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INTRODUCTION 

The Hero Is a 
Mathematician ? 

On January 23, 2005, a new television crime series called NUMB3RS de
buted. Created by the husband-and-wife team Nick Falacci and Cheryl 
Heuton, the series was produced by Paramount Network Television 
and acclaimed Hollywood veterans Ridley and Tony Scott, whose movie 
credits include Alien, Top Gun, and Gladiator. Throughout its run, 
NUMB3RS has regularly beat out the competition to be the most watched 
series in its time slot on Friday nights. 

What has surprised many is that one o f the show's two heroes is a 
mathematician, and much o f the action revolves around mathematics, 
as professor Charlie Eppes uses his powerful skills to help his older 
brother, Don, an FBI agent, identify and catch criminals. Many viewers, 
and several critics, have commented that the stories are entertaining, 
but the basic premise is far-fetched: You simply can't use math to solve 
crimes, they say. As this book proves, they are wrong. You can use math 
to solve crimes, and law enforcement agencies do—not in every instance 
to be sure, but often enough to make math a powerful weapon in the 
never-ending fight against crime. In fact, the very first episode of the 
series was closely based on a real-life case, as we will discuss in the next 
chapter. 

Our book sets out to describe, in a nontechnical fashion, some of the 
major mathematical techniques currently available to the police, CIA, 
and FBI. Most of these methods have been mentioned during episodes 
of NUMB3RS, and while we frequently link our explanations to what 
was depicted on the air, our focus is on the mathematical techniques 
and how they can be used in law enforcement. In addition we describe 
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some real-life cases where mathematics played a role in solving a crime 
that have not been used in the T V series—at least not directly. 

In many ways, NUMB3RS is similar to good science fiction, which is 
based on correct physics or chemistry. Each week, NUMB3RS presents a 
dramatic story in which realistic mathematics plays a key role in the nar
rative. The producers of NUMB3RS go to great lengths to ensure that the 
mathematics used in the scripts is correct and that the applications shown 
are possible. Although some of the cases viewers see are fictional, they 
certainly could have happened, and in some cases very well may. Though 
the T V series takes some dramatic license, this book does not. In The 
Numbers Behind NUMB3RS, you will discover the mathematics that can 
be, and is, used in fighting real crime and catching actual criminals. 
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CHAPTER 

1 Finding the Hot Zone 
Criminal Geographic Profiling 

FBI Special Agent D o n Eppes looks again at the large street m a p of Los 
Angeles spread across the dining-room table of his father's house . The 
crosses inked on the m a p show the locations where , over a per iod of 
several months , a bruta l serial killer has struck, raping and then murder
ing a n u m b e r of young w o m e n . Don 's j o b is to catch the killer before he 
strikes again. But the investigation has stalled. D o n is ou t of clues, and 
doesn't know what to do next. 

"Can I help?" T h e voice is that of Don 's younger brother , Charlie, a 
brilliant young professor of mathemat ics at the nearby university CalSci. 
D o n has always been in awe of his bro ther ' s incredible ability at ma th , 
and frankly would welcome any help he can get. B u t . . . help from a 
mathematician? 

"This case isn't about numbers, Charlie." The edge in Don's voice is 
caused more by frustration than anger, bu t Charlie seems not to notice, and 
his reply is totally matter-of-fact but insistent: "Everything is numbers ." 

Don is no t convinced. Sure, he has often heard Charlie say that 
mathematics is all about patterns—identifying them, analyzing them, 
making predictions about t hem. But it didn't take a m a t h genius to see 
that the crosses on the m a p were scattered haphazardly. The re was n o 
pat tern, n o way anyone could predict where the next cross wou ld g o — 
the exact location where the next young girl would be attacked. Maybe 
it would occur that very evening. If only there were some regularity to 
the a r rangement of the crosses, a pa t te rn that could be captured wi th a 
mathematical equation, the way D o n r emembers from his schooldays 
that the equat ion x 2 + y 2 = 9 describes a circle. 
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Looking at the map , even Charlie has to agree there is n o way to use 
m a t h to predict where the killer wou ld strike next. H e strolls over to the 
w i n d o w and stares ou t across the garden, the silence of the evening 
b roken only by the continual flick-flick-jiick-ftick of the automatic sprin
kler water ing the lawn. Charlie's eyes see the sprinkler bu t his mind is 
far away. H e had to admit that D o n was probably right. Mathematics 
could be used to do lots of things, far m o r e than mos t people realized. 
But in order to use ma th , there had to be some sort of pat tern. 

Flick-Jiick-flick-jlick. T h e sprinkler continued to do its job. There was 
the brilliant mathemat ic ian in N e w York w h o used mathematics to study 
the way the hear t works , helping doctors spot tiny irregularities in a 
hear tbeat before the person has a hear t attack. 

Flick-flick-flick-flick. There were all those mathematics-based computer 
p rograms the banks utilized to track credit card purchases, looking for a 
sudden change in the pat tern that might indicate identity theft or a stolen 
card. 

Flick-flick-flick-flick. W i t h o u t clever mathemat ical algorithms, the cell 
p h o n e in Charlie's pocket wou ld have been twice as big and a lot 
heavier. 

Flick-flick-flick-flick. In fact, there was scarcely any area of m o d e r n life 
that did no t depend, often in a crucial way, on mathemat ics . But there 
had to be a pat tern , o therwise the m a t h can't get started. 

Flick-flick-flick-flick. For the first t ime, Charlie notices the sprinkler, 
and suddenly he knows wha t to do. H e has his answer. H e could help 
solve Don 's case, and the solution has been staring h im in the face all 
along. H e jus t had no t realized it. 

H e drags D o n over to the window. "We've been asking the w r o n g 
quest ion," he says. "From wha t you know, there 's n o way you can pre
dict whe re the killer will strike next." H e points to the sprinkler. "Just 
like, n o ma t t e r h o w m u c h you study where each drop of water hits the 
grass, there 's n o way you can predict where the next drop will land. 
There ' s t oo m u c h uncertainty." H e glances at D o n to make sure his 
older b ro the r is listening. "But suppose you could no t see the sprinkler, 
and all you had to g o on was the pa t te rn of where all the drops landed. 
Then , using ma th , you could w o r k ou t exactly where the sprinkler must 
be. You can't use the pa t te rn of drops to predict forward to the next 
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drop, but you can use it to w o r k backward to the source. It's the same 
with your killer." 

Don finds it difficult to accept wha t his brother seems to be suggesting. 
"Charlie, are you telling m e you can figure out where the killer lives?" 

Charlie's answer is simple: "Yes." 
Don is still skeptical that Charlie's idea can really work, bu t he's 

impressed by his brother ' s confidence and passion, and so he agrees to 
let h im assist wi th the investigation. 

Charlie's first step is to learn some basic facts from the science of crimi
nology: First, how do serial killers behave? Here, his years of experience as 
a mathematician have taught h im h o w to recognize the key factors and 
ignore all the others, so that a seemingly complex problem can be reduced 
to one with just a few key variables. Talking with D o n and the other agents 
at the FBI office where his elder brother works, he learns, for instance, that 
violent serial criminals exhibit certain tendencies in selecting locations. 
They tend to strike close to their home , but no t too close; they always set 
a "buffer zone" around their residence where they will not strike, an area 
that is too close for comfort; outside that comfort zone, the frequency of 
crime locations decreases as the distance from h o m e increases. 

Then, back in his office in the CalSci mathemat ics depar tment , 
Charlie gets to work in earnest, feverishly covering his blackboards 
with mathematical equat ions and formulas. His goal: to find the math
ematical key to de te rmine a "hot zone"—an area on the map , derived 
from the crime locations, where the perpe t ra to r is mos t likely to live. 

As always w h e n he works on a difficult mathemat ica l problem, the 
hours fly by as Charlie tries ou t m a n y unsuccessful approaches. Then , 
finally, he has an idea he thinks should work. H e erases his previous 
chalk scribbles one m o r e t ime and writes this complicated-looking 
formula on the board:* 

p,=kY, 

*We'll take a closer look at this formula in a moment. 
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"That should do the trick," he says to himself. 
T h e next step is to fine-tune his formula by checking it against exam

ples of past serial crimes D o n provides h im with. W h e n he inputs the 
crime locations from those previous cases into his formula, does it accu
rately predict where the criminals lived? This is the m o m e n t of t ruth, 
w h e n Charlie will discover whe the r his mathemat ics reflects reality. 
Somet imes it doesn't , and he learns that w h e n he first decided which 
factors to take into account and which to ignore, he mus t have got it 
wrong . But this t ime, after Charlie makes a few minor adjustments, the 
formula seems to work. 

T h e next day, burs t ing wi th energy and conviction, Charlie shows up 
at the FBI offices wi th a pr in tout of the crime-location m a p with the 
"hot z o n e " prominent ly displayed. Just as the equat ion x 2 + y 2 = 9 that 
D o n r e m e m b e r e d from his schooldays describes a circle, so that when 
the equat ion is fed into a suitably p r o g r a m m e d compute r it will draw 
the circle, so too w h e n Charlie fed his new equat ion into his computer , 
it also p roduced a picture. N o t a circle this t ime—Charlie 's equation is 
m u c h m o r e complicated. W h a t it gave was a series of concentric col
ored regions d rawn on Don 's crime m a p of Los Angeles, regions that 
h o m e d in on the ho t zone where the killer lives. 

Having this m a p will still leave a lot of work for D o n and his col
leagues, bu t finding the killer is n o longer like looking for a needle in a 
haystack. Thanks to Charlie's mathemat ics , the haystack has suddenly 
dwindled to a mere sackful of hay. 
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Charlie explains to D o n and the other FBI agents work ing the case that 
the serial criminal has tried not to reveal where he lives, picking victims in 
what he thinks is a r andom pat tern of locations, bu t that the mathemat i 
cal formula nevertheless reveals the truth: a ho t zone in which the crimi
nal's residence is located, to a very high probability. D o n and the t eam 
decide to investigate m e n within a certain range of ages, w h o live in the 
hot zone, and use surveillance and stealth tactics to obtain D N A evidence 
from the suspects' discarded cigarette butts, drinking straws, and the like, 
which can be matched with DNA from the crime-scene investigations. 

Within a few days—and a few heart-s topping m o m e n t s — t h e y have 
their man . T h e case is solved. D o n tells his younger brother , "That ' s 
some formula you've got there, Charlie." 

FACT OR FICTION? 

Leaving out a few dramatic twists, the above is wha t the T V audience saw 
in the very first episode of NUMB3RS, broadcast on January 23, 2005. 
Many viewers could no t believe that mathematics could help capture a 
criminal in this way. In fact, that entire first episode was based fairly closely 
on a real case in which a single mathematical equation was used to identify 
the hot zone where a criminal lived. It was the very equation, reproduced 
above, that viewers saw Charlie write on his blackboard. 

The real-life mathemat ic ian w h o p roduced that formula is n a m e d 
Kim Rossmo. The technique of using mathemat ics to predict whe re 
a serial criminal lives, which Rossmo helped to establish, is called 
geographic profiling. 

In the 1980s Rossmo was a young constable on the police force in 
Vancouver, Canada. W h a t m a d e h im unusual for a police officer was his 
talent for mathematics . T h r o u g h o u t school he had been a "ma th whiz ," 
the kind of s tudent w h o makes fellow students, and often teachers, a 
little nervous. T h e story is told that early in the twelfth grade , bo red 
with the slow pace of his mathemat ics course, he asked to take the final 
exam in the second week of the semester. After scoring one hundred 
percent, he was excused from the remainder of the course. 

Similarly bored wi th the typical slow progress of police investigations 
involving violent serial criminals, Rossmo decided to go back to school, 
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ending u p wi th a Ph.D. in criminology from Simon Fraser University, the 
first cop in Canada to get one. His thesis advisers, Paul and Patricia 
Brantingham, were pioneers in the development of mathematical models 
(essentially sets of equations that describe a situation) of criminal 
behavior, particularly those that describe where crimes are most likely to 
occur based on where a criminal lives, works, and plays. (It was the 
Brant inghams w h o noticed the location patterns of serial criminals 
that T V veiwers saw Charlie learning about from D o n and his FBI 
colleagues.) 

Rossmo's interest was a little different from the Brantinghams' . H e 
did no t w a n t to study pa t te rns of criminal behavior. As a police officer, 
he wan ted to use actual data about the locations of crimes linked to a 
single u n k n o w n perpe t ra to r as an investigative tool to help the police find 
the criminal. 

Rossmo had some initial successes in re-analyzing old cases, and after 
receiving his Ph.D. and being p r o m o t e d to detective inspector, he pur
sued his interest in developing bet ter mathemat ical me thods to do what 
he came to call criminal geographic targeting (CGT). Others called the 
m e t h o d "geographic profiling," since it complemented the well-known 
technique of "psychological profiling" used by investigators to find 
criminals based o n their motivat ions and psychological characteristics. 
Geographic profiling a t tempts to locate a likely base of operat ion for a 
criminal by analyzing the locations of their crimes. 

Rossmo hit u p o n the key idea behind his seemingly magic formula 
while riding on a bullet train in Japan one day in 1991. Finding himself 
w i thou t a no tepad to wri te on, he scribbled it on a napkin. With 
later refinements, the formula became the principal e lement of a 
compu te r p r o g r a m Rossmo wro te , called Rigel (pronounced RYE-gel, 
and n a m e d after the star in the constellation Orion, the Hunter ) . Today, 
Rossmo sells Rigel, a long wi th training and consultancy, to police 
and o the r investigative agencies a round the world to help t hem find 
criminals. 

W h e n Rossmo describes h o w Rigel works to a law enforcement 
agency interested in the p rogram, he offers his favorite metaphor—that 
of de termining the location of a rotat ing lawn sprinkler by analyzing the 
pa t te rn of the water drops it sprays on the ground. W h e n NUMB3RS 
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cocreators Cheryl H e u t o n and Nick Falacci were work ing on their pilot 
episode, they took Rossmo's own me taphor as the way Charlie would hit 
upon the formula and explain the idea to his brother. 

Rossmo had some early successes dealing wi th serial cr ime investiga
tions in Canada, bu t wha t really m a d e h im a household n a m e a m o n g 
law enforcement agencies all over N o r t h America was the case of the 
South Side Rapist in Lafayette, Louisiana. 

For more than ten years, an u n k n o w n assailant, his face wrapped 
bandit-style in a scarf, had been stalking w o m e n in the t o w n and assault
ing them. In 1998 the local police, snowed under by thousands of tips 
and a corresponding n u m b e r of suspects, b rough t Rossmo in to help. 
Using Rigel, Rossmo analyzed the crime-location data and produced a 
m a p m u c h like the one Charlie displayed in NUMB3RS, wi th bands of 
color indicating the ho t zone and its increasingly ho t interior rings. T h e 
m a p enabled police to na r row d o w n the h u n t to half a square mile and 
about a dozen suspects. Undercover officers c o m b e d the h o t zone using 
the same techniques por t rayed in NUMB3RS, to obtain DNA samples of 
all males of the right age range in the area. 

Frustration set in w h e n each of the suspects in the h o t zone was 
cleared by DNA evidence. But then they go t lucky. T h e lead investigator, 
McCullan "Mac" Gallien, received an a n o n y m o u s tip point ing to a very 
unlikely suspect—a sheriff's deputy from a nearby depar tment . As jus t 
one more tip on top of the moun ta in he already had, Mac was inclined 
to just file it, bu t on a w h i m he decided to check the deputy 's address. 
Not even close to the ho t zone . Still someth ing niggled him, and he dug 
a little deeper. And then he hit the jackpot . T h e deputy had previously 
lived at another address—right in the ho t zone! D N A evidence was 
collected from a cigarette but t , and it ma tched that taken from the 
crime scenes. The deputy was arrested, and Rossmo became an instant 
celebrity in the crime-fighting world. 

Interestingly, w h e n H e u t o n and Falacci were wri t ing the pilot epi
sode of NUMB3RS, based on this real-life case, they could no t resist 
incorporat ing the same dramat ic twist at the end. W h e n Charlie first 
applies his formula, n o D N A matches are found a m o n g the suspects in 
the hot zone , as happened wi th Rossmo's formula in Lafayette. Charlie's 
belief in his mathemat ical analysis is so s t rong that w h e n D o n tells h i m 
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the search has d rawn a blank, he initially refuses to accept this ou tcome. 
"You mus t have missed h im," he says. 

Frustrated and upset, Charlie huddles wi th D o n at their father Alan's 
house , and Alan says, "I k n o w the p rob lem can't be the math , Charlie. It 
mus t be someth ing else." This r emark spurs D o n to realize that finding 
the killer's residence may be the w r o n g goal. "If you tried to find m e 
where I live, you would probably fail because I 'm almost never there," 
he notes . " I 'm usually at work." Charlie seizes on this not ion to pursue 
a different line of attack, modifying his calculations to look for two 
ho t zones , one that might contain the killer's residence and the other 
his place of work . This t ime Charlie's m a t h works . D o n manages to 
identify and catch the criminal jus t before he kills another victim. 

These days, Rossmo's company ECRI (Environmental Criminology 
Research, Inc.) offers the pa tented compu te r package Rigel along with 
training in h o w to use it effectively to solve crimes. Rossmo himself 
travels a round the world, to Asia, Africa, Europe, and the Middle East, 
assisting in criminal investigations and giving lectures to police and 
criminologists. T w o years of training, by Rossmo or one of his assistants, 
is required to learn to adapt the use of the p r o g r a m to the idiosyncrasies 
of a particular criminal 's behavior. 

Rigel does no t score a big w in every t ime. For example, Rossmo was 
called in on the notor ious Beltway Sniper case when, during a three-week 
period in October 2002, ten people were killed and three others critically 
injured by wha t tu rned ou t to be a pair of serial killers operating in and 
a round the Washington, D.C., area. Rossmo concluded that the sniper's 
base was somewhere in the suburbs to the no r th of Washington, but it 
t u rned ou t that the t w o killers did no t live in the area and moved too 
often to be located by geographic profiling. 

T h e fact that Rigel does no t always w o r k will no t come as a surprise 
to anyone familiar wi th wha t happens w h e n you try to apply mathemat
ics to the messy real wor ld of people. Many people come away from 
their h igh school experience wi th mathemat ics thinking that there is a 
right way and a w r o n g way to use m a t h to solve a problem—in too 
m a n y cases wi th the teacher 's way being the right one and their own 
a t tempts be ing the w r o n g one . But this is rarely the case. Mathematics 
will always give you the correct answer (if you do the m a t h right) when 
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you apply it to very well-defined physical situations, such as calculating 
h o w m u c h fuel a je t needs to fly from Los Angeles to N e w York. (That 
is, the m a t h will give you the right answer provided you start wi th accu
rate data about the total weight of the plane, passengers, and cargo, the 
prevailing winds, and so forth. Missing a key piece of input data to 
incorporate into the mathemat ica l equat ions will a lmost always result 
in an inaccurate answer.) But w h e n you apply m a t h to a social problem, 
such as a crime, things are rarely so clear-cut. 

Setting up equations that capture elements of some real-life activity is 
called constructing a "mathematical model ." In construct ing a physical 
model of something, say an aircraft to study in a wind tunnel , the impor
tant thing is to get everything right, apart from the size and the materials 
used. In constructing a mathematical model , the idea is to get the appro
priate behavior right. For example, to be useful, a mathemat ical mode l of 
the weather should predict rain for days w h e n it rains and predict sun
shine on sunny days. Construct ing the mode l in the first place is usually 
the hard part. "Doing the ma th" wi th the model—i.e. , solving the equa
tions that make u p the model—is generally m u c h easier, especially w h e n 
using computers . Mathematical models of the wea ther often fail because 
the weather is simply far too complicated (in everyday language, it's " too 
unpredictable") to be captured by mathemat ics wi th great accuracy. 

As we shall see in later chapters, there is usually n o such thing as 
"one correct way" to use mathemat ics to solve problems in the real 
world, particularly problems involving people. To try to m e e t the chal
lenges that confront Charlie in NUMB3RS—locating criminals, t racing 
the spread of a disease or of counterfeit money, predicting the target 
selection of terrorists, and so on—a mathemat ic ian cannot merely wri te 
down an equat ion and solve it. There is a considerable art to the process 
of assembling information and data, selecting mathemat ica l variables 
that describe a situation, and then model ing it w i th a set of equat ions. 
And once a mathemat ic ian has constructed a model , there is still the 
mat te r of solving it in some way, by approximations or calculations or 
compute r simulations. Every step in the process requires j u d g m e n t and 
creativity. N o two mathemat ic ians work ing independently, however 
brilliant, are likely to produce identical results, if indeed they can 
produce useful results at all. 
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It is no t surprising, then, that in the field of geographic profiling, 
Rossmo has compet i tors . Dr. Grover M. Godwin of the Justice Center at 
the University of Alaska, au thor of the b o o k Hunting Serial Predators, has 
developed a compu te r package called Predator that uses a branch of 
mathemat ica l statistics called multivariate analysis to pinpoint a serial 
killer's h o m e base by analyzing the locations of crimes, where the 
victims were last seen, and where the bodies were discovered. Ned 
Levine, a Houston-based u rban planner, developed a p rog ram called 
Crimestat for the Nat ional Institute of Justice, a research branch of the 
U.S. Justice Depar tmen t . It uses someth ing called spatial statistics to 
analyze serial-crime data, and it can also be applied to help agents under
stand such things as pat terns of au to accidents or disease outbreaks. 
And David Canter, a professor of psychology at the University of 
Liverpool in England, and the director of the Centre for Investigative 
Psychology there , has developed his o w n compute r p rogram, Dragnet , 
which he has somet imes offered free to researchers. Canter has pointed 
ou t that so far n o one has per formed a head-to-head comparison of the 
various m a t h / c o m p u t e r systems for locating serial criminals based on 
applying t h e m in the same cases, and he has claimed in interviews that 
in the long run , his p r o g r a m and others will prove to be at least as 
accurate as Rigel. 

Finally, let 's take a closer look at the formulas Rossmo scribbled down 
on that paper napkin on the bullet train in Japan back in 1991. 

To unders tand wha t it means , imagine a grid of little squares super
imposed on the map , each square having two number s that locate it: 
wha t r ow it's in and wha t co lumn it's in, "i" and "j". The probability, p.., 
that the killer's residence is in that square is wr i t ten on the left side of 

ROSSMO'S FORMULA 

c 
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the equation, and the right side shows h o w to calculate it. The crime 
locations are represented by m a p coordinates, ( x ^ ) for the first cr ime, 
(x 2 ,y 2) for the second crime, and so on. W h a t the formula says is this: 

To get the probability p.̂  for the square in row "i", co lumn "j" of the 
grid, first calculate h o w far you have to go to get from the center point 
(x.,y.) of that square to each cr ime location (x n ,y n ) . T h e little "n" here 
stands for any one of the crime loca t ions—n=l means "first cr ime," 
n = 2 means "second crime," and so on. The answer to the quest ion of 
h o w far you have to go is: 

I X i - x J + l y . - y J 

and this is used in two ways. 
Reading from left to right in the formula, the first way is to pu t that 

distance in the denominator , wi th (p in the numera tor . T h e distance is 
raised to the p o w e r / The choice of wha t n u m b e r to use for th i s /wi l l be 
based on what works best w h e n the formula is checked against data on 
past crime pat terns. (If you t a k e / = 2, for example, then that par t of the 
formula will resemble the "inverse square law" that describes the force 
of gravity.) This par t of the formula expresses the idea that the probabil
ity of crime locations decreases as the distance increases, once outside of 
the buffer zone . 

The second way the formula uses the "traveling distance" of each 
crime involves the buffer zone . In the second fraction, you subtract the 
distance from 2B, where B is a n u m b e r that will be chosen to describe 
the size of the buffer zone , and you use that subtract ion result in 
the second fraction. The subtract ion produces smaller answers as the 
distance increases, so that after raising those answers to ano ther power, 
g, in the denomina tor of the second par t of the formula, you get larger 
results. 

Together, the first and second parts of the formula per form a sort of 
"balancing act," expressing the fact that as you move away from the 
criminal's base, the probability of crimes first increases (as you move 
through the buffer zone) and then decreases. T h e t w o par ts of the 
formula are combined using a fancy mathemat ica l notat ion, the Greek 
letter Z standing for "sum (add up) the contr ibut ions from each of the 
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crimes to the evaluation of the probability for the 'if grid square." The 
Greek letter (p is used in the t w o parts as a way of placing more "weight" 
on one par t or the other. A larger choice of (p puts m o r e weight on the 
p h e n o m e n o n of "decreasing probability as distance increases," whereas 
a smaller 9 emphasizes the effect of the buffer zone . 

Once the formula is used to calculate the probabilities, p„, of all of 
the little squares in the grid, it's easy to make a ho t zone map. You just 
color the squares, wi th the highest probabilities bright yellow, slightly 
smaller probabilities orange, then red, and so on, leaving the squares 
wi th low probability uncolored. 

Rossmo's formula is a good example of the art of using mathematics 
to describe incomplete knowledge of real-world phenomena . Unlike 
the law of gravity, which th rough careful measurements can be observed 
to opera te the same way every time, descriptions of the behavior of 
individual h u m a n beings are at best approximate and uncertain. W h e n 
Rossmo checked ou t his formula on past crimes, he had to find the 
best fit of his formula to those data by choosing different possible values 
of / and g, and of B and (p. H e then used those findings in analyzing 
future cr ime pat terns , still allowing for further fine-tuning in each new 
investigation. 

Rossmo's m e t h o d is definitely no t rocket science—space travel 
depends crucially on always get t ing the right answer wi th great accu
racy. But it is nevertheless science. It does no t w o r k every t ime, and the 
answers it gives are probabilities. But in crime detection and other 
domains involving h u m a n behavior, knowing those probabilities can 
somet imes make all the difference. 



CHAPTER 

2 Fighting Crime with 
Statistics 101 

THE ANGEL OF DEATH 

By 1996, Kristen Gilbert, a thirty-three-year-old divorced mo the r of two 
sons, ages seven and ten, and a nurse in Ward C at the Veteran's Affairs 
Medical Center in Nor thampton , Massachusetts, had built u p quite a 
reputation among her colleagues at the hospital. O n several occasions she 
was the first one to notice that a patient was going into cardiac arrest and 
to sound a "code blue" to bring the emergency resuscitation team. She 
always stayed calm, and was competent and efficient in administering to 
the patient. Sometimes she would give the patient an injection of the 
heart-stimulant drug epinephrine to a t tempt to restart the hear t before 
the emergency t eam arrived, occasionally saving the patient 's life in this 
way. The other nurses had given her the nickname 'Angel of Death." 

But that same year, three nurses approached the authorities to express 
their growing suspicions that something was not quite right. There had 
been just too many deaths from cardiac arrest in that particular ward, they 
felt. There had also been several unexplained shortages of epinephrine. The 
nurses were starting to fear that Gilbert was giving the patients large doses 
of the drug to bring on the heart attacks in the first place, so that she could 
play the heroic role of trying to save them. The 'Angel of Death" nickname 
was beginning to sound more apt than they had first intended. 

The hospital launched an investigation, but found nothing untoward. In 
particular, the number of cardiac deaths at the unit was broadly in line with 
the rates at other VA hospitals, they said. Despite the findings of the initial 
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investigation, however, the staff at the hospital remained suspicious, and 
eventually a second investigation was begun. This included bringing in a 
professional statistician, Stephen Gehlbach of the University of Massachu
setts, to take a closer look at the unit 's cardiac arrest and mortality figures. 
Largely as a result of Gehlbach's analysis, in 1998 the U.S. Attorney's Office 
decided to convene a grand jury to hear the evidence against Gilbert. 

Part of the evidence was her alleged motivation. In addition to seek
ing the exci tement of the code blue a larm and the resuscitation process, 
plus the recognit ion for having struggled valiantly to save the patient, it 
was suggested that she sought to impress her boyfriend, w h o also 
worked at the hospital. Moreover, she had access to the epinephrine. 
But since n o one had seen her administer any fatal injections, the case 
against her, while suggestive, was purely circumstantial. Although the 
pat ients involved were most ly middle-aged m e n no t regarded as poten
tial hear t at tack victims, it was possible that their attacks had occurred 
naturally. W h a t t ipped the balance, and led to a decision to indict Gilbert 
for multiple murder , was Gehlbach's statistical analysis. 

THE SCIENCE OF STATE 

Statistics is widely used in law enforcement in many ways and for many 
purposes . In NUMB3RS, Charlie often carries ou t a statistical analysis, 
and the use of statistical techniques will appear in many chapters in this 
book, often wi thou t ou r mak ing explicit men t ion of the fact. But what 
exactly does statistics entail? And why was the word in the singular in 
that last sentence? 

T h e w o r d "statistics" comes from the Latin t e r m statisticum collegium, 
mean ing "council of state" and the Italian w o r d statista, meaning "states
man , " which reflects the initial uses of the technique. The Ge rman 
w o r d Statistik likewise originally m e a n t the analysis of data about the 
state. Until the n ine teen th century, the equivalent English t e rm was 
"political ar i thmetic ," after which the word "statistics" was introduced 
to refer to any collection and classification of data. 

Today, "statistics" really has two connected meanings. The first is the 
collection and tabulat ion of data; the second is the use of mathematical 
and o ther me thods to draw meaningful and useful conclusions from 
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tabulated data. Some statisticians refer to the former activity as "little-s 
statistics" and the latter activity as "big-S Statistics". Spelled wi th a 
lower-case s, the w o r d is t reated as plural w h e n it refers to a collection 
of numbers . But it is singular w h e n used to refer to the activity of 
collecting and tabulating those numbers . "Statistics" (with a capital S) 
refers to an activity, and hence is singular. 

T h o u g h many sports fans and other kinds of people enjoy collecting 
and tabulating numerical data, the real value of little-s statistics is to 
provide the data for big-S Statistics. Many of the mathemat ica l tech
niques used in big-S Statistics involve the branch of mathemat ics k n o w n 
as probability theory, which began in the sixteenth and seventeenth 
centuries as an a t tempt to unders tand the likely ou tcomes of games 
of chance, in order to increase the likelihood of winning. But whereas 
probability theory is a definite b ranch of mathemat ics , Statistics is 
essentially an applied science that uses mathemat ica l me thods . 

While the law enforcement profession collects a large quantity of little-
s statistics, it is the use of big-S Statistics as a tool in fighting crime that we 
shall focus on. (From n o w on we shall drop the "big S", "little s" terminol
ogy and use the word "statistics" the way statisticians do, to mean both, 
leaving the reader to determine the intended meaning from the context.) 

Although some applications of statistics in law enforcement use 
sophisticated methods , the basic techniques covered in a first-semester 
college statistics course are often enough to crack a case. 

This was certainly t rue for United States v. Kristen Gilbert. In that case, 
a crucial question for the grand ju ry was whe the r there were significantly 
more deaths in the unit w h e n Kristen Gilbert was on duty than at o ther 
times. The key word here is "significantly". O n e or two extra deaths on 
her watch could be coincidence. H o w many deaths would it take to reach 
the level of "significance" sufficient to indict Gilbert? This is a question 
that only statistics can answer. Accordingly, Stephen Gehlbach was asked 
to provide the grand ju ry with a s u m m a r y of his findings. 

HYPOTHESIS TESTING 

Gehlbach's test imony was based on a fundamental statistical technique 
known as hypothesis testing. This m e t h o d uses probability theory to 
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determine whether an observed outcome is so unusual that it is highly 
unlikely to have occurred naturally. 

One of the first things Gehlbach did was plot the annual number of 
deaths at the hospital from 1988 through 1997, broken down by shifts— 
midnight to 8:00 AM, 8:00 AM to 4:00 PM, and 4:00 PM to midnight. The 
resulting graph is shown in Figure 1 . Each vertical bar shows the total 
number of deaths in the year during that particular shift. 

40 

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 
Year 

• Night (12 A .M . -8 A.M.) • Day (8 A .M. -4 P.M.) H Evening (4 P.M.-12 A.M.) 

Figure 1 . Total deaths at the hospital, by shift and year. 

The graph shows a definite pattern. For the first two years, there were 
around ten deaths per year on each shift. Then, for each of the years 1990 
through 1995, one of the three shifts shows between 25 and 35 deaths per 
year. Finally, for the last two years, the figures drop back to roughly ten 
deaths on each of the three shifts. When the investigators examined 
Kristen Gilbert's work record, they discovered that she started work in 
Ward C in March 1990 and stopped working at the hospital in February 
1996. Moreover, for each of the years she worked at the VA, the shift that 
showed the dramatically increased number of deaths was the one she 
worked. To a layperson, this might suggest that Gilbert was clearly respon
sible for the deaths, but on its own it would not be sufficient to secure a 
conviction—indeed, it might not be enough to justify even an indictment. 
The problem is that it may be just a coincidence. The job of the statistician 
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in this situation is to determine just h o w unlikely such a coincidence 
would be. If the answer is that the likelihood of such a coincidence is, say, 
1 in 100, then Gilbert might well be innocent; and even 1 in 1,000 leaves 
some doubt as to her guilt; but with a likelihood of, say, 1 in 100,000, mos t 
people would find the evidence against her to be pretty compelling. 

To see h o w hypothesis testing works, let 's start wi th the simple 
example of tossing a coin. If the coin is perfectly balanced (i.e., unbiased 
or fair), then the probability of get t ing heads is 0.5.* Suppose we toss the 
coin ten t imes in a row to see if it is biased in favor of heads. T h e n w e 
can get a range of different ou tcomes , and it is possible to c o m p u t e the 
likelihood of different results. For example, the probability of get t ing at 
least six heads is about 0.38. (The calculation is straightforward bu t a bit 
intricate, because there are m a n y possible ways you can get six or m o r e 
heads in ten tosses, and you have to take account of all of them.) T h e 
figure of 0.38 puts a precise numerical value on the fact that , on an 
intuitive level, we would no t be surprised if ten coin tosses gave six or 
more heads. For at least seven heads, the probability works o u t at 0.17, 
a figure that corresponds to our intuit ion that seven or m o r e heads is 
somewhat unusual bu t certainly no t a cause for suspicion that the coin 
was biased. W h a t would surprise us is nine or ten heads, and for that the 
probability works ou t at about 0 .01 , or 1 in 100. T h e probability of get
ting ten heads is about 0 .001, or 1 in 1,000, and if tha t happened w e 
would definitely suspect an unfair coin. Thus , by tossing the coin ten 
times, we can form a reliable, precise j udgmen t , based on mathemat ics , 
of the hypothesis that the coin is unbiased. 

In the case of the suspicious deaths at the Veteran's Affairs Medical 
Center, the investigators wanted to know if the n u m b e r of deaths that 
occurred when Kristen Gilbert was on duty was so unlikely that it could 
not be merely happenstance. The m a t h is a bit m o r e complicated than 
for the coin tossing, bu t the idea is the same. Table 1 gives the data the 
investigators had at their disposal. It gives number s of shifts, classified in 
different ways, and covers the e ighteen-month period ending in February 

*Actually, this is not entirely accurate. Because of inertia! properties of a physical 
coin, there is a slight tendency for it to resist turning, with the result that, if a perfectly 
balanced coin is given a random initial flip, the probability that it will land the same 
way up as it started is about 0.51. But we will ignore this caveat in what follows. 
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1996, the month when the three nurses told their supervisor of their 
concerns, shortly after which Gilbert took a medical leave. 

GILBERT PRESENT D E A T H O N SHIFT 

YES N O T O T A L 

YES 40 217 257 
N O 34 1,350 1,384 
T O T A L 74 1,567 1,641 

Table 1. The data for the statistical analysis in the Gilbert case. 

Altogether, there were 74 deaths, spread over a total of 1,641 shifts. 
If the deaths are assumed to have occurred randomly, these figures 
suggest that the probability of a death on any one shift is about 74 
out of 1,641, or 0.045. Focusing now on the shifts when Gilbert was on 
duty, there were 257 of them. If Gilbert was not killing any of the patients, 
we would expect there to be around 0.045 x 257 = 11.6 deaths on her 
shifts, i.e., around 11 or 12 deaths. In fact there were more—40 to be pre
cise. How likely is this? Using mathematical methods similar to those for 
the coin tosses, statistician Gehlbach calculated that the probability of 
having 40 or more of the 74 deaths occur on Gilbert's shifts was less than 
1 in 100 million. In other words, it is unlikely in the extreme that Gilbert's 
shifts were merely "unlucky" for the patients. 

The grand jury decided there was sufficient evidence to indict 
Gilbert—presumably the statistical analysis was the most compelling 
evidence, but we cannot know for sure, as a grand jury's deliberations 
are not public knowledge. She was accused of four specific murders and 
three attempted murders. Because the VA is a federal facility, the trial 
would be in a federal court rather than a state court, and subject to fed
eral laws. A significant consequence of this fact for Gilbert was that 
although Massachusetts does not have a death penalty, federal law does, 
and that is what the prosecutor asked for. 

STATISTICS IN THE COURTROOM? 

An interesting feature of this case is that the federal trial judge ruled 
in pretrial deliberations that the statistical evidence should not be 
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presented in court . In mak ing his ruling, the judge t ook no te of a 
submission by a second statistician b rough t into the case, George Cobb 
of Mount Holyoke College. 

Cobb and Gehlbach did no t disagree on any of the statistical analysis. 
(In fact, they ended up writ ing a joint article about the case.) Rather, their 
roles were different, and they were addressing different issues. Gehlbach's 
task was to use statistics to determine if there were reasonable grounds to 
suspect Gilbert of multiple murder. More specifically, he carried out an 
analysis that showed that the increased numbers of deaths at the hospital 
during the shifts when Gilbert was on duty could no t have arisen due to 
chance variation. That was sufficient to cast suspicion on Gilbert as the 
cause of the increase, bu t no t at all enough to prove that she did cause the 
increase. W h a t Cobb argued was that the establishment of a statistical 
relationship does not explain the cause of that relationship. T h e judge in 
the case accepted this argument, since the purpose of the trial was no t to 
decide if there were grounds to make Gilbert a suspect—the grand ju ry 
and the state attorney's office had done that. Rather, the job before the 
court was to determine whether or no t Gilbert caused the deaths in ques
tion. His reason for excluding the statistical evidence was that, as experi
ences in previous court cases had demonstrated, jurors no t well versed in 
statistical reasoning—and that would be almost all jurors—typically have 
great difficulty appreciating why odds of 1 in 100 million against the suspi
cious deaths occurring by chance does not imply that the odds that Gilbert 
did not kill the patients are likewise 1 in 100 million. The original odds 
could be caused by something else. 

Cobb illustrated the distinction by means of a famous example from the 
long struggle physicians and scientists had in overcoming the powerful 
tobacco lobby to convince governments and the public that cigarette smok
ing causes lung cancer. Table 2 shows the mortality rates for three categories 
of people: nonsmokers, cigarette smokers, and cigar and pipe smokers. 

N o n s m o k e r s 20 .2 

C iga re t te smokers 20 .5 

C igar a n d p i p e smokers 35 .3 

Table 2. Mortality rates per 1,000 people per year. 
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At first glance, the figures in Table 2 seem t o indicate that cigarette 
smoking is no t dangerous bu t pipe and cigar smoking are. However, this 
is no t the case. There is a crucial variable lurking behind the data that the 
number s themselves do no t indicate: age. The average age of the non-
smokers was 54.9, the average age of the cigarette smokers was 50.5, and 
the average age of the cigar and pipe smokers was 65.9. Using statistical 
techniques to make allowance for the age differences, statisticians were 
able to adjust the figures to produce Table 3. 

N o n s m o k e r s 20.3 

C i g a r e t t e smoke rs 28.3 

C iga r a n d p i p e smoke rs 21 .2 

Table 3. Mortality rates per 1,000 people per year, adjusted for age. 

N o w a very different pa t te rn emerges, indicating that cigarette smoking 
is highly dangerous . 

W h e n e v e r a calculation of probabilities is made based on observa
tional data, the mos t that can generally be concluded is that there is a 
correlat ion be tween t w o or m o r e factors. Tha t can mean enough to 
spur further investigation, b u t on its o w n it does no t establish causation. 
There is always the possibility of a hidden variable that lies behind the 
correlation. 

W h e n a study is m a d e of, say, the effectiveness or safety of a new 
d rug or medical procedure , statisticians handle the problem of hidden 
paramete rs by relying no t on observational data, bu t instead by 
conduct ing a randomized , double-blind trial. In such a study, the target 
popula t ion is divided in to two groups by an entirely r a n d o m procedure, 
wi th the g r o u p allocation u n k n o w n to bo th the experimental subjects 
and the caregivers administering the d rug or t rea tment (hence the t e rm 
"double-blind"). O n e g r o u p is given the n e w d rug or t reatment , the 
o ther is given a placebo or d u m m y t rea tment . Wi th such an experiment, 
the r a n d o m allocation into groups overrides the possible effect o f hid
den parameters , so that in this case a low probability that a positive 
result is simply chance variation can indeed be taken as conclusive 
evidence that the d rug or t rea tment is wha t caused the result. 
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In trying to solve a crime, there is of course n o choice bu t to 
work wi th the data available. Hence , use of the hypothesis-testing 
procedure, as in the Gilbert case, can be highly effective in the identifica
tion of a suspect, bu t o ther means are generally required to secure a 
conviction. 

In United States v. Kristen Gilbert, the j u ry was no t presented wi th 
Gehlbach's statistical analysis, bu t they did find sufficient evidence to 
convict her on three counts of first-degree murder , one coun t of sec
ond-degree murder , and two counts of a t t empted murder . Al though the 
prosecution asked for the death sentence, the j u ry split 8-4 on that issue, 
and accordingly Gilbert was sentenced to life impr i sonment wi th n o 
possibility of parole. 

POLICING THE POLICE 

Another use of basic statistical techniques in law enforcement concerns 
the important matter of ensuring that the police themselves obey the law. 

Law enforcement officers are given a considerable a m o u n t of 
power over their fellow citizens, and one of the duties of society is to 
make certain that they do no t abuse that power. In particular, police 
officers are supposed to treat everyone equally and fairly, free of any 
bias based on gender, race, ethnicity, economic status, age, dress, or 
religion. 

But de termining bias is a tricky business and, as w e saw in ou r previ
ous discussion of cigarette smoking, a superficial glance at the statistics 
can somet imes lead to a completely false conclusion. This is illustrated 
in a particularly dramat ic fashion by the following example, which, 
while no t related to police activity, clearly indicates the need to approach 
statistics wi th some mathemat ica l sophistication. 

In the 1970s, somebody noticed that 44 percent of male applicants to 
the graduate school of the University of California at Berkeley were 
accepted, bu t only 35 percent of female applicants were accepted. O n 
the face of it, this looked like a clear case of gender discrimination, and, 
not surprisingly (particularly at Berkeley, long acknowledged as h o m e 
to many leading advocates for gender equality), there was a lawsuit over 
gender bias in admissions policies. 
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It turns out that Berkeley applicants do not apply to the graduate 
school, but to individual programs of study—such as engineering, phys
ics, or English—so if there is any admissions bias, it will occur within 
one or more particular program. Table 4 gives the admission data pro
gram by program: 

M a j o r M a l e a p p s % a d m i t Fema le a p p s % a d m i t 

A 825 62 108 82 

CD
 

560 63 25 68 

C 325 37 593 34 

D 417 33 375 35 

E 191 28 393 24 

F 373 6 341 7 

Table 4. Admission figures from the University of California at Berkeley 
on a program-by-program basis. 

If you look at each program individually, however, there doesn't 
appear to be an advantage in admission for male applicants. Indeed, the 
percentage of female applicants admitted to heavily subscribed program 
A is considerably higher than for males, and in all other programs the 
percentages are fairly close. So how can there appear to be an advantage 
for male applicants overall? 

To answer this question, you need to look at what programs males 
and females applied to. Males applied heavily to programs A and B, 
females applied primarily to programs C, D, E, and F. The programs 
that females applied to were more difficult to get into than those for 
males (the percentages admitted are low for both genders), and this is 
why it appears that males had an admission advantage when looking at 
the aggregate data. 

There was indeed a gender factor at work here, but it had nothing to 
do with the university's admissions procedures. Rather, it was one of 
self-selection by the applying students, where female applicants avoided 
progams A and B. 
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The Berkeley case was an example of a p h e n o m e n o n k n o w n as 
Simpson's paradox, n a m e d for E. H. Simpson, w h o studied this curious 
p h e n o m e n o n in a famous 1951 paper.* 

HOW DO YOU DETERMINE BIAS? 

With the above cautionary example in mind, wha t should we make of 
the study carried ou t in Oakland, California, in 2003 (by the R A N D 
Corporat ion, at the request of the Oakland Police Depar tmen t ' s Racial 
Profiling Task Force), to de te rmine if there was systematic racial bias in 
the way police stopped motorists? 

The RAND researchers analyzed 7,607 vehicle stops recorded by 
Oakland police officers be tween June and December 2003, using vari
ous statistical tools to examine a n u m b e r of variables to uncover any 
evidence that suggested racial profiling. O n e figure they found was that 
blacks were involved in 56 percent of all traffic stops studied, a l though 
they make up just 35 percent of Oakland 's residential populat ion. Does 
this finding indicate racial profiling? Well, it might , bu t as soon as you 
look more closely at wha t o ther factors could be reflected in those 
numbers , the issue is by n o means clear cut. 

For instance, like many inner cities, Oakland has some areas wi th 
much higher crime rates than others, and the police patrol those higher 
crime areas at a m u c h greater rate than they do areas having less crime. 
As a result, they make m o r e traffic stops in those areas. Since the higher 
crime areas typically have greater concentrat ions of minor i ty groups , 
the higher rate of traffic stops in those areas manifests itself as a higher 
rate of traffic stops of minori ty drivers. 

To overcome these uncertainties, the RAND researchers devised a 
particularly ingenious way to look for possible racial bias. If racial profil
ing was occurring, they reasoned, stops of minori ty drivers wou ld be 
higher when the officers could de te rmine the driver's race prior to mak
ing the stop. Therefore, they compared the stops m a d e dur ing a per iod 

*E. H. S impson. "The In terpre ta t ion o f In teract ion in Con t i ngency Tables, " Jour

nal of the Royal Statistical Society, Ser. B, 13 (1951) 2 3 8 - 2 4 1 . 
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jus t before nightfall w i th those m a d e after dark—when the officers 
wou ld be less likely to be able to de te rmine the driver's race. The figures 
showed that 50 percent of drivers s topped dur ing the daylight period 
were black, compared wi th 54 percent w h e n it was dark. Based on that 
finding, there does no t appear to be systematic racial bias in traffic 
stops. 

But the researchers dug a little further, and looked at the officers' 
o w n reports as to whe the r they could de te rmine the driver's race prior 
to m a k i n g the stop. W h e n officers repor ted knowing the race in advance 
of the stop, 6 6 percent of drivers s topped were black, compared with 
only 44 percent w h e n the police repor ted no t knowing the driver's race 
in advance. This is a fairly s t rong indicator of racial bias.* 

*Sadly, desp i te many efforts t o e l iminate the p r o b l e m , racial bias by pol ice 
seems t o be a pers istent issue t h r o u g h o u t the country. To ci te just one recent report , 
A n Analysis of Traffic Stop Data in Riverside, California, by Larry K. Gaines of the 
Cal i fornia State University in San Bernard ino, pub l i shed in Police Quarterly, 9, 2, 
June 2006 , p p . 2 1 0 - 2 3 3 : "The f ind ings f rom racial prof i l ing or traff ic s top studies 
have been fairly consistent : Minor i t ies , especial ly Afr ican Amer icans, are s t o p p e d , 
t i c ke ted , and searched at a h igher rate as c o m p a r e d t o Whi tes . For example , 
Lamber th (c i ted in State v. Pedro Soto, 1996) f o u n d tha t the Mary land State Police 
s t o p p e d and searched Afr ican Amer icans at a h igher rate as c o m p a r e d t o their 
rate o f speed ing v io lat ions. Harris (1999) examined cour t records in Ak ron , Day ton , 
To ledo , and Co lumbus , O h i o , and f o u n d tha t Afr ican Amer icans were c i ted at a rate 
tha t surpassed the i r representat ion in t he dr iv ing popu la t i on . Cordner, Wi l l iams, and 
Zun iga (2000) and Cordner, Wi l l iams, and Velasco (2002) f o u n d similar t rends in San 
D i e g o , Cal i fornia. Zingraff and his co l leagues (2000) examined stops by the Nor th 
Carol ina H ighway Patrol and f o u n d tha t Afr ican Amer icans were over represented in 
s tops and searches." 



CHAPTER 

3 Data Mining 
Finding Meaningful Patterns 
in Masses of Information 

BRUTUS 

Charlie Eppes is sitting in front of a bank of compute r s and television 
monitors . H e is testing a compu te r p r o g r a m he is developing to help 
police moni tor large crowds, looking for unusual behavior that could 
indicate a pending criminal or terrorist act. His idea is to use standard 
mathematical equations that describe the flow of fluids—in rivers, lakes, 
oceans, tanks, pipes, even blood vessels.* H e is t rying ou t the n e w sys
t em at a fund-raising reception for one of the California state senators. 
Overhead cameras moni to r the diners as they move a round the r o o m , 
and Charlie's compute r p r o g r a m analyzes the "flow" of the people. 
Suddenly the test takes on an unexpected aspect. The FBI receives a 
telephone warn ing that a g u n m a n is in the room, intending to kill the 
senator. 

The software works, and Charlie is able to identify the g u n m a n , bu t 
D o n and his t eam are no t able to get to the killer before he has shot the 
senator and then tu rned the gun on himself. 

The dead assassin tu rns ou t to be a Vietnamese immigran t , a former 
Vietcong member , who , despite having been in prison in California, 

*The idea is based on several real-l i fe pro jects t o use t he equa t ions tha t descr ibe 
f lu id f lows in o rde r t o analyze var ious kinds o f c r o w d activity, inc lud ing f reeway traf
fic f low, spectators en te r ing and leav ing a large spor ts s tad ium, and emergency 
exits f r om bu rn ing bu i ld ings . 
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s o m e h o w managed to obtain U.S. citizenship and be the recipient of a 
regular pension from the U.S. Army. H e had also taken the illegal drug 
speed on the evening of the assassination. W h e n D o n makes some 
enquiries to find ou t jus t wha t is going on, he is visited by a CIA agent 
w h o asks for help in t rying to prevent too m u c h information about the 
case leaking out . Apparently the dead killer had been par t of a covert 
CIA behavior modification project carried ou t in California prisons dur
ing the 1960s to t u r n inmates into t rained assassins who , when activated, 
would carry ou t their assigned task before killing themselves. (Sadly, this 
idea is n o less fanciful than that of Charlie using fluid flow equations to 
s tudy crowd behavior.) 

But why had this part icular individual suddenly become active and 
murde red the state senator? 

The picture becomes m u c h clearer when a second murder occurs. 
The victim this t ime is a p rominen t psychiatrist, the killer a Cuban immi
grant . T h e killer had also spent t ime in a California prison, and he too 
was the recipient of regular A r m y pension checks. But on this occasion, 
w h e n the assassin tries to shoot himself after killing the victim, the gun 
fails to go off and he has to flee the scene. A fingerprint identification 
from the gun soon leads to his arrest. 

W h e n D o n realizes that the dead senator had been urging a repeal of 
the statewide ban on the use of behavior modification techniques on 
prison inmates, and that the dead psychiatrist had been recommending 
the re-adoption of such techniques to overcome criminal tendencies, he 
quickly concludes that someone has started to t u rn the conditioned 
assassins on the very people w h o were pressing for the reuse of the 
techniques that had produced them. But who? 

D o n thinks his best line of investigation is to find ou t w h o supplied 
the guns that the t w o killers had used. H e knows that the weapons orig
inated wi th a dealer in Nevada. Charlie is able to provide the next step, 
which leads to the identification of the individual behind the two assas
sinations. H e obtains data on all gun sales involving that particular 
dealer and analyzes the relationships a m o n g all sales that originated 
there . H e explains that he is employing mathemat ical techniques similar 
to those used to analyze calling pat terns on the te lephone network—an 
approach used frequently in real-life law enforcement. 
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This is wha t viewers saw in the third-season episode of NUMB3RS 
called "Brutus" (the code n a m e for the fictitious CIA conditioned-
assassinator project), first aired on November 24, 2006. As usual, the 
mathematics Charlie uses in the show is based on real life. 

The m e t h o d Charlie uses to track the gun distribution is generally 
referred to as "link analysis," and is one a m o n g m a n y that go unde r 
the collective heading of "data mining." Data min ing obtains useful 
information a m o n g the mass of data that is available—often publicly— 
in m o d e r n society. 

