Skip to main content

Chinese Cabbage (Brassica rapa L. var. pekinensis) Breeding: Application of Molecular Technology

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Vegetable Crops

Abstract

Chinese cabbage (Brassica rapa L. var. pekinensis) is an economically important vegetable providing nutrients such as fiber, calcium and vitamins. Most cultivars of Chinese cabbage are F1 hybrids with vegetative heterosis, and harvesting of commercial F1 hybrid seeds makes use of self-incompatibility or cytoplasmic male sterility. Production of Chinese cabbage is always threatened by abiotic and biotic stress; climate change and increasing numbers of races and varieties of pathogens are also serious problems. The demand for abiotic or biotic resistant cultivars is growing year by year. An effective breeding method is desired, and marker-assisted selection (MAS) is a leading candidate. To apply MAS, identification of the causative gene or the locus linked to the causative gene controlling a trait for breeding is required. We review the recent research using molecular biology approaches and discuss how this information can apply to Chinese cabbage breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akter A, Nishida N, Takada T et al (2018) Genetic and epigenetic regulation of vernalization in Brassicaceae. In: El-Esawi MA (ed) Brassica germplasm – characterization, breeding and utilization. IntechOpen, London, pp 75–94

    Google Scholar 

  • Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bao A, Burritt DJ, Chen H et al (2019) The CRISPR/Cas9 system and its applications in crop genome editing. Crit Rev Biotechnol 39:321–336

    Article  CAS  PubMed  Google Scholar 

  • Barth S, Busimi AK, Friedrich Utz H, Melchinger AE (2003) Heterosis for biomass yield and related traits in five hybrids of Arabidopsis thaliana L. Heynh. Heredity 91:36–42

    Article  CAS  PubMed  Google Scholar 

  • Baskar V, Gangadhar BH, Park SW, Nile SH (2016) A simple and efficient Agrobacterium tumefaciens-mediated plant transformation of Brassica rapa ssp. pekinensis. 3 Biotech 6:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Bateman AJ (1955) Self-incompatibility systems in angiosperms. III. Cruciferae. Heredity 9:53–68

    Article  Google Scholar 

  • Bayer PE, Golicz AA, Tirnaz S et al (2018) Variation in abundance of predicted resistance genes in the Brassica oleracea pangenome. Plant Biotechnol J 17:789–800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berry S, Dean C (2015) Environmental perception and epigenetic memory: mechanistic insight through FLC. Plant J 83:133–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blümel M, Dally N, Jung C (2015) Flowering time regulation in crops—what did we learn from Arabidopsis? Curr Opin Biotechnol 32:121–129

    Article  PubMed  CAS  Google Scholar 

  • Boggs NA, Dwyer KG, Nasrallah ME, Nasrallah JB (2009) In vivo detection of residues required for ligand-selective activation of the S-locus receptor in Arabidopsis. Curr Biol 19:786–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braselton JP, Miller CE, Pechak DG (1975) The ultrastructure of cruciform nuclear division in Sorosphaera veronicae (Plasmodiophoromycete). Am J Bot 62:349–358

    Article  Google Scholar 

  • Buczacki ST, Toxopeus H, Mattusch P et al (1975) Study of physiologic specialization in Plasmodiophora brassicae: proposals for attempted rationalization through an international approach. Trans Br Mycol Soc 65:295–303

    Article  Google Scholar 

  • Burki F, Kudryavtsev A, Matz MV et al (2010) Evolution of Rhizaria: new insights from phylogenomic analysis of uncultivated protists. BMC Evol Biol 10:377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Wu J, Fang L et al (2012) Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLoS One 7:e36442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Wu J, Wang X (2014) Genome triplication drove the diversification of Brassica plants. Hortic Res 1:14024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng F, Sun R, Hou X et al (2016) Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea. Nat Genet 48:1218–1224

    Article  CAS  PubMed  Google Scholar 

  • Cho YN, Park SY, Noh TK et al (2003a) Transformation of Chinese cabbage with L-gulono-γ-lactone oxidase (GLOase)-encoding gene using Agrobacterium tumefaciens. Korean J Hortic Sci 21:9–13

    Google Scholar 

  • Cho WD, Kim WG, Takahashi K (2003b) Occurrence of clubroot in cruciferous vegetable crops and races of the pathogen in Korea. Plant Pathol J 19:64–68

    Article  Google Scholar 

  • Chookajorn T, Kachroo A, Ripoll DR et al (2004) Specificity determinants and diversification of the Brassica self-incompatibility pollen ligand. Proc Natl Acad Sci U S A 101:911–917

    Article  CAS  PubMed  Google Scholar 

  • Chu M, Song T, Falk KC et al (2014) Fine mapping of Rcr1 and analyses of its effect on transcriptome patterns during infection by Plasmodiophora brassicae. BMC Genomics 15:1166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crisp P, Crute IR, Sutherland RA et al (1989) The exploitation of genetic resources of Brassica oleracea in breeding for resistance to clubroot (Plasmodiophora brassicae). Euphytica 42:215–226

    Article  Google Scholar 

  • Crow JF (1998) 90 years ago: the beginning of hybrid maize. Genetics 148:923–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui J, Li M, Qiu L et al (2017) Stable expression of exogenous imported sporamin in transgenic Chinese cabbage enhances resistance against insects. Plant Growth Regul 81:543–552

    Article  CAS  Google Scholar 

  • De Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer, Berlin

    Book  Google Scholar 

  • Diederichsen E, Frauen M, Linders EGA et al (2009) Status and perspectives of clubroot resistance breeding in crucifer crops. J Plant Growth Regul 28:265–281

    Article  CAS  Google Scholar 

  • Dixon GR (2009) The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease. J Plant Growth Regul 28:194–202

    Article  CAS  Google Scholar 

  • Doucet J, Lee HK, Goring DR (2016) Pollen acceptance or rejection: a tale of two pathways. Trends Plant Sci 21:1058–1067

