture

surface roughness. It is assumed that fracture creates two perfectly plane

fracture surfaces. Fractal geometry can accommodate surface roughness by

allowing for irregular paths. These paths could be constructed from straight line

segments imbedded in an orderly geometric matrix.

Imagine a two-dimensional array of atoms as shown in Figure 10.

Fracture could progress from region A to region B through a number of paths.

Some of these paths are shown in the Figure (a-a, b-b, and c-c). The basic

model would assume only a straight line, whereas a fractal model could

describe Other more complicated paths. Thus, surface roughness can be

accommodated without a radical departure from the basic model.
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a a
A b b B

C

C

Figure 10. Schematic of possible crack paths in an idealized lattice.

.•i

-ta:.
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Fracture Energy and FractIre Toughness

Equation (9) provides an estimate of the theoretical cohesive strength of

a material. Brittle ceramics exhibit fracture strengths that are generally orders

of magnitude lower than this estimate. This difference results from the stress

concentrating effects of flaws.

Griffith 12 was able to calculate the stress at which a crack would

propagate. He postulated that crack extension would occur only if the creation

of new surface acts to reduce the potential energy of the system. He found that,

under conditions of plane stress;

a= (2Eyj/xC)112. (14)

Where: of is the fracture strength,

E is Young's modulus,

yf is the fracture energy,

C is the flaw size.

4
i
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Inglis made computations of the stress concentration created by flaws of

various geometries. It was found that cracks in a material could be

conveniently modelled as elliptical, and their stress concentration computed.

The stresses near the tip of such elliptical cracks have a precise mathematical

description that depends upon a parameter called stress intensity, KI

(The I denotes tensile loading). For a material to fail, the far field stress must

be concentrated to the level of theoretical cohesive stress. Thus, stress

intensity reaches a critical value called the fracture toughness, or critical stress

.4 intensity factor, Kic. This critical value is found to depend on the flaw size and

the far field stress;

KIc = Y ofIC. (15)

a,f
""Where: G1 is the far field stress,

C is the flaw size.

Y is a factor that depends on tho geometry of

loading and crack configuration.

'4N

a
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Comparing equations (14) and (15) provides a relationship between Kic and yf.

Under conditions of plane stress;

Kic = (2Eyf) 1/2. (16)

Fracture Profiles as Fractal Curves

In many cases, a fracture surface presents a rather complicated

geometric structure. This complex geometric shape is not amenable to

description by Euclidean geometry, thus, fracture surface energies have not

been accurately modeled as functions of this geometry. Fractals, however,

provide a tool for the description of such surfaces. At the very least, they can be

used to quantify the surface roughness. A fracture profile presents a curve

similar to that of Figure 11. The "complexity" of this profile can be categorized

by its fractal dimension. As discussed earlier, Richardson's equation, where

the profile length is measured for various scales, provides a method for

determining the fractal dimension, Of course, a fracture surface is, at the

very least, a two-dimensional object, but as a first stop in categorization, it is

worthwhile to compute the dimension of the profile, Figure 11.
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Fractured sample Profile view

Figure 11. Fracture profiles can be measured according to
Richardson.

V,"0

W .k
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It is quite possible that there will be a physical limit to the scale

dependence of length. Features on the fracture surface may vary only down to

a finite cut-off size. This may be on the grain size, molecular, or atomic scale.

But, this, in itself, is useful information.

Scaling Fractals

There is a particular subclass of fractal geometry which is comprised of

"scaling fractals".1,3 This is what is generally referred to as a fractal.

Regardless of the nature of a curve, Richardson's equation can be used to

compute a fractal dimension. Scaling fractals, however, have two very

important properties: scale invariance, and self-similarity. Scale invariance

refers to features, geometrically identical, appearing on all scales of

observation. Self-similarity means that a small feature of the object can be

scaled to precisely match a large feature. These concepts are most easily

understood by observing the construction of a scaling fractal.