FINDING MEANING IN INFORMATION 

Data mining was initially developed by the retail industry to detect cus
tomer purchasing pat terns. (Ever w o n d e r why supermarkets offer cus
tomers those loyalty cards—sometimes called "club" cards—in exchange 
for discounts? In par t it's to encourage cus tomers to keep shopping at 
the same store, but low prices would do that. The significant factor for the 
company is that it enables t h e m to track detailed purchase pat terns that 
they can link to cus tomers ' h o m e zip codes, information that they can 
then analyze using data-mining techniques.) 

Though m u c h of the work in data min ing is done by computers , for 
the mos t par t those computers do no t run autonomously. H u m a n 
expertise also plays a significant role, and a typical data-mining investi
gation will involve a constant back-and-forth interplay be tween h u m a n 
expert and machine. 

Many of the compute r applications used in data min ing fall unde r 
the general area known as artificial intelligence, a l though that t e r m can 
be misleading, being suggestive of computers that think and act like 
people. Although many people believed that was a possibility back in 
the 1950s when AI first began to be developed, it eventually became 
clear that this was no t going to happen within the foreseeable future, 
and may well never be the case. But that realization did no t prevent the 
development of many "au tomated reasoning" p rograms , some of which 
eventually found a powerful and impor tan t use in data mining, where 
the h u m a n expert often provides the "high-level intelligence" that guides 
the compute r p rograms that do the bulk of the work. In this way, data 
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mining provides an excellent example of the power that results when 
h u m a n brains t e a m u p wi th computers . 

A m o n g the m o r e p rominen t me thods and tools used in data 
min ing are: 

• Link analysis—looking for associations and other forms of 
connect ion among , say, criminals or terrorists 

• Geometric clustering—a specific form of link analysis 

• Software agents—small, self-contained pieces of compute r code 
that can monitor , retrieve, analyze, and act on information 

• Machine learning—algorithms that can extract profiles of 
criminals and graphical maps of crimes 

• Neural networks—special kinds of compute r p rograms that can 
predict the probability of crimes and terrorist attacks. 

We'l l take a brief look at each of these topics in turn . 

LINK ANALYSIS 
Newspapers often refer to link analysis as "connecting the dots." It's the 
process of t racking connections be tween people, events, locations, and 
organizations. Those connections could be family ties, business relation
ships, criminal associations, financial transactions, in-person meetings, 
e-mail exchanges, and a host of others. Link analysis can be particularly 
powerful in fighting terrorism, organized crime, money laundering 
("follow the money") , and te lephone fraud. 

Link analysis is primarily a human-exper t driven process. Mathemat
ics and technology are used to provide a h u m a n expert wi th powerful, 
flexible compu te r tools to uncover, examine, and track possible connec
tions. Those tools generally allow the analyst to represent linked data as 
a ne twork, displayed and examined (in whole or in part) on the com
pu te r screen, wi th nodes representing the individuals or organizations 
or locations of interest and the links be tween those nodes representing 
relationships or transactions. The tools may also allow the analyst to 
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investigate and record details about each link, and to discover n e w nodes 
that connect to existing ones or n e w links be tween existing nodes . 

For example, in an investigation into a suspected crime ring, an inves
tigator might carry ou t a link analysis of te lephone calls a suspect has 
made or received, using te lephone company call-log data, looking at 
factors such as n u m b e r called, t ime and dura t ion of each call, o r num
ber called next. The investigator might then decide to proceed further 
along the call ne twork, looking at calls m a d e to or from one or m o r e of 
the individuals w h o had had phone conversations wi th the initial sus
pect. This process can br ing to the investigator's a t tent ion individuals 
not previously known. Some may t u r n ou t to be totally innocent , bu t 
others could prove to be criminal collaborators. 

Another line of investigation may be to t rack cash transactions to 
and from domestic and internat ional bank accounts. 

Still another line may be to examine the ne twork of places and 
people visited by the suspect, using such data as train and airline ticket 
purchases, points of entry or depar ture in a given country, car rental 
records, credit card records of purchases, websites visited, and the like. 

Given the difficulty nowadays of doing almost anything wi thou t 
leaving an electronic trace, the challenge in link analysis is usually no t 
one of having insufficient data, bu t ra ther of deciding which of the 
megabytes of available data to select for further analysis. Link analysis 
works best w h e n backed u p by other kinds of information, such as tips 
from police informants or from neighbors of possible suspects. 

Once an initial link analysis has identified a possible criminal or terrorist 
network, it may be possible to determine w h o the key players are by 
examining which individuals have the most links to others in the network. 

GEOMETRIC CLUSTERING 

Because of resource limitations, law enforcement agencies generally focus 
most of their attention on major crime, wi th the result that minor offenses 
such as shoplifting or house burglaries get little attention. If, however, a 
single person or an organized gang commits many such crimes on a regu
lar basis, the aggregate can constitute significant criminal activity that 
deserves greater police attention. The problem facing the authorities, 
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then, is to identify within the large numbers of minor crimes that take 
place every day, clusters that are the work of a single individual or gang. 

O n e example of a "minor" crime that is often carried out on a regu
lar basis by two (and occasionally three) individuals acting together is 
the so-called bogus official burglary (or distraction burglary). This is where 
two people t u rn up at the front door of a h o m e o w n e r (elderly people 
are often the preferred targets) posing as some form of officials—perhaps 
te lephone engineers, representatives of a utility company, or local gov
e r n m e n t agents—and, while one person secures the at tention of the 
homeowner , the o the r moves quickly th rough the house or apar tment 
taking any cash or valuables that are easily accessible. 

Victims of bogus official burglaries often file a report to the police, 
w h o will send an officer to the victim's h o m e to take a statement. Since 
the victim will have spent considerable t ime with one of the perpetra
tors (the distracter), the s ta tement will often include a fairly detailed 
description—gender, race, height, body type, approximate age, general 
facial appearance, eyes, hair color, hair length, hair style, accent, identi
fying physical marks , manner isms, shoes, clothing, unusual jewelry, 
e tc .—together wi th the n u m b e r of accomplices and their genders. In 
principle, this weal th of information makes crimes of this nature ideal 
for data mining, and in part icular for the technique known as geometric 
clustering, to identify g roups of crimes carried ou t by a single gang. 
Application of the m e t h o d is, however, fraught wi th difficulties, and to 
date the m e t h o d appears to have been restricted to one or two experi
menta l studies. We'l l look at one such study, bo th to show h o w the 
m e t h o d works and to illustrate some of the problems often faced by the 
data-mining practitioner. 

T h e following study was carried ou t in England in 2000 and 2001 by 
researchers at the University of Wolverhampton, together wi th the 
West Midlands Police.* T h e study looked at victim statements from 
bogus official burglaries in the police region over a three-year period. 
Dur ing that period, there were 800 such burglaries recorded, involving 

*Ref. R. A d d e r l e y and P. B. Musgrove , Genera l Review o f Police Cr ime Recording 
and Invest igat ion Systems, Policing: An International Journal of Police Strategies and 
Management, 24 (1), 2 0 0 1 , p p . 1 1 0 - 1 1 4 . 
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1,292 offenders. This proved to be too great a n u m b e r for the resources 
available for the study, so the analysis was restricted to those cases where 
the distracter was female, a g roup comprising 89 crimes and 105 offender 
descriptions. 

The first problem encountered was that the descriptions of the perpe
trators was for the most par t in narrative form, as wri t ten by the investi
gating officer w h o took the s tatement from the victim. A data-mining 
technique known as text mining had to be used to pu t the descriptions 
into a structured form. Because of the limitations of the text-mining soft
ware available, h u m a n input was required to handle m a n y of the entries; 
for instance, to cope with spelling mistakes, ad hoc or inconsistent abbre
viations (e.g., "Bham" or "B'ham" for "Birmingham"), and the use of 
different ways of expressing the same thing (e.g., "Birmingham accent", 
"Bham accent", "local accent", "accent: local", etc.). 

After some initial analysis, the researchers decided to focus on eight 
variables: age, height, hair color, hair length, build, accent, race, and 
number of accomplices. 

Once the data had been processed into the appropriate s tructured 
format, the next step was to use geometr ic clustering to g roup the 
105 offender descriptions into collections that were likely to refer to the 
same individual. To unders tand h o w this was done, let's first consider a 
me thod that at first sight might appear to be feasible, but which soon 
proves to have significant weaknesses. Then , by seeing h o w those weak
nesses may be overcome, we will arrive at the m e t h o d used in the British 
study. 

First, you code each of the eight variables numerically. Age—often a 
guess—is likely to be recorded either as a single figure or a range; if it is 
a range, take the mean . Gender (not considered in the British Midlands 
study because all the cases examined had a female distracter) can be 
coded as 1 for male, 0 for female. Height may be given as a n u m b e r 
(inches), a range, or a t e r m such as "tall", "medium", or "short"; again, 
some m e t h o d has to be chosen to convert each of these to a single 
figure. Likewise, schemes have to be devised to represent each of the 
other variables as a number . 

W h e n the numerical coding has been completed, each perpetrator 
description is then represented by an eight-vector, the coordinates of 
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a point in eight-dimensional geometric (Euclidean) space. The familiar 
distance measure of Euclidean geometry (the Pythagorean metric) can 
then be used to measure the geometric distance between each pair of 
points. This gives the distance between two vectors (xv . . . , x g) and 
( V l , . . . , y 8 ) as: 

V [ ( x 1 - y 1 ) 2 + . . . + (x 8 -y 8 ) 2 ] 

Points that are close together unde r this metr ic are likely to correspond 
to perpe t ra to r descriptions that have several features in common ; and 
the closer the points, the m o r e features the descriptions are likely to 
have in c o m m o n . (Remember , there are problems with this approach, 
which we' l l get to momentari ly. For the t ime being, however, let's 
suppose that things w o r k m o r e or less as jus t described.) 

T h e challenge n o w is to identify clusters of points that are close 
together. If there were only two variables, this would be easy. All the 
points could be plot ted on a single x,y-graph and visual inspection 
wou ld indicate possible clusters. But h u m a n beings are totally unable to 
visualize eight-dimensional space, n o mat te r wha t assistance the soft
ware system designers provide by way of data visualization tools. The 
way a round this difficulty is to reduce the eight-dimensional array of 
points (descriptions) to a two-dimensional array (i.e., a matrix or table). 
T h e idea is to ar range the data points (that is, the vector representatives 
of the offender descriptions) in a two-dimensional grid in such a 
way that: 

1. pairs of points that are extremely close together in the eight-

dimensional space are pu t into the same grid entry; 

2. pairs of points that are neighbors in the grid are close together in 

the eight-dimensional space; and 

3. points that are farther apart in the grid are farther apart in the 

space. 

This can be done using a special kind of compute r p rog ram known as a 
neura l net, in particular, a Kohonen self-organizing m a p (or SOM). 
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Neural nets (including SOMs) are described later in the chapter. For 
now, all we need to k n o w is that these systems, which w o r k iteratively, 
are extremely good at h o m i n g in (over the course of m a n y iterations) on 
patterns, such as geometr ic clusters of the kind w e are interested in, and 
thus can indeed take an eight-dimensional array of the k ind described 
above and place the points appropriately in a two-dimensional grid. 
(Part of the skill required to use an SOM effectively in a case such as this 
is deciding in advance, or by some initial trial and error, wha t are the 
optimal dimensions of the final grid. T h e SOM needs that information 
in order to start work.) 

Once the data has been pu t into the grid, law enforcement officers can 
examine grid squares that contain several entries, which are highly likely 
to come from a single gang responsible for a series of crimes, and can 
visually identify clusters on the grid, where there is also a likelihood that 
they represent gang activity. In either case, the officers can examine the 
corresponding original crime s ta tement entries, looking for indications 
that those crimes are indeed the work of a single gang. 

N o w let's see what goes w r o n g wi th the m e t h o d jus t described, and 
h o w to correct it. 

The first p roblem is that the original encoding of entries as n u m b e r s 
is not systematic. This can lead to one variable dominat ing others w h e n 
the entries are clustered using geometr ic distance (the Pythagorean 
metric) in eight-dimensional space. For example, a d imension that mea
sures height (which could be anything be tween 60 inches and 76 inches) 
would domina te the entry for gender (0 or 1). So the first step is to scale 
(in mathematical terminology, normalize) the eight numerical variables, 
so that each one varies be tween 0 and 1. 

One way to do that would be to simply scale d o w n each variable by a 
multiplicative scaling factor appropriate for that particular feature 
(height, age, etc.). But that will introduce further problems w h e n the 
separation distances are calculated; for example, if gender and height are 
among the variables, then, all o ther variables being roughly the same, a 
very tall w o m a n would come ou t close to a very short m a n (because 
female gives a 0 and male gives a 1, whereas tall comes ou t close to 1 and 
short close to 0). Thus , a m o r e sophisticated normalizat ion procedure 
has to be used. 
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The approach finally adopted in the British Midlands study was to 
make every numerical entry binary (just 0 or 1). This meant splitting the 
continuous variables (age and height) into overlapping ranges (a few 
years and a few inches, respectively), with a 1 denoting an entry in a given 
range and a 0 meaning outside that range, and using pairs of binary vari
ables to encode each factor of hair color, hair length, build, accent, and 
race. The exact coding chosen was fairly specific to the data being stud
ied, so there is little to be gained from providing all the details here. (The 
age and height ranges were taken to be overlapping to account for entries 
toward the edges of the chosen ranges.) The normalization process 
resulted in a set of 46 binary variables. Thus, the geometric clustering 
was done over a geometric space of 46 dimensions. 

Another problem was how to handle missing data. For example, 
what do you do if a victim's statement says nothing about the perpetra
tor's accent? If you enter a 0, that would amount to assigning an accent. 
But what will the clustering program do if you leave that entry blank? 
(In the British Midlands study, the program would treat a missing entry 
as 0.) Missing data points are in fact one of the major headaches for data 
miners, and there really is no universally good solution. If there are only 
a few such cases, you could either ignore them or else see what solutions 
you get with different values entered. 

As mentioned earlier, a key decision that has to be made before the 
SOM can be run is the size of the resulting two-dimensional grid. It 
needs to be small enough so that the SOM is forced to put some data 
points into the same grid squares, and will also result in some non
empty grid squares having non-empty neighbors. The investigators in 
the British Midlands study eventually decided to opt for a five-by-seven 
grid. With 105 offender descriptions, this forced the SOM to create 
several multi-entry clusters. 

The study itself concluded with experienced police officers examin
ing the results and comparing them with the original victim statements 
and other relevant information (such as geographic proximity of crimes 
over a short timespan, which would be another indicator of a gang 
activity, not used in the cluster analysis), to determine how well the pro
cess performed. Though all parties involved in the study declared it to 
be successful, the significant amount of person-hours required means 
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that such methods need further development , and greater au tomat ion 
of the various steps, before they can b e c o m e widely used to fight crimi
nal activity of the kind the study focused on. However, the m e t h o d can 
be used to detect clusters in o ther kinds of criminal activity, such as ter
rorism. In such cases, where the stakes are so high, it may be well w o r t h 
the investment of personnel and resources to make the m e t h o d work. 

SOFTWARE AGENTS 

Software agents, a product of AI research, are essentially self-contained 
(and, in general, relatively small) compute r p rograms designed to 
achieve specific goals, and that act autonomously, responding to changes 
in the envi ronment in which they operate . Their a u t o n o m y is a result of 
their incorporat ing a range of different actions they can take, depending 
on particular inputs. Put crudely, they include a large n u m b e r of i f / then 
instructions. 

For example, FinCEN, the U.S. Treasury agency whose job it is to 
detect money laundering, reviews every cash transaction involving more 
than $10,000. As there are about 10 million such transactions each year, 
this cannot be done manually. Instead, the agency uses software agents to 
carry out the moni tor ing automatically, using link analysis, a m o n g other 
tools, to look for unusual activity that might indicate fraud. 

Banks use software agents to moni to r credit card activity, looking for 
an unusual spending pa t te rn that might indicate a stolen card. (You may 
have experienced having your credit card rejected w h e n you tried to use 
it in novel circumstances, such as overseas or else in a city or a foreign 
country where there had been—mos t likely unbeknowns t to you— 
recent fraudulent credit card use.) 

The Defense Depar tment , a m o n g o ther government and non
government organizations, has invested large amoun t s of m o n e y in the 
development of software agents for intelligence gather ing and analysis. 
Typically, the strategy is to develop a coordinated system of agents that 
communica te wi th one another, each of which is designed to carry ou t 
one particular subtask. For example, a coordinated surveillance system 
to provide an early warn ing of a biological attack might include the 
following: 
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• Agents that receive and correlate data from different databases 

• Agents that extract potentially relevant data from those 
databases 

• Agents that analyze selected data and look for unusual pat terns 
of biological events 

• Agents that classify abnormali t ies and identify specific pathogens 

• Agents that provide alerts to the emergency response personnel. 

T h e initial data examined might include physicians' reports or patient 
symptoms , hospital outpat ient reports , school at tendance records, or 
sales of part icular drugs by pharmacies . In each case, a sudden change 
from an established pa t te rn might be due to a naturally occurring epi
demic, bu t could provide the first signs of a biological attack. H u m a n s 
wou ld be unable to summar ize the masses of data and survey the results 
in order to detect a changing situation sufficiently quickly to be able to 
initiate countermeasures . This has to be done using software. 

MACHINE LEARNING 

Machine learning, another branch of artificial intelligence, is perhaps the 
single mos t impor tan t tool within the law enforcement community 's 
data-mining arsenal when it comes to profiling (and hence, one hopes, 
catching or preventing) criminals and terrorists. 

Much of the power of machine learning algorithms stems from the 
fact that they au toma te the process of searching for and identifying key 
features in masses of data. This is someth ing that a t rained person can 
do—usually better, actually—but only for small quantities of data. 
Machine learning algori thms are capable of finding the proverbial 
needle in a haystack. 

For example, if you wan ted to uncover a set of features that are char
acteristic of a terrorist or d rug smuggler, you could apply an appropriate 
machine learning system—of which there are many commercially 
available—to a database of known (that is, already caught) terrorists or 
d rug smugglers. 
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Following some initial input from you to de te rmine the range of pos
sible characteristics, the software would quiz the database in m u c h the 
same fashion as in the familiar twenty-questions parlor game. The out
put from this process could be a list of if/ then conditions, each one wi th 
an associated probability estimate, that provide the basis for a p r o g r a m — 
perhaps to be used at a border crossing—that will check suspects to see 
if they are likely to be smuggling drugs. Alternatively, the database quiz
zing process might generate a decision tree that likewise may be used as 
the basis for a p rogram that alerts law enforcement agents to possible 
terrorists or drug smugglers. 

The first stage of this process is most easily unders tood using a simple 
example. Suppose you wanted the machine learning system to predict 
whether a given i tem is an apple, an orange, or a banana. You might start 
by telling it to look at weight, shape, or color. The system looks th rough 
its list of appropriate items—in this case, fruit—and first checks weights. 
It discovers that this feature does no t distinguish be tween the three fruit. It 
then checks its list against shape. This feature is able to distinguish bananas 
from the other two (cylindrical/curved, as opposed to spherical), bu t is 
not sufficient to identify the fruit in every case. W h e n presented with a 
test item, checking against shape would give the output 

B A N A N A — 1 0 0 % 

if the i tem is a banana, bu t 

A P P L E — 5 0 % O R A N G E — 5 0 % 

in the other cases. Finally, the system checks color. This t ime it finds that 
the feature distinguishes the three fruits wi th 100 percent accuracy. 

W h e n a machine learning algorithm is run against a sufficiendy large 
database of past examples, it can often generate a short checklist or deci
sion tree that a border guard or law enforcement agent, faced with a 
possible criminal or terrorist, can instruct the system to run through in 
real t ime to determine possible or likely guilt. Based on the aggregate 
probability of the suspect's guilt, the system can even advise the agent on 
what action to take, from "let through" to "arrest immediately". 
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For instance, a l though the actual systems used are no t made public, 
it seems highly likely that an individual trying to enter the country 
wou ld be held for further quest ioning if he or she had the following 
characteristics: 

A G E 

G E N D E R 

NAT IONAL ITY : 

C O U N T R Y O F RESIDENCE 

VISA STATUS 

UNIVERSITY: 

# T IMES ENTERING T H E 

C O U N T R Y IN T H E PAST YEAR: 

C O U N T R I E S VISITED D U R I N G 

T H E PAST THREE YEARS: 

FLYING LESSONS: 

2 0 - 2 5 

Ma le 

Saudi A rab ia 

G e r m a n y 

S tuden t 

U n k n o w n 

U.K., Pakistan 

Yes 

The system would probably simply suggest that the agent investigate 
further based on the first seven features, but the final two would likely 
trigger m o r e substantive action. (One can imagine the final feature 
being activated only w h e n several of the earlier ones raise the likelihood 
that the individual is a terrorist.) 

Of course, the above example is grossly simplified to illustrate the 
general idea. The power of machine learning is that it can build up fairly 
complex profiles that wou ld escape a h u m a n agent. Moreover, using 
Bayesian me thods (see Chapter 6) for updat ing probabilities, the system 
can attach a probability to each conclusion. In the above example, the 
profile might yield the advice: 

ASSESSMENT: Possib le te r ror is t (p robab i l i t y 29%) 

A C T I O N : De ta in a n d repo r t 

T h o u g h our example is fictitious, machine learning systems are in daily 
use by border guards and law enforcement agencies when screening peo
ple enter ing the country for possible drug-smuggling or terrorist activi
ties. Detect ing financial fraud is another area where law enforcement 
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agencies make use of machine learning. And the business world also 
makes extensive use of such systems, in marketing, cus tomer profiling, 
quality control, supply chain management , distribution, and so forth, 
while major political parties use t h e m to de termine where and h o w to 
target their campaigns. 

In some applications, machine learning systems opera te like the 
ones described above; others make use of neural ne tworks , which we 
consider next. 

NEURAL NETWORKS 

On June 12, 2006, The Washington Post carried a full-page advert isement 
from Visa Corporat ion, announc ing that their record of credit card 
fraud was near its all-time low, citing neura l ne tworks as the leading 
security measure that the company had taken to stop credit card fraud. 
Visa's success came at the end of a long per iod of development of neu
ral ne twork-based fraud prevention measures that began in 1993, w h e n 
the company was the first to experiment wi th the use of such systems to 
reduce the incidence of card fraud. The idea was that by analyzing typi
cal card usage pat terns, a neural ne twork-based risk m a n a g e m e n t tool 
would notify banks immediately w h e n any suspicious activity occurred, 
so they could inform their cus tomers if a card appears to have been used 
by someone other than the legit imate cardholder. 

Credit card fraud detection is jus t one of many applications of data 
mining that involve the use of a neura l network. W h a t exactly are neura l 
networks and h o w do they work? 

A neural ne twork is a particular kind of compute r p rogram, origi
nally developed to try to mimic the way the h u m a n brain works . It is 
essentially a compute r simulation of a complex circuit t h rough which 
electric current flows. (See Figure 2.) 

Neural ne tworks are particularly suited to recognizing pat terns , and 
were introduced into the marketplace in the 1980s, for tasks such as clas
sifying loan applications as good or bad risks, distinguishing legal from 
fraudulent financial transactions, identifying possible credit card theft, 
recognizing signatures, and identifying purchasing pat terns in b ranch 
supermarkets . Law enforcement agencies started using neura l ne tworks 
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Input 
Layer 

Hidden Layer Outpu t 
Layer 

I n p u t 4 — * " 

Input 3—H 

Input 1 —H 

Input 2 — H 

Outpu t 

F i g u r e 2. A s i m p l e neu ra l n e t w o r k w i t h a s i n g l e h i d d e n layer a n d o n e 

o u t p u t n o d e . 

soon afterward, applying t h e m to such tasks as recognizing a "forensic 
fingerprint" that indicates that different cases of arson are likely the 
w o r k of a single individual, or to recognize activity and behavioral 
pa t terns that indicate possible smuggling or terrorist intent. 

To go into a little m o r e detail about the technology, a neural ne twork 
consists of* m a n y (typically several hundred or several thousand) nodes 
ar ranged in t w o or m o r e "parallel layers," wi th each node in one layer 
connected to one or m o r e nodes in the adjacent layer. One end-layer is 
the input layer, the o ther end-layer is the ou tpu t layer. All the other lay
ers are called in termediate layers or h idden layers. (The brain-modeling 
idea is that the nodes simulate neurons and the connections dendrites.) 
Figure 2 gives the general idea, a l though a ne twork wi th so few nodes 
would be of little practical use. 

T h e ne twork commences an operat ion cycle w h e n a set of input sig
nals is fed into the nodes of the input layer. Whenever a node anywhere 
in the n e t w o r k receives an input signal, it sends ou tpu t signals to all 
those nodes on the next layer to which it is connected. The cycle com
pletes w h e n signals have propagated th rough the entire ne twork and an 
ou tpu t signal (or signals) emerges from the ou tpu t node (or the multiple 
nodes in the ou tpu t layer if that is h o w the ne twork is structured). Each 

*lt 's actual ly m o r e accurate t o say "can be rega rded as" rather than "consists 

o f , " since t he ent i re "neura l n e t w o r k " is s imu la ted on a norma l d ig i ta l computer . 
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input signal and each signal that emerges from a node has a certain "sig
nal strength" (expressed by a n u m b e r be tween 1 and 100). Each inter-
node connect ion has a "transmission s trength" (also a number ) , and the 
strength of the signal passing along a connect ion is a function of the 
signal at the start node and the transmission strength of the connect ion. 
Every t ime a signal is t ransmit ted along a connect ion, the s t rength of 
that connection (also often called its "weight") is increased or decreased 
proport ional to the signal strength, according to a preset formula. (This 
corresponds to the way that, in a living brain, life experiences result in 
changes to the strengths of the synaptic connect ions be tween neu rons 
in the brain.) Thus , the overall connection-strength configuration of the 
ne twork changes wi th each operat ional cycle. 

To use the ne twork to carry ou t a particular computa t ional task, the 
input(s) to the computa t ion mus t be encoded as a set of input signals to 
the input layer and the corresponding ou tpu t signal(s) in terpreted as a 
result of the computa t ion . The behavior of the ne twork—what it does 
to the input(s)—is dependent on the weights of the various n e t w o r k 
connections. Essentially, the pat terns of those weights consti tute the 
network 's "memory." The ability of a neura l ne twork to per form a par
ticular task at any m o m e n t in t ime depends u p o n the actual architecture 
of the ne twork and its current memory . 

TRAINING A NEURAL NETWORK 

Neural ne tworks are no t p r o g r a m m e d in the usual sense of p rogram
ming a computer . In the majority of cases, particularly neura l ne tworks 
used for classification, the application of a ne twork mus t be preceded by 
a process of "training" to set the various connect ion weights. 

By way of an example, suppose a bank wan ted to train a neura l net
work to recognize unauthor ized credit card use. The bank first presents 
the ne twork wi th a large n u m b e r of previous credit card transactions 
(recorded in t e rms of user 's h o m e address, credit history, spending limit, 
expenditure, date, amount , location, etc.), each k n o w n to be either 
authentic or fraudulent. For each one, the ne twork has to m a k e a pre
diction concerning the transaction's authenticity. If the connect ion 
weights in the ne twork are initially set r andomly or in some neutra l 
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way, then some of its predictions will be correct and others wrong . Dur
ing the training process, the ne twork is "rewarded" each t ime its predic
t ion is correct and "punished" each t ime it is wrong . (That is to say, the 
n e t w o r k is constructed so that a "correct grade"—i.e. , positive feedback 
on its prediction—causes it to cont inue adjusting the connection weights 
as before, whereas a "wrong grade" causes it to adjust t h e m differently.) 
After m a n y cycles ( thousands or more) , the connect ion weights will 
adjust so that on the majority of occasions (generally the vast majority) 
the decision m a d e by the ne twork is correct. W h a t happens is that, 
over the course of m a n y training cycles, the connect ion weights in 
the ne twork will adjust in a way that corresponds to the profiles 
of legit imate and fraudulent credit card use, whatever those profiles 
may be (and, of great significance, wi thou t the p r o g r a m m e r having to 
k n o w them) . 

Some skill is required to t u rn these general ideas into a workable 
system, and m a n y different ne twork architectures have been developed 
to build systems that are suited to particular classification tasks. 

After comple t ion of a successful training cycle, it can be impossible 
for a h u m a n opera tor to figure out jus t wha t pat terns of features (to 
cont inue wi th ou r current example) of credit card transactions the net
w o r k has learned to identify as indicative of fraud. All that the operator 
can k n o w is that the system is accurate to a certain degree of error, 
giving a correct prediction perhaps 95 percent of the t ime. 

A similar p h e n o m e n o n can occur wi th highly trained, highly experi
enced h u m a n experts in a particular domain, such as physicians. An 
experienced doctor will somet imes examine a patient and say with some 
certainty wha t she believes is w r o n g wi th the individual, and yet be 
unable to explain exactly jus t wha t specific symptoms led her to make 
that conclusion. 

Much of the value of neura l ne tworks comes from the fact that they 
can acquire the ability to discern feature-patterns that n o h u m a n could 
uncover. To take one example, typically just one credit card transaction 
a m o n g every 50,000 is fraudulent. N o h u m a n could moni tor that 
a m o u n t of activity to identify the frauds. 

O n occasion, however, the very opacity of neural ne tworks—the fact 
that they can uncover pa t terns that the h u m a n would not normally 
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recognize as such—can lead to unanticipated results. According to one 
oft-repeated story, some years ago the U.S. A r m y trained a neural 
ne twork to recognize tanks despite their being painted in camouflage 
colors to blend in wi th the background. The system was t rained by 
showing it many photographs of scenes, some wi th tanks in, o thers 
wi th no tanks. After many training cycles, the ne twork began to display 
extremely accurate tank recognition capacity. Finally, the day came to 
test the system in the field, wi th real tanks in real locations. And to 
everyone's surprise, it per formed terribly, seeming quite unable to dis
tinguish be tween a scene wi th tanks and one wi thout . T h e red-faced 
system developers retreated to their research laboratory and struggled 
to find out wha t had gone wrong . Eventually, someone realized wha t 
the problem was. The photos used to train the system had been taken 
on two separate days. The photos wi th tanks in t h e m had been taken on 
a sunny day, the tank-free photos on a cloudy day. The neural ne twork 
had certainly learned the difference be tween the two sets of photos , bu t 
the pa t tern it had discerned had no th ing to do wi th the presence or 
absence of tanks; rather, the system had learned to distinguish a sunny 
day scene from a cloudy day scene. T h e mora l of this tale being, of 
course, that you have to be careful w h e n interpret ing exactly which 
pat tern a neural ne twork has identified. Tha t caut ion aside, however, 
neural ne tworks have proved themselves extremely useful bo th in indus
try and commerce , and in law enforcement and defense. 

Various ne twork architectures have been developed to speed u p the 
initial training process before a neural n e t w o r k can be pu t to work, bu t 
in most cases it still takes some t ime to complete . The principal excep
tions are the Kohonen ne tworks (named after Dr. Tevo Kohonen, w h o 
developed the idea), also known as Self-Organizing Maps (SOMs), which 
are used to identify clusters, and which w e men t ioned in Chapter 3 in 
connection wi th clustering crimes into g roups that are likely to be the 
work of one individual or gang. 

Kohonen networks have an architecture that incorporates a form of 
distance measurement , so that they essentially train themselves, wi thou t 
the need for any external feedback. Because they do no t require feedback, 
there is no need for a large body of prior data; they train themselves 
by cycling repeatedly through the application data. Nevertheless, they 
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function by adjusting connection weights, just like the other, more fre-
quendy used neural networks . 

One advantage of neural networks over other data-mining systems is 
that they are m u c h bet ter able to handle the inevitable problem of missing 
data points that comes wi th any large body of human-gathered records. 

CRIME DATA MINING USING NEURAL NETWORKS 

Several commercia l systems have been developed to help police solve— 
and on occasion even stop—crimes. 

O n e such is the Classification System for Serial Criminal Patterns 
(CSSCP), developed by compu te r scientists T o m Muscarello and Kamal 
D a h b u r at DePaul University in Chicago. CSSCP sifts th rough all the 
case records available to it, assigning numerical values to different 
aspects of each crime, such as the kind of offence, the perpetrator 's 
sex, height, and age, and the type of weapon or getaway vehicle used. 
F rom these figures it builds a crime description profile. A Kohonen-type 
neura l n e t w o r k p r o g r a m then uses this to seek ou t crimes wi th similar 
profiles. If it finds a possible link be tween two crimes, CSSCP compares 
w h e n and where they t ook place to find ou t whe ther the same criminals 
wou ld have had enough time to travel from one crime scene to the 
other. In a laboratory trial of the system, using three years ' w o r t h of 
data on a r m e d robbery, the system was able to spot ten t imes as many 
pa t te rns as a t eam of experienced detectives wi th access to the same 
data. 

Another such p r o g r a m is CATCH, which stands for Compute r Aided 
Tracking and Characterization of Homicides. CATCH was developed by 
Pacific Nor thwes t National Laboratory for the National Institute of Jus
tice and the Washington State Attorney General 's Office. It is meant to 
help law enforcement officials de termine connections and relationships 
in data from ongoing investigations and solved cases. CATCH was built 
a round Washington state's Homicide Investigation Tracking system, 
which contains the details of 7,000 murders and 6,000 sexual assault cases 
in the Nor thwest . CATCH uses a Kohonen-style neural ne twork to clus
ter crimes th rough the use of parameters such as modus operandi and 
signature characteristics of the offenders, allowing analysts to compare 
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one case with similar cases in the database. The system learns about an 
existing crime, the location of the crime, and the particular characteris
tics of the offense. The p rog ram is subdivided into different tools, each 
of which places an emphasis on a certain characteristic or g roup of char
acteristics. This allows the user to remove certain characteristics which 
humans determine are unrelated. 

T h e n there is the current particular focus on terror ism. According to 
the cover story in BusinessWeek on August 8, 2005: "Since September 11 
more than 3,000 Al Qaeda operatives have been nabbed, and some 
100 terrorist attacks have been blocked worldwide, according to the FBI. 
Details on h o w all this was pulled off are hush-hush. But n o doub t t w o 
keys were electronic snooping—using the secret Echelon ne twork—and 
computer data mining." 

Echelon is the global eavesdropping system run by the National 
Security Agency (NSA) and its counterpar t s in Canada, Britain, Australia, 
and N e w Zealand. The NSAs supercomputers sift t h rough the flood of 
data gathered by Echelon to spot clues to ter ror ism planning. D o c u m e n t s 
the system judges to meri t a t tent ion go to h u m a n translators and ana
lysts, and the rest is dumped . Given the a m o u n t of data involved, it's 
hardly surprising that the system somet imes outperforms the h u m a n 
analysts, generat ing impor tan t information t oo quickly for h u m a n s to 
examine. For example, two Arabic messages collected on September 10, 
2001, hinting of a major event to occur on the next day, were no t trans
lated until September 12. (Since that blackest of black days, knowledge
able sources claim that the translation delay has diminished to about 
twelve hours . The goal, of course, is near-real-time analysis.) 

The ultimate goal is the development of data-mining systems that can 
look through multiple databases and spot correlations that w a r n of plots 
being hatched. The Terrorism Information Awareness (TIA) project was 
supposed to do that, bu t Congress killed it in 2003 because of privacy 
concerns. In addition to inspecting multiple commercial and government 
databases, TIA was designed to spin ou t its o w n terrorist scenarios—such 
as an attack on N e w York Harbor—and then de termine effective means 
to uncover and blunt the plots. For instance, it might have searched cus
tomer lists of diving schools and firms that rent scuba gear, and then 
looked for similar names on visa applications or airline passenger lists. 



46 THE NUMBERS BEHIND NUMB3RS 

I KNOW THAT FACE 

Facial recognit ion systems often make use of neural networks. Current 
recognit ion systems reduce the h u m a n face to a sequence of numbers 
(somet imes called a "face print" or a "feature vector"). These numbers 
are distance measurement s at and be tween pairs of eighty so-called 
nodal points, key features of the face such as the centers of the eyes, the 
depths of the eye sockets, cheekbones, j aw line, chin, the width of the 
nose, and the tip of the nose. (See Figure 3.) Using fast computers , it is 
possible to c o m p u t e the face print of a target individual and compare 
it to the face prints in a database within a few seconds. The compari
son cannot be exact, since the angle of observation of the target will 
be different from that of each pho tograph used to generate the face 
print in the database, a l though this effect can be overcome in part 
by means of some e lementary t r igonometr ic calculations. But this is 
the kind of "closest ma tch" comparison task that neural networks can 
handle well. 

Figure 3. Many facial recognition systems are based on measurements 
of and between key locations on the face called nodal points. 

O n e advantage of facial recognit ion using neural ne twork compari
sons of face prints is that it is no t affected by surface changes such as 
wear ing a hat, g rowing or removing a beard, or aging. The first organi
zations to make extensive use of facial recognition systems were the 
casinos, w h o used t h e m to moni to r players known to be cheaters. 
Airport immigra t ion is a more recent, and rapidly growing application 
of the same technology. 

0 CCD 
O 
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While present-day facial recognition systems are nowhere near as reli
able as they are depicted in movies and in television dramas—particularly 
in the case of recognizing a face in a crowd, which remains a difficult 
challenge—the technology is already useful in certain situations, and 
promises to increase in accuracy over the next few years. 

The reason that facial recognition is of some use in casinos and airport 
immigration desks is that at those locations the target can be photo
graphed alone, full face on, against a neutral background. But even then, 
there are difficulties. For example, in 2005, Germany started issuing bio-
metric passports, but problems arose immediately due to people smiling. 
The German authorities had to issue guidelines warning that people 
"must have a neutral facial expression and look straight at the camera." 

O n the other hand, there are success stories. O n December 25, 2004, 
the Los Angeles Times repor ted a police s top west of d o w n t o w n Los 
Angeles, where police w h o were testing a n e w portable facial recogni
tion system quest ioned a pair of suspects. O n e of the officers poin ted 
the system, a hand-held compute r wi th a camera attached, toward one 
of the two men . Facial recognit ion software in the device compared the 
image with those in a database that included pho tos of recent fugitives, 
as well as just over a hundred m e m b e r s of t w o notor ious street gangs. 
Within seconds, the screen had displayed a gallery of nine faces wi th 
contours similar to the suspect's. The compu te r concluded that one 
of those images was the closest match, wi th a 94 percent probability of 
accuracy. 

THE CASE OF THE SUSPICIOUS CONFERENCE CALLS 

Detecting te lephone fraud is another impor tan t application of neural 
networks. 

Dr. Colleen McCue was, for many years, the p rog ram manager for 
the crime analysis unit at the Richmond Police Depar tmen t in Richmond, 
Virginia, where she pioneered the use of data-mining techniques in law 
enforcement. In her book Data Mining and Predictive Analysis, she describes 
one particular project she worked on that illustrates the many steps that 
must often be gone through in order to extract useful information from 
the available data. In this case, a Kohonen neural net was used to identify 
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clusters in the data, but as Dr. McCue explains, there were many other 
steps in the analysis, mos t of which had to be done by hand. Just as in 
regular police detective work, where far more t ime is spent on routine 
"slogging" and attention to details than on the more glamorous and excit
ing parts dramatized in movies and on TV, so too with data mining. 
Labor-intensive manipulat ion and preparation of the data by humans 
generally accounts for a higher percentage of the project t ime than 
the high-tech implementat ion of sophisticated mathematics. (This is, of 
course, not to imply that the mathematics is not important; indeed, it is 
often crucial. But m u c h preparatory work usually needs to be done before 
the mathematics can be applied.) 

The case McCue describes involves the establishment of a fraudulent 
telephone account that was used to conduct a series of international 
telephone conferences. The police investigation began when a telephone 
conference call service company sent t hem a thirty-seven-page conference 
call invoice that had gone unpaid. Many of the international confer
ence calls listed on the invoice lasted for three hours or more . The confer
ence call company had discovered that the information used to open the 
account was fraudulent. Their investigation led them to suspect that the 
conference calls had been used in the course of a criminal enterprise, but 
they had nothing concrete to go on to identify the perpetrators. McCue 
and her colleagues set to work to see if a data-mining analysis of the 
conference calls could provide clues to their identities. 

T h e first step in the analysis was to obtain an electronic copy of the 
te lephone bill in easily processed text format. Wi th te lephone records, 
this is fairly easy to do these days, bu t as data-mining experts the world 
over will attest, in m a n y o ther kinds of cases a great deal of t ime and 
effort has to be expended at the outset in re-keying data as well as 
double-checking the keyed data against the hard-copy original. 

The next stage was to remove from the invoice document all of the 
information no t direcdy pert inent to the analysis, such as headers, infor
mat ion about payment procedures, and so forth. The resulting document 
included the conference call ID that the conference service issued for 
each call, the te lephone numbers of the participants, and the dates and 
durat ions of the calls. Fewer than 5 percent of entries had a customer 
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name, and although the analysts assumed those were fraudulent, they 
nevertheless kept t h e m in case they tu rned ou t to be useful for additional 
linking. 

The document was then formatted into a s t ructured form amenable 
to statistical analysis. In particular, the area codes were separated from 
the other information, since they enabled l inking based on area loca
tions, and likewise the first three digits of the actual p h o n e n u m b e r 
were coded separately, since they too link to m o r e specific location 
information. Dates were enhanced by adding in the days of the week, in 
case a pa t tern emerged. 

At this point, the documen t contained 2,017 call entries. However, an 
initial visual check th rough the data showed that on several occasions a 
single individual had dialed in to a conference m o r e than once. Often 
most of the calls were of short durat ion, less than a minu te , wi th jus t 
one lasting m u c h longer. The mos t likely explanation was that the indi
viduals concerned had difficulty connect ing to the conference or main
taining a connection. Accordingly, these duplications were removed. 
Tha t left a total of 1,047 calls. 

At this point, the data was submit ted to a Kohonen-style neura l net
work for analysis. The ne twork revealed three clusters of similar calls, 
based on the day of the m o n t h that the call t ook place and the n u m b e r 
of participants involved in a particular call. 

Further analysis of the calls within the three clusters suggested the 
possibility that the shorter calls placed early in the m o n t h involved the 
leaders, and that the calls at the end of the m o n t h involved the whole 
group. Unfortunately for the police (and for the te lephone company 
whose bill was no t paid), at a round that t ime the gang ceased their activ
ity, so there was no opportuni ty to take the investigation any further. The 
analysts assumed that the sudden cessation was preplanned, since the 
gang organizers knew that when the bill wen t unpaid, the authorities 
would begin an investigation. 

N o arrests were made on that occasion. But the authorit ies did obtain 
a good picture of the conference call pa t te rn associated wi th that kind 
of activity, and it is possible that , based on the findings of the study, 
the te lephone company subsequently t rained one of its o w n neura l 
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networks to look for similar patterns as they occur, to try to catch the 
perpetrators in the act. (This is the kind of thing that companies tend to 
keep secret, of course.) 

Battles such as this never end. People with criminal intent will con
tinue to look for ways to defraud the telecommunications companies. 
Data mining is the principal weapon the companies have in their arsenal 
to keep abreast of their adversaries. 

MORE DATA MINING IN NUMB3RS 

Given the widespread use of data-mining techniques in many areas of 
modern life, including crime detection and prevention, it is hardly surpris
ing that Charlie mentions it in many episodes of NUMB3RS. For example, 
in the episode "Convergence," broadcast on November 11,2005, a chain of 
robberies at upscale Los Angeles homes takes a more sinister turn when 
one of the homeowners is murdered. The robbers seem to have a consid
erable amount of inside information about the valuable items in the houses 
they rob and the detailed movements of the homeowners. Yet the target 
homes seem to have nothing in common, and certainly nothing that points 
to a source for the information the crooks are clearly getting. Charlie uses 
a data-mining program he wrote to look for patterns among all robberies 
in the area over the six-month period of the home burglaries, and eventu
ally comes up with a series of car thefts that look as though they could be 
the work of the same gang, which leads to their capture. 

Further Reading 

Colleen McCue, Data Mining and Predictive Analysis, Butterworth-
Heinemann (2007). 

Jesus Mena, Investigative Data Mining for Security and Criminal Detection, 
Butterworth-Heinemann (2003). 



CHAPTER 

4 When Does 
the Writing First 
Appear on the Wall? 
Changepoint Detection 

THE BASEBALL NUMBERS GENIUS 

In a third-season NUMB3RS episode entitled "Hardball," an aging base
ball player, trying to make a comeback after several lackluster years in the 
minors, dies during on-field training. W h e n the coach opens the dead 
player's locker, he finds a stash of needles and vials of steroids, and at 
once contacts the police. The coroner 's investigation shows that the 
player suffered a brain hemorrhage resulting from a massive overdose of 
steroids, which he had started using to enhance his prospects of a re turn 
to the major league. But this was n o accidental overdose. The drug in his 
locker was thirty times more powerful than the normal dosage, and had 
to have been prepared specially. The player had been murdered . 

W h e n D o n is assigned to the case, he discovers some e-mails on the 
player's laptop from an u n k n o w n person w h o claimed to k n o w that he 
was taking performance-enhancing drugs and threa tened to inform the 
authorities. It looks like a case of blackmail. W h a t is unusual is the proof 
that the u n k n o w n extortionist claimed to have. T h e e-mails have an 
a t tachment—a page of mathemat ical formulas that, the e-mailer 
claimed, showed exactly w h e n in his professional career the player had 
started taking steroids. 
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Clearly, this was another case where D o n would need the help 
of his younger brother. Charlie recognizes at once what the mathematics 
is about . "That 's advanced statistical baseball analysis," he blurts out. 

"Right, sabermetrics," replies Don , giving the accepted technical 
t e r m for the use of statistics to analyze baseball performance. 

T h e t e r m "sabermetrics" is derived from the acronym SABR, which 
stands for the Society for American Baseball Research, and was coined 
by baseball statistics p ioneer Bill James, one of the mos t enthusiastic 
p roponen t s of using n u m b e r s to analyze the game. 

Charlie also observes that whoever produced the formulas had 
devised his o w n mathemat ica l abbreviations, something that might help 
identify h im. Unfortunately, he does no t know enough about the saber
metrics c o m m u n i t y to have any idea w h o might be behind the e-mail. 
But a colleague at CalSci has n o t rouble providing Charlie wi th the miss
ing information. A quick search of several websites devoted to fantasy 
baseball soon reveals postings from an individual using the same math
ematical notat ion. 

For Don , the picture is n o w start ing to emerge. The dead player had 
been killed to keep h i m from talking about the ring that was supplying 
h im—and very likely o ther athletes—with illegal drugs. Obviously, the 
e-mails from the anonymous sabermetrician were what caused the fear 
that the narcotics r ing wou ld be discovered. But w h o was the killer: the 
e-mailer, the d rug supplier, o r someone else? 

It does no t take D o n very long to trace the e-mail to a nerdy, twenty-
five-year-old, high school d ropou t n a m e d Oswald Kittner, w h o used his 
self-taught mathemat ica l abilities to make a fairly good living winning 
m o n e y by playing fantasy-league baseball. In this virtual arena, players 
create hypothetical t eams of real players, which play against each other 
as compu te r simulations based on the current statistics for the real play
ers. Kittner's success was based on his mathemat ical formulas, which 
tu rned ou t to be extremely good at identifying sudden changes in a play
er's per formance—what is k n o w n in statistical circles as "changepoint 
detection." 

As Charlie notes, wha t makes baseball particularly amenable to 
statistical analysis is the weal th of data it generates about individual 
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performances coupled wi th the role of chance—e.g., the highly r a n d o m 
result that comes wi th each pitch. 

But Kittner had discovered that his m a t h could do someth ing else 
besides helping h im to make a good living winn ing fantasy-league 
games. It could detect w h e n a player started to use performance enhanc
ing drugs. Th rough careful study of the performance and behavior of 
known steroid users in baseball, Kittner had de te rmined the best 
stats to look for as an indication of steroid use—measur ing long-ball 
hitting, aggressive play (being hit by pitches, for example), and even 
temper t an t rums (arguments , ejections from games , and so forth). H e 
had then created a mathemat ica l surveillance system to mon i to r the 
best stats for all the players he was interested in, so that if any of t h e m 
started using steroids, he wou ld detect the changes in their stats and be 
able to react quickly. This wou ld give h i m reliable information that a 
particular player is using steroids long before it becomes c o m m o n 
knowledge. 

"This is amazing," Charlie says as he looks again at the ma th . 
"This Kittner person has reinvented the Shiryayev-Roberts changepoint 
detection procedure!" 

But was Kittner using his me thod to blackmail players or simply to win 
fantasy-league games by knowing in advance that a key player's perfor
mance was about to improve dramatically? Either way, before the young 
fan could put his new plan into action, one of his targets was murdered. 
And now the nerdy ma th whiz finds himself a murder suspect. 

Kittner quickly comes clean and starts to cooperate wi th the author
ities, and it does no t take D o n very long to solve the case. 

CHANGEPOINT DETECTION 

W h e n it comes to crime, prevention is always bet ter than t rying to catch 
the perpetra tors after the event. In some cases, the benefit of prevention 
can be m u c h higher. For terrorist acts, such as those of September 11, 
2001, the only way to p reempt the attack is by get t ing information 
about the plotters before they can strike. This is w h a t happened in the 
s u m m e r of 2006, w h e n British authorit ies prevented a mult iple attack 
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on transatlantic planes using liquid explosives b rought on board 
disguised as soft drinks and toiletries. A bioterrorist attack, on the other 
hand, may take weeks or m o n t h s to reach full effect, as the pathogen 
works its way th rough the populat ion. If the authorities can detect the 
pa thogen in the relatively early stages of its dispersal, before its effect 
reaches epidemic propor t ions , it may be possible to contain it. 

To this end, various agencies have instigated what is known as syndromic 
surveillance, where lists of pre-identified sets of symptoms are circulated 
a m o n g hospital emergency r o o m personnel and certain other medical 
care providers, w h o mus t report to public health agencies if these symp
toms are observed. Those agencies moni tor such data continuously and 
use statistical analysis to determine when the frequency of certain sets of 
symptoms is sufficiently greater than normal to take certain predefined 
actions, including raising an alarm. A m o n g the best-known systems cur
rently in operat ion are RODS (Realtime Outbreak and Disease Surveil
lance) in Pennsylvania, ESSENCE (Early Notification of Community-
Based Epidemics) in Washington, D.C., and the BioSense system 
implemented by the Centers for Disease Control and Prevention. 

T h e principal challenge facing the designer of such a moni tor ing sys
t e m is to identify w h e n an activity pattern—say, a sudden increase in 
people taking t ime off from w o r k because of sickness, or people visit
ing their doctor w h o display certain symptoms—indicates something 
unusual , above and beyond the no rma l ebb and flow of such activities. 
Statisticians refer to this task as change-point detection—the determinat ion 
that a definite change has occurred, as opposed to no rma l fluctuations. 

In addit ion to syndromic surveillance—quickening the response to 
potential bioterrorist attacks by continuously collecting medical data, 
such as symptoms of patients showing u p in emergency rooms— 
mathemat ica l algori thms for changepoint detection are used to pinpoint 
o ther kinds of criminal and terrorist activity, such as 

• Moni tor ing reports to detect increases in rates of certain crimes 
in certain areas 

• Looking for changes in the pa t tern of financial transactions that 
could signal criminal activity 
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OUT OF INDUSTRY 

The first significant use of changepoint detect ion systems was no t for 
fighting crime, however, bu t for improving the quality of manufac tured 
goods. In 1931, Walter A. Shewhart published a b o o k explaining h o w to 
moni tor manufacturing processes by keeping track of data in a control 
chart. 

Shewhart, b o r n in N e w Canton, Illinois, in 1891, studied physics at 
the Universities of Illinois and California, eventually earning a Ph.D., 
and was a university professor for a few years before going to w o r k for 
the Western Electric Company, which m a d e equ ipment for Bell Tele
phone . In the early days of telephones, equ ipment failure was a major 
problem, and everyone recognized that the key to success was to 
improve the manufactur ing process. W h a t Shewhart did was show h o w 
an ingenious use of statistics could help solve the problem. 

His idea was to moni to r an activity, such as a product ion line, and 
look for a change. The tricky par t was to decide whe the r an unusual 
reading was just an anomaly—one of the r a n d o m fluctuations that the 
world frequently throws our way—or else a sign that someth ing had 
changed (a changepoint) . (See Figure 4.) 

Clearly, you have to look at some additional readings before you can 
know. But h o w many m o r e readings? And h o w certain can you be that 
there really has been a change, and no t jus t an unfor tunate , bu t ulti
mately insignificant, r u n of unexpected readings? There is a trade-off to 

^ I 
C P . 
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blip 

F igu re 4. Is an a n o m a l o u s d a t a p o i n t j u s t a b l i p o r a s i gn o f a c h a n g e ? 
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be m a d e here . T h e m o r e additional readings you take, the more confi
dent you can be that there has been a change, bu t the longer you will 
have to wait before you can take action. Shewhart suggested a simple 
m e t h o d that worked: You simply wait until you see an unusual result 
that is statistically well off the average, say three standard deviations. 
This m e t h o d was a huge improvement , bu t it could still take a long t ime 
before a change was de tec ted—too long for m a n y applications, particu
larly those involved in crime detection and terror ism prevention. The 
key to a real advance was to use mathemat ics . 