    Article  CAS  PubMed  Google Scholar 

  • Enya J, Togawa M, Takeuchi T et al (2008) Biological and phylogenetic characterization of Fusarium oxysporum complex, which causes yellows on Brassica spp., and proposal of F. oxysporum f. sp. rapae, a novel forma specialis pathogenic on B. rapa in Japan. Phytopathology 98:475–483

    Article  CAS  PubMed  Google Scholar 

  • Farnham MW, Keinath AP, Smith JP (2001) Characterization of Fusarium yellows resistance in collard. Plant Dis 85:890–894

    Article  PubMed  Google Scholar 

  • Fornara F, de Montaigu A, Coupland G (2010) SnapShot: control of flowering in Arabidopsis. Cell 141:550–550.e2

    Article  Google Scholar 

  • Fuchs J, Demidov D, Houben A, Schubert I (2006) Chromosomal histone modification patterns -from conservation to diversity. Trends Plant Sci 11:199–208

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto R, Nishio T (2003) Identification of S haplotypes in Brassica by dot-blot analysis of SP11 alleles. Theor Appl Genet 106:1433–1437

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto R, Nishio T (2007) Self-incompatibility. Adv Bot Res 45:139–154

    Article  CAS  Google Scholar 

  • Fujimoto R, Okazaki K, Fukai E et al (2006a) Comparison of the genome structure of the self-incompatibility (S) locus in interspecific pairs of S haplotypes. Genetics 173:1157–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto R, Sugimura T, Fukai E, Nishio T (2006b) Suppression of gene expression of a recessive SP11/SCR allele by an untranscribed SP11/SCR allele in Brassica self-incompatibility. Plant Mol Biol 61:577–587

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto R, Sugimura T, Nishio T (2006c) Gene conversion from SLG to SRK resulting in self-compatibility in Brassica rapa. FEBS Lett 580:425–430

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto R, Sasaki T, Ishikawa R et al (2012a) Molecular mechanisms of epigenetic variation in plants. Int J Mol Sci 13:9900–9922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto R, Taylor JM, Shirasawa S et al (2012b) Heterosis of Arabidopsis hybrids between C24 and Col is associated with increased photosynthesis capacity. Proc Natl Acad Sci U S A 109:7109–7114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto R, Uezono K, Ishikura S et al (2018) Recent research on the mechanism of heterosis is important for crop and vegetable breeding systems. Breed Sci 68:145–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garber RC, Aist JR (1979) The ultrastructure of mitosis in Plasmodiophora brassicae (Plasmodiophorales). J Cell Sci 40:89–110

    Article  CAS  PubMed  Google Scholar 

  • Girke A, Schierholt A, Becker HC (2012) Extending the rapeseed gene pool with resynthesized Brassica napus II: Heterosis. Theor Appl Genet 124:1017–1026

    Article  PubMed  Google Scholar 

  • Golicz AA, Bayer PE, Barker GC et al (2016) The pangenome of an agronomically important crop plant Brassica oleracea. Nat Commun 7:13390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu T, Mazzurco M, Sulaman W et al (1998) Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase. Proc Natl Acad Sci U S A 95:382–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Chen S, Li Z, Cowling WA (2014) Center of origin and centers of diversity in an ancient crop, Brassica rapa (turnip rape). J Hered 105:555–565

    Article  PubMed  Google Scholar 

  • Hasan MJ, Strelkov SE, Howard RJ, Rahman H (2012) Screening of Brassica germplasm for resistance to Plasmodiophora brassicae pathotypes prevalent in Canada for broadening diversity in clubroot resistance. Can J Plant Sci 92:501–515

    Article  Google Scholar 

  • Hatakeyama K, Watanabe M, Takasaki T et al (1998) Dominance relationships between S-alleles in self-incompatible Brassica campestris L. Heredity 80:241–247

    Article  Google Scholar 

  • Hatakeyama K, Takasaki T, Suzuki G et al (2001) The S receptor kinase gene determines dominance relationships in stigma expression of self-incompatibility in Brassica. Plant J 26:69–76

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama K, Fujimura M, Ishida M, Suzuki T (2004) New classification method for Plasmodiophora brassicae field isolates in Japan based on resistance of F1 cultivars of Chinese cabbage (Brassica rapa L.) to clubroot. Breed Sci 54:197–201

    Article  Google Scholar 

  • Hatakeyama K, Horisaki A, Niikura S et al (2010) Mapping of quantitative trait loci for high level of self-incompatibility in Brassica rapa L. Genome 53:257–265

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama K, Suwabe K, Tomita RN et al (2013) Identification and characterization of Crr1a, a gene for resistance to clubroot disease (Plasmodiophora brassicae Woronin) in Brassica rapa L. PLoS One 8:e54745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatakeyama K, Niwa T, Kato T et al (2017) The tandem repeated organization of NB-LRR genes in the clubroot-resistant CRb locus in Brassica rapa L. Mol Genet Genomics 292:397–405

    Article  CAS  PubMed  Google Scholar 

  • He G, Elling AA, Deng XW (2011) The epigenome and plant development. Annu Rev Plant Biol 62:411–435

    Article  CAS  PubMed  Google Scholar 

  • Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76–79

    Article  CAS  PubMed  Google Scholar 

  • Hirai M, Harada T, Kubo N et al (2004) A novel locus for clubroot resistance in Brassica rapa and its linkage markers. Theor Appl Genet 108:639–643

    Article  CAS  PubMed  Google Scholar 

  • Hirani AH, Li G (2015) Understanding the genetics of clubroot resistance for effectively controlling this disease in Brassica species. Plants for the Future:1

    Google Scholar 

  • Hirani AH, Gao F, Liu J et al (2018) Combinations of independent dominant loci conferring clubroot resistance in all four turnip accessions (Brassica rapa) from the European clubroot differential set. Front Plant Sci 9:1628

    Article  PubMed  PubMed Central  Google Scholar 

  • Holtz MD, Hwang SF, Strelkov SE (2018) Genotyping of Plasmodiophora brassicae reveals the presence of distinct populations. BMC Genomics 19:254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horisaki A, Niikura S (2008) Developmental and environmental factors affecting level of self-incompatibility response in Brassica rapa L. Sex Plant Reprod 21:123–132