Consider a box, as shown in Figure 12a 1 ,4,17, whose sides are of unit

length. Next to this box is a shape called a generator, composed of line

segments scaled to 1/4 of the length of a side of the box. Now, replace each

"side of the square with this "scaled" generator.

VAI
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The result is shown in Figure 12b. Again, take the generator and scale it down

to the length of each straight line segment of this new object. The generator is

now composed of line segments of length (1/4)2. Replace each of the straight

line segments of Figure 12b with the scaled generator. A portion of the

resu!ting shape is shown in Figure 12c. This process is continued, ad infir;Ium,

generating an object which is said to be scale invariant and self-similar.

.--

-A

ii

9 --I
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generator

Figure 12a

Each side of the square
is replaced by the scaled

generator.

Figure 12b

Again, the generator is scaled to replace

each of t'e segments of Figue 12b.

P4F3uwe 12C

Figure 12. The stepwise construction of a scaling Racital.

$ ii
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A scaling fractal looks geometrically the same everywhere and on all

scales. Clearly, we have generated an object whose perimeter will be a

function of scale (as in equation 1). The fractal dimension of this object,

however, can be computed in another, quite different fashion. 1 ,4 Scaling

fractals obey the following;

NrD = 1. (17)

Where: N is the number of elements in the generator,

r is the scale factor of an element,

D is tMe similarity or fractal dimension.

For the curve of Figures 12, called the quadratic Koch curve, N 8, r 114.

Thus.

D logB A0og4 3/2. (18)

Figure 13 contains three photographs of a glass fracture surface. Such

fractures contain readily identifiable regions called mirror, mist, and hackle. A

glance al the pho•cgraphs will demonstrae the similarity of the mist and hackle

regions.
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Figure 13b is a photo of the mist-hackle boundary, while 13a is a view

of the mirror-mist boundary. Figure 13c is a magnified view of a region in 13a.

The identification of these boundaries is clearly affected by magnification.

Given such scale dependence, it seems possible that a geometry that

describes one region may simply be a scaled version of a geometry that

describes another region. This is precisely the notion of scaling fractals and

fractal geometry.

It is certainly true that fracture profiles can be measured according to

Richardson's equation and, if such is the case, assigned fractal dimensions.

The proposal of this thesis is that fracture surfaces can be accurately modelled

as scaling fractals. Thus, we can imagine a scheme of generation and a

generator that is repeated and scaled as fracture progresses. This generator

may be an atomic scale process that cascades, through the scale invariance of

fractal geometry, to the macroscopic features of a fracture surface. Given D, we

can use equation 14 together with knowledge of the crystal szructure of a

material to determine possible values for r aid N. Modelling fracture in this

fashion allows for geometric interpretation of measurements on the

macroscopic scale, to a description of geometry on the atomic scale.

9

V
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Research has shown a relationship between fracture toughness (i.e.,

resistance to crack growth) and fractal dimension. 18 ,19 ,20 ,2 1,24 At frst

glance, this may not seem surprising. After all, fracture toughness is, in some

ways, related to surface roughness, and fractal dimension provides a measure

of this roughness. The relationship is not simple, however, and contains some

interesting results.
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13a. Mirror-mist
transition.

.1 515 k504 0 ) ,7

13b. Mist-hackle
transition.

.'4,13c. Enlargement
of the mirror-
mist transition

region.

Figure 13. Self-simillarity of mirror. MiSt and hackle.



CHAPTER 2

EXPERIMENTAL TECHNIQUE
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In this study, two independent techniques were used to determine the

fractal dimension of fractured samples: slit-island analysis 19 ,22 and

Richardson plots. Passoja 23 used a third technique, Fourier transform

analysis, on a zinc silicate glass ceramic and obtained values within 2% of

those obtained by slit-island analysis and Richardson plots.

Slit-Island Analysis

Fractured samples, obtained from previous studies,6 ,7 were carefully

cleaned and coated with nickel. The nickel coating performs two functions: It

provides good contrast during polishing, and it helps to hold the fracture

surface together. The samples are then potted in epoxy and polished parallel

to the fracture surface, 19 ,22 Figure 14. As the fracture surface is

encountered, a section of the fracture surface appears in the polishing plane.