MATHEMATICS GETS INTO THE ACT 

Around twenty-five years after Shewhart J s b o o k appeared, mathemat i 
cians in England (E. S. Page), the Soviet Union (A. N. Shiryayev), and the 
United States (S. W. Roberts) found several m u c h m o r e efficient (and 
mathematical ly sophisticated) ways to detect changepoints. 

As the mathemat ica l theory blossomed, so did the realization in 
industry and various branches of government (including law enforce
men t ) that changepoint detect ion me thods can be applied to a wide 
range of real-world problems. Such me thods are n o w known to be use
ful in applications l imited no t only to industrial quality control bu t to 
such areas as: 

• medical moni to r ing 

• military applications (e.g., moni tor ing communica t ion channels) 

• envi ronmenta l protect ion 

• electronic surveillance systems 

• surveillance of suspected criminal activity 

• public heal th moni to r ing (e.g., b ioterror ism defense) 

• counter te r ror i sm 

To show h o w a m o r e efficient changepoint detection m e t h o d works, 
we ' l l focus on Page's procedure . (The Shiryayev-Roberts m e t h o d that 
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Charlie Eppes ment ions is slightly m o r e technical to describe.) We' l l 
look at an easier example than quality control : namely, detect ing an 
increase in the frequency of some event. 

Suppose that over some substantial per iod of t ime, it has been 
observed that a particular event occurs about once a m o n t h . Put ano ther 
way, the probability of it happening on any given day is about 1 ou t of 
30. Examples abound—a N e w Yorker finds a park ing space on the street 
in front of her apar tment , a husband actually offers to take ou t the 
garbage, a local T V news show doesn' t lead off wi th a natural disaster 
or violent crime, and so on. 

N o w suppose that the frequency of a given event could increase dra
matically—to once a week, say. W e wan t to set u p a changepoint detec
tion system to react as quickly as possible w i thou t raising a false a larm 
too frequently. 

The key issue w e have to deal wi th is that chance fluctuations such as 
3 or 4 occurrences in a single m o n t h can appear to indicate that the fre
quency has changed from once every 30 days to once every 7 days, even 
when there has no t really been a change. 

In the Page procedure , w e in t roduce a numerical index, S, that tracks 
the activity. S is set initially equal to 1, and you revise S each day, using 
certain probability calculations, as w e shall see shortly. W h e n the value 
of S reaches or exceeds a certain pre-assigned level (we'll take 50 for the 
value in our example), you declare that a change has occurred. (Note 
that it is not required to est imate exactly when the change occurred, only 
to determine whe ther or no t it has occurred.) 

H o w do you "update" S each day? You multiply S by the probability 
of whatever happened that day, assuming a change has already occurred, 
and dividing it by the probability of whatever happened , assuming a 
change has not occurred. 

For our example, this means that if the event occurs, you multiply S 
by lh and divide the result by V30 (i.e., you multiply by 4.286); and if the 
event does not occur, you multiply S by 6h and divide the result by 2%o (i.e., 
you multiply by 0.8867). In the former case, the value of S will increase. In 
the latter case, S decreases; if the new value of S is less than 1, you reset S 
to 1. (By never letting S be less than 1, the process remains in readiness to 
react to a change at any time.) 
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Because the event we're interested in is more probable once a change has 
occurred, on days when that event happens, S gets larger. And, not 
surprisingly, S gets smaller on days when the event does not happen. 

This procedure is easy to carry out on a calculator. Suppose we start 
from scratch and see successive days as follows: 

No, No, Yes (the event occurred), No, No, No, No, No, No, Y e s , . . . 

We start with S = 1. The first "No" gives S = 1 x .8867 = .8867, so 
we reset S = 1. The second "No" also gives S = .8867 and again we reset 
S = 1. Then we get a "Yes" and set S = 1 x 4.286 = 4.286. The following 
"No" gives S = 4.286 X .8867 = 3.800. 

Continuing along the sequence of observations, we get the subse
quent values 3.370, 2.988, 2.649, 2.349, 2.083, at which point we get the 
second "Yes", giving S = 8.927. 

If we keep getting "Yes" this often, S will reach a threshold like 50 
pretty quickly. But even after a change to 1 chance in 7 every day, it's not 
unusual to go two weeks without the event occurring, and that would 
multiply S by .8867 each day—unless the "never let S go below 1 " rule 
kicks in. 

If w e use a computer to generate random days with a 1 out of 
30 chance of the event every day, and each day is a new try, regardless 
of the history, it turns out that when a threshold of 50 is used for S, 
false indicators of a change will occur roughly 1,250 days apart— 
roughly three and a half years. Meanwhile, the quickness of detection 
after a change to 1 out of 7 chance every day, is on average no more 
than thirty-three days—about a month—even if the change occurs 
when S happens to be 1 (the lowest value possible), as at the begin
ning of the process. That's a lot better than Shewhart's procedure 
could do. 

It turns out that the cost of getting a large interval between false 
change indicators (known to statisticians as the average run length, or 
ARL) in terms of increased time to detect a change, is not great with 
Page's procedure. Large increases in the ARL are accompanied by fairly 
small increases in detection time. Table 5 gives some results (for this 
example) illustrating the trade-off. 
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Th resho ld A R L Q u i c k n e s s o f D e t e c t i o n 

18.8 1.3 years 25 .2 days 

4 0 2.5 years 30 .3 days 

50 3.4 years 32 .6 days 

75 5.2 years 36 .9 days 

150 10.3 years 43 .8 days 

Tab le 5. T h e r e l a t i o n s h i p b e t w e e n a v e r a g e run l e n g t h a n d s p e e d o f 

d e t e c t i o n . 

So, for all that it is a great improvement on Shewhart ' s me thod , 
Page's procedure still seems to take a long t ime to reliably detect 
a change. Can we do better? Unfortunately, there are theoretical 
limitations to wha t can be achieved, as a mathemat ic ian n a m e d G. V 
Moustakides proved in 1986. H e showed that w h e n the distributions of 
the data values before and after a possible change are known, as they are 
in our example, Page's procedure is the best you can do. 

This fundamental limitation on the ability to reliably detect change-
points is not merely frustrating to statisticians, it leaves society irrevocably 
vulnerable to threats in areas such as bioterrorism. 

EARLY DETECTION OF A BIOTERRORIST ATTACK 

A good example where changepoint detection is crucial is the syndromic 
surveillance we men t ioned early in the chapter. The basic idea, which is 
being applied by m a n y state and local heal th depar tments across the 
country, in cooperat ion wi th certain agencies of the federal govern
ment , goes like this: Suppose a terrorist attack uses an agent like anthrax 
or smallpox that can be released wi thou t causing an immedia te alarm, 
so that the disease can spread for some t ime wi thou t alerting hospitals 
and public health officials. 

In case of such an attack, it is critical for the authorit ies, particularly 
in the public health system, to be alerted as soon as possible so that they 
can figure ou t wha t is happening and take appropriate measures . These 
may include public warnings and bulletins to doctors and hospitals, 
describing what to look for in patients, h o w m a n y people are likely to be 
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affected and in which areas, and which me thods to use in diagnosis and 
t rea tment . 

W i t h o u t having some system in place to accelerate the reaction of 
authorities, substantial delays could easily arise. Performing medical 
tests and confirming diagnoses can take t ime, and the possibility that 
the first patients may be few in n u m b e r or scattered would contribute to 
the difficulty of recognizing a developing threat. 

Faced wi th the limitations implied by Moustakides ' 1986 result, 
researchers in the area of changepoint detection are constantly looking 
for be t ter data sources to achieve the ul t imate goal: the earliest possible 
detect ion of change. 

In October 2006, the fifth annual Syndromic Surveillance Conference 
t ook place in Baltimore, Maryland. Research papers presented at the 
conference covered such topics as: Improving Detect ion Timeliness by 
Model ing and Correct ing for Data Availability Delays; Syndromic Pre
diction Power: Compar ing Covariates and Baselines; Efficient Large-
scale Network-based Simulation of Disease Outbreaks; and Standard 
Opera t ion Procedures for Three Syndromic Surveillance Systems in 
Washoe County, Nevada. 

T h e greater the natural variability, the m o r e severe is the problem of 
false alarms. But there is another aggravating factor: the sheer multiplic
ity of surveillance systems. T h e researchers at the conference pointed 
ou t that in the near future there may be thousands of such systems run
ning simultaneously across the United States. Even if the frequency of 
false alarms is well controlled in each system, the overall rate of false 
a larms will be thousands of t imes greater, leading to obvious costs and 
concerns, including the classic "boy w h o cried wolf" phenomenon : Too 
m a n y false a larms desensitize responders to real events. 

H o w can the medical issues, the political issues, and the mathemat i 
cal challenges associated wi th syndromic surveillance be addressed? 

In several recent studies, researchers have used compute r simula
tions to est imate h o w effective different mathemat ical me thods will be 
in real-world performance. Results consistently show that when the 
Shewhar t and Page approaches are compared, the latter is found to be 
superior. This is no t a foregone conclusion, as the theorem of 
Moustakides, establishing that the Page procedure is the best possible, 
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does not literally apply to the complicated problems that researchers are 
trying to solve. But mathemat ic ians are used to the p h e n o m e n o n that 
when a m e t h o d or algori thm is proved to be the best possible in some 
simple situations it is likely to be close to the best one can do in m o r e 
complicated situations. 

Researchers are making intensive efforts to build a bet ter foundation 
for success in using syndromic surveillance systems. The before-change 
scenarios require accurate knowledge of baseline data—that is, the 
appearance of patients in ERs with certain combinations of symptoms. 
The experts also pay considerable attention to the improvement of the 
probability estimates that go into the before-change par t of the calcula
tions. Several of the most c o m m o n sets of symptoms that these surveil
lance systems look for have a greater probability of false positives during 
certain seasons of the year—cold and flu season, for example—so that the 
calculations are much more accurate when the baseline probabilities are 
defined in a way that reflects seasonal effects. 

Another key to improving these systems is sharpening the probabil
ity estimates for after-change (post-attack) scenarios. O n e recent s tudy 
examines the potential to improve biosurveillance by incorpora t ing 
geographical information into the analysis. By building in statistical 
measures of the way the s y m p t o m repor ts cluster—in particular their 
spatial distribution as well as their t empora l distribution—surveillance 
systems might gain greater power to detect outbreaks or abnorma l pat
terns in disease incidence. 

Mathematicians have o ther tricks u p their sleeves that could help. 
The methods of Bayesian statistics (discussed in Chapte r 6) can be used 
to incorporate certain kinds of useful information into changepoint 
detection calculations. Imagine that as w e mon i to r a s t ream of data, 
looking for a changepoint , w e have someone whispering hints in ou r 
ear—telling us at which points it is m o r e likely or less likely that a change 
will occur. Tha t is pret ty m u c h wha t the D e p a r t m e n t of H o m e l a n d 
Security's system of color-coded public alerts does, and the information 
gathered and assessed by intelligence agencies can be used to provide 
more focused alerts for certain types of disease-based terrorist attacks. 
Bayesian me thods can incorporate such intelligence in a very natural 
and systematic way—in effect, lowering the threshold for raising an 
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alarm dur ing periods w h e n the probabilities of particular kinds of 
bioterrorist attacks are heightened. 

As one mathemat ic ian recently s u m m e d u p the current situation in 
syndromic surveillance: "Changepoint detection is dead. Long live (even 
bet ter) changepoint detection." 



CHAPTER 

5 Image Enhancement 
and Reconstruction 

THE REGINALD DENNY BEATING 

On April 29, 1992, at 5:39 PM, Reginald Oliver Denny, a thirty-nine-year-
old, white t ruck driver loaded his red, eighteen-wheel construction t ruck 
with twenty-seven tons of sand and set off to deliver it to a plant in Ingle-
wood, California. H e had n o idea that a little over an h o u r later, millions 
of television viewers would watch h im being beaten to within an inch of 
his life by a rioting mob . Nor that the ensuing criminal prosecut ion of the 
rioters would involve a truly remarkable application of mathematics . 

The sequence of events that led to Denny 's beat ing had begun a year 
earlier, on March 3, 1991, w h e n officers of the California Highway 
Patrol spotted a young black male , Rodney Glenn King, age twenty-six, 
speeding on Interstate 210. T h e officers chased King for eight miles at 
speeds in excess of 100 miles per hour, before finally manag ing to stop 
h im in Lake View Terrace. W h e n the C H P officers instructed h im to lie 
down, King refused. At that point , a squad car of four Los Angeles Police 
Depar tment officers arrived on the scene, and LAPD Sergeant Stacey 
Koon took c o m m a n d of the situation. W h e n King then refused Sergeant 
Koon's c o m m a n d to comply wi th the instruction to lie down, Koon told 
his officers to use force. The police then started to hit King wi th their 
batons, and cont inued to beat h im long after he had fallen to the g round . 
W h a t the police did no t k n o w was that the entire event was being 
videotaped by a bystander, George Holliday, w h o wou ld later sell the 
recording to the television networks . 
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Based largely on the videotapes, which were seen by television view
ers all a round the world, the four officers, three whi te and one Latino, 
were charged wi th "assault by force likely to produce great bodily 
injury" and wi th assault "under color of authority." As the officers' 
defense counsel argued in court , the video showed that King behaved 
wildly and violently t h roughou t the incident (he was eventually charged 
wi th felony evasion, a l though that charge was later dropped), but as a 
result of the considerable at tent ion given to Holliday's videotape, the 
focus was n o longer on King bu t on the actions of the policemen. The 
cour t case unfolded against the volatile backdrop of a city where racial 
tensions ran high, and relations be tween the black communi ty and the 
largely whi te LAPD were badly strained. W h e n , on April 29,1992, three 
of the officers were acquit ted by a j u r y of ten whites, one Latino, and an 
Asian (the ju ry could no t agree on a verdict for one of the counts on one 
of the officers), massive rioting e rupted across the entire Los Angeles 
region.* 

The riots would last for three days, mak ing it one of the worst civil 
disturbances in Los Angeles history. By the t ime the police, Marine 
Corps , and National Guard restored order, there had been 58 riot-related 
deaths, 2,383 injuries, m o r e than 7,000 fire responses, and damage to 
a round 3,100 businesses a m o u n t e d to over $1 billion. Smaller race riots 
b roke ou t in o ther U.S. cities. O n May 1, 1992, the third day of the Los 
Angeles riots, Rodney King wen t on television to appeal for calm and 
plead for peace, asking, "People, I jus t wan t to say, you know, can we all 
get along?" 

But the rioting was jus t a few hours old as t ruck driver Reginald 
Denny tu rned off the Santa Monica Freeway and took a shortcut across 
Florence Avenue. At 6:46 PM, after enter ing the intersection at Nor
mandie , he found himself su r rounded by black rioters w h o started to 
t h row rocks at his windows, and he heard people shout ing at h im to 
stop. Overhead, a news helicopter piloted by repor ter Bob Tur captured 
the events that followed. 

*A f te r t he r iots, federa l charges of civil r ights v io la t ions were b r o u g h t against the 
fou r off icers. Sergeant Stacey Koon and Of f icer Laurence Powel l were f o u n d gui l ty ; 
t he o the r t w o were acqu i t t ed . 
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One m a n opened the t ruck door, and others dragged Denny out . 
Denny was knocked to the g round and one of the assailants held his 
head down wi th his foot. Denny, w h o had done no th ing to provoke the 
violence, was kicked in the s tomach. Someone hur led a five-pound 
piece of medical equ ipment at Denny's head and hit h im three t imes 
with a claw hammer . Still another m a n th rew a slab of concrete at 
Denny's head and knocked h im unconscious. T h e man , w h o wou ld 
subsequently be identified as Damian Williams, t hen did a victory dance 
over Denny, flashing a gang sign at the news helicopter hovering above, 
which was broadcast ing the events on live television, and pointed 
at Denny. Another rioter then spat on Denny and left wi th Williams. 
Several passersby took pictures of the attack bu t n o one came to 
Denny's aid. 

After the beat ing ended, various m e n th rew beer bott les at the 
unconscious D e n n y Someone came along and riffled th rough Denny 's 
pockets, taking his wallet. Another m a n s topped near the body and 
a t tempted to shoot the gas tank of Denny 's t ruck bu t missed. Eventu
ally, wi th the attackers gone , four m e n w h o had been watching the 
events on T V came to Denny 's aid. O n e of t h e m was a t rucker wi th a 
license that allowed h im to drive Denny 's truck. The four rescuers 
loaded the prostrate t rucker into his cab and drove h im to the hospital. 
Upon arrival at the hospital, Denny suffered a seizure. 

Paramedics w h o at tended to Denny said he came very close to death. 
His skull was fractured in ninety-one places and pushed into the brain. 
His left eye was so badly dislocated that it wou ld have fallen in to his 
sinus cavity had the surgeons no t replaced the crushed b o n e wi th a piece 
of plastic. A p e r m a n e n t crater remains in his head to this day, despite 
efforts to correct it. 

Based on identification from the T V news video taken from Bob 
Tur's helicopter, the three m e n mos t directly involved in the attack on 
Denny were arrested and b rough t to trial. Of the three , only one , 
Damian Williams, would be convicted, and then only on one felony 
charge, the cour t seeming to take the view (rightly or wrongly) that the 
acts were no t premedi ta ted and were the result of citywide m o b 
mentality. For our present purpose , however, the mos t fascinating aspect 
of the case is that the identification of Williams was a result of some 
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remarkable n e w mathemat ics , and the acceptance of those methods by 
the cour t was a milestone in legal history. 

THE ROSE TATTOO 

Although millions watched the attack on Denny on T V either live or 
dur ing endless repeats on news programs, and al though the prosecution 
in the trial of Williams and his two accused accomplices showed forty 
minutes of video recordings of the event as evidence, identification of 
the assailants of sufficient reliability to secure a conviction proved diffi
cult. The video footage had been shot from a small portable camera, 
handheld by Tur 's wife, Marika, in a helicopter hovering above the scene. 
The result was grainy and blurred, and on n o occasion did Marika Tur 
get a clear face shot of the assailants. The person shown throwing a large 
slab of concrete at Denny's head and then performing a victory dance 
over the victim's n o w unconscious body could have been Williams. But it 
equally could have been any one of hundreds of young black males in the 
Los Angeles area w h o shared his overall build and appearance. 

O n e feature that did distinguish Williams from other possible 
suspects was a large ta t too of a rose on his left a rm. (The ta t too identi
fied h i m as a m e m b e r of the notor ious Los Angeles gang Eight Tray 
Gangster Crips.) Unfortunately, a l though some frames of the newsreel 
video did show the assailant's left a rm, the image was no t sharp enough 
to discern the ta t too. 

At that point , the frustrated prosecutors got a major break. A Santa 
Monica repor ter supplied t h e m wi th some still pho tographs shot from a 
helicopter wi th a 400-millimeter long-distance lens. Thanks to the m u c h 
higher resolut ion of still photographs , close scrutiny of one of the pho
tographs, bo th wi th the naked eye and a magnifying glass, did reveal a 
vague gray region on the assailant's left a r m as he s tood over the prone 
body of Williams. (See Figure 5.) T h e gray region—a mere one six-
thousand th of the overall area of the pho tograph—migh t indeed have 
been a ta t too; unfortunately, it could jus t as easily have been a smudge 
of dirt or even a blemish on the pho to . Enter mathemat ics . 

Using highly sophisticated mathematical techniques, developed initially 
to enhance surveillance photographs taken by military satellites, the crucial 
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Figure 5. Mathematically enhanced aerial photograph of the Reginald 
Denny beating, with feature enlargement showing a blurred mark on 
the assailant's left arm. 

portion of the photograph was processed on a high-performance com
puter to generate a much clearer image. The resulting image revealed that 
the apparent mark on the suspect's left a rm had a shape and color that, 
above the usual legal threshold of "beyond a reasonable doubt," was indeed 
a rose tattoo like the one on Damian Williams' arm. 

The techniques used to process the photographic images in the 
Reginald Denny case fall in the general area known as image enhancement. 
This is not a technique for adjusting brightness, color, or contrast, or 
otherwise tweaking photographs familiar to computer users in the form 
of programs such as Photoshop, nor is it the proprietary photograph-
handling software that often comes wi th n e w digital cameras. In image 
enhancement, mathematical techniques are used to reconstruct image 
details that were degraded by optical blurring in the original photograph. 

The t e r m "reconstruct" as used here can be misleading to laypersons 
unfamiliar wi th the technique. O n e of the key steps in the trial of 
Damian Williams was for the experts to convince the judge , and then 
the jury, that the process was reliable, and that the resulting image 
did not show "what might have been," bu t did in fact reveal "what was." 
The judge's ruling in the case, that images produced by enhancemen t 
techniques were indeed allowable evidence, was a l andmark in legal 
history. 

The general idea behind image enhancement is to use mathemat ics 
to supply features of the image that were no t captured in the original 
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pho tograph . N o pho tog raph will represent everything in a visual scene. 
Most pho tographs capture enough information that the h u m a n eye is 
often unable to discern any differences be tween the pho tograph and the 
original scene, and certainly enough for us to identify an individual. But 
as cognitive scientists have demonst ra ted , m u c h of wha t we see when 
w e look at ei ther a real-life scene or a pho tog raph is supplied by our 
brains, which fill in—generally reliably and accurately—anything that 
(for one reason or another) is missing from the visual signal that actually 
enters ou r eyes. W h e n it comes to certain particular features in an 
image, mathemat ics is far m o r e powerful, and can furnish—also reliably 
and accurately—details that the pho tog raph never fully captured in the 
first place. 

In the Damian Williams trial, the key prosecut ion witness w h o iden
tified the defendant was Dr. Leonid Rudin, the cofounder in 1988 of 
Cognitech, Inc., a Santa Monica-based company specializing in image 
processing. As a doctoral s tudent at Caltech in the mid-1980s, Rudin 
developed a novel m e t h o d for deblurr ing photographic images. Work
ing wi th his colleagues at Cognitech, Rudin further developed the 
approach to the point where , w h e n the Williams trial came to court , the 
Cogni tech t e a m was able to take video images of the beat ing and pro
cess t h e m mathematical ly to p roduce a still image that showed what in 
the original video looked like a barely discernible smudge on the fore
a r m of one of the assailants to be clearly identifiable as a rose ta t too like 
the one on Will iams' a rm. W h e n the reconstructed pho tograph was 
presented to the j u r y for identification, Will iams' defense t eam at once 
changed its posit ion from "Williams is no t the person in the p h o t o / 
v ideo" to his be ing a "nonpremedi ta ted" participant in the attack. 

WHAT THE EYE CANNOT SEE: THE MATH OF IMAGE 
RECONSTRUCTION 

To get some idea of the kind of problem facing the Cognitech engi
neers, imagine that w e are faced wi th the comparably simpler task of 
simply enlarging a pho tog raph (or par t of a photograph) to twice its 
original size. (Enlargement of the key par t of the Williams image was 
in fact one of the things Rudin and his colleagues did as par t of their 
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analysis.) The simplest approach is to add m o r e pixels according to some 
simple rule. For example, suppose you start wi th an image stored as a 
650 x 500 pixel grid and w a n t to generate an enlarged version measur
ing 1300 x 1000 pixels. Your first step is to double the dimensions of the 
image by coloring the pixel location (2x,2y) the same as location (x,y) in 
the original image. This generates an image twice as large, b u t having 
lots of "holes" and hence be ing very grainy. (None of the pixels wi th at 
least one odd coordinate has a color.) To eliminate the graininess you 
could then color the remaining locations (the ones having at least one 
odd coordinate) by taking the m e a n of the color values for all adjacent 
pixels in the evens-evens grid. 

Such a naive m e t h o d of filling in the holes wou ld w o r k fine for fairly 
homogeneous regions of the image, where changes from one pixel to 
the next are small, bu t where there is an edge or a sudden change in 
color, it could be disastrous, leading to, at best, b lur red edges and, at 
worst , significant distortion (pixelation) of the image. W h e r e there is 
an edge, for instance, you should really carry ou t the averaging proce
dure along the edge (to preserve the geomet ry of the edge) and then 
average separately in the t w o regions on either side. For an image wi th 
just a few, well-defined, and essentially straight edges, you could set this 
u p by hand, bu t for a m o r e typical image you wou ld w a n t the edge 
detection to be done automatically. This requires that the image-
processing software can recognize edges. In effect, the compu te r 
must be p r o g r a m m e d wi th the capacity to "unders tand" some features 
of the image. This can be done , bu t it is no t easy, and requires some 
sophisticated mathemat ics . 

The key technique is called segmentation—spli t t ing u p the image 
into distinct regions that correspond to distinct objects or par ts of 
objects in the original scene. (One particular instance of segmenta t ion 
is distinguishing objects from the background.) Once the image has 
been segmented, missing information within any given segment can be 
re-introduced by an appropriate averaging technique. The re are several 
different methods for segment ing an image, all of t h e m very technical, 
but we can describe the general idea. 

Since digital images are displayed as rectangular arrays of pixels, 
wi th each pixel having a unique pair of x,y coordinates, any s m o o t h 



70 THE NUMBERS BEHIND NUMB3RS 

edge or line in the image may be viewed as a curve, defined by an 
algebraic in the classical sense of geometry. For example, for a straight 
line, the pixels would satisfy an equat ion of the form 

y = m x + c 

Thus , one way to identify any straight-line edges in an image would be 
to look for collections of pixels of the same color that satisfy such an 
equat ion, where the pixels to one side of the line have the same color 
bu t the pixels on the o ther side do not . Likewise, edges that are curved 
could be captured by m o r e complicated equations such as polynomials. 
Of course, wi th a digitized image, as wi th a scene in the real world, the 
ag reement wi th an equat ion would no t be exact, and so you'd have to 
allow for a reasonable a m o u n t of approximation in satisfying the equa
tion. Once you do that , however, then you can take advantage of a 
mathemat ica l fact that any s m o o t h edge (i.e., one that has no breaks of 
sharp corners) can be approximated to whatever degree of accuracy 
you desire by a collection of (different) polynomials, wi th one polyno
mial approximating one par t of the edge, another polynomial approxi
mat ing the next par t of the edge, and so on. This process will also be 
able to handle edges having sharp corners; at a corner, one polynomial 
takes over from the previous one. 

F i g u r e 6. T h e resu l t o f t h e s e g m e n t a t i o n a l g o r i t h m run o n t h e p h o t o 

g r a p h o f t h e le f t a r m o f t h e R e g i n a l d D e n n y assa i lant , s h o w i n g a m a r k 

en t i r e l y c o n s i s t e n t w i t h t h e rose t a t t o o o n D a m i a n W i l l i a m s ' le f t a r m . 
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This simple idea shows h o w the problem of verifying that a given edge 
is indeed an edge can be reduced to a problem about finding equations. 
Unfortunately, being able to find an equation whose curve approximates 
a segment of a given edge does no t help you identify that edge in the first 
place. For humans, recognizing an edge is generally no t a problem. We 
(and other creatures) have sophisticated cognitive abilities to recognize 
visual patterns. Computers , however, do not. W h a t they do excel at is 
manipulating numbers and equations. Thus, the most promising approach 
to edge detection would seem to be to manipulate equations in some 
systematic way until you find one that approximates the given edge seg
ment—that is, such that the coordinates of the points on the edge seg
ment approximately satisfy the equation. Figure 6 shows the result of the 
Cognitech segmentation algorithm applied to the crucial left-arm port ion 
of the aerial photograph in the Reginald Denny beating case. 

This, in essence, is h o w segmentat ion works, bu t the successful imple
mentat ion requires the use of mathemat ics well beyond the scope of this 
book. For the benefit of readers wi th some familiarity wi th college-level 
mathematics, the following section provides a brief account of the 
method; readers wi thout the requisite background should simply skip 
the section. 

IMAGE ENHANCEMENT: THE INSIDE SCOOP 

Image enhancement is easier wi th black-and-white (more precisely, 
gray-scale) images than full color, so we' l l look just at that special case. 
Given this restriction, a digital image is simply a function F from a given 
rectangular space (say, a grid 1000 x 650) into the real unit interval [0,1] 
(i.e., the real number s be tween 0 and 1 inclusive). If F(x,y) = 0, then 
pixel (x,y) is colored white , if F(x,y) = 1, the pixel is colored black, and 
for all other cases F(x,y) denotes a shade of gray be tween whi te and 
black; the greater the value of F(x,y), the closer the pixel (x,y) is to be ing 
black. In practice, a digital image assigns gray-scale values to only a 
finite n u m b e r of pixels—the image consists of a grid of pixels. To do the 
mathematics , however, w e assume that the function F(x,y) is defined on 
the entire rectangle, that is to say, F(x,y) gives a value for any real 
numbers x, y within the stipulated rectangle. This allows us to use the 
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extensive and powerful machinery of two-dimensional calculus (i.e., 
calculus of real-valued functions of two real variables). 

The me thod used by the Cognitech team was based on an idea Rudin 
had w h e n working as a graduate student intern at Bell Laboratories in the 
early 1980s, and developed further in his doctoral dissertation submitted 
at Caltech in 1987. By asking himself fundamental questions about 
vision—"Why do w e see a single point on a sheet of paper?" or "How do 
w e see edges?" or "Why is a checker board pat tern with lots of squares so 
annoying to the eye?" or "Why do we have difficulty understanding blurry 
images?"—and linking those questions to the corresponding mathemati
cal function F(x,y), he realized the significance of what are called the sin
gularities in the function. These are the places where the derivative (in the 
sense of calculus) becomes infinite. This led h im to focus his attention on 
a particular way to measure h o w close a particular function is to a given 
image—the so-called total variation n o r m . The details are highly techni
cal, bu t not required here. The upshot was that, together with colleagues 
at Cognitech, Rudin developed computat ional techniques to restore 
images using what is n o w called the total variation method.* 

MATH IN COURT 

In addit ion to its obvious uses in military intelligence, the methods Cog
nitech developed found early applications in the enhancement of satel
lite images for nonmil i tary purposes such as oil spill detection, and in 
the processing of images obtained by MRIs to identify tissue abnormal
ities such as t u m o r s or obst ructed arteries. By the t ime of the Damian 
Williams trial, the company was well established and ideally placed to 
make its g roundbreak ing contr ibut ion. 

In addit ion to enhancing the key image that identified Damian 
Williams as the m a n w h o th rew a concrete slab at Denny 's head, Rudin 
and his colleagues also used their mathemat ica l techniques to obtain 
o ther photograph-qual i ty still images from video footage of the events, 

*For those w h o know the l i ngo , t he key idea is t o use Euler-Lagrange PDE 
min im iza t ion , a calculus t echn ique d e v e l o p e d l ong be fo re compu te rs came o n t o 
t he scene, on t he to ta l var ia t ion func t iona l . 
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thereby identifying Williams as the perpe t ra to r of assaults on several 
o ther victims as he moved from place to place that day. 

Anyone w h o has viewed a freeze-frame of a video recording on a VCR 
will have observed that the quality of the image is extremely low. Video 
systems designed for h o m e or even for news report ing take advantage of 
the way the h u m a n visual system works, to reduce the camera 's storage 
requirements. Roughly speaking, each frame records just half the infor
mation captured by the lens, wi th the next frame recording (the updated 
version of) the missing half. O u r visual system automatically merges the 
two successive images to create a realistic-looking image as it perceives 
the entire sequence of still images as depicting cont inuous mot ion. 
Recording only half of each still image works fine w h e n the resulting 
video recording is played back, bu t each individual frame is usually 
extremely blurred. The image could be improved by merging together 
two successive frames, bu t because video records at a m u c h lower resolu
tion (that is, fewer pixels) than a typical still photograph, the result would 
still be of poor quality. To obtain the photograph-quali ty images admissi
ble in court as evidence, Rudin and his Cognitech t eam used mathe
matical techniques to merge not two bu t multiple frames. Mathematical 
techniques were required because the different frames captured the action 
at different times; simply "adding together" all of the frames would 
produce an image even more blurred than any single frame. 

The sequence of merged still images produced from the videotapes 
seemed to show Williams commi t t ing a n u m b e r of violent acts, bu t 
identification was no t always definitive, and as the defense poin ted out , 
the enhanced images seemingly raised some issues. In one case, later 
images showed a handprint on the perpetra tor ' s whi te T-shirt that was 
not visible on earlier images. This was resolved w h e n a close examina
tion of the videotape indicated the exact m o m e n t the handpr in t was 
made . More puzzling, earlier images showed a stain on the attacker's 
T-shirt that could no t be seen on later images. O n that occasion, tar
geted image enlargement and enhancement showed that in the later 
shots, the perpe t ra tor was wear ing two whi te T-shirts, one over the 
other, wi th the outer one hiding the stain on the inner one . (The 
enhanced image revealed the band a round the b o t t o m of the inner 
T-shirt p ro t ruding be low the b o t t o m of the ou te r shirt.) 
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Cognitech's video-processing technology also played a role in some 
of the o ther legal cases resulting from the riots. In one of them, the 
defendant, Gary Williams, pleaded guilty to all charges after the intro
duct ion into cour t of an enhanced ninety-second videotape that showed 
h im rifling Denny 's pockets and performing o ther illegal acts. Although 
Gary Williams had in tended to plead no t guilty and go for a ju ry trial, 
w h e n he and his counsel saw the enhanced video, they acknowledged 
that it was sufficiently clear that a ju ry might well accept it as adequate 
identification, and decided instead to go for a plea bargain, resulting in a 
three-year sentence. 

AND ON INTO THE FUTURE 

With the L.A. riots cases establishing the legal admissibility of enhanced 
images, it was only a few weeks before Cognitech was once again asked 
to provide its services. O n that occasion, they were b rought in by the 
defense in a case involving an a r m e d robbery and shoot ing at a jewelry 
store. T h e robbery had been captured by a surveillance camera. How
ever, no t only was the resolution low (as is often the case), the camera 
recorded at a low rate of one frame per second, well be low the thresh
old to coun t as t rue video (roughly twenty-four frames per second). 
Rudin and his colleagues were able to construct images that contra
dicted certain tes t imony presented at trial. In particular, the images 
obtained showed that one key witness was in a r o o m where she could 
no t possibly have seen wha t she claimed to have seen. 

Since then, Cognitech has continued to develop its systems, and its 
mathematical state-of-the-art Video-Investigator and Video-Active Foren
sic Imaging software suite is in use today by thousands of law enforcement 
and security professionals, and in forensic labs throughout the world, 
including the FBI, the DEA, the U.K. H o m e Office and Scodand Yard, 
Interpol, and many others. 

In one notable case, a young African-American adult in Illinois was 
convicted (in par t based on his o w n words, in part on the basis of video
tape evidence) of the bruta l murde r of a store clerk, and was facing the 
death penalty. T h e accused and his family were too poor to seek costly 
expert services, bu t by good fortune his public defender quest ioned the 
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videotape-based identification made by the state and federal forensic 
experts. The defender contacted Cognitech, which carried ou t a careful 
video restoration followed by a 3-D p h o t o g r a m m e t r y (the science of 
accurate measur ing from photographs , using the mathemat ics of 3-D 
perspective geometry) of the restored image. This revealed an uncon
testable discrepancy wi th the physical measuremen t s of the accused. 
As a result, the case was dismissed and the innocent young m a n was 
freed. Some t ime later, an FBI investigation resulted in the capture and 
conviction of the real murderer . 

Working wi th the Discovery Channel on a special about U F O sight
ings in Arizona (Lights over Phoenix), Cognitech processed and examined 
video footage to show that myster ious "lights" seen in the night sky 
were consistent wi th light flares used by the U.S. Air Force that night. 
Fur thermore , the Cognitech study revealed that the source of the lights 
was actually behind the mounta ins , no t above Phoenix as observers first 
thought . 

Most recently, work ing on another Discovery Channel special (Magic 
Bullet) about the J.F.K. assassination, Rudin and his t eam used their tech
niques to solve the famous grassy knoll "second shooter" mystery. By 
processing the historic Mary M o o r m a n p h o t o wi th the mos t advanced 
image-restoration techniques available today, they were able to show 
that the p h a n t o m "second shooter" was an artifact of the pho tograph , 
not a stable image feature. Using advanced 3-D pho tog rammet r i c esti
mat ion techniques, they measured the p h a n t o m "second shooter" and 
found it to be three feet tall. 

In an era w h e n anyone wi th sufficient skill can "doctor" a photo
graph (a process that also depends on sophisticated mathematics) , the 
old adage "photographs don ' t lie" n o longer holds. But because of the 
development of image-reconstruct ion techniques, a n e w adage applies: 
Photographs (and videos) can generally tell you m u c h m o r e than you 
think. 





CHAPTER 

Predicting the Future 
Bayesian Inference 

MANHUNT 

W h e n a bus t ransport ing prison inmates is involved in a road accident, 
two of the prisoners escape, killing the guard in the process. Charlie 
provides some help in unraveling the case by carrying ou t a detailed 
analysis of the crash scene, which enables h i m to reconstruct wha t mus t 
have happened. His conclusion: T h e crash was no t an accident, it was 
staged. The escape was planned. 

This is the story NUMB3RS viewers wa tched in the first-season 
episode called "Manhunt ," broadcast on May 13, 2005. 

Charlie's fictional mathematical reconstruct ion of the accident is 
based on the way accident investigators w o r k in real life. But figuring ou t 
how the crash occurred is no t the end of Charlie's involvement in this 
particular case. After one of the escapees is captured, at tent ion focuses 
on finding the other, the m a n w h o planned the escape. T h e recaptured 
prisoner, a model prisoner w h o had almost completed his sentence, turns 
out to have had n o prior knowledge of the escape plot. But he is able to 
tell Don about his companion, a convicted killer serving a life sentence 
with n o possibility of parole—and hence a highly dangerous individual 
with little to lose from killing again. The mos t chilling thing the recap
tured prisoner tells D o n is that the killer intends to murde r the key 
witness at his trial, a w o m a n whose test imony had helped convict h im. 

D o n tries to persuade the witness to leave t o w n and go into hiding 
until the killer is caught, bu t she refuses. She is a hospital doctor wi th 
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patients she feels she cannot walk away from. This places D o n in a race 
against the clock to track d o w n the escapee before he can make good his 
deadly intent ion. 

Media coverage of the escape, including police photographs of the 
escaped killer, soon leads to reports of sightings from members of the 
public. Unfortunately, the reports flood in, several hundred in all, and 
they are scattered across Los Angeles, many of t h e m claiming simultane
ous sightings at locations miles apart. While some of the reports may be 
hoaxes, mos t are probably from well-meaning citizens w h o genuinely 
believe they have spotted the m a n whose photograph they had seen in 
the newspaper or on T V But h o w can D o n decide which sightings are 
accurate—or even which ones are mos t likely to be correct? 

This is where Charlie makes his second contribution to the case. He says 
he has carried out a "Bayesian statistical analysis" of the sightings, which 
tells h im which particular sightings are most likely reliable. Using Charlie's 
results, D o n is able to determine where the killer probably is, and manages 
to get to h im just in t ime to prevent h im from killing the witness. 

As is often the case wi th dramatic portrayals of mathematics or science 
at work, the length of t ime available to Charlie to produce his ranking of 
the reported sightings is significantly shortened, but the idea of using the 
mathematically based technique known as Bayesian analysis is sound. At 
the end of this chapter, we'l l explain h o w Charlie most likely performed 
his analysis. (Viewers do not see h im carrying out this step, and the script 
offers n o details.) First, though, we need to describe in more general terms 
the hugely impor tant techniques of Bayesian statistics. 

PREDICTING THE FUTURE 

Law enforcement wou ld be m u c h easier if we could look into the future 
and k n o w about crimes before they actually occur.* Even with the help 
of mathemat ics , however, this is no t possible. Mathematics can predict 
wi th as m u c h accuracy as you wish the position of a spacecraft traveling 
at thousands of miles an h o u r at n o o n Greenwich m e a n t ime six months 

*This was the main p l o t idea b e h i n d the 2002 b lockbus ter mov ie Minority 

Report, s tarr ing Tom Cruise. But tha t , o f course, is f i c t ion . 
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from now, bu t mos t of us find it hard to predict wi th any accuracy where 
we will be at n o o n even a week from now. H u m a n behavior simply is 
not amenable to mathemat ical prediction. At least, no t if you w a n t the 
mathematics to give an exact answer. If, however, you are willing to 
settle for numerical estimates on things likely to happen, then mathe
matics can be of real use. 

For instance, n o one apart from the handful of Al Qaeda operatives 
w h o carried ou t the September 11, 2001, attacks k n e w in advance wha t 
was going to take place. But things might have t u rned ou t very differ
ently if the U.S. authorit ies had k n o w n that such an attack was likely, 
what the mos t probable targets were , and which actions to take to pre
vent the terrorists from carrying ou t their plan. Could mathemat ics help 
provide such advance warn ing of things that might occur, perhaps wi th 
some kind of numerical measure of their likelihood? 

The answer is, no t only is this possible, it actually happened. A 
year before the attack took place, mathemat ics had predicted that the 
Pentagon was a likely terrorist target. O n that occasion, n o one t ook the 
mathematical prediction sufficiently seriously to do someth ing about it. 
Of course, it's always easier to be smar t after the event. W h a t ma the 
matics can do—and did—is (as w e explain below) furnish a list of likely 
targets, together wi th estimates of the probabilities that an attack will 
take place. Policymakers still have to decide which of the m a n y threats 
identified should be singled ou t for expenditure of the limited resources 
available. Still, given h o w events unfolded on that fateful day in 2001, 
perhaps next t ime things will t u r n ou t differently. 

HOW MATHEMATICS PREDICTED THE 9/11 
ATTACK ON THE PENTAGON 

In May 2001, a software system called Site Profiler was fielded to all U.S. 
military installations a round the world. T h e software provided site 
commanders wi th tools to help to assess terrorist risks, to manage those 
risks, and to develop standardized ant i terrorism plans. T h e system 
worked by combining different data sources to draw inferences about 
the risk of terrorism, using a mathemat ica l technique called Bayesian 
inference. 
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Prior to the system's deployment , its developers carried out a num
ber of simulation tests, which they referred to in a paper they wrote the 
year before.* Summariz ing the results of the tests, they noted: "While 
these scenarios showed that the RIN [Risk Influence Network] worked, ' 
they tended to be exceptional (e.g., attacks against the Pentagon)." 

As the wor ld n o w knows, the Pentagon was the site of an attack. 
Unfortunately, nei ther the military c o m m a n d nor the U.S. government 
had taken seriously Site Profiler's prediction that the Pentagon was in 
danger—nor, for that matter , had the system developers themselves, 
w h o viewed the predict ion as "exceptional." 

As experience has taught us t ime and t ime again, h u m a n beings are 
good at assessing certain kinds of risks—broadly speaking, personal risks 
associated wi th familiar situations—but notoriously bad at assessing oth
ers, particularly risks of novel kinds of events. Mathematics does not 
have such a weak spot. The mathematical rules the developers built into 
Site Profiler did no t have an innate "incredulity factor." Site Profiler sim
ply g round th rough the numbers , assigning numerical risks to various 
events, and repor ted the ones that the m a t h said were most probable. 
W h e n the number s said the Pentagon was at risk, that 's what the pro
g r a m reported. H u m a n s were the ones w h o discounted the prediction as 
too far-fetched. 

This story tells us t w o things. First, that mathemat ics provides a 
powerful tool for assessing terrorist risks. Second, that h u m a n s need to 
th ink very carefully before discounting the results that the ma th 
produces, n o ma t t e r h o w wild they might seem. 

This is the story behind that math . 

SITE PROFILER 

Site Profiler was licensed by the U.S. Depa r tmen t of Defense in 1999 to 
develop an enterprise-wide ant i terrorism risk managemen t system 
called the Joint Vulnerability Assessment Tool (JVAT). 

*An Application of Bayesian Networks to Antiterrorism Risk Management for 

Military Planners, by L i n w o o d D. H u d s o n , Bryan S. Ware , Suzanne M. Mahoney, and 

Kathryn B lackmond Laskey. 
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The JVAT p r o g r a m was started in response to the b o m b i n g of U.S. 
Air Force servicemen in Khobar Towers, Saudi Arabia, in June 1996, in 
which nineteen American servicemen and one Saudi were killed and 
372 of many nationalities wounded , and the August 1998 bombings of 
United States embassies in the East African capital cities of Dar es 
Salaam, Tanzania, and Nairobi, Kenya, where a total of 257 people were 
killed and m o r e than 4,000 wounded . 

The investigations into those events revealed that the Uni ted States 
had inadequate me thods for assessing terrorist risks and anticipating 
future terrorist events. Addressing that need was a major challenge. 
Since the intentions, methods , and capabilities of potential terrorists, 
and often even their identities, can almost never be forecast wi th cer
tainty from the intelligence information available, m u c h of the effort in 
counter ing the threat has to focus on identifying likely targets. Under
standing the vulnerabilities of a potential target and knowing h o w to 
guard against attacks typically requires input from a variety of experts: 
physical security experts, engineers , scientists, and military planners. 
Although a limited n u m b e r of experts may be able to unders tand and 
manage one or two given risks, n o h u m a n can manage all of the 
components of hundreds of risks simultaneously. T h e solution is to use 
mathematical me thods implemented on computers . 

Site Profiler is jus t one of many systems that allow users to es t imate— 
with some degree of precision—and manage a large risk portfolio by 
using Bayesian inference ( implemented in the form of a Bayesian net
work, which we describe below) to combine evidence from different 
data sources: analytic models , simulations, historical data, and user 
judgments . 

Typically, the user of such a system (often an expert assessment 
team) enters information about , say, a military installation's assets 
th rough a question-and-answer interface reminiscent of a tax prepara
tion package. (Site Profiler actually mode led its interface on Turbo Tax.) 
The software uses the information it has gathered to construct ma the 
matical objects to represent the installation s various assets and threats, 
to express the entire situation as a Bayesian network, to use the n e t w o r k 
to evaluate the various risks, and finally to ou tpu t a list of threats, each 
one given a numerical r ank based on its likelihood, the severity of its 



82 THE NUMBERS BEHIND NUMB3RS 

consequences, and so forth. O u r interest here is in the mathematics that 
sits "under the hood" of such a system. 

T h e key idea beh ind all this goes back to an eighteenth-century 
English clergyman, T h o m a s Bayes. 

THOMAS BAYES AND THE PROBABILITIES OF 
WHAT WE KNOW 

In addition to be ing a Presbyterian minister, T h o m a s Bayes (1702-1761) 
was a keen amateur mathemat ic ian . H e was fascinated by h o w we come 
to k n o w the things w e know, specifically h o w w e judge the reliability of 
information w e acquire, and he wondered whe the r mathemat ics could 
be used to m a k e such j u d g m e n t s m o r e precise and accurate. His me thod 
of calculating h o w our beliefs about probabilities should be modified 
whenever w e get n e w informat ion—new data—led to the development 
of Bayesian statistics, an approach to the theory and practice of statisti
cal analysis that has long at tracted passionate adherents, as well as 
s taunch critics. W i t h the advent in the late twent ie th century of 
immense ly powerful compute rs that can crunch millions of pieces of 
data per second, b o t h Bayesian statisticians (who always use his funda
menta l idea) and non-Bayesian statisticians (who sometimes use it) owe 
h im a great debt. 

BAYES' METHOD 

Bayes' idea concerns probabilities about things that may or may not be 
t rue—tha t the probability of heads in a coin flip is be tween .49 and .51; 
that Brand Y cures headaches m o r e frequently than Brand X; that a 
terrorist or criminal will at tack target J or K or L. If we wan t to compare 
t w o possibilities, say, A and B, Bayes gives the following recipe: 

1. Est imate their relative probabilities P(A)/P(B)—the odds of A 
versus B. 

2. For each observat ion of n e w information, X, calculate the 
likelihood of that observat ion if A is t rue and if B is t rue. 
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3. Re-estimate the relative probabilities of A and B as follows: 
P(A given X) / P(B given X) = P(A)/P(B) X Likelihood Ratio, 
where the Likelihood Ratio is the likelihood of observing X if A 
is t rue divided by the likelihood of observing X if B is t rue . 

4. Repeat the process whenever n e w information is observed. 

The odds of A versus B in step one are called "prior odds," mean ing that 
they represent our state of knowledge prior to observing the data X. 
Often this knowledge is based on subjective judgments—say, wha t are 
the odds that a new drug is bet ter than the standard d rug for some illness, 
or what are the odds that terrorists will attack one target versus another, 
or perhaps even what are the odds that a criminal defendant is guilty 
before any evidence is presented? (The arbitrariness of put t ing a n u m b e r 
on the last example is one reason that the use of Bayesian statistics in 
criminal trials is essentially zero!) 

To unders tand Bayes' recipe, it is helpful to consider an example 
where these "prior odds" are actually known. W h e n that situation 
occurs, the use of Bayesian me thods is noncontroversial . 

THE (FICTITIOUS) CASE OF THE 
HIT-AND-RUN ACCIDENT 

A certain town has two taxi companies, Blue Cabs and Black Cabs. Blue 
Cabs has 15 taxis, Black Cabs has 75. Late one night, there is a hit-and-run 
accident involving a taxi. The town's 90 taxis were all on the streets at the 
time of the accident. A witness sees the accident and claims that a 
blue taxi was involved. At the request of the police, the witness undergoes a 
vision test under conditions similar to the those on the night in question. 
Presented repeatedly with a blue taxi and a black taxi, in random 
order, he shows he can successfully identify the color of the taxi 4 times out 
of 5. (The remaining one fifth of the time, he misidentifies a blue taxi as 
black or a black taxi as blue.) If you were investigating the case, which com
pany would you think is most likely to have been involved in the accident? 

Faced with eyewitness evidence from a witness w h o has demon
strated that he is right 4 t imes ou t of 5, you might be inclined to th ink it 
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was a blue taxi that the witness saw. You might even think that the odds 
in favor of it be ing a blue taxi were exactly 4 ou t of 5 (that is, a probabil
ity of 0.8), those be ing the odds in favor of the witness being correct on 
any one occasion. 

Bayes' m e t h o d shows that the facts are quite different. Based on 
the data supplied, the probability that the accident was caused by a blue 
taxi is only 4 ou t of 9, o r 44 percent . That ' s right, the probability is less 
than half. It was m o r e likely to have been a black taxi. Heaven help the 
owner of the blue taxi company if the ju rors can't follow Bayesian 
reasoning! 

W h a t h u m a n intui t ion often ignores, bu t wha t Bayes' rule takes 
p roper account of, is the 5 to 1 odds that any particular taxi in this town 
is black. Bayes' calculation proceeds as follows: 

1. T h e "prior odds" of a taxi being black are 5 to 1 (75 black taxis 
versus 15 blue). 
The likelihood of X=" the witness identifies the taxi as blue" is: 

1 ou t of 5 (20%) if it is black 
4 ou t of 5 (80%) if it is blue. 

2. T h e recalculation of the odds of black versus blue goes like this: 
P(taxi was black given witness ID) / P(taxi was blue given 
witness ID) — 
(5 / 1) X (20% / 80%) = (5 X 20%) / (1 X 80%) - 1 / .8 = 5/4. 

T h u s Bayes' calculation indicates that the odds are 5 to 4 after the wit
ness ' tes t imony that the taxi was black. 

If this seems counterintuit ive (as it does initially to some people) 
consider the following " thought experiment." Send ou t each of the 
90 taxis on successive nights and ask the witness to identify the color 
of each unde r the same conditions as before. W h e n the 15 blue taxis 
are seen, 80% of the t ime they are described as blue, so w e can expect 
12 "blue sightings" and 3 "black sightings." W h e n the 75 black taxis 
go out , 20% of the t ime they are described as blue, so w e can expect 
15 "blue sightings" and 60 "black sightings." Overall, we can expect 
27 taxis will be described by the witness as "blue", whereas only 12 of 
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t h e m actually were blue and 15 were black. T h e rat io of 12 t o 15 is the 

same as 4 to 5—in o ther words, only 4 t imes ou t of every 9 (44 percent 

of the t ime) w h e n the witness says he saw a blue taxi was the taxi really 

blue. 

In an artificial scenario where the initial est imates are entirely accu

rate, a Bayesian ne twork will give you an accurate answer. In a m o r e 

typical real-life situation, you don ' t have exact figures for the prior prob

abilities, bu t as long as your initial estimates are reasonably good, t hen 

the m e t h o d will take account of the available evidence to give you a 

better estimate of the probability that the event of interest will occur. 

Thus, in the hands of an expert, someone w h o is able to assess all the 

available evidence reliably, Bayesian ne tworks can be a powerful tool. 