    Article  Google Scholar 

  • Huang Z, Peng G, Liu X et al (2017) Fine mapping of a clubroot resistance gene in Chinese cabbage using SNP markers identified from bulked segregant RNA sequencing. Front Plant Sci 8:1448

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang SF, Strelkov SE, Feng J et al (2012) Plasmodiophora brassicae: a review of an emerging pathogen of the Canadian canola (Brassica napus) crop. Mol Plant Pathol 13:105–113

    Article  CAS  PubMed  Google Scholar 

  • Ingram DS, Tommerup IC (1972) The life history of Plasmodiophora brassicae Woron. Proc R Soc London Ser B 180:103–112

    Article  Google Scholar 

  • Isokawa S, Osaka M, Shirasawa A et al (2010) Novel self-compatible lines of Brassica rapa L. isolated from the Japanese bulk-populations. Genes Genet Syst 85:87–96

    Article  CAS  PubMed  Google Scholar 

  • Itabashi E, Osabe K, Fujimoto R, Kakizaki T (2018) Epigenetic regulation of agronomical traits in Brassicaceae. Plant Cell Rep 37:87–101

    Article  CAS  PubMed  Google Scholar 

  • Jang HY, Park MY, Lee JS et al (2019) Development of a molecular marker using GWAS to select the resistance resource for the Yeoncheon Strain causing kimchi cabbage clubroot disease. Hortic Sci Tech 37:92–107

    Google Scholar 

  • Jiang J, Bai J, Li S et al (2018) HTT2 promotes plant thermotolerance in Brassica rapa. BMC Plant Biol 18:127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kachroo A, Schopfer CR, Nasrallah ME, Nasrallah JB (2001) Allele-specific receptor-ligand interactions in Brassica self-incompatibility. Science 293:1824–1826

    Article  CAS  PubMed  Google Scholar 

  • Kageyama K, Asano T (2009) Life cycle of Plasmodiophora brassicae. J Plant Growth Regul 28:203–211

    Article  CAS  Google Scholar 

  • Kakita M, Murase K, Iwano M et al (2007) Two distinct forms of M-locus protein kinase localize to the plasma membrane and interact directly with S-locus receptor kinase to transduce self-incompatibility signaling in Brassica rapa. Plant Cell 19:3961–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakizaki T, Takada Y, Ito A et al (2003) Linear dominance relationship among four class-II S haplotypes in pollen is determined by the expression of SP11 in Brassica self-incompatibility. Plant Cell Phys 44:70–75

    Article  CAS  Google Scholar 

  • Kakizaki T, Takada Y, Fujioka T et al (2006) Comparative analysis of the S-intergenic region in the class-II S haplotypes of self-incompatible Brassica rapa (syn. campestris). Genes Genet Syst 81:63–67

    Article  CAS  PubMed  Google Scholar 

  • Kaneko Y, Bang SW (2014) Interspecific and intergeneric hybridization and chromosomal engineering of Brassicaceae crops. Breed Sci 64:14–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawamura K, Kawanabe T, Shimizu M et al (2015) Genetic characterization of inbred lines of Chinese cabbage by DNA markers; towards the application of DNA markers to breeding of F1 hybrid cultivars. Data Brief 6:229–237

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawamura K, Kawanabe T, Shimizu M et al (2016) Genetic distance of inbred lines of Chinese cabbage and its relationship to heterosis. Plant Gene 5:1–7

    Article  CAS  Google Scholar 

  • Kim DH, Sung S (2017) Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs. Dev Cell 40:302–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SY, Park BS, Kwon SJ et al (2007) Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Cell Rep 26:327–336

    Article  CAS  PubMed  Google Scholar 

  • Kitamoto N, Yui S, Nishikawa K et al (2014) A naturally occurring long insertion in the first intron in the Brassica rapa FLC2 gene causes delayed bolting. Euphytica 196:213–223

    Article  CAS  Google Scholar 

  • Kitamoto N, Nishikawa K, Tanimura Y et al (2017) Development of late-bolting F1 hybrids of Chinese cabbage (Brassica rapa L.) allowing early spring cultivation without heating. Euphytica 213:292

    Article  Google Scholar 

  • Konagaya K, Tsuda M, Okuzaki A et al (2013) Application of the acetolactate synthase gene as a cisgenic selectable marker for Agrobacterium-mediated transformation in Chinese cabbage (Brassica rapa ssp. pekinensis). Plant Biotech 30:125–133

    Article  CAS  Google Scholar 

  • Kuginuki Y, Tsukazaki H (2001) Regeneration ability and Agrobacterium-mediated transformation of different cultivars in Brassica oleracea L. and B. rapa L. (syn. B. campestris L.). J Jpn Soc Hortic Sci 70:682–690

    Article  CAS  Google Scholar 

  • Kuginuki Y, Ajisaka H, Yui M et al (1997) RAPD markers linked to a clubroot-resistance locus in Brassica rapa L. Euphytica 98:149–154

    Article  CAS  Google Scholar 

  • Kuginuki Y, Yoshikawa H, Hirai M (1999) Variation in virulence of Plasmodiophora brassicae in Japan tested with clubroot-resistant cultivars of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Eur J Plant Pathol 105:327–332

    Article  Google Scholar 

  • Kusaba M, Nishio T, Satta Y et al (1997) Striking sequence similarity in inter- and intra-specific comparisons of class I SLG alleles from Brassica oleracea and Brassica campestris: implications for the evolution and recognition mechanism. Proc Natl Acad Sci U S A 94:7673–7678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laila R, Robin AHK, Yang K et al (2017) Detection of ribosomal DNA sequence polymorphisms in the protist Plasmodiophora brassicae for the identification of geographical isolates. Int J Mol Sci 18:84

    Article  PubMed Central  CAS  Google Scholar 

  • Laila R, Park JI, Robin AHK et al (2019) Mapping of a novel clubroot resistance QTL using ddRAD-seq in Chinese cabbage (Brassica rapa L.). BMC Plant Biol 19:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Lao X, Suwabe K, Niikura S et al (2014) Physiological and genetic analysis of CO2-induced breakdown of self-incompatibility in Brassica rapa. J Exp Bot 65:939–951