These sections appear as islands in the polishing plane. As polishing

proceeds these islands begin to grow. The perimeter of the islands presents a

line that can be measured according to Richardson's equation.
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E. t_1
top view

Figure 14. Fractured samples are encapsulated in epoxy and polished parallel
to the fracture plane. Islands emerge in the polishing plane.

An adaptation of Richardson's equation reveals a relationship between

the area and perimeter of an island;

A .p2/D (19)

where; A is the island area,

P is the island perimeter,

D is the dimension of the perimeter.

iV
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At the first emergence of an island, a polaroid photograph is taken at

magnifications ranging from 1OX to 400X. Polishing proceeds in stages, each

stage followed by a photograph. Once a magnification is chosen, that same

magnification is used for all subsequent photos. As polishing progresses, the

islands grow and sometimes merge. A representative sequence of photos,

taken at lOX magnification is shown in Figure 15. These photos are of a zinc

silicate glass ceramic (MS-508).

The "roughness" of the perimeter is an indication of the roughness of

the fracture surface. A sequence of approximately 20 photographs is taken to

document island growth. These provide data fc! a log-iog plot of area vs.

perimeter (equation 19), from which a slope of 2/D is obtained. A

representative graph is shown in Figure 16. Data and graphs for the materials

tested are contained in following sections.

1
4

4
I
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Photo #4

Photo #6

Photo #7

Photo #8

M W1

Figure 15. Sample photographs from zinc silicate MS508
;t slit-island analysis.

,,
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.4. Slope = 2/D

log A

log P

Figure 16. Fractal dimension can be obtained from
area-perimeter growth of slit-islands.

Occasionally, an island will encounter the machined edge of a sample,

(e.g., Figure 15). The island will have a perimeter that is composed of two

sections: A line representative of the fracture surface, and a line representative

of the machined edge. The resulting fractal dimension would be a weighted

average of these two portions. Yet, our interest is only in that portion that

represents the fracture surface. Such edge encounters are simply folded out of

existence. Figure 17 explains graphically how the island can be folded across

the edge to create an island with twice the original area and twice the "fracture

perimeter." Thus, we are left with an island that is unbiased by the dimension

of the sample edge.

WIA
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This island has encountered The island is 'olded'

the sample edge across the edge

Figure 17. Edge correction is accomplished by simply folding an
island across the sample's edge.
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Island areas and perimeters are computed from the polaroid

photographs using a Lemont Scientific image analysis system. 19 Different

grey levels of the photographs are assigned different colors. The system

software is-then able to compute area and perimeter of the different colored

regions.

In brief, the system places a grid with one micron spacing atop the

selected image. Points of intersection of the grid and island perimeter are then

assigned Cartesian coordinates. Straight lines are drawn between these

points and simple trigonometry allows for the computation of the length of these

lines. The island perimeter is taken to be the sum of these straight line

segments. Island area is equal to the area of all totally enclosed rectangles

plus the triangular regions along the edges. Figure 18 demonstrates this

procedure.

51

44V
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1 micron

Cartesian coordinates are assigned to the
intersection points of the grid and island

Straight lines connect the intersection points.
The area and perimeter are computed Irom this
approximation.

Figure 18. A grid is placed atop the island of interest. Intersection points of
the grid and perimeter are used to compute area and perimeter.

-1
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The area and perimeter information is used to plot a graph for each

island that appears on the fracture surface. Log-log plots, as in Figure 16, are

used to extract the fractal dimension.

L

As a check on the erilire procedure, an object of known dimension was

analyzed with the slit-island technique. The chosen object was an alumina

sphere. Any cutting plane through a sphere reveals a circle, the dimension of

which is equal to one. The sphere was nickel coated, encapsulated in epoxy

and polished. Sections through the sphere were photographed at lOX, Figcre

19, and image analyzed. The results are shown in Figure 20. The computed

dimension was equal to .98, a difference of only 2 percent from the expected

value of a perfect sphere, D=1.0.

it
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Photo #1

' #4t ,

-- Itt
777

Photo 010

Figure 19. S- ..pie photographs from slit-island analysis
of an alumina sphere.