HOW CHARLIE HELPED TRACK DOWN THE 
ESCAPED KILLER 

As we ment ioned at the start of the chapter, no th ing in the "Manhun t" 

episode of NUMB3RS explained h o w Charlie analyzed the m a n y repor ted 

sightings of the escaped convict. Apart from saying that he used "Bayes

ian statistical analysis," Charlie was silent about his m e t h o d . But, a lmost 

certainly, this is wha t he mus t have done . 

The problem, remember , is that there is a large n u m b e r of reports of 

sightings, many of t h e m contradictory. Most will be a result of people 

seeing someone they think looks like the person they saw in the news

paper or on TV It is no t that the informants lack credibility; they are 

simply mistaken. Therefore the challenge is h o w to distinguish the 

correct sightings from the false alarms, especially w h e n you consider 

that the false alarms almost certainly heavily o u t n u m b e r the accurate 

sightings. 

The key factor that Charlie can make use of depends on the fact that 

each report has a t ime associated wi th it, the t ime of the supposed sight

ing. The accurate reports, all be ing reports of sightings of the real killer, 

will refer to locations in the city that follow a geometr ic pat tern , reflect

ing the movements of one individual. O n the o ther hand, the false 

reports are likely to refer to locations that are spread a round in a fairly 

r andom fashion, and are inconsistent wi th being p roduced by a single 
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person traveling around. But h o w can you pick out the sightings that 
correspond to that h idden pattern? 

In a precise way, you cannot . But Bayes' t heorem provides a way to 
assign probabilities to the various sightings so that the higher the prob
ability, the m o r e likely that particular sighting is to be correct. Here is 
h o w Charlie will have done it. 

Picture a m a p of Los Angeles. The goal is to assign to each grid 
square on the m a p whose coordinates are i, j , a probability figure p(i,j,n) 
that assesses the probability that the killer is in grid square (i,j) at t ime n. 
The idea is to use Bayes' t h e o r e m to repeatedly update the probabilities 
p(i,j,n) over t ime (that is, as n increases), say in five-minute increments. 

To start the process off, Charlie needs to assign initial prior probabil
ities to each of the grid squares. Most likely he determines these prob
abilities based on the evidence from the recaptured prisoner as to where 
and w h e n the two separated. W i t h o u t such information, he could 
simply assume that the probabilities of the grid squares are all the 
same. 

At each subsequent t ime point, Charlie calculates the new posterior 
probability distribution as follows. H e takes each n e w report—a sighting 
in grid square (i,j) at t ime n + 1 — a n d on the basis of that sighting updates 
the probability of every grid square (x,y), using the likelihood of that 
sighting if the killer was in grid square (x,y) at t ime n. Clearly, for (x,y) = 
(i,j), Charlie calculates a high likelihood for the sighting at t ime n + 1 , 
particularly if the sighting report says that the killer was doing something 
that would take t ime, such as eating a meal or having a haircut. 

If (x,y) is near to (i,j), the likelihood Charlie calculates for the killer 
be ing in square (i,j) at t ime n + 1 is also high, particularly if the sighting 
repor ted that the killer was on foot, and hence unlikely to move far 
wi thin a five-minute t ime interval. The exact probability Charlie assigns 
may vary depending on wha t the sighting repor t says the individual was 
doing. For example, if the individual was repor ted as "driving nor th on 
Third Street" at t ime n, then Charlie gives the grid squares farther nor th 
on Third a higher likelihood of sightings at t ime n + 1 than squares 
elsewhere. 

The probabilities Charlie assigns are also likely to take account of 
veracity estimations. For example, a repor t from a bank guard, w h o 
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gives a fairly detailed description, is m o r e likely to be correct than one 
from a d runk in a bar, and hence Charlie will assign higher probabilities 
based on the former than on the latter. Thus , the likelihood for the killer 
being at square (x,y) at t ime n + 1 based on a high-quality repor t of h im 
being at square (i,j) at t ime n is m u c h higher if (x,y) is close to (i,j) than 
if the two were farther apart, whereas for a low-quality repor t the likeli
hood of getting a repor t of a sighting at square (i,j) is m o r e "generic" 
and less dependent on (x,y). 

Most likely Charlie also takes some other factors into account . For 
example, a large shopping mall on a Sunday afternoon will likely gener
ate more false reports than an industrial area on a Tuesday night. 

This process is, of course, heavily based on h u m a n j u d g m e n t s and 
estimates. O n its own, it wou ld be unlikely to lead to any useful conclu
sion. But this is where the power of Bayes' m e t h o d comes into play. T h e 
large n u m b e r of sightings, which at first seemed like a problem, n o w 
becomes a significant asset. Al though the probability distribution 
Charlie assigns to the m a p at each t ime point is highly subjective, it is 
based on a reasonable rationale, and the mathemat ica l precision of 
Bayes' theorem, w h e n applied m a n y t imes over, eventually overcomes 
the vagueness inherent in any h u m a n est imation. In effect, wha t the 
repeated application of Bayes' t h e o r e m does is tease ou t the underlying 
pat tern in the sightings data that comes from the fact that sightings of 
the killer were all of the same individual as he moved th rough the city. 

In other words, Bayes' paradigm provides Charlie wi th a sound quan
titative way of simultaneously considering all possible locations at every 
point in t ime. Of course, wha t he gets is no t a single "X marks the spot" 
on the map, but a probability distribution. But as he works th rough the 
process, he may reach some stage where high probabilities are assigned 
to two or three reasonably plausible locations based on recent repor ts of 
sightings. If he then gets one or two high-quality repor ts that dovetail 
well, Bayes' formula could yield a high probability to one of those 
locations. And at that point he would contact his b ro ther D o n and say, 
"Get an agent over there now!" 





CHAPTER 

7 DNA Profiling 

We read a lot about DNA profiling these days, as a method used to identify 
people. Although the technique is often described as "DNA fingerprinting," 
it has nothing to do with fingerprints. Rather, the popular t e rm is analogous 
to an older, more established means of identifying people. Although both 
methods are highly accurate, in either case care has to be taken in calculating 
the likelihood of a false identification resulting from two different individu
als having fingerprints (of either variety) that the test cannot distinguish. 
And that is where mathematics comes into the picture. 

UNITED STATES OF AMERICA V. RAYMOND JENKINS 

O n June 4, 1999, police officers in Washington, D.C., found the body of 
Dennis Dolinger, age 51, at his h o m e in Capitol Hill. H e had been 
stabbed multiple t imes—at least twenty-five according to repor ts—with 
a screwdriver that pene t ra ted his brain. 

Dolinger had been a managemen t analyst at the Washington Metro
politan Area Transit Authority. H e had lived in Capitol Hill for twenty 
years and was active in the community. H e had a wide ne twork of friends 
and colleagues across the city. In particular, he was a ne ighborhood 
politician and had taken a s t rong stand against d rug dealing in the area. 

Police found a blood trail leading from the basement where Dolinger 
was discovered to the first and second floors of his house and to the 
front walkway and sidewalk. Bloody clothing was found in the base
m e n t and in a r o o m on the second floor. Police believed that some of 
the bloodstains were those of the murderer , w h o was cut dur ing the 
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assault. Dolinger 's wallet, containing cash and credit cards, had been 
taken, and his d iamond ring and gold chain were missing. 

T h e police quickly identified several suspects: Dolinger's former 
boyfriend (Dolinger was openly gay), w h o had assaulted h im in the past 
and had left the D.C. area a round the t ime police discovered the body; a 
m a n w h o was observed fleeing from Dolinger 's house bu t did not call 
the police; ne ighborhood d rug dealers, including one in whose murder 
trial Dolinger was a government witness; neighbors w h o had commit
ted acts of violence against Dolinger 's pets; various homeless individu
als w h o frequently visited Dolinger; and gay m e n w h o m Dolinger had 
m e t at bars t h rough Internet dat ing services. 

By far the strongest lead was w h e n a m a n n a m e d Stephen Watson 
used one of Dolinger 's credit cards at a hair salon and depar tment store 
in Alexandria wi th in fifteen hours of Dolinger 's death. Watson was a 
d rug addict and had a long criminal record that included d rug offenses, 
p roper ty offenses, and assaults. Police spoke wi th a witness w h o knew 
Watson personally and saw h im on the day of the murde r in the general 
vicinity of Dolinger 's h o m e , "appearing nervous and agitated," wi th "a 
cloth wrapped a round his hand," and wear ing a "T-shirt wi th blood on 
it." Another witness also saw Watson in the general vicinity of Dolinger's 
h o m e on the day of the murder , and noted that Watson had several 
credit cards wi th h im. 

O n June 9, police executed a search war ran t at Watson's house in 
Alexandria, Virginia, whe re they found some personal papers belonging 
to Dolinger. They also noticed that Watson, w h o was present dur ing the 
search, had a cut on his finger "that appeared to be several days old and 
was beginning to heal ." At this point, the police arrested him. W h e n 
quest ioned at the police station, Watson "initially denied knowing the 
decedent and using the credit card" bu t later claimed that "he found a 
wallet in a backpack by a bank alongside a beige-colored tarp and buck
ets on King Street" in Alexandria. Based on those facts, the police 
charged Watson wi th felony murder . 

Tha t might seem to be the end of the mat te r—a clear-cut case, you 
might think. But things were about to become considerably more com
plicated. The FBI had extracted and analyzed DNA from various blood 
samples collected from the cr ime scene and none of it matched that of 
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Watson. As a result, the U.S. Attorney's Office dropped the case against 
Watson, w h o was released from custody. 

At this point, we need to take a look at the m e t h o d of identification 
using DNA, a process known as DNA profiling. 

DNA PROFILING 

The DNA molecule comprises two long strands, twisted a round each 
other in the n o w familiar double-helix structure, jo ined together in a 
rope-ladder-fashion by chemical building blocks called bases. (The t w o 
strands constitute the "ropes" of the "ladder," the bonds be tween the 
bases its "rungs.") There are four different bases, adenine (A), thymine 
(T), guanine (G), and cytosine (C). The h u m a n g e n o m e is m a d e of a 
sequence of roughly three billion of these base-pairs. Proceeding along 
the DNA molecule, the sequence of letters denot ing the order of the 
bases (a por t ion might be . . . AATGGGCATTTTGAC . . .) provides a 
"readout" of the genetic code of the person (or o ther living entity). It is 
this "readout" that provides the basis for D N A profiling. 

Every person's DNA is unique; if you know the exact, three-billion-long 
letter sequence of someone's DNA, you know w h o that person is, with no 
possibility of error. However, using today's techniques, and most likely 
tomorrow's as well, it would be totally impractical to do a DNA identifica
tion by determining all three billion letters. W h a t is done instead is an 
examination of a very small handful of sites of variation, and the use of 
mathematics to determine the accuracy of the resulting identification. 

DNA is arranged into large structural bodies called chromosomes . 
Humans have twenty-three pairs of chromosomes which together make 
up the h u m a n genome. In each pair, one chromosome is inherited from 
the mother and one from the father. This means that an individual will 
have two complete sets of genetic material. A "gene" is really a location 
(locus) on a chromosome. Some genes may have different versions, which 
are referred to as "alleles." A pair of chromosomes have the same loci 
along their entire length, but may have different alleles at some of the loci. 
Alleles are characterized by their slightly different base sequences and are 
distinguished by their different phenotypic effects. Some of the genes 
studied in forensic DNA tests have as many as thirty-five different alleles. 
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Most people share very similar loci, bu t some loci vary from person 
to person wi th high frequency. Compar ing variations in these loci allows 
scientists to answer the quest ion of whe the r two different DNA samples 
c o m e from the same person. If the two profiles match at each of the loci 
examined, the profiles are said to match . If the profiles fail to match at 
one or m o r e loci, then the profiles do no t match, and it is virtually cer
tain that the samples do no t come from the same person.* 

A match does not mean that the two samples must absolutely have 
come from the same source; all that can be said is that, so far as the test 
was able to determine, the two profiles were identical, but it is possible for 
more than one person to have the same profile across several loci. At any 
given locus, the percentage of people having matching DNA fragments is 
small bu t not zero. DNA tests gain their power from the conjunction of 
matches at each of several loci; it is extremely rare for two samples taken 
from unrelated individuals to show such congruence over many loci. This 
is where mathematics gets into the picture. 

THE FBI'S CODIS SYSTEM 

In 1994, recognizing the growing impor tance of forensic DNA analysis, 
Congress enacted the D N A Identification Act, which authorized the 
creation of a nat ional convicted offender DNA database and established 
the D N A Advisory Board (DAB) to advise the FBI on the issue. 

CODIS, the FBI's D N A profiling system (the n a m e stands for 
C O m b i n e d D N A Index System) had been started as a pilot p rog ram in 
1990. T h e system weds compute r and DNA technologies to provide a 
powerful tool for fighting crime. The CODIS DNA database comprises 
four categories of D N A records: 

• Convicted Offenders: DNA identification records of persons 
convicted of crimes 

• Forensic: analyses of D N A samples recovered from crime scenes 

*The compar i son is no t m a d e d i rect ly b e t w e e n the sequences of the four base 
let ters, b u t o n numer ica l counts o f t h e m . The " D N A p ro f i l e " is actual ly a sequence 
o f those counts . The d is t inc t ion is no t impo r tan t for our account . 
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• Unidentified H u m a n Remains: analyses of D N A samples 
recovered from unidentified h u m a n remains 

• Relatives of Missing Persons: analyses of DNA samples voluntarily 
contributed by relatives of missing persons 

The CODIS database of convicted offenders currently contains in 
excess of 3 million records. 

The DNA profiles s tored in CODIS are based on th i r teen specific 
loci, selected because they exhibit considerable variation a m o n g the 
population. 

CODIS utilizes compute r software to automatically search these 
databases for matching DNA profiles. The system also maintains a popu
lation file, a database of anonymous DNA profiles used to de te rmine the 
statistical significance of a match. 

CODIS is no t a comprehensive criminal database, bu t ra ther a sys
t em of pointers; the database contains only information necessary for 
making matches. Profiles stored in CODIS contain a specimen identi
fier, the sponsoring laboratory 's identifier, the initials (or name) of D N A 
personnel associated wi th the analysis, and the actual DNA characteris
tics. CODIS does no t store criminal-history information, case-related 
information, social security numbers , or dates of bir th. 

W h e n two randomly chosen DNA samples match completely in a 
large number of regions, such as the thir teen used in the CODIS system, 
the probability that they could have come from two unrelated people is 
virtually zero. This fact makes DNA identification extremely reliable 
(when performed correctly). The degree of reliability is generally mea
sured by using probability theory to de termine the likelihood of finding 
a particular profile a m o n g a r a n d o m selection of the populat ion. 

BACK TO THE JENKINS CASE 

With their pr ime suspect cleared because his DNA profile did no t ma tch 
any found at the crime scene, the FBI ran the crime scene DNA profile 
through the CODIS database to see if a ma tch could be found, bu t the 
search came out negative. 



94 THE NUMBERS BEHIND NUMB3R5 

Six m o n t h s later, in November 1999, the DNA profile of the unknown 
contr ibutor of the b lood evidence was sent to the Virginia Division of 
Forensic Science, where a compu te r search was carried out to compare 
the profile against the 101,905 offender profiles in its databank. This 
t ime a match was found—albeit at only eight of the thirteen CODIS 
loci, since the Virginia database, being older, listed profiles based on 
those eight loci only. 

The eight-loci ma tch was wi th a m a n listed as Robert P. Garrett . A 
search of law enforcement records revealed that Robert P. Garret t was 
an alias used by Raymond Anthony Jenkins, an African-American w h o 
was serving t ime in prison for second-degree burglary—a sentence 
imposed following his arrest in July 1999, a few weeks after Dolinger 
was murdered . F rom that point on, the police investigation focused only 
on Jenkins. 

O n November 18, 1999, police interviewed a witness—a m a n w h o 
was in police custody at the t ime wi th several cases pending against 
h i m — w h o claimed to k n o w Jenkins. This witness reported that on the 
day after Dolinger 's death he had seen Jenkins with several i tems of 
jewelry, including a ring wi th d iamonds and some gold chains, and 
m o r e than $1,000 in cash. Jenkins also appeared to have numerous 
scratches or cuts to his face, according to government documents . 

Seven days later the police executed a search war ran t on Jenkins and 
obtained blood samples. The samples were sent to the FBI's forensic 
science lab for comparison. In late December 1999, Jenkins ' samples 
were analyzed and profiled on the FBI's thir teen CODIS loci, the eight 
used by the Virginia authorit ies plus five others. According to a police 
affidavit, the resulting profile was "positively identified as being the 
same DNA profile as that of the DNA profile of the u n k n o w n blood 
evidence that was recovered from the scene of the homicide." The FBI 
analysis identified Jenkins ' b lood on a pair of jeans found in the base
m e n t near Dolinger, a shirt found in the upstairs exercise room, a towel 
on the basement b a t h r o o m rack, the sink stopper in the sink of the same 
ba th room, and a railing be tween the first and second floors of the resi
dence. T h e FBI est imated that the probability that a r a n d o m person 
selected from the African-American populat ion would share Jenkins ' 
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profile is 1 in 26 quintillion. Based on that information, an arrest wa r r an t 
was issued, and Jenkins was arrested on January 13, 2000. 

In April 2000, Raymond Jenkins was formally charged wi th second-
degree murder while a rmed and in possession of a prohibi ted weapon , 
a charge that was superseded in October of the same year by one of two 
counts of felony murde r and one count each of first-degree premedi
tated murder, first-degree burglary while a rmed, a t t empted robbery 
while armed, and the possession of a prohibi ted weapon . 

Such is the power of DNA profiling, one of the mos t powerful weap
ons in the law enforcement agent 's arsenal. Yet, as we shall see, that 
power rests on mathemat ics as m u c h as on biochemistry, and that power 
is not obtained wi thou t some cost. 

THE MATH OF DNA PROFILING 

By way of an int roductory example, consider a profile based on jus t 
three sites. The probability that someone wou ld ma tch a r a n d o m D N A 
sample at any one site is roughly one in ten (1/10).* So the probability 
that someone would match a r a n d o m sample at three sites wou ld be 
about one in a thousand: 

1/10 x 1/10 x 1/10 = 1/1,000 

Applying the same probability calculation to all th i r teen sites used in the 
FBI's CODIS system wou ld m e a n that the chances of match ing a given 
DNA sample at r a n d o m in the populat ion are about one in 10 trillion: 

(1 /10) 1 3 = 1/10,000,000,000,000 

This figure is known as the r a n d o m match probability (RMP). It is com
puted using the product rule for multiplying probabilities, which is valid 

*Prof i le match probab i l i t ies are based on empi r ica l s tud ies o f al lele f requenc ies 

o f large numbers o f samples. The f igure 1 / 1 0 used here is w ide ly rega rded as be ing 

a g o o d representat ive f igure . 
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only if the pat terns found in t w o distinct sites are independent . Dur ing 
the early days of DNA profiling, this was a mat te r of some considerable 
debate, b u t for the mos t par t that issue seems to have largely, though not 
completely, died away. 

In practice, the actual probabilities vary, depending on several fac
tors, bu t the figures calculated above generally are taken to be a fairly 
reliable indicator of the likelihood of a r a n d o m match. Tha t is, the RMP 
is accepted as a good indicator of the rarity of a particular DNA profile 
in the popula t ion at large, a l though this interpretat ion needs to be 
viewed wi th care. (For example, identical twins share almost identical 
DNA profiles.) 

The denomina to r in the FBI's claimed figure of 1 in 26 quintillion in 
the Jenkins case seems absurdly high, and really of little more than theo
retical value, w h e n you consider the likelihood of o ther errors, such as 
data entry mistakes, contaminat ion errors dur ing sample collection, or 
laboratory errors dur ing the analysis process. 

Nevertheless, whatever actual number s you compute , it is surely the 
case that a D N A profile ma tch on all th i r teen of the sites used by the FBI 
is a virtual certain identification—provided that the match was arrived at by 
a process consistent with the randomness that underpins the RMP. As we 
shall see, however, the mathemat ics is very sensitive to h o w well that 
assumption is satisfied. 

USING DNA PROFILING 

Suppose that, as often occurs, the authorities investigating a crime 
obtain evidence that points to a particular individual as the criminal, bu t 
fails to identify the suspect wi th sufficient certainty to obtain a convic
tion. If the suspect 's D N A profile is in the CODIS database, or if a sam
ple is taken and a profile prepared, it may be compared wi th a profile 
taken from a sample collected at the crime scene. If the two profiles 
agree on all thir teen loci, then for all practical—and all legal—purposes, 
the suspect can be assumed to have been identified wi th certainty. The 
r a n d o m match probability (1 in 10 trillion) provides a reliable estimate 
of the likelihood that the two profiles came from different individuals. 
(The one caveat is that relatives should be eliminated. This is not always 
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easy, even for close relatives such as siblings; b ro thers and sisters are 
somet imes separated at b i r th and may no t be aware that they have a 
sibling, and official records do no t always correspond to reality.) 

Of course, all that a DNA match does is identify—within a certain 
degree of confidence—an individual whose D N A profile was the same 
as that of a sample (or samples) found at the cr ime scene. It does no t 
imply that the individual commi t ted the crime. O the r evidence is 
required to do that. For example, if semen taken from the vagina of a 
w o m a n w h o was raped and murdered provides a DNA profile ma tch 
wi th a particular individual, then, within the calculated accuracy of the 
DNA matching procedure , it may be assumed that the individual had 
sex with the w o m a n no t long before her death. O the r evidence wou ld 
be required to conclude that the m a n raped the w o m a n , and possibly 
further evidence still that he subsequently murdered her. A D N A match 
is only that: a ma tch of two profiles. 

As to the degree of confidence that can be vested in the identification 
of an individual by means of a D N A profile ma tch obtained in the above 
manner, the issues to be considered are: 

• The likelihood of errors in collecting or labeling the t w o samples 
and de termining the associated DNA profiles 

• The likelihood that the profile ma tch is purely coincidental* 

A likelihood of 1 in 10 trillion at tached to the second of these t w o pos
sibilities (such as is given by the RMP for a thirteen-loci match) wou ld 
clearly imply that the former possibility is far m o r e likely, since hardly 
any h u m a n procedure can claim a one-in-ten-trillion fallibility rate . Pu t 
differently, if there is n o reason to doubt the accuracy of the sample col
lection procedures and the laboratory analyses, the DNA profile identi
fication could surely be viewed wi th considerable confidence. Provided, 
that is, the match is arrived at by compar ing a profile from a sample 
from the crime scene wi th a profile taken from a sample from a suspect 

*As wil l be exp la ined later, care is requ i red in in te rp re t ing th is requ i remen t in 

te rms of exact ly wha t numer ica l p robab i l i t y is t o b e c o m p u t e d . 
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who has already been identified by means other than his or her DNA profile. 
But this is no t wha t happened in the Jenkins case. There , Jenkins became 
a suspect solely as a result of investigators trawling th rough a DNA data
base ( two databases, in fact) until a ma tch was found—the so-called 
"cold hit" process. 

And that brings in a whole different mathemat ical calculation. 

COLD HIT SEARCHES 

In general , a search th rough a DNA database, carried ou t to see if a 
profile can be found that matches the profile of a given sample—say, 
one obtained from a cr ime scene—is called a cold hit search. A match 
that results from such a search would be considered "cold" because 
prior to the ma tch the individual concerned was no t a suspect. 

For example, CODIS enables government crime laboratories at a 
state and local level to conduct national searches that might reveal that 
semen deposited dur ing an unsolved rape in Florida could have come 
from a k n o w n offender from Virginia. 

As in the case where DNA profiling is used to provide identification 
of an individual w h o was already a suspect, the principal question that 
should be asked after a cold hit search has led to a ma tch is: Does the 
ma tch indicate that the profile in the database belongs to the same per
son whose sample formed the basis of the search, or is the match purely 
coincidental? At this point , the mathemat ica l waters rapidly become 
unexpectedly murky. 

To illustrate the problems inherent in the cold hit procedure, con
sider the following analogy. In a typical state lottery, the probability of 
winn ing a major jackpot is a round 1 in 35,000,000. To any single indi
vidual, buying a ticket is clearly a waste of t ime. Those odds are effec
tively nil. But suppose that each week, at least 35,000,000 people actually 
do buy a ticket. (This is a realistic example.) Then , every one to three 
weeks, on average, someone will win. T h e news reporters will go out 
and interview that lucky person. W h a t is special about that person? 
Absolutely nothing. T h e only th ing you can say about that individual is 
that he or she is the one w h o had the winning numbers . You can make 
absolutely n o o ther conclusion. The 1 in 35,000,000 odds tell you 
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nothing about any other feature of that person. The fact that there is a 
winner reflects the fact that 35,000,000 people bough t a t icket—and 
nothing else. 

Compare this to a reporter w h o hears about a person wi th a reputa
tion of being unusually lucky, accompanies t h e m as they buy their ticket, 
and sits alongside t h e m as they watch the lottery result announced on 
TV Lo and behold, that person wins. W h a t would you conclude? Most 
likely, that there has been a swindle. Wi th odds of 1 in 35,000,000, it's 
impossible to conclude anything else in this situation. 

In the first case, the long odds tell you no th ing about the winn ing 
person, other than that they won . In the second case, the long odds tell 
you a lot. 

A cold hit measured by RMP is like the first case. All it tells you is 
that there is a DNA profile match. It does not , in and of itself, tell you any
thing else, and certainly no t that that person is guilty of the crime. 

On the other hand, if an individual is identified as a cr ime suspect by 
means other than a DNA match, then a subsequent DNA match is like 
the second case. It tells you a lot. Indeed, assuming the initial identifica
tion had a rational, relevant basis (such as a reputat ion for being lucky in 
the lottery case), the long RMP odds against a ma tch could be taken as 
conclusive. But as wi th the lot tery example, in order for the long odds to 
have any weight, the initial identification has to be before the D N A com
parison is run (or at least demonst rably independent thereof) . D o the 
DNA comparison first, and those impressive-sounding long odds could 
be meaningless. 

NRC I AND NRC II 

In 1989, eager to make use of the newly emerg ing technology of DNA 
profiling for the identification of suspects in a criminal case, including 
cold hit identifications, the FBI urged the National Research Council to 
carry out a study of the issue. The NRC formed the C o m m i t t e e on 
DNA Technology in Forensic Science, which issued its repor t in 1992. 
Titled DNA Technology in Forensic Science, and published by the National 
Academy Press, the report is often referred to as NRC I. The commit
tee's main recommenda t ion regarding the cold hit process was: 
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The distinction between finding a match between an evidence 
sample and a suspect sample and finding a match between an evi
dence sample and one of many entries in a DNA profile databank 
is important. The chance of finding a match in the second case is 
considerably higher. . . . The initial match should be used as prob
able cause to obtain a blood sample from the suspect, but only the 
statistical frequency associated with the additional loci should be 
presented at trial (to prevent the selection bias that is inherent in 
searching a databank). 

In part because of the controversy the NRC I report generated 
among scientists regarding the methodology proposed, and in part 
because courts were observed to misinterpret or misapply some of the 
statements in the report, in 1993 the NRC carried out a follow-up study. 
A second committee was assembled, and it issued its report in 1996. 
Often referred to as NRC II, the second report, The Evaluation of Forensic 
DNA Evidence, was published by National Academy Press in 1996. The 
NRC II committee's main recommendation regarding cold hit probabil
ities was: 

W h e n the suspect is found by a search of DNA databases, the 
random-match probability should be multiplied by N, the num
ber of persons in the database. 

The statistic that NRC II recommends using is generally referred to as 
the "database match probability," or DMP. This is an unfortunate choice 
of name, since the DMP is not a probability—although in all actual 
instances it is a number between 0 and 1, and it does (in the view of the 
NRC II committee) provide a good indication of the likelihood of getting 
an accidental match when a cold hit search is carried out. (The intuition 
is fairly clear. In a search for a match in a database of N entries, there are 
N chances of finding such a match.) For a true probability measure, if an 
event has probability 1, then it is certain to happen. However, consider a 
hypothetical case where a DNA database of 1,000,000 entries is searched 
for a profile having an RMP of 1 /1,000,000. In that case, the DMP is 
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1,000,000 x 1/1,000,000 = 1 

However, in this case the probability that the search will result in a 
match is no t 1 bu t approximately 0.6312. 

The commit tee ' s explanation for r e commend ing the use of the D M P 
to provide a scientific measure of the accuracy of a cold hit ma tch reads 
as follows: 

A special circumstance arises w h e n the suspect is identified no t by 
an eyewitness or by circumstantial evidence bu t ra ther by a search 
th rough a large DNA database. If the only reason that the person 
becomes a suspect is that his DNA profile t u rned u p in a database, 
the calculations mus t be modified. There are several approaches, 
of which we discuss two. The first, advocated by the 1992 NRC 
report , is to base probability calculations solely on loci no t used in 
the search. Tha t is a sound procedure , bu t it wastes information, 
and if too many loci are used for identification of the suspect, no t 
enough might be left for an adequate subsequent analysis. . . . A 
second procedure is to apply a simple correction: Multiply the 
match probability by the size of the database searched. This is the 
procedure we r ecommend . 

This is essentially the same logic as in our analogy wi th the state lot
tery. In the Jenkins case, the D M P associated wi th the original cold hit 
search of the eight-loci Virginian database (containing 101,905 profiles) 
would be (approximately) 

100,000 x 1/100,000,000 = 1/1,000 

With such a figure, the likelihood of an accidental ma t ch in a cold hit 
search is quite high (recall the state lot tery analogy). Thus , wha t seemed 
at first like a clear-cut case suddenly begins to look less so. That ' s wha t 
the courts think, too. At the t ime of writ ing, the Jenkins case is still 
going th rough the legal system, having b e c o m e one of several test cases 
across the country. 
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NUMBERS IN COURT: THE STATISTICAL OPTIONS 

So far, the courts have shown reluctance for juries to be presented with the 
statistical arguments involved in cold hit DNA cases. This is reasonable. To 
date, experts have proposed at least five different procedures to calculate 
the probability that a cold hit identification produces a false positive, that is, 
identifies someone who, by pure happenstance, has the same profile as the 
sample found at the crime scene. The five procedures are: 

1. Report the RMP alone. Whi le some statisticians have argued in 
favor of this approach, m a n y have argued strongly against it. 
T h e NRC II repor t came d o w n firmly against any ment ion of 
the RMP in court . 

2. Report the DMP alone. This is the approach advocated by NRC II. 

3. Report both the RMP and the DMP. This approach is advocated by 
the FBI's D N A Advisory Board, which argues that bo th figures 
are "of particular interest" to the ju ry in a cold hit case, al though 
it's no t clear h o w laypersons could weigh the relative significance 
of the two figures. Nor indeed is it at all clear that it would be 
right to ask t h e m to so do, w h e n some of the world's best 
statisticians are n o t agreed on the matter . 

4. Report the results of an alternative Bayesian analysis. Some 
statisticians argue that the issue of assigning a probability to a 
cold hit identification should be tackled from a Bayesian 
perspective. (See Chapter 6 for a discussion of Bayesian statistics.) 
Using Bayesian analysis to compute a reliability statistic for a cold 
hit match leads to a figure just slightly smaller than the RMP. 

5. Report the RMP calculated on confirmatory loci not considered in the 
initial search. This is the approach advocated by NRC I. 

At this point, mos t laypeople are likely to say, "Look, since DNA profiling 
has an inaccuracy rate of less than one in many trillions (or more), the 
chances of there being a false match in a database of maybe 3 million 
entries, such as the CODIS database, is so tiny that no matter which 
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method you use to calculate the odds, a match will surely be definitive 
proof." The intuition behind such a conclusion is presumably that the 
database search has 3 million shots at finding a match, so if the odds 
against there being a match are 1 in 10 trillion, then the odds against find
ing a match in the entire database are roughly 1 in 3 million (3 million 
divided by 3 trillion is roughly 1 /3,000,000). 

Unfortunately—at least it could be unfortunate for an innocent defen
dant in the case—this a rgument is no t valid. In fact, notwi ths tanding an 
RMP in the "one in many trillions" range, even a fairly small DNA data
base is likely to contain n u m e r o u s pairs of accidental matches, where 
two different people have the same DNA profile. A tiny RMP simply does 
not mean there won ' t be accidental matches. This is a m o r e subtle ver
sion of the well-known birthday puzzle that says you need only have 23 
randomly selected people in a r o o m for there to be a better-than-even 
chance that two of t hem will have the same birthday. (The exact calcula
tion is a bit intricate, but you get a sense of wha t is going on w h e n you 
realize that wi th 23 people, there are 23 x 22 = 506 possible pairs of 
people, each of which might share a birthday, and that turns out to be 
just enough pairs to tilt the odds to .508 in favor of there being a 
match.) 

For example, the Arizona DNA convicted offender database is a fairly 
small one, with some 65,000 entries, each being a thirteen-loci profile. 
Suppose, for simplicity, that the probability of a r a n d o m match at a single 
locus is 1/10, a figure that, as w e observed earlier, is no t unreasonable. 
Thus, the RMP for a nine-locus match is 1/10 9, i.e., 1 in 1 billion. You 
might think that wi th such long odds against a randomly selected pair of 
profiles matching at nine loci, it would be highly unlikely that the data
base contained a pair of entries that were identical on nine loci. Yet, by an 
argument similar to the one used in the birthday puzzle, the probability 
of getting two profiles that ma tch on nine loci is a round 5 percent, or 1 
in 20. For a database of 65,000 entries, that means you would be quite 
likely to find some matching profiles! 

We'll sketch the calculation at the end of the chapter, bu t the answer 
becomes less surprising w h e n you realize that for a database of 65,000 
entries, there are roughly 65,000 2 —that is, 4,225,000,000—possible pairs 
of entries, each of which has a chance of yielding a nine-loci match . 
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In 2005, an actual analysis of the Arizona database uncovered 
144 individuals whose D N A profiles matched at nine loci. There were 
another few that ma tched at ten loci, one pair that matched at eleven, 
and one pair that ma tched at twelve. The eleven and twelve loci matches 
t u rned ou t to be siblings, hence no t r andom. But the others were not, 
and were , in fact, close to wha t one should expect from the mathematics 
w h e n you replace ou r simplifying 1 / 1 0 single-locus match assumption 
wi th a realistic figure obtained empirically. 

All of which leaves judges and juries facing a mathematical night
mare in reasoning their way to a jus t decision. O n the other hand, even 
after the mathemat ica l complexities are taken into account, DNA profil
ing is considerably m o r e reliable than that m u c h older identification 
standby: fingerprints, which we look at in Chapter 9. 

The Database Match Calculation 

Here is the calculation we promised earlier. Recall that we have a DNA 

profile database with 65,000 entries, each entry being a thirteen-loci pro

file. We suppose that the probability of a random match at a single locus 

is 1/10, so the RMP for a nine-locus match is 1/10 9, that is 1 in a billion. 

Now, there are 13!/[9! x 4!] = [13 x 12 x 11 x 10]/[4 x 3 x 2 x 1] = 

715 possible ways to choose nine loci f rom thir teen, so the RMP for 

f inding a match on any nine loci of the thirteen is 715/10 9 . 

If you pick any profile in the database, the probabil i ty of a second 

profile not matching on nine loci is roughly 1 - 715/10 9 . 

Hence, the probability of all 65,000 database entries not matching on 

nine loci is roughly (1 - 7 1 5 / 1 0 9 ) 6 5 0 0 0 . Using the binomial theorem, this is 

approximately 1 - 65,000 x 715/10 9 = 1 - 46,475/10 6 , roughly 1 - .05. 

The probabil i ty of there being a nine-loci match is the difference 

between 1 and this f igure, namely 1 - (1 - 0.05) = 0.05. 



CHAPTER 

8 Secrets—Making and 
Breaking Codes 

PRIME SUSPECT 

In the fifth episode of the first season of NUMB3RS, titled "Prime 
Suspect," broadcast February 18, 2005, a five-year-old girl is k idnapped. 
Don asks for Charlie's help w h e n he discovers that the girl's father, 
Ethan, is also a mathemat ic ian . W h e n Charlie sees the mathemat ics 
Ethan has scribbled on the whi teboard in his h o m e office, he recognizes 
that Ethan is work ing on Riemann's Hypothesis , a famous m a t h 
problem that has resisted a t tempts at solution for m o r e than 150 years. 

The Riemann prob lem is one of the so-called Mil lennium Problems, 
a list of seven unsolved mathemat ics problems drawn u p by an interna
tional panel of experts in the year 2000, for each of which the solver will 
be awarded a $1 million prize. In the case of the Riemann problem, a 
solution is likely to lead to m o r e than a $1 million prize. It could also 
lead to a major b reak through in h o w to factor large n u m b e r s into 
primes, and hence provide a m e t h o d for breaking the security code 
system used to encrypt In ternet communicat ions . If that were to 
happen, Internet c o m m e r c e would break d o w n immediately, wi th 
major economic consequences. 

W h e n D o n is able to de te rmine the identity of one of the kidnap
pers, and learns that the plan is to "unlock the world 's biggest financial 
secret" it becomes clear why Ethan's daughter was kidnapped. The 
captors want to use Ethan's m e t h o d to break into a bank's compu te r 
and steal millions of dollars. Don's obvious strategy is for Ethan to 
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provide the gang wi th the key to get into the bank's compute r and trace 
the activity electronically in order to catch the thieves. But when Charlie 
finds a major er ror in Ethan's a rgument , the only hope D o n has to 
rescue Ethan's daughter is to c o m e u p wi th a way to fool the kidnappers 
into believing that he really can provide the Internet encryption key 
they are demanding , and use that to trace their location to rescue the 
daughter . 

At one point in the episode, Charlie gives a lecture to the FBI agents 
on h o w Internet encrypt ion depends on the difficulty of factoring large 
n u m b e r s into primes. Elsewhere in the story, Charlie and Ethan discuss 
the feasibility of tu rn ing Ethan's solution into an algori thm and Charlie 
refers to "the expansion of the zero-free region to the critical strip." 
Charlie also observes that the kidnappers would need a supercomputer 
to factor a large n u m b e r into primes. Amita, his student, notes that it is 
possible to build a supercompute r wi th a large n u m b e r of PCs linked 
together. As always, these are all mathematical ly meaningful and realis
tic s ta tements . So too is the basic premise for the story: a solution to the 
Riemann p rob lem might very well lead to a collapse of methods 
currently used to keep Internet communica t ions secure. Ever since 
the Second World War, message encrypt ion has been the business of 
mathemat ic ians . 

WWW.CYBERCRIME.GOV 

These days, you don ' t need a gun or a knife to steal money. A cheap 
personal compu te r and an Internet connect ion will do. It's called cyber
crime; it's a n e w form of crime; it is substantial; and it is growing. It 
includes a b road range of illegal activities, such as software piracy, music 
piracy, credit card fraud (of m a n y kinds), identity theft, manipulat ion of 
stocks, corpora te espionage, child pornography, and "phishing" (send
ing a c o m p u t e r user an e-mail that purpor t s to be from a financial 
insti tution that seeks to trick the receiver into revealing their bank details 
and o ther personal data). 

There are n o reliable figures on the extent of cybercrime, since many 
banks and Internet commerce companies keep such information secret, 
to avoid giving the impression that your money or credit card number is 

http://WWW.CYBERCRIME.GOV
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not safe in their hands. It has been suggested, though hotly disputed, that 
the annual proceeds from cybercrime may be in excess of $100 billion. If 
that were true, it would exceed the sale of illegal drugs. Regardless of the 
actual figures, cybercrime is a sufficiently major problem that bo th the 
U.S. Depar tment of Justice and the FBI have entire units that focus on 
such criminal activity, and bo th have websites devoted to information 
about it: www.cybercrime.gov and www.fbi.gov/cyberinvest/cyber-
home.h tm, respectively. 

The 2005 FBI compute r crime survey, developed and analyzed wi th 
the help of leading public and private authorit ies on cyber security, and 
based on responses from a cross section of more than 2,000 public and 
private organizations in four states, repor ted that: 

• Nearly nine out of ten organizations experienced compu te r 
security incidents in the year; 20 percent of t h e m indicated they 
had experienced twenty or m o r e attacks; viruses (83.7 percent) 
and spyware (79.5 percent) headed the list. 

• Over 64 percent of the respondents incurred a financial loss. 
Viruses and w o r m s cost the most , accounting for $12 million of 
the $32 million in total losses. 

• The attacks came from thirty-six different countries. The United 
States (26.1 percent) and China (23.9 percent) were the source of 
more than half of the intrusion at tempts , t hough m a n y attackers 
route th rough one or m o r e in termediate compute rs in different 
countries, which makes it difficult to get an accurate reading. 

Law enforcement agents w h o focus their energies on cybercrime use 
mathematics in m u c h of their work. In many cases, they use the same 
techniques as are described elsewhere in this book. In this chapter, 
however, we' l l focus our a t tent ion on one impor tan t aspect of the fight 
against cybercrime that uses different mathemat ics , namely Internet 
security. In this area, ingenious use of some sophisticated mathemat ics 
has led to major advances, wi th the result that, if properly used, the 
systems available today for keeping Internet communica t ions secure are 
extremely reliable. 

http://www.cybercrime.gov
http://www.fbi.gov/cyberinvest/cyber-
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KEEPING SECRETS 

W h e n you use an ATM to wi thdraw money from your account, or send 
your credit card details to an Internet retailer, you want to be sure that 
only the intended receiver has access to the details you send. This cannot 
be achieved by preventing unauthor ized third parties from "eavesdrop
ping" on the electronic messages that pass be tween you and the organi
zation you are dealing with. The Internet is wha t is called an open system, 
which means that the connections be tween the millions of computers 
that make u p the ne twork are, to all intents and purposes, public. Security 
of Internet communicat ions traffic is achieved by means of encryption— 
"scrambling" the message so that, even if an unauthor ized third party 
picks u p the signal t ransmitted, the eavesdropper will be unable to make 
sense of it. 

The not ion of encryption is no t new. The idea of using a secret code to 
keep the contents of a message secret goes back at least as far as the days 
of the Roman Empire, w h e n Julius Caesar used secret codes to ensure the 
security of the orders he sent to his generals during the Gallic wars. In 
wha t is nowadays called a Caesar cipher, the original message is trans
formed by taking each letter of each word in tu rn and replacing it by 
another letter according to some fixed rule, such as taking the letter three 
places along in the alphabet, so A is replaced by D, G by J, Y by B, and so 
on. Thus the word "mathematics" would become "pdwkhpdwlfv". 

A message encrypted using a Caesar cipher may look on the surface 
to be totally indecipherable wi thou t knowing the rule used, but this is 
by n o means the case. For one thing, there are only twenty-five such 
"shift a long" ciphers, and an enemy w h o suspected you were using one 
need only t ry t h e m all in t u r n until the one used was found. 

A slightly more robust approach would be to employ some other, less 
obvious rule for substituting letters. Unfortunately, any such substitution 
cipher, which simply replaces one letter by another, is highly vulnerable to 
being broken by a simple pat tern analysis. For instance, there are very defi
nite frequencies wi th which individual letters occur in English (or in any 
other language), and by counting the number of occurrences of each letter 
in your coded text, an enemy can easily deduce just what your substitution 
rule is—especially when computers are used to speed up the process. 
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With simple substitution out of the question, wha t else might you 
try? Whatever you choose, similar dangers are present. If there is any 
kind of recognizable pa t tern to your coded text, a sophisticated statistical 
analysis can usually crack the code wi thout m u c h difficulty 

To be secure, therefore, an encrypt ion system mus t destroy any pat
tern that the enemy could discover in order to break the code. Yet, the 
transformation performed on the message by your encrypt ion scheme 
clearly cannot destroy all o rder—the message itself mus t still be there 
beneath it all, to allow the in tended receiver to recover it. T h e trick, 
then, is to design the encrypt ion system so that this h idden order is 
buried sufficiently deeply to prevent an e n e m y from discovering it. 

All cipher systems employed since the end of the Second World War 
depend on mathemat ics , and all use computers . They have to . Because 
the enemy may be assumed to have powerful compute r s to analyze 
your encrypted message, your system needs to be sufficiently complex 
to resist compute r attack. 

It takes a lot of t ime and effort to design and build a secure encryp
tion system. To avoid having constantly to develop n e w systems, m o d e r n 
encryption systems invariably consist of t w o components : an encryp
tion procedure and a "key." The former is, typically, a compu te r pro
g r a m or possibly a specially designed computer . In order to encrypt a 
message the system requires no t only the message bu t also the chosen 
key, usually a secret number . The encrypt ion p r o g r a m will code the 
message in a way that depends u p o n the chosen key, so that only by 
knowing that key will it be possible to decode the ciphered text. Because 
the security depends on the key, the same encrypt ion p r o g r a m may be 
used by many people for a long period of t ime, and this means that a 
great deal of t ime and effort can be pu t into its design. 

An obvious analogy is that manufacturers of safes and locks are 
able to stay in business by designing one type of lock which may be 
sold to hundreds of users, w h o rely u p o n the uniqueness of their 
own key to provide security. (The "key" in this case could be a physical 
key or a numerical combination.) Just as an e n e m y may k n o w h o w your 
lock is designed and yet still be unable to break into your safe w i thou t 
having the physical key or knowing the combinat ion, so the e n e m y 
may know wha t encryption system you are using w i thou t being able to 
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crack your coded messages—a task for which knowledge of your key is 
required. 

In some key-based encrypt ion systems, the message sender and 
receiver agree beforehand on some secret key that they then use to send 
each o ther messages. As long as they keep this key secret the system, if 
it is well designed, should be secure. One such system used for many 
years, t hough n o w regarded as a bit t oo long in the too th and vulnerable 
to attack using compute r s m u c h faster than were available when it was 
first developed, is the American-designed Data Encryption Standard 
(DES). T h e DES requires for its key a n u m b e r whose binary representa
t ion has 56 bits (in o ther words, a string of 56 zeros and ones operates as 
the key). W h y such a long key? Well, n o one made any secret of how the 
DES system works . All the details were published at the outset. That 
means that an e n e m y could crack your coded messages simply by trying 
all possible keys one after the o ther until one is found which works. 
Wi th the DES, there are 2 5 6 possible keys to be tried, a n u m b e r that was 
large enough to render the task virtually impossible in the days when 
the system was first used. 

Encrypt ion systems such as DES have an obvious drawback. Before 
such a scheme can be used, the sender and receiver have to agree on the 
key they will use. Since they will no t wan t to t ransmit that key over any 
communica t ion channel, they have to mee t and choose the key, or at the 
very least employ a t rusted courier to convey the key from one to the 
other. This is fine for setting u p Internet access to your bank account; 
you can simply go along in person to your local branch and set up the 
key in person. But it is n o use at all to establish secure communicat ion 
be tween individuals w h o have no t already met . In particular, it is not 
suitable for use in Internet commerce , where people want to send secure 
messages across the wor ld to someone they have never met . 

PUBLIC KEY CRYPTOGRAPHY 

In 1976, t w o young researchers at Stanford University, Whitfield Diffie 
and Mart in Hel lman, published a landmark paper titled "New Direc
tions in Cryptography," in which they proposed a n e w type of cipher 
system: public key cryptography. In a public key system, the encryption 
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method requires no t one bu t two keys—one for enciphering and the 
other for deciphering. (This would be like having a lock that requires 
one key to lock it and another to unlock it.) Such a system wou ld be 
used as follows, they suggested. 

An individual, let's call her Alice, w h o wishes to use the system, pur
chases the standard p r o g r a m (or special computer ) used by all m e m b e r s 
of the communica t ion ne twork concerned. Alice then generates t w o 
keys. One of these, her deciphering key, she keeps secret. T h e o ther key, 
the one that will be used by anyone else on the n e t w o r k for encoding 
messages they want to send to her, she publishes in a directory of the 
ne twork users. 

If another ne twork user, Bob, wants to send Alice a message, he 
looks up Alice's public enciphering key, encrypts the message using that 
key, and sends the encrypted message to Alice. To decode the message, 
it is of n o help knowing (as anyone can) Alice's enciphering key. You 
need the deciphering key. And only Alice, the intended receiver, knows 
that. (An intriguing feature of such a system is that once Bob has enci
phered his message, he cannot decipher it; so if he wants to refer to it 
later he 'd bet ter keep a copy of the original, unciphered version!) 

Dime and Hel lman were no t able to c o m e u p wi th a reliable way to 
construct such a system, bu t the idea was brilliant, and it was no t long 
before three researchers at MIT, Ronal Rivest, Adi Shamir, and Leonard 
Adleman, found h o w to make the suggestion work. Thei r idea was to 
exploit the strengths and weaknesses of those very compute r s whose 
existence makes the encrypt ion-scheme designer's task so difficult. 

It turns ou t that it is relatively easy to wri te a compu te r p r o g r a m to 
find large pr ime numbers , say, on the order of 150 digits. It is also easy 
to multiply two such large pr imes together to p roduce a single (compos
ite) n u m b e r of a round 300 digits or more . But factoring a n u m b e r of 
that size into its componen t pr imes is no t at all easy, and indeed, to all 
intents and purposes, is impossible. (More precisely, it wou ld take the 
fastest compute r many decades, or even centuries, to find the factors.) 
The public key system based on this idea is called the RSA system, after 
the initials of the three inventors. The success of the m e t h o d led to the 
establishment of a commercial company specializing in data security, 
RSA Data Security, Inc., based in Redwood City, California. 
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T h e secret deciphering key used in the RSA m e t h o d consists essen
tially of t w o large pr ime number s chosen by the user. (Chosen wi th the 
aid of a compu te r—not taken from any published list of primes, which 
an e n e m y might have access to!) The public enciphering key is the prod
uct of these two primes. Since there is n o known fast m e t h o d of factor
ing large numbers , it is practically impossible to recover the deciphering 
key from the public enciphering key. Message encryption corresponds 
to multiplication of two large pr imes (an easy computat ional task), 
decrypt ion to the opposite process of factoring (a hard computat ional 
task). 

We should point ou t that the encrypt ion is no t actually achieved by 
multiplying primes, no r is decrypt ion carried ou t by factoring. Rather, 
that is h o w the keys are generated. Tha t t e r m "corresponds to" in the 
above description should be read very loosely. Whi le encryption and 
decrypt ion are no t merely multiplication and factoring, the RSA system 
is, however, arithmetical. T h e message is first translated into numerical 
form, and the encrypt ion and decryption processes consist of fairly 
simple arithmetical operat ions per formed on numbers . 

Clearly, then, the security of the RSA system, and accordingly of the 
m a n y internat ional data ne tworks that use it, relies u p o n the inability of 
mathemat ic ians to find an efficient m e t h o d of factoring large numbers . 

As you might expect, wi th so m u c h at stake, the widespread use of 
the RSA system has spurred a considerable a m o u n t of research into the 
problems of finding pr imes and of factoring large numbers . 

T h e obvious way to de te rmine whe the r a n u m b e r N is pr ime is to see 
if any smaller n u m b e r divides it. A few m o m e n t s ' thought shows that 
you need only check to see if any n u m b e r be low or equal to V N divides 
N . If N is fairly small, say three or four digits, this is feasible by hand; 
wi th a standard desktop PC, you could handle number s wi th more dig
its. But the task becomes impractical w h e n N has, say, fifty digits or 
m o r e . However, there are o ther ways to check if a n u m b e r N is pr ime, 
which do no t require a blind search th rough all possible factors u p to 
V N , and some of t h e m are efficient enough that they can work well on 
a reasonably fast compute r for n u m b e r s wi th hundreds of digits. Thus, 
finding pr imes to genera te the keys in public key cryptography is not a 
problem. 
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The methods actually used to test primality are all beyond the scope 
of this book, bu t a simple example will show h o w you can de te rmine 
that a n u m b e r is p r ime wi thou t having to look at and eliminate all 
possible factors. The example comes from the w o r k of the great French 
mathematic ian Pierre de Fermât (1601-65). 

T h o u g h only an "amateur" mathemat ic ian (he was a jurist by profes
sion), Fermât produced some of the cleverest results mathemat ics has 
ever seen to this day. O n e of his observations was that if p is a p r ime 
number , then for any n u m b e r a less t h a n p , the n u m b e r dtx - 1 is divisible 
by p. For instance, suppose w e take p - 7 and a - 2. T h e n 

ap-i - 1 = 2 7 " 1 - 1 = 2 6 - 1 = 64 - 1 = 63 

and indeed 63 is divisible by 7. Try it yourself for any values of p (prime) 
and a (less than p). The result is always the same. 