    Article  CAS  PubMed  Google Scholar 

  • Lawrenson T, Shorinola O, Stacey N et al (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li E, Wang G, Yang Y et al (2015) Microscopic analysis of the compatible and incompatible interactions between Fusarium oxysporum f. sp. conglutinans and cabbage. Eur J Plant Pathol 141:597–609

    Article  Google Scholar 

  • Li X, Zhang S, Bai J, He Y (2016) Tuning growth cycles of Brassica crops via natural antisense transcripts of BrFLC. Plant Biotechnol J 14:905–914

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Xu A, Liang F et al (2018) Screening of clubroot-resistant varieties and transfer of clubroot resistance genes to Brassica napus using distant hybridization. Breed Sci 68:258–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lou P, Zhao J, Kim JS et al (2007) Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. J Exp Bot 58:4005–4016

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Dai S, Gu A et al (2016) Microspore induced doubled haploids production from ethyl methanesulfonate (EMS) soaked flower buds is an efficient strategy for mutagenesis in Chinese cabbage. Front Plant Sci 7:1780

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv H, Fang Z, Yang L et al (2014) Mapping and analysis of a novel candidate Fusarium wilt resistance gene FOC1 in Brassica oleracea. BMC Genomics 15:1094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma R, Han Z, Hu Z et al (2016) Structural basis for specific self-incompatibility response in Brassica. Cell Res 26:1320–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma C, Zhu C, Zheng M et al (2019) CRISPR/Cas9-mediated multiple gene editing in Brassica oleracea var. capitata using the endogenous tRNA-processing system. Hortic Res 6:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mao Y, Wu F, Yu X et al (2014) microRNA319a-targeted Brassica rapa ssp. pekinensis TCP genes modulate head shape in Chinese cabbage by differential cell division arrest in leaf regions. Plant Physiol 164:710–720

    Article  CAS  PubMed  Google Scholar 

  • Matsubara S (1980) Overcoming self-incompatibility in Raphanus sativus L. with high temperature. J Am Soc Hortic Sci 105:842–846

    Article  Google Scholar 

  • Matsumoto E, Yasui C, Ohi M, Tsukada M (1998) Linkage analysis of RFLP markers for clubroot resistance and pigmentation in Chinese cabbage (Brassica rapa ssp. pekinensis). Euphytica 104:79–86

    Article  CAS  Google Scholar 

  • Matsumoto E, Hayashida N, Sakamoto K, Ohi M (2005) Behavior of DNA markers linked to a clubroot resistance gene in segregating populations of Chinese cabbage (Brassica rapa ssp. pekinensis). J Jpn Soc Hortic Sci 74:367–373

    Article  CAS  Google Scholar 

  • Matsumoto E, Ueno H, Aruga D et al (2012) Accumulation of three clubroot resistance genes through marker-assisted selection in Chinese cabbage (Brassica rapa ssp. pekinensis). J Jpn Soc Hortic Sci 81:184–190

    Article  CAS  Google Scholar 

  • Min BW, Cho YN, Song MJ et al (2007) Successful genetic transformation of Chinese cabbage using phosphomannose isomerase as a selection marker. Plant Cell Rep 26:337–344

    Article  CAS  PubMed  Google Scholar 

  • Mishima M, Takayama S, Sasaki K et al (2003) Structure of the male determinant factor for Brassica self-incompatibility. J Biol Chem 278:36389–36395

    Article  CAS  PubMed  Google Scholar 

  • Mizushima U, Tsunoda S (1969) Aburana-zoku saibai-shu no kigen ni tuite. Agric Hortic 44:1347–1352. (in Japanese)

    Google Scholar 

  • Moll RH, Lonnquist JH, Vélez Fortuno J, Johnson EC (1965) The relationship of heterosis and genetic divergence in maize. Genetics 52:139–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murase K, Shiba H, Iwano M et al (2004) A membrane-anchored protein kinase involved in Brassica self-incompatibility signaling. Science 303:1516–1519

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi T, Esashi Y, Hinata K (1969) Control of self-incompatibility by CO2 gas in Brassica. Plant Cell Phys 10:925–927

    Article  CAS  Google Scholar 

  • Nasrallah JB, Nasrallah ME (1993) Pollen-stigma signaling in the sporophytic self-incompatibility response. Plant Cell 5:1325–1335

    Article  PubMed  PubMed Central  Google Scholar 

  • Nasrallah JB, Nishio T, Nasrallah ME (1991) The self-incompatibility genes of Brassica: expression and use in genetic ablation of floral tissues. Annu Rev Plant Phys Plant Mol Biol 42:393–422

    Article  Google Scholar 

  • Nguyen ML, Monakhos GF, Komakhin RA, Monakhos SG (2018) The new clubroot resistance locus is located on chromosome A05 in Chinese cabbage (Brassica rapa L.). Russ J Genet 54:296–304

    Article  CAS  Google Scholar 

  • Niemann J, Kaczmarek J, Książczyk T et al (2017) Chinese cabbage (Brassica rapa ssp. pekinensis) – a valuable source of resistance to clubroot (Plasmodiophora brassicae). Eur J Plant Pathol 147:181–198

    Article  CAS  Google Scholar 

  • Niikura S, Matsuura S (2000) Genetic analysis of the reaction level of self-incompatibility to a 4% CO2 gas treatment in the radish (Raphanus sativus L.). Theor Appl Genet 101:1189–1193

    Article  CAS  Google Scholar 

  • Nishio T, Sakamoto K, Yamaguchi J (1994) PCR-RFLP of S locus for identification of breeding lines in cruciferous vegetables. Plant Cell Rep 13:546–550

    Article  CAS  PubMed  Google Scholar 

  • Nishio T, Kusaba M, Watanabe M, Hinata K (1996) Registration of S alleles in Brassica campestris L by the restriction fragment sizes of SLGs. Theor Appl Genet 92:388–394