. .
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y= -3.0657 + 2.0338x R =0.99

D m 
16

8.8 9.0 .9.2 9.4 9.6 9.8
log P

This graph shows the experimental data obtained
through slit-island analysis of a Euclidean object.
Such an object should have a dimension equal to
one. This graph results in a dimension o1.98

Figure 20. Data from the Euclidean test specimen.

-lift 9A AM If-
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Richardson Plot

Richardson plots, as mentioned in the introduction, detail the change in

measured length of a !ine as a ,unction of scale. Therefore, construction of a

Richardson plot for a fracture surface requires a line that is representative of the

fracture surface and a range of scales for measuring that line. As in slit-isand

analysis, fractured samples are coated with nickel and encapsulated in epoxy.

The sample is then polished either parallel or perpendicular to the fracture

plane. If polished parallel, we obtain an island whose perimeter is

representative of thG fracture. If polished perpendicular, we obtain a fracture

profile. In either case a photo montage is constructed from polaroid

photographs at 400X magnification. This montage is then measured with

dividers set to 2, 1/2, 1/4, and 1/8 mm openings, as depicted in Figure 21.

The length of the profile (or perimeter) is tabulated for each divider setting. In

this fashion, profile length is computed as a function of scale. A log-log plot of

le. igth vs. scale (Figure 4) gives a straight line with slope equal to 1-D.
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Figure 21. A montage of the profile is measured with dividers

The scale (or divider opening) is a measure of discernibility. The

smallest observable feature is that of the scale. As the scale becomes finer,

we observe greater and greater detail. If the scale is larger than the largest
Sfeatures, the observation is insensitive to those features. Thus, a curve will

begin to look fractal only after the scale becomes smaller than such features.

Figure 22 shows a sample montage for a section of island perimeter of an

Ocala chert ( chert U5 ).



44

AJK

F"igure 22. Sa'mple island perimeter at 400X magnificcaioin.
This is a U5 chert sample, D) 1.32



CHAPTER 3

RESULTS AND DISCUSSION.
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Mecholsky, Feinberg and Passoja24 determined a relationship

between fracture toughness (Kic) and fractal dimension (D). They found that;

Kic - (D-l)1/2. (20)

Thus, as fractal dimension increases, fracture toughness increases.

(The term (D-1) will, henceforth, be referred to as D*. D*, then, is the

fractional part of the fractal dimension). They obtained the fractal dimension of

a number of zinc silicate glass ceramics and aluminas, Table I, Figure 23.

The data conformed to a straight line in the log-log plane with a correlation of

.92.

A number of new materials were chosen for testing. A complete

summary of these materials, the technique used for the determination of their

fractal dimension, and the resulting fractal dimension is contained in Table I1.

A complete listing of the individual data tables and graphs follows this section.

The Ocala cherts, commonly referred to as flint, are similar in structure

to glass ceramics (crysiallites imbedded in an amorphous matrix). These

cherts represent a series of heat treatments that alter the fracture toughness

and fracture surface te :;og raphy.
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U5 chert was untreated and exhibits the highest toughness. Numbers three,

four and F5 chert were heat treated at 300C, 400C, and 500025 respectively.

It is common to assume that fracture in single crystals will occur along a

single plane. In general, loading conditions and inherent flaws will alter the

planar propagation of a crack through such crystals. It is not certain, then, that

the dimension of the fracture surfaces of single crystals will always be equal to

one (plane fracture). Single crystals of Calcium Fluoride and Spinel were

chosen to demonstrate this possibility. Large grain (-500gm) CdTe and ZnSe

were dimensioned as a first step in determining grain size effects on the fractal

dimension. Pyroceram 9606, a magnesium-aluminosilicate material, and

MS508 Zinc Silicate are glass ceramics.