So here is a possible way of testing if a number n is pr ime or not. Com
pute the number 2 M _ 1 - 1. See if n divides it. If it does not, then n cannot be 
prime. (Because if n was prime, then by Fermat 's observation you would 
have divisibility of 2 n _ 1 - 1 by n.) But what can you conclude if you find that 
n does divide 2 M _ 1 - 1? Not, unfortunately, that n has to be prime. (Though 
this is quite likely to be the case.) The trouble is, while Fermat's result tells 
us that n divides 2 r t _ 1 - 1 whenever n is prime, it does not say that there are 
no composite numbers with the same property. (It is like saying that all 
motor cars have wheels; this does not prevent other things having wheels— 
bicycles, for instance.) And in fact there are nonprimes which do have the 
Fermât property. The smallest one is 341, which is not prime, as it is the 
product of 11 and 31. If you were to check (on a computer) you would find 
that 341 does divide 2 3 4 0 - 1. (We shall see in a m o m e n t that there is n o need 
to calculate 2 3 4 0 in making this check.) Composite numbers that behave like 
primes as far as the Fermât property is concerned are called pseudoprimes. 
So if, when you test for primality using the Fermât result, you discover that 
n does divide 2 M _ 1 - 1, then all you can conclude is that either n is pr ime or 
else it is pseudoprime. (In this case the odds are heavily in favor of n actually 
being prime. For though there are in fact an infinity of pseudoprimes, they 
occur much less frequendy than the real primes. For instance there are 
only two such numbers under 1,000, and only 245 below one million.) 
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In using the above test, it is no t necessary to calculate the number 
2 n _ 1 , a n u m b e r which will be very large for even quite modes t values of 
n. You only need to find ou t whe the r or no t n divides 2 n _ 1 - 1. This means 
that multiples of n may be ignored at any stage of the calculation. To put 
it another way, wha t has to be calculated is the remainder that would be 
left if 2 n _ 1 - 1 was divided by n. T h e aim is to see whe ther or not this 
remainder is zero, bu t since multiples of n will obviously not affect the 
remainder, they may be ignored. Mathematicians (and compute r pro
g rammers ) have a s tandard way of denot ing remainders: the remainder 
left w h e n A is divided by B is wr i t ten as 

A m o d B 

Thus , for example, 5 m o d 2 is 1, 7 m o d 4 is 3, and 8 m o d 4 is 0. 
As an example of the Fermât test, let us apply it to test the number 

61 for primality. We need to calculate the n u m b e r [ 2 6 0 - 1] m o d 61, 
which can be wr i t ten equivalently as [ 2 6 0 m o d 61] - 1. If this is no t zero, 
then 61 is no t a pr ime. If it is zero, then 61 is either a pr ime or a 
pseudopr ime (and in fact is a genuine pr ime, as we know already). We 
shall t ry to avoid calculating the large n u m b e r 2 6 0 . We start wi th 
the observat ion that 2 6 = 64, and hence 2 6 m o d 61-3. Then, since 
2 3 0 _ ( 2 6 ) 5 ) w e g e t 

2 3 0 m o d 61 = ( 2 6 ) 5 m o d 61 = (3) 5 m o d 61 = 243 m o d 61 = 60 

So, 

2 6 0 m o d 61 = ( 2 3 0 ) 2 m o d 61 = 6 0 2 m o d 61 = 3 ,600 m o d 61 = 1 

Thus , 

2 6 0 m o d 61 - 1 = 0 

Since the final answer here is 0, the conclusion is that 61 is either pr ime 
or pseudopr ime, as w e anticipated. 
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One of the methods professionals use to find large pr imes starts wi th 

the Fermât test jus t described and modifies the approach so it cannot be 

"fooled" by a pseudopr ime. The reason we can't describe the m e t h o d in 

this book is that it takes considerable effort, and some sophisticated 

mathematics, to circumvent the pseudopr ime problem. 

To date, there is n o m e t h o d to factor a large n u m b e r that is even 

remotely as efficient as one of the primality testing methods , despite a 

considerable investment of talent and effort. Research into the problem 

has not been wi thout some successes, however, and on several occasions 

mathematicians have come u p with ingenious ways to find factors in use

fully short computat ional t ime. W h e n the RSA system was first pu t into 

use, factoring a number of around 120 digits was at the limit of wha t 

could be achieved. Improvements bo th in algori thm design and com

puter technology have since brought 120-digit number s into the vulner

able range, so cryptographers have increased the size of RSA keys to well 

beyond that level. At the m o m e n t , many mathematicians believe it prob

ably is not possible to find a m e t h o d that can factor (in realistic t ime) 

numbers of 300 digits or more , so that is regarded as a safe key size. 

Tha t developments in factoring do indeed pose a genuine, if poten

tial, threat to RSA codes was illustrated in dramat ic fashion in April 

1994, when a sophisticated m e t h o d was used to crack a challenge prob

lem in RSA cryptography that had been posed in 1977. The origin of the 

problem is itself of interest. In 1977, w h e n Rivest, Shamir, and Adleman 

proposed their public-key encrypt ion system, it was described by math

ematics wri ter Mart in Gardner in the August issue of Scientific American, 
in his popular mathemat ics co lumn. There , Gardner presented a short 

message that had been encoded using the RSA scheme, using a 129-digit 

key resulting from the multiplication of two large pr imes. T h e message 

and the key were produced by researchers at MIT, w h o offered, t h rough 

Gardner, $100 to the first person w h o managed to crack the code. T h e 

composite n u m b e r that was the key to the code became k n o w n as RSA-

129. At the t ime, it was though t it would take m o r e than 20,000 years to 

factor a 129-digit n u m b e r of its kind, so the MIT g r o u p though t their 

money was safe. T w o developments that followed were to result in the 

solution to the MIT challenge a mere seventeen years later. 
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T h e first was the development of so-called quadratic sieve methods 

for factoring large numbers . A crucial feature of these methods that was 

to prove significant in factoring RSA-129 was that they effectively broke 

u p the p rob lem into a large n u m b e r of smaller factorizations—a process 

that , while still challenging, was at least feasible wi th a fairly fast com

puter. T h e second pivotal development was the Internet . In 1993, Paul 

Leyland of Oxford University, Michael Graff at Iowa State University, 

and Derek Atkins at MIT p u t ou t a call on the Internet for individuals to 

volunteer their—and their personal computers '—t ime for a massive, 

worldwide assault on RSA-129. The idea was to distribute the various 

parts of the factorization p rob lem yielded by the quadratic sieve method, 

and then sit back and wait until enough of those partial results had been 

found to p roduce a factorization of RSA-129. (The quadratic sieve 

m e t h o d they used did no t require all of the smaller subfactorizations to 

be solved; jus t e n o u g h of them.) Some 600 volunteers, spread around 

the world, rose to the challenge. Over the next eight months , results 

came in at the rate of a round 30,000 a day. By April 1994, wi th greater 

than 8 million individual results to work on, a powerful supercomputer 

was set the formidable task of looking for a combinat ion of the small 

factorizations that wou ld yield a factor of RSA-129. It was a m a m m o t h 

computa t ion , bu t in the end it was successful. RSA-129 was factored 

into t w o pr imes, one having 64 digits, the o ther 65. And wi th it, the 

original MIT message was decrypted. It read: The magic words are squea
mish ossijrage. (This is a typical MIT inside joke. The ossiffage is a rare 

vul ture having a wingspan of u p to ten feet, whose n a m e means "bone 

breaker.") 

DIGITAL SIGNATURES 

Another security issue Whitfield and Hellman addressed in their 1976 paper 

was: H o w can a receiver of an electronic document be sure that it actually 

came from the source it claimed to be from? In the case of written docu

ments , we generally rely on a signature. Public key cryptosystems provide 

a means for creating an electronic analog of a signature—a digital signature, 

as it were. The idea is straightforward: You use the public key encryption 
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system in reverse. If Alice wants to send Bob an electronically signed docu
ment, she encrypts it using her secret decryption key. W h e n Bob receives 
the document, he uses Alice's public encryption key to decrypt the message. 
This will result in gibberish unless the message was encrypted using Alice's 
decryption key. Since only Alice knows that key, if the result is a readable 
document, Bob can be sure that it came from Alice. 

In fact, a digital signature is a m o r e secure form of authent icat ion 
than a regular signature. Someone could always copy (either by hand or 
electronically) your signature from one documen t to another, bu t a dig
ital signature is tied to the d o c u m e n t itself. T h e idea of digital signatures 
is also used to provide digital certificates, verifications provided by a 
particular website that it is indeed the site it pu rpor t s to be . 

WHAT KEEPS YOUR PASSWORD SAFE? 

Even with message encryption, activities such as online banking still have 
vulnerabilities. One obvious potential weak point is your password. By 
transmitt ing your password in encrypted form, an eavesdropper could 
not obtain it; but if an enemy were able to hack into the compute r on 
which your bank stores its cus tomers ' passwords (which it has to do in 
order to check your a t tempted login), he or she would immediately have 
free access to your account. To prevent this happening, your bank does 
not store your password; ra ther it stores wha t is called a hashed version. 

Hashing is a particular kind of process that takes an input string (such 
as your password) and generates a n e w string of a particular size. (It's not 
strictly speaking an encryption process since it may be impossible to u n d o 
the hash.) W h e n you try to log on to your bank account, the bank's 
computer compares the hashed version of the password you type in wi th 
the entry stored in its hashed-passwords file. To make this system work, 
the hashing function, H, has to have two fairly obvious properties: 

1. For any input string x, it should be easy to c o m p u t e H(x). 

2. Given any hash value y, it should be computat ional ly infeasible 
to find an x such that H(x) = y. 



118 THE NUMBERS BEHIND NUMB3RS 

("Computat ional ly infeasible" means it would take the fastest comput
ers m o r e than, say, a h u m a n lifetime to carry out the procedure to 
complet ion.) 

By requi rement 2, even if a hacker gained access to the stored login 
information, he or she would no t be able to obtain your password 
( though wi thou t additional controls they would of course be able to 
access your account on that machine , since it's the hashed version that 
the receiving server uses for authorization.) 

In practice, the people w h o design hash functions usually demand an 
additional uniformity feature that facilitates efficient storage of the 
hashed values of identification information and makes for a faster and 
easier database-lookup procedure to de te rmine identity: 

3. All values p roduced by H have the same bit-length. 

Because of this third condition, in theory there will be many differ
ent input strings that p roduce the same output ; in the parlance of the 
hashing community, there will be "collisions," distinct input strings x 
and y such that H(x) = H(y). Because access to secure sites is determined 
(at the site) by examining the incoming hashed login data, one possible 
weakness of the system is that illegal access to an account does not 
require that the in t ruder obtain the account holder 's login identity and 
password; it is sufficient to find some input data that generates the same 
hashed value—that is, to find an input that collides wi th the legitimate 
data. In designing an algori thm for a hash function, it is therefore clearly 
impor tan t to make sure that this is extremely unlikely to occur. That 
gives a fourth requirement : 

4. It is a practical impossibility (it is "computationally infeasible") to 
find a string y that collides wi th a given string x, that is, for 
which H(x) = H(y). 

Typically, hash functions w o r k by combining (in some systematic way) 
the bits of the input string (e.g., your login details) with other bits 
chosen at r andom, and performing some complex, iterative distillation 
process that reduces the resulting string down to one of a fixed length 
(predetermined for the system). 
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There are dozens of different hash functions in use. T h e two mos t 
widely used are MD5 ("Message Digest a lgori thm 5"), developed by 
Ronald Rivest (he of RSA) at MIT in 1991 as one of a series of hash 
algorithms he designed, and SHA-1 ("Secure Hash Algori thm 1") devel
oped by the National Security Agency in 1995. MD5 produces a hash 
value of 128 bits, and it would take on average 2 6 4 guesses to find a col
lision. SHA-1 generates a hash string of length 160 bits, and it wou ld 
require an average of 2 8 0 guesses to find a collision. In theory, bo th 
methods would seem to offer a high degree of security—provided that 
the only feasible way to find a collision is by trial and error. 

Unfortunately for the digital security world, trial and e r ror is no t the 
only way to make a dent in a hashing system such as S H A - 1 . Dur ing the 
late 1990s and early 2000s, Xiaoyun Wang, a mathemat ic ian at Tsinghua 
University in Beijing, showed that wi th ingenuity and a lot of hard work, 
it was possible to find collisions for some widely used hashing functions. 
At the Crypto '04 conference in Santa Barbara in 2004, W a n g astonished 
the at tendants wi th her announcemen t that she had found a way to find 
a collision for MD5 in just 2 3 7 inputs, a staggering reduct ion in p rob lem 
size that made MD5 highly vulnerable. 

Wang's approach was to input to the algori thm strings that differ by 
just a few bits and look closely at wha t happens to them, step by step, as 
the algorithm operates on them. This led her to develop a "feel" for the 
kinds of strings that will result in a collision, allowing her to gradually 
nar row down the possibilities, resulting eventually in her developing a 
procedure to generate a collision. 

Following the a n n o u n c e m e n t at Crypto '04, Wang, together wi th 
her colleagues H o n g b o Yu and Yiqun Lisa Yin, started w o r k on the 
crown jewel of current hash functions, S H A - 1 . This proved a m u c h 
harder nut to crack, bu t to the general dismay (and admirat ion) of the 
computer security community , at the annual RSA security conference in 
San Francisco in February 2005, they were able to announce that they 
had developed an algori thm that could genera te two SHA-1 colliding 
files in just 2 6 9 steps. 

Wang and her colleagues have not yet cracked SHA-1; they have just 
produced a method that could crack it in far fewer steps than was previously 
believed possible. That number 2 6 9 is still sufficiently high to provide some 
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degree of confidence in the system's security—for now. So too is the even 
lower number of 2 6 3 steps that Wang and other collaborators managed to 
achieve in the months following the February 2005 announcement. But 
many in the cryptographic community now believe that the writing is on 
the wall, and that, as a result of Wang's work, advances in computing speed 
and power will rapidly render useless all the hashing algorithms currently in 
use. It won' t happen today—experts assure us that our ATM transactions 
are secure for now. But soon. Comment ing on the development to New 
Scientist magazine, Burt Kaliski, the head of RSA Laboratories in Bedford, 
Massachusetts, declared, "This is a crisis for the research community." 
Mark Z immerman , a cryptographer with ICSA Labs in Mechanicsburg, 
Pennsylvania, put it rather more colorfully: "It's not Armageddon, but it's a 
good kick in the pants." 



CHAPTER 

9 How Reliable Is the 
Evidence? 
Doubts about Fingerprints 

THE WRONG GUY? 

W h e n D o n arrives on the scene he finds that the murdere r had gar ro ted 
his victim. It's no t a c o m m o n me thod , b u t it reminds D o n of a m u r d e r 
commit ted a year earlier. O n that occasion, the FBI's investigation was 
very successful. After b o t h eyewitness tes t imony from a police l ineup 
and a fingerprint ma tch identified a m a n n a m e d Carl H o w a r d as the 
murderer, Howard confessed to the crime, accepted a plea bargain, and 
went to prison. But the similarities of that earlier m u r d e r to the n e w 
one are so striking that D o n begins to w o n d e r whe the r they got the 
w r o n g guy w h e n they sent H o w a r d to prison. As Charlie helps D o n 
with the investigation of suspects in the n e w murder , they speculate 
about the possibility that H o w a r d was an innocent m a n sent to prison 
for a crime he did no t commi t . 

This is the story that viewers watched unfold in the first-season epi
sode of NUMB3RS called "Identity Crisis," broadcast on April 1, 2005. 

A key piece of evidence that sent Howard to prison was a fingerprint 
from the murder scene—more accurately, par t of a thumbpr in t . T h e 
FBI fingerprint examiner was certain of the correctness of her identifi
cation of Howard as the source of the crime-scene partial print, which 
led first Howard 's lawyer and then H o w a r d himself to conclude that 
accepting a plea bargain was the only sensible th ing to do. But once 
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Howard ' s possible innocence is being considered, Charlie, the mathe
matician t rained to th ink logically and to d e m a n d scientific proof for 
scientific claims, engages the fingerprint examiner in a discussion: 

CHARLIE: H O W do you k n o w that everyone has their o w n unique 
fingerprint? 

EXAMINER: T h e simple answer is that n o two people have ever been 

found to have the same prints. 
CHARLIE: Have you examined everyone's print? Everyone on the 

planet? 

T h e ma tch the examiner m a d e was based on wha t is called a "partial," a 
latent fingerprint consisting of ridge marks from only par t of the tip of 
a single finger. So Charlie cont inues his questioning, asking h o w often 
jus t a part of a single finger's print from one person looks like that 
of another person. T h e examiner says she doesn' t know, prompt ing 
Charlie to press her further. 

CHARLIE: There ' s n o data available? 
EXAMINER: N O . We've never done those populat ion surveys. 
CHARLIE: But isn't r andom-match probability the only way you'll 

ever be able to know, really know, the likelihood of two 
prints matching? 

AGENT REEVES: That ' s h o w DNA matches are made . 

CHARLIE: That ' s wha t gives DNA those "one in a billion" odds. 
But prints don ' t have odds? 

As usual, Charlie is right on the ball. These days, fingerprint evidence, 
once regarded as so infallible that forensic scientists would never consider 
challenging its certainty, is unde r increasing attack and critical scrutiny in 
courts across the United States and many other parts of the world. 

THE MYTH OF FINGERPRINTS 

T h e twent ie th century 's mos t s tunning forensic success is probably the 
establishment of fingerprint identification as the "gold standard" for 
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scientific evidence in criminal prosecutions. Its acceptance as a virtually 
unchallengeable "clincher" in the c o u r t r o o m is shown by the terminol
ogy often applied to its only current rival, D N A evidence, which is often 
referred to as "genetic fingerprinting." 

W h e n it first appeared, fingerprinting was no t immediate ly seized 
upon as the magical key to resolving quest ions about the identification 
of criminals. It t ook decades in the United States and Europe to dislodge 
its predecessor, the Bertillon system. 

Invented by a Parisian police clerk in the late n ine teen th century, the 
Bertillon system relied primarily on an elaborate set of eleven carefully 
recorded anatomical measurement s—the length and wid th of the head, 
length of the left middle finger, the distance from the left e lbow to the 
tip of the left middle finger, and so on. Tha t system had proved a great 
success in foiling the a t tempts of repeat offenders to avoid harsher 
sentences by passing themselves off unde r a succession of aliases. 

Like Bertillonage, fingerprinting proved to be a reliable m e t h o d of 
"verification." A police depa r tmen t could compare a high-quality set of 
ten fingerprints obtained from "Alphonse Parker," n o w in custody, wi th 
a file of "full sets" of ten fingerprints from previous offenders and per
haps identify Parker as "Frederick McPhee" from his last incarceration. 
Even more s tunning was the possibility of "lifting" fingerprints from 
surfaces—a table, a window, a glass—at the scene of a cr ime and using 
these "latent prints" to individualize the identification of the perpetra
tor. Tha t is, by searching th rough a file of cards containing k n o w n 
exemplars, full-set fingerprints of known individuals, investigators could 
sometimes obtain a ma tch wi th crime-scene fingerprints and thereby 
identify the perpetrator . O r they could br ing in a suspect, fingerprint 
him, and compare those prints wi th the ones lifted from the cr ime scene. 
Even though latent fingerprints are often of low qual i ty—smudged, 
partial (involving only a por t ion of the tip of the finger), incomplete 
(involving only one or t w o fingers, say)—an experienced and skilled fin
gerprint examiner could still possibly observe enough commonal i ty 
with an exemplar print set to make a positive identification wi th enough 
certainty to offer tes t imony in court . 

Because the chances of a crime-scene investigation yielding accurate 
measurements of the perpetra tor ' s head-width and the like are all bu t 
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zero, the advantage of fingerprinting over Bertillonage for investigative 
w o r k soon became clear. Even as it was being replaced by fingerprint
ing, however, the Bertillon system was recognized as having one clear 
advantage of its own: the indexing system that was developed to go 
wi th it. Bertillon relied on numerical values for standardized measure
ments ; accordingly, searches of a large card file to de te rmine a possible 
ma tch wi th the measuremen t s of a person in custody could be per
formed in a straightforward way. Fingerprint matching relied on h u m a n 
j u d g m e n t in side-by-side compar ison of the distinguishing features of 
t w o prints or sets of prints, which did no t lend itself to the same kind of 
numerically driven efficiency. 

W i t h the advent of compute r s in the mid-twentieth century, how
ever, it became possible to code sets of fingerprints numerically in such 
a way that a compu te r could quickly eliminate the great majority of 
potential matches and na r row the search to a small subset of a large file, 
so that h u m a n examiners could be used for the final individualization— 
a possible match ing of a suspect print wi th a single exemplar. Indeed, 
after September 11, 2001, the United States government accelerated 
efforts to develop rapid computer-assisted me thods to compare quickly 
fingerprint scans of individuals a t tempt ing to enter the country against 
compu te r databases of fingerprint features of known or suspected ter
rorists. These computer-assisted methods , k n o w n to fingerprint experts 
as "semi-lights-out systems," rely heavily u p o n numerically coded sum
maries of key features of an individuars fingerprints. Exploiting these 
features makes it possible to offer a h u m a n expert, whose final judg
m e n t is considered a necessity, at mos t a handful of exemplars to check 
for a match . 

For prosecut ion of criminals, the e lement of h u m a n expertise has 
proved to be critical. Fingerprint examiners, work ing for agencies such 
as the FBI or police depar tments , have varying levels of training and 
competence , bu t their presentat ions in cour t invariably rest on two 
pillars: 

• T h e claim that fingerprints are literally unique: N o two people, 
no t even identical twins, have ever been found to have identical 
fingerprints. 
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• The certainty of the examiner: Wi th "100 percent confidence" (or 
words to that effect), he or she is certain that the match be tween 
the crime-scene prints and the examplar prints of the defendant is 
correct; they are fingerprints of the same person. 

HOW DOES AN EXPERT "MATCH" FINGERPRINTS? 

There is n o completely specified protocol for match ing fingerprints, bu t 
experts generally ma rk up the pictures of the prints in a way someth ing 
like this: 

C r i m e scene p r i n t S ing le f i n g e r f r o m e x e m p l a r 

Every skilled and experienced examiner uses a variety of comparisons 
be tween prints to make a match . To their credit, they subscribe to an 
admirably sound principle, the one dissimilarity doctrine, which says 
that if any difference be tween the prints is found that cannot be 
accounted for or explained—say, by a smudge or speck of d i r t—then a 
potential match mus t be rejected. 

The mos t c o m m o n tes t imony relies, however, on the de te rmina t ion 
of certain features called minutiae—literally, points on the prints where 
ridgelines end or split in two. These are somet imes called Gal ton points, 
in homage to Sir Francis Galton, the pioneering English statistician, 
whose 1892 book Finger Prints established the basic me thods for compar
ing these points on two prints to make an identification. Unfortunately 
for the practice of fingerprint forensics, n o standard has been estab
lished—at least in American practice—for the m i n i m u m n u m b e r of 
points of commonal i ty needed to de te rmine a reliable match . Many a 
defense lawyer or judge has been frustrated by the lack of any standard
ization of the n u m b e r of points: Is twelve a sufficient number? Is eight 
enough? In Australia and France, the m i n i m u m n u m b e r is twelve. In 
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Italy it is sixteen. In the United States, rules of t h u m b (no pun intended) 
vary from state to state, even from police depar tment to police depart
men t . Essentially, the position of fingerprint experts in court seems to 
have been "I generally require at least X points," where X is never larger 
than the n u m b e r in the present case. 

FINGERPRINT EXPERTS VERSUS THE LIKES OF 
CHARLIE EPPES 

In recent years there has been a growing chorus of opposition to the 
courts ' formerly routine acceptance of the automatic certainty of matches 
claimed by fingerprint expert witnesses. Like Charlie Eppes, a number of 
mathematicians, statisticians, other scientists, and distinguished lawyers— 
even some judges—have complained in court and in public about the lack 
of standards for fingerprint evidence, the performance certification of 
expert examiners, and, most important of all, the lack of scientifically 
controlled validation studies of fingerprint matching—that is, the lack of 
any basis for determining the frequency of errors. 

Referring to an acronym for the usual me thods of fingerprint identi
fication, ACE-V, a federal judge commented:* 

The cour t further finds that, while the ACE-V methodology 
appears to be amenable to testing, such testing has no t yet been 
performed. 

To experts in the me thods of scientific investigation, it is simply mind-
boggling to hear fingerprint evidence justified by the "no two are ever 
the same" claim. Tha t is, at best, the right answer to the w r o n g ques
tion. Even if the one-trillion-plus possible pairings of full-set "exemplar" 
prints from the FBI's 150-million-set noncriminal database were thor
oughly examined by the best h u m a n experts and found to satisfy the "no 
t w o ever ma tch" claim, the level of assurance provided by that claim 
alone wou ld be minimal . T h e right sort of quest ion is this: H o w often 

*United States v. Sullivan, 246 F. Supp . 2 d 700, 704 (E.D. Ky. 2003). 
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are individual experts w r o n g when they declare a ma tch be tween a 
high-quality exemplar of ten fingers and smudged partial prints of t w o 
fingers lifted from a crime scene? 

There is a compell ing irony in the fact that D N A evidence (discussed 
in Chapter 7), which in the 1980s and '90s only gradually earned its place 
in the cou r t room as "genetic fingerprinting" th rough scientific valida
tion studies, is n o w being cited as the standard for validating the claimed 
reliability of fingerprint evidence. The careful scientific foundation that 
was laid then, br inging data and hardcore probability theory and 
statistical analysis to bear on questions about the likelihood of 
an er roneous match of DNA, has by n o w established a "single 
point of compar ison"—but a very powerful one—for fingerprint 
evidence. Charlie's question, "But prints don ' t have odds?" isn't heard 
only on T V 

Just after Christmas in 2005, the Supreme Judicial Cour t in Massa
chusetts ruled that prosecutors in the retrial of defendant Terry L. Pat
terson could no t present the proposed tes t imony of an expert examiner 
matching Patterson's prints wi th those found on the car of a Boston 
police detective w h o was murdered in 1993. T h e ruling came after the 
court solicited amicus curiae ("friend of the court") briefs from a variety 
of scientific and legal experts regarding the reliability of identifications 
based on "simultaneous impressions." Specifically, the examiner from 
the Boston Police Depa r tmen t was prepared to testify that three partial 
prints found on the detective's car appeared conclusively to have been 
made at the same t ime, therefore by the same individual, and that he 
had found six points of compar ison on one finger, two on ano ther fin
ger, and five on a third. 

Even by the loose standards of American fingerprint experts regarding 
the min imum number of points required to declare a match, this combin
ing of different fingers wi th just a few points of comparison on each 
one—that is, the use of "simultaneous impressions"—is quite a stretch. 
Although at least one of the amicus briefs, authored by a blue ribbon t eam 
of statisticians, scientists, and legal scholars, asked the court to rule that all 
fingerprint evidence should be excluded from trials until its validity has been 
tested and its error rates determined, the court (perhaps not surprisingly) 
limited its ruling to the particular test imony offered. 
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T h e a rguments m a d e in Patterson and in several o ther similar cases 
cite recent examples of mistakes m a d e in fingerprint identifications 
offered in criminal trials. O n e of these was the 1997 conviction of 
Stephan Cowans for the shoot ing of a Boston pol iceman based on a 
combinat ion of eyewitness tes t imony and a thumbpr in t found on a 
glass m u g from which the shooter d rank water. After serving six years 
of a thirty-five-year sentence, Cowans had earned enough money in 
prison to pay for a DNA test of the evidence. Tha t test exonerated him, 
and he was released from prison. 

In another no tor ious case, the lawyers defending Byron Mitchell on 
a charge of a r m e d robbery in 1999 quest ioned the reliability of his iden
tification based on t w o prints lifted from the getaway car. To bolster the 
prosecution 's a rguments on admissibility of the test imony of their fin
gerpr int expert, the FBI sent the t w o prints and Mitchell's exemplar to 
fifty-three cr ime labs for confirmation. This test was no t nearly so 
stringent as the kinds of tests that scientists have proposed, involving 
match ing be tween groups of fingerprint samples. Nevertheless, of the 
thirty-nine labs that sent back opinions, nine (23 percent) declared that 
Mitchell 's prints were not a ma tch for the prints from the getaway car. 
T h e judge rejected the defense challenge, however, and Mitchell was 
convicted and sent to prison. As of this writ ing, the FBI has no t repeated 
this sor t of test, and the bureau still claims that there has never been a 
case where one of their fingerprint experts had given cour t test imony 
based on an e r roneous match . Tha t claim hangs by a slender thread, 
however, in light of the following story. 

AN FBI FINGERPRINT FIASCO: THE BRANDON 
MAYFIELD CASE 

O n the m o r n i n g of March 11,2004, a series of coordinated bombings of 
the c o m m u t e r train system in Madrid killed 191 people and wounded 
m o r e than t w o thousand. T h e attack was b lamed on local Islamic 
extremists inspired by Al Qaeda. T h e attacks came three days before 
Spanish elections, and an angry electorate ousted the conservative gov
e rnmen t , which had backed the U.S. effort in Iraq. T h r o u g h o u t Europe 
and the world, the repercussions were eno rmous . N o surprise, then, 
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that the FBI was eager to help w h e n Spanish authorit ies sent t h e m a 
digital copy of fingerprints found on a plastic bag full of de tonators 
discovered near the scene of one of the bombings—fingerprints that the 
Spanish investigators had no t been able to match . 

The FBI's database included the fingerprints of a thirty-seven-year-old 
Portland-area lawyer, Brandon Mayfield, obtained w h e n he served as a 
lieutenant in the United States Army. In spite of the relatively poor qual
ity of the digital images sent by the Spanish investigators, three examin
ers from the FBI's Latent Fingerprint Unit claimed to make a positive 
match be tween the crime-scene prints and those of Mayfield. T h o u g h 
Mayfield had never been to Spain, the FBI was understandably intrigued 
to find a match to his fingerprints: H e had converted to Islam in the 1980s 
and had already attracted interest by defending a Muslim terrorist sus
pect, Jeffrey Battle, in a child custody case. Acting under the U.S. Patriot 
Act, the FBI twice surreptitiously entered his family's h o m e and removed 
potential evidence, including computers , papers, copies of the Koran, 
and what were later described as "Spanish documents"—some h o m e w o r k 
papers of one of Mayfield's sons, as it tu rned out . Confident that they 
had someone w h o no t only matched the criminal fingerprints bu t also 
was plausibly involved in the Madrid bombing plot, the FBI imprisoned 
Mayfield under the Patriot Act as a "material witness." 

Mayfield was held for t w o weeks , then released, bu t he was no t fully 
cleared of suspicion or freed from restrictions on his movemen t s until 
four days later, w h e n a federal judge dismissed the "material witness" 
proceedings against h im, based substantially u p o n evidence that Spanish 
authorities had linked the original latent fingerprints to an Algerian. It 
tu rned ou t that the FBI had k n o w n before detaining Mayfield that the 
forensic science division of the Spanish National Police disagreed wi th 
the FBI experts ' opinion that his fingerprints were a ma tch for the crime-
scene prints. After the judge 's ruling, which ordered the FBI to re tu rn all 
proper ty and personal documen t s seized from Mayfield's h o m e , the 
bureau issued a s ta tement apologizing to h im and his family for 
"the hardships that this ma t t e r has caused." 

A U.S. At torney in Oregon, Karin Immergut , t ook pains to deny that 
Mayfield was targeted because of his religion or the clients he had rep
resented. Indeed, cour t documents suggested that the initial e r ror was 
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due to an FBI supercomputer ' s selecting his prints from its database, and 
that the e r ror was c o m p o u n d e d by the FBI's expert analysts. As would 
be expected, the government conducted several investigations of this 
embarrass ing failure of the bureau 's highly respected system of finger
print identification. According to a November 17, 2004, article in The 
New York Times, an internat ional t e a m of forensic experts, led by Robert 
B. Stacey, head of the quality-assurance unit of the FBI's Quantico, 
Virginia, laboratory, concluded that the two fingerprint experts asked to 
confirm the first expert 's opinion erred because "the FBI culture dis
couraged fingerprint examiners from disagreeing wi th their superiors." 
So m u c h for the m y t h of the dispassionate, objective scientist. 

WHAT'S A POOR MATHEMATICIAN TO DO? 

In T V land, D o n and Charlie would no t rest until they found out not 
only w h o commi t t ed the garrot ing murder , bu t whe ther Carl Howard 
was innocent of the previous crime, and, if so, w h o was the real killer. 
Predictably, within the episode's forty-two minutes (the t ime allotted 
be tween commercials) , Charlie was able to help D o n and his fellow 
agents apprehend the real perpetrator—of both crimes—who tu rned out 
to be the eyewitness w h o identified Carl Howard from the police lineup 
(a conflict of interest that does no t occur too often in actual cases). The 
fingerprint identification of Carl H o w a r d was jus t plain wrong . 

Given the less than reassuring state of affairs in the real world, wi th 
the looming possibility of challenges to fingerprint identifications bo th 
in n e w criminal cases and in the form of appeals of old convictions, 
m a n y mathemat ic ians and statisticians, along wi th other scientists, 
wou ld like to help. N o one seriously doubts that fingerprints are an 
extremely valuable tool for cr ime investigators and prosecutors. But the 
principles of fairness and integrity that are par t of the very foundations 
of the criminal justice system and the system of knowing called science 
d e m a n d that the long-overdue study and analysis of the reliability of 
fingerprint evidence be under taken wi thou t further pointless delay. The 
rate of errors in expert match ing of fingerprints is clearly dependent on 
a n u m b e r of mathematical ly quantifiable factors, including: 
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• the skill of the expert 

• the protocol and m e t h o d used by the expert in the individualiza
tion process 

• the image quality, completeness, and n u m b e r of fingers in the 
samples to be compared 

• the n u m b e r of possible matches the expert is asked to consider 
for a suspect print 

• the t ime available to per form the analysis 

• the size and composi t ion of the gallery of exemplars available 
for comparison 

• the frequency of near ag reement be tween partial or comple te 
prints of individual fingers from different people. 

Perhaps the biggest driver for considerat ion of such quantifiable fac
tors in the coming years will no t be the demands of the criminal justice 
system, but the need for substantial development and improvement of 
au tomated systems for fingerprint verification and identification—for 
example, in "biométrie security systems" and in rapid fingerprint screen
ing systems for use in home land security. 

FINGERPRINTS ONLINE 

By the time the twentieth century was drawing to a close, the FBI's collec
tion of fingerprints, begun in 1924, had grown to more than 200 million 
index cards, stored in row after row of filing cabinets (over 2,000 of them) 
that occupied approximately an acre of floor space at the FBI's Criminal 
Justice Information Services Division in Clarksburg, West Virginia. The 
bureau was receiving more than 30,000 requests a day for fingerprint com
parisons. The need for electronic storage and automated search was clear. 

The challenge was to find the mos t efficient way to encode digitized 
versions of the fingerprint images. (Digital capture of fingerprints in the 
first place came later, adding an extra layer of efficiency, though also rais
ing legal concerns about the fidelity of such crucial i tems of evidence 
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w h e n the alteration of a digital image is such an easy matter.) The solu
tion chosen made use of a relatively n e w branch of mathematics called 
wavelet theory. This choice led to the establishment of a national stan
dard: the discrete wavelet transform-based algorithm, sometimes referred 
to as Wavelet /Scalar Quant izat ion (WSQ). 

Like the m u c h m o r e widely k n o w n JPEG-2000 digital image encod
ing standard, which also uses wavelet theory, W S Q is essentially a com
pression algori thm, which processes the original digital image to give a 
file that uses less storage. W h e n scanned at 500 pixels per inch, a set of 
fingerprints will genera te a digital file of a round 10 MB. In the 1990s, 
w h e n the system was be ing developed, that would have mean t that the 
FBI needed a lot of electronic file space, bu t the problem was not so 
m u c h the storing of files, bu t of moving t h e m around the country (and 
the world) quickly, somet imes over slow m o d e m connections to law 
enforcement agents in r emote locations. The W S Q system reduces the 
file size by a factor of 20, which means that the resulting file is a mere 
500 KB. There 's mathemat ica l power for you. To be sure, you lose some 
details in the process, b u t no t enough to be noticeable to the h u m a n eye, 
even w h e n the resulting image is b lown u p to several t imes actual fin
gerpr int size for a visual comparison.* 

T h e idea beh ind wavelet encoding (and compression) goes back to 
the w o r k of the early nineteenth-century French mathemat ic ian Joseph 
Fourier, w h o showed h o w any real-world function that takes real num
bers and produces real n u m b e r values can be represented as a sum of 
multiples of the familiar sine and cosine functions. (See Figure 7.) 
Fourier himself was interested in functions that describe the way heat 
dissipates, bu t his mathemat ics works for a great many functions, includ
ing those that describe digital images. (From a mathemat ical standpoint, 
a digital image is a function, namely one that assigns to each pixel a 
n u m b e r that represents a particular color or shade of gray.) For almost 

*The FBI d i d cons ider us ing JPEG, b u t the special nature o f f ingerpr in t images— 
essent ial ly narrowly separa ted , "b lack , " paral le l , cu rved lines on a " w h i t e " back
g r o u n d — m e a n t t ha t it was m u c h m o r e ef f ic ient t o use a special ly ta i lo red system. 
For many images , such as a fair ly un i fo rm b a c k g r o u n d , JPEG-2000 can achieve a 
compress ion rate o f 200 . 
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all real-world functions you need to add together infinitely m a n y sine 
and cosine functions to reproduce the function, bu t Fourier provided a 
m e t h o d for doing this, in particular for comput ing the coefficient of 
each sine and cosine function t e r m in the sum. 

F igu re 7. Fou r ie r analys is o f a w a v e (such as t h e s o u n d w a v e s h o w n 

a b o v e ) r ep resen t s i t as an i n f i n i t e s u m o f s ine w a v e s (such as t h e o n e 

s h o w n b e l o w ) o f d i f f e r e n t f r e q u e n c i e s a n d a m p l i t u d e s . 

Part of the complexity of Fourier analysis, and the reason it usually 
takes infinitely many sine and cosine t e rms to generate a given function, 
is that the sine and cosine functions continue forever, undula t ing in a 
regular wave fashion. In the 1980s, a few mathematicians began to play 
with the idea of carrying ou t Fourier's analysis using finite pieces of a 
wave, a so-called wavelet. (See Figure 8.) The function that generates 
such a wavelet is more complicated than the sine and cosine functions, 
but the extra complexity of the function is more than compensated by 
the great increase in simplicity of the resulting representation of a given 
function. The idea is to start wi th a single "mother wavelet," and create 
daughters by translating (shifting) the mo the r by one uni t or else expand
ing or contracting it by a power of 2. You then express your given function 
as a sum of daughter wavelets generated by the single mother . 
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Figure 8. Wavelets. The one on the left is called, for obvious reasons, 
the "Mexican hat." 

Wavelet theory really took off in 1987, when Ingrid Daubechies, of 
A T & T Bell Laboratories, constructed a family of wavelets that made 
this process particularly efficient when the calculations were carried out 
on a computer . It was no t long after Daubechies ' advance that the FBI 
started to look seriously at using wavelets to encode fingerprints. Instead 
of coding the bits that make u p a digitized fingerprint image, the FBI's 
compu te r encodes the key numerical parameters (coefficients) in the 
wavelet representat ion of the image function. W h e n a law enforcement 
agent asks for a particular set of fingerprints to be displayed on a 
compu te r screen or pr inted out , the compute r actually re-creates the 
image using the coefficients stored in the file. 

Wi th fingerprints encoded as sequences of numbers , it becomes a 
relatively easy task to carry ou t au tomated compute r searches looking 
for a ma tch of a fingerprint in the database wi th one obtained from, say, 
a cr ime scene. The compu te r searches for strings of numbers that are 
very close to the string of number s that comes from the sample. (You 
have to adopt a mathematical ly sophisticated approach to decide what 
"very close" amoun t s to in this situation; apart from that, it's a straight
forward process.) 

O n e fascinating proper ty of wavelet encoding is that it automatically 
picks ou t the same features of an image that our eyes do. The wavelet 
coefficients in the final representat ion correspond to pixels that are very 
different from their neighbors, typically at the edge of the objects in the 
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image. This means that wavelets re-create an image most ly by drawing 
edges—which is exactly wha t we do w h e n we draw a sketch. Some 
researchers have suggested that the analogy be tween wavelet trans
forms and h u m a n vision is n o accident, and that our neurons filter visual 
signals in a m a n n e r similar to wavelets. 
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PROTEST 

A h o m e m a d e b o m b explodes benea th a car parked outside a U.S. A r m y 
recrui tment office in d o w n t o w n Los Angeles, killing a nearby pedes
trian and injuring his wife. T h e b o m b i n g has all the earmarks of an 
ant i -Vietnam War b o m b i n g carried ou t thirty-five years earlier to the 
day, even down to the message sent to the FBI (this t ime by e-mail) 
claiming responsibility and promis ing further attacks, the only change 
in the wording being the substi tut ion of "Iraq" for "Vietnam". 

The FBI had always believed the 1971 b o m b i n g was the w o r k of an 
antiwar protester n a m e d Mat t Stirling, w h o had fled immediate ly after 
the bombing and had never been apprehended. Don 's first t hough t is 
that Stirling has re tu rned to carry ou t some sort of anniversary repeat, 
and he retrieves all the files from the earlier case. 

Still, it could be a copycat b o m b i n g carried ou t by some o ther per
son or group. But if it was, the n e w perpet ra tors wou ld have to have had 
access to some detailed information about the previous event, so 
maybe the old case could provide clues to w h o organized the n e w one . 
Either way, D o n has to find ou t all he can about the 1971 bombing . 
Charlie looks on as his b ro ther works t h rough the m o u n t a i n of 
information. 



138 THE NUMBERS BEHIND NUMB3RS 

D O N : Right now, Stirling's ou r pr ime suspect. But thirty-five years 
is a long t ime to pick u p a trail. 

C H A R L I E : But it seems you have a lot of data from the original case. I 
can use a b ranch of m a t h called social ne twork analysis—it 
looks at the s t ructure of groups , h o w lines of connection 
develop, reveals h idden pat terns. It can tell us about h o w 
Stirling fit into the organization, which in tu rn could tell us 
w h o he worked closely with, and the people he influenced. 

D O N : Your m a t h could tell us if it's a copycat? 
C H A R L I E : It will identify the mos t likely suspects, including whether or 

no t Stirling lands on that list. 

This is h o w viewers of the second-season episode of NUMB3RS called 
"Protest ," broadcast on March 3, 2006, were introduced to social net
w o r k analysis, a relatively n e w branch of mathemat ics that became 
hugely impor tan t in the wake of 9 / 1 1 . 

A NEW KIND OF WAR, A NEW KIND OF MATH 

T h e events of 9 /11 instantly altered American perceptions of the words 
"terrorist" and "network", and the United States and other countries 
rapidly started to gear u p to fight a n e w kind of war against a new kind 
of enemy. In conventional warfare, conducted in specific locations, it 
was impor tan t to unders tand the terrain in which the battles will be 
fought. In the wa r against terror, there is n o specific location. As 9/11 
showed only t oo well, the ba t t leground can be anywhere . The terror
ists' power base is n o t geographic; rather, they operate in networks, 
wi th m e m b e r s distributed across the globe. To fight such an enemy, you 
need to unders tand the n e w "terrain": ne tworks—how they are 
const ructed and h o w they opera te . 

T h e mathemat ica l study of ne tworks , known as ne twork theory or 
n e t w o r k analysis, is based on a b ranch of pure mathemat ics called graph 
theory, which studies the connect ions be tween points in a set. In using 
techniques of g r a p h theory and ne twork analysis to analyze social net
works , such as terrorist ne tworks , mathemat ic ians have developed a 
specialized subdiscipline known as social ne twork analysis (SNA). SNA 
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saw rapid development in the years leading u p to 9 /11 and has been an 
even hot ter topic since. The applicability of SNA to fight crime and 
terrorism had been known to specialists for m a n y years, bu t it was only 
after the Al Qaeda 9 /11 plot became known that the general public real
ized the critical impor tance of "connecting the dots" in investigations 
and surveillance of terrorists. 

THE 9/11 ATTACKS AS A CASE STUDY 

The basic facts are n o w well known: O n the m o r n i n g of September 11, 
2001, four commercial airliners were hijacked and t u rned into weapons 
by Al Qaeda terrorists. T w o of t h e m were crashed into the World Trade 
Center in N e w York, one into the west w ing of the Pentagon in 
Washington, D.C., and another, believed to be heading for the W h i t e 
House , was heroically diverted by passengers, w h o perished along wi th 
the terrorists w h e n the plane crashed in a field seventy-five miles from 
Pittsburgh, Pennsylvania. 

The nineteen terrorists w h o boarded the planes that day were carry
ing out a plot orchestrated by Pakistan-born Khalid Sheik M o h a m m e d , 
w h o was captured in 2003. The formal inquiry later conducted by the 
panel known as the 9 /11 Commiss ion out l ined the information and 
warnings that American intelligence agencies had prior to the attacks. 
The Depar tmen t of H o m e l a n d Security has vowed that all of the intel
ligence agencies would henceforth share the information needed for 
analysts to "connect the dots" and prevent future terrorist attack plans 
from succeeding. 

H o w do mathematicians contr ibute to this effort? And wha t sort of 
methods do they use to analyze terrorist networks? 

It is difficult to do justice to the range and power of the mathematical 
methods used by intelligence agencies in wha t has become known as the 
War on Terror. In fact, it's no t just difficult to describe all the techniques 
used, it is illegal—some of the best w o r k done by mathematicians on 
these problems is highly classified. 

The National Security Agency, for instance, known to be the largest 
single employer of research-level mathemat ic ians in the world, and affil
iated organizations such as the Centers for Communica t ions Research 
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(CRC), employ some of the mos t powerful and creative mathematical 
problem-solvers in the world. These mathematic ians develop highly 
specialized me thods and use t h e m to solve real-world problems in cryp-
to logy speech and signal processing, and counter terror ism. The NSA 
and similar organizations also mainta in an extensive ne twork of their 
own—a ne twork of mathemat ic ians from universities (including both 
authors of this book) w h o w o r k wi th t h e m from t ime to t ime to help 
develop n e w me thods and solve hard problems. (In an early episode of 
NUMB3RS, FBI agent D o n Eppes is surprised to learn that his younger 
b ro the r Charlie has consulted for the NSA and has a security clearance 
at a higher level than Don's.) 

Perhaps the best way (and the safest for your two authors) to provide 
a glimpse of some of the me thods used is to look at studies that have 
been done by experts outside of the intelligence networks, using pub
licly available information. O n e of the mos t interesting public analyses 
of the 9 /11 terrorists was published in April 2002 in the online journal 
First Monday. The article "Uncloaking Terrorist Ne tworks" was writ ten 
by Valdis E. Krebs, a mathematical ly trained managemen t consultant 
wi th extensive experience in applying social ne twork analysis to help 
clients like IBM, Boeing, and Price Waterhouse Coopers unders tand the 
way information flows and relationships operate in complex h u m a n 
systems. Krebs used some standard SNA calculations to analyze the 
s t ructure of parts of the Al Qaeda ne twork that (publicly available 
documen t s showed) were involved in the 9 /11 attack. Figure 9 shows a 
g r a p h of relationships a m o n g some of the key individuals, considered 
by Krebs and a later analysis published on his website (orgnet.com). The 
links indicate direct connect ions be tween terrorists suspected in early 
investigations, beginning in January 2000, when the CIA was informed 
that t w o Al Qaeda operatives, Nawaf Alhazmi and Khalid Almihdhar 
(shown in one of the boxes) had been pho tographed at tending a meet
ing of k n o w n terrorists in Malaysia, after which they re turned to Los 
Angeles, whe re they had been living since 1999. T h e other box contains 
Fahad al Quso , whose connect ion to Almihdhar was established when 
b o t h a t tended the Malaysia meet ing. Al Quso and Walid Ba' Attash 
appeared later in 2000 on the list of suspects in the October 12 bombing 
of the USS Cole while the destroyer was sitting in the Yemeni por t of 

http://orgnet.com
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/alid Ba'Attash [Khallad] 

USS Cole Bombing Suspects 

Fahad al Quso 

Ahmed AInami Majed Moqed Ahmed Al-Hada 

Mohamed Abdi 

Figure 9. G r a p h o f t h e A l Q a e d a g r o u p b e h i n d t h e S e p t e m b e r 11 at tacks. 

Aden, an attack that killed seventeen sailors. Included in the n e t w o r k 
shown in Figure 9 are eleven of the nineteen September 11 terrorists, 
all of w h o m have either a direct link to Almihdhar and Alhazmi, the 
original suspects, or else are indirectly connected at a distance once 
removed. 

Of course, this ne twork g r a p h was drawn "after the fact" of the 9 /11 
attacks and the subsequent investigations. The key challenge for investi
gators—and therefore for mathematicians—is to extract information in 
advance, typically from m u c h larger pictures, including hundreds or 
even thousands of individuals. Such large ne tworks are likely to give rise 
to many false leads. Normal ly they will also suffer from the highly trou
blesome p h e n o m e n o n of missing data—for example, names of impor
tant participants w h o are absent from the g raph because their existence 
is not known or w h o are present bu t whose links to others in the g raph 
are not known. 

A particularly impor tan t challenge is to identify in a large ne twork 
those individuals w h o play key roles—as leaders, as facilitators, as com
municat ions "go-betweens," and so on. T h e mathemat ica l tools of 
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graph theory and social ne twork analysis can be applied to identify such 
individuals. For example, in analyzing a larger ne twork graph in his 2002 
paper, Krebs per formed calculations of three standard "scores" designed 
to point ou t w h o are the mos t impor tan t people in a network. The top 
five individuals for each of these scores were as follows. 

Degree score 

M o h a m e d A t t a 

M a r w a n A l -Shehh i 

Hani Han jou r 

Essid Sami Ben 

Khema is 

N a w a f A l h a z m i 

Betweenness score 

M o h a m e d A t t a 

Essid Sami Ben 

Khemais 

Zacarias Moussaou i 

N a w a f A lhazm i 

Hani Han jou r 

Closeness score 

M o h a m e d A t t a 

Ma rwan A l -Shehh i 

Hani Han jour 

N a w a f A lhazmi 

Ramzi Bin a l -Shibh 

At the top of the list for all three calculated scores is Mohamed Atta, 
whose role as the ringleader of the 9/11 plot was acknowledged by Osama 
bin Laden in a notorious videotape released soon after the attacks. Others, 
such as Alhazmi, one of the two original suspects, and Hanjour and 
Al-Shehhi, were a m o n g the nineteen w h o boarded the planes on 9 /11 and 
died that day. Others were not aboard the planes but played key roles: 
Moussaoui, later convicted as the "twentieth hijacker," Bin al-Shibh, Atta's 
r o o m m a t e in Germany w h o couldn't gain entry to the United States, and 
Ben Khemais, the head of Al Qaeda's European logistical network, later 
convicted in Milan on conspiracy charges in another plot. 

T h e fact that these key individuals were singled ou t from a ne twork 
g raph m u c h larger than the one shown above, using standard social net
w o r k analysis calculations, illustrates the usefulness of such calcula
tions, which are currently being performed thousands of times a day by 
compu te r systems set u p to help analysts moni tor terrorist networks. 

BASIC GRAPH THEORY AND "MEASURES OF 
CENTRALITY" 

To unders tand the calculations used to single out the key individuals in 
a ne twork graph, we need to assemble a few basic ideas. First of all, the 
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mathematical concept of a g raph as used in the present discussion is no t 
the same as the m o r e c o m m o n not ion of "graphing a curve" wi th verti
cal and horizontal axes. Rather, it refers to a set of points called nodes— 
people, for example—with some pairs of nodes connected by an edge 
and other pairs of nodes no t connected. These so-called simple graphs , 
wi th n o multiple edges allowed be tween the same two nodes, are used 
to represent the existence of some relationship, such as "works wi th" or 
"has a bond wi th" or "is k n o w n to have communica ted with" . W h e n 
ever two nodes do no t have an edge connect ing them, it means that a 
relationship does no t exist—or is no t known to exist. 

Pictures of graphs are helpful, bu t the same g raph can be represented 
by many different pictures, since the location of the nodes in a picture is 
chosen entirely as a mat te r of convenience (or to make things look nice). 
Mathematically, a g raph is no t a picture; it is an abstract set of nodes 
(also called vertices), together wi th edges connect ing certain pairs of 
nodes. 

A basic not ion of g raph theory that tu rns out to be impor tan t in 
social ne twork analysis is the degree of a node—tha t is, the n u m b e r of 
o ther nodes directly connected to it by edges. In a g raph describing a 
h u m a n network, nodes of high degree represent "well-connected" peo
ple, often leaders. (Note that the w o r d "degree" here has a different 
meaning from the one associated wi th the phrase "six degrees of separa
tion," which is discussed later in this chapter.) 