    Article  CAS  PubMed  Google Scholar 

  • Nou IS, Watanabe M, Isogai A et al (1991) Variation of S-alleles and S-glycoproteins in a naturalized population of self-incompatible Brassica campestris L. Jpn J Genet 66:227–239

    Google Scholar 

  • Nou IS, Watanabe M, Isuzugawa K et al (1993a) Isolation of S-allele from a wild population of Brassica campestris L. at Balcesme, Turkey and their characterization by S-glycoprotein. Sex Plant Reprod 6:71–78

    Google Scholar 

  • Nou IS, Watanabe M, Isogai A, Hinata K (1993b) Comparison of S-alleles and S-glycoproteins between two wild populations of Brassica campestris in Turkey and Japan. Sex Plant Reprod 6:79–86

    Article  Google Scholar 

  • Ockendon DJ (1978) Effect of hexane and humidity on self-incompatibility in Brassica oleracea. Theor Appl Genet 52:113–117

    Article  CAS  PubMed  Google Scholar 

  • Okazaki K, Hinata K (1987) Repressing the expression of self-incompatibility in crucifers by short-term high temperature treatment. Theor Appl Genet 73:496–500

    Article  CAS  PubMed  Google Scholar 

  • Okuzaki A, Ogawa T, Koizuka C et al (2018) CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol Biochem 131:63–69

    Article  CAS  PubMed  Google Scholar 

  • Olszak M, Truman W, Stefanowicz K et al (2019) Transcriptional profiling identifies critical steps of cell cycle reprogramming necessary for Plasmodiophora brassicae-driven gall formation in Arabidopsis. Plant J 97:715–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osabe K, Kawanabe T, Sasaki T et al (2012) Multiple mechanisms and challenges for the application of allopolyploidy in plants. Int J Mol Sci 13:8696–8721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JI, Nou IS, Lee SS et al (2001) Identification of S-genotypes by PCR-RFLP in breeding lines of Brassica. Mol Cells 12:227–232

    CAS  PubMed  Google Scholar 

  • Park JI, Lee SS, Watanabe M et al (2002) Identification of S-alleles using polymerase chain reaction-cleaved amplified polymorphic sequence of the S-locus receptor kinase in breeding lines of Brassica oleracea. Plant Breed 121:192–197

    Article  CAS  Google Scholar 

  • Piao ZY, Deng YQ, Choi SR et al (2004) SCAR and CAPS mapping of CRb, a gene conferring resistance to Plasmodiophora brassicae in Chinese cabbage (Brassica rapa ssp. pekinensis). Theor Appl Genet 108:1458–1465

    Article  CAS  PubMed  Google Scholar 

  • Piao Z, Ramchiary N, Lim YP (2009) Genetics of clubroot resistance in Brassica species. J Plant Growth Regul 28:252–264

    Article  CAS  Google Scholar 

  • Pino Del Carpio D, Basnet RK, De Vos RCH et al (2011) The patterns of population differentiation in a Brassica rapa core collection. Theor Appl Genet 122:1105–1118

    Article  PubMed  Google Scholar 

  • Pu Z, Shimizu M, Zhang Y et al (2012) Genetic mapping of a fusarium wilt resistance gene in Brassica oleracea. Mol Breed 30:809–818

    Article  CAS  Google Scholar 

  • Pu Z, Ino Y, Kimura Y et al (2016) Changes in the proteome of xylem sap in Brassica oleracea in response to Fusarium oxysporum stress. Front Plant Sci 7:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu L, Wu T, Dong H et al (2013) High-level expression of Sporamin in transgenic Chinese cabbage enhances resistance against diamondback moth. Plant Mol Biol Rep 31:657–664

    Article  CAS  Google Scholar 

  • Rahman H, Shakir A, Hasan MJ (2011) Breeding for clubroot resistant spring canola (Brassica napus L.) for the Canadian prairies: can the European winter canola cv. Mendel be used as a source of resistance? Can J Plant Sci 91:447–458

    Article  Google Scholar 

  • Ramchiary N, Nguyen VD, Li X et al (2011) Genic microsatellite markers in Brassica rapa: development, characterization, mapping, and their utility in other cultivated and wild Brassica relatives. DNA Res 18:305–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolfe SA, Strelkov SE, Links MG et al (2016) The compact genome of the plant pathogen Plasmodiophora brassicae is adapted to intracellular interactions with host Brassica spp. BMC Genomics 17:272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saeki N, Kawanabe T, Ying H et al (2016) Molecular and cellular characteristics of hybrid vigour in a commercial hybrid of Chinese cabbage. BMC Plant Biol 16:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakamoto K, Nishio T (2001) Distribution of S haplotypes in commercial cultivars of Brassica rapa. Plant Breed 120:155–161

    Article  CAS  Google Scholar 

  • Sakamoto K, Saito A, Hayashida N et al (2008) Mapping of isolate-specific QTLs for clubroot resistance in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Theor Appl Genet 117:759–767

    Article  CAS  PubMed  Google Scholar 

  • Samuel MA, Chong YT, Haasen KE et al (2009) Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. Plant Cell 21:2655–2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sankaranarayanan S, Jamshed M, Samuel MA (2015) Degradation of glyoxalase I in Brassica napus stigma leads to self-incompatibility response. Nat Plants 1:15185

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Nishio T, Kimura R et al (2002) Coevolution of the S-locus genes SRK, SLG and SP11/SCR in Brassica oleracea and B. rapa. Genetics 162:931–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schopfer CR, Nasrallah ME, Nasrallah JB (1999) The male determinant of self-incompatibility in Brassica. Science 286:1697–1700

    Article  CAS  PubMed  Google Scholar 

  • Schranz ME, Quijada P, Sung SB et al (2002) Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics 162:1457–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwelm A, Fogelqvist J, Knaust A et al (2015) The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases. Sci Rep 5:11153