)I
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TABLE I

Data from Mecholsky, Feinberg and Passoja1 9 ,24

Material Fracture Toughness Fractal Dimension

KI, (MPa m1/ 2)

MS 498 6b #4 1.6 1.05

MS 500 12b #5 1.8 1.09

MS 500 #5 2.2 1.11

MS 498 #5 2.0 1.16

LAS glass ceramic 2.7 1.18

Monsanto A120 3  3.5 1.21

GE A120 3  3.9 1.23

Lucalox 4.0 1.31

I
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ho IS 5491 #4 IF 0Z2{L #5
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Figurc 23. A graph of the dalta of Table I shows; Kic - D-1/2.
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TABLE I!

Data Summary

Ma-teria Fracture Toughness Fral Dimension Measurement Technique

MPa m1/2

CdTe .7 1.2 S.1.

ZnSe .9 1.3 S.1.

PZT 1.5 1.23 R

MS 498 1.6 1.05 S.I.

MS 500#4 1.8 1.09 S.I.

MS 500#5 2.2 1.11 S.I.

MS 498#5 2.0 1.16 S.t.

Alumina #3 3.5 1.21 S.I.

Alumina#5 GE 3.9 1.23 S.I.

Alumina#3 GE 3.9 1.06 S.I.

Pyroceram 2.4 1.17 S.I.

Spinel(s.c.) 1.2 1.09 S.I.

CaF2 (s.c.) .3 1.07 S.I.

Poly Spinel 2.1 1.13 S.I.

U5 chert 1.55 1.32 R,S.

#3 chert 1.46 1.26 R

#4 chert 1.25 1.24 R

"F5 chert 1.05 1.17 R,S.I.

'S.I. refers to the slit-island measurement technique, R refers to Richardson's technique

s.c. Is a single crystal sample

!
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Analysis of these new materials, at first glance, seemed to indicate no

definite relationship between fractal dimension and fracture toughness.

Indeed, as shown in Figure 24, the data is thoroughly scattered in the KIc-D*

plane. If, however, we assume that the relationship of Equation 20 is correct,

we can order the data.

PROPOSITION: There exists a family of lines in the log-log KIc-D* plane all of

slope 1/2.

A graphical representation of this proposition is shoywn in Figure 25.

Though we have no mathematical proof of this proposition, we may be able to

demonstrate "reasonableness."

The existence of these curves implies a relationship between the points

within any given line. Such points constitute a family and will be characterized

by a family parameter. Any one of these lines will have the following functional

form;

KIC AD-1/ 2, (2')

whe,'e; A is a family parameter.

t
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The family parameter, A, identifies a line in the Klc-D* plane. Within a family,

an increase in fractal dimension corresponds to an increase in fracture

toughness.

A vertical line in the KIc-D* plane will intersect a number of family lines.

Hence, materials which exhibit the same fractal dimension do not necessarily

have the same toughness. Similarly,. materials of equal toughness do not

necessarily have the same fractal dimension. Thus, the functional relationship

of Equation (21) is useful only in the comparison of materials within the same

family.

*1
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Figure 24. The data are apparently scattetod in the KIC-D0 plane
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Figure 25, Family lines in the Klc+D" plane,
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The Toughness-Fractal Dimension Relationship

As noted previously, toughness is proportional to fractal dimension;

KIc ~ D-1/ 2 . (22)

The parameter which will identify a family in this space is the constant of

proportionality, A;

KIc = AD* 112 . (23)

Since D° is dimensionless, a dimensional analysis of this equation requires

that A have the dimensions of toughness. Suppose that this constant can be

further reduced to one involving Young's modulus, an indicator o, bond

strength, and some characteristic length parameter. The rationale for this

supposition stems from the special importance attributed to scaling fractals.

Scaling iractals are constructed from a unit process; i.e.. a generater-shape

which is scaled according to a scheme for generation. Thus, the geomety of

fracture. it it can be accurately modeled by scaling tractals. will have such a unit

process.