But direct connections are no t all that matters . Another impor tan t 
notion is the "distance" be tween two nodes. Any two nodes are consid
ered connected (possibly indirectly) if there is some path be tween 
them—that is, some sequence of nodes starting at one and ending at the 
other, wi th each node connected to the next by an edge. In other words, 
a path is a route be tween two nodes where one travels along edges, using 
intermediate nodes as "stepping-stones." The length of a pa th is the 
number of edges it contains, and the shortest possible length of a pa th 
between nodes A and B is called the distance be tween them, denoted by 
d(A,B). Paths that have this shortest possible length are called geodesic 
paths. In particular, every edge is a geodesic pa th of length 1. 

The not ion of distance be tween nodes leads to o ther ways of identi
fying key nodes—that is, it leads to o ther measures of centrality that can 
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be used to give each node a "score" that reflects something about its 
potential impor tance . The concept of "betweenness" gives each node a 
score that reflects its role as a stepping-stone along geodesic paths 
be tween o ther pairs of nodes . T h e idea is that if a geodesic pa th from A 
to B (there may be m o r e than one) goes th rough C, then C gains poten
tial impor tance . More specifically, the betweenness of C as a link 
be tween A and B is denned as 

the n u m b e r of geodesic paths from A to B that go th rough C 

divided by 

the n u m b e r of geodesic paths from A to B. 

The overall be tweenness score of C is calculated by adding u p the results 
of these calculations for all possible examples of A and B. Here is an 
example of a node in a g raph having low degree bu t high betweenness: 

Such nodes—or the people they represent in a h u m a n network—can 
have impor tan t roles in providing connections be tween sets of nodes 
that o therwise have few other connections, or perhaps n o other connec
tions. 

T h e third "centrality measure" used by Krebs, and shown in the table 
above, is the "closeness" score. Roughly speaking, it indicates for each 
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node h o w close it is to the o ther nodes in the graph. For a n o d e C, you 
first calculate the distances d(C,A), d(C,B), and so on, to all of the o ther 
nodes in the graph. T h e n you add the reciprocals of these distances— 
that is, you calculate the s u m 

1 / d(C,A) + 1 / d(C,B) + . . . 

The smaller the distances are be tween C and o ther nodes , the larger 
these reciprocals will be . For example, if C has 10 nodes at distance 1 (so 
C has degree 10), then the closeness calculation starts wi th 10 ones, and 
if there are an additional 60 nodes at distance 2, t hen w e add "xiz 60 
times, and if there are 240 nodes at distance 3, then w e add "W 540 
times, gett ing 

10 x 1 + 60 x 1/2 + 240 x 1/3 . . . = 10 + 30 + 80 

Whereas degree measures count only immediate ly adjacent nodes , 
closeness gives credit for having m a n y nodes at distance 2, m a n y m o r e 
at distance 3, and so on. Analysts consider closeness a good indication of 
h o w rapidly information can spread th rough a n e t w o r k from one n o d e 
to others. 

RANDOM GRAPHS: USEFUL TOOLS IN UNDER
STANDING LARGE NETWORKS 

The a m o u n t of detailed information conta ined in a large graph , such as 
the graphs genera ted by the NSA in moni to r ing communica t ions includ
ing phone calls or compute r messages in regions such as the Middle 
East, is so huge that mathemat ic ians naturally wan t to find "scaled-
down models" for them—similar g raphs that are small enough that 
their features can be studied and unders tood, and which can then pro
vide clues about wha t to look for in analyzing the actual graphs . Recent 
research on graphs and ne tworks has led to an explosion of interest in 
what are called r a n d o m graphs . These graphs can help no t only in 
unders tanding the structural features of large graphs and ne tworks , b u t 
in estimating h o w m u c h information is missing in a g raph const ructed 
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from incomplete data. Since it is virtually impossible to get complete 
data about communica t ions and relationships be tween people in a net
work—part icularly a covert network—this kind of est imation is criti
cally impor tan t . 

Interest in the study of r a n d o m graphs was sparked in the late 1950s 
by the research of t w o Hungar ian mathematicians, Paul Erdôs and 
Alfred Renyi. W h a t they investigated were quite simple models of 
r a n d o m graphs . T h e mos t impor tan t one works like this: 

Take a certain n u m b e r of nodes n. Consider every pair of nodes 
(there are n x ( n - l ) / 2 pairs) and decide for each of these pairs 
whe the r they are connected by an edge by a r a n d o m experi
ment—namely, flip a coin that has probability p of coming up 
heads, and insert an edge whenever the flip results in heads. 

Thus , every edge occurs at r andom, and its occurrence (or not) is entirely 
unaffected by the presence or absence of o ther edges. Given its r a n d o m 
construct ion you might th ink that there is little to say about such a 
graph , b u t the opposite tu rns ou t to be the case. Studying r andom 
graphs has proved useful, particularly in helping mathematic ians under
stand the impor tan t s tructural idea called g raph components . If every 
node in a g r a p h has a pa th leading to every o ther node , the g raph is said 
to be connected. Otherwise , the nodes of the g raph can be separated 
into t w o or m o r e components—sets of nodes within which any two are 
connected by some path, bu t wi th no paths connect ing nodes belonging 
to different componen ts . (This is a mathematician 's way of describing 
the "You can't get there from here" phenomenon . ) 

Erdôs and Renyi showed that values of p close to 1 In are critical in 
de te rmin ing the size and n u m b e r of components in a r a n d o m graph. 
(Note that any one node will be connected by an edge to (n-1) x p other 
nodes—on average. So if p is close to 1 In the average degree of all the 
nodes is about 1.) Specifically, Erdôs and Renyi demons t ra ted that if the 
n u m b e r of edges is smaller than the n u m b e r of nodes by some percent
age, t hen the g raph will t end to be sparsely connected—with a very 
large n u m b e r of componen ts—whereas if the n u m b e r of edges is larger 
by some percentage than the n u m b e r of nodes, the g raph will likely 
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contain one giant componen t that contains a noticeable fraction of the 
nodes, bu t the second-largest componen t will likely be m u c h smaller. 
Refinements of these results are still a subject of interesting mathemat i 
cal research. 

The study of r a n d o m graphs has seen an explosion of interest in the 
late 1990s and early 2000s on the par t of bo th pure mathemat ic ians and 
social ne twork analysts, largely thanks to the realization that there are 
far more flexible and realistic probability models for the sorts of g raphs 
seen in real-world networks . 

Since real-world ne tworks are constantly evolving and changing, the 
mathematical investigation of r a n d o m graphs has focused on models 
that describe the g rowth of graphs . In a very influential paper wr i t ten 
in 1999, Albert Barabasi and Reka Albert proposed a mode l of preferen
tial a t tachment , in which n e w nodes are added to a g raph and have a 
fixed quota of edges, which are r andomly connected to previously exist
ing nodes with probabilities propor t ional to the degrees of the existing 
nodes. This mode l achieved s tunning success in describing a very impor
tant graph—namely, the g r a p h whose nodes are websites and whose 
connections are links be tween websites. It also succeeded in providing a 
mechanism for generat ing graphs in which the frequency of nodes of 
different degrees follows a power law distribution—that is, the p ropor t ion 
of nodes that have degree n is roughly proport ional to Vn3. Later research 
has yielded me thods of "growing" r a n d o m graphs that have arbitrary 
powers like n 2 4 or n 2 7 in place of n 3 . Such me thods can be useful in 
model ing real-world ne tworks . 

SIX DEGREES OF SEPARATION: THE "SMALL 
WORLD" PHENOMENON 

Another line of mathemat ical research that has recently at t racted the 
attention of ne twork analysts is referred to as the "small wor ld model . " 
The catalyst was a 1998 paper by Duncan Watts and Steven Strogatz, in 
which they showed that wi thin a large ne twork the in t roduct ion of a 
few r a n d o m long-distance connect ions tends to dramatically reduce the 
diameter of the ne twork—that is, greatest distance be tween nodes in 
the network. These "transitory shortcuts" are often present in real-
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world ne tworks—in fact, Krebs' analysis of the 9 /11 terrorist ne twork 
described judiciously t imed meet ings involving representatives of dis
tant branches of the Al Qaeda ne twork to coordinate tasks and report 
progress in prepar ing for those attacks. 

T h e mos t famous study of such a p h e n o m e n o n was published by 
social psychologist Stanley Milgram in 1967, w h o suggested that if two 
U.S. citizens were picked at r a n d o m they would t u rn out to be con
nected on average by a chain of acquaintances of length six. Milgram's 
basis for that claim was an experiment , in which he recruited sixty peo
ple in O m a h a , Nebraska, to forward (by hand!) letters to a particular 
s tockbroker in Massachusetts by locating intermediaries w h o might 
prove to be "a friend of a friend of a friend." In fact only three of fifty 
a t tempts reached the target, bu t the novelty and appeal of the experi
m e n t and the concept underlying it ensured its lasting fame. 

T h e m o r e substantial w o r k of Watts and Strogatz has led to more 
accurate and useful research, bu t the "six degrees" idea has gained such 
a s t rong foothold that mytho logy dominates fact in popular thinking 
about the subject. T h e phrase "six degrees of separation" originated 
in the title of a 1991 play by John Guare , in which a w o m a n tells her 
daughter, " . . . everybody on the planet is separated by only six other 
people. . . . I a m bound , you are bound , to everyone on this planet by a 
trail of six people. It is a profound thought ." It's no t t rue , but it's an 
intr iguing idea. 

W h a t does in fact seem to be t rue is that the diameters of ne tworks— 
the longest pa th lengths (or average path lengths) be tween nodes—are 
smaller than one wou ld expect based on the sheer size of the networks. 
There are t w o intriguing examples that are m u c h talked about in widely 
separated fields. In the movie business, the "Kevin Bacon game" 
concerns the connect ions be tween film actors. Using actors as nodes of 
a graph, consider two actors as connected by an edge if they have 
appeared in at least one movie together. Because the actor Kevin Bacon 
has appeared in movies wi th a great many o ther actors, the idea origi
nated some years ago to show that two actors are no t far apart in this 
g raph if bo th have a small "Bacon number ," defined as their geodesic 
distance from Kevin Bacon. Thus , an actor w h o appeared in a movie 
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with Kevin would have a Bacon n u m b e r of 1, and an actor w h o never 
appeared with h im but was in a movie wi th someone whose Bacon 
N u m b e r is 1 would have a Bacon n u m b e r of 2, and so on. A recent study 
yielded the following distribution of Bacon numbers : 

0 1 2 3 4 5 6 7 8 

1 1,673 130,851 349 ,031 84 ,615 6 ,718 7 8 8 107 11 

The average distance from Kevin Bacon for all actors in the study was 
2.94. Accordingly, a conservative est imate of the distance be tween any 
two actors (obtained by adding their distances from Kevin Bacon) yields 
about 2 t imes 2.94—approximately 6! Of course, this is conservative 
(Kevin Bacon may no t be on the shortest pa th be tween two actors), bu t 
it also falls short of satisfying "six degrees of separat ion" for the actors-
in-the-same-movie graph, since some actors already have a distance 
from Kevin Bacon that is greater than 6. (Of course, actors k n o w m a n y 
other actors they haven't appeared in a movie with.) 

Mathematicians have a different he ro—the same Paul Erdôs w e m e t 
earlier. Erdôs was one of the mos t prolific mathemat ic ians of the twen
tieth century, wri t ing more than 1,500 papers wi th m o r e than 500 co
authors. In 2000, using data from sixty years of mathemat ica l papers in 
research journals , Jerrold Grossman constructed a "mathemat ical col
laboration g raph" wi th 337,454 nodes (authors) and 496,489 edges con
necting authors w h o wro te at least one paper together. The average 
degree is 3.92 and indeed there is one "giant componen t " containing 
208,200 vertices, wi th the remaining 45,139 vertices contained in 16,883 
components . The "Erdôs n u m b e r " of a mathemat ic ian is the shortest 
distance from that mathemat ic ian to Paul Erdôs. By convention it is 0 
for Erdôs himself, 1 for the 500-plus mathemat ic ians w h o wro te papers 
wi th him, 2 for those w h o wro te at least one paper wi th an Erdôs coau
thor, and so on. (Both authors of this b o o k have an Erdôs n u m b e r of 2; 
Devlin actually wro te a paper wi th Erdôs once, bu t it was never pub
lished, so it doesn' t count.) At the t ime of Grossman's study, the average 
Erdôs n u m b e r for all published mathemat ic ians was 4.7. T h e largest 
known Erdôs n u m b e r is 15. 
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AN EXAMPLE OF SUCCESSFULLY CONNECTING 
THE DOTS 

O n e of the goals of social ne twork analysis is to estimate which edges 
are missing in a g raph constructed from incomplete information. For 
example, the "triad p rob lem" concerns the p h e n o m e n o n of "triangular
ity." If A, B, and C are three nodes of a network, and it is known that a 
certain relationship exists be tween A and B and also be tween A and C, 
then there is some likelihood that the same relationship—perhaps 
"knows" or "communica tes wi th" or "works with"—exists be tween B 
and C also. Such likelihoods are best expressed as probabilities, and 
mathemat ic ians try to de te rmine h o w to est imate those probabilities 
based on all of the information available. For particular kinds of net
works and relationships, detailed information about the connection 
be tween A and B and the connect ion be tween A and C can be used to 
make intelligent guesses abou t the probability of a relationship be tween 
B and C. Those guesses can be combined wi th o ther sources of informa
tion about a n e t w o r k in a way that enhances the ability of an analyst to 
identify the key nodes that deserve the greatest at tent ion in further sur
veillance. 

O n June 7, 2006, dur ing a mee t ing in an isolated safehouse near 
Baqubah, Iraq, Abu Musab al-Zarqawi, the leader of Al Qaeda in Iraq 
and the mos t -wanted terrorist in that war zone , was killed by bombs 
dropped by American F-16 fighter jets. Locating and killing al-Zarqawi, 
w h o had led a vicious terrorist campaign that included the capture and 
televised beheadings of American civilians work ing in Iraq, had been for 
several years an extremely high-priority goal of the governments of the 
United States, Iraq, and Jordan. Accordingly, considerable effort and 
m a n p o w e r were devoted to t racking h im down. 

Al though details of the me thods used are closely guarded secrets, it 
is k n o w n that the movement s and communica t ions of a large ne twork 
of al-Zarqawi's associates were moni to red as closely as possible over a 
long per iod of t ime. O n e of those associates, Sheik Abdul Rahman, 
described as al-Zarqawi's "spiritual advisor," was pinpointed and ulti
mately provided the critical link. As U.S. military spokesman Major 
General Will iam Caldwell said, 
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Through a painstaking intelligence effort, w e were able to start 
t racking h im [Abdul Rahman] , mon i to r his movements , and 
establish w h e n he was doing his l inkup wi th al-Zarqawi. . . . It 
truly was a very long, painstaking, deliberate exploitation of intel
ligence, information gathering, h u m a n sources, electronics, and 
signal intelligence that was done over a per iod of t ime—many, 
many weeks. 

One can only imagine wha t the ne twork graphs const ructed by U.S. 
intelligence analysts looked like, bu t evidently the key step was identify
ing and zeroing in on a node at distance 1 from the mos t impor tan t 
target. 





CHAPTER 

11 The Prisoner's 
Dilemma, Risk 
Analysis, and 
Counterterrorism 

In the first season of NUMB3RS, an episode called "Dirty Bomb," broad
cast on April 22, 2005, highlighted a very real, and scary, te r ror i sm sce
nario: the threatened detonation of a "dirty bomb," where radioactive 
material is packed around conventional explosive, with the intention that 
the detonation will spread deadly radioactive material over a wide area. In 
the episode, a team of domestic terrorists hijacks a truck carrying canis
ters of cesium 137, a radioactive isotope. A breakthrough in the FBI's 
investigation leads to a raid on the criminals' hideout, and three member s 
of the team are taken into custody. Unfortunately, the truck, the radioac
tive material, and at least one coconspirator remain at large, and the m e n 
in custody brazenly threaten that if they are no t released, the b o m b they 
claim to have assembled will be set off in Los Angeles. 

D o n and his FBI colleagues use conventional interrogat ion methods , 
separating the three suspects and t rying to get each of t h e m to reveal 
the location of the t ruck in re tu rn for a plea bargain deal. But the three 
have another idea: Release t h e m first, and then they'll reveal where to 
find the truck. D o n seeks Charlie's help to resolve the stalemate. 

Charlie sees a way to use a classic mathemat ics problem, the "prison
er's di lemma," from the b ranch of mathemat ics called g a m e theory. 
Charlie explains the p rob lem in its standard form, involving jus t two 
prisoners: 
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Say t w o people were to c o m m i t a crime. If neither talks, they 
each get a year. If one talks, he gets n o t ime, the other does five 
years. If b o t h talk, they b o t h get t w o years. 

A possible rationale for the scenario is this: If only one of the prison
ers talks, he will go free as a reward for his promise to testify at the trial 
of the o ther prisoner, w h o will receive the full five-year sentence upon 
conviction. If nei ther talks, successful prosecut ion will be more difficult, 
and the defense lawyers will plea-bargain for one-year sentences. If bo th 
prisoners talk, they will b o t h get a sentence of two years, rather than 
five, for their cooperat ion, which avoids a trial.* 

This scenario poses a major di lemma. The wors t overall ou tcome for 
b o t h prisoners is to talk; if they do, they bo th get two years. So it would 
seem sensible for each to stay quiet, and serve a year. But if you were 
one of the prisoners, having reasoned that it is bet ter to stay quiet and 
serve one year, why no t change your mind at the last m o m e n t and rat 
on your partner, thereby get t ing off scot-free? Seems like a smart move, 
right? In fact, it wou ld be d u m b no t to do that. The trouble is, your part
ner will surely reason likewise, and the result is you bo th end up spend
ing t w o years in prison. T h e m o r e you try to puzzle it out , the more you 
find yourself going a round in circles. In the end, you have to give up, 
resigned to having n o alternative than to pursue the very action that you 
bo th k n o w leads to a worse ou tcome . 

If you are still unconvinced that your d i lemma is truly hopeless, read 
on. Like Charlie, we' l l look at the problem mathematical ly and derive a 
concrete answer. 

HOW MATHEMATICIANS DEFINE A GAME 

The theory of games became a mathematical discipline with the 
publication in 1944 of the b o o k The Theory of Games and Economic 
Behavior by John von N e u m a n n and Oskar Morgenstern. Their way of 

* l t tu rns o u t tha t t he actual n u m b e r s — o n e year, t w o years, f ive years—are not 

impo r tan t , just t he comparisons between them, bu t we ' l l stick w i th the f igures 

w e have. 
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defining the game Charlie is describing is in t e rms of a payoff matrix, 
like this: 

Pr isoner #2 's S t r a t e g y 

Trust Talk 

Trust Bo th g e t 1 year #1 ge t s 5 years 

Pr isoner #1's 

S t r a t e g y 

Talk #2 ge t s 5 years Bo th g e t 2 years 

Note that in each case where one prisoner talks and the o ther doesn't , 
the one w h o talks goes free while his t rust ing par tner gets five years. 

N o w let's see if we can figure ou t wha t is the best s trategy for 
prisoner # 1 . (The analysis for # 2 is exactly the same.) 

A strategy is called "dominated" if it yields worse results than another 
strategy no mat te r wha t the o ther player does. If one strategy is domi
nated, then the o ther strategy wou ld have to be a be t ter choice—right? 
Let's see. 

If you are prisoner # 1 , you always do bet ter by talking than trusting. 
Assuming your par tner talks, you get two years ra ther than five years; 
assuming your par tner trusts you, you go free rather than get one year. 
So "trust" is a dominated strategy, and "talk" is a bet ter choice for you— 
no mat ter what the other does! (Game theory assumes that players are 
both rational and selfish, and that the payoff matrix is the whole story. So 
unless the payoffs incorporate "cost of selling out my fellow prisoner" in 
some way—which they could—the reasoning just given is airtight.) 

But wait, there's more . Notice that if bo th prisoners use the best strat
egy, the result is that bo th serve two years, whereas if they bo th used the 
inferior strategy, "trust," the result is actually be t te r—both serve only 
one year. Aha! So what is best for the players individually is not best for 
them collectively. The p h e n o m e n o n that game theorists call cooperat ion 
is at work here. If the prisoners cooperate wi th each other, and trust each 
other not to talk, then they will get the best possible ou tcome. 

This seeming paradox—the conflict be tween rational self-interest 
and what can be achieved th rough coopera t ion—had a powerful 
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influence on the development of game theory in the second half of the 
twent ie th century. T h e prisoner 's d i lemma itself was first proposed by 
t w o mathemat ic ians , Merrill Flood and Melvin Dresher, at the RAND 
Corpora t ion , a government think tank that pioneered the application of 
mathemat ica l me thods to U.S. government strategy. G a m e theory was 
an impor tan t tool for military strategists dur ing the cold war, and as we 
shall see, it is still impor tan t in mathemat ical analyses of strategies in 
the wa r against terror ism. 

T h e mathemat ic ian J o h n Nash, whose mathemat ical brilliance and 
struggle wi th menta l illness were b o t h dramat ized in the award-winning 
film A Beautiful Mind, w o n a Nobel Prize in Economics for the break
th rough in g a m e theory he achieved while earning his Ph.D. in mathe
matics at Pr inceton University. His theory, concerning what are now 
called Nash equilibria, is about "unregret table" strategies—that is, com
binat ions of strategy choices by individual players that n o player can 
ever regret and say, "I could have done bet ter if I'd used strategy X 
instead." For any g a m e wi th two or m o r e players, each having a finite 
list of possible strategies, Nash proved that there will be at least one 
such equil ibr ium—at least one combinat ion of strategies for the players 
that is stable in the sense that n o player can obtain a higher payoff by 
changing strategy if n o one else changes. 

Nash's idea was that in a game in which all players are rational and 
selfish, t rying only to maximize the payoff to themselves, the only 
possible stable ou tcomes are these equilibria, since all other combina
tions of strategy choices by the players will offer at least one player a 
potentially greater payoff by changing strategy. Often these equilibria 
involve wha t g a m e theorists call "mixed strategies," in which each player 
is allowed to use m o r e than one of the strategies in their list (the so-called 
pure strategies), provided they assign a probability to each one and select 
a pure strategy at r a n d o m according to those probabilities. In the battle 
of wits ("game of strategy") be tween a pitcher and a batter in baseball, 
for example, the pitcher might choose a m o n g the pure strategies of 
fastball, curveball, and change-up, with probabilities of 60 percent, 
33 percent, and 7 percent in order to keep the bat ter guessing. 

For the payoff matr ix shown above for the prisoner 's di lemma, there 
is only one combinat ion of strategies that yields a Nash equilibrium, 
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and that is a combinat ion of two pure strategies—both prisoners choose 
"talk." If either prisoner departs from that s t rategy w i thou t the o ther 
changing strategy, then that depar ture causes an increase in their sen
tence, from two years to five. But if both change strategies, then they 
bo th improve their payoff, reducing their sentences from two years 
to one. 

PLAY IT AGAIN, SAM 

Prisoner's d i lemma and o ther similar paradoxes helped spur the devel
opmen t of more general mathemat ica l formulations, such as the no t ion 
of two players repeatedly playing the same game, which offers the pos
sibility that the players will learn to trust each o ther by improving their 
payoffs. This leads to interesting possibilities, and in a famous experi
men t conducted a round 1980, Rober t Axelrod, a mathemat ica l political 
scientist at the University of Michigan, organized a t o u r n a m e n t by invit
ing colleagues a round the wor ld to wri te compute r p rog rams that 
would play sequences of prisoner 's d i lemma games against each o ther 
wi thout any communica t ion of intentions or "deal-making." Each 
entrant 's p rog ram could rely only on h o w its opponent ' s p r o g r a m was 
playing the game. 

The winner of the prisoner 's d i lemma t o u r n a m e n t was de te rmined 
by simply keeping score: W h a t was the average payoff w o n by each 
p rogram against all o ther programs? The surprising winner was a pro
g r a m called "Tit for Tat," wr i t ten by Anatol Rapopor t . The simplest of 
all of the p rograms entered, it behaved according to the following rule: 
Choose "trust" in the first game , and in later games choose whatever 
strategy the other player chose in the game before. This p r o g r a m is nei
ther too nice—it will immediately punish the o ther player for choosing 
"talk"—nor too aggressive, since it will cooperate as long as the o ther 
player is cooperating. Even wi thou t the luxury of communica t ion 
be tween the players, the Tit for Tat strategy seems to attract o ther com
puterized "players" to play the same way that it plays, leading to the best 
possible ou tcome for bo th . 

In the fictitious scenario depicted in NUMB3RS' "Dirty B o m b " epi
sode, clearly there was prior communica t ion a m o n g the three criminals, 
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and evidently they agreed to t ough it ou t if apprehended, believing that 
this at t i tude wou ld force the FBI to release t h e m in order to prevent a 
radiation catastrophe. Similar depar tures from the usual assumptions of 
g a m e theory are used in ongoing efforts by mathematic ians to analyze 
and predict the strategies of terrorists and to de termine the best 
strategies to defend against t hem. O n e of the ways to apply other 
mathemat ica l ideas to enhance g a m e theory is actually the same me thod 
that Charlie used to break apart the t eam of criminals, which we look 
at next. 

RISK ASSESSMENT 

The idea behind risk assessment (sometimes called "risk analysis" or "risk 
management" ) is that an individual or g roup confronted with possible 
losses can assign numerical values to those losses—perhaps actual dollar 
costs—and, by considering for each loss bo th its cost and its probability 
of occurring, de termine the expected loss or risk it represents. They can 
then consider courses of action that reduce the risks, though the actions 
might incur some costs, too. T h e overall goal is to find the best combina
tion of actions to minimize the overall cost—the cost of the actions plus 
the risks remaining after the actions are taken. 

A m o n g the earliest applications of risk assessment were the calcula
tions m a d e by insurance companies to de te rmine h o w m u c h money 
they should expect to pay in claims each year and the probability that 
the total claims will exceed financial reserves. Likewise, many compa
nies and government agencies per form mathemat ical assessments of 
risks of various kinds, including natural disasters such as catastrophic 
accidents, fires, floods, and ear thquakes, and take actions such as buying 
insurance and installing safety equ ipment to reduce those risks in a 
cost-effective manner . 

Risk assessments can be m a d e in the criminal justice system, too, and 
they are routinely m a d e by defendants, their lawyers, and prosecutors, 
albeit usually wi thou t the benefit of actual mathemat ics . W h a t Charlie 
realizes w h e n confronted wi th the FBI's version of the prisoner's 
d i l emma—how to crack the solidarity of the "nobody talks" strategy of 
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the criminals in custody—is that their shared s trategy subjects the three 
of t h e m to very unequal risks. W h e n D o n laments that n o n e of t h e m 
show any willingness to talk, Charlie responds, "Maybe that 's because 
none of t h e m realizes h o w m u c h the others have to lose." 

Charlie convinces D o n to t ry a different approach: Bring the three 
m e n into one r o o m and give t h e m a mathemat ical assessment of their 
individual risks (in the game-theoret ic sense) in going to prison. Since 
each of t h e m has—in one way or another—a non-negligible probability 
of going to prison for their participation in the dirty b o m b plot, Charlie 
wants to show t h e m h o w different the consequences would be for t h e m 
individually. 

Although Charlie is int imidated by facing these m e n — a g r o u p no t at 
all like his usual audience of eager CalSci s tudents—he bravely goes 
ahead, mumbl ing, "Wha t I 'm going to do today, mathematically, is con
struct a risk assessment for each of you. Basically quantify, if I can, the 
various choices you face and their respective consequences." 

Gaining confidence, he wri tes on the board the number s that describe 
their individual circumstances, saying, " N o w I'll need to assign some 
variables, based on things like your respective ages, criminal records, 
loved ones on the outside . . ." 

Over the heated objections of the ringleader, w h o m Charlie has 
labeled "G" on the blackboard, the lecture comes to a conclusion. 

"Okay, there it is. Fi tchman, you have a risk assessment of 14.9. ' W \ 
you have 26.4, and 'G' , you have a risk assessment of, oh, 7.9." 

Fi tchman asks, "What does that mean?" and D o n replies, "It means 
that Ben here [ C W on the board] has the mos t to lose by going to 
prison." 

Don and Charlie elaborate, talking about Ben's youth, his lack 
of a criminal record, his close family ties, and so on, leading to Charlie's 
summary of his risk assessment for the young man : "Therefore, as 
I've shown mathematically, you have the mos t to lose if you don ' t 
cooperate." 

W h a t follows is undoubtedly the first "math- induced copping of a 
plea" in the history of television! Far-fetched? Perhaps. But Charlie's 
ma th was spot on. 
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REAL-WORLD RISK ASSESSMENT VERSUS TERRORISM 

These days, m a n y mathemat ica l tools are b rought to bear on the prob
lem of combat ing ter ror ism—data mining, signal processing, analysis 
of fingerprints and voiceprints, probability and statistics, and more . 
Since the strategies of b o t h terrorists and defenders involve consider
ations of wha t the o ther side will do, the application of g a m e theory is 
an attractive option, m u c h as it was th roughou t the cold war. But as we 
saw in the case of the prisoner 's d i lemma and the fictional "Dirty Bomb" 
episode on NUMB3RS, there are limitations to g a m e theory as a means 
of de te rmin ing the best courses of action. The use of side communica
tions and the format ion of agreements a m o n g players, the uncertainties 
about which strategies they are actually using—what game theorists call 
" incomplete informat ion"—and the difficulty of de termining realistic 
payoffs as j udged by the players, all combine to make the challenges fac
ing g a m e theorists extremely difficult. 

Risk assessment is a key ingredient in mathemat ic ians ' efforts to sup
p lement or even replace game-theoret ic analyses. A good example is 
given in the recent (2002) paper "Combining G a m e Theory and Risk 
Analysis in Counter te r ror i sm: A Smallpox Example"* by David L. Banks 
and Steven Anderson. 

Thei r analysis of the threat of a smallpox attack by terrorists uses the 
scenarios that m a n y government experts and o ther researchers have 
focused upon . These comprise three categories of possible attacks: 

• n o smallpox attack 

• a lone terrorist at tack on a small area (like the infamous post-
9 /11 anthrax letters in the United States) 

• a coordinated terrorist at tack on more than one city 

and four scenarios for defense: 

* l n Statistical Methods in Counterterrorism, A lyson G. Wi l son , Gregory D. 
W i l s o n , Dav id H. O l w e l l , ed i to rs (New York: Springer, 2006). 
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• stockpile smallpox vaccine 

• stockpile vaccine and develop biosurveillance capabilities 

• stockpile vaccine, develop biosurveillance, and inoculate key 
personnel 

• vaccinate everyone in advance (except the " i m m u n o c o m p r o 
mised") 

Banks and Anderson consider the game-theoret ic payoff matr ix for 
the three attack strategies versus four defense strategies as essentially 
twelve boxes to be filled in, each one containing the dollar cost (or 
equivalent) to the defender. To de te rmine the numerical values t o pu t in 
those boxes, they propose using a separate risk assessment for each box. 
For example, the combinat ion of strategies ("no smallpox attack", 
"stockpile vaccine") incurs a cost that the authors describe (as of the 
June 2002 government decision-making) as 

E T D r y + E T A v e n t + E T A c a m b + VIG + PHIS, 

where 

E T D r y , E T A v e n t — costs of efficacy and safety tests for the Dryvax and 
Aventis vaccines, 

ETAcamb = cost of n e w vaccine product ion and testing from 
Acambis, 

VIG = cost of sufficient doses of Vaccinia I m m u n e Globulin to test 
adverse reactions, 

PHIS = cost of setting u p the public heal th infrastructure to 
manage the stockpiling. 

At the time of the au thors ' analysis, a government contract fixed 
the Acambis cost at $512 million, bu t the costs for testing Dryvax 
and Aventis vaccines involve clinical trials and possible follow-ups. 
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Moreover, there is great uncer ta inty about the cost of product ion and 
testing of sufficient doses of VIG and about the costs of the PHIS, the 
public heal th infrastructure. T h e key to the authors ' mathematical 
analysis is to derive estimates of these uncer ta in dollar amounts from 
expert opinions. Rather than use a single best guess of each amount , 
they propose using ranges of plausible values, expressed by probability 
distributions. For example, they mode l the public health infrastructure's 
cost as the familiar bell-shaped curve, centered at $940 million, with a 
spread (a standard deviation) of $100 million. 

Once the risk assessments for the twelve possible combinations of 
a t tack/defense strategies are made , Banks and Anderson see h o w the 
g a m e plays ou t by sampling possible payoff matrices—with definite 
n u m b e r s filled in—using the probability distributions that describe the 
experts ' opinions. It is essentially like drawing out of a hat possible 
answers to all of the unanswered questions, generat ing different payoff 
matr ices one after another, each of which could be t rue . For each payoff 
matrix, they calculate a performance score for each of the four defense 
strategies. These scores describe the cost incurred by each defense strat
egy w h e n the attacker uses their best possible strategy (a maximin strat
egy, in game- theory lingo). 

Using the best expert opinions available in 2002, Banks and Ander
son found in their compute r simulations that the mos t effective 
s trategy for defense was the "vaccinate everyone" strategy. But they 
caution that their results are no t conclusive, since all four defense strate
gies scored in comparable ranges, indicating that the uncertainty in the 
public debates on U.S. strategy is no t unreasonable. In recommending 
that their mathemat ica l me thods should be applied to future analyses 
of terrorist threats and defensive strategy, Banks and Anderson 
argue that using g a m e theory and risk assessment me thods together is 
be t ter than using either approach alone. Tha t is because risk assessment 
by itself fails to capture the kind of interaction be tween adversaries 
("If he does this, I can do that") that g a m e theory incorporates 
naturally, whereas g a m e theory ordinarily requires definite payoffs 
ra ther than the probabilistic analysis of payoffs that risk assessment 
accommodates . 
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OPERATIONS RESEARCH VERSUS NUCLEAR 
WEAPONS IN SHIPPING CONTAINERS 

A m o n g the terrorist threats that were heavily debated during the 2004 
presidential election campaigns was the possibility of smuggling of 
nuclear materials and weapons into the United States th rough seaports. 
It is widely believed that a system of defense against this threat should 
include inspections of shipping containers at overseas por ts before they 
are loaded on to ships b o u n d for the United States. At the world 's second-
busiest port , in H o n g Kong, a demons t ra t ion project for such inspec
tions was set u p by the H o n g Kong Container Terminal Opera tors 
Association. Inspections there are conducted as follows. 

• Trucks carrying a shipping container on its way to be unloaded 
on to a ship mus t be pe rmi t t ed to pass th rough a gate. 

• Seventy-five meters in front of the gate, the trucks mus t pass 
th rough a portal and be scanned by a radiation portal mon i to r 
(RPM) that detects neu t ron emissions. 

• If the RPM cannot de termine that the container contents pose n o 
risk, the container can be diverted to a customs inspection facility 
for a different type of scan and possible physical inspection of its 
contents. 

The H o n g Kong pilot p rogram was designed so that the trucks would 
pass the portal with the RPM detector at a speed of ten miles per hour, 
permitt ing a scan t ime of approximately three seconds. Longer scan t imes 
would permit detection of lower rates of neut ron emissions, but slowing 
down the progress of the line would incur costs. The inspection protocol 
has to specify other variables, too, including the targeting of certain con
tainers for closer scrutiny based on the automated targeting system of the 
U.S. Customs and Border Protection service. This is an expert system that 
uses the data accompanying each container shipment, its cargo manifest, 
along with possible intelligence information and observable indicators 
that suggest a container is more likely to be "dirty." 
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T h e key to the H o n g Kong demonst ra t ion project is to avoid slowing 
the flow of t rucks into the unloading area. T h e RPM scans have to be 
carried ou t w i thou t causing a slowdown, which would significantly 
increase the cost of por t operat ions. The details of the setup include a 
b ranch ing of the queue after the t rucks enter the front gate into four 
lanes, each wi th a guard w h o verifies the drivers' identities and tells 
t h e m where to go to drop off their containers. 

The H o n g Kong system was carefully designed to be efficient. But 
jus t as Charlie Eppes is rarely satisfied wi th any system he hasn't had an 
oppor tuni ty to analyze mathematically, a g roup of real-world opera
tions researchers (see be low for an explanation of wha t that t e r m means) 
decided to set u p a mathemat ica l mode l of every aspect of the H o n g 
Kong sys tem—the RPM scanning of the line of t rucks before the front 
gate, the protocol for analyzing the scans and choosing some for further 
investigation, and the cost of the whole operat ion. 

In their paper "The Opt imal Spatial Deployment of Radiation Portal 
Monitors Can Improve Nuclear Detect ion at Overseas Ports" (2005), 
Lawrence M. Wein, Yifan Liu, Z h e n g Cao, and Stephen E. Flynn analyze 
mathematically a set of alternative designs for the nuclear screening of 
container shipments to de te rmine whether it is possible to improve upon 
the effectiveness of the H o n g Kong project's design. Before explaining 
their ideas, however, we should answer the question: W h a t is operations 
research and h o w could it lead to a better-designed system? 

Operat ions Research (OR) refers to a wide range of mathematical 
tools and methods that are applied to what is sometimes called "the sci
ence of bet ter"—that is, the analysis of h o w real-world operations work 
and h o w to make them work better. Originally applied during the period 
after World War II to military systems like logistics, supply, and naval war
fare, O R soon found other uses—to increase the efficiency of business 
operations, public facilities (including airports, amusement parks, and 
hospitals), public services such as police departments and paramedics, and 
many government operations and services. The tools in operations 
research are all mathematical—for example, the use of mathematical 
models for complex systems, algorithms, computer simulations, probabil
ity theory, and statistics. Sometimes the t e rm "management science" is 
used as a rough synonym for operations research. 
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Applications of O R in police work have included mathematical investi
gations of how to distribute patrols in high-crime areas, h o w to guard 
high-profile targets, and h o w to organize and analyze data for use in inves
tigations. Many universities have departments of operations research or 
management science, and faculty members , in addition to teaching, 
typically do bo th theoretical research on mathematical methods and 
consulting on real-world problems. 

One of the classical componen t s of O R is queue ing theory, a b ranch 
of probability theory that investigates the p h e n o m e n a associated wi th 
"waiting in line" (known in the United Kingdom as "queueing," hence 
the theory's name) , and seeks to provide answers to questions such as 
"What is the mos t efficient way to design the wait ing lines in a bank?" or 
"How many tellers will be needed to limit the average wait ing t ime to 
five minutes if the cus tomers flow in at a rate r, and each requires an 
average of t minutes to be serviced?" 

N o w let us re tu rn to the t rucks wai t ing patiently in H o n g Kong to 
unload their containers on to ships. We' l l see h o w operat ions research
ers like Wein, Liu, Cao, and Flynn use mathemat ica l analysis to design 
bet ter systems and calculate their performance and cost. We start wi th 
a picture of the flow of trucks and containers th rough the front gate: 

RPM set (3) 

The H o n g Kong demonst ra t ion experiment places an RPM at point A, 
75 meters ahead of point B, the front gate. This ensures that t rucks can 
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flow past the mon i to r at a regulated speed of 10 miles per hour. Since 
each 40-foot shipping container is carried lengthwise on a truck, it takes 
about three seconds for it to pass through, so that the moni tor collects 
three seconds w o r t h of neu t ron emission counts . The n u m b e r of neu
t rons coun ted depends on A, 8, S, T, and r, where 

A = area of the neu t ron detector = 0.3 square meters , 
8 = efficiency of the detector = 0.14, 
S = neu t rons emit ted per second (depending on the source), 
X = testing t ime = n u m b e r of seconds the RPM is allowed to 

count the neut rons , 
r = distance from the RPM to the center of the container = 

2 meters . 

T h e result is: 

average n u m b e r of neu t rons counted = AeST / 47Cr2. 

T h e variability of the n u m b e r counted is described by a bell-shaped 
curve whose wid th (or standard deviation) is about 2.8 t imes the square 
roo t of the average. Since there is background radiation of neut rons at 
rate B, smaller than S, the background radiation is also described by a 
bell-shaped curve, which leads to a picture like this: 

Background only / \ , Source present 

N 

The threshold value N is the number of neutrons detected that call for 
another level of scrutiny—asking a h u m a n analyst to examine the scan 
produced by a VACIS gamma-ray-imaging system, which is designed to 
detect the kind of dense material in the container that would be used to 
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shield emissions. If the person reading that scan cannot confirm the 
safety of the container, the truck is diverted to an offsite location where 
customs inspectors do a high-energy X-ray scan and, if necessary, open 
the container and inspect its contents manually. These inspections are a 
relatively cosdy part of the total system, but they can reliably detect radio
active material. Even if no containers exceed the RPM threshold, 5 percent 
of them can be expected to be flagged for VACIS inspection as untrus ted 
containers by the automated targeting system, which uses a separate risk 
analysis of containers based on information about their origins. 

Other key variables are the probabilities of success in the VACIS and 
X-ray scans and the costs include: 

• $250 for each high-energy X-ray 

• $1,500 for each opening of a container and manua l inspection 

• $100,000 for the annualized cost of each RPM machine 

The objective of the entire analysis is to devise systems that for a 
given annual cost achieve the lowest possible detect ion limit: 

S D = source level of neu t rons per second the RPM can detect 

with the requirement that the probability of the RPM detect ing that 
source level mus t be at least 95 percent . False positives—that is, contain
ers that produce a count at the level N or higher because of naturally 
occurring background radiat ion—are considered in the model , too, 
since they incur the costs of additional testing. 

All things considered—within a constraint on annual cost and the 
requirement no t to slow d o w n the flow of t rucks—what can be done 
mathematically to improve the system? Wein and his coauthors analyze 
the existing design together wi th three possibly bet ter ways to opera te : 

Design 1 — (existing) RPM at location A, 75 meters before front gate 

Design 2 = RPM at the front gate, B 

Design 3 = 4 RPMs, one at each lane-processing point 



168 THE NUMBERS BEHIND NUMB3RS 

Design 4 = Add to Design 3 a row of 10 RPMs in the line in front of 
gate B 

Under the quantitative assumptions of their paper, the OR mathemat i 
cians show that over a range of annual cost levels: 

• Design 2 improves the detect ion limit S D by a factor of 2 wi th 
the same cost. 

• Design 3 improves S D by an additional factor of 4. 

• Design 4 improves S D by an additional factor of 1.6. 

Thus , the overall improvement in going from Design 1, as used in the 
H o n g Kong experiment , to Design 4 is a factor of 13 reduction in the 
source level of neu t ron radiation that the system can detect. H o w is this 
achieved? 

T h e answer is in t w o parts . First is the fact that the longer the test
ing t ime, X, the greater the probability that we can correctly distinguish 
the presence of extra neu t ron emissions over the background. For the 
same reason that statisticians always r ecommend , if possible, taking a 
larger sample of data, a longer t ime for the RPMs to count neut rons 
effectively separates the bell-shaped curves so that they look more like 
this: 

N 

Since the t w o curves are n o w m u c h less overlapped, the threshold value 
N used for detect ion can be set relatively lower wi thou t increasing the 
frequency of false positive detections. Alternatively, one can set the level 
of N so that false positives occur wi th the same frequency as before and 
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successful detections occur w h e n the source emissions, S, are lower. So 
the detection limit, S D , is reduced. 

The second part of the authors ' solution comes from the analysis of 
the queueing models for the four designs. The goal is to expose containers 
to longer testing times T. The potential for improvement is clear, since the 
RPM at point A gets only three seconds to look at each truck, whereas the 
trucks wait much longer than that to pass through the inspection process. 

In moving the single RPM from A to B, Design 2 takes advantage of 
the fact that somet imes there are m o r e t rucks than usual flowing into 
the line, so that the line backs up, causing t rucks to have to idle for a 
while in a line behind the front gate at B. So if the RPM is placed there , 
it will get a longer testing t ime on the t rucks that have to wait . 

In replacing the single RPM at B wi th four RPMs, one in each lane, 
Design 3 achieves an even greater improvement over Design 1, since the 
average processing t ime for the trucks to be cleared by the inspectors at 
the head of those lanes is sixty seconds. By using additional RPMs in a 
row before the front gate, B, Design 4 adds additional testing t ime, mak
ing possible a further reduct ion in the detect ion limit. 

But what about the cost of all of those extra RPMs? Within any fixed 
annual budget, that cost can be offset by decreasing the frequency of false 
positives at each stage of the screening process, thereby reducing the cost 
of X-ray scans and manual inspections. The essence of an O R type of 
mathematical modeling and optimization (a mathematician's word for 
finding the best way) is that one has to determine which variables in a 
system should be adjusted to get bet ter performance, while maintaining 
the constraints on other variables like the cost and the flow rate of trucks 
through the system. If he knew about the work of operations researchers 
like Wein, Liu, Cao, and Flynn, Charlie Eppes would be proud. 

AIRLINE PASSENGER SCREENING SYSTEMS 

Ever since the tragic events of September 11, 2001, the U.S. government 
has invested major financial and h u m a n resources in preventing such 
attacks from succeeding ever again. That attack intensified the govern
ment 's efforts to enhance airline security through a system that had 



170 THE NUMBERS BEHIND NUMB3RS 

already been in place since 1998. Called CAPPS (for "computer assisted 
passenger prescreening system"), it relies on a passenger name record con
taining basic information obtained by the airline when a passenger books 
a t icket—name, address, me thod of paying for the ticket, and so on. The 
airline uses that information to make a check against the Transportation 
Security Administration's "no-fly list" of known or suspected terrorists 
and also to calculate a "risk score" based on terrorist profiles. These are 
lists of characteristics typical of terrorists, derived from statistical analysis 
of many years' wor th of data on the flying habits of known terrorists. If a 
hit occurs on the no-fly list, or if the profile-based risk score is high enough, 
the airline subjects the passenger and his or her luggage to a more inten
sive, "second-level" screening than ordinary passengers undergo. 

A similar system was instituted after a wave of skyjackings of commer
cial airliners in the years 1968 and 1969 (when there were more than fifty 
such events) led to the development of a "skyjacker profile" that was used 
for several years and then discontinued. Though the specific elements of 
bo th the skyjacker profile and the terrorist profile are closely guarded 
secrets, a few of their features have frequentiy been surmised in public dis
cussions. (For instance, if you are a young m a n traveling alone, it would be 
better not to buy a one-way ticket, particularly if you pay for it with cash.) 

After 9 /11 , the newly formed Transportation Security Administration 
assumed responsibility not only for a "no-fly list" but for the statistical analy
ses needed to design more effective profiles of terrorists. Experts outside the 
government believe that the TSA is using neural nets (see Chapter 3) to 
refine the terrorist profile. There is no doubt that it seems like good com
m o n sense for federal authorities to try to separate out from the general 
population those airline passengers who could be considered high risk as 
potential terrorists, and then subject them to greater scrutiny and search. 
That is the logic of CAPPS. But how well can such a system be expected to 
work? The answer, as we shall see, is not as simple as it might at first appear. 

TWO MIT STUDENTS USE MATHEMATICS TO 
ANALYZE CAPPS 

In May 2002, a pair of graduate students at MIT made national news by 
announcing a paper they had prepared for a class called "Ethics and Law in 
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the Electronic Frontier." Samidh Chakrabarti and Aaron Strauss thought 
that analyzing CAPPS would make an interesting paper for the class, and 
the results of their mathematical analysis were so striking that the profes
sor urged them to publish t hem more widely, which they proceeded to do 
on the Internet. Their paper "Carnival Booth: An Algorithm for Defeating 
the Computer-Assisted Passenger Screening System" caused a sensation 
because it showed by clear logic and mathematical analysis h o w terrorists 
could rather easily adapt their behavior to render CAPPS less effective than 
pure random selection of passengers for second-level screening. 

The two authors assume that 

• N o mat te r which system is used to select passengers for 
second-level screening, only 8 percent of t h e m can be handled in 
that way. 

• In CAPPS, the federal requi rement to randomly select "x percent 
of passengers" for second-level screening is m e t by randomly 
selecting 2 percent. 

• Three out of every four terrorists assigned to secondary 
screening will be successfully intercepted. 

• If they are not assigned to secondary screening, only one out of 
every four terrorists will be successfully intercepted. 

• The percentage of terrorists w h o are no t randomly selected for 
secondary screening bu t will be flagged by CAPPS is u n k n o w n . 
Call it p percent. 

These percentage assumptions made by Chakrabarti and Strauss are 
not random. Rather, they based their analysis on the publicly available best 
estimates of the actual percentages, which are a government secret. Their 
results do not depend substantially on the exact values of those percent
ages. The unknown percentage p depends on how high a risk score is 
required to assign a passenger to secondary screening. To mee t the require
ment of "no more than 8 percent" for secondary screening, the threshold 
for the risk score will have to be chosen so that it is achieved by 6 percent 
of the nonterrorist passengers w h o escape random selection. 
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Then , the overall percentage of terrorists w h o will be intercepted 
unde r CAPPS is: 

(*) 3 / 4 of p % + 3 I A of 2% + 1 IA of the remaining percentage 

For comparison, Chakrabart i and Strauss consider a "pure chance" 
system, in which the 8 percent of passengers that can be handled 
in secondary screening are chosen at r a n d o m from the list of all 
passengers. In that case the overall percentage of terrorists w h o will be 
intercepted is: 

(**) 3 / 4 of 8% + 1 / 4 of 92% = 6% + 2 3 % = 29% 

Compar ing (*) and (**), the obvious quest ion is "Which me thod inter
cepts a higher percentage of terrorists?" The answer depends on the 
value of p , the u n k n o w n percentage of terrorists w h o are selected 
because they m e e t the profile. Here are some examples: 

Va lue o f p O v e r a l l p e r c e n t a g e o f t e r r o r i s t s i n t e r c e p t e d 

From these examples it is clear that the break-even point for CAPPS 
versus a purely r a n d o m system is w h e n p = 6 percent of terrorists are 
subjected to secondary screening because they mee t the profile. 

N o w comes the hear t of the matter . You might say, "Surely we can 
expect the percentage of terrorists w h o mee t the profile to be larger 
than a pal try 6 percent!" Tha t is where the p h e n o m e n o n Chakrabart i 
and Strauss call the "carnival b o o t h effect" comes in. They argue that, 
since the terrorist profile is fixed, and terrorist cells have member s with 
a diversity of characteristics, a cell that wants to be successful in getting 
one of its m e m b e r s aboard a plane for an attack can use the following 
strategy: 

2 % 

4 % 

6 % 

8 % 

1 0 % 

2 7 % 

2 8 % 

2 9 % 

3 0 % 

3 1 % 
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• Probe the CAPPS system by sending cell m e m b e r s on "dry runs" 
to see which ones are flagged by the profile and which are not . 

• For the actual attack mission, use m e m b e r s w h o were no t 
flagged in the dry runs and are therefore very unlikely to be 
flagged by the same profile next t ime. 

Chakrabart i and Strauss call this carnival b o o t h effect because it is 
reminiscent of the barkers at carnival booths w h o call ou t "Step right u p 
and see if you ' re a winner!" T h e would-be attackers w h o consti tute a 
real threat are the "winners" w h o do no t trigger secondary screening 
when they "step right u p " to the CAPPS profiling system. 

As the MIT authors explain at some length, the viability of this strat
egy depends on just two essential factors: the observat ion that the 
CAPPS profile itself is fixed over t ime—at least over short t ime inter
vals—which implies the "repeatability" of an individual's no t being 
selected by the profile; and the recognit ion that terrorist cells have m e m 
bers wi th considerable diversity of characteristics, and so are likely to 
include at least one m e m b e r w h o can pass the profile par t of the screen
ing system. In support of the latter claim, they describe some of 
the known terrorists from recent events, such as John Walker Lindh, 
the "American Taliban," a nineteen-year-old from Marin County, and 
Richard Reid, the British citizen wi th an English m o t h e r and Jamaican 
father w h o single-handedly m a d e sure that we n o w all have to take off 
our shoes before boarding an airplane. 

The two MIT researchers included in their paper some m o r e sophis
ticated analyses using compu te r simulations incorpora t ing some vari
ability and uncertainty in the CAPPS profile scores of each individual 
terrorist. For instance, they found that repeated probes would , for some 
individual terrorists, increase the confidence of no t being flagged to a 
higher level than that of a randomly chosen passenger. In that case, the 
CAPPS probability of intercepting an actual at tack by such an individual 
would be worse than r andom. 

Such is the power of mathemat ics , that even a couple of bright col
lege students wri t ing a t e r m paper can m a k e a significant contr ibut ion 
to an issue as significant as airline security. 





CHAPTER 

12 Mathematics in 
the Courtroom 

Okay, so Charlie has pulled out all the mathematical stops and as a result 
Don has once again nailed his suspect. That is generally the end of a 
NUMB3RS episode, but in real life it is often not the end of the mathematics. 
Math is used not only in crime detection, but in the cour t room as well. 