    Article  PubMed  PubMed Central  Google Scholar 

  • Shea DJ, Shimizu M, Nishida N et al (2017) IntroMap: a signal analysis based method for the detection of genomic introgressions. BMC Genet 18:101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shea DJ, Itabashi E, Takada S et al (2018a) The role of FLOWERING LOCUS C in vernalization of Brassica: the importance of vernalization research in the face of climate change. Crop Past Sci 69:30–39

    Article  CAS  Google Scholar 

  • Shea DJ, Shimizu M, Itabashi E et al (2018b) Genome re-sequencing, SNP analysis, and genetic mapping of the parental lines of a commercial F1 hybrid cultivar of Chinese cabbage. Breed Sci 68:375–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shea DJ, Tomaru Y, Itabashi E et al (2018c) The production and characterization of a BoFLC2 introgressed Brassica rapa by repeated backcrossing to an F1. Breed Sci 68:316–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheldon CC, Conn AB, Dennis ES, Peacock WJ (2002) Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression. Plant Cell 14:2527–2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiba H, Takayama S, Iwano M et al (2001) A pollen coat protein, SP11/SCR, determines the pollen S-specificity in the self-incompatibility of Brassica species. Plant Physiol 125:2095–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiba H, Iwano M, Entani T et al (2002) The dominance of alleles controlling self-incompatibility in Brassica pollen is regulated at the RNA level. Plant Cell 14:491–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiba H, Kakizaki T, Iwano M et al (2006) Dominance relationships between self-incompatibility alleles controlled by DNA methylation. Nat Genet 38:297–299

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M, Fujimoto R, Ying H et al (2014) Identification of candidate genes for fusarium yellows resistance in Chinese cabbage by differential expression analysis. Plant Mol Biol 85:247–257

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M, Pu Z, Kawanabe T et al (2015) Map-based cloning of a candidate gene conferring Fusarium yellows resistance in Brassica oleracea. Theor Appl Genet 128:119–130

    Article  CAS  PubMed  Google Scholar 

  • Shimosato H, Yokota N, Shiba H et al (2007) Characterization of the SP11/SCR high-affinity binding site involved in self/nonself recognition in Brassica self-incompatibility. Plant Cell 19:107–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siemens J, Bulman S, Rehn F, Sundelin T (2009) Molecular biology of Plasmodiophora brassicae. J Plant Growth Regul 28:245–251

    Article  CAS  Google Scholar 

  • Some A, Manzanares MJ, Laurens F et al (1996) Variation for virulence on Brassica napus L. amongst Plasmodiophora brassicae collections from France and derived single-spore isolates. Plant Pathol 45:432–439

    Article  Google Scholar 

  • Song X, Liu G, Huang Z et al (2016) Temperature expression patterns of genes and their coexpression with LncRNAs revealed by RNA-Seq in non-heading Chinese cabbage. BMC Genomics 17:297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Springer NM, Stupar RM (2007) Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res 17:264–275

    Article  CAS  PubMed  Google Scholar 

  • Stein JC, Howlett B, Boyes DC et al (1991) Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc Natl Acad Sci U S A 88:8816–8820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenson P, Baker D, Girin T et al (2010) A rich TILLING resource for studying gene function in Brassica rapa. BMC Plant Biol 10:62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stone SL, Arnoldo M, Goring DR (1999) A breakdown of Brassica self-incompatibility in ARC1 antisense transgenic plants. Science 286:1729–1731

    Article  CAS  PubMed  Google Scholar 

  • Stone SL, Anderson EM, Mullen RT, Goring DR (2003) ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell 15:885–898

    Article  PubMed  PubMed Central  Google Scholar 

  • Strelkov SE, Hwang SF (2014) Clubroot in the Canadian canola crop: 10 years into the outbreak. Can J Plant Pathol 36:27–36

    Article  CAS  Google Scholar 

  • Strelkov SE, Tewari JP, Smith-Degenhardt E (2006) Characterization of Plasmodiophora brassicae populations from Alberta, Canada. Can J Plant Pathol 28:467–474

    Article  Google Scholar 

  • Su T, Wang W, Li P et al (2018) A genomic variation map provides insights into the genetic basis of spring Chinese cabbage (Brassica rapa ssp. pekinensis) selection. Mol Plant 11:1360–1376

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Lin L, Liu D et al (2018a) CRISPR/Cas9-mediated multiplex genome editing of the BnWRKY11 and BnWRKY70 genes in Brassica napus L. Int J Mol Sci 19:2716

    Article  PubMed Central  CAS  Google Scholar 

  • Sun X, Luo S, Luo L et al (2018b) Genetic analysis of Chinese cabbage reveals correlation between rosette leaf and leafy head variation. Front Plant Sci 9:1455

    Article  PubMed  PubMed Central  Google Scholar 

  • Suwabe K, Iketani H, Nunome T et al (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104:1092–1098

    Article  CAS  PubMed  Google Scholar 

  • Suwabe K, Tsukazaki H, Iketani H et al (2003) Identification of two loci for resistance to clubroot (Plasmodiophora brassicae Woronin) in Brassica rapa L. Theor Appl Genet 107:997–1002

    Article  CAS  PubMed  Google Scholar 

  • Suwabe K, Tsukazaki H, Iketani H et al (2006) Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics 173:309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suwabe K, Suzuki G, Watanabe M (2010) Achievement of genetics in plant reproduction research: the past decade for the coming decade. Genes Genet Syst 85:297–310

    Article  PubMed  Google Scholar 

  • Suzuki G, Kai N, Hirose T et al (1999) Genomic organization of the S locus: identification and characterization of genes in SLG/SRK region of S9 haplotype of Brassica campestris (syn. rapa). Genetics 153:391–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swiezewski S, Liu F, Magusin A, Dean C (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis polycomb target. Nature 462:799–802

    Article  CAS  PubMed  Google Scholar 

  • Takada Y, Nakanowatari T, Sato J et al (2005) Genetic analysis of novel intra-species unilateral incompatibility in Brassica rapa (syn. campestris) L. Sex Plant Reprod 17:211–217

    Article  Google Scholar 

  • Takada Y, Sato T, Suzuki G et al (2013) Involvement of MLPK pathway in intraspecies unilateral incompatibility regulated by a single locus with stigma and pollen factors. G3: Genes Genom Genet 3:719–726