-_I

*
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We propose that the fracture topography, in its atomic form, is recorded

on the francture surface through the scaling cascade of fractal geometry. There

will, then, be an atomic scale generator with a characteristic length. Suppose

the constant A is a product of this characteristic length and Young's modulus,

so that. A =E(a0)ll2.

Then;

Klc= E (a0 D*)1/ 2 , (24)

where: KIC is the fracture toughness,

E is Young's modulus,

D* is the fractal dimension,

a0 is the characteristic length.

The plane fracture model of Chapter 1 demonstrated the importance of

thermodynamic surface energy, y.,, in fracture. This derivation assumed ideal

plane fracture. The real world, however, is far from ideal. Other processes

will absorb energy, the most obvious of which is the non-planar propagation of

a crack. A new quantity, called the fracture energy, yf, is used as an effective

fracture energy.
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This term includes processes that consume energy by the formation of surface,

zones of plastic deformation, acoustic and photo emission, etc.

Under conditions of plar!e stress, fracture toughness is related to fracture

energy;

KIc = (2E yf )112, (25)

so that Kic 2 2E'f. (26)

Where; yf is the fracture energy.

Now, from equation 23;

Kic 2  E2 a0D°. (27)

"-A
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iI
Inserting equation 27 itito uquation 26 gives:

(yf /E) = 1/2 a0 D*. (28)

Equation (28) can now be used to compute the value of a0 . Using

experimentally obtained values of "f and E, and the experimentally determined

value of D, a plot of (-yf/E) vs (a0 D) is constructed, Figure 26. This plot is'

derived to have a slope of 1/2. The materials that were scattered throughout

the KIc-D* plane of Figure 25 are now situated along a single line.

The macroscopic fracture energy, -f, is normalized to Young's modulus,

E. Young's modulus can be conceptualized as a measure of atomic bond

strength. It represents a weighted average of all the possible bond strengths of

the material. Thus, as W/tE increases, the fracture energy is increasing with

respect to E. Along the horizontal axis, a0 represents an atomic scale length

while D° represents a measure of surface roughness. Moving outward along

this axis demonstrates another in!erplay between microscopic (a0 ) and

macroscopic (D') properties.



59

-MS 500#4

MS 4M98#5

7f Pyroceram
E

Lucalox

I ZnSe
-~ CcJTe

AD999
~)- A090

A Spinel

a 0D

Figure 26. Plot of '(f/E vs D.
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More importantly, the vertical axis represents energy, the horizontal axis

represents geometry. This implies an intimate connection between energy and

geometry. .Eqution (28) provid.s a clear statement of this connection. Using

fractal geometry, we may be better able to compute the actual fracture energies

from fractal theoretic models.

Table III documents the calculated values for the characteristic length,

a0 , for a number of materials. Notice that the single crystals and large grain

polycrystals (ZnSe, CdTe) have characteristic lengths of a few angstroms.

These values are of the order of lattice parameters and suggest that the unit

process of fracture for these materials is on the order of atomic bond breaking.

The zinc silicate glass ceramics show much larger characteristic lengths. This

suggests that fracture of these materials is a cluster-like or molecular process.

4i!i
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TABLE III

Summary of the Calculated. Values.of Characteristic Length a0

..MATEBIAL. .. M E.F2i -Q . k(G_.,.aO

Alumina

AD90 11 390 1.21 3

AD999 19 406 1.31 3

Lucalox 26 305 1.31 5

Zinc Silicates

MS 498#5 27 90 1.07 76

MS 500#4 27 89 1.1.2 53

Pyroceram 25 120 1.17 20

CdTe 1; 40 1.20 3

ZnSe 5.5 69 1.30 4

CaF2 (s.c.)* 0.5 114 1.07 1

Spinel(s.c.) 3 240 1.09 3

"s.c. refers to single crystal
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The determination of this characteristic length, a0 , is of startling

significance. This length came about from a number of important assumptions.