One example is the use of mathematical ly enhanced photographs , as 
in the Reginald Denny beat ing case described in Chapter 5; another is the 
probability calculations that mus t accompany the submission of DNA 
profile evidence, which we looked at in Chapter 7. But there are m a n y 
other occasions when lawyers, judges, and juries mus t weigh mathemat 
ical evidence. As our first example shows, if they get the m a t h wrong , the 
result can be a dramatic miscarriage of justice. 

Just before n o o n on June 18, 1964, in the San Pedro area of Los Angeles, 
an elderly w o m a n n a m e d Juanita Brooks was walking h o m e from gro
cery shopping. Using a cane, she was pulling a wicker basket containing 
her groceries, wi th her purse on top. As she m a d e her way d o w n an 
alley, she s tooped to pick u p an empty carton, and suddenly she felt 
herself being pushed to the ground . Stunned by the fall, she still man
aged to look up, and saw a young w o m a n wi th a b lond ponytail runn ing 
away down the alley wi th her purse. 

Near the end of the alley, a m a n n a m e d John Bass was water ing the 
grass in front of his house w h e n he heard crying and screaming. H e 

THE BLONDE WITH THE PONYTAIL 
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looked over toward the alley and saw a w o m a n r u n ou t of it and get into 
a yellow car across the street. T h e car started up, tu rned around, and 
t ook off, passing wi thin six feet of h im. Bass subsequently described the 
driver as a "male N e g r o " (this was 1964) wear ing a beard and a mustache. 
H e described the young w o m a n as Caucasian, slightly over five feet tall, 
w i th her dark blonde hair in a ponytail . 

Brooks repor ted the robbery to Los Angeles police, telling t h e m her 
purse had contained be tween $35 and $40. Several days later, they 
arrested Janet Louise Collins and her husband Malcolm Ricardo 
Collins, w h o were ult imately charged wi th the crime and placed on 
trial in front of a jury. 

T h e prosecutor faced an interesting challenge. Nei ther eyewitness, 
Brooks or Bass, could m a k e a positive identification of either of the 
defendants. (Bass had previously failed to identify Malcolm Collins in a 
lineup, where he appeared wi thou t the beard he admit ted he had w o r n 
in the pas t—but no t on the day of the robbery, he said.) There was some 
doubt caused by the witnesses ' description of the ponytailed blonde's 
clothing as "dark," since the police had obtained tes t imony from people 
w h o had seen Janet Collins shortly before the robbery wearing light-
colored clothing. H o w was the prosecutor to make the case to the ju ry 
that these t w o defendants were guilty of the purse snatching? 

T h e prosecutor took a novel approach. H e called an expert witness: 
a mathemat ics instructor at a state college. T h e expert test imony con
cerned probabilities and h o w to combine them. Specifically, the mathe
matician was asked to explain the produc t rule for de termining the 
probability of the jo int occurrence of a combinat ion of events based on 
the individual probabilities of those events. 

T h e prosecutor asked the mathemat ic ian to consider six features per
taining to the two perpe t ra tors of the robbery: 

Black m a n wi th a beard 

Man wi th a mus tache 

W h i t e w o m a n wi th b lond hair 

W o m a n wi th a ponytail 
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Interracial couple in a car 

Yellow car 

Next, the prosecutor gave the mathematician some number s to 
assume as the probabilities that a randomly selected (innocent) couple 
would satisfy each of those descriptive elements. For example, he 
instructed the mathematic ian to assume that the male par tner in a cou
ple is a "black m a n with a beard" in one out of ten cases, and that the 
probability of a m a n having a mustache (in 1964) is one ou t of four. H e 
then asked the expert to explain h o w to calculate the probability that the 
male partner in a couple meets both requirements—"black m a n wi th a 
beard" and "man with a mustache." T h e mathemat ic ian described a pro
cedure well known to mathematicians, called the "product rule for inde
pendent events." This says that "if two events are independent , then the 
probability that bo th events occur together is obtained by multiplying 
their individual probabilities." 

Thus, in the hypothetical case proposed by the prosecutor, if the 
events are indeed independent (we'll discuss later exactly wha t that 
means), then you can use the produc t rule to calculate the probability 
that an individual is a black m a n wi th a beard and has a mus tache by 
multiplying the two given probabilities: 

P(black m a n wi th a beard A N D has a mustache) 

= P(black m a n wi th a beard) x P(has a mustache) 

= 1/10 x 1/4 = 1/(10 x 4) = 1/40 

The complete list of probabilities the prosecutor asked the mathemat i 
cian to assume was: 

Black m a n wi th a beard: 1 ou t of 10 

Man wi th mustache: 1 ou t of 4 

Whi te w o m a n wi th blond hair: 1 ou t of 3 

W o m a n wi th a ponytail: 1 ou t of 10 
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Interracial couple in car: 1 ou t of 1,000 

Yellow car: 1 ou t of 10 

T h e prosecutor asked the mathemat ic ian to take those numbers as 
conservative assumptions, mean ing that the actual probabilities would 
be at least this small and possibly smaller. 

The mathemat ic ian then proceeded to explain h o w to combine these 
probabilities to c o m e u p wi th an overall probability that a r a n d o m cou
ple wou ld satisfy all of the above description. Assuming independent 
events (more later), the mathemat ic ian testified that the correct calcula
t ion of the overall probability, let's call it PO, uses the same product 
rule, which means you multiply the individual probabilities to get the 
probability that the whole list applies to a r a n d o m couple. W h e n you do 
this, here is wha t you get: 

P O = 1/10 X 1/4 X 1/3 X 1/10 X 1/1000 X 1/10 

= 1/(10 x 4 x 3 x 10 x 1000 x 10) 

= 1/12,000,000 

O n e ou t of 12 million! 
W h e n the prosecutor gave the various odds—1 in 10, etc.—to the 

mathematics expert to use in calculating the overall probability, he stated 
that these particular numbers were only "illustrative." But in his closing 
argument he asserted that they were "conservative estimates," and there
fore "the chances of anyone else besides these defendants being 
t he re , . . . having every similarity . . . , is something like one in a billion." 

T h e j u ry found Malcolm and Janet Collins guilty as charged. But did 
they make the right decision? Was the mathematician 's calculation cor
rect? Was the prosecutor 's closing "one in a billion" claim correct? Or 
had the cour t jus t been par ty to a huge travesty of justice? Malcolm 
Collins said it was the latter, and appealed his conviction. 

In 1968 the Supreme Cour t of the State of California handed down a 
decision in People v. Collins, 68 Cal.2d 319, and their wri t ten opinion has 
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become a classic in the study of legal evidence. Genera t ions of law stu
dents have studied the case as an example of the use of mathemat ics in 
the cour t room. 

Here is wha t the California Supreme Cour t ' s opinion (affirmed by a 
six-to-one vote of the justices) said: 

We deal here with the novel question whether evidence of mathe
matical probability has been properly introduced and used by the 
prosecution in a criminal case. . . . Mathematics, a veritable sor
cerer in our computerized society, while assisting the trier of fact in 
the search for truth, must not cast a spell over him. We conclude 
that on the record before us defendant should not have had his guilt 
determined by the odds and that he is entitled to a new trial. We 
reverse the judgment . . . . 

The majority opinion in the Collins case is a fascinating example 
of the interplay be tween two scholarly disciplines: law and mathemat 
ics. Indeed, the majority opinion took pains to say that they found 
"no inherent incompatibility be tween the [two] disciplines" and that 
they intended "no disparagement" of mathemat ics as "an auxiliary in 
the fact-finding process" of the law. Nevertheless, the cour t ruled that 
they could no t uphold the way mathemat ics was used in the Collins 
case. 

The Supreme Court ' s devastating deconstruction of the prosecution's 
"trial by mathematics" had three major elements: 

• Proper use of "math as evidence" versus improper use ("math as 
sorcery") 

• Failure to prove that the mathemat ical a rgument used actually 

applies to the case at hand 

• A major logical fallacy in the prosecutor 's "one in a billion" 

claim about the chances of the defendants be ing innocent 

Let's see just wha t wen t w r o n g wi th the prosecution 's case. 
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MATHEMATICS: EVIDENCE OR SORCERY? 

T h e law recognizes two principal ways in which an expert 's test imony 
can provide admissible evidence. An expert can testify as to their own 
knowledge of relevant facts, or they can respond to hypothetical ques
tions based on valid data that has already been presented in evidence. 
So, for example, an expert could testify about the percentages—in Los 
Angeles, say—of cars that are yellow, or of w o m e n w h o are blondes, 
provided there exists statistical data to support that testimony. And a 
mathemat ic ian can respond to hypothetical questions such as "How 
wou ld you combine these probabilities to de te rmine an overall proba
bility?"—provided those h y p o t h e t i c a l are based on valid data. In the 
Collins case, however, the Supreme Cour t found that, the prosecution 
"made n o a t t empt to offer any such evidence" of valid probabilities. 

Moreover, the cour t pointed out that the prosecution's mathematical 
a rgument rested on the assumption that the witnesses' descriptions were 
100 percent correct in all particulars and that no disguises (such as a false 
beard) were employed by the t rue perpetrators of the crime. (The trial 
record contained disputes about light versus dark clothing w o r n by the 
young w o m a n , and about whe ther or no t the defendant had a beard.) 

T h e cour t pointed ou t that it is traditionally the function of juries to 
weigh the reliability of witness descriptions, the possibility of disguise 
by the perpet ra tors , and the like. But these considerations are not ones 
that can be assigned numerical probabilities or likelihoods. Moreover, 
the Supreme Cour t believed that the appeal of the "mathematical con
clusion" of odds of 1 in 12 million was likely to be too dazzling in its 
apparent "scientific accuracy" to be discounted appropriately in the 
usual weighing of the reliability of the evidence. The court wrote : 
"Confronted wi th an equat ion which purpor t s to yield a numerical 
index of probable guilt, few juries could resist the tempta t ion to accord 
disproport ionate weight to that index. . . ." Tha t is at the hear t of the 
"sorcery" that the Supreme Cour t found in the prosecution's case. 

WAS THE COURT'S MATH CORRECT? 

Leaving aside the quest ion of whe the r it was permissible to use mathe
matics in the way the original cour t allowed, there is the issue of 
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whether the m a t h itself was correct. Even if the prosecut ion 's choice 
of numbers for the probabilities of individual features—black m a n 
with a beard, and so on—were suppor ted by actual evidence and were 
100 percent accurate, the calculation that the prosecutor asked the 
mathematician to do depends on a crucial assumption: that in the gen
eral populat ion these features occur independently. If this assumpt ion is 
t rue, then it is mathematical ly valid and sensible to use the produc t rule 
to calculate the probability that the couple w h o commi t t ed the cr ime, if 
they were not Malcolm and Janet Collins, would by sheer chance happen 
to match the Collinses in each of these factors. 

That crucial assumption of independence means that if w e th ink of 
the individual probabilities as represent ing fractions of the general 
population, then those fractions cont inue to apply in sequence as 
we look at each fraction in tu rn . Let 's consider an example that is 
similar and slightly easier to w o r k with . Suppose that witnesses to a 
crime said that the perpe t ra tor drove a black H o n d a Civic that was 
"lowered"—fitted wi th special springs that make the body sit closer to 
the ground. 

Ignoring the likely possibility that witnesses might also identify o ther 
features of the perpetrator , let 's assume that w e know, accurately and 
based on solid data, that in the Los Angeles area 1 ou t of 150 cars is a 
black Honda Civic and 1 ou t of 200 is lowered. The produc t rule says 
that to de termine the fraction of cars that are black H o n d a Civics that 
have been lowered, we multiply: 

1/150 x 1/200 = 1/30,000. 

But this calculation is based on the assumption that the fraction of 
cars that have been lowered is the same for black H o n d a Civics as it is for 
all other makes and colors. If that were t rue , w e could say that the 
descriptive features "black H o n d a Civic" and "lowered" occur indepen
dently. There is, however, the possibility that owners of black H o n d a 
Civics are more likely than owners of mos t o ther cars to have t h e m 
customized by lowering. The correct calculation of the probability that 
a car in L.A. is a black H o n d a Civic that 's been lowered (assuming w e 
have good data to de te rmine these numbers ) is as follows. 
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Suppose that 

fraction of cars that are black H o n d a Civics = 1/150 

fraction of black H o n d a Civics that are lowered = 1 / 8 

Then , the fraction of cars that are "lowered" black Honda Civics is 

1/150 X 1/8 = 1/(150 x 8) = 1/1200 

which is considerably larger than 1 /30,000. 
T h e n u m b e r used for illustration here, 1 / 8 , is called the "conditional 

probability" that a car is lowered, given that it is a black Honda Civic. 
Obtaining reliable data to de te rmine that number , or at least to estimate 
it accurately, is likely to be m o r e difficult than just estimating the frac
t ion of all cars that have been lowered—the "1 out of 200" in the origi
nal calculation. But surely, in any serious endeavor—in particular, a 
criminal tr ial—the fact that a n u m b e r is hard to de te rmine or estimate is 
n o excuse for m a k i n g a highly dubious assumption, such as indepen
dence. T h e potential for er ror is c o m p o u n d e d w h e n w e pile up a whole 
list of features (six in the Collins case) and assume that they are all inde
pendent . Even Charlie Eppes would be hard-pressed to come up with 
the right data and calculate an accurate estimate of the probability that 
a couple w h o commi t a cr ime in Los Angeles would have those six 
characteristics. 

Yet that was no t the last of the errors the original trial court made. 
The mos t devastating b low that the Supreme Cour t struck in its reversal 
of Collins' conviction concerned a mistake that (like the unjustified 
assumpt ion of independence) occurs frequently in the application of 
probability and statistics to criminal trials. Tha t mistake is usually called 
"the prosecutor 's fallacy." 

This no tor ious fallacy consists of a sort of bait-and-switch tactic 
by the prosecut ion, somet imes m a d e because of unintent ional error. 
O n the one hand, w e have the prosecution's calculation, which in spite 
of its lack of justification, a t tempts to de te rmine 
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P(match) = the probability that a r a n d o m couple wou ld possess 
the distinctive features in quest ion (bearded black man , wi th a 
mustache, etc.) 

Ignoring the defects of the calculation, and assuming for the sake of 
a rgument that P(match) truly is equal to 1 in 12 million, there is never
theless a profound difference be tween P(match) and 

P(innocence) = the probability that the Collinses are innocent . 

As the Supreme Cour t noted, the prosecutor in the Collins case argued 
to the ju ry that the 1 in 12 million calculation applied to P(innocence). 
H e suggested that "there could be bu t one chance in 12 million that 
defendants were innocent and that another equally distinctive couple 
actually commit ted the robbery." 

The confusion be tween these t w o probabilities is w r o n g and danger
ous! P(match) is t rying to calculate the probability that the defendants, 
if they are innocent, would be unlucky enough to match the witness 
descriptions of the couple w h o commi t t ed the robbery. But as the jus
tices explained in their opinion, a "probability of innocence" calculation 
(even if one could p resume to actually calculate such a thing) has to take 
into account h o w many o ther couples in the Los Angeles area also have 
these six characteristics. T h e cour t said, "Of the admittedly few such 
couples, which one, if any, was guilty of commit t ing the robbery?" 

In a master stroke that w a r m e d the hearts of mathemat ic ians and 
statisticians a round the wor ld w h e n we subsequently read about the 
Collins case, the court ' s opinion wen t on to add an appendix in which 
they calculated another est imate. Even taking the prosecution 's 1 in 
12 million result at face value, wha t is the probability that somewhere in 
the Los Angeles area there are at least two couples w h o have the six 
characteristics as the witnesses described for the robbers? T h e justices 
estimated that probability by assuming that there are a large n u m b e r N 
of possible perpetrators—pairs of people (not necessarily "couples") 
in the Los Angeles area—and that each pair has a probability of 1 in 12 
million of fitting the robbers ' descriptions. Using their o w n indepen
dence assumption about different pairs fitting the description (which is 



184 THE NUMBERS BEHIND NUMB3RS 

no t exactly right bu t is no t a source of substantial error) , they performed 
a calculation using the binomial distribution. 

Imagine flipping N coins, they reasoned, each wi th probability 1 in 
12 million of tu rn ing u p heads. Given that at least one coin turns up 
heads (meaning that there is at least one couple that mee ts the descrip
tion), wha t is the probability that two or m o r e heads occur—that there 
are at least two couples that m e e t the description? 

T h e answer to the quest ion is easy to calculate using the binomial 
distribution (a calculator or spreadsheet can be used), and no t surpris
ingly it depends on N — t h e n u m b e r of potential "perpetra tor couples". 
For illustration, the cour t used N = 12 million, approximately the num
ber of people in the Los Angeles area at the t ime, and they calculated 
that the answer is "over 40 percent ." (It's actually 41.8 percent.) In this 
way, they argued that it is no t at all reasonable to conclude that the 
defendants mus t be guilty simply because they have the six characteris
tics in the witnesses ' descriptions. 

Of course, a different choice of N wou ld give a different answer, but 
even N = 3 million, say, wou ld yield a probability of 12 percent that 
somewhere in Los Angeles there exists at least one other pair w h o argu
ably wou ld be as good candidates for conviction as the Collinses—at 
least in t e rms of the "proof by mathemat ics" that the prosecut ion relied 
on to sway the jury. Tha t hardly sounds like "beyond a reasonable 
doubt , " does it? 

The key fact the prosecutor 's fallacy overlooks is that there are 
typically many o ther people (or couples) no t on trial w h o have the calcu
lated probability (like 1 in 12 million) of matching the accused person (or 
couple). Therefore, even if those on trial are innocent, there is typically a 
far larger probability than P(match) of their being unlucky enough to 
match the characteristics being used to identify the perpetrators of the 
crime. 

T h e Collins case may have b e c o m e a famous example in legal circles, 
bu t it was by n o means the first t ime in U.S. legal history that a trial was 
decided almost entirely on mathemat ics . In the Collins case, the use 
m a d e of mathemat ics t u rned ou t to be incorrect. But things came out 
very differently in an equally famous case a hundred years earlier. 
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FAMOUS NINETEENTH-CENTURY MATHEMATICIANS 
DEMONSTRATE A FORGERY 

One of the most famous American forgery cases, a cause célèbre in the 

nineteenth century, hinged u p o n key test imony of father-and-son mathe

maticians. Benjamin Peirce was one of the leading mathematicians of his 

day, a famous professor at Harvard University, whose n a m e is still used to 

bestow honor upon young mathematicians w h o are appointed Benjamin 

Peirce Assistant Professors at Harvard. His son, Charles Sanders Peirce, 

was also a brilliant scholar w h o taught mathematical logic, worked for the 

U.S. Coast and Geodetic Survey, the leading federal agency in the funding 

of nineteenth-century scientific research, and wro te prodigiously in the 

field of philosophy, becoming best known as the founder of 'American 

pragmatism." 

W h a t kind of trial would br ing b o t h of the Peirces into the court

r o o m as expert witnesses? It was a forgery trial involving the estate of 

Sylvia Ann Howland, valued at $2 million w h e n she died—a huge figure 

back in 1865. H e r niece, Het ty Howland Robinson, contested the will, 

which left her only a par t of the estate, and claimed that she and her 

aunt had a secret agreement unde r which Robinson wou ld inherit the 

entire estate. As proof she presented an earlier version of the aunt ' s will 

that no t only left the entire estate to he r bu t also contained a second 

page declaring that any later wills should be considered invalid! T h e 

executor of the estate, T h o m a s Mandell, rejected Robinson's claim on 

the basis that the second page was a forgery, and therefore the later will 

should de termine the disposition of the estate. 

Robinson was never charged wi th the crime of forgery. In fact, the 

sensational case that ensued, Robinson v. Mandell, popularly k n o w n as 

the Howland will case, resulted from Robinson's filing of a lawsuit in an 

a t tempt to over turn the executor 's rejection of her claim! And this was 

the lawsuit that was decided using mathemat ics . 

In mos t forgery cases, someone a t tempts to duplicate the signature 

or handwri t ing of person X, and prosecutors (or civil litigators) try to 

demonst ra te in cour t the dissimilarity of the forgeries from samples of 

the authentic wri t ing of X. But in the Howland will case the issue was 

the reverse: The forgery was simply too good! 
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Benjamin and Charles Peirce were called as witnesses for the defen
dant Mandell to testify about their careful scientific investigation of the 
similarity be tween the authent ic signature on the first page and the dis
pu ted signature on a second page. (There were actually two second 
pages, bu t only one was analyzed.) 

Here are the t w o signatures. 

If you look at t w o copies of your o w n signature you will soon notice 
some differences be tween them. T h e two signatures on the Howland 
will, however, look identical. T h e mos t likely explanation is that one is a 
t raced copy of the other. 

W h a t the Peirces did was t u rn this suspicion into a scientific fact. 
They devised a m e t h o d to compare and express the agreement be tween 
any t w o signatures of the aunt as a number—a sort of score for close
ness of agreement . To de te rmine this score, they decided to use down-
strokes—there are thir ty of t h e m in each signature—and to count the 
n u m b e r of "coincidences" be tween the thirty downstrokes in one signa
ture and the corresponding thir ty downstrokes in the other. By a "coin
cidence" be tween t w o examples of a particular downstroke, such as the 
downst roke in the first letter "L", they m e a n an essentially perfect match 
be tween those strokes, which they judged by overlaying photographs of 
the signatures, one on top of the other. 

W h e n they compared the t w o signatures shown above, they found 
that every one of the thir ty downstrokes coincided! Could this be due to 
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sheer chance? Or was it clear evidence that the disputed signature was 
obtained by tracing the authent ic signature on to the disputed second 
page? That ' s where the mathemat ica l analysis came in. 

The Peirces obtained a set of forty-two undisputed authentic signa
tures of Sylvia Ann Howland. For forty-two signatures there are 4 2 x 4 1 ll 
= 8 6 1 ways to select a pair of signatures to compare. For each of these 
8 6 1 pairs they determined the n u m b e r of coincidences—how many of 
the thirty downstrokes coincided? They found a total of 5 , 3 2 5 coinci
dences among the 8 6 1 x 3 0 = 2 5 , 8 3 0 comparisons of downstrokes. 
That meant that about one ou t of five comparisons was judged a 
coincidence—a perfect match. 

The rest of their analysis was mathemat ical , or m o r e specifically, 
statistical. The elder Peirce described his calculation of the chances of 
getting thirty coincidences ou t of thir ty downstrokes, assuming that 
each occurred wi th probability 5 3 2 5 / 2 5 8 3 0 = 0 . 2 0 6 1 5 6 . Assuming these 
coincidences occur independently (!), Peirce used the product rule to 
multiply, giving 

. 2 0 6 1 5 6 X . 2 0 6 1 5 6 x . 2 0 6 1 5 6 x . . . [ 3 0 t imes] 

i.e., 
. 2 0 6 1 5 6 3 0 . 

This figure is approximately 1 in 3 7 5 trillion. (Peirce actually m a d e a 
mistake in his calculation, and gave a somewha t larger number , using 
2 , 6 6 6 in place of 3 7 5 . ) 

Summoning the full eloquence expected of a gentlemanly mathemati 
cian in 1868 , Professor Peirce summarized his findings in this way: "So 
vast improbability is practically an impossibility. Such evanescent shadows 
of probability cannot belong to actual life. . . . The coincidence which has 
occurred here must have had its origin in an intention to produce it." 

Surely no t surprising in light of this mathemat ica l and rhetorical 
splendor, the cour t ruled against He t ty Robinson. 

W h a t would a m o d e r n mathemat ic ian—or statistician—say about 
Professor Peirce's analysis? T h e data for the 8 6 1 comparisons of pairs of 
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signatures—counting the n u m b e r of coincidences—can be analyzed to 
see h o w well the independence assumption is satisfied, or the binomial 
mode l that it leads to, and the result is that the data count ing coinci
dences for those 861 pairs do not fit Peirce's mode l very well at all. But 
that does no t m e a n that his conclusion that the thirty coincidences on 
thir ty downstrokes is highly unusual cannot be sustained. As pointed 
ou t by Michael O. Finkelstein and Bruce Levin in discussing the How
land Will Case in their excellent b o o k Statistics for Lawyers, statisticians 
nowadays wou ld typically prefer to analyze such data in a "nonparamet-
ric" way. This means the analysis does no t assume that when two 
signatures are compared, the probabilities of zero coincidences, one 
coincidence, t w o coincidences, and on u p to thirty coincidences, are 
k n o w n to satisfy some particular formulas or, if expressed in a bar chart, 
to have some particular shape. 

Rather, a present-day statistician would prefer to rely on a more justi
fiable analysis, such as the one that says that if the null hypothesis is true 
(i.e., the disputed signature is authentic), then there are forty-three true 
signatures and thus 43 x 42 / 2 = 903 pairs of signatures, each pair with a 
presumably equal chance of having the greatest agreement . So, wi thout 
considering h o w extreme thirty out of thirty is—just the fact that it 
shows the highest level of agreement be tween any of the 903 pairs of 
signatures—there is at mos t one chance ou t of 903 of those two particu
lar signatures being more alike than any of the other pairs. Therefore, 
either a very unusual event has occurred—one whose probability is about 
one- tenth of one percent—or else the hypothesis that the disputed signa
ture is authentic is false. Tha t would surely be sufficient for Charlie Eppes 
to urge his b ro ther to pu t the cuffs on Het ty Robinson! 

USING MATHEMATICS IN JURY SELECTION 

We suspect that few of ou r readers are criminals. And we certainly hope 
that you are no t a victim of a cr ime. So mos t of the techniques described 
in this b o o k will be things you merely read about—or see when you 
watch NUMB3RS. But there is a fair chance—about one in five, to be 
precise, if you are a U.S. ci t izen—that at least once in your life you will 
find yourself called for j u ry duty. 
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For many people, serving on a ju ry is the only direct experience of the 
legal system they experience firsthand. If this does happen to you, then 
there is a slight chance that par t of the evidence you will have to consider 
is mathematical . Much m o r e likely, however, if the case is a serious one, 
is that you yourself may unknowingly be the target of some mathemat 
ics: the mathematics of ju ry selection. This is where statisticians 
appointed by the prosecution or defense, or both—increasingly these 
days those statisticians may use commercially developed juror-profiling 
software systems as well—will t ry to determine whe the r you have any 
biases that may p rompt t h e m to have you removed from the jury. 

The popular conception of a j u r y is a panel of twelve citizens, bu t in 
fact ju ry sizes vary from state to state, wi th federal cour t juries different 
again, from a low of six to a high of twelve. Al though juries as small as 
three have been proposed, the general consensus seems to be that six is 
the absolute m i n i m u m to ensure an acceptable level of fairness. 

Mathematics gets into the m o d e r n j u r y scene at the beginning of the 
selection process, as the 1968 federal Ju ry Selection and Service Act 
mandates " random selection of j u r o r names from the voter lists." 
(Although the act legally applies only to federal courts, it is generally 
taken to set the standard.) As Charlie Eppes wou ld tell you, r andomness 
is a tricky concept that requires some mathemat ica l sophistication to 
handle properly. 

One of the goals of the ju ry system is that juries constitute, as far as 
possible, a representative cross section of society. Therefore, it is impor
tant that the selection process—which, like any selection process, is open 
to abuse—does not unfairly discriminate against one or m o r e particular 
sectors, such as minorities. But as wi th the issue of de termining racial 
bias in policing (discussed in Chapter 2), it can be a tricky mat te r to iden
tify discrimination, and cases that on the surface look like clear instances 
of discrimination sometimes t u r n ou t to be nothing of the kind. 

In one frequently cited case that went to the Supreme Court , Castaneda 
v. Partida (1977), a Mexican-American named Rodrigo Partida was indicted 
and convicted for burglary with intent to rape in a southern Texas border 
county (Hidalgo County). H e appealed this conviction on the grounds 
that the Texas system for impaneling grand jurors discriminated against 
Mexican-Americans. According to census data and court records, over an 
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eleven-year period only 39 percent of people summoned to grand jury 
duty had Spanish surnames, whereas 79 percent of the general population 
had Spanish surnames. The Supreme Cour t held that this was sufficient to 
establish a pr ima facie case of discrimination. 

The court made its determination based on a statistical analysis. The 
analysis assumed that if the jurors were drawn randomly from the general 
population, the number of Mexican-Americans in the sample could be 
modeled by a normal distribution. Since 79.1 percent of the population 
was Mexican-American, the expected number of Mexican-Americans 
among the 870 people summoned to serve as grand jurors over the eleven-
year period was approximately 688. In fact, only 339 served. The standard 
deviation for this distribution worked out to be approximately twelve, 
which meant that the observed data showed a difference from the expected 
value of roughly twenty-nine standard deviations. Since a difference of 
two or three standard deviations is generally regarded as statistically 
significant, the figures in this case were overwhelming. The probability of 
such a substantial departure from the expected value, often referred to as 
the "p value", occurring by chance was less than 1 in 10 1 4 0 . 

Another high-profile case was the 1968 district cour t conviction of 
the famous pediatrician Dr. Benjamin Spock, for advocating the destruc
t ion of draft cards dur ing the Vietnam War. There were concerns over 
this conviction w h e n it became k n o w n that the supposedly randomly 
selected pool of 100 people from which the ju ry was drawn in this case 
contained only nine w o m e n . According to public opinion polls at the 
t ime, ant iwar sent iment was m u c h m o r e prevalent a m o n g w o m e n than 
m e n . Dr. Spock's defense t eam commissioned statistician (and professor 
of law) Hans Zeisel to analyze the selection of ju ry pools. Zeisel looked 
at the forty-six j u ry pools for trials before the seven judges in the district 
cour t in the two-and-a-half-year per iod before the Spock trial, and found 
that one judge , the one in the Spock case, consistently had far fewer 
w o m e n on his j u ro r pools than any of the others. The p value for the 
discrepancy in this case was approximately 1 in 10 1 8 . As it tu rned out, 
this clear case of discrimination was no t pivotal in Dr. Spock's successful 
appeal, which was g ran ted on the basis of the First Amendmen t . 

W h a t b o t h cases demons t ra te is h o w the application of a thorough 
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statistical analysis can de te rmine discrimination in j u ry selection, to a 
degree well beyond the standard "reasonable doub t" threshold. 

However, selection of a representative ju ry pool is only par t of the 
story. The American legal system allows for individual ju rors to be elim
inated from the pool at the beginning of the trial on three grounds . 

The first g round is undue hardship on the juror. Typically, this 
occurs when a trial is likely to last a long time, and may involve sequestra
tion. In such a case, mothers of small children, owners of small businesses, 
among others, can usually claim release from jury service. This leads many 
observers to the not unreasonable conclusion that lengthy trials generally 
have juries largely made up of people with lots of t ime on their hands, 
such as retired persons or those with independent means. 

The second g round for exclusion is w h e n one of the protagonists can 
demonst ra te to the court ' s satisfaction that a particular j u ro r is incapa
ble of being impartial in that particular trial. 

The third g round is the one that may result in a potential j u ro r be ing 
subjected to a detailed statistical and psychological profile. This is the 
so-called pe remptory challenge, where b o t h prosecut ion and defense 
are allowed to have a certain n u m b e r of ju ro r s dismissed wi thou t hav
ing to give any reason. Of course, w h e n a lawyer asks for a j u r o r to be 
removed, he or she always does have a reason—they suspect that this 
particular ju ror would no t be sympathet ic to their case. H o w do they 
find that out? 

JURY PROFILING 

Although the right of pe remptory challenge does give b o t h sides in a 
case some freedom to try to shape the ju ry to their advantage, it does 
not give t h e m the right to discriminate against any protected group, 
such as minorities. In the 1986 case Batson v. Kentucky, the j u ry convicted 
James Batson, an African-American, of burglary and receipt of stolen 
goods. In that case, the prosecutor used his pe rempto ry challenges to 
remove all four African-Americans, leaving the case wi th an all-white 
jury. The case ended u p in the Supreme Cour t , which, based on the 
composit ion of the jury, reversed the conviction. By then, Batson was 
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serving a twenty-year sentence. Rather than risk a retrial, he pled guilty 
to burglary and received a five-year prison sentence. 

As always, the challenge is to establish discrimination, as opposed to 
the effects of chance fluctuations. In another case, United States v. Jordan, 
the government peremptori ly s truck three of seven African-American 
ju ro r s compared wi th three of twenty-one whites. Tha t mean t that an 
African-American in the j u ry pool was three t imes more likely to be 
excluded as a whi te . T h e p value in this case worked out to be 0.14; 
in o ther words, such a ju ry profile would occur by chance roughly one 
in every seven occasions. T h e cour t of appeal ruled that there was insuf
ficient evidence of discrimination. 

It tu rns out , however, tha t even w h e n illegal discrimination is ruled 
out , prosecutors and defenders have considerable scope to try to shape 
a j u ry to their advantage. The trick is to de te rmine in advance what 
characteristics give reliable indications of the way a particular ju ro r may 
vote . H o w do you de te rmine those characteristics? By conducting a 
survey and using statistics to analyze the results. 

T h e idea was first tested in the early 1970s by sociologists enlisted in 
the defense of the so-called "Harr isburg Seven," ant iwar activists w h o 
were on trial for an alleged conspiracy to destroy Selective Service Sys
t e m records and kidnap Secretary of State H e n r y Kissinger. The defense 
based its j u ry selection on locally collected survey data, systematically 
striking the Harr isburg citizens least likely to sympathize wi th dissi
dents. Far from the "hanging ju ry" that m a n y observers expected from 
this highly conservative Pennsylvania city, the ju ry deadlocked on the 
serious charges and convicted the activists of only one minor offense. 



CHAPTER 

13 Crime in the 
Casino 
Using Math to Beat the 
System 

DOUBLE DOWN 

The dealer at the blackjack table is good at he r job . She jokes wi th the 
players as she deals the hands, knowing that this will encourage t h e m to 
continue placing larger and larger bets. A y o u n g m a n sport ing a goatee , 
long hair, and a black leather jacket comes to the table and takes an 
empty seat. H e converts five thousand dollars in to chips, and places an 
eno rmous bet on the next hand. T h e dealer and the o ther players are 
taken aback by the size of his bet , bu t the young m a n breaks the tension 
by making some remarks about his family in Moscow. H e wins the 
hand, mak ing a huge profit, bu t then, instead of playing another hand, 
he scoops up his chips and leaves the table. Looking for his car in the 
casino parking lot, he seems anxious, even afraid. M o m e n t s later he is 
shot and killed by an unseen assailant. 

This was the opening sequence in the second-season NUMB3RS episode 
"Double Down," broadcast on January 13, 2006. As is often the case with 
NUMB3RS, the story isn't just about the crime itself, it's about the special 
worlds inhabited by the victims and the suspects—in this case, the world 
of professional blackjack players w h o challenge the gambling casinos. As 
"Double Down" unfolded, viewers learned that the victim, Yuri Chernov, 
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was a brilliant mathematics student at Hunt ington Tech, making the case 
a natural one for Charlie to help with. To do that, he has to delve into the 
workings of the real-life battle of wits—and sometimes more—that has 
been going in the casino blackjack world for more than forty-five years. 

O n one side of this battle are secretive, stealthy "card counters," often 
work ing in teams, w h o apply sophisticated mathematics and highly 
developed skills in their efforts to extract large winnings from casinos. 
O n the other side are the casinos, w h o regard card counters as cheaters, 
and w h o maintain files of pho tographs of known counters. The casino 
bosses instruct their dealers and other employees to be always on the 
lookout for n e w faces in the ranks of players w h o can walk away with 
tens of thousands of dollars in winnings in a mat ter of hours . 

In mos t states,* players w h o count cards while playing blackjack are 
no t criminals in the literal sense. But the casinos view t h e m as criminal 
adversaries—cheaters, n o different from the players w h o manipulate the 
chips or conspire wi th crooked dealers to steal a casino's money. And 
because of the risk of be ing recognized and barred from play, card coun
ters have to act like criminals, using disguises, put t ing on elaborate per
formances to fool dealers about their t rue capabilities, or sneaking 
around, t rying desperately no t to be noticed. 

T h e root cause of the casinos' difficulty is that w h e n it comes to black
jack, an astute and suitably knowledgeable player, unlike other casino 
gamblers, can actually have an edge over the casino. Casinos make a 
profit—a generous one—by knowing the exact probabilities of winning 
in each g a m e they offer, and setting the odds so that they have a slight 
advantage over the players, typically around 2 to 3 percent. This guaran
tees that, a l though one or two players will make a killing every n o w and 
then, the vast majority of players will not , and on a weekly or monthly 
basis, the casino will earn a steady profit. 

In the g a m e of craps, for example, short of actual criminal acts of 
cheat ing (manipulat ing chips, using loaded dice, and the like), n o player 
can win in the long run . W h e n hones t players win, they are simply fore-

* N e v a d a is an excep t i on . The lucrat ive g a m b l i n g business in th is o therwise fairly 

p o o r state enab led t he casinos t o exer t pressure on t he legis lature t o make card 

c o u n t i n g i l legal . 
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stalling the losses they will eventually rack u p if they c o m e back . . . and 
back . . . and back. The mathemat ics guarantees that this will happen. 

But blackjack is different. Under certain circumstances, the players 
have an edge. A player w h o can recognize w h e n this is the case and 
knows h o w to take advantage of it can, if allowed to cont inue playing, 
capitalize on that percentage advantage to win big money. T h e longer 
the counters are allowed to play, the m o r e they can be expected to win. 

THE PROBLEM WITH BLACKJACK 

In casino blackjack, each player at the table plays individually against the 
dealer. Both player and dealer start wi th a two-card hand and take turns at 
having the option to draw additional cards ("hit" their hand) one at a t ime. 
The aim is to get as high a total as possible (with face cards counting as 10, 
aces as 1 or 11), wi thout "going bust," that is, exceeding 21. If the player 
ends up with a total higher than that of the dealer, the player wins; if the 
dealer has the higher total, the player loses. For most plays, the payoff is 
even, so the player either loses the initial stake or doubles it. 

The twist that tu rned ou t to be a major headache for casinos is that, 
in the version of the g a m e they offer, the dealer mus t play according to 
a rigid strategy. If the dealer's hand shows a total of 17 or m o r e , he or 
she must "stand" (they are no t pe rmi t t ed to take another card); other
wise the dealer is free to hit or stand.* Tha t operat ional rule opens a 
small crack in the otherwise impregnable mathemat ical wall tha t pro
tects the casinos from losing money. 

The possibility of taking advantage of the potentially favorable rules of 
casino blackjack was known and exploited by only a few people until the 
publication in 1962 of the book Beat the Dealer, writ ten by Edward Thorp, 
a young mathematics professor. In some ways not unlike Charlie Eppes— 
though without an older brother asking him to help the FBI solve crimes— 
Thorp was beginning his career as a research mathematician, moving from 
UCLA to MIT (and later to the University of California at Irvine), when he 
read a short article about blackjack in a mathematics journal and devel-

*Some casinos use a so-cal led "so f t 17 ru le " tha t requires t h e dea le r t o h i t w h e n 

his or her to ta l o f 17 inc ludes an ace c o u n t e d as "11 " . 
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oped an interest in the intriguing difference between blackjack and other 
casino games: 

W h a t happens in one round of play may influence bo th what hap
pens later in that round and in succeeding rounds . Blackjack, 
therefore, might be exempt from the mathemat ical law which for
bids favorable gambl ing systems.* 

It tu rns ou t that there are several features of the game of blackjack 
that are asymmetrical in their effect on the player and the dealer, not just 
the dealer's "17-rule." T h e player gets to see the dealer's first card (the 
so-called "up card") and can take that information into account in decid
ing whe the r to hit or "s tand"—that is, the player can use a variable strat
egy against the dealer 's fixed strategy. There are o ther differences, too. 
O n e asymmet ry very definitely in the casino's favor is that, if bo th the 
player and the dealer bust , the dealer wins. But there are asymmetries 
that favor the player. For instance, the player is given the oppor tuni ty to 
m a k e special plays called "doubling down" and "splitting pairs," which 
are somet imes advantageous. And, particularly juicy, the player gets a 
bonus in the form of a 3:2 payoff (rather than just "even money") when 
his initial two-card hand is a "natural"—an ace and a ten (picture card or 
"10")—unless the dealer has a natural , too. 

Players can capitalize on these asymmetries because, in blackjack, 
after each hand is played, those cards are discarded. Tha t means that, as 
the plays progress, the distribution of ten-value cards in the deck can 
change—someth ing an astute player can take advantage of. 

W h e n T h o r p published his revolutionary discoveries in 1962, the net 
effect of these asymmetr ies and o ther fine points was that the version of 
blackjack being played on the Las Vegas "strip" was essentially an even 
game , wi th very close to a zero advantage for the casino. 

In an industry where the casinos had been used to having a guaran
teed edge, Thorp ' s discovery was completely unexpected and impressive 
enough to make news, and it led to hordes of gamblers flocking to the 

* E d w a r d O . T h o r p , Beat the Dealer: A Winning Strategy for the Game of Twenty-
One, Random House, N e w York, 1962. 
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blackjack tables to play Thorp ' s r ecommended strategy, which required 
the player to memor ize certain rules for w h e n to hit, w h e n to stand, and 
so on, depending on the dealer's up-card. All of these rules were based 
upon solid mathematics—probabili ty calculations that, for example, ana
lyzed whether a player should hit w h e n his hand totals 16 and the dealer 
shows an ace. Calculating the probabilities of the various totals that the 
dealer might end up with and the probabilities of the totals the player 
would get by hitting, T h o r p simply compared the probability of winning 
both ways—hitting and standing—and instructed players to take the bet
ter of the two options—in this case, hitting the 16. 

The casinos were pleased to see the increased level of business, and 
they quickly realized that mos t of these newly min ted blackjack enthu
siasts only played Thorp ' s s trategy in their dreams. Many a would-be 
winner had difficulty r emember ing the finer points of s trategy well 
enough to execute t h e m at the right t ime, or even showed a lack of 
dedication to the mathematical ly derived best s trategy w h e n subjected 
to the harsh realities of the luck of the draw. A r u n of good or bad 
hands—perhaps losing several t imes in a r ow by following one of the 
basic strategy's instruct ions—would often persuade players to disregard 
Thorp 's meticulously calculated imperatives. 

Nevertheless, Beat the Dealer was a s tunning success. It sold m o r e 
than 700,000 copies and m a d e The New York Times' bestseller list. T h e 
game of blackjack would never be the same again. 

CARD COUNTING: A MATHEMATICIAN'S 
SECRET WEAPON 

Thorp 's basic strategy, the one he developed first, simply tu rned a profit-
maker for casinos into a fair game. H o w did blackjack become a potential 
loser for the casinos and a profit-maker for mathematicians and their avid 
students? T h o r p carefully analyzed blackjack strategy further, using 
some of the most powerful computers available in the early 1960s, and 
he exploited two simple ideas. 

One idea is for the player to vary his strategy even more (when to hit or 
stand, whether to double down, etc.) according to the propor t ion of tens 
left in the deck. W h e n the chances of busting are higher than usual—say, 
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w h e n lots of 10s and picture cards (both counted as 10) remain in the deck 
and the player has a poor hand, like 16 against a dealer's 10—he can intel
ligently revise the basic strategy by standing instead of hitting. (If there 
are a lot of 10-value cards left in the deck, the chances are higher that hit
ting on 16 will lead to a bust.) O n the other hand, when the chances of 
busting are lower than usual—when there are relatively more low cards in 
the deck—players can hit in situations where they would normally stand 
according to the basic strategy. These changes shift the percentage advan
tage from zero to a small advantage for the player. 

T h e o ther idea is for the player to vary the a m o u n t bet on successive 
hands according to the same information—the propor t ion of 10-valued 
cards remaining in the deck. W h y do that? Because the propor t ion of 
10-value cards affects the player's prospects on the next hand. For exam
ple, if there are lots of "tens" remaining in the deck, then the chances of 
get t ing a na tura l go up. Of course, the dealer's chance of getting a natu
ral goes u p too, bu t the player gets a payout bonus for a natural and the 
dealer doesn' t . Therefore, m o r e frequent naturals for the player and the 
dealer m e a n a net advantage for the player! 

Things wou ld have been bad enough for the casinos if T h o r p had 
simply explained the mathemat ics to the readers of his bestseller. That 
would have p u t t h e m at the mercy of players wi th enough mathemat i 
cal ability to unders tand his analysis. But T h o r p did m o r e than that. He 
showed t h e m h o w they could count cards—that is, keep a running count 
of tens versus non-tens as the deck is played ou t—to give them a useful 
indicator of whe the r the next hand would be more favorable than 
average or less favorable, and to wha t extent. 

As a result, thousands of readers of Thorp ' s book used its instruc
tions to b e c o m e card counters using his "Tens Strategy," and copies of 
the b o o k began to appear in the hands of passengers on trains, planes, 
and buses arriving in Las Vegas and other parts of Nevada, where large 
a m o u n t s of m o n e y could be w o n by applying the fruits of Thorp ' s 
mathemat ica l analysis. 

The casinos were in trouble, and they immediately changed the rules of 
blackjack, removing certain features of the game that contributed to the 
player's potential to win. They also introduced the use of multiple decks 
shuffled together—often four, six, or even eight decks—and dealt the cards 
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out of a "shoe," a wooden or plastic box designed to hold the shuffled cards 
and show the back of the next card before it is pulled out by the dealer. 

Called the "perfesser s topper" in homage to Professor Thorp , whose 
personal winning exploits, while no t huge, were sufficient to add to the 
eno rmous appeal of his book, the mult ideck shoes had t w o effects. They 
enabled the casinos to shuffle the cards less frequently, so that w i thou t 
slowing down the g a m e (bad for profits) they could make sure to reshuf
fle when a substantial n u m b e r of cards were still left in the shoe. This 
kept the card counters from exploiting the mos t advantageous situa
tions, which tend to occur w h e n there are relatively few cards left to be 
dealt. Moreover, the multiple-deck g a m e automatically shifted the basic 
player versus house percentage about one-half of one percent in the 
house's favor (mainly due to the asymmetr ies men t ioned above). Even 
bet ter for the casino, dealing from multiple decks shuffled together 
mean t that it would typically take m u c h longer for the T h o r p count ing 
procedure to detect an advantageous deck, and the longer it took the 
more likely a player was to make a mistake in the count . 

There was a predictable outcry from regular blackjack players about 
the rules changes—but only about reducing the opportunities to make 
plays like "doubling down" and "spUtting pairs." So the casinos relented 
and reinstituted what essentially were the previous rules. But they kept the 
shoes, albeit with a few blackjack tables still offering single-deck games. 

LORDEN'S STORY 

At this point, we can't resist recount ing the experience one of us (Lorden) 
had with the T h o r p system. 

In the summer of 1963 I was on vacation from graduate school, back 
home in southern California working for an aerospace company. I was fas
cinated by Thorp's book, particularly the part where Tho rp explained how 
the "gambler's ruin problem" sheds light on the very practical issues of win
ning at blackjack. I was familiar with the problem from m y mathematics 
studies as a Caltech undergraduate, but I had not heard of the Kelly gam
bling system or the other money management rules that T h o r p explained. 

W h a t these rules reflect is that there is an impor tan t bu t little under
stood corollary to the well-known principle "You can't beat the odds in 
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the long run ." Many years later, in a public lecture at Caltech, I demon
strated this fact by involving the audience in an elaborate experiment. 

I p r o g r a m m e d a computer to print out 1,100 individual "gambling his
tories," one for each audience member , mathematically simulating the 
results of making steady bets on a single number on a roulette wheel, five 
days a week, eight hours a day, for an entire year. In spite of the 5.6 percent 
casino advantage at roulette, about a hundred members of the audience 
raised their hands w h e n I asked, "How many of you are ahead after three 
months?" At the end of the lecture, the w o m a n w h o got a framed certifi
cate attesting to her performance as "best roulette player" had w o n a tight 
competit ion. There were three others in the audience who, like her, 
actually made a profit playing full-time roulette for a year! (As a seasoned 
presenter, before asking the computer to run the simulations and print 
out the results, I had calculated the probability that no one in the audience 
would come out a winner, and it was acceptably small.) 

If r a n d o m chance fluctuations can somet imes forestall for such a 
long t ime the inevitable losses in playing roulet te , then perhaps it is no t 
surprising that the flip side is also t rue . If I played blackjack wi th a win
ning percent advantage using Thorp ' s system, I still had to face the pros
pect of losing m y meager stake before reaching the promised land of 
long- term winnings. 

Of course, Thorp 's book explained all of this and emphasized the useful
ness of the Kelly gambling system, a strategy invented by a physicist at Bell 
Laboratories in the 1950s, which instructs that you should never bet more 
than a certain percentage of your current capital—typically about the same 
percentage as your average percentage advantage over the casino. In theory, 
this strategy would completely eliminate the possibility of "gambler's ruin." 
Unfortunately, casino games have min imum bets, so that if your capital ever 
gets down to, say, five dollars, betting a small percentage of it is not allowed. 
Playing one last hand at that point will of course give you a good chance of 
losing your whole stake—a genuine case of gambler's ruin. 

TEAMS TAKE ON THE CASINOS 

The initial response of the casinos to the success of Thorp 's book turned 
ou t to be just the first round in an ongoing war be tween math-types and 
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the casinos. Students of mathematics and its profitable applications 
quickly realized that multiple-deck blackjack, in spite of obvious 
disadvantages compared to single decks, has some very attractive and 
exploitable features. For one, it's easier to disguise card counting wi th 
multiple decks, because whenever the composit ion of the remaining 
cards becomes favorable for the player, it tends to stay favorable— 
perhaps for many hands. Fluctuations in the player versus dealer advan
tage are dampened by the presence of many cards remaining in the deck. 

Also, blackjack players started playing in teams, someth ing else that 
needed the m u c h longer play cycles of multiple decks. O n e of the pio
neers of t eam play was Ken Uston, w h o gave u p his j o b as vice president 
of the Pacific Stock Exchange to devote himself full-time to winning 
money at blackjack. His b o o k Ken Uston on Blackjack popular ized meth
ods of t eam play against the casinos that greatly enhanced the potential 
of card counters to extract profits. 

In its simplest form, t eam play involves m e m b e r s pool ing their 
money and sharing the ne t proceeds of their individual wins and losses. 
Since it can take m a n y hands for a small percentage edge to t u rn into 
actual winnings, a t eam of, say, five players, playing as one , can improve 
their chances significantly, since they can afford to play five t imes as 
many hands than if they played individually. 

Moreover, teams can avoid detection m u c h m o r e effectively by 
adopting the classic economic principle of specialization of labor. W h a t 
Uston proposed was "big player teams," an idea credited to his mentor , 
a professional gambler n a m e d Al Francesco. Here is the idea. A casino 
can detect card counters because they need to change the size of their 
bets—suddenly changing from making small bets w h e n the odds are on 
the casino's side and then placing big bets w h e n the remaining cards are 
in their favor. But by playing as a team, one player can avoid detect ion 
by not bet t ing anything unless the deck is sufficiently favorable, and 
then making only big bets. 

The idea is for some team members to act as "spotters." Their j o b is to 
play quiedy at several tables, placing small bets, all the t ime counting cards 
out of the shoe at their table. W h e n one of t h e m sees a favorable deck 
start to emerge, they signal the "big bet tor" to come over to that table and 
take advantage of it. The big bet tor thus moves around from table to 
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table, making only large bets (and generally raking in large wins), leaving 
a particular table w h e n the counters signal that the deck has turned unfa
vorable. The small bets made by the spotters have little effect on the 
team's overall winnings or losses, which come predominately from the 
big bettor. The main risk in this strategy is that someone watching the big 
bet tor moving around in this fashion can recognize what 's going on, but 
in the hustle and bustle of a large busy casino with literally dozens of 
blackjack tables, a skilled and experienced team can often play their 
well-choreographed game all night long wi thout being detected at all. 

The potential for generating steady profits from this sort of team play 
began to attract considerable interest among mathematics students at 
many universities. For most of the 1990s, teams from MIT, in particular, 
became highly effective in raiding gambling casinos in Nevada and other 
parts of the country. Their winnings were not consistent (chance fluctua
tions always play an inescapable role), their stealth techniques and disguises 
were not always effective, and their personal experiences ranged from 
inspiring to abysmal. But overall they gave the casinos quite a run for their 
money. Many of these exploits were chronicled in a popular book, Bringing 
Down the House by Ben Mezrich, in magazine and newspaper articles, in a 
television documentary (in which your other author, Devlin, became the 
only mathematician to play a James Bond role on the screen), and in the 
recent movie 21 (which is the alternative name for the game of blackjack). 