    Article  CAS  Google Scholar 

  • Takada Y, Murase K, Shimosato-Asano H et al (2017) Duplicated pollen–pistil recognition loci control intraspecific unilateral incompatibility in Brassica rapa. Nat Plants 3:17096

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Osabe K, Fukushima N et al (2018a) Genome-wide characterization of DNA methylation, small RNA expression, and histone H3 lysine nine di-methylation in Brassica rapa L. DNA Res 25:511–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi S, Fukushima N, Osabe K et al (2018b) Identification of DNA methylated regions by using methylated DNA immunoprecipitation sequencing in Brassica rapa. Crop Past Sci 69:107–120

    Article  CAS  Google Scholar 

  • Takasaki T, Hatakeyama K, Suzuki G et al (2000) The S receptor kinase determines self-incompatibility in Brassica stigma. Nature 403:913–916

    Article  CAS  PubMed  Google Scholar 

  • Takayama S, Shiba H, Iwano M et al (2000a) The pollen determinant of self-incompatibility in Brassica campestris. Proc Natl Acad Sci U S A 97:1920–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takayama S, Shiba H, Iwano M et al (2000b) Isolation and characterization of pollen coat proteins of Brassica campestris that interact with S locus-related glycoprotein 1 involved in pollen-stigma adhesion. Proc Natl Acad Sci U S A 97:3765–3770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takayama S, Shimosato H, Shiba H et al (2001) Direct ligand–receptor complex interaction controls Brassica self-incompatibility. Nature 413:534–538

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Fujiyama S, Shigemori S et al (1998) Pathogenesis of isolates of Plasmodiophora brassicae from Japan (1) Race and pathogenesis in clubroot resistant cultivars. Kyushu PI Prot Res 44:15–19

    Article  Google Scholar 

  • Tantikanjana T, Nasrallah JB (2015) Ligand-mediated cis-inhibition of receptor signaling in the self-incompatibility response of the Brassicaceae. Plant Physiol 169:1141–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarutani Y, Shiba H, Iwano M et al (2010) Trans-acting small RNA determines dominance relationships in Brassica self-incompatibility. Nature 466:983–986

    Article  CAS  PubMed  Google Scholar 

  • Thompson KF, Taylor JP (1966) Non-linear dominance relationships between S alleles. Heredity 21:345–362

    Article  Google Scholar 

  • Tommerup IC, Ingram DS (1971) The life-cycle of Plasmodiophora brassicae Woron. In Brassica tissue cultures and in intact roots. New Phytol 70:327–332

    Article  Google Scholar 

  • Tonosaki K, Michiba K, Bang SW et al (2013) Genetic analysis of hybrid seed formation ability of Brassica rapa in intergeneric crossings with Raphanus sativus. Theor Appl Genet 126:837–846

    Article  CAS  PubMed  Google Scholar 

  • Tonosaki K, Osabe K, Kawanabe T, Fujimoto R (2016) The importance of reproductive barriers and the effect of allopolyploidization on crop breeding. Breed Sci 66:333–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsunoda S, Hinata K, Gomez-Campo C (1980) Brassica crops and wild allies - biology and breeding. Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Ueno H, Matsumoto E, Aruga D et al (2012) Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa. Plant Mol Biol 80:621–629

    Article  CAS  PubMed  Google Scholar 

  • Vanjildorj E, Song SY, Yang ZH et al (2009) Enhancement of tolerance to soft rot disease in the transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) inbred line, Kenshin. Plant Cell Rep 28:1581–1591

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (1995) Plasmodiophora brassicae: aspects of pathogenesis and resistance in Brassica oleracea. Euphytica 83:139–146

    Article  Google Scholar 

  • Walker JC (1930) Inheritance of fusarium resistance in cabbage. J Agric Res 40:721–745

    Google Scholar 

  • Wallenhammar AC (1998) Observations on yield loss from Plasmodiophora brassicae infections in spring oilseed rape. J Plant Dis Protect 105:1–7

    Google Scholar 

  • Wang L, Yu X, Wang H et al (2011a) A novel class of heat-responsive small RNAs derived from the chloroplast genome of Chinese cabbage (Brassica rapa). BMC Genomics 12:289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Wang H, Wang J et al (2011b) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wu F, Bai J, He Y (2014) BrpSPL9 (Brassica rapa ssp. pekinensis SPL9) controls the earliness of heading time in Chinese cabbage. Plant Biotechnol J 12:312–321

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Hu J, Huang X et al (2016) Comparative transcriptome analysis reveals heat-responsive genes in Chinese cabbage (Brassica rapa ssp. chinensis). Front. Plant Sci 7:939

    Google Scholar 

  • Wang A, Hu J, Gao C et al (2019) Genome-wide analysis of long non-coding RNAs unveils the regulatory roles in the heat tolerance of Chinese cabbage (Brassica rapa ssp. chinensis). Sci Rep 9:5002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warwick SI, Francis A, Al-Shehbaz IA (2006) Brassicaceae: species checklist and database on CD-Rom. Plant Syst Evol 259:249–258

    Article  Google Scholar 

  • Watanabe M, Takasaki T, Toriyama K et al (1994) A high degree of homology exists between the protein encoded by SLG and the S receptor domain encoded by SRK in self-incompatible Brassica campestris L. Plant Cell Phys 35:1221–1229

    Article  CAS  Google Scholar 

  • Watanabe M, Ito A, Takada Y et al (2000) Highly divergent sequences of the pollen self-incompatibility (S) gene in class-I S haplotypes of Brassica campestris (syn. rapa) L. FEBS Lett 473:139–144

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Suwabe K, Suzuki G (2012) Molecular genetics, physiology and biology of self-incompatibility in Brassicaceae. Proc Jpn Acad Ser B 88:519–535

    Article  CAS  Google Scholar 

  • Whittaker C, Dean C (2017) The FLC locus: a platform for discoveries in epigenetics and adaptation. Annu Rev Cell Dev Biol 33:555–575