First, it is assumed that fracture is a fractal process. Further, it is assumed that

this fractal process is scale invariant and self-similar. From this assumption,

we propose that fracture on the macroscopic scale is composed of the scaled

insertion of a unit process on the atomic scale. In other words, there is some

small scale event with a definite geometric shape. This shape is repeated

everywhere along the fracture and reveals its signature from the atomic to the

macroscopic scales. Therefore, measurements of the geometric shape of

fracture on the macroscopic scale can be used to infer the unit process on the

atomic scale. Likewise, if we know the unit process, we can generate a shape.

If we have a fractal dimension of a fracture surface, and we know something

about the structure of the material, then we can deduce possible shapes for the

unit process. We could then build a fracture surface from these shapes.

Our second assumption involves the family lines in KIc - D" space.

These lines have proposed slopes of 1/2. The slope of 1/2 was obtained

from observations by Mecholsky et al. 24



This assumes that all of the materials originally tested should lie along the

same line (i.e., are members of the same family). It is not clear, however, that

the zinc silicates should be in the same family with alumina.

The members of a particular family should exhibit similar fracture

behavior. Their differences in toughness should reflect differences in crack

geometry, not fundamental differences in fracture mechanisms. For example,

consider a hypothetical material which is toughened by the addition of a

second phase. This material would have three basic possibilities for crack

propagation, only one Wt which would surely place it in the same family as the

untoughened material:

(1) Fracture could pass through the second phase addition.

(2) Fracture could pass through the interface of matrix and

second phase-

(3) Fracture could deflect around the secontd phase and remain

'entirely within the mnatrix

Only the third possibility would represent a purely geometric toughening. The

crack still "sees" the same material yet. because of deflection around the

second phase, is forced to follow a longer path.
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A series of heat treated Ocala cherts were obtained from Ed

Beauchamp of Sandia National Labs. Purdy and Beauchamp 2 5 calculated a

decrease in toughness as a result of heat treatment. Along with a decrease in

toughness, there is a decrease in the qualitative fracture surface roughness.

In untreated chert, fracture propagates around zones of high density.

Heat treatment improves the bonding at the zone boundariz _9r.d the crack

now follows a less tortuous path through the dense zones. It may seem

paradoxical that improved bonding results in a decrease in fracture toughness;

yet the improved bonding allows the crack to propagate more smoothly,

thereby generating less surface area.

The dominance of geometrical factors in affecting the toughness of

Ocala chert suggested that these samples would constitute a family in the

KIc-D° plane. Figure 27 shows this data plotted in the toughness-fractal

dimension plane. A least squares fit gives a slope that is, again, 0.5. Figure

28 shows coastline sections for two of the Ocala chert samples; U5 and #4.

"4

Note the difference in roughness of these coastlines, and how this difference is

quantified by the fractal dimension.



Another assumption that went into the determination of the characteristic

length is the constant, A, of equation 23. The components of A, namely

Young's modulus and the characteristic length, were derived from a

dimensional analysis. We assured the existence of this length parameter by

assuming that it was reasonable for Young's modulus to appear in equation

(21). This is hinged upon the understanding that, ultimately, for a material to

fracture, bonds must break. The elastic modulus provides an average

measure of the strength of these bonds and, so, should appear in a model of

fracture.

* .
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TABLE IV

Data Summary for the Ocala Cherts

-Sample Toughness Fractal Dimension

U5 1.55 1.32

#3 1.46 1.26

#4 1.25 1.24

F5 1.05 1.17

S~~~~~101 •,------

" y 2.8127 xA0.5245 R 0.96"- _-___ 1 11 jI

SiO0
10"! 100

0°

Figure 27. A plot of toughness against fractal dimension for the
Ocala cherts again ,;hows that. Kic - /

___ __ __ __I

N%1 ___0. Ni
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S....Figure 23. Sample coastlines for U5 and 44 chert samples.
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Data Summnary

Two techniques were used to determine the fractal dimension:

Slit-island analysis and Richardson plots. Slit-island analysis uses

area-perimeter data in the following equation:

Ap2/D.

Therefore, IogA - 2/D logP.

The slope of a graph of such data is equal to 2;D, where A, P. and D are aw

defined earlier.