So what ' s happening today in blackjack casinos? Almost certainly 
there are some unchronicled math-wise card counters still playing, but 
the casinos' counte rmeasures n o w include some high-tech machinery: 
au tomat ic card shufflers. In the early 1990s a t ruck driver n a m e d John 
Breeding had the idea to replace the shoe wi th a machine that would not 
only hold multiple decks bu t allow played cards to be shuffled back into 
the deck automatically and frequently. This lead to the development of 
Shuffle Master machines , n o w visible in many casinos, which, besides 
relieving the dealer of the t ime-wasting burden of shuffling, also relieve 
card counters of their potential for profits. The latest versions of these 
machines, called CSMs (for "cont inuous shuffling machines"), effec
tively approximate "dealing from an infinite deck," a feature that makes 
card count ing useless. In the subculture of people w h o play blackjack 
professionally, these machines are dubbed "uncomfortable shoes." 
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Single-deck games still exist, but in a disturbing recent t rend the 
casinos have been t ransforming t h e m into "sucker proposi t ions" by 
changing the 3:2 bonus for a natural to 6:5. This shirts the advantage a 
whopping 1.4 percent in favor of the casino, tu rn ing the g a m e into little 
more than a salutary (and possibly expensive) lesson for the sort of per
son w h o doesn't read the fine print. (And if you don ' t think a 1.4 percent 
advantage to the casino is "whopping," you should stay well away from 
the gaming tables!) 

The "Double D o w n " episode of NUMB3RS h inged on the idea that a 
rogue genius mathemat ic ian was hired as a consultant to the company 
that manufactures the shuffling machines, and he intentionally used a 
poorly chosen algori thm to control the r a n d o m mixing of the cards 
inside the machine. H e then hired mathemat ics s tudents and a r m e d 
them with the instructions needed to decode the pa t te rn of the cards 
dealt by the machine, enabling t h e m to anticipate the sequence of cards 
as they came out. The writers helped themselves to a little dramat ic 
license there, bu t the point is a good one. As Charlie observes: "No 
mathematical algori thm can genera te truly r a n d o m numbers . " Poorly 
(or maliciously) designed algori thms in tended to genera te r a n d o m 
numbers can indeed be exploited, whe the r they appear in cell phones , 
Internet security, or at the tables in a casino. 

A FOOTNOTE: MATHEMATICIANS AND THE 
GAMES THEY CHOOSE TO PLAY 

Thorp himself never made a huge amoun t of money from his casino 
method—apart from the royalties from his bestselling book. But he did go 
on to become wealthy from applying his mathematical expertise to a dif
ferent game. Shortly after his stunning success in transforming blackjack, 
he turned his attention to the stock market, wro te a book called Beat the 
Market, and started a hedge fund to use his mathematical ideas to gener
ate profits in stock market trading. Over a nineteen-year period, his fund 
showed what Wall Street calls an "annualized net re turn" of 15.1 percent. 
That 's slightly better than doubling your capital every five years. 

Nowadays, Wall Street and financial firms and institutions are heavily 
populated wi th "quants"—people trained as mathemat ic ians , physicists, 



204 THE NUMBERS BEHIND NUMB3RS 

and the l ike—who have m a d e the study of the mathemat ics of finance 
and investment into a hugely profitable enterprise. 

You get the idea. 

LORDEN AGAIN: CALTECH STUDENTS TAKE 
ON THE CASINOS 

Some years ago, about a decade after Thorp ' s b o o k came out, I had an 
experience that b rough t h o m e to m e jus t h o w seriously the casinos took 
the threat mathemat ics posed to their business. By then, I was back at 
Caltech, m y alma mater , as a professor, m y brief s tudent foray into 
casino life long behind m e . My specialty was (and remains) statistics 
and probability, and I wou ld occasionally hear stories about friends of 
friends mak ing killings at the casinos. I knew of the improvements in 
blackjack card count ing that T h o r p and others had made , such as the 
"hi-lo" count , whe re the player keeps a single runn ing count , adding 1 
for every " ten" or ace coming ou t of the deck and subtracting 1 for 
every low card (2 t h rough 6). T h e greater the count in the positive direc
tion, the fewer "tens" or aces remained in the deck, favoring the player 
w h o could hit on 17 wi th a reduced chance of going bust. These new 
strategies were n o t only m o r e powerful bu t also easier to use than 
Thorp ' s original tens strategy. 

O n e day a senior came to m y office at the beginning of his last spring 
t e r m to ask m e to give h i m a reading course in probability theory. He 
wan t ed to p robe m o r e deeply into some topics (specifically, r andom 
walks and fluctuation theory, for those w h o know what these te rms 
mean) that were only touched u p o n in the standard courses that I 
taught . I should have guessed wha t he was u p to! After a few once-a-
week meet ings, at which the s tudent and I went over some fairly 
advanced techniques for calculating probabilities and simulating certain 
types of r a n d o m fluctuations, I began to catch a whiff of a more than 
purely mathemat ica l purpose : "Do you have any special practical interest 
in these topics?" I asked him. 

Wi th that slight prod, the s tudent opened up and told some tales that 
gave m e , I mus t admit , considerable vicarious pleasure. H e and a class
ma te , b o t h seniors required to take only a very light load of course-
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work, had been spending mos t of their days and nights in Las Vegas 
playing blackjack. They sought ou t single-deck games , which were 
still available at h igh-min imum tables, and they played wi th stacks of 
"quarters"—$25 chips. (My s tudent came from a wealthy family.) 

As young m e n playing for very high stakes, they were subject to intense 
scrutiny and had to go to eno rmous lengths to avoid being detected and 
barred from play. They feigned drunkenness, showed extreme interest in 
the cocktail waitresses (not feigned), and played with seeming lack of 
interest in the cards while secretly keeping their counts. They planned 
their assaults on the casinos with considerable care and cunning. 

Every week they would pick four casinos to hit and would play black
jack for four days, sleeping on a schedule that made each day twenty hours 
long instead of twenty-four—a cycle that enabled t h e m to face each eight-
hour shift of casino personnel only twice in that week. The next week 
they would move on to another set of four casinos, taking pains never to 
return to the same casino until at least a m o n t h had gone by. 

Being barred from play was no t the only risk they faced. As Thorp ' s 
book described, some casinos were no t above br inging in "cheat deal
ers," specialists in techniques such as "dealing seconds"—giving the 
player a hit wi th the second card in the deck if the top card wou ld give 
h im a good total. (The dealer has to peek at the top card and then exe
cute a difficult maneuver to deal the second card instead.) Playing at a 
popular and very swank casino in the wee hours one morn ing , m y stu
dent and his friend noticed that the appearance of a n e w dealer at the 
table occurred sooner than no rma l—a dangerous sign, according to 
Thorp . Suitably wary, they decided to play a few m o r e hands and see 
what would happen. 

My student soon faced a dealer's 10 up-card wi th a total of 13 in his 
hand, requiring h im to hit. Keeping his cool in the face of possible 
second-dealing, he signaled for a hit. W h a t happened next was wor thy 
of a scene in NUMB3RS. The dealer moved his hand sharply to deliver 
the requested card, bu t that same mot ion launched ano ther card in a 
high arc above the table, causing it to fall to the floor. Fortunately, the 
card m y student was dealt was an 8, giving h im a total of 21 , which n o t 
surprisingly beat the dealer's total. This dramat ic scene taught three 
lessons: that w h e n "dealing seconds" unskilled hands might uninten-
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tionally move the top card too m u c h to conceal the cheating; that the 
second card (unseen by the cheat dealer) might tu rn out to be even 
bet ter for the player than the top card; and finally, that it was clearly t ime 
for our Caltech heroes to cash in their winnings, leave that casino, and 
never go back. 

A few weeks after I was let in on his secret life, m y student told me 
that he and his classmate had ended their adventures in Las Vegas. They 
had earned a ne t profit of $ 17,000—pretty good in those days—and they 
k n e w it was t ime to quit. "Wha t makes you think so?" I asked inno
cently. H e proceeded to explain h o w the "eye in the sky" system works. 
Video cameras are posi t ioned above the casino ceiling to enable the 
casino to wa tch the play at the tables. They detect not only cheating but 
also card count ing. T h e casino personnel w h o moni to r the play through 
the camera are t aught to count cards too, and by observing a player's 
choices, w h e n to be t larger and smaller amounts , they can detect pretty 
reliably whe the r or no t card count ing is in progress. 

At one well-known casino, m y s tudent and his friend re turned to 
play after a mon th ' s absence, using all their usual techniques to avoid 
being spot ted as card counters . They sat down at a blackjack table, 
bough t some quarters , and placed their bets for the first hand. Suddenly, 
a "pit boss" (dealer supervisor) appeared, pushed their stacks of chips 
back to t hem, and politely informed t h e m that they were no longer wel
c o m e at that casino. (Nevada law allows casinos to bar players arbi
trarily.) 

W h e n m y student , feigning all the innocence he could muster, asked 
why on ear th the casino wou ld no t wan t to let h im and his friend play a 
simple g a m e of blackjack, the pit boss said, "We figure you're into us for 
about $700, and we ' re no t going to let you take anymore ." A full m o n t h 
after their last appearance, and for a mere $700. The casinos may depend 
on mathemat ics in order to m a k e a healthy profit, bu t they cry foul 
w h e n anyone else does the same. 



APPENDIX 

Mathematical 
Synopses of the 
Episodes in the First 
Three Seasons of 
NUMB3RS 

IS THE MATH IN NUMB3RS REAL? 

Both of us are asked this quest ion a lot. T h e simplest answer is "yes." 
The producers and writers go to considerable lengths to make sure that 
any m a t h on the show is correct, runn ing script ideas by one or m o r e 
professional mathematic ians from the hundreds across the count ry that 
are listed in their address book. 

A more difficult question to answer is whe the r the mathemat ics 
shown really could be used to solve a crime in the way depicted. In some 
cases the answer is a definite "yes." Some episodes are based on real cases 
where mathematics actually was used to solve crimes. A couple of epi
sodes followed the course of real cases fairly closely; in others the writers 
exercised dramatic license wi th the real events in order to produce a 
watchable show. But even when an episode is no t based on a real case, the 
use of mathematics depicted is generally, t hough no t always, believable— 
it could happen. (And experience in the real world has shown that 
occasionally even "unbelievable" applications of mathemat ics do actu
ally occur!) The skepticism critics express after viewing an episode is 
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somet imes based on their lack of awareness of the power of mathematics 
and the extent to which it can be applied. 

In m a n y ways, the mos t accurate way to think of the series is to com
pare it to good science fiction: In m a n y cases, the depiction in NUMB3RS 
of a particular use of mathemat ics to solve a crime is something that 
could, and maybe even may, happen someday in the future. 

O n e thing that is completely unrealistic is the t ime frame. In a fast-
paced, 41-minute episode, Charlie has to help his brother solve the case 
in one or two "television days." In real life, the use of mathematics in 
crime detection is a long and slow process. (A similar observation is 
equally t rue for the use of laboratory-based criminal forensics as depicted 
in television series such as the hugely popular CSI franchise.) 

Also unrealistic is that one mathemat ic ian would be familiar wi th so 
wide a range of mathemat ica l and scientific techniques as Charlie. H e is, 
of course, a television superhero—but that 's wha t makes h im watch-
able. Observing a real mathemat ic ian in action would be n o more 
exciting than watch ing a real FBI agent at work! (All that sitting in cars 
wai t ing for someone to exit a building, all those hours sifting through 
records or staring at compu te r screens . . . boring.) 

It's also t rue that Charlie seems able to gather masses of data in a 
remarkably shor t t ime. In real-life applications of mathematics , gett ing 
hold of the required data, and put t ing it into the right form for the com
pu te r to digest, can involve weeks or m o n t h s of labor-intensive effort. 
And often the data one wou ld need are simply no t available. 

Regardless of whe the r a particular mathemat ical technique really 
could be used in the m a n n e r w e see Charlie employ it, however, the one 
accurate th ing that w e believe comes across in practically every epi
sode is the approach Charlie brings to the problems D o n presents him. 
H e boils an issue d o w n to its essential elements, strips away what is 
irrelevant, looks for recognizable pat terns, sees whe the r there is a 
mathemat ica l technique that can be applied, possibly wi th some adapta
tion, o r—and this has happened in several episodes—failing the possibil
ity of applying some mathemat ics , at least determines whe the r there is 
a piece of mathemat ics that , while no t applicable to the case in hand, 
may suggest, by analogy, h o w D o n should proceed. 
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But all of the above observations miss the real point. NUMB3RS 
does not set out to teach math , or even to explain it. It's en ter ta inment , 
and spectacularly successful en ter ta inment , at that . To their credit, the 
writers, researchers, and producers go to significant lengths to get the 
ma th right within the framework of p roduc ing one of the mos t popular 
fictional crime series on U.S. ne twork television. F rom the point of view 
of good television, however, it is only incidental that one of the show's 
lead characters is a mathemat ic ian. After all, the series is a imed at an 
audience that will of necessity contain a very small percentage of 
viewers knowledgeable about mathemat ics . (There are no th ing like 
11 million people in the count ry—the average NUMB3RS audience at an 
episode's first broadcast—with advanced mathemat ica l knowledge!) In 
fact, Nick Falacci and Cheryl H e u t o n , the series' original creators 
and n o w executive producers , have observed that wha t persuaded the 
ne twork to make and marke t the p r o g r a m in the first place was the 
fascination of a h u m a n interaction of t w o different kinds of p rob lem 
solving. 

D o n approaches a crime scene wi th the street-smart logic of a sea
soned cop. Charlie brings to the p rob lem his expertise at abstract logical 
thinking. Bound together by a family connect ion (overseen by their 
father, Alan, played as it happens by the only family m e m b e r w h o actu
ally understands quite a lot of the math—Judd Hirsch was a physics 
major in college), D o n and Charlie w o r k toge ther to solve crimes, giv
ing the viewer a glimpse of h o w their t w o different approaches inter
twine and interact. And make n o mistake about it, the interaction of 
mathematical thinking wi th o ther approaches to solve problems is very 
much a real-world p h e n o m e n o n . It's wha t has given us, and continues to 
give us, all of our science, technology, medicine, m o d e r n agriculture, in 
fact, pretty well everything we depend u p o n every day of our lives. 
NUMB3RS gets that right in spades. 

In wha t follows, we provide brief, episode-by-episode synopses of 
the first three seasons of NUMB3RS. In mos t episodes, w e see Charlie 
use and refer to various parts of mathemat ics , bu t in ou r summar ies 
we indicate only his pr imary mathemat ica l contr ibut ion to solving 
the case. 
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FIRST SEASON 

1.23.05-"Pilot" 

A serial rapist/killer is loose in Los Angeles. Don leaves a map showing the 
crime locations on the dining table at his father's home, and Charlie 
happens to see it. H e says he might be able to help crack the case by 
developing a mathematical equation that can trace back from the crime 
locations to identify the killer's point of origin. H e explains the idea in terms 
of a water sprinkler, where you cannot predict where any individual droplet 
will land but, if you know the pattern of all the drops, you can trace back 
to the location of the sprinkler head. Using his equation (which you see on 
a blackboard in his h o m e at one point), he is able to identify a "hot zone" 
where the police can carry out a sweep of DNA samples to trace the killer. 

1.28.05 - "Uncertainty Principle" 

D o n is investigating a series of bank robberies. Charlie uses predictive 
analysis to accurately predict where the robbers will strike next. H e likens 
the m e t h o d to predicting the movements of fish, describing his solution 
as a combinat ion of probability model ing and statistical analysis. But 
w h e n D o n and his t eam confront the thieves, a massive shootout occurs 
leaving four people, including an officer, dead. Charlie is devastated, and 
retreats into the family garage to work out a famous unsolved math 
prob lem (the P versus N P problem) that he also plunged into after his 
m o t h e r became terminally ill a year earlier. But D o n needs his brother 's 
help and tries to get Charlie to re turn to the case. W h e n Charlie does 
involve himself again, he notices that the pat tern of the bank robberies 
resembles a g a m e called Minesweeper. The gang uses information gath
ered from each robbery to choose the next target. 

2.4.05 - "Vector" 

Various people in the L.A. area start to b e c o m e sick; some of t h e m die 
on the same day. D o n and Charlie are called in independently (to Don's 
surprise) to investigate a possible bioterrorist attack, in which someone 
has released a deadly virus into the environment . The C D C official 
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w h o calls in Charlie says they need h im to help r u n a "vector analysis." 
Charlie sets out to locate the point of origin of the virus. Announc ing 
that his approach involves "statistical analysis and g raph theory," he 
plots all the known cases on a m a p of L.A., looking for clusters, and tries 
to trace out the infection pat tern . H e later explains that he is developing 
a "SIR model" (so-called for susceptibility, infection, recovery) of the 
spread of the disease, in order to try to identify "patient zero ." 

2.11.05 - "Structural Corruption" 

Charlie believes that a college s tudent w h o allegedly commi t t ed suicide 
by jumping from a bridge was instead murdered , and that his death is 
related to an engineering thesis he was work ing on about one of Los 
Angeles's newest and mos t impor tan t buildings, which may no t be as 
structurally safe as the owner claims it t o be. Charlie bases his suspicions 
on the location of the body relative to the bridge, which his calculations 
reveal is not consistent wi th the s tudent th rowing himself off the 
bridge. Starting wi th the student 's data on the building, Charlie builds a 
computer model that demonst ra tes it to be structurally unsafe w h e n 
subjected to certain unusual w ind conditions. Suspicion falls on the 
foundations. By spotting numerical pa t terns in the company 's records, 
Charlie determines that the records had been falsified to cover u p the 
use of illegal immigran t workers . 

2.18.05-"Prime Suspect" 

A five-year-old girl is kidnapped. D o n asks for Charlie's help w h e n he 
discovers that the girl's father, Ethan, is also a mathemat ic ian . W h e n 
Charlie sees the mathemat ics Ethan has scribbled on the whi teboard in 
his h o m e office, he recognizes that Ethan is work ing on Riemann's 
hypothesis, a famous m a t h prob lem that has resisted a t tempts at solu
tion for more than 150 years. A solution could no t only earn the solver 
a $1 million prize, bu t could provide a m e t h o d for breaking Internet 
security codes. W h e n D o n is able to de te rmine the identity of one of 
the kidnappers, and learns that the plan is to "unlock the world 's biggest 
financial secret," it becomes clear why Ethan's daughter was kidnapped. 
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But w h e n Charlie finds a major er ror in Ethan's argument , they have to 
c o m e u p wi th a way to fool the kidnappers into believing that he really 
can provide the Internet encrypt ion key they are demanding, and trace 
their location to rescue the daughter. 

2.25.05 - "Sabotage" 

A serial saboteur claims responsibility for a series of deadly train acci
dents. At each crash site the perpet ra tor leaves a numerical message, 
claiming in a te lephone call to D o n that the message tells h im everything 
he needs to know about the series of crashes. The FBI t eam assumes the 
message is in a numer ic code, which Charlie tries to crack. Charlie sees 
lots of numerical pat terns in the message but is unable to crack the code. 
Charlie and the FBI t eam soon realize that each accident was a re-creation 
of a previous wreck, and eventually Charlie figures out that there is no 
code. The message is a compend ium of data about a previous crash. 
Charlie says, "It's no t a code, it's a story told in numbers ." 

3.11.05 - "Counterfeit Reality" 

A t e a m of forgers has taken an artist hostage to draw the images to pro
duce small-denominat ion counterfeit bills. The counterfeiters murder at 
least five people, leading D o n to believe that if the missing artist isn't 
located soon she will be killed w h e n she finishes her work on the phony 
money. Charlie is b rough t in to run an algori thm to enhance the image 
quality on some store-security videotapes relevant to the case. After 
s tudying the fake bills, he notices some flaws that appear to be deliber
ate, bu t do no t seem to have any pat tern . His s tudent Amita suggests 
that if he looks at the image at an angle, he may be able to discern a 
pa t tern . In this way, he is able to read a secret clue, wri t ten by the 
k idnapped artist, that leads the FBI to the gang's location. 

4.1.05-"Identi ty Crisis" 

A m a n wan ted for stock fraud is found gar ro ted in his apar tment , and 
the cr ime is eerily similar to a murde r commi t ted a year earlier, a case 



Appendix 213 

which D o n closed w h e n an ex-con confessed. Now, D o n mus t re
investigate the old case to de te rmine whe the r he p u t an innocent m a n 
in jail. He asks Charlie to go over the evidence to see if he missed any
thing the first t ime around. Charlie quest ions the procedure used for 
identification of suspects from pho tographs and the m e t h o d of using 
fingerprints for identification. H e carries ou t a statistical analysis of 
eyewitness evidence reliability. 

4.15.05-"Sniper Zero" 

Los Angeles is plagued by a spate of sniper killings. Charlie initially tries 
to determine the location of the sniper by calculating the trajectories of 
the bullets found in the victims, men t ion ing his use of "drag coefficient 
models." By graphing the data and selecting axes appropriately, Charlie 
concludes that m o r e than one shooter is at work . H e suspects that the 
data is following an exponential curve, suggesting that there is an 
epidemic of sniper attacks, inspired by an original "sniper zero ." H e 
compares the situation to the decisions of h o m e o w n e r s to paint their 
houses a certain color, ment ion ing the m u c h discussed "tipping point" 
phenomenon . H e analyzes the accuracy of the shooters in t e rms of 
"regression to the mean ," and concludes that the key pa t te rn of sniper 
zero is not in the locations of the victims bu t in where the sniper fired 
the shots. 

4.22.05 - "Dirty Bomb" 

A truck carrying radioactive material is stolen, and the thieves threaten 
to set off a dirty b o m b in L.A. in twelve hou r s if they aren' t paid $20 
million. Whi le D o n at tempts to track d o w n the truck, Charlie analyzes 
possible radiation dispersal pat terns to c o m e u p wi th the mos t likely 
location where the b o m b may be de tonated to inflict the mos t damage 
to the populat ion. However, the gang's real a im is for the FBI to evacu
ate an entire city square, in order to steal valuable art from a restorat ion 
facility. Eventually the FBI is able to identify and capture the three crim
inals, w h o use the threat of de tonat ing a dirty b o m b to t ry to negotiate 
their release. Observing that the isolation and individual in terrogat ion 
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of the three criminals is reminiscent of the so-called prisoner's di lemma, 
Charlie has the three b rough t together to present t h e m with a risk-
assessment calculation, which shows h o w m u c h each has to lose. This 
causes the one wi th the greatest potential loss to come clean and say 
where the radioactive material is hidden. 

4.29.05 - "Sacrifice" 

A senior computer-science researcher, work ing on a classified govern
m e n t project, is found murde red in his Hol lywood Hills h o m e . The FBI 
discovers that data had been erased from the dead man's computer 
a round the t ime of the murder . Don 's investigation reveals that the vic
t im was going th rough a bi t ter divorce, and was trying to keep his wife 
from get t ing his money. Using wha t he refers to as a predictive equation, 
Charlie is able to recover enough data from the victim's erased hard 
drive to learn that the project the m a n was work ing on seemed to 
involve baseball statistics. But w h e n Charlie runs a Google search on 
some of the n u m b e r sequences, he discovers that the data came 
n o t from baseball bu t from government statistics on people living in 
different kinds of ne ighborhoods . 

5.6.05-"Noisy Edge" 

Together wi th an agent from the National Transportat ion Security 
Board, D o n investigates eyewitness accounts of a mysterious unidenti
fied object flying dangerously close to d o w n t o w n Los Angeles, that has 
raised concern of a terrorist attack. After Charlie is recruited to help 
wi th the investigation, they discover that the flying object is part of a 
n e w technology that could revolutionize air travel. But the investigation 
takes a m o r e sinister t u rn w h e n they discover evidence suggesting sabo
tage that leads to the crash of the aircraft, killing the lead engineer w h o 
was piloting the plane on a test flight. There is considerable discussion 
of the "squish-squash algori thm," developed by a mathemat ic ian at the 
University of Alberta to uncover weak signals (such as radar) in a noisy 
envi ronment . 
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5.13.05-"Manhunt" 

As D o n investigates a prison bus crash, Charlie uses probability analysis 
to conclude that the bus crash was no t an accident, bu t par t of a 
conspiracy to free a dangerous killer w h o is ben t on revenge. D o n and 
Charlie mus t find the killer before he is able to carry ou t his intent. 
Charlie uses probability theory to t ry to predict where the killer is likely 
to go next. This involves the use of Bayesian analysis to de te rmine which 
of the many repor ted sightings of the fugitive by the public are m o r e 
likely to be reliable. H e uses the results to plot places and t imes to 
furnish a trajectory. 

SECOND SEASON 

9.23.05 - "Judgment Call" 

The wife of a federal judge is shot and killed in her garage. It's unclear 
whe ther the intended target was he r or he r husband, w h o was hear ing a 
death penalty case involving a gang leader. D o n wants to k n o w which of 
the many criminals the judge has sent to prison are mos t likely to seek 
revenge. Charlie's task is to na r row d o w n the list of possible suspects. 
He initially refers to his approach as using a "Bayesian filter" and later 
talks about "reverse decision theory," Presumably wha t he is doing is 
using Bayes' t heo rem "backwards," to c o m p u t e for each suspect the 
probability that he or she commi t t ed the murder , so that D o n can 
concentrate on the ones to w h o m Charlie's calculations assign the 
highest probabilities. 

9.30.05 - "Better or Worse" 

A young w o m a n a t tempts to rob a jewelry store in Beverly Hills by 
showing the store owner a pho tog raph of his k idnapped wife and child. 
As the w o m a n is leaving the store wi th a large quanti ty of d iamonds , 
she is shot and killed by a security guard. Charlie assists the FBI by 
cracking the code of the keyless r emote from the woman ' s car, found in 
her purse, to help identify her t h rough he r car purchase, and hence 
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locate and rescue the store owner ' s k idnapped wife and daughter. Since 
the security of car remotes depends on sequences of numbers , the 
"obvious" mathemat ica l approach is to look for numerical pat terns that 
provide a clue to the entire code. Presumably this is wha t Charlie does, 
bu t he never specifies the techniques he is using. 

10.7.05-"Obsession" 

T h e young wife of a high-profile Hol lywood movie producer is stalked 
while alone in her h o m e . T h e house is fitted wi th an extensive system of 
security cameras, bu t n o n e of t h e m has recorded any image of the 
intruder. Charlie realizes that the in t ruder mus t k n o w the house and 
the location of the cameras, and is using a laser to temporari ly "blind" 
the cameras as he passes in front of t hem. This leads h im to analyze the 
video recordings using sophisticated image enhancement algorithms 
that are able to genera te a reliable image of the stalker from relatively 
little information. 

10.14.05 - "Calculated Risk" 

Clearly inspired by the Enron case. A whistle-blower is killed, the finan
cial officer of a large energy company w h o had exposed a major financial 
fraud. The prob lem facing D o n is the sheer n u m b e r of people with a 
motive to kill her: the senior people at the company w h o wan t to prevent 
her from testifying against t h e m in court , the thousands of company 
employees w h o will lose their jobs if the company goes under, and the 
still greater n u m b e r of people w h o are likely to lose mos t of their pen
sion. Charlie uses a technique called "tree pruning" to nar row down a 
probabilistic suspect relationship tree from all of those affected by the 
swindle. H e then models the flow of money through the company using 
me thods of fluid flow in order to identify the killer. 

10.21.05-"Assassin" 

Dur ing an arrest of a forger, D o n uncovers a no tebook containing 
encoded entries. H e asks Charlie if he can decipher the contents. 
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Drawing on his background of consult ing for the NSA, Charlie is able to 
crack the code, and discovers that the n o t e b o o k contains plans for a 
skilled and trained assassin to murde r a Colombian exile living in Los 
Angeles. His remaining contr ibut ion to the case is to suggest to D o n 
ways to pursue the assassin based on ideas from g a m e theory, speculat
ing on h o w the killer will behave in different situations. 

11.4.05-"Soft Target" 

A Homeland Security exercise in the Los Angeles Met ro tu rns into a real 
emergency w h e n someone releases phosgene gas in a train. D o n is 
assigned to the case. Using classical percolation theory (based on statisti
cal mechanics, which de te rmines the flow of liquids and gases based on 
the mot ion of the individual molecules) to de te rmine the flow of the 
gas, based on the readings from the people in the car, Charlie figures ou t 
the precise location where it was released. After D o n identifies a likely 
suspect, Charlie tries to predict whe re and h o w he will strike next, by 
applying linear percolation theory, a fairly n e w field which Charlie 
explains in t e rms of a ball runn ing th rough a pinball machine . 

11.11.05 - "Convergence" 

A chain of robberies at upscale Los Angeles h o m e s takes a m o r e sinis
ter tu rn w h e n one of the h o m e o w n e r s is murdered . T h e robbers seem 
to have a considerable a m o u n t of inside information about the valuable 
i tems in the houses robbed and the detailed movemen t s of their own
ers. Yet the target homes seem to have no th ing in c o m m o n , and cer
tainly nothing that could provide a source to the detailed information 
the crooks are clearly getting. Charlie approaches the task using data-
mining techniques, applying data-mining software to look for pa t terns 
a m o n g all robberies in the area over the six-month per iod of the h o m e 
burglaries. Eventually he comes u p wi th a series of car thefts that look 
as though they could be the work of the same gang, and this leads to 
their capture. His o ther contr ibut ion to the case is figuring ou t that the 
gang keeps track of the h o m e o w n e r s ' movemen t s by intercepting 
signals from the GPS location chip found in all m o d e r n cell phones . 
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11 .18 .05 -" In Plain Sight" 

A raid on a m e t h a m p h e t a m i n e lab goes w r o n g and an FBI agent is killed 
w h e n the booby- t rapped house blows up. T h e lab was identified in part 
by Charlie's analysis of social ne tworks using flocking algorithms. 
At tempts to enhance a photographic image from a compute r found at 
the house reveal a child po rnog raphy image encoded using steganogra-
phy. Fur ther analysis of the compu te r hard drive yields a hidden 
parti t ion, the contents of which provide a clue to the leader of the me th 
lab. 

11.25.05-"Toxin" 

An u n k n o w n person is spiking certain over-the-counter medications 
wi th poisons. This soon leads D o n and his t eam to a hun t for a fugitive 
w h o has disappeared into the California mounta ins . Charlie takes inspi
ra t ion from information theory and from combinatorics (Steiner trees) 
to help D o n solve the case. T h e mathemat ics is no t so m u c h applied as 
used to provide an illustration of wha t actions D o n should take. 

12.9.05 - "Bones of Contention" 

T h e discovery of an ancient skull leads to the murde r of a m u s e u m 
antiquarian. Charlie uses his knowledge of carbon dating and Voronoi 
d iagrams (a concept in combinatorics related to the efficient distribu
t ion of goods) to help solve the crime. The carbon-dating part is a now 
standard application of mathemat ics to de te rmine the age of death 
associated wi th skeletons and b o n e fragments. The Voronoi diagram 
par t is no t unlike Charlie's men t ion of Steiner trees in the previous 
episode, "Toxin": it is m o r e a way of focusing at tent ion on a key aspect 
of the investigation. 

12.16.05-"Scorched" 

An arsonist sets a fire at an SUV dealership that kills a sales person. 
T h e n a m e of an extremist environmenta l g roup is spray-painted on the 
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scene, but the g roup denies involvement. D o n has to de te rmine whe the r 
the g roup is responsible or someone else set the fire. Charlie is called in 
to help figure out whe the r there is a pa t te rn to the fires that wou ld help 
provide a profile of the arsonist. H e says he is using "principal compo
nents analysis" to produce arson "prints" that will be sufficiently precise 
to identify the criminal. 

1.6.06-"The O.G." 

An FBI agent work ing undercover as a gang m e m b e r is killed. W h e n it 
appears that his cover had no t been blown, it begins to look like yet 
another round in an ongoing battle be tween rival gangs. Charlie thinks 
that wi th so many gang killings, 8,000 over four years, there is enough 
data to use social ne twork analysis to look for tit-for-tat chains of kill
ings. His analysis uncovers several chains m u c h longer than the average 
chains, and he thinks they are likely to be the w o r k of the same killer or 
killers. His detection of unusual features of some of the chains eventu
ally enables D o n to solve the case. T h e episode title stands for the t e r m 
"old gangster." 

1.13.06-"Double Down" 

W h e n a young m a n w h o is killed just after leaving a casino wi th consid
erable winnings turns out to be a brilliant mathemat ics s tudent at a local 
university, D o n suspects that the victim was par t of a g roup of players 
using "card count ing" to improve their chances of winning. Charlie's 
analysis takes into account the latest developments in the fifty-year 
history of using mathemat ical analyses to win at blackjack. 

1.27.06-"Harvest" 

A report of suspicious activity in the basement of a hotel leads D o n to 
uncover a black market scheme trading in body parts. Young girls from 
a poor area of rural India are persuaded to sell, say, a kidney, to be trans
planted to a wealthy patient in Los Angeles. T h e girls are b rough t over, 
the operat ion performed, and then they are sent back. But after one of 
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the girls dies, D o n worr ies that the gang will feel they have nothing 
m o r e to lose if o thers die, too. Charlie's contr ibution is to determine the 
mos t likely t ime of the girl's death based on photographs of a pile of 
partially mel ted ice taken by the police w h e n they arrived on the scene. 
T h e ice wou ld have been b rough t in to preserve the kidney in transit, 
and wou ld have been fresh at the t ime of the operat ion on the girl. 

2.3.06 - "The Running Man" 

A gang steals a DNA synthesizer from CalSci, and D o n suspects that the 
thieves in tend to sell it t o a terrorist g roup that would use it to manufac
ture biological weapons . Charlie provides assistance (in a very minor 
way) by suggesting a possible analogy with Benford's Law, which 
describes a surprising distribution of leading digits in tables of real-
wor ld data (1 thir ty percent of the t ime, 2 eighteen percent of the t ime, 
3 twelve percent , d o w n to 9 a m e r e four percent) . Naive intuition would 
suggest that w i th randomly distributed figures, each digit would occur 
one-ninth of the t ime, bu t this is no t so for data from a real-world source. 
In the case D o n is work ing on, the equivalent of the prevalent leading 
digit tu rns ou t to be CalSci's LIGO lab, which Larry directs. LIGO 
stands for "Laser Interferometer Gravitational-Wave Observatory". 
(Caltech—the real-world "CalSci"—actually does operate a LIGO lab, 
t hough the facility itself is no t located on their campus, or even in 
California.) 

3.3.06-"Protest" 

D o n and his t e a m investigate an ant iwar bombing outside an Army 
recruit ing center that resembles the w o r k of a 1970s antiwar activist 
w h o , thirty-five years earlier to the day, had planted a b o m b that killed 
t w o people. T h a t b o m b e r was never caught and the FBI's principal sus
pect at the t ime had disappeared soon after the explosion. Charlie 
uses social n e t w o r k analysis to help D o n figure ou t w h o might have 
carried ou t the 1971 bombing , leading to an unexpected discovery 
about the undercover activities of the FBI in the ant i -Vietnam War 
movemen t . 
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3.10.06-"Mind Games" 

Following leads provided by a self-proclaimed psychic, a search t eam finds 
three dead girls in the wilderness. The victims, all illegal immigrants , 
were apparendy murdered under bizarre, ritualistic circumstances, but it 
is later revealed that they were killed to recover illegal drugs they had 
smuggled across the Mexican border inside their stomachs. Much of 
Charlie's activity in the episode is devoted to trying to persuade D o n and 
the others that there is n o such thing as ESP and that people w h o claim 
they are psychics are frauds. H e does however contribute to the solution 
of the case by using the Fokker-Planck equation (which describes the cha
otic mot ion of a body subject to certain forces and constraints) to deter
mine where the next g roup of smugglers may be hiding out. 

3.31.06-"All 's Fair" 

An Iraqi woman , a h u m a n rights activist in Los Angeles to make a docu
mentary p romot ing the rights of Musl im w o m e n , is murdered . Charlie 
examines the statistical records of m a n y possible suspects to t ry to find 
the ones mos t likely to have commi t t ed the crime. To do this, he has to 
weigh all the factors that might indicate a willingness to murder . This 
enables h im to give each suspect a "score" or probability, wi th the ones 
having the highest scores the pr imary suspects. Creat ing a weight ing in 
this fashion, based on statistics, is called statistical regression, and the 
particular type that Charlie uses is called "logistic" regression. 

4.7 .06-"Dark Matter" 

Don and his t eam investigate a high school shoot ing in which eight stu
dents were killed, along wi th one of the shooters . T h e school has a 
radio frequency identification system to track the movement s of each 
pupil th roughout the day, and Charlie uses the recorded data from the 
system to track the movements of the shooters and their victims 
through the school's hallways, using "predator-prey" equations. W h e n 
his analysis uncovers an abnormal pat tern , Charlie is sure there was a 
third shooter that n o one had suspected earlier. 
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4.21.06 Guns and Roses 

A government law enforcement agent is found dead in her h o m e . At 
first it looks like suicide, bu t w h e n details of the woman ' s recent inves
tigation and private life start to emerge , D o n grows suspicious. Charlie 
uses acoustic fingerprinting, based on recordings of the gunshot picked 
u p by police radios in the area, and concludes that there mus t have been 
ano ther person in the r o o m at the t ime the agent died. Acoustic finger
print ing has been used on several occasions in actual shootings, includ
ing the 1963 Kennedy assassination, where the mathematical analysis 
indicated the high probabili ty of a second shooter firing from the famous 
"grassy knoll." 

A m a n steals a g u n from an agent in the FBI office and starts shooting 
people at r a n d o m . After agent David Sinclair overpowers him, it is dis
covered that he is a respectable husband and father, seemingly wi thout 
motive. After considerable investigation, D o n learns that the m a n was a 
pawn in an elaborate scheme to derail an upcoming trial of a dangerous 
a rms dealer. Charlie provides a key step in the investigation by deter
min ing h o w closely the shooter 's pa th resembled Brownian (random) 
mot ion . H e also uses an analogy wi th a four-dimensional hypercube to 
mot ivate an examinat ion of the shoot ing as a spacetime event. 

D o n investigates a compu te r hacking scam that breaks into a bank's sys
t e m to gain access to the identities and financial assets of its customers, 
including Don . It tu rns ou t that the Russian mafia is behind the activity. 
Interestingly, a l though the security of bank compute r and data systems 
depends on masses of advanced mathemat ics , some of which Charlie 
ment ions , the solution to this case does no t make m u c h use of ma th— 
it's all "beneath the hood," buried in the t racking systems that Charlie 
and Amita use to help Don . 

4 . 2 8 . 0 6 - "Rampage 

5 . 5 . 0 6 - "Backscatter 
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5.12.06-"Undercurrents" 

The bodies of several young Asian girls are washed u p on the beach, 
possibly having been th rown overboard. T h e situation becomes m o r e 
critical when it is discovered that one girl has avian flu. Charlie carries 
out some calculations focused on ocean currents to de te rmine the mos t 
likely location where the victims entered the water. As the investigation 
continues, D o n and his t eam discover a connect ion be tween the girls 
and the sex t rade industry. 

5 .19 .06-"Hot Shot" 

D o n investigates the murders of t w o young w o m e n , found in their cars 
outside their homes . Thei r deaths were m a d e to look like d rug over
doses, but D o n soon concludes that a serial killer is responsible. Charlie 
tries to help by analyzing the daily rout ines of the t w o w o m e n , looking 
for pat terns that might provide leads to the killer, bu t D o n solves the 
case largely by standard investigative techniques. 

THIRD SEASON 

9.22.06 - "Spree" 

The first installment of a two-part season-opener. A y o u n g couple 
embark on a cross-country spree of robberies and murders . W h e n 
it becomes clear that their movements are influenced by the pursui t of 
an FBI agent, w h o joins forces wi th D o n and his team, Charlie 
uses "pursuit curves" to help the agents t rack t h e m down. T h e effective
ness of the mathemat ics becomes critical after one of the fugitives is 
caught and the remaining one kidnaps Agent Reeves to t rade her for 
her partner. 

9.29.06 - "Two Daughters" 

This is the complet ion of the previous week's episode, "Spree." 
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10.6.06-"Provenance" 

A thief steals a valuable paint ing from a small local art gallery. The case 
tu rns m o r e sinister w h e n one of the key suspects is murdered. Charlie 
analyzes a high-resolution pho tog raph of the missing painting through 
the use of mathemat ica l techniques and, by compar ing his results wi th 
a similar analysis of o ther paintings by the same artist, he concludes that 
the stolen paint ing is a fake, leading D o n to revise his suspect list. His 
analysis uses a m e t h o d developed by a (real) mathemat ic ian at Dart
m o u t h College, which reduces the fine details of the painting (relative 
areas of light and dark, choice of colors, perspective and shapes used, 
width , thickness and direction of b rush strokes, shapes and ridges within 
brushstrokes, etc.) to a series of numbers—a numerical "fingerprint" of 
the painter 's technique. 

10 .13 .06 -"The Mole" 

An interpreter at the Chinese consulate is killed in a hit-and-run traffic 
accident. W h e n Charlie carries ou t a mathemat ical analysis on h o w she 
mus t have been hit, it is clear she was murdered . W h e n D o n investigates 
the dead girl, he discovers that she was probably work ing as a spy. 
T h o u g h Charlie also provides assistance by using the facial recognition 
algori thm he has been developing, as well as using steganography 
extraction algori thms to reveal messages hidden in compute r images, 
D o n and his t e a m solve the case largely wi thou t Charlie's involvement, 
using m o r e traditional, nonmathemat ica l techniques. 

10.20.06-"Traffic" 

D o n investigates a series of attacks on L.A. highways. Are they coinci
dence or the w o r k of a single attacker? Are some of t h e m copycat 
attacks? Charlie and Amita first help by analyzing traffic flow using 
the mathemat ics of fluid flow, a technique frequently used in real-
life traffic-flow studies. But Charlie's main contr ibution comes when it 
is suggested that the characteristics of the attacks and the choices of 
victims seem too r andom. H e examines the pa t te rn of the crimes and 
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convinces D o n that they mus t be the w o r k of a single perpetra tor . T h e 
challenge then is to find the hidden c o m m o n factor that connects the 
victims. 

10.27.06-"Longshot" 

This was one of the rare NUMB3RS episodes where they got the m a t h 
badly wrong . A young horse-race gambler is murde red at the racetrack. 
It turns out that the be t tor had m a d e thir ty bets on thir ty races over the 
past five days and w o n t h e m all. This is such an unlikely occurrence 
mathematically that all the races mus t have been rigged, yet Charlie, 
w h o is usually right on the mathemat ica l ball, never makes that observa
tion. If he had, Don, always on the real-life-knowledge-of-the-world 
ball, would doubtless have gone on to say that there is n o way even 
organized crime could rig so m a n y races. All in all, from a mathemat ica l 
perspective and in t e rms of believability, this episode misfired. 'Nuff 
said. 

11.3.06-"Blackout" 

A series of failures at electricity substations cause localized blackouts in 
areas of Los Angeles. D o n worr ies that a terrorist g r o u p is runn ing trials 
prior to launching an attack in tended to cause a cascading failure that 
will plunge the entire city into darkness. But w h e n Charlie analyzes the 
flow network, he discovers that n o n e of the targets wou ld have such an 
effect, and suspects that the attacks have a different purpose . By analyz
ing the target substations and the ones left alone using e lementary set 
theory (Venn diagrams and Boolean combinations) , he is able to identify 
the real target—a prison housing a m a n wai t ing for trial, w h o m various 
other criminals would prefer to see dead. 

11.10.06-"Hardball" 

The sudden death of an aging baseball player dur ing practice tu rns sin
ister when steroids found in his locker t u r n ou t to be in a lethal dosage 
that can only be deliberate. The player was murdered . T h e discovery of 
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what seem to be ransom-threat e-mails to the murdered player brings 
Charlie into the picture because the u n k n o w n e-mailer based his accusa
tions on a mathemat ica l analysis of the player's performance that indi
cated exactly w h e n he started using steroids. Initial suspicion falls on a 
young baseball fan w h o uses sabermetrics (the mathemat ical analysis of 
baseball performance statistics) t o play fantasy baseball. The key math
ematical idea that led the young fan to spot the steroid use is called 
changepoint detection. 

11.17.06-"Waste Not" 

W h e n a sinkhole opens in a school playground, killing one adult and 
injuring several children, D o n is called in because the company that 
const ructed the playground had been under investigation for sus
pected negligence. Charlie's analysis of heal th issues in the Los Angeles 
region turns u p unusually high incidences of childhood cancers and 
o ther illnesses concent ra ted in areas where the company had con
structed a playground using an asphalt substitute made from recycled 
toxic waste . T h e material seems harmless, bu t w h e n Charlie spots a 
discrepancy be tween the waste material sent to the company and 
the surfacing material produced, he suspects that d r u m s of untreated 
waste had been buried benea th the playgrounds. Charlie uses reflection 
seismology to locate some of the buried d rums . This is a method for 
obtaining an image of the terrain benea th the surface by mathemat i 
cally analyzing the reflections of Shockwaves from a small underground 
explosion. 

11.24.06-"Brutus" 

A California state senator and a psychiatrist are murdered. The two 
cases appear very different, bu t D o n thinks the two murders are related. 
Charlie helps by using ne twork theory to unear th possible connections 
be tween the two victims. T h e trail leads to a long-kept government 
secret. T h e episode opens wi th Charlie testing a crowd-monitoring 
surveillance system he has developed, based on the mathemat ics of 
fluid flow. 
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12.15.06-"Killer Chat" 

Charlie helps D o n track a killer w h o has murdered several sexual preda
tors. The predators had all taken advantage of teenage girls they m e t in 
online chat rooms, and the killer lured t h e m to their deaths by posing 
online as a teenage girl. Charlie's principal contribution is to analyze the 
linguistic patterns of the various participants in the chat, captured by the 
chat-room logs, a technique often used in real-life law enforcement. 

1.5.07-"Nine Wives" 

Don, Charlie, and the team search for a polygamist w h o is on the run. The 
man is on the FBI's "Ten Most Wanted" list for rape and murder. The events 
of this episode closely mirror those of the real-life case of Warren Steed 
Jeffs, and the fictitious cult "Nine Wives" was based upon the Fundamental
ist Church of Jesus Christ of Latter Day Saints (FLDS), of which Warren 
Steed Jeffs was the leader. Charlie's principal contribution comes when he 
analyzes a network diagram found at one of the cult's hideouts, which his 
department chair, Millie, recognizes as a genetic descendant graph. 

1.12.07-"Finders Keepers" 

W h e n an expensive, high-performance racing yacht sinks during the 
middle of a race, D o n is not the only one w h o gets involved. Agents from 
the NSA show up on the scene as well. Charlie helps by using fluid 
dynamics equations to calculate the most likely location where the vessel 
can be found. W h e n it eventually turns up somewhere else, it becomes 
clear that there is far more to the story than first appeared. Charlie carries 
out a further analysis of the yacht's j ou rney and concludes that it mus t 
have been carrying a heavy cargo hidden in the keel. The NSA agents are 
forced to disclose what b rought t hem into the picture. 

2.2.07 - "Take Out" 

A gang has been robbing patrons of upscale restaurants, killing diners in 
the process. Charlie analyzes the pa t te rn of locations of the restaurants 
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t o t ry to figure ou t where they are mos t likely to strike next. W h e n the 
gang strikes at another restaurant , no t on Charlie's list, he has to reex
amine his assumptions. It soon becomes clear that there is more to the 
robberies than simply the acquisition of money. To track t h e m down, 
Charlie has to find a way to trace the flow of funds th rough off-shore 
banks that serve as money- launder ing operat ions. 

2 .9 .07 -"End of Watch" 

D o n and his t e a m reopen a cold case w h e n an LAPD badge turns up at 
a construct ion site. Charlie uses a highly sophisticated (and m a t h heavy) 
technique called "laser swath mapping" to locate the buried remains of 
the owner of the badge, an officer w h o has been missing seventeen 
years. LSM uses a highly focused laser b e a m from low-flying aircraft 
to identify undulat ions in the ground . Later in the episode, Charlie 
uses critical pa th analysis to t ry to reconstruct the dead officer's activi
ties on the day he died. T h e episode title, "End of Watch," is a police 
id iom for the death of a cop. At police funerals, "end of watch" is used 
to indicate the date that an officer passed away. 

2.16.07-"Contenders" 

O n e of David's old school friends kills a sparring par tner in the ring. It 
looks like an accident until it emerges that the same thing has happened 
before. W h e n the coroner discovers that the dead fighter was poisoned, 
things look bad for David's friend, bu t a DNA analysis of some key evi
dence eventually clears h im. Charlie says he can use a "modified Kruskal 
coun t" to analyze the sequence of fights the two dead fighters were 
involved in to de te rmine the likely killer. A Kruskal count is a device 
for keeping t rack of playing cards used by stage magicians to "predict" 
the face value of a card that has apparently been lost in a sequence of 
shuffles. It is hard to see h o w this technique could be used in the way 
Charlie suggests. Perhaps his mind was distracted by the upcoming 
poker championship he is playing in, which provides a secondary theme 
for this episode. 
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2.23.07 - "One Hour" 

While D o n is occupied talking wi th the agency's psychiatrist, his t e a m is 
in a race against t ime to find an eleven-year-old boy, the son of a wealthy 
local gangster w h o has been kidnapped for a $3 million ransom. Much 
of the action centers on the kidnapper directing agent Colby Granger to 
follow a complex pa th th rough Los Angeles to shake off any tails, a 
sequence taken from the Clint Eas twood movie Dirty Harry. Charlie and 
Amita assist by figuring out the logic behind the rou te the k idnapper has 
Colby follow, though it is never m a d e clear quite h o w they manage this. 
It seems unlikely given the relatively small n u m b e r of data points. 

3.9.07 - "Democracy" 

Several murders in the Los Angeles area seem to be tied to election fraud 
using electronic voting machines. Don , Charlie, and the t eam mus t find 
the killers before they strike again. Al though the security of electronic 
voting systems involves lots of advanced mathemat ics , Charlie's prin
cipal contribution to solving this case is right at the start, w h e n he 
computes the likelihood that a particular sequence of deaths could 
be accidental. W h e n his answer tu rns ou t to be extremely low, that 
provides D o n the key information that the deaths were all murders . 

3.30.07-"Pandora's Box" 

A small executive je t crashes in the forest, witnessed by a forest ranger. 
W h e n the ranger goes to investigate, he is shot, raising the suspicion of 
sabotage. The black box recorder is recovered and analyzed (by Charlie in 
a CalSci lab) and shows that the plane's altitude readings were off by sev
eral thousand feet. By analyzing the debris field, Charlie is able to locate 
the aircraft's flight control computer. W h e n he analyzes the code, he dis
covers that the entire crash was caused as a ruse to insert computer code 
into the FAA's main flight control computer w h e n the black box was read. 
Charlie's other main contribution to solving the case is the use of image 
enhancement techniques to deblur some key smudged fingerprints. 
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4.6 .07-"Burn Rate" 

A series of letter b o m b s protest ing biotechnology research has the same 
features of an earlier series for which someone is already serving a 
prison sentence. Charlie's initial contr ibut ion is to analyze the debris 
from the explosions to de te rmine the construct ion of the b o m b . Then 
he looks at the pa t t e rn of addresses from which the b o m b s were mailed 
to n a r r o w d o w n the main suspect 's likely location. But w h e n he realizes 
the data is simply t oo good—there are n o outliers—he realizes that 
Don 's suspect cannot be the bomber . But w h o is? 

4.27.07 - "The Art of Reckoning" 

A former m o b hit m a n on death row has a change of heart and agrees to 
confess to his crimes in exchange for seeing his daughter before he is exe
cuted. Charlie advises D o n h o w to conduct the negotiation by explaining 
the tit-for-tat strategy for repeated plays of the Prisoner's Dilemma, a two-
person competitive game. The use of an fMRI scanner to determine if the 
condemned m a n is lying depends on a lot of sophisticated mathematics, 
bu t it's all buried in the technology, so Charlie does not have to do it. 

5.4 .07-"Under Pressure" 

Information recovered from a laptop obtained in Yemen indicates that a 
t e a m of terrorists intends to p u m p nerve gas into the Los Angeles water 
supply. Charlie uses n e t w o r k analysis to t ry to figure ou t w h o the key 
operatives might be . Most of Charlie's contr ibution has occurred before 
the episode starts. 

5 .11 .07 - "Money for Nothing" 

A t ruck carrying medicines and fifty million dollars in cash destined for 
an African relief p r o g r a m is hijacked by a gang of sophisticated thieves. 
The FBI's efforts to locate the shipment are complicated by the activities 
of boun ty hunters . Charlie performs a mathemat ical analysis of the 
truck's possible escape paths. 
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5.18.07-"The Janus List" 

A former cryptologist for British intelligence agencies confronts the FBI 
and sets off fiery explosions on a bridge as par t of a desperate scheme to 
expose double agents w h o have poisoned h im. To help the FBI follow 
the cryptologist 's complicated trail of clues and make the critical con
tacts needed to obtain the list of double agents, Charlie mus t decipher 
messages that have been encoded using a variety of techniques, includ
ing a straddling checkerboard and a musical cipher. 
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