    Article  CAS  PubMed  Google Scholar 

  • Williams PH (1966) A system for the determination of races of Plasmodiophora brassicae that infect cabbage and rutabaga. Phytopathology 56:624–626

    Google Scholar 

  • Yamagishi H, Bhat SR (2014) Cytoplasmic male sterility in Brassicaceae crops. Breed Sci 64:38–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Wang X, Ren D et al (2017) Genomic architecture of biomass heterosis in Arabidopsis. Proc Natl Acad Sci U S A 114:8101–8106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda S, Wada Y, Kakizaki T et al (2016) A complex dominance hierarchy is controlled by polymorphism of small RNAs and their targets. Nat Plants 3:16206

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa H (1983) Breeding for clubroot resistance of crucifer crop in Japan. Jpn Agric Res Q 17:6–11

    Google Scholar 

  • Yoshikawa H, Buczacki ST (1978) Clubroot in Japan: research and problems. Rev Plant Pathol 57:253–257

    Google Scholar 

  • Yu X, Wang H, Lu Y et al (2012) Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J Exp Bot 63:1025–1038

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Zhang X, Huang Z et al (2016) Identification of genome-wide variants and discovery of variants associated with Brassica rapa clubroot resistance gene Rcr1 through bulked segregant RNA sequencing. PLoS One 11:e0153218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu F, Zhang X, Peng G et al (2017) Genotyping-by-sequencing reveals three QTL for clubroot resistance to six pathotypes of Plasmodiophora brassicae in Brassica rapa. Sci Rep 7:4516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang FL, Takahata Y, Xu JB (1998) Medium and genotype factors influencing shoot regeneration from cotyledonary explants of Chinese cabbage (Brassica campestris L. ssp. pekinensis). Plant Cell Rep 17:780–786

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu F, Yao L et al (2012) Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene. Breed Sci 62:105–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Kulkarni V, Liu N et al (2010) BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa. J Exp Bot 61:1817–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This chapter includes results supported by grants from Project of the NARO Bio-oriented Technology Research Advancement Institution (Research program on development of innovation technology), JSPS Bilateral Joint Research Projects, and international cooperation program managed by the National Research Foundation of Korea (NRF-2018K2A9A2A08000113). We thank Dr. Elizabeth S. Dennis, Dr. Kenji Osabe, and Dr. Daniel J. Shea for their helpful comments and manuscript editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Fujimoto .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: Research Institutes Relevant to Chinese Cabbage

Institution

Specialization and research activities

Contact information and website

Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS)

Genetic analysis on agronomical important traits

https://bresov.eu/network/partners/bvrc

Chungnam National University

Genetics and molecular marker development in Chinese cabbage

http://horti.cnu.ac.kr/

Graduate School of Agricultural Science, Kobe University

Epigenetics, heterosis,

vernalization

http://www.ans.kobe-u.ac.jp/

Graduate School of Life Sciences, Tohoku University

Self-incompatibility

https://www.lifesci.tohoku.ac.jp/

Graduate School of Sciences and Technology, Niigata University

Disease resistance

https://www.gs.niigata-u.ac.jp/~gsweb/index.html

Henan Academy of Agricultural Sciences

Creation of germplasm resources and QTL mapping for different traits in Chinese cabbage

http://www.hnagri.org.cn/index.php

Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences (IVF, CAAS)

Whole genome sequencing

https://www.gfar.net/organizations/institute-vegetables-and-flowers-chinese-academy-agricultural-sciences

John Innes Centre

Whole genome sequencing, germplasm resources

https://www.jic.ac.uk

National Institute of Horticultural and Herbal Science

Germplasm collection, molecular marker and cultivar development in Brassicaceae

https://www.nihhs.go.kr

RIKEN BioResource Center

Germplasm resources

https://epd.brc.riken.jp/en/

Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences

Leafy heads of Chinese cabbage

http://english.sibs.cas.cn/

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University

Flowering

https://www.researchgate.net/institution/Nanjing_Agricultural_University/department/State_Key_Laboratory_of_Crop_Genetics_and_Germplasm_Enhancement/members

Sunchon National University

Genetic inheritance and molecular breeding of clubroot resistant Chinese cabbage

https://www.scnu.ac.kr/horti/main.do

The National Agriculture and Food Research Organization in Japan

Development of parental lines for clubroot resistant Chinese cabbage using MAS

http://www.naro.affrc.go.jp

Tohoku university Brassica seed bank

Seed bank of Bressicaceae germplasm

http://www.agri.tohoku.ac.jp/pbreed/Seed_Stock_DB/Stock_English_top.html

Wageningen UR Plant Breeding, Wageningen University and Research Centre

Genetic analysis on agronomical important traits

https://www.wur.nl/en.htm

1.2 Appendix II: Genetic Resources of Chinese Cabbage

Cultivar

Important traits

Cultivation location

Akimeki

Clubroot (Crr1, Crr2, CRb)

Norin seed Co., Japan

Bre

Inbred line of medium-cycling crop type

China

Chihiri 70

Transformable strain

Takii Seed Co., Japan

Chiifu-401

The first whole genome sequenced Chinese cabbage

Korea and Japan

CR gangsan

Clubroot (Crr2, CRb, CRa)

Nonghyeob seed Co., Korea

CR Shinki

Clubroot (CRb)

Takii Seed Co., Japan

Gokurakuten

High regeneration rate, creation of transgenic Brassica rapa

Takii Seed Co., Japan

R-o-18

Reverse genetics (EMS-induced mutagenesis population)

UK

RJKB lines

Inbred lines

Japan

W39

Biomass heterosis, early developmental heterosis

Watanabe seed Co., Japan

Wantai

Inbred line of slow-cycling crop type

China

Yellow sarson

Self-compatible, mutant for S-genes and MLPK gene

India

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okamoto, T. et al. (2021). Chinese Cabbage (Brassica rapa L. var. pekinensis) Breeding: Application of Molecular Technology. In: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (eds) Advances in Plant Breeding Strategies: Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-66969-0_2

Download citation

Publish with us

Policies and ethics