Richardson plots employ the scale dependence of measured length ir.:

L = kEID.

Therefore, IogL= (I-D) logE.

The slooe of such a relationship is equal to (1-0), where L ,E. and 0 are as

defined earlier.
41

Figures 29 through 41 contain the data obtainod from either Richardson

or slit-island analysis for the materials lisied in Table II. (This excludes the

"data of Mecholsky, Feinberg and Passoja.)
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Figure 30. Data for cadmium telluride
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y y 11.2308 - 0.14 89 x R =0.95
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slope = 1-D
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Figure 34. Data for U5 chert.
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Figure 36. Data for zinc silicate MS-508
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Figure 37. Data for polycrystalline spinel.
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Figure 38. Data for pyroceram.
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Figure 40. Data for single crystal spinel
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The irregular structure of many fracture surfaces presents a picture that is

too complicated for normal geometric description. A cross section through

these surfaces will provide contour lines that are indicative of this complicated

geometry. The length of these lines is related to the roughness and area of the

surface from which it was derived. Therefore, classification of the dimension of

such a line is useful in the description of the surface from which it was obtained.

The basic constructs of fractal geometry give a simple methodology for

categorizing the tortuosity of a line. Thus, fractals are used to classify the

geometry of a line passing through a fracture surface.

A relationship is shown to exist 4etween a material's fracta. dimension

II and itq fracture toughness;

Kic= A(D-1)1f2.

The constant A is as a family parameter that groups materials in Kir.D"

space (where D° = -1 ). The value of this constant will identify a particular

family line that may represent a fraclure mechanism.
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Assuming that fracture can be modeled as a scaling fractal, we

proposed that the constant A is a product of Young's modulus and a

characteristic length, a0 ;

A= E(a 0 )1/2 .

Thus, it was possible to compute values of the characteristic length. Modeling

fracture as a scaling fractal makes it possible to infer the atomic and

microscopic geometric structure ,ronm the macroscopic geometric structure.

Fractal geometric modeling of fracture shows a number of encouraging

results:

(1) The dimension ot a line through a fracture surface gives an

indication of the surface toughness, i.e., as D increases the

surface roughness increases.

(2) D was shown to be related to fracture toughness. Within a

given family: as D increases, toughness increases.

(3) Modeling the fracture surface as a scaling fractal permits the

calculation cf a characteristic longth of fracture.
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The use of scaling fractals allows for an orderly construction of a

complicated geometric shape. Shapes that appear too chaotic for description

find themselves well modeled by scaling fractals. Computer simulated

landscapes, as found in Mandelbrot's book, are strikingly reminiscent of the

natural world. It seems reasonable that these fractal models will be useful in

describing the structure of the objects they simulate.

This thesib, has shown that a fractal d6nension can be assigned to brittle

francture surfaces. This dimension, as yet, is restricted to the description of

contour liaies on the fracture surface, as well as fracture surface profiles. It must

be extended to the actual two-dirnecsional nature of the surface. The surface

dimension will lie between two and three--two being a periectly plane fracture.

As the dimension increases from two to three, ý;ie surface will be increasing in

roughness and geometric complexity. The relation between fractal dimension,

fracture toughness, fracture surface roughness and surface area cannot be

properly explored without the two-dimensional counterpart of the dimensions

dotermined in this thesis.

It is clear that fracture models have taken no account of the tremendous

complexity of fracture. In fao¶, the mooels assume that a "rack simply separates

planes of atoms into two perfectly plane fracture surfaces. The iractal approach

will enable the accommodation of surface roughness into) the basic models.
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Instead of separating planes of atoms, the crack is allowed to wander.

The new profiles generated by such a crack will be composed of shapes that

resemble fractal generators. Thus, fracture surfaces can be constructed from

atomic scale shapes that cascade, via the scale invariance of fractal geometry,

'i macroscopic fracture surface features. Computer simulations of this

hypothesis are the next step in understanding the applicability of fractal

concepts to brittle fracture.

p